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Abstract

We propose and analyze a stabilized finite element method for the
incompressible magnetohydrodynamic equations. The numerical re-
sults that we present show a good behavior of our approximation in
experiments which are relevant from an industrial viewpoint. We ex-
plain in particular in the proof of our convergence theorem why it may
be interesting to stabilize the magnetic equation as soon as the hydro-
dynamic diffusion is small and even if the magnetic diffusion is large.
This observation is confirmed by our numerical tests.
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1 Introduction

This work deals with the numerical resolution of the incompressible mag-
netohydrodynamic (MHD) equations by a stabilized finite element method.
The system of partial differential equations that we consider here results
from a coupling between the stationary incompressible Navier-Stokes equa-
tions and the stationary Maxwell equations. It governs the behavior of an
incompressible fluid carrying an electrical current in presence of a magnetic
field.

The unknowns of our problem are the velocity field u, the pressure p in
the fluid and the magnetic field B (in fact the magnetic induction). They
satisfy the following MHD equations (see for example R. Moreau [30] or
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W.F. Hughes and F.J. Young [25] for a physical viewpoint) :

1
puNVNu—nAu+Vp+—BxcuwlB = pf,
@
divuy = 0,
1
—curl (curl B) — curl (u x B) = 0,
po
divB = 0.

(1.1)

where f denotes an external force, p is the density of the fluid, n the vis-
cosity, o the electrical conductivity and p the magnetic permeability. The
parameters p, 17, o and p are assumed to be constant over the domain. The
system is set on a bounded simply-connected domain 2 and is completed by
the boundary conditions

u = 0,
Bn = gq, (1.2)
curl Bxn = k xn,

where n denotes the outward-pointing normal to €2, and the quantities ¢
and k are supposed to be known. Note that our analysis carries through for
other cases (such as transient equations or non-homogeneous coefficients for
example).

The resolution of the MHD equations may be useful in various physical
or industrial contexts (such as aluminum electrolysis, electromagnetic pump-
ing, MHD generator). In these situations, the hydrodynamic diffusivity 7 is
generally very small whereas the magnetic diffusivity 1/uo is high. We refer
the interested reader to R. Berton [3] for more precise values of these param-
eters in the different cases. The small hydrodynamic diffusion may induce
some well-known numerical instabilities. It is therefore natural to use some
stabilizing techniques for the Navier-Stokes equations. One of the conclusion
of this study is that it may be also useful to stabilize the magnetic equation
in spite of the high values of the magnetic diffusivity.

The layout of this paper is as follows. In Section 2, we introduce some
notations and we briefly present the stabilized finite element method for the
advection-diffusion and the Stokes equations. Section 3 is devoted to the
approximation of the MHD equations by stabilized finite elements together
with the proof of our convergence result. We finally present various numerical
results in Section 4 and we draw some conclusions in Section 5.

2 Preliminaries

2.1 The MHD equations

Many studies have already been devoted to the incompressible MHD equa-
tions. For theoretical results, let us just mention those by G. Duvaut and



J.-L. Lions [12], M. Sermange and R. Temam [36], J.-M. Domingez de la
Rasilla [10], K. Kerieff [27], E. Sanchez-Palancia [34, 35|, J. Rappaz and
R. Touzani [33, 32|. J.-F. Gerbeau and C. Le Bris [19, 20]. An interest-
ing alternative viewpoint which consists in considering the electrical current
rather than the magnetic field as the main electromagnetic unknown is pro-
posed by A.J. Meir and P.G. Schmidt [28, 29].

Numerical methods conserving the dissipative properties of the contin-
uum transient system in 2D are presented in F. Armero, J.C. Simo [1].
M.D. Gunzburger, A.J. Meir, J.S. Peterson give in [22| a complete study
of the Galerkin approximation of the stationary equations and a proof of
existence of solutions.

Before presenting our approximation result, we find it convenient to
rewrite the MHD system in a non-dimensional form. For this purpose we
introduce a characteristic value By of the magnetic field, a characteristic
value Uy for the velocity field and a characteristic length L, and we define
the following non-dimensional numbers :

Reynolds number : Re = onL7

n
Magnetic Reynolds number : Rm = uoUyL,
5
ppUs”

Coupling number : S =

Denoting by @, B, p and f the physical quantities occurring in (1.1), we
introduce the non-dimensional variables u = /Uy, B = B/By, p = p/ pUE
and f = fL/u3. Then the non-dimensional MHD system reads :

1
u.Vu—ﬁAu—i—Vp—l—SBxcurlB = f,

dive = 0,
Ll (el B 1(ux B 0 2
o (curl B) —curl (u x B) = 0,

divB =

In the industrial cases we have in mind, Re ~ 10°>, Rm ~ 10~! and S ~ 1.
Let us just mention that the following numbers are often used in the MHD
literature :

Hartmann number : Ha =+vReRm S = \/§BL,
n

1 Uo
Alfvén number : A= — = /up—.
VS "By
In order to solve numerically this non-linear system, we consider here the
following coupled Picard algorithm : assuming that (u", B",p") is given, we



compute the approximated solution at step n+1 by solving the linear problem

u" - Vuntl — éﬁ w4+ Vp"tt + S B x curl BMTY = f,
. divutt = 0, (2.4)
%curl (curl B"™') — curl (w1 x B") = 0,
div B*+!

Many other schemes could be used to tackle the MHD equations (see for
example M.D. Gunzburger, A.J. Meir and J.S. Peterson [22] and J.-F. Ger-
beau [18, 17|). For the sake of clarity, we only consider this Picard algorithm
in the theoretical part of this paper. Therefore, in the following, we focus
on the discretisation of the linear problem : find w, B and p such that

1
a-VU—EAu—i—Vp—I-becurlB = f, (2.5)
dive = 0, (2.6)
1
T curl (curl B) — curl (u x b) = 0, (2.7)
divB = 0. (2.8)

where a and b stand for 4™ and B" in the Picard iterations and are supposed
to be known and regular. Again, for the sake of simplicity, in the theoretical
part of this work, we suppose that diva = 0 (this is not necessary, see
Remark 3.1), and we deal with homogeneous boundary conditions on I" :

u = 0, (2.9)
Bn = 0, (2.10)
curlBxn = 0. (2.11)

We leave to the reader the slight extensions of our work that are necessary
to deal with other cases.

2.2 Notations

The domain {2 is partitioned in a quasi-uniform mesh 73 (see for example
P.G. Ciarlet [9]), which consists of tetrahedral or hexahedral elements K.
The diameter of an element K is denoted by hg, and h = max{hg}. We
consider the Lagrangian finite element space defined by

X = {vn, € C°Q),vp| i € Pe(K),VK € Tp},
when the elements K are tetrahedra or by

X = {un, € C°(Q),vn| i € Qr(K),YK € Tp},



when the elements K are hexahedra. A classical result of the approximation
theory gives an upper-bound of the difference between u € H**!(K) and its
interpolate II,u in X,’f :

lu — Tl | r2(k) + Pic| [V (u = Thu) || 2oy + PN (u = Thu) || 2k)

< ChG M ul g i
(2.12)
The velocity u is approximated in V;, = (X;f N HY(Q))3, the pressure p in
My, = X" N L3(2) (where L3(£2) is the space of L?(Q) functions with zero
mean in ) and the magnetic field B in W), = (X})* NHL (Q) (where HL ()
is the space of vector fields B belonging to H'(€2)? such that B.n = 0 on I').

We shall use the inverse inequality (see e.g. P.G. Ciarlet [9])

> h%(/ | A wp)? d: gdo/ \Vop|?dz, Yo, €V, (2.13)
KeTh, K Q

where dy is a non-negative constant independent of h.
With the assumption made on €2, we have the following inequality for
B € HL(Q) (see V. Girault and P.A. Raviart[21], Theorem 3.9) :

/|VB|2dx§/ |curl B|? + |div B|? dz (2.14)
Q Q
We shall use the formulae
/ |div ul? dz < 3/ |Vul? dz, (2.15)
Q Q

and

/curlB.Cdxz/B.curlCd:c—F/ n x B.Cdx. (2.16)

Q Q a0

2.3 A brief presentation of some stabilized methods

In this section we show how the advection-diffusion and the Stokes equations
can be solved by the stabilized finite element methods. This is not an ex-
haustive presentation, our aim being just to introduce the basic ideas that
we use in the following section for the MHD equations. For further details,
the reader is referred to the extensive literature we now give a very brief
overview of.

The “Streamline Upwind Petrov Galerkin” (SUPG) method (also named
“Streamline Diffusion”) is generally presented as the first stabilized finite
element method. It was introduced by A.N. Brooks and T.J.R. Hughes
in [8] to cure the numerical oscillations due to a small diffusion in the
advection-diffusion and Navier-Stokes equations. T.J.R. Hughes, M. Mal-
let and A. Mizukami propose in [24] to add a term to SUPG in order to
avoid oscillations in boundary layers.



C. Johnson and J. Saranen analyze in [26] an extension of the Stream-
line Diffusion method to the transient Navier-Stokes and Euler equations.
Other alternative methods are proposed by L.P. Franca and E.G. Dutra do
Carmo [13], L.P. Franca, S.L. Frey and T.J.R Hughes [15] for the advection-
diffusion equation.

T.J.R. Hughes, L.P. Franca and M. Balestra use stabilized finite element
in [23] to solve the Stokes problem by circumventing the inf-sup condition.
J. Douglas and J. Wang propose an unconditionally stable alternative in [11].
The fact that the same stabilizing tricks work with both advection-diffusion
and Stokes equations is explained in L.P. Franca and T.J.R Hughes [16] where
a symmetric advective-diffusive form of the Stokes equations is presented.

L.P. Franca and S.L. Frey study in [14] the linearized Navier-Stokes equa-
tions. In their approximation, the pressure and the velocity may be approxi-
mated in the same space, and, following their work on the advection-diffusion
equation in [15], they use different stabilization parameters according to the
regime of the flow (diffusion or advection-dominated) with a new definition
of the local Reynolds number.

Some analysis of stabilization methods for the non-linear Navier-Stokes
equations can be found in the work [39] by Tian-Xiao Zhou and Min-Fu Feng.

Streamline diffusion methods are related to the process of addition and
elimination of suitable bubble functions to the finite element space (see
C. Baiocchi, F .Brezzi and L.P. Franca |2], F. Brezzi, M. Bristeau, L.P. Franca,
M. Mallet and G. Rogé [5], and a practical computation of scaled bubble func-
tions in J.C. Simo, F Armero and C.A. Taylor in [37]). This establishes the
existence of a link between the two families of stabilizing techniques. The
problem of determining an optimal stabilization parameter — which is the
difficulty generally considered as the major drawback of streamline diffusion
methods — may be therefore replaced by the problem of an optimal choice of
the bubble space. The optimal bubble space can be determined by solving
a boundary value problem in each element, this is the so-called “residual-
free bubbles” method. These very interesting issues will be not considered
here, the interested reader is referred to F. Brezzi and A. Russo [7] and to
F. Brezzi, D. Marini and A. Russo [6],

2.3.1 The advection-diffusion equation

We first consider the advection-diffusion equation :
—nAu+a.Vu=fin Q. (2.17)

It is well-known that the finite element method is not well-suited to solve
this problem when the diffusion is overtaken by the convection at the cell
scale, in other words when ||a||s,xkh K /7 is large. The stabilization methods
improve the convergence in that case. For the sake of simplicity, we suppose



that w = 0 on I' and that diva = 0. For a more complete study we refer to
A. Quarteroni and A. Valli [31] for example.

In this subsection, V}, denote the finite element space X ,’f We define the
bilinear form

@(w,v):n/VwVvdx—l—/a-vadx,
Q Q

and
< F,v >=/fvd$.
0

In the sequel, the solution of the continuous problem (2.17) is denoted by u,
the interpolate of w in V}, is denoted by @j and the solution of the discrete
Galerkin problem is denoted by up. Thus we have :

@(uh,vh) =< F,vp, >,Yu, € V. (2.18)

The interpolation error is denoted by 7, = v — up, the approximation error
ep, = Up, — up, and the global error €, = u — up. We have €, = 7, + ep,.
By very standard estimates, one shows that the interpolation error is

bounded as follows
all2 h?
Venlle < 01+ LU=y, (219)

where C'is a constant that does not depend on h, a, v and 7. For advection-
dominated flows, the right-hand side of this estimate is large and numerical
results exhibit oscillations.

The way to estimate the Galerkin method’s error is based on four proper-
ties : linearity, strong consistence, coercivity and continuity. The stabilized
methods we consider here are some generalized Galerkin methods where the
bilinear form ® of the continuous formulation is replaced by a bilinear form
®;, depending on the mesh and still satisfying the four above properties.

We define ®p, on V), x V}, :

Dy (w,v) = ®(w,v)+ Z / T(—nAw+a-Vw)({nAv+a-Vov)dz, (2.20)
ke, 'K

and

< Fy,v >:/vadxvl—KgTh/KTf(anv+a-Vv)da:. (2.21)

The coefficient 7 is the stabilization parameter. It is defined on €2 by :

Mg
la(z)|’

T|K:TKW1thTK(.’L‘): V$EK,



where A\ is a nonnegative constant that will be fixed later to ensure the
stability of the approximation.The value of £ depends on the method : -1
(Douglas-Wang method, DWG), 0 (“Streamline Upwind Petrov Galerkin”,
SUPG) or 1 (“Galerkin Least Square”, GLS).

It can be proved that the error estimate for the stabilization methods is

allech
Venlle < Cyf1+ % s 1B, (2.22)

where C' is a constant independent of h, a, u and 7.

Comparing (2.19) and (2.22), this shows that the stabilized methods may
improve the results when ||a||soh /7 is large. In the case when ||a||och/n < 1
(diffusion-dominated flow), the estimate (2.22) is worse than those obtained
with the classical Galerkin approximation. To avoid this drawback we can
choose T = Ah% /n in the cells K where diffusion dominates; thus we find a
estimated like (2.19) and the stabilization parameter 7 remains continuous
when ||a||ooh/n takes the value 1.

2.3.2 The Stokes equations

The Galerkin mixed formulation of the Stokes problem reads : find (up,pp) €
Vi, X Mj, such that (v, qn) € Vi x Mp,

@ (up, Pr VR, qn) =< Fup,qn >,

with
@ (un, P vn, qn) Z/Tlvuh'Vvh dx—/phdivvh dl‘+/ qpdiv up, dz,
Q Q Q

and
< Fivup, qp >= / fropdez.
Q

It is well-known that the spaces V}, and M} must satisfy a compatibility
condition. Following the same idea as for the advection-diffusion equation,
the stabilized method consists in adding a “strongly consistent” term to the
classical Galerkin formulation, in other words, ® is replaced by @y, :

1 (h, Phi Uy Gn) = P(h, Phi O, Gr)+ Y / T(=nAup+Vpy)-(—EnAvp+Va) de,
KeT, ' K
and F by Fj, :

< Fpivn, qn >=< Fiop,qn >+ Y / Tf(=EnA vy + Vap) dz.
KeT, ' K



where 7| = Ah%(, A is a constant, and £ is equal to —1, 0 or 1 depending
on the method.

The convergence of the stabilized method may then be proved without
any inf-sup condition. This property is interesting for the practical imple-
mentation, specially in 3D. We refer to J. Douglas and J. Wang [11], T.J.R.
Hughes, L.P. Franca and M. Balestra [23| for the original papers and to
A. Quarteroni and A. Valli [31] for a pedagogical presentation.

3 Stabilized finite element methods for the MHD
equations

In this section our aim is to extend the stabilized finite element methods
introduced above to the MHD problem (2.5)-(2.11). As far as we know,
this has never been presented in the literature before. We consider the
non-dimensional form of the MHD equations and we denote 1/Re by n and
1/Rm by a. For the sake of simplicity, we deal with the globally advection-
dominated case in the Navier-Stokes equations (but see Remark 3.3). In
other words, we suppose that we have within each element K :
|a(z) bk

L ek (3.1)

In view of the applications we have in mind, the magnetic equations is
supposed to be diffusion-dominated. Let be A, and Ap two positive con-
stants. We define the stabilization coefficients by :

| APk
TulK = )
|a(z)]

and
ABh%

TB|lK =

Note that we have
nTu|K < Auh%( (32)

The resolution of the linearized MHD equations (2.5)-(2.11) by the clas-
sical Galerkin method consists in finding up, € Vp,, By € W}, and p, € My,
such that for all (v, Ch, qn) € (Vi, Wi, Mp,)

O (un, By, phi vn, Chyaqn) =< Fg;vn, Ch, qn >,



with

& (u, B,p;v,C,q) = /(nVu-Vv—i—a-Vu-v—pdivv+Sb><curlB-v)dx
Q
_l’_

qdivudz

Q
+ /(aScurlB-curlC+anideivC—Su x b-curl Q) dzx,
Q
and
< Fg;v,C,q > = frudz.

Q

Let us now define the stabilization terms :
Og(u,B,p;v,C,q) = Z / Tw (a-Vu—nAu+Vp+Sbxcurl B)-

(a-Vo+E&nAv+Vg+ Sbx curlC)de
+ Z /KTB (—aSA B — Scurl (u x b))-

KeTh
(€A C —curl (v x b)) d,
and
< Fg;v,C,q > = Z/Tu f-(a-Vo+énAv+Vqg+ SbxcurlC)dz.
KeT, 'K

where £ is a constant equal to —1, 0 or 1 according to the stabilization
method (namely the Douglas-Wang, the SUPG or the Galerkin Least Square
methods in the context of the advection diffusion equation). Notice that the
three methods coincide when linear or bilinear elements are used.

The stabilized problem that we now propose to analyze reads : find
up € Vi, By, € Wy, and p, € M}, such that for all (v, Ch,qn) € (Vi, Wy, My,)

®(un, By, ph; v, Ch,qn) =< Fsvp, Ch, qn > (3.3)
with ® = &5 + ®g and F' = Fg + Fg. Our main result is :

Theorem 1
Let us recall that Vi, = (XFNHL(Q))?, My, = X"NL3() and W), = (X})3N
HL (Q2). We denote by (u, B,p) the exact solution of the MHD equations
(2.5)-(2.11), by (in, By, pn) the interpolate of (u, B,p) in Vi, x Wj, x M,
and by (up,Bp,pp) the solution obtained by the stabilized finite element
method (3.3).

Then, under hypothesis (3.1), the approximation error (ey,,ep,e,) =

10



(Up, — up, By, — By, pp — pr) can be estimated as follows :

1

2 / (n|Veu|? + Salcurleg|* + Saldives|?) dw—i—/ mS|curl (e, x b)|? dz
Q

Tyla.Vey, + Ve, +Sb x cur]eB|2 dr <

@ 2 2

Onvn ((Mulllloct =m0+ S + 021901 ) 50
Auh h?2
+(|| i "zm'p'm“
2
+( S |lb ||°°h+>\ >h2l|B|l2+1>.

llalloo
(3.4)
This shows the convergence of the approximation 3.3.$

It is useful to notice that the stabilization terms in the Navier-Stokes
equations are necessary to prove the convergence of the pressure but the
stabilization terms in the Maxwell equation are not necessary to prove the
convergence of By, (see Remark 3.2).

The following of this section is devoted to the proof of this theorem. We
begin by proving the stability in the three cases ¢ = —1,0,1, and then the
convergence in the case £ = 1 (the cases £ = —1,0 may be treated by the
same arguments).

Remark 3.1 It has already been mentioned in Section 2.1 that the fields a
and b might be seen as the fields u™ and B™ occurring in the Picard iter-
ations. Then a € Vi, and b € Wy. Let us see what should be changed in
this case. First, the field a is no longer divergence free. Nevertheless, in the
following proof, this assumption is only needed to ensure the antisymmetry
of the trilinear advection term. Thus, it suffices to replace classically (see

R. Temam [38])
/ a-Vv-wdzr
Q

/a-Vu-wdw+1/w-vdivad{Jc.
Q 2 /g

Let us now see what involve the assumption b € Wy,. We have the following
inverse inequality (see P.G. Ciarlet [9], Theorem 17.2 for example) :

by

C
19blloe < Zlbll-

Thus, the term (||b||%, + h2||Vb||%) could be replaced by C||b||%, in esti-
mate (3.4).

11



3.1 Stability

In this section, we prove the stability of the approximation (3.3). Let us start
with ®;(u, B, p;u, B, p) corresponding to the classical Galerkin method. The
assumption diva = 0 yields the cancellation of the advection term. The term
Vp is compensated by divu. Likewise the Lorentz force is compensated by
the Maxwell advection term because of the relation

/becurlB-udx:/Suxb-curlex.
Q Q

This relation makes useless the assumption divb = 0, and this is to use this
important cancellation property that we have chosen to linearize the MHD
equations like that for the Picard iterations 2.4. Finally, we get :

O (u, B,p;u, B,p) = / (n|Vul? + aS|curl B|* + aS|div B|*) dz.  (3.5)
Q
Let us now consider the stabilization terms.

e Case ¢ =1.
Using (3.2) and the inverse inequality (2.13), we have :

®g(u, B,p;u, B,p) = Z /(Tu|a.Vu+Vp+Sb><CurlB|2—Tu772|Au|2)dx
KeTy, 'K

+ > | (rSleurl (u x b)]* — 75S0?|A B?) dz
KeT, ' K

> /Tu|a.Vu+Vp+Sb><Cur1B|2dx—dg)\u/7]|Vu|2dx
Q Q

+/ mgS|curl (u x b)|* dz — dgAB/ Sa|VB*dz.
Q Q
Along with (2.14) and (3.5), we deduce

®(u, B,p;u, B,p) > (l—dOAu)/17|Vu|2dac+(1—d0>\3)/ Salcurl B? dx
Q
+ (1 —dop) Sa|divB|2dx+/ mpS|curl (u x b)|* dz
Q Q

+ / Tula-Vu + Vp + Sb x curl B|? dz.
Q

The stability of the approximation is therefore achieved as soon as A, and
Ap are such that :

1 —doAp >0 and 1 —dghy > 0. (3.6)

12



e Case ¢ = —1.
Let v > 1 be an arbitrary constant. Using the obvious inequality
|A—BJ* > |AP? = 2|A|B| + B[ > (1 = 1/7)|B]> = (v = )| AP,

we have
®g(u, B,p;u,B,p) = Z/Tu|a.Vu—7]Au—I—Vp+Sb><CurlB|2dx
KeT, VK
-I—Z S| — curl (u x b) — aA B|*dx
KeT, ' K
> —(y—1) Z / 7727'u|Au|2+a25'7'B|AB|2dx
K

KETy
+(1 — l/fy)/ Tula - Vu -+ Vp + Sb x curl B|? do+

+(1—=1/y) QTBS|curl (u x B)|? dz.
With (3.2) and (2.13), this yields
®s(u, B,p;u, B,p) > —(7—l)Audo/Qn|Vu|2dac—(7—1)>\Bd0/QaS|VB|2dx
+(1— 1/’)/)/97'u|a - Vu+ Vp+ Sbx curl B|? de+
(1-— 1/7)/QTBS|Curl (u x B)|? dz.

Therefore, with v > 1 such that 1 > (y — 1)A,dp and 1 > (y — 1)Apdy, we
deduce the stability just like in the previous case. Notice that we do not
need any assumptions on A, and Ag.

e Case ¢ =0.
Following the same steps as in the case £ =1 :
QS(U,B,[); U,B,p) =

Z (Tu|a.Vu+Vp+ Sbx curl B> — r,nAwu - (a-Vu+ Vp + Sb x curl B)) dz
KeT, " K

+ Z (tpS|curl (u x b)|*> + TSa B - curl (u x b)) dz >
KeT, ' K

1 1
> 5/ Tu|a.Vu + Vp + Sb x curl B|? da — E)mdg/ n|Vul? dz
Q Q
1 1
+ —/ mpS|curl (u x b)|> — —ABdO/ aS|VB|? dz.
2 Ja 2 Q

Thus, we deduce the stability as soon as

1 1
1—- Edg)\B >0 and 1—- §d0>\u > 0.

13



3.2 Convergence

We now proceed to establish the convergence in the case when £ = 1 (cases
& =0,—1 can be treated with the same arguments). We choose A, and Ap
such that 1 —dyA, > 1/2 and 1 — dpAp > 1/2. In view of (3.6), this yields
the stability of the approximation.

We denote by u, B, p the solution of the continuous problem (2.5)-(2.11),
@ the interpolate of u in V},, B the interpolate of B in W), p the interpolate of
p in Mj. We denote by uy, By, and pj, the solution of the stabilized discrete
problem. We denote the interpolation error for the velocity field m, = u—1auyp,
the approximation error e, = 4y — up, and the global error by €, = u — uy,.
We define in the same way g, ep, ep for the magnetic field and 7, ey, €,
for the pressure. Note that we have the relation €, = 7, +¢,, €eg = 7 +ep,
€p = Tp + €p.

The strong consistence of the stabilized formulation implies :

®(6u7€B7€p;BU7eBaep) = (P(E’u,_ﬂ-’u,aEB_7TB7€p_7Tp;euaeB’ep)
= _q)(ﬂ_uaﬂ_Baﬂ—p;eU7eBaep)'

Therefore, the stability property proved in the previous section yields
/(17|Veu|2 + Sajcurl eg|? + Sa|div ep|?) dm+2/ mpS|curl (e, x b)|? dz
Q Q

+2/ Tula.Ve, + Ve, + Sb x curleB|2 dz < 2|®(my, 7B, Tp; €y, €B, €p)|.
Q

(3.7)

We now estimate the right-hand side of this inequality in order to “swal-

low” the terms e,, ep and e, in the left-hand side. Let us recall ® has been

split into a classical Galerkin part ®¢ and a stabilization part ®g. As far as
the Galerkin part is concerned, we have

20 (my, T, Tp; €y, €B, €p) = 2/ ep div m, dz+
Q
2/ (nVmy, - Ve, +a-Vmy, - e, —m,dive, + Sb x curlmp - e,) dx
Q

+2/ (aScurlmp - curlep + aSdivrpdiveg — S, X b - curlep) dz.
Q

The diffusion terms are treated straightforwardly :
217/ |V7u||Vey| dz < 7117/ |Vr,|? dz + i/ |Vey|? de,
Q Q M Ja

ZaS/ (lcurl mp||curleg| + |divng||diveg]|) dz <
Q

'ygaS/ (Jeurl mp|? + |div 7p|?) dz + o / (Jcurl eg|? + |div ep|?) da.
Q Y2 Ja

14



We use the stabilization terms in order to control the convection and the
incompressibility terms :

2 <

/a-Vﬁu-eu—i—epdiku—Sﬁu x b-curleg dx
Q

1 1
— [ 74la.Ve, + Ve, + Sb x curlep|? d$+’)’3/ —|my|? da.
3 Ja K Tu

Intuitively, it is worth noticing that there is a “swap” between the Navier-
Stokes and the Maxwell equations : on the one hand, the term 7, X b-curlep
comes from the Maxwell equations and it is “swallowed” by the stabilization
term of the Navier-Stokes equations. On the other hand, bx curl 7p-e, which
comes from the Lorentz force of the Navier-Stokes equations is “swallowed”
by the stabilization term of the Maxwell equations (see Remark 3.2). Using
formula (2.16), we actually have :

2

/be curl mg - e, dx
Q

1
< §/73|curl (euxb)|2dx—l—574/ — |7B|? da.
T4 Ja Q7B

Finally the pressure term is bounded by using (2.15) :

2/ |7rp||diveu|dx§3—77/ |V6u|2d$+ﬁ/ |7, | d.
Q V5 Ja mJao

Note that this control would be slightly different if we introduce the term of
Remark 3.4).
Let us now estimate the stabilization part :

Og(my, TR, Tp; €yy€B, €p) = Z/Tu (@-Vmy —nAmy,+ Vr,+ Sbx curlmpg)-
KeT, ' K
(a-Ve, +nle, + Ve, + Sbxcurlep) dz

+ Z/TB (—aSA g — Scurl (7, x b))-
KeT;, ' K

(aAep — curl (e, x b)) dz.

The stabilization terms of the Navier-Stokes equations are bounded as fol-
lows :

2Y" [ e Vmlla- Veu+ Ve, + St x culenlde < [ nifa- Vi do
K Q

KeTy )
— [ mula- Ve, + Ve, + Sb x curl eg|* da,
3 Ja

doAy,

22 / Tula - Vmy|InAey|dz < ')/6/Tu|a-V7ru|2dx+—/77|Veu|2da:,
Ker VK Q Y6 Ja

15



22 / Tu|nA mylla - Ve, + Ve, +Sb x curleg|dz < 3 Z / Tu772|A7ru|2dx+
KeT, K . KeTy, K

il Tu|a.veu—|—Vep—)—Sb><CurleB|2dx,
Y3 Ja

doA
ZZ / TulnA Ty ||nA ey dz - < u/n|Veu|2dx+76 Z / Tu?| Ay |2 diz,
ke, ' K Y6 Ja Ker, ' K

2y / Tu|vyr,,||a-Veu+V6p+5b><curleBIdeUS%/Tu|V7T1f’|2d“["Jr
KeT, ' K ’

1
il Tu|a.veu+Vep—)—Sb><CurleB|2dx,
Y3 Ja

doy
ZZ/Tu|V7rp||nAeu|dx < 2
KeT, " K

/7]|Veu|2dx—l—’)/6/7'u|V7rp|2dx,
Q Q

22/Tu|S'b><curl7rB||a-Veu+Vep+Sb><curleB|dxg
KeT, ' K

1
')/3/Tu52|b><cur17rB|2dac—|——/Tu|a-Veu—|—Vep+Sb><curleB|2d$,
Q 3 Ja

22/Tu|5b><curl7r3||77Aeu|dx§
KeT, 'K
doAy,

76
Finally, let us estimate the stabilization terms of the Maxwell equations :

/77|Veu|2dx+76/ 7.5%|b x curl mp|? dz.
Q Q

doA
2y, / plaSA mpllal epldr < = B/O‘|Cuﬂ€B|2+0‘|diVeB|2dx+
K Yo Ja

KeTy,
Z ’)’7/ TBOé2SQ|A7TB|2d$,
Ker, ‘K

1
2 Z / T|aSA mgl|curl (e, X b)| dz < o / Ti|curl (e, x b)|? dz+
K 1 Ja

KeT,
2 a2 2
E KGThM/KTBa S| A | dx,

2 Z / 7|5 curl (7, X b)||aAep|dr < 77/ T S%|curl (m, x b)|? dz+
ke VK Q
doAp

Y7

2 Z / Tg|S curl (m, x b)||curl (e, x b)| dz < ')/4/ 5% |curl (m, x b)|? dz+
KeT, " K f

/ alcurl eg|? 4 al|divep|? dz,
Q

1
— | 7glcurl (e, x b)|* dz.
Y4 Ja

16



If we now insert the above inequality (with convenient ;) in (3.7), we obtain :

1
3 / (n|Vey|? + Sajcurl eg|? + Sa|divep|?) d.ﬂc—l—/ mS|curl (e, x b)|? dz
)

+ [ mula.Ve, + Ve, +5b x CurleB|2dx <

Q
Cl/Tu|a-V7Tu|2d$+02 Z / Tun?| A 7y |? da+-
Q Ker VK

c3/Tu|V7rp|2d$+c—4/ |7rp|2dac+05/TuS2|b><cur17rB|2+
0 nJo 9)

ce Z / | A wp|? dr + 07/ S%rplcurl (mr, x b)|* dz,
KeTp 'K K
(3.8)
where the constants ¢; does not depend on hg, 7, @, a and b. In order to
achieve the proof, we establish the following interpolation estimates. Using
Tu’l72 < Aunh%(, we have :

01/ Tu|a'V7Tu|2d$+02/ run)’| D ma|? dz < C(|lallochic +mAahi [ulf 1
K K

Cy4 A hK
o [ rlVm e+ [ o < Ol + SRl
K nmJK |lalfoo n
2 2 2 2 S2|1o]13 2| 22
05/ TuS*|bxcurl wg| +06/ o’ |Amp|®dr < C <)\UT|‘°°hK+)\Ba> hic|Bliy1 ko
K K |00 ’

C7/ S2rplcurl (my x b)|2dz = C7/ 27| 2(|div B2 + [VB[2) der
K K
+C7/ S27p|b](|div 7y |* + |V,|?) da
K

S
< (Bl + Ml VBII%,) —

k
h%{ |U|i+1,K-

Inserting these inequalities in (3.8), we obtain (3.4). This concludes the
proof of Theorem 1. {

Remark 3.2 It has been noticed in this proof that m, X b- curleg coming
from the Mazwell equations was swallowed by the stabilization term of the
Nawvier-Stokes equations, and conversely for b X curlmp - ey. That is why we
have stabilized also the Mazwell equation. It is worth mentioning how one
would control b X curlmp - e, if the Maxwell equations were not stabilized (in
other words if g =0) :

/ bx curlmp - e, dzx
Q

= ‘/ curl(e, X b) - mpdx
Q
2C(|blloo + [IVOlloo)[[Veu|| 2|75l L2

b2,
l/ |Veu|2dx+07ryl|| et /|7rB|2dx.
Y1 Ja n Q

IN

IN
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Thus, the following term would occur in the error estimate on B :

1Bl oo o
%h? |BIF1-

This yields the convergence of the approzimation, but the control is less ac-
curate than that of Theorem 1 as soon as ||a||sch/n is large.

Remark 3.3 For the sake of simplicity, it has been assumed in this proof
that the regime was advection-dominated on the whole domain. Nevertheless,
for the numerical simulations, we have used the more sophisticated definition
of the stabilization parameters proposed by L.P. Franca and S.L. Frey in [14]
in order to adapt the stabilization to the regime of the flow.

Remark 3.4 It is proposed in [14] to add the following term to ® :

/ ddivudivv dx,
Q

where 0 is a variable parameter. It is straightforward to modify the above
proof taking into account this term by following the arguments of [14]. Our
numerical tests have been done with this slight modification.

4 Numerical results

The numerical tests presented in this section have been performed with an
academic code. The fluid dynamic code FIDAP has been used for the grids
generation and the postprocessing.

As far as we know, the experiments presented here are new in the frame-
work of the scientific computing literature on MHD. Other experiments can
be found in F. Armero and J.C. Simo [1] (Hartmann flows in 2D and MHD
flow past a cylinder) and in J.-F. Gerbeau [18] (Hartmann flows in 2D and
3D with perfectly conducting and insulating walls).

4.1 MHD flow over a step

In the first experiment, we consider the flow of a fluid over a step in presence
of a transverse magnetic field By(0,1). The sides of the duct are assumed
to be perfectly conducting. The inlet and the outlet values of the velocity
are the Poiseuille profile (Hartmann profile might be better but this is not
relevant for our purpose). See Figure 1 for the definition of the geometry
and the boundary conditions.

We first compare the pressure contours obtained with the Q2/P1 classical
elements and with the Q1/Q1 stabilized elements. Figure 2 show a good
agreement between the two results.

18



On Figure 3, we show that the magnetic field acting on the fluid tends
to decrease the recirculation after the step. This brings to the fore, in this
particular configuration, a well-known property of a MHD flow (see e.g.
R. Moreau [30]).

1.0

u=0, B.n =Bon, cul Bxn=0

u=ujp, [
B.n=0 — 0.125 Lo
curl Bxn=RmuxB —+ U=U ot
0.25 || B.n=0
0.25 cul Bxn=RmuxB

L /

u=0, B.n =Bon, culBxn=0

Figure 1: Flow over a step in presence of a transverse magnetic field.

iz
DA

i) Q2/P1 finite elements

2= \\

(ii) stabilized Q1/Q1 finite elements

Figure 2: Pressure in a MHD flow over a step Re=100, Rm=0.125, S=1.

4.2 A fluid carrying current in presence of a magnetic field

The following 3D computations model the behavior of a fluid crossed by
an homogeneous electric current from the top to the bottom. The fluid is
enclosed within a parallelepiped whose top and bottom are assumed to be
perfectly conducting and whose side is perfectly insulating. Two linear con-
ductors surround the parallelepiped and create a magnetic field (see Fig. 4).
The grid we used is coarse (about 4000 nodes, Fig. 5). We emphasize that
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Figure 3: Effect of a magnetic field on a flow over a step. Notice the diminu-
tion of the recirculating area when the Hartmann number increases.
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(:250)

4

\/ Az

External conductors
A

Figure 4: A fluid crossed by a current in presence of external conductors

such an experiment may be interesting from an industrial viewpoint, in the
context of aluminum electrolysis cells for example (more sophisticated exter-
nal conductors should of course be considered in this case).

The magnetic field created by the external conductors and the homo-
geneous current crossing the parallelepiped (the fluid being at rest) can be
straightforwardly computed by the Biot and Savart formula. This field is
used to enforce the boundary conditions on B in order to perform the MHD
computation. This is of course an approximation of the reality since we do
not take into account the influence of the hydrodynamic on the magnetic
boundary values. Nevertheless, as will be shown, the results we obtain are
qualitatively good.

Three configurations are considered for the external conductors. The
tops of Figures 6, 7 and 8 show the different configurations and their effects
on the fluid according to the physical intuition (see J.M. Blanc and P. Ent-
ner [4] for example). Our numerical results are in perfect agreement with
the predictions.

The computations of Figures 6, 7 and 8 are performed with Re = 100.
In this range of Reynolds number, similar results may be obtained with clas-
sical finite elements. But when the Reynolds number increases, oscillations
appear with the classical approximation whereas the stabilization methods
still exhibit good results. This is shown on Figures 9 and 10 (this case
corresponds to the same experiment as on Figure 6 but with Re = 300).

Finally, for the experiment of Figure 6 (one vortex), we have compared
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Figure 5: The mesh (about 4000 nodes).

the three following kinds of approximation with various Reynolds num-

bers :

Q1/P0 (non-stabilized), Q1/Q1 when the Navier-Stokes is stabilized

(“Q1/Q1 Stab NS”) and Q1/Q1 when the Navier-Stokes and the Maxwell
equations are stabilized (“Q1/Q1 Stab NS+Max”).

The computation is initialized by four Picard iterations and the conver-
gence is achieved with a Newton algorithm. The relative non-linear residual

is 1073.

The linear systems are solved with an ILU preconditioned CGS
algorithm, the relative linear residual is 107Y.

Tabular 1 shows the total

number of CGS iterations required to solve the linear systems. This value
gives a good idea of the CPU time since the total computational time is
essentially dedicated to the resolution of the linear systems.

Re Q1/P0 | Q1/Q1 Stab NS | Q1/Q1 Stab NS+Max
100 309 146 141
200 1274 239 213
500 | diverges 420 373
1000 | diverges diverges 560

Table 1: Total number of iterations required to solve the linear systems.

It is worth noticing that these results confirm Remark 3.2 following the

proof of the convergence theorem :

it is all the more interesting to stabilize

the magnetic equation as the Reynolds number is large, even if the magnetic

Reynolds number is small.
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(ii) 3D computation, top view, plane z=1.

Figure 6: First configuration. Re=100, S=Rm=1.
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Figure 7: Second configuration. Re=100, S=Rm=1.
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Figure 8: Third configuration. Re=100, S=Rm=1.
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(i) Q1/PO0 elements (notice the oscillations).

(ii) Stabilized Q1/Q1 elements.

Figure 9: Same experiment as on Figure 6 with Re = 300.
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Figure 10: Computation of Figure 9 : first component of the velocity along
a straight line with Q1/P0 (oscillations) and stabilized Q1/Q1 elements.
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5 Conclusion

After a brief presentation of some well-known stabilized finite element meth-
ods for the advection-diffusion and the Stokes equations, we have proposed
and analyzed an extension of such methods for the incompressible MHD
equations. Three remarks may be drawn from our study. First, the pres-
sure contours obtained with equal order stabilized finite element spaces are
as good as those obtained with classical pairs of finite elements satisfying
the inf-sup conditions (in our experiments at least). Second, non-stabilized
methods exhibit oscillations when the Reynolds number tends to realistic
physical values whereas stabilized methods do not. Third, even when the
magnetic diffusion is high — this is generally the case in the physical appli-
cations we have in mind — it may be useful to stabilized both Navier-Stokes
and Maxwell equations. These conclusions have of course to be confirmed in
further tests.
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