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Abstract

The purpose of this paper is to show how to use the modern methods of algebraic anal-
ysis in partial differential control theory, when the input/output relations are defined by
systems of partial differential equations in the continuous case or by multi-shift difference
equations in the discrete case. The essential tool is the duality existing between the theory
of differential modules or D-modules and the formal theory of systems of partial differential
equations. We reformulate and generalize all the formal results that can be found in the
extensive literature on multidimensional systems (controllability, observability, primeness
concepts, poles and zeros, ...). All the results are presented through effective algorithms.
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1 Introduction

In 1963, R.E. Kalman related, in [10], the controllability of a linear ordinary differential
control system, with constant coefficients, of the form y = Ay + Bu, to the full row rank
of the controllability matrix (B, AB, ..., A™~!B), where m is the number of outputs y.
In 1969, this criterion was shown by Hautus [4] to be equivalent to the full row rank of
the matrix (A — xI, B) for all values of the indeterminate x in an attempt to study the
transfer matrix (xI—A) ' B. Then, more general polynomial systems of the form D(x)y =
N(x)u, with D a non degenerate square matrix, were considered in attempt to study the
transfer matrix D(x)"'N(x). In particular, left-coprimeness conditions for the matrices
D and N were given for multi-input/multi-output (MIMO) systems generalizing the case
of single input/single output (SISO) systems where common factors of D (denominator)
and N (numerator) could disappear in the transfer function [9]. One must notice that the
Kalman criterion came from an explicit integration by means of exponential of matrices,
which is not easily available in the general case. Little by little, the preceding condition
for D and N separately, has been reformulated for the full matrix (D, —N) in terms of
Bezout identity, a result showing that controllability is a built-in property of the control
system, not depending on the separation of the variables between inputs and outputs.
Meanwhile, a few people tried to extend these results to matrices over polynomial ring
k[x] = k[x1, ---, Xn] in n indeterminates over a field k of constants or to operator matrices



with variable coefficients [12, 17, 18, 33, 34, 36, 38|. It was soon discovered that the case
n = 1, where k[x] is a principal ideal ring, should be distinguished with care from the
case n = 2 and n > 3 [33, 38]. It is only recently that people paid attention to algebraic
analysis, pionneered by V.P. Palamodov [19] for the constant coefficients case and by M.
Kashiwara [11] for the general case. We quote in particular the very recent work of U.
Oberst [17] showing, in first place, that a control system is controllable if and only if the
corresponding differential module is torsion-free.

In this paper, the mathematical results are not new and we provide all corresponding
references as their homological proofs are often awfully delicate. However, the applications
to control are quite new. In particular, the main purpose of this paper is to combine the
formal theory of differential operators with that of differential modules and a description
by extension functors in order to avoid the introduction of signals spaces, while recovering
and generalizing all the results previously quoted. All these results will be developped in
a forthcoming book [25].

In view of the amount of mathematical tools needed in order to understand algebraic
analysis, we suppose that the reader has a basic familiarity with differential sequences or
resolutions and their use for defining the extension functor 5, 16, 31].

2 Algebraic Analysis

2.1 D-modules

Definition 1 A differential ring A with n commuting derivations 01,...,0, is a ring
which satisfies Va,b€ A, Vi, =1,...,n:
e Jia€E A,

o&i(a+b):8ia+8ib,
L4 Bl(ab) = (81 a)b+a8i b,
o 9,0; = 0;0,.

For applications, the differential ring A will either be a differential field K containing Q
or its subfield of constants k = cst(K) = {a € K|Vi=1,..n:0;a =0}. If dy,...,d, aren
commuting formal derivative operators, we shall introduce the noetherian ring D = A[d] =
Aldy, ...,dy] of differential operators. Any element of D has the form P = g .. atd,,
where g = (p1,...,p,) is a multi-index with length | p |= p1 + ... + pn, a* € A and
d, = (d1)"...(dy)"". D is a non-commutative integral domain which satisfies

Va,be A:ad; (bd]) = abd; dj +a(8i b) dj,

and possesses the left (right) Ore property: V (P, Q) € D?, 3(U,V) € (D\0)? such that U P =
VQ(PU=QV).

d
Example 1 The field of rational functions R(¢) is a differential field with derivative e
Indeed, Va(t),0 # b(t) € R(t), we have:

a(t), _ a(t) b(t) — a(t) b(t)

d —_
a5 =T R

dt(

€ R(?).

Let D = R(t)[4] be the non-commutative ring of linear operators with coefficients in R(#).

Any element P € D has the form P =) 5 ... ai(t)(%)i, with a; € R(¢).

In the general case, as D is a non-commutative ring, we define the notion of filtration
and gradation in order to pass from the non-commutative ring D to the commutative



ring gr(D) and thus to use all the results and techniques developped in the commutative
case, for the non-commutative one [1, 14, 20|. Moreover, the ring of differential operators
D = A[d] looks like a polynomial ring and thus we may like to generalize the well-known
notion of degree of a polynomial to a differential operator in D. This can be done by
introducing the notion of graded ring. For more details, see [1, 14, 20].

Definition 2 A filtration of an A-algebra D is a sequence of A-modules {D, }cn satisfy-
ing:

1.0=D_,CDyCD,C..CD,

2. Upso Dy = D,

3. DyDs C Drys.
The associated graded A-algebra gr (D) of D is defined by:

1. gr(D) = ®ren Dy /Dy_1,

2.VP€D,/D,_ 1,¥NQ € Ds/Ds_1: P.Q=PQE Dy 5/Dyys 1.

D, /D,_; is called the homogeneous component of degree r of D.

Example 2 The sequence of A-modules D, = {3 (|4 <, 0" dy, 0" € A} is a filtration of
D = Aldy, ...,dy]. In particular, we have Dy = A C D and thus D, is a free left A-module
with basis {d,,0 < |u| < r}. In the next sections, D, will always refered to this filtration
and we shall endow 7" = Dy /Dy with a bracket induced by the filtration of D, namely
[P,Q]=Po@Q —QoP, P,QQe€D.

Proposition 1 The natural morphism

gr (D) —  A[X1, e Xn)
Dy /Dry 3 Xy @fdy — 3= 6 Xy

s an tsomorphism of A-algebra.
Definition 3 Let M be a D-module where D admits the filtration {D, },en. A family
{Mjy}4en of A-modules is a filtration of M if
1.0=M_,C MyC M, C..CM,
2. Ugen My = M,
3. DM, C Mgy,
The associated graded gr (D)-module G = gr (M) is then defined by:
1. G = ®gen Gy, with Gy = My/M,_1,
2. VP € D,/Dy_1,Ym € My/My_1: P =Pm € Myr/Mgir—1.

We have the short exact sequence:
0 — My — My — Gy — 0. (1)

Definition 4 A filtration {M,},cn of a D-module M is called a good filtration if it satisfies
one of the following equivalent conditions:

1. Vq € N, M, is finitely generated over A and there exists p € N such that:

DM, = My,,, r >0,

2. G is a finitely generated gr (D)-module.



Example 3 1. Let M be a finitely generated D-module with the set of generators
{e1,...,em}. Then, the filtration M, = Y /", Dge; is a good filtration as we have
G =", gr(D)e;, and thus G is finitely generated over gr(D) by {e1,...,em}.

2. Let M = D be the left D-module and let (M, = Dyq)4en be a filtration of M. Then,
we have D, My = DyDyq C Dagir & Dogiry = Myig and thus (Dzg)gen is not a
good filtration of D.

Proposition 2 Let M be a left D-module then M admits a good filtration if and only if
M s finitely generated over D. Moreover, if M has a good filtration then

1. Any submodule M' of M has a good filtration, defined by M, = My N M and M' is
finitely generated over D.

2. Any quotient M" of M has a good filtration, defined by the image of the filtration of
M onto the projection M — M'" — 0.

3. If0 — M' — M — M" — 0 is a short exact sequence of filtred modules then
we have the short exact sequence 0 — G' — G — G" — 0, where the associated
graded modules G' = gr(M'), G = gr(M) and G" = gr(M") are defined with respect
to the above induced filtrations.

Now, using the graded module gr(M) over the commutative ring gr(D), instead of the
D-module M, we can use the results of algebraic geometry to give an intrinsic definition
of the dimension of a module M.

Definition 5 Let M be a finitely generated D-module with a good filtration and let
G = gr(M) be its associated graded gr(D)-module, then the ideal I(M) = /ann(G) =
{a € gr(D)|3n € N:a"G = 0} does not depend on the filtration of M and we introduce
the characteristic set char(M) = V(I(M)) = {p € spec(gr(D))|+/ann(G) C p}, where
spec(gr(D)) is the set of proper prime ideals of gr(D).

The previous definition and proposition lead to the following one [1, 14, 20].

Proposition 3 Let M be a finitely generated left D-module admitting a good filtration
then

1. For q large enough, there exists a unique Hilbert polynomial Hyy such that dim (M,) =
Hy(r) = Zrd+ ..., where d is the degree of the polynomial. The degree d = d(M) is

called the dimension of M, the coefficient m = m(M) is the multiplicity of M and
they do not depend on the good filtration.

2. If0 — M' — M — M" — 0 is an exact sequence of finitely generated filtred
modules then

(a) char(M) = char(M') U char(M"),

(b) Hyr = Hpyp+Hpyr and thus d(M) = maz(d((M"), d(M")) and if d(M") = d(M")
then m(M) = m(M') + m(M").

We shall see, in the next section, how to compute effectively the Hilbert polynomial
and thus the dimension and the multiplicity of a D-module M.

Now, let us give some basic definitions of properties of modules that will be at the core
of this paper.

Definition 6 e A D-module M is free if there are elements of M which generate M
and which are independent over D.

e A D-module M is projective if there exist a free D-module F' and a D-module N
such as: F'= M @& N. Hence, the module N is also a projective D-module.



e A D-module M is reflezive if M = homp(homp(M, D), D).

e A D-module M is torsion-free if t(M) = {m € M |3p # 0, pm = 0} = 0. We call
t(M) the torsion submodule of M. In any case, M/t(M) is a torsion-free D-module.

If D is a principal ideal ring then any torsion-free module is free and if A = k then, using
the Quillen-Suslin theorem [31, 34|, any projective module is free. Moreover, it follows
immediately from (1) that M is torsion-free (reflexive, projective, free) whenever G is
torsion-free (reflexive, projective, free). The converse is not true.

Example 4 The SISO-system ¢y —y —u = 0 is torsion-free while the graded part g = 0 is
not torsion-free.

2.2 Differential Operators

Let X be a differential manifold of dimension n with local coordinates = = (z!, ..., z"). We
denote by T' = T'(X) the tangent bundle of X and by T* = T*(X) the cotangent bundle of
X. By S,T*, \" T* we shall mean the ¢ symetric product of T*, the r** exterior product
of T*. Let E be a vector bundle of fiber dimension m over X, with local coordinates (z,y),
with 4 = (y',...,4™). We shall use the same notation E for a vector bundle and for its
sheaf of germs of sections. We consider the vector bundle J,(E) of g—jets of E. Its fiber at
z € X is the quotient of the space of germs of sections of ¥ at « by the subspace of germs of
sections which vanishs up to order g at = (f,g € Jy(E); < 0uf(x) = 0ug(2),0 < |p] < q).
We identify Jo(E) with £ and we denote the projection of J,(E) onto X by 7 and the

projection of Jy (&) onto J,1(E) by Wg_l. If € is a section of E, we denote by j,(§)(x)

the equivalence class of germs of ¢ at . We have the following exact sequence [3, 21, 29]:
q
0— ST ® E — J,(B) = J,_1(E) — 0. 2)
Let F' be a vector-bundle over X, of fiber dimension .
Definition 7 1. A differential operator D = ® o j, : E — F is given by a bundle
morphism ® : J,(F) — F, where we may suppose that ® is surjective.

2. The r-prolongation of @ is the unique bundle morphism p,.(®) : Jo4r(E) = J,(F)
such that p,(®) o jgqr = jr 0D = j, 0 @ 0 .

3. The linear system of partial differential equations (PDE) R, defined by D is the
kernel of ® and a solution of R, is a local section £ of E, over an open set U C X,
such that j,(§)(z) € Ry, VYV € U.

4. The 7" prolongation Ry, of Ry is the kernel of p,.(®).
5. We denote by Réfzr the projection of Ry, onto Jyir(E), i.e., Réfzr = 180 (Ryrs).
Example 5 The bundle morphism @ defined by
. J(E) — F
(x,yﬁ) — (=, EO§|u|§q,1§k§m a, ' (x) yﬁ),

with 1 <7 <[ gives rise to the differential operator D defined by:

D: E — F
(z,%(2)) — (ﬂﬁ,n(w)T=Zog|u|§q,1§k§m02“($)3u§’“),

with 7 =1,...,[. The system R, defined by the differential operator D, is given by:

k
Z a (x)y; =0,1<7<1
0<|ul<g1<k<m



Now, using the sequence (2) and the definition of the r-prolongation of ®, we obtain
an induced map o4, (®) : Sg4,T* @ £ — S, T* ® E and we denote by g4, the kernel of
Og4r(®). We call ggqr the symbol of Ryy,. We easily see that gg4r = Rgir N SqirT* Q E.

Example 6 The map o,44,(®), where ¢ is defined as in the previous example, is defined
by:

Ogtr (@) 1 Sq T"QF — ST*Q®F
( ;Ii | | =q + 7") — (‘/E7 Z|u|:q,‘l/|:r,1§k§m a;c-u (lE) yﬁ+l/)7

The symbol g4, of the system Ry, is the kernel of 044, (®).
Let us define the Spencer d-sequence by
0
NT*® ggiri1 — M T ® gy,

with (5(w))/’j =dz' A wZHi where w = UZ,I dz! € A*T* ® ggyri1, del =da®t A ..
ANdz's, i < ... < is and |u| = ¢+ r. We easily verify that 6 o = 0. The resulting
cohomology at A*T* ® g, is denoted by H; .(gq).

Definition 8 The symbol g, of R, is said to be s-acyclic if H q+r =..=H; ,=0,Vr>0.
The symbol g, is involutive if it is n-acyclic. In particular, every system R, of ordinary
differential equations (ODE) has an involutive symbol. A symbol g, is of ﬁmte type if
dr > 0 such that g4q, = 0.

We can prove that the symbol g, of a system R, is such that g,,, becomes involutive for
r large enough. If g, is an involutive symbol, we may define integers «; called characters
of g, such that

dlmgq+r = Zﬁaq,VT Z 0,

and the following relations are statisfied:
1. dimgy = aé + ...t ay,
1 2
2. anQqZ...ZaQZO,

3. 0§a3§m.

Definition 9 A system R, is said to be formally integrable if Vr,s > 0, Ry, is a vector
bundles and the projection WZI:—i—S : Ryyrys — Rgyr is surjective. A system R, is involutive

if R, is formally integrable and has an involutive symbol g,.

If ® is sufficiently regular, then Ry, are vector bundles for any r > 0 and if R, is
formally integrable then we have the exact sequences:

q+r
0— 9q+r — R(I-H“ q+r ' RIH-T 1 — 0. (3)

Corollary 1 If the system Ry is involutive system then

“(ra)! ;A
dim (Ryy,) = dim (Ry_1) + Y ~———al = Lo + .,
=1

rlql n!

where Rq_1 1is the projection of Ry on Jg_1(E).



The formal solutions of the system R, depend on aé functions in !

(z!,2?), ..., and ay functions in (z!,...,z").

If the system R, is not formally integrable, then by adding sufficiently enough equa-
tions, we can bring the system R, to be a formally integrable system R((ﬁg, with the same
solutions, by means of a finite algorithm [3, 21]. The knowledge of the latter system,
which is the finite substitute for R;,y, is essential for studying the formal properties of

the given system and of the corresponding differential module.

, ag functions in

Definition 10 Let D : E — F be an involutive operator then there exists at most n new
operators D; : F;_1 — F;, with Fy = F, such that the following sequence

D D D Dn
E—)F0—1>F1—2) .. — F, —0,

is stricly exact, i.e., the operator D; generates all the compatibility conditions of D; 1 and
the sequence is exact at any order on the jets level. This sequence is called the Janet
sequence of D.

2.3 Duality

The sequence (3) for » = 0 is the dual over A of the sequence (1) if D has coefficients in
A and E, F are trivial bundles. Using coordinates (z,y) for E, we may identify Dy =
Dy' + ... + Dy™ with D™. The duality between differential geometry and differential
algebra is obtained by setting

Jy =homy(Jy, A) = Dy = Jy(E)* = Dy(E) = Dy ®4 E*,

whenever (X, A) is a ringed space [15]. Accordingly, we can define a differential module
M by the cokernel in the exact sequence of modules:

DRyF*—D®s E* — M — 0,

or simply
D' — D" — M —0,

in the trivial case if dim(E) = m, dim(F) = I. Hence, Ry = poo(Ry) = homa (M, A),
and the main difficulty is that certain properties of M, using injective limits, are not
easily interpreted as properties of R, using projective limits and vice-versa. When D is
involutive and sufficiently regular, we notice that a canonical finite resolution of the sheaf
© of solutions of D, is of the form of the Janet sequence with F' = Fy, dim(F},) = [, and
dim(E) = m,
D D1 Do Dy,
0—0 —FE—F—F—..—F, —0, (4)

where D; represents all the compatibility conditions of D; ;. The sequence (4) provides,
by duality, a finite free resolution of M [5, 16, 31| :

0— M +— D™ ¢2 plo 2L ph P2 Pr pln (5)

The problem is to study the properties of operator m X [-matrix, acting on column vectors
on the right, in the operator sense or on row vectors on the left, in the module sense.
Accordingly, a preliminary problem for being able to deal equivalently with D or with
M is to bring effectively D or R, to formal integrability or even to involutiveness, in
such a way that R, = M; = homa(M,, A). Such a fact is rather hard to understand
on the presentation of M when one asks equivalently for a strict morphism D' —s D™
[11, 32]. It is important to notice that the dualities hom (-, A) and homp(-, D) that will
be systematically used in this paper can lead to effective computations, contrary to the



duality homp(-, ), when I is an injective module, used by Oberst [17] and Willems [35]
in their behavioural approach.

We have defined an algebraic set over k or K, namely the characteristic set char(M) =
supp(G) of M as the support of G, namely the set of prime ideals of gr(D), containing the
annihilator ann(G) of G = gr(M). Keeping the word variety for an irreductible algebraic
set, we notice that the dimension dim(M) = d(M) of the D-module M is the maximum
dimension over an algebraic closure of k or K of the varieties corresponding to the minimum
prime ideals in char(M), i.e., the degree d of the Hilbert polynomial Hjys. Equivalently,
to avoid dealing with many irreductible components, the Hilbert-Serre theorem says that
d(M) is equal to the maximum number of non-zero characters o [32]. We denote by
cd(M) =n —d(M) the codimension of char(M).

We present the extension functor in the operator language (see [5, 16, 31| for a module
approach). If D : E — F is a differential operator of order ¢, we denote by ad(D)=D :
F=N\'"T*® F* — E = \"T* ® E*, the formal adjoint of D. The operator D is of the
same order than D, with coefficients in A. The formal adjoint D : F — E can be easily
computed by using the following three rules:

e The adjoint of a matrix (zero order operator) is the transposed matrix.
e The adjoint of 0; is —0;.
e For two linear PD operators P, Q that can be composed: PoQ = Q o P.

Moreover, we have the following relation
<, DE>=<Dp, £ > +d(-),

with d the exterior derivative. We compute the adjoint of an operator by multiplying
it by test functions on the left and integrating the result by part, as we could do for
distributions.

The two key problems are firstly that D may not be formally integrable when D is
and secondly that D, may not generate at all the compatibility conditions of ﬁ,_ﬂ in the
adjoint of the Janet sequence (4). Let us give an example.

Example 7 We take the operator D : £ — n defined on sections, by

{ 8125 = 7]17

Oa2l = 1°,

and we easily see that the compatibility condition of D is the operator Dy : 7 — ¢, defined
by 01n* — 8an' = (. Then, the adjoint D; : A — p of Dy is then given by:

{ 82)\ = WK1,
—81>\ = KU2.

The compatibility condition of Dy : u — v is defined by the operator i + Gopo = v,
which is not the adjoint D of the operator D, defined by 012 41 + 029 o = v.

One can roughly say that ext’, (M, D) measures the defect of exactness at F. 1 in the
adjoint sequence. However, as extl,(M, D) does not depend on the presentation of M,
the previous definition by means of the Janet sequence is, by far, the best one though one
could use the second Spencer sequence too (another finite free resolution of the sheaf © of
solutions of D) |15, 21, 29|, namely (do not confuse among standard notations)

002020 2 Py o, (6)

and measure the defect of exactness at C, by dealing with first order operators D, though
with many more unknowns (take for example E =T, F = A" T* and for D the divergence
operator).

The first key result of algebraic analysis is the following theorem relating the vanishing
of the extension functor to the codimension of the characteristic set [11, 19].

8



Theorem 1 cd(M) > r & extl,(M,D) =0, Vi <r.

The second key result, instead of looking for the compatibility conditions D; of a
differential operator D, deals with the converse problem of looking for a potential like
expression of D, namely to know whether one can find an operator D_y : E_ | — Ey = F
such that D generates all the compatibility conditions of D_;. For example, one may keep
in mind the Poincaré sequence for the exterior derivative. If there exists such an operator
D_1, we say that the operator D is parametrized by D_.

Theorem 2 There exists a sequence of differential operators

E,2E ., Pt 2 g Pop

where each operator generates all the compatibility conditions of the preceding one, if and
only if ext};(ly, D) =0, Vi=1,...,r whenever N is the differential module determined by
the operator D, exactly as M was determined by D.

The above conditions can be checked effectively as we just need to construct the adjoint
operator, find a sequence of compatibility conditions with length r, dualize it and check
whether the adjoint sequence is formally exact, i.e., each operator generates exactly the
compatibility conditions of the preceding one. The global dimension of D is n because,
using the Spencer sequence (6), we obtain at once: ext’, (M, D) =0, Vi > n.

Example 8 Let us take the divergence operator D : £ — 1, in R?, defined by
OE + 0+ 058 =1,

Dualizing the divergence operator, we obtain the operator D: i — v, defined by

_81M =,
_82[1' = U2,
_83M = U3,

which is nothing else than minus the gradient operator. We let the reader check by himself
that the compatibility conditions D_; of D is the curl operator and the adjoint of D_; is
still the curl operator, i.e., the curl is a self-adjoint operator. The compatibility conditions
of the curl operator D_; are the divergence and thus D is parametrized by the curl operator
D_;. In other words, if M is the D-module defined by D, we have ext}, (N, D) = 0, where
N is the D-module defined by D. Moreover, we can check that the compatibilty conditions
D_y of D_; is minus the divergence operator and thus its adjoint D_s is the gradient which
parametrizes the curl, i.e., extD(N,D) = (. We shall see in the next section that if D is
a formally surjective operator, that is without any compatibility conditions, then N is a
torsion D-module and thus homp (N, D) = ext},(N, D) = 0. Using theorem 1, we obtain
cd(N) > 2 & d(N) = 0, that is, o} (D) = 0, Vz =1,...,3, and we find back that the
solutions of the gradient operator only depend on constants.

It is essential to notice that the right D-module N, = A"T* ® 4 N, obtained from
the left D-module N = N; by the side changing functor [1], must not be confused with
M = homp(M, D) as we have the exact sequence

0— M-—E®4D—F®sD — N, — 0,

and thus we have the relation: ext’,(N,, D) = ext’}, ?(homp(M, D), D), ¥i > 3. Finally,
the result 3.1.1 will prove that ext’,(N,D) depends in fact only on M, i > 1, while
homp (N, D) is only determined up to a projective equivalence, according to the Schanuel’s
lemma [5, 16, 31].



3 Applications to Control Theory

We shall now divide the properties of control systems into two categories, depending on
the fact that they do or do not depend on a separation of the variables of the control
system between input and output.

3.1 Structural Properties

We first study the properties that do not depend on such a separation.

3.1.1 Primeness

The key idea, not evident at all intuitively, is to use D or N instead of D or M in order
to achieve a classification of modules:

free C projective C ... C reflexive C torsion-free.

First of all, we recall that M is torsion-free (reflexive) if and only if the central morphisn
in the long exact sequence of left D-modules

0 — exth(N,,D) — M —= homp(homp(M, D), D) — ext (N,, D) — 0,
m —  e(m),

with V f € homp(M, D) : e(m)(f) = f(m), is injective (bijective).

Corollary 2 The following assertions are equivalent [11, 19, 21, 25]:
1. The control system defined by D is controllable.
2. The operator D s parametrizable by a D_;.
3. The D-module M is torsion-free.
4. exth (N, D) = N"T* ®4 exth (N, D) = 0.

Remark 1 Moreover, if D is formally surjective, that is D; = 0, then homp (N, D) =

ext%(N,D)—Otg}lcd( N)>1&d(N) <n-1& ay(N) =0« Nis a torsion module.

Then, M is torsion-free = ext’,(N,D) =0, Vi <1 = cd(N) > 2= d(N) < n—2 and
we find back the concept of minor left-primess (MLP) [33, 38, 36| for the operator matrix
representing D. One must care that, in the variable coefficient case, the matrix of D is
not just the transposed of the matrix of D. In the particular case n = 1, we find back
the Hautus test [4] and the fact that the control system is controllable if and only if D
is injective [23]. In that case, there is a lift-operator P : E — F such that P oD = idj;
and thus Do P = idp, a result amounting to the forward and reversed generalized Bezout
identities [9, 27]. When D is not surjective, the above result amounts to generalized factor
left primeness (see [33, 38] and p.12 of [36]).

Corollary 3 M is reflerive < extl,(N,D) =0, Vi = 1,2.

Remark 2 Moreover, if D is surjective, reasoning as before, we get d(N) < n — 3. The
divergence operator provides a good example of a reflexive module which is nevertheless
not projective.

Going on along theorem 2 with increasing r, we reach the case ext’, (N, D) =0, Vi =
1,..,n — 1, that is, d(N) = 0 when D is surjective and this is the concept of weakly zero
left-primeness |36, 38]. A particular example is provided by a system of finite type or
holonomic module N such that I(N) = (x1, ..., xn) = the algebraic set char(/N) is reduced
to the origin and ext’,(N, D) = 0, Vi # n.
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As N is a differential module too, we have ext’, (N, D) = 0, Vi > n and we are left
with the only case extl,(N,D),Vi > 1. In particular, when D is surjective, we obtain
ext,(N,D) = 0, Vi > 0 and thus d(N) = —1 that is char(N) = @ and this is only
possible if N = 0. Hence, D admits a lift and M is a projective module [24, 27]. We find
the generalization of zero left-primeness [33, 38, 36] as we are now dealing with variable
coefficients. In the commutative case, one may use ann(M) instead of ann(G) [17, 18|.
In general, when D is not surjective, as the extlb(N , D) do not depend on the resolution
of N, we may bring D to involutiveness and use the corresponding Spencer sequence
to construct inductively lift operators P, of the Spencer operator D, in such a way that
Do P,oD, = Dy, and reach the conclusion that IV itself is projective, i.e., M is projective

and thus M = M is projective as M is already reflexive. Finally, when D = k[d] is
commutative, it is known that ann(M) and ann(G) define algebraic sets with the same
dimension, according to the Hilbert-Serre theorem [32]. Hence, such a generalization of
all existing results explains the existence of a whole range of “possible types of primeness”
conjectured in [36].

Example 9 When n = 1, only one single type of primeness is left. Dealing with a formal
integrable Kalman system —gy+ Ay + Bu = 0 and multiplying it on the left by a row vector
of test functions A, we find for the kernel of D:

{A+AA:Q = AB=0=MMB=0= AM?’B=0... > ™ 'B =0,

AB =0,

and the Kalman test surprisingly amounts to the injectivity of the non-formally integrable
operator D, a result also equivalent to the lack of first integrals |23, 28].

Example 10 The system 0,¢! + 0262 = 0 defines a torsion-free D-module with a first
order parametrization, which is nevertheless not projective whereas 9y & 4 0262 — 2261 = 0
defines a projective (but not free) and thus reflexive D-module which is automatically
torsion-free and admits a second order parametrization.

Example 11 The last operator D, in a Janet sequence always provides a projective
module.

Example 12 With n = 3, let us consider the second order system

033§ — 013¢ — 03§ =0,
023§ — 012§ — € =0,
0228 — 012€ = 0,

with characters o = 3,2 = 0,3 = 0. The algebraic sets defined by ann(M) and ann(G)
are different though they are both unions of 3 varieties of dimension 1, and thus have the
same dimension.

Example 13 The case of a surjective operator D : E — F with dim(E) = dim(F) is
standard in physics (wave equations in elasticity, electromagnetism, ...). Indeed, M is a
torsion module and thus ext!,(M, D) = homp(M,D) = 0 = cd(M) > 1. If cd(M) = 1,
then exth (M, D) # 0 and D is a determined operator which is therefore always formally
integrable. A good example is the Cauchy-Riemann system defining holomorphic trans-
formations. However, cd(M) > 2 = exth(M,D) = 0 = N = 0. It follows that D
is invertible, a fact showing that D is not formally integrable. This result implies that
M = 0. We have thus obtained a simple proof of the conjecture stated by M. Janet in
1920 [7] and first solved by J. Johnson in [8], saying that, for a system of this kind, there
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is a whole gap in the possible dimensions of the corresponding modules. The following
second order system, with n = 2, dim(E)=dim(F)=2, provides a good example |6, 21|

Ot + 01282 — 2 =t
Dol + On? + €1 =12,

and one can easily checked that the square matrix of D is unimodular with determinant
equal to 1.

3.1.2 Pure Modules

We end this part with a generalization of the torsion-free property of a module and we
follow [1]|. In order to explain this extremely useful new direction for applications, we first
provide a few examples.

Example 14 Starting with the system
{ Y22 =0,
Y12 =0,
we notice that z = y; only satisfies zo = 0 while z = yo does satisfy z; = 0, and 29 = 0.

Hence, we may distinguish the torsion elements of a differential module according to
the properties of the system of PDE they satisfy. Two examples from engineering science
will particulary well illustrate the different behaviour of various torsion elements.

Example 15 In the linearized system for Euler equation for an incompressible fluid [22],

namely
V.7 =0,
0T | Ty —
{ 5 +Vp=0,

where ¥ is the speed and p the pressure of the fluid, one notices that we have the PDE

(A7)
ot

Ap =0, =0.

Similarly, the Boussinesq stationary system for the Benard problem [21, 22|, namely

V.7 =0,
AT — 0§ — V=0,
A — .7 =0,

where ¢ = (0,0, —g) is the gravity while 7 and 6 are perturbations of the pressure and
temperature, we obtain from the vector analysis

ANNGD — g% (011 + 922)8 = 0,
though, setting w = 01v9 — Osv1, we only get Aw = 0.

Accordingly, among the elements of a differential module, one can find the elements
which are free, i.e., they do not satisfy any PDE, and the others (torsion elements) which
are constrained by at least one PDE.

Definition 11 1. We introduce the D-submodules ¢.(M) = {m € M|cd(Dm) > r},
with to(M) = t(M), the torsion submodule of M.

2. A D-module is said to be r-pure if t,(M) =0 and ¢, (M) = M.
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The chain of inclusions
0=1t,(M) Ctp1(M)C....Ct:(M) Cto(M) =t(M) C M,

will be particularly useful for studying the specific properties of engineering quantities
that can be observed experimentally by decoupling them from other quantities. Of course,
tr—1(M)/t, (M) is r-pure and one has the following delicate criterion for knowing whether
a differential module is r-pure or not 1]

Theorem 3 M is r-pure & M C ext,(ext), (M, D), D), with cd(M) =r.

Corollary 4 When M is r-pure then char(M) is r-equidimensional, namely it can be
decomposed into irreductible components of the same dimension r.

We notice that the above criterion generalizes the situation of the torsion-free modules
described in corollary 2 for the case r = 0.

Example 16 Without the previous criterion, it is not evident to prove that the differential
module provided by example 12 is 2-pure and thus that the corresponding adjoint operator
is torsion-free. More generally, any differential module defined by a finite type system
is automatically n-pure. This is particulary clear in 2-dimensional elasticity, with D :
(&1,&2) — (011 = €11, 3(D1€a + D€1) = €12, 0280 = €22), D1 1 € — D€z + Ooerr —
2012€12 = 0, defining the strain tensor and its compatibility condition, while the adjoint
sequence allows to parametrize the stress equation by Dy acting on the Airy function.

To our knowledge, it does not seem that such a classification of systems/modules has
ever been applied.

Another striking useful theorem is provided by the following non trivial theorem [11,
19].

Theorem 4 We have the following relation:
char(M) = U™, char (extt,(M, D)).

Example 17 If D; denotes the compatibility conditions of D and D generates the com-
patibility conditions of Dy, in such a way that both the module M determined by D and
the module N determined by D; are torsion modules, then both D; and D are surjective
and char(M) = char(/N). This result generalizes the equality of the primeness degrees of
left and right factor matrix descriptions of a given transfer matrix (see p. 74 of [36]). A
typical example of this situation is provided by examples 12 and 16.

3.2 Input/Output Properties

We now turn to the properties involving inputs and outputs. First of all, contrary to the
tradition, there is no reason at all for choosing the inputs as determining a maximum free
differential submodule of M, though it is a possible choice. Accordingly, many concepts
in control theory are based upon the two types of exact sequences that can be constructed
from M

0 —t(M) — M — M/t(M) — 0, (7)
0—F —M-— M/F—0, (8)

where t(M) is the torsion submodule of M and F' is a maximum free submodule of M. We
notice that M /t(M) is torsion-free while M /F is a torsion module. Setting S = D\{0}, we
may construct the field Q(D) = S~'D = DS~! of quotients of D and tensor by Q(D) the
previous sequences in order to kill their torsion modules [11, 17, 28]. Such a construction,
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which is basic in algebraic analysis, gives the way to generalize the transfer matrix ap-
proach, even for variable coefficients, by considering the localization S™'M = Q(D)®p M,
without any reference to the Laplace transform [17, 28]. If we already know that M is
torsion-free, it may provide a parametrization of D generalizing the controller form [9].
For more details, see [28]. We notice that M /t(M) and M/F are two specializations of M
giving rise to two subsystems R and R, of R. Taking into account that ¢(M)NF =0,
we obtain the following commutative and exact diagram

0 0
+ +

0 — F = F — 0
\ \ \

00— t(M) — M — M/t(M) —0
I ! "

0— t(M) — M/F — M/#(M)®F) —0,
+ + +
0 0 0

and, dualizing it, we obtain the following commutative and exact diagram

0 0
) )

0 +— Ry/R!, — Ry/R!, 0
) ) )

0+— Ro/R, <«+— Ry — R, +«—0
| T T

0+— R«/R, +— R, «— RL_NRI +—0,
) ) )
0 0 0

which provides at once the relation Ry = R, + R/ . This very basic reason is hidden
in [37, 38] where the underlying confusion concerning the choice of input and output
comes from the fact that, when n = 1, any torsion-free module is free and the first of the
two preceding sequences splits. However, the resulting backward sequence must not be
confused in general with the second sequence and the two sequences must be distinguished
with care. In particular, only the first one entirely depends on M and provides the so-called
minimum realization [28].

As input and output always play a reciprocal role and are made by elements of M,
we shall consider two different differential submodules M;, and M, of M such that
My, + My, may be a strict differential submodule of M if there are latent variables. There
is no reason at all for supposing that M /M;, is a torsion module as M /M, is not a torsion
module in general. The main construction is to introduce ¢(M) and set M} = My, +t(M),

tut = Moyt +t(M) in M. Then, the idea of the minimal realization is to replace M,
Moyt and M by M, [t(M) = Mip /(M N t(M)), M}, /t(M) = Moyt /(Moys Nt(M)) and
M/t(M) in order to deal only with torsion-free modules, always keeping in mind that the
differential rank rkp (M) of M, namely the last character, is intrinsically defined, does not
depend on the presentation and is additive, that is to say, if 0 — M’ — M — M" — 0
is a short exact sequence of differential modules then rk(M)=rkp(M')+rkp(M"). This is
exactly the module analogue of the differential transcendence degree in differential algebra
[13, 30] and one can prove that it is equal to the Euler characteristic of M. If one chooses
My, = F as already defined, then F N¢(M) = 0 and M /t(M) = F can always be
considered as a submodule of M /t(M).
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The final idea is to define poles and zeros for multidimensional systems [17, 18, 36, 37].
First of all, we have seen (proposition 2) that if
0— M L5 ML M — 0,

is a short exact sequence of modules and if M is filtred, we can endow M’ and M" with
the induced filtration M, = M' N My, M = g(M,) and obtain, for these filtrations, the
short exact sequence

0—G —G—G"—0,

of associated graded modules. Taking the radicals of the respective annhililators, we get

Vann(G) = y/ann(G’) N /ann(G”),

and thus
char(M) = char(M') U char(M"),

as the characteristic set does not depend on the filtration (see proposition 3). As, we are
dealing with finitely generated modules, we also recall that, in the commutative case, the
support supp(M) of a module M is the set of proper prime ideals of the corresponding
ring, that contain the annihilator of M over the ring. The key point, in order to generalize
the concept of transfer matrix approach, is to localize the graded sequence with respect
to a prime ideal and get the short exact sequence

0— G, — Gp — Gy — 0,

with p € spec(A[x]), but we can also localize the filtred sequence when D is commutative.
In the case of the SISO-system defined in example 4, we get (x — 1)y = u, and we can
divide by x — 1 provided x # 1. Hence, the trick is to notice that G;J = @G if and only if
Gy =0, that is p ¢ supp(G"), the true reason for looking at char(M").

If N is any submodule of M, setting N' = N+¢(M), we have the following commutative
and exact diagram,

0 0 0
) ) )
0— t(M)NN — N — N'/t(M) —0
) ) )
0— t(M) — M — M/t(M) —0
) ) )
0— t(M)/¢(M)NnN) — M/N — M/N" —0,
) ) )
0 0 0
both with the isomorphisms:
t(M)/(¢(M)NN) = N'/N, (9)
N/(t(M)NN) = N'/t(M). (10)

Setting M, Moy and M, + My in place of N, we get similar commutative and
exact diagrams, both with short exact sequences of the type

0— Min — Min + Mout — (Mzn + Mout)/Min — 07 (11)
0— len — len + M(;ut — (Mz,n + M(;ut)/len — 07 (12)

and similar sequences with in and out interchanged.
Now, we have in general an exact sequence of the form

0— N — N —t(M)/t(M)NN) — 0, (13)
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and similar sequences with M;,, My, and M;, + My, in place of N. Combining the two
preceding sequences starting respectively with M;, and M/ , we obtain the short exact
sequence:

0 — (E(M)N(Min+Mour))/ (H(M)NMin) — (Min+Mout) /Min — (Mz,n+M;ut)/Mz,n — 0,
(14)

which is not evident at first sight and where many of the previous modules do appear.

We claim that all poles and zeros considered in classical control theory are only exam-
ples of the characteristic sets of the modules introduced above and all the relations among
poles and zeros come from the preceding exact diagrams/sequences, by using the additive
property of char(-) (see proposition 3). Of course, it is essential to notice the fact that the
identification of char(M) with supp(G) when G = gr(M) only allows to use proper prime
ideals of A[x], a reason for setting char(0)=0.

For example, if A = k and we use supp(M) instead of supp(G), there is nothing to
change and we have (see p. 40 of [37]):

e { observables poles }=supp((Mi, + Moyt)/Min),

e { transmission poles }=supp((M/, + M),,)/M],),

e { input decoupling zeros}—supp(t(M)),

e { input-output decoupling zeros }=supp(t(M)/(t(M) N (Min + Moyt))),

we obtain from the last exact sequence with evident notations:
{ob. p.} = {tr. p.} + {i.d.z.} — {i.o.d.z.} —supp(t(M) N M;;,).

If M, is identifed with F', we obtain therefore ¢(M)N M;, = 0 and we recover the formula
(23) of [2].

We may recapitulate the various modules involved on the following picture, explaining
all the situations that can be met in the range of applications.

M
T
Mz,n + Méut
e N
len T M(;ut
N M) 2
T T
Mzn T Mout
N A
0

Introducing also the sets:
e {system poles} = supp(M/M;y,),
e {output decoupling zeros} = supp(M/(Mi, + Mout)),
and using the short exact sequence
0— (Mm + Mout)/Min — M/Mm — M/(Mm + Mout) — 07

we obtain, with evident notations:

{sys. p.} = {ob.p.} + {o.d.z.}.

However, in pratice, there is no loss of generality in supposing M = M;, + Myy. In
such a simple situation, combining the preceding results, we get:

{syst. p.} = {ob. p} = {tr. p.} +{i.d.z.} — supp(t(M) N M;,),
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and we may thus introduce the set:
{hidden modes} = {i.d.z.} — supp(¢(M) N M;;,).

The preceding results prove that input and output play a similar role and that it is
thus better to use the only word “zero” or “supp” for the corresponding modules and not
the word “pole”.

Example 18 If we have a SISO system y — y = u with input v satisfying & + v = 0, we
obtain §—y = 0 and thus supp(M)={(x—1), (x+1)} while supp(t(M)NM;,) = {(x+1)}
and we find the hidden mode (x 4+ 1). Such a situation can happen in an electrical LCR
circuit if we suppose conditions on a voltage input.

4 Conclusion

We hope to have convinced the reader that, despite the difficulty of the underlying math-
ematical tools, the formal methods of algebraic analysis allow to clarify and unify all the
existing results on multidimensional control systems. In most cases, the corresponding
algorithms are effective and can easily be checked. Finally, this approach is the only one
which can separate the intrinsic/built-in properties of a control system such as torsion-
freeness or pureness, from the other properties that depend on the choice of input and
output. Meanwhile, another essential aspect is the possibility to bring the study of mod-
ules over non-commutative rings to the simpler study of modules over commutative rings.
We do not believe that none of the results presented here could be obtained without the
use of the extension functor and duality, a fact explaining why it took such a long time to
estabish a link between algebraic analysis and control theory.
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