
Algebraic Analysis of Linear MultidimensionalControl SystemsJ.F. Pommaret and A. QuadratCERMICSEcole Nationale des Ponts et Chaussées6 et 8 avenue Blaise Pascal,77455 Marne-La-Vallée Cedex 02, Francee-mail: {pommaret, quadrat}@cermics.enpc.frAbstractThe purpose of this paper is to show how to use the modern methods of algebraic anal-ysis in partial di�erential control theory, when the input/output relations are de�ned bysystems of partial di�erential equations in the continuous case or by multi-shift di�erenceequations in the discrete case. The essential tool is the duality existing between the theoryof di�erential modules or D-modules and the formal theory of systems of partial di�erentialequations. We reformulate and generalize all the formal results that can be found in theextensive literature on multidimensional systems (controllability, observability, primenessconcepts, poles and zeros, ...). All the results are presented through e�ective algorithms.Keywords: Control theory, Primeness, Multidimensional Systems, Algebraic Analysis,Extension Functor, Janet Conjecture, Formal Theory of Partial Di�erential Equations,Duality, Homological Algebra.1 IntroductionIn 1963, R.E. Kalman related, in [10], the controllability of a linear ordinary di�erentialcontrol system, with constant coe�cients, of the form _y = Ay + Bu; to the full row rankof the controllability matrix (B;AB; :::; Am�1B), where m is the number of outputs y.In 1969, this criterion was shown by Hautus [4] to be equivalent to the full row rank ofthe matrix (A � �I;B) for all values of the indeterminate � in an attempt to study thetransfer matrix (�I�A)�1B. Then, more general polynomial systems of the form D(�)y =N(�)u, with D a non degenerate square matrix, were considered in attempt to study thetransfer matrix D(�)�1N(�). In particular, left-coprimeness conditions for the matricesD and N were given for multi-input/multi-output (MIMO) systems generalizing the caseof single input/single output (SISO) systems where common factors of D (denominator)and N (numerator) could disappear in the transfer function [9]. One must notice that theKalman criterion came from an explicit integration by means of exponential of matrices,which is not easily available in the general case. Little by little, the preceding conditionfor D and N separately, has been reformulated for the full matrix (D;�N) in terms ofBezout identity, a result showing that controllability is a built-in property of the controlsystem, not depending on the separation of the variables between inputs and outputs.Meanwhile, a few people tried to extend these results to matrices over polynomial ringk[�] = k[�1; :::; �n] in n indeterminates over a �eld k of constants or to operator matrices1



with variable coe�cients [12, 17, 18, 33, 34, 36, 38]. It was soon discovered that the casen = 1, where k[�] is a principal ideal ring, should be distinguished with care from thecase n = 2 and n � 3 [33, 38]. It is only recently that people paid attention to algebraicanalysis, pionneered by V.P. Palamodov [19] for the constant coe�cients case and by M.Kashiwara [11] for the general case. We quote in particular the very recent work of U.Oberst [17] showing, in �rst place, that a control system is controllable if and only if thecorresponding di�erential module is torsion-free.In this paper, the mathematical results are not new and we provide all correspondingreferences as their homological proofs are often awfully delicate. However, the applicationsto control are quite new. In particular, the main purpose of this paper is to combine theformal theory of di�erential operators with that of di�erential modules and a descriptionby extension functors in order to avoid the introduction of signals spaces, while recoveringand generalizing all the results previously quoted. All these results will be developped ina forthcoming book [25].In view of the amount of mathematical tools needed in order to understand algebraicanalysis, we suppose that the reader has a basic familiarity with di�erential sequences orresolutions and their use for de�ning the extension functor [5, 16, 31].2 Algebraic Analysis2.1 D-modulesDe�nition 1 A di�erential ring A with n commuting derivations @1; : : : ; @n is a ringwhich satis�es 8 a; b 2 A; 8 i; j = 1; : : : ; n :� @i a 2 A;� @i(a+ b) = @i a+ @i b;� @i(ab) = (@i a) b+ a @i b;� @i @j = @j @i:For applications, the di�erential ring A will either be a di�erential �eld K containing Qor its sub�eld of constants k = cst(K) = fa 2 K j 8 i = 1; :::n : @ia = 0g. If d1; :::; dn are ncommuting formal derivative operators, we shall introduce the noetherian ring D = A[d] =A[d1; :::; dn] of di�erential operators. Any element of D has the form P = P�nite a� d�;where � = (�1; : : : ; �n) is a multi-index with length j � j= �1 + : : : + �n, a� 2 A andd� = (d1)�1 :::(dn)�n . D is a non-commutative integral domain which satis�es8 a; b 2 A : adi (b dj) = ab di dj + a (@i b) dj ;and possesses the left (right) Ore property: 8 (P;Q) 2 D2; 9 (U; V ) 2 (Dn0)2 such that U P =V Q (P U = QV ).Example 1 The �eld of rational functions R(t) is a di�erential �eld with derivative ddt .Indeed, 8 a(t); 0 6= b(t) 2 R(t); we have:ddt(a(t)b(t) ) = _a(t) b(t)� a(t) _b(t)b2(t) 2 R(t):Let D = R(t)[ ddt ] be the non-commutative ring of linear operators with coe�cients in R(t).Any element P 2 D has the form P =P�nite ai(t)( ddt )i, with ai 2 R(t).In the general case, as D is a non-commutative ring, we de�ne the notion of �ltrationand gradation in order to pass from the non-commutative ring D to the commutative2



ring gr(D) and thus to use all the results and techniques developped in the commutativecase, for the non-commutative one [1, 14, 20]. Moreover, the ring of di�erential operatorsD = A[d] looks like a polynomial ring and thus we may like to generalize the well-knownnotion of degree of a polynomial to a di�erential operator in D. This can be done byintroducing the notion of graded ring. For more details, see [1, 14, 20].De�nition 2 A �ltration of an A-algebra D is a sequence of A-modules fDrgk2N satisfy-ing:1. 0 = D�1 � D0 � D1 � ::: � D;2. [r�0Dr = D;3. DrDs � Dr+s.The associated graded A-algebra gr (D) of D is de�ned by:1. gr (D) = �r2N Dr=Dr�1,2. 8P 2 Dr=Dr�1;8Q 2 Ds=Ds�1 : P :Q = PQ 2 Dr+s=Dr+s�1.Dr=Dr�1 is called the homogeneous component of degree r of D.Example 2 The sequence of A-modules Dr = fP0�j�j�r a� d�; a� 2 Ag is a �ltration ofD = A[d1; :::; dn]. In particular, we have D0 = A � D and thus Dr is a free left A-modulewith basis fd�; 0 � j�j � rg. In the next sections, Dr will always refered to this �ltrationand we shall endow T = D1=D0 with a bracket induced by the �ltration of D, namely[P;Q] = P �Q�Q � P; P;Q 2 D.Proposition 1 The natural morphismgr (D) �! A[�1; :::; �n]Dr=Dr�1 3 Pj�j=r a�d� 7�! Pj�j=r a���;is an isomorphism of A-algebra.De�nition 3 Let M be a D-module where D admits the �ltration fDrgr2N . A familyfMqgq2N of A-modules is a �ltration of M if1. 0 = M�1 �M0 �M1 � ::: �M;2. [q2NMq = M;3. DrMq �Mq+r.The associated graded gr (D)-module G = gr (M) is then de�ned by:1. G = �q2N Gq, with Gq = Mq=Mq�1,2. 8P 2 Dr=Dr�1;8m 2Mq=Mq�1 : P m = Pm 2Mq+r=Mq+r�1.We have the short exact sequence:0 �!Mq�1 �!Mq �! Gq �! 0: (1)De�nition 4 A �ltration fMqgq2N of aD-moduleM is called a good �ltration if it satis�esone of the following equivalent conditions:1. 8 q 2 N;Mq is �nitely generated over A and there exists p 2 N such that:DrMp = Mp+r; r � 0;2. G is a �nitely generated gr (D)-module.3



Example 3 1. Let M be a �nitely generated D-module with the set of generatorsfe1; :::; emg. Then, the �ltration Mq = Pmi=1Dqei is a good �ltration as we haveG =Pmi=1 gr(D) ei, and thus G is �nitely generated over gr(D) by fe1; :::; emg.2. Let M = D be the left D-module and let (Mq = D2q)q2N be a �ltration of M . Then,we have DrMq = DrD2q � D2q+r  D2(q+r) = Mr+q and thus (D2q)q2N is not agood �ltration of D.Proposition 2 Let M be a left D-module then M admits a good �ltration if and only ifM is �nitely generated over D. Moreover, if M has a good �ltration then1. Any submodule M 0 of M has a good �ltration, de�ned by M 0q = Mq \M and M 0 is�nitely generated over D.2. Any quotient M 00 of M has a good �ltration, de�ned by the image of the �ltration ofM onto the projection M �!M 00 �! 0.3. If 0 �! M 0 �! M �! M 00 �! 0 is a short exact sequence of �ltred modules thenwe have the short exact sequence 0 �! G0 �! G �! G00 �! 0, where the associatedgraded modules G0 = gr (M 0), G = gr (M) and G00 = gr (M 00) are de�ned with respectto the above induced �ltrations.Now, using the graded module gr(M) over the commutative ring gr(D), instead of theD-module M , we can use the results of algebraic geometry to give an intrinsic de�nitionof the dimension of a module M .De�nition 5 Let M be a �nitely generated D-module with a good �ltration and letG = gr(M) be its associated graded gr(D)-module, then the ideal I(M) = pann(G) =fa 2 gr(D) j 9n 2 N : anG = 0g does not depend on the �ltration of M and we introducethe characteristic set char(M) = V (I(M)) = fp 2 spec(gr(D)) jpann(G) � pg, wherespec(gr(D)) is the set of proper prime ideals of gr(D).The previous de�nition and proposition lead to the following one [1, 14, 20].Proposition 3 Let M be a �nitely generated left D-module admitting a good �ltrationthen1. For q large enough, there exists a unique Hilbert polynomial HM such that dim (Mr) =HM (r) = mr! rd+ :::, where d is the degree of the polynomial. The degree d = d(M) iscalled the dimension of M , the coe�cient m = m(M) is the multiplicity of M andthey do not depend on the good �ltration.2. If 0 �! M 0 �! M �! M 00 �! 0 is an exact sequence of �nitely generated �ltredmodules then(a) char(M) = char(M 0) [ char(M 00),(b) HM = HM 0+HM 00 and thus d(M) = max(d((M 0); d(M 00)) and if d(M 0) = d(M 00)then m(M) = m(M 0) +m(M 00).We shall see, in the next section, how to compute e�ectively the Hilbert polynomialand thus the dimension and the multiplicity of a D-module M .Now, let us give some basic de�nitions of properties of modules that will be at the coreof this paper.De�nition 6 � A D-module M is free if there are elements of M which generate Mand which are independent over D.� A D-module M is projective if there exist a free D-module F and a D-module Nsuch as: F = M �N . Hence, the module N is also a projective D-module.4



� A D-module M is re�exive if M �= homD(homD(M;D);D).� A D-module M is torsion-free if t(M) = fm 2 M j 9 p 6= 0; pm = 0g = 0. We callt(M) the torsion submodule of M . In any case, M=t(M) is a torsion-free D-module.If D is a principal ideal ring then any torsion-free module is free and if A = k then, usingthe Quillen-Suslin theorem [31, 34], any projective module is free. Moreover, it followsimmediately from (1) that M is torsion-free (re�exive, projective, free) whenever G istorsion-free (re�exive, projective, free). The converse is not true.Example 4 The SISO-system _y� y�u = 0 is torsion-free while the graded part _y = 0 isnot torsion-free.2.2 Di�erential OperatorsLet X be a di�erential manifold of dimension n with local coordinates x = (x1; :::; xn). Wedenote by T = T (X) the tangent bundle of X and by T ? = T ?(X) the cotangent bundle ofX. By SqT ?;Vr T ? we shall mean the qth symetric product of T ?, the rth exterior productof T ?. Let E be a vector bundle of �ber dimension m over X, with local coordinates (x; y),with y = (y1; :::; ym). We shall use the same notation E for a vector bundle and for itssheaf of germs of sections. We consider the vector bundle Jq(E) of q�jets of E. Its �ber atx 2 X is the quotient of the space of germs of sections of E at x by the subspace of germs ofsections which vanishs up to order q at x (f; g 2 Jq(E)x , @�f(x) = @�g(x); 0 � j�j � q).We identify J0(E) with E and we denote the projection of Jq(E) onto X by � and theprojection of Jq(E) onto Jq�1(E) by �qq�1. If � is a section of E, we denote by jq(�)(x)the equivalence class of germs of � at x. We have the following exact sequence [3, 21, 29]:0 �! SqT ? 
E �! Jq(E) �qq�1�! Jq�1(E) �! 0: (2)Let F be a vector-bundle over X, of �ber dimension l.De�nition 7 1. A di�erential operator D = � � jq : E ! F is given by a bundlemorphism � : Jq(E)! F , where we may suppose that � is surjective.2. The r-prolongation of � is the unique bundle morphism �r(�) : Jq+r(E) ! Jr(F )such that �r(�) � jq+r = jr � D = jr � � � jq.3. The linear system of partial di�erential equations (PDE) Rq de�ned by D is thekernel of � and a solution of Rq is a local section � of E, over an open set U � X,such that jq(�)(x) 2 Rq;8x 2 U:4. The rth prolongation Rq+r of Rq is the kernel of �r(�).5. We denote by R(s)q+r the projection ofRq+r+s onto Jq+r(E), i.e., R(s)q+r = �q+r+sq+r (Rq+r+s).Example 5 The bundle morphism � de�ned by� : Jq(E) �! F(x; yk�) 7�! (x;P0�j�j�q;1�k�m a��k (x) yk�);with 1 � � � l gives rise to the di�erential operator D de�ned by:D : E �! F(x; �k(x)) 7�! (x; �(x)� =P0�j�j�q;1�k�m a��k (x) @� �k);with � = 1; :::; l: The system Rq, de�ned by the di�erential operator D, is given by:X0�j�j�q;1�k�m a��k (x) yk� = 0; 1 � � � l:5



Now, using the sequence (2) and the de�nition of the r-prolongation of �, we obtainan induced map �q+r(�) : Sq+rT ? 
 E ! SrT ? 
E and we denote by gq+r the kernel of�q+r(�). We call gq+r the symbol of Rq+r. We easily see that gq+r = Rq+r \ Sq+rT ? 
E.Example 6 The map �q+r(�), where � is de�ned as in the previous example, is de�nedby: �q+r(�) : Sq+rT ? 
E �! SrT ? 
 F(x; yk�; j�j = q + r) 7�! (x;Pj�j=q;j�j=r;1�k�m a��k (x) yk�+�);The symbol gq+r of the system Rq+r is the kernel of �q+r(�).Let us de�ne the Spencer �-sequence by�s T ? 
 gq+r+1 ��! �s+1 T ? 
 gq+r;with (�(!))k� = dxi ^ !k�+1i where ! = vk�;I dxI 2 �s T ? 
 gq+r+1, dxI = dxi1 ^ :::^ dxis ; i1 < ::: < is and j�j = q + r. We easily verify that � � � = 0. The resultingcohomology at �s T ? 
 gq+r is denoted by Hsq+r(gq).De�nition 8 The symbol gq of Rq is said to be s-acyclic ifH1q+r = ::: = Hsq+r = 0;8 r � 0.The symbol gq is involutive if it is n-acyclic. In particular, every system Rq of ordinarydi�erential equations (ODE) has an involutive symbol. A symbol gq is of �nite type if9 r � 0 such that gq+r = 0.We can prove that the symbol gq of a system Rq is such that gp+r becomes involutive forr large enough. If gq is an involutive symbol, we may de�ne integers �iq called charactersof gq such that dim gq+r = nXi=1 (r + i� 1)!r! (i� 1)! �iq;8 r � 0;and the following relations are statis�ed:1. dimgq = �1q + :::+ �nq ,2. �1q � �2q � ::: � �nq � 0,3. 0 � �nq � m.De�nition 9 A system Rq is said to be formally integrable if 8 r; s � 0, Rq+r is a vectorbundles and the projection �q+r+sq+r : Rq+r+s ! Rq+r is surjective. A system Rq is involutiveif Rq is formally integrable and has an involutive symbol gq.If � is su�ciently regular, then Rq+r are vector bundles for any r � 0 and if Rq isformally integrable then we have the exact sequences:0 �! gq+r �! Rq+r �q+rq+r�1�! Rq+r�1 �! 0: (3)Corollary 1 If the system Rq is involutive system thendim (Rq+r) = dim (Rq�1) + nXi=1 (r + i)!r! i! �iq = �nqn! rn + :::;where Rq�1 is the projection of Rq on Jq�1(E).
6



The formal solutions of the system Rq depend on �1q functions in x1, �2q functions in(x1; x2), ..., and �nq functions in (x1; :::; xn).If the system Rq is not formally integrable, then by adding su�ciently enough equa-tions, we can bring the system Rq to be a formally integrable system R(s)q+r with the samesolutions, by means of a �nite algorithm [3, 21]. The knowledge of the latter system,which is the �nite substitute for Rinfty, is essential for studying the formal properties ofthe given system and of the corresponding di�erential module.De�nition 10 Let D : E ! F be an involutive operator then there exists at most n newoperators Di : Fi�1 ! Fi, with F0 = F , such that the following sequenceE D�! F0 D1�! F1 D2�! ::: Dn�! Fn �! 0;is stricly exact, i.e., the operator Di generates all the compatibility conditions of Di�1 andthe sequence is exact at any order on the jets level. This sequence is called the Janetsequence of D.2.3 DualityThe sequence (3) for r = 0 is the dual over A of the sequence (1) if D has coe�cients inA and E;F are trivial bundles. Using coordinates (x; y) for E, we may identify Dy =Dy1 + ::: + Dym with Dm. The duality between di�erential geometry and di�erentialalgebra is obtained by settingJ?q = homA(Jq; A) = Dq ) Jq(E)? = Dq(E) = Dq 
A E?;whenever (X;A) is a ringed space [15]. Accordingly, we can de�ne a di�erential moduleM by the cokernel in the exact sequence of modules:D 
A F ? �! D 
A E? �!M �! 0;or simply Dl �! Dm �!M �! 0;in the trivial case if dim(E) = m, dim(F ) = l. Hence, R1 = �1(Rq) = homA(M;A),and the main di�culty is that certain properties of M , using injective limits, are noteasily interpreted as properties of R1, using projective limits and vice-versa. When D isinvolutive and su�ciently regular, we notice that a canonical �nite resolution of the sheaf� of solutions of D, is of the form of the Janet sequence with F = F0, dim(Fr) = lr anddim(E) = m, 0 �! � �! E D�! F0 D1�! F1 D2�! ::: Dn�! Fn �! 0; (4)where Di represents all the compatibility conditions of Di�1. The sequence (4) provides,by duality, a �nite free resolution of M [5, 16, 31] :0 �!M  � Dm :D � Dl0 :D1 � Dl1 :D2 � ::: :Dn � Dln  � 0; (5)The problem is to study the properties of operator m� l-matrix, acting on column vectorson the right, in the operator sense or on row vectors on the left, in the module sense.Accordingly, a preliminary problem for being able to deal equivalently with D or withM is to bring e�ectively D or Rq to formal integrability or even to involutiveness, insuch a way that Rq = M?q = homA(Mq; A). Such a fact is rather hard to understandon the presentation of M when one asks equivalently for a strict morphism Dl �! Dm[11, 32]. It is important to notice that the dualities homA(�; A) and homD(�;D) that willbe systematically used in this paper can lead to e�ective computations, contrary to the7



duality homD(�; I), when I is an injective module, used by Oberst [17] and Willems [35]in their behavioural approach.We have de�ned an algebraic set over k or K, namely the characteristic set char(M) =supp(G) of M as the support of G, namely the set of prime ideals of gr(D), containing theannihilator ann(G) of G = gr(M). Keeping the word variety for an irreductible algebraicset, we notice that the dimension dim(M) = d(M) of the D-module M is the maximumdimension over an algebraic closure of k orK of the varieties corresponding to the minimumprime ideals in char(M), i.e., the degree d of the Hilbert polynomial HM . Equivalently,to avoid dealing with many irreductible components, the Hilbert-Serre theorem says thatd(M) is equal to the maximum number of non-zero characters �iq [32]. We denote bycd(M) = n� d(M) the codimension of char(M).We present the extension functor in the operator language (see [5, 16, 31] for a moduleapproach). If D : E �! F is a di�erential operator of order q, we denote by ad(D)= ~D :~F = Vn T ? 
 F ? �! ~E = Vn T ? 
E?, the formal adjoint of D. The operator ~D is of thesame order than D, with coe�cients in A. The formal adjoint ~D : ~F ! ~E can be easilycomputed by using the following three rules:� The adjoint of a matrix (zero order operator) is the transposed matrix.� The adjoint of @i is �@i.� For two linear PD operators P;Q that can be composed: P̂ �Q = ~Q � ~P .Moreover, we have the following relation< �;D � >=< ~D�; � > +d(�);with d the exterior derivative. We compute the adjoint of an operator by multiplyingit by test functions on the left and integrating the result by part, as we could do fordistributions.The two key problems are �rstly that ~D may not be formally integrable when D isand secondly that ~Dr may not generate at all the compatibility conditions of ~Dr+1 in theadjoint of the Janet sequence (4). Let us give an example.Example 7 We take the operator D : � ! � de�ned on sections, by� @12� = �1;@22� = �2;and we easily see that the compatibility condition of D is the operator D1 : � ! �, de�nedby @1�2 � @2�1 = �. Then, the adjoint ~D1 : �! � of D1 is then given by:� @2� = �1;�@1� = �2:The compatibility condition of ~D1 : � ! � is de�ned by the operator @1�1 + @2�2 = �,which is not the adjoint ~D of the operator D, de�ned by @12 �1 + @22 �2 = �.One can roughly say that extrD(M;D) measures the defect of exactness at ~Fr�1 in theadjoint sequence. However, as extrD(M;D) does not depend on the presentation of M ,the previous de�nition by means of the Janet sequence is, by far, the best one though onecould use the second Spencer sequence too (another �nite free resolution of the sheaf � ofsolutions of D) [15, 21, 29], namely (do not confuse among standard notations)0 �! � jq�! C0 D1�! C1 D2�! ::: Dn�! Cn �! 0; (6)and measure the defect of exactness at ~Cr by dealing with �rst order operators Dr thoughwith many more unknowns (take for example E = T , F = Vn T ? and for D the divergenceoperator).The �rst key result of algebraic analysis is the following theorem relating the vanishingof the extension functor to the codimension of the characteristic set [11, 19].8



Theorem 1 cd(M) � r, extiD(M;D) = 0; 8 i < r:The second key result, instead of looking for the compatibility conditions D1 of adi�erential operator D, deals with the converse problem of looking for a potential likeexpression of D, namely to know whether one can �nd an operator D�1 : E�1 �! E0 = Esuch that D generates all the compatibility conditions of D�1. For example, one may keepin mind the Poincaré sequence for the exterior derivative. If there exists such an operatorD�1, we say that the operator D is parametrized by D�1.Theorem 2 There exists a sequence of di�erential operatorsE�r D�r�! E�r+1 D�r+1�! ::: D�2�! E�1 D�1�! E0 D�! F;where each operator generates all the compatibility conditions of the preceding one, if andonly if extiD(N;D) = 0; 8 i = 1; :::; r whenever N is the di�erential module determined bythe operator ~D, exactly as M was determined by D.The above conditions can be checked e�ectively as we just need to construct the adjointoperator, �nd a sequence of compatibility conditions with length r, dualize it and checkwhether the adjoint sequence is formally exact, i.e., each operator generates exactly thecompatibility conditions of the preceding one. The global dimension of D is n because,using the Spencer sequence (6), we obtain at once: extiD(M;D) = 0; 8 i > n:Example 8 Let us take the divergence operator D : � ! �, in R3 , de�ned by@1 �1 + @2 �2 + @3 �3 = �:Dualizing the divergence operator, we obtain the operator ~D : �! �, de�ned by8<: �@1 � = �1;�@2 � = �2;�@3 � = �3;which is nothing else than minus the gradient operator. We let the reader check by himselfthat the compatibility conditions ~D�1 of ~D is the curl operator and the adjoint of ~D�1 isstill the curl operator, i.e., the curl is a self-adjoint operator. The compatibility conditionsof the curl operator D�1 are the divergence and thus D is parametrized by the curl operatorD�1. In other words, if M is the D-module de�ned by D, we have ext1D(N;D) = 0, whereN is the D-module de�ned by ~D. Moreover, we can check that the compatibilty conditions~D�2 of ~D�1 is minus the divergence operator and thus its adjoint D�2 is the gradient whichparametrizes the curl, i.e., ext2D(N;D) = 0. We shall see in the next section that if D isa formally surjective operator, that is without any compatibility conditions, then N is atorsion D-module and thus homD(N;D) = ext0D(N;D) = 0. Using theorem 1, we obtaincd(N) > 2 , d(N) = 0, that is, �i1( ~D) = 0; 8 i = 1; :::; 3, and we �nd back that thesolutions of the gradient operator only depend on constants.It is essential to notice that the right D-module Nr = Vn T ? 
A N , obtained fromthe left D-module N = Nl by the side changing functor [1], must not be confused with~M = homD(M;D) as we have the exact sequence0 �! ~M �! E 
A D �! F 
A D �! Nr �! 0;and thus we have the relation: extiD(Nr;D) = exti�2D (homD(M;D);D); 8 i � 3. Finally,the result 3.1.1 will prove that extiD(N;D) depends in fact only on M , i � 1, whilehomD(N;D) is only determined up to a projective equivalence, according to the Schanuel'slemma [5, 16, 31]. 9



3 Applications to Control TheoryWe shall now divide the properties of control systems into two categories, depending onthe fact that they do or do not depend on a separation of the variables of the controlsystem between input and output.3.1 Structural PropertiesWe �rst study the properties that do not depend on such a separation.3.1.1 PrimenessThe key idea, not evident at all intuitively, is to use ~D or N instead of D or M in orderto achieve a classi�cation of modules:free � projective � ::: � re�exive � torsion-free:First of all, we recall that M is torsion-free (re�exive) if and only if the central morphisnin the long exact sequence of left D-modules0 �! ext1D(Nr;D) �! M ��! homD(homD(M;D);D) �! ext2D(Nr;D) �! 0;m �! �(m);with 8 f 2 homD(M;D) : �(m)(f) = f(m); is injective (bijective).Corollary 2 The following assertions are equivalent [11, 19, 21, 25]:1. The control system de�ned by D is controllable.2. The operator D is parametrizable by a D�1.3. The D-module M is torsion-free.4. ext1D(Nr;D) = Vn T ? 
A ext1D(N;D) = 0.Remark 1 Moreover, if D is formally surjective, that is D1 = 0, then homD(N;D) =ext0D(N;D) = 0 th.1, cd(N) � 1 , d(N) � n� 1 , �nq (N) = 0, N is a torsion module:Then, M is torsion-free ) extiD(N;D) = 0; 8 i � 1 ) cd(N) � 2 ) d(N) � n � 2 andwe �nd back the concept of minor left-primess (MLP) [33, 38, 36] for the operator matrixrepresenting D. One must care that, in the variable coe�cient case, the matrix of ~D isnot just the transposed of the matrix of D. In the particular case n = 1, we �nd backthe Hautus test [4] and the fact that the control system is controllable if and only if ~Dis injective [23]. In that case, there is a lift-operator ~P : ~E ! ~F such that ~P � ~D = id ~Fand thus D �P = idF , a result amounting to the forward and reversed generalized Bezoutidentities [9, 27]. When D is not surjective, the above result amounts to generalized factorleft primeness (see [33, 38] and p.12 of [36]).Corollary 3 M is re�exive , extiD(N;D) = 0; 8i = 1; 2:Remark 2 Moreover, if D is surjective, reasoning as before, we get d(N) � n � 3. Thedivergence operator provides a good example of a re�exive module which is neverthelessnot projective.Going on along theorem 2 with increasing r, we reach the case extiD(N;D) = 0; 8 i =1; ::; n � 1, that is, d(N) = 0 when D is surjective and this is the concept of weakly zeroleft-primeness [36, 38]. A particular example is provided by a system of �nite type orholonomic module N such that I(N) = (�1; :::; �n)) the algebraic set char(N) is reducedto the origin and extiD(N;D) = 0; 8i 6= n. 10



As N is a di�erential module too, we have extiD(N;D) = 0; 8i > n and we are leftwith the only case extiD(N;D);8 i � 1. In particular, when D is surjective, we obtainextiD(N;D) = 0; 8 i � 0 and thus d(N) = �1 that is char(N) = ; and this is onlypossible if N = 0. Hence, ~D admits a lift and M is a projective module [24, 27]. We �ndthe generalization of zero left-primeness [33, 38, 36] as we are now dealing with variablecoe�cients. In the commutative case, one may use ann(M) instead of ann(G) [17, 18].In general, when D is not surjective, as the extiD(N;D) do not depend on the resolutionof N , we may bring ~D to involutiveness and use the corresponding Spencer sequenceto construct inductively lift operators Pr of the Spencer operator Dr in such a way thatDr �Pr �Dr = Dr, and reach the conclusion that N itself is projective, i.e., ~M is projectiveand thus M �= ffM is projective as M is already re�exive. Finally, when D = k[d] iscommutative, it is known that ann(M) and ann(G) de�ne algebraic sets with the samedimension, according to the Hilbert-Serre theorem [32]. Hence, such a generalization ofall existing results explains the existence of a whole range of �possible types of primeness�conjectured in [36].Example 9 When n = 1, only one single type of primeness is left. Dealing with a formalintegrable Kalman system � _y+Ay+Bu = 0 and multiplying it on the left by a row vectorof test functions �, we �nd for the kernel of ~D:� _�+ �A = 0;�B = 0; ) _�B = 0) �AB = 0) �A2B = 0:::) �Am�1B = 0;and the Kalman test surprisingly amounts to the injectivity of the non-formally integrableoperator ~D, a result also equivalent to the lack of �rst integrals [23, 28].Example 10 The system @1�1 + @2�2 = 0 de�nes a torsion-free D-module with a �rstorder parametrization, which is nevertheless not projective whereas @1�1+@2�2�x2�1 = 0de�nes a projective (but not free) and thus re�exive D-module which is automaticallytorsion-free and admits a second order parametrization.Example 11 The last operator Dn in a Janet sequence always provides a projectivemodule.Example 12 With n = 3, let us consider the second order system8<: @33� � @13� � @3� = 0;@23� � @12� � @2� = 0;@22� � @12� = 0;with characters �12 = 3; �22 = 0; �32 = 0. The algebraic sets de�ned by ann(M) and ann(G)are di�erent though they are both unions of 3 varieties of dimension 1, and thus have thesame dimension.Example 13 The case of a surjective operator D : E ! F with dim(E) = dim(F ) isstandard in physics (wave equations in elasticity, electromagnetism, ...). Indeed, M is atorsion module and thus ext0D(M;D) = homD(M;D) = 0 ) cd(M) � 1: If cd(M) = 1,then ext1D(M;D) 6= 0 and D is a determined operator which is therefore always formallyintegrable. A good example is the Cauchy-Riemann system de�ning holomorphic trans-formations. However, cd(M) � 2 ) ext1D(M;D) = 0 ) N = 0. It follows that ~Dis invertible, a fact showing that D is not formally integrable. This result implies thatM = 0. We have thus obtained a simple proof of the conjecture stated by M. Janet in1920 [7] and �rst solved by J. Johnson in [8], saying that, for a system of this kind, there11



is a whole gap in the possible dimensions of the corresponding modules. The followingsecond order system, with n = 2, dim(E)=dim(F )=2, provides a good example [6, 21]� @11�1 + @12�2 � �2 = �1;@12�1 + @22�2 + �1 = �2;and one can easily checked that the square matrix of D is unimodular with determinantequal to 1.3.1.2 Pure ModulesWe end this part with a generalization of the torsion-free property of a module and wefollow [1]. In order to explain this extremely useful new direction for applications, we �rstprovide a few examples.Example 14 Starting with the system� y22 = 0;y12 = 0;we notice that z = y1 only satis�es z2 = 0 while z = y2 does satisfy z1 = 0; and z2 = 0.Hence, we may distinguish the torsion elements of a di�erential module according tothe properties of the system of PDE they satisfy. Two examples from engineering sciencewill particulary well illustrate the di�erent behaviour of various torsion elements.Example 15 In the linearized system for Euler equation for an incompressible �uid [22],namely ( ~r:~v = 0;@~v@t + ~rp = 0;where ~v is the speed and p the pressure of the �uid, one notices that we have the PDE4p = 0; @(4~v)@t = 0:Similarly, the Boussinesq stationary system for the Benard problem [21, 22], namely8<: ~r:~v = 0;4~v � �~g � ~r� = 0;4� � ~g:~v = 0;where ~g = (0; 0;�g) is the gravity while � and � are perturbations of the pressure andtemperature, we obtain from the vector analysis444� � g2(@11 + @22)� = 0;though, setting w = @1v2 � @2v1, we only get 4w = 0.Accordingly, among the elements of a di�erential module, one can �nd the elementswhich are free, i.e., they do not satisfy any PDE, and the others (torsion elements) whichare constrained by at least one PDE.De�nition 11 1. We introduce the D-submodules tr(M) = fm 2 M jcd(Dm) > rg,with t0(M) = t(M), the torsion submodule of M .2. A D-module is said to be r-pure if tr(M) = 0 and tr�1(M) = M .12



The chain of inclusions0 = tn(M) � tn�1(M) � :::: � t1(M) � t0(M) = t(M) �M;will be particularly useful for studying the speci�c properties of engineering quantitiesthat can be observed experimentally by decoupling them from other quantities. Of course,tr�1(M)=tr(M) is r-pure and one has the following delicate criterion for knowing whethera di�erential module is r-pure or not [1]Theorem 3 M is r-pure ,M � extrD(extrD(M;D);D), with cd(M) = r.Corollary 4 When M is r-pure then char(M) is r-equidimensional, namely it can bedecomposed into irreductible components of the same dimension r.We notice that the above criterion generalizes the situation of the torsion-free modulesdescribed in corollary 2 for the case r = 0.Example 16 Without the previous criterion, it is not evident to prove that the di�erentialmodule provided by example 12 is 2-pure and thus that the corresponding adjoint operatoris torsion-free. More generally, any di�erential module de�ned by a �nite type systemis automatically n-pure. This is particulary clear in 2-dimensional elasticity, with D :(�1; �2) �! (@1�1 = �11; 12 (@1�2 + @2�1) = �12; @2�2 = �22), D1 : � �! @11�22 + @22�11 �2@12�12 = 0, de�ning the strain tensor and its compatibility condition, while the adjointsequence allows to parametrize the stress equation by ~D1 acting on the Airy function.To our knowledge, it does not seem that such a classi�cation of systems/modules hasever been applied.Another striking useful theorem is provided by the following non trivial theorem [11,19].Theorem 4 We have the following relation:char(M) = [ni=0 char (extiD(M;D)):Example 17 If D1 denotes the compatibility conditions of D and ~D generates the com-patibility conditions of ~D1, in such a way that both the module M determined by D andthe module N determined by ~D1 are torsion modules, then both D1 and ~D are surjectiveand char(M) = char(N). This result generalizes the equality of the primeness degrees ofleft and right factor matrix descriptions of a given transfer matrix (see p. 74 of [36]). Atypical example of this situation is provided by examples 12 and 16.3.2 Input/Output PropertiesWe now turn to the properties involving inputs and outputs. First of all, contrary to thetradition, there is no reason at all for choosing the inputs as determining a maximum freedi�erential submodule of M , though it is a possible choice. Accordingly, many conceptsin control theory are based upon the two types of exact sequences that can be constructedfrom M 0 �! t(M) �!M �!M=t(M) �! 0; (7)0 �! F �!M �!M=F �! 0; (8)where t(M) is the torsion submodule ofM and F is a maximum free submodule ofM . Wenotice thatM=t(M) is torsion-free whileM=F is a torsion module. Setting S = Dnf0g, wemay construct the �eld Q(D) = S�1D = DS�1 of quotients of D and tensor by Q(D) theprevious sequences in order to kill their torsion modules [11, 17, 28]. Such a construction,13



which is basic in algebraic analysis, gives the way to generalize the transfer matrix ap-proach, even for variable coe�cients, by considering the localization S�1M = Q(D)
DM ,without any reference to the Laplace transform [17, 28]. If we already know that M istorsion-free, it may provide a parametrization of D generalizing the controller form [9].For more details, see [28]. We notice that M=t(M) and M=F are two specializations of Mgiving rise to two subsystems R01 and R001 of R1. Taking into account that t(M)\F = 0,we obtain the following commutative and exact diagram0 0# #0 �! F F �! 0# # #0 �! t(M) �! M �! M=t(M) �! 0k # #0 �! t(M) �! M=F �! M=(t(M)� F ) �! 0;# # #0 0 0and, dualizing it, we obtain the following commutative and exact diagram0 0" "0  � R1=R001 R1=R001  � 0" " "0 � R1=R01  � R1  � R01  � 0k " "0 � R1=R01  � R001  � R01 \R001  � 0;" " "0 0 0which provides at once the relation R1 = R01 + R001: This very basic reason is hiddenin [37, 38] where the underlying confusion concerning the choice of input and outputcomes from the fact that, when n = 1, any torsion-free module is free and the �rst of thetwo preceding sequences splits. However, the resulting backward sequence must not beconfused in general with the second sequence and the two sequences must be distinguishedwith care. In particular, only the �rst one entirely depends onM and provides the so-calledminimum realization [28].As input and output always play a reciprocal role and are made by elements of M ,we shall consider two di�erent di�erential submodules Min and Mout of M such thatMin+Mout may be a strict di�erential submodule ofM if there are latent variables. Thereis no reason at all for supposing thatM=Min is a torsion module asM=Mout is not a torsionmodule in general. The main construction is to introduce t(M) and setM 0in = Min+t(M),M 0out = Mout + t(M) in M . Then, the idea of the minimal realization is to replace Min,Mout and M by M 0in=t(M) = Min=(Min \ t(M)), M 0out=t(M) = Mout=(Mout \ t(M)) andM=t(M) in order to deal only with torsion-free modules, always keeping in mind that thedi�erential rank rkD(M) of M , namely the last character, is intrinsically de�ned, does notdepend on the presentation and is additive, that is to say, if 0 �!M 0 �!M �!M 00 �! 0is a short exact sequence of di�erential modules then rkD(M)=rkD(M 0)+rkD(M 00). This isexactly the module analogue of the di�erential transcendence degree in di�erential algebra[13, 30] and one can prove that it is equal to the Euler characteristic of M . If one choosesMin = F as already de�ned, then F \ t(M) = 0 and M 0in=t(M) �= F can always beconsidered as a submodule of M=t(M). 14



The �nal idea is to de�ne poles and zeros for multidimensional systems [17, 18, 36, 37].First of all, we have seen (proposition 2) that if0 �!M 0 f�!M g�!M 00 �! 0;is a short exact sequence of modules and if M is �ltred, we can endow M 0 and M 00 withthe induced �ltration M 0q = M 0 \Mq, M 00q = g(Mq) and obtain, for these �ltrations, theshort exact sequence 0 �! G0 �! G �! G00 �! 0;of associated graded modules. Taking the radicals of the respective annhililators, we getpann(G) =pann(G0) \pann(G00);and thus char(M) = char(M 0) [ char(M 00);as the characteristic set does not depend on the �ltration (see proposition 3). As, we aredealing with �nitely generated modules, we also recall that, in the commutative case, thesupport supp(M) of a module M is the set of proper prime ideals of the correspondingring, that contain the annihilator of M over the ring. The key point, in order to generalizethe concept of transfer matrix approach, is to localize the graded sequence with respectto a prime ideal and get the short exact sequence0 �! G0p �! Gp �! G00p �! 0;with p 2 spec(A[�]), but we can also localize the �ltred sequence when D is commutative.In the case of the SISO-system de�ned in example 4, we get (� � 1)y = u, and we candivide by �� 1 provided � 6= 1. Hence, the trick is to notice that G0p �= Gp if and only ifG00p = 0, that is p =2 supp(G00), the true reason for looking at char(M 00).IfN is any submodule ofM , setting N 0 = N+t(M), we have the following commutativeand exact diagram, 0 0 0# # #0 �! t(M) \N �! N �! N 0=t(M) �! 0# # #0 �! t(M) �! M �! M=t(M) �! 0# # #0 �! t(M)=(t(M) \N) �! M=N �! M=N 0 �! 0;# # #0 0 0both with the isomorphisms:t(M)=(t(M) \N) �= N 0=N; (9)N=(t(M) \N) �= N 0=t(M): (10)Setting Min, Mout and Min + Mout in place of N , we get similar commutative andexact diagrams, both with short exact sequences of the type0 �!Min �!Min +Mout �! (Min +Mout)=Min �! 0; (11)0 �!M 0in �!M 0in +M 0out �! (M 0in +M 0out)=M 0in �! 0; (12)and similar sequences with in and out interchanged.Now, we have in general an exact sequence of the form0 �! N �! N 0 �! t(M)=(t(M) \N) �! 0; (13)15



and similar sequences with Min, Mout and Min +Mout in place of N . Combining the twopreceding sequences starting respectively with Min and M 0in, we obtain the short exactsequence:0 �! (t(M)\(Min+Mout))=(t(M)\Min) �! (Min+Mout)=Min �! (M 0in+M 0out)=M 0in �! 0;(14)which is not evident at �rst sight and where many of the previous modules do appear.We claim that all poles and zeros considered in classical control theory are only exam-ples of the characteristic sets of the modules introduced above and all the relations amongpoles and zeros come from the preceding exact diagrams/sequences, by using the additiveproperty of char(�) (see proposition 3). Of course, it is essential to notice the fact that theidenti�cation of char(M) with supp(G) when G = gr(M) only allows to use proper primeideals of A[�], a reason for setting char(0)=;.For example, if A = k and we use supp(M) instead of supp(G), there is nothing tochange and we have (see p. 40 of [37]):� f observables poles g=supp((Min +Mout)=Min),� f transmission poles g=supp((M 0in +M 0out)=M 0in),� f input decoupling zerosg=supp(t(M)),� f input-output decoupling zeros g=supp(t(M)=(t(M) \ (Min +Mout))),we obtain from the last exact sequence with evident notations:fob. p.g = ftr. p.g+ fi.d.z.g � fi.o.d.z.g � supp(t(M) \Min):IfMin is identifed with F , we obtain therefore t(M)\Min = 0 and we recover the formula(23) of [2].We may recapitulate the various modules involved on the following picture, explainingall the situations that can be met in the range of applications.M"M 0in +M 0out% -M 0in " M 0out- t(M)%" "Min " Mout- %0Introducing also the sets:� fsystem polesg = supp(M=Min);� foutput decoupling zerosg = supp(M=(Min +Mout));and using the short exact sequence0 �! (Min +Mout)=Min �!M=Min �!M=(Min +Mout) �! 0;we obtain, with evident notations:fsys. p.g = fob.p.g+ fo.d.z.g:However, in pratice, there is no loss of generality in supposing M = Min +Mout. Insuch a simple situation, combining the preceding results, we get:fsyst. p.g = fob. pg = ftr. p.g+ fi.d.z.g � supp(t(M) \Min);16



and we may thus introduce the set:fhidden modesg = fi.d.z.g � supp(t(M) \Min):The preceding results prove that input and output play a similar role and that it isthus better to use the only word �zero� or �supp� for the corresponding modules and notthe word �pole�.Example 18 If we have a SISO system _y � y = u with input u satisfying _u+ u = 0, weobtain �y�y = 0 and thus supp(M)=f(��1); (�+1)g while supp(t(M)\Min) = f(�+1)gand we �nd the hidden mode (� + 1). Such a situation can happen in an electrical LCRcircuit if we suppose conditions on a voltage input.4 ConclusionWe hope to have convinced the reader that, despite the di�culty of the underlying math-ematical tools, the formal methods of algebraic analysis allow to clarify and unify all theexisting results on multidimensional control systems. In most cases, the correspondingalgorithms are e�ective and can easily be checked. Finally, this approach is the only onewhich can separate the intrinsic/built-in properties of a control system such as torsion-freeness or pureness, from the other properties that depend on the choice of input andoutput. Meanwhile, another essential aspect is the possibility to bring the study of mod-ules over non-commutative rings to the simpler study of modules over commutative rings.We do not believe that none of the results presented here could be obtained without theuse of the extension functor and duality, a fact explaining why it took such a long time toestabish a link between algebraic analysis and control theory.References[1] J.E. Bjork, Rings of Di�erential Operators, North Holland, Amsterdam, 1979.[2] H. Bourlès and M. Fliess, Finite Poles and Zeros of Linear Systems: an IntrinsicApproach, International Journal of Control.[3] H. Goldschmidt, Prolongation of Linear Partial Di�erential Equations: I. A Conjec-ture of Elie Cartan, Ann. Sci. Ecole. Norm. Sup. 1 (1968), 417-444, II InhomogeneousEquations, Ann. Sci. Ecole. Norm. Sup. 1 (1968), 617-625.[4] M.L.J. Hautus, Controllability and Observability Conditions of Linear AutonomousSystems, Proc. Ned. Akad. Wetensch., A-72, 443-448.[5] S.T. Hu, Introduction to Homological Algebra, Holden Day, 1968.[6] M. Janet, Leçons sur les systèmes d'équations aux dérivées partielles, Cahiers Scien-ti�ques IV, Gauthier-villars, Paris, 1929.[7] M. Janet, Sur les systèmes aux dérivées partielles comprenant autant d'équations quede fonctions inconnues, CRAS 172 (1921), 1637-1639.[8] J. Johnson, Systems of n Partial Di�erential Equations in n Unknown Functions:The Conjecture of M. Janet, Trans. AMS, vol. 242, august 1978.[9] T. Kailath, Linear Systems, Englewood Cli�s, NJ: Prentice-Hall, 1980.[10] R.E. Kalman, Y.C. Ho and K.S. Narendra, Controllability of Linear Dynamical Sys-tems, Contrib. Di�. Equations 1 (1963), No. 2, 189-213.[11] M. Kashiwara, Algebraic Study of Systems of Partial Di�erential Equations, Mémoiresde la Société Mathématiques de France, N� 63, 1995.17
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