
A stabilized �nite element method for theincompressible magnetohydrodynamic equationsJ.-F. Gerbeau�gerbeau@cermics.enpc.frAugust 27, 1998AbstractWe propose and analyze a stabilized �nite element method for theincompressible magnetohydrodynamic equations. The numerical re-sults that we present show a good behavior of our approximation inexperiments which are relevant from an industrial viewpoint. We ex-plain in particular in the proof of our convergence theorem why it maybe interesting to stabilize the magnetic equation as soon as the hydro-dynamic di�usion is small and even if the magnetic di�usion is large.This observation is con�rmed by our numerical tests.Keywords : magnetohydrodynamics, stabilized �nite elements.Math. Subject Classi�cation (1991) : 76W05, 65M12, 65M60.1 IntroductionThis work deals with the numerical resolution of the incompressible mag-netohydrodynamic (MHD) equations by a stabilized �nite element method.The system of partial di�erential equations that we consider here resultsfrom a coupling between the stationary incompressible Navier-Stokes equa-tions and the stationary Maxwell equations. It governs the behavior of anincompressible �uid carrying an electrical current in presence of a magnetic�eld.The unknowns of our problem are the velocity �eld u, the pressure p inthe �uid and the magnetic �eld B (in fact the magnetic induction). Theysatisfy the following MHD equations (see for example R. Moreau [30] or�CERMICS, Ecole Nationale des Ponts et Chaussées, Cité Descartes, Champs surMarne, 77455 MARNE-LA-VALLEE Cedex, FRANCE.
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W.F. Hughes and F.J. Young [25] for a physical viewpoint) :8>>>>><>>>>>: �u:ru� �4u+rp+ 1� B � curlB = �f;divu = 0;1�� curl (curlB)� curl (u�B) = 0;divB = 0: (1.1)where f denotes an external force, � is the density of the �uid, � the vis-cosity, � the electrical conductivity and � the magnetic permeability. Theparameters �, �, � and � are assumed to be constant over the domain. Thesystem is set on a bounded simply-connected domain 
 and is completed bythe boundary conditions8<: u = 0;B:n = q;curlB � n = k � n; (1.2)where n denotes the outward-pointing normal to 
, and the quantities qand k are supposed to be known. Note that our analysis carries through forother cases (such as transient equations or non-homogeneous coe�cients forexample).The resolution of the MHD equations may be useful in various physicalor industrial contexts (such as aluminum electrolysis, electromagnetic pump-ing, MHD generator). In these situations, the hydrodynamic di�usivity � isgenerally very small whereas the magnetic di�usivity 1=�� is high. We referthe interested reader to R. Berton [3] for more precise values of these param-eters in the di�erent cases. The small hydrodynamic di�usion may inducesome well-known numerical instabilities. It is therefore natural to use somestabilizing techniques for the Navier-Stokes equations. One of the conclusionof this study is that it may be also useful to stabilize the magnetic equationin spite of the high values of the magnetic di�usivity.The layout of this paper is as follows. In Section 2, we introduce somenotations and we brie�y present the stabilized �nite element method for theadvection-di�usion and the Stokes equations. Section 3 is devoted to theapproximation of the MHD equations by stabilized �nite elements togetherwith the proof of our convergence result. We �nally present various numericalresults in Section 4 and we draw some conclusions in Section 5.2 Preliminaries2.1 The MHD equationsMany studies have already been devoted to the incompressible MHD equa-tions. For theoretical results, let us just mention those by G. Duvaut and2



J.-L. Lions [12], M. Sermange and R. Temam [36], J.-M. Domingez de laRasilla [10], K. Kerie� [27], E. Sanchez-Palancia [34, 35], J. Rappaz andR. Touzani [33, 32]. J.-F. Gerbeau and C. Le Bris [19, 20]. An interest-ing alternative viewpoint which consists in considering the electrical currentrather than the magnetic �eld as the main electromagnetic unknown is pro-posed by A.J. Meir and P.G. Schmidt [28, 29].Numerical methods conserving the dissipative properties of the contin-uum transient system in 2D are presented in F. Armero, J.C. Simo [1].M.D. Gunzburger, A.J. Meir, J.S. Peterson give in [22] a complete studyof the Galerkin approximation of the stationary equations and a proof ofexistence of solutions.Before presenting our approximation result, we �nd it convenient torewrite the MHD system in a non-dimensional form. For this purpose weintroduce a characteristic value B0 of the magnetic �eld, a characteristicvalue U0 for the velocity �eld and a characteristic length L, and we de�nethe following non-dimensional numbers :Reynolds number : Re = �U0L� ;Magnetic Reynolds number : Rm = ��U0L;Coupling number : S = B20��U20 :Denoting by ~u, ~B, ~p and ~f the physical quantities occurring in (1.1), weintroduce the non-dimensional variables u = ~u=U0, B = ~B=B0, p = ~p=�U20and f = ~fL=u20. Then the non-dimensional MHD system reads :8>>>>><>>>>>: u:ru� 1Re4u+rp+ S B � curlB = f;divu = 0;1Rmcurl (curlB)� curl (u�B) = 0;divB = 0: (2.3)In the industrial cases we have in mind, Re � 105, Rm � 10�1 and S � 1.Let us just mention that the following numbers are often used in the MHDliterature : Hartmann number : Ha = pReRmS =r��BL;Alfvén number : A = 1pS = p��U0B0 :In order to solve numerically this non-linear system, we consider here thefollowing coupled Picard algorithm : assuming that (un; Bn; pn) is given, we3



compute the approximated solution at step n+1 by solving the linear problem8>>>>><>>>>>: un � run+1 � 1Re4un+1 +rpn+1 + S Bn � curlBn+1 = f;divun+1 = 0;1Rmcurl (curlBn+1)� curl (un+1 �Bn) = 0;divBn+1 = 0: (2.4)Many other schemes could be used to tackle the MHD equations (see forexample M.D. Gunzburger, A.J. Meir and J.S. Peterson [22] and J.-F. Ger-beau [18, 17]). For the sake of clarity, we only consider this Picard algorithmin the theoretical part of this paper. Therefore, in the following, we focuson the discretisation of the linear problem : �nd u, B and p such thata � ru� 1Re4u+rp+ S b� curlB = f; (2.5)divu = 0; (2.6)1Rm curl (curlB)� curl (u� b) = 0; (2.7)divB = 0: (2.8)where a and b stand for un and Bn in the Picard iterations and are supposedto be known and regular. Again, for the sake of simplicity, in the theoreticalpart of this work, we suppose that div a = 0 (this is not necessary, seeRemark 3.1), and we deal with homogeneous boundary conditions on � :u = 0; (2.9)B:n = 0; (2.10)curlB � n = 0: (2.11)We leave to the reader the slight extensions of our work that are necessaryto deal with other cases.2.2 NotationsThe domain 
 is partitioned in a quasi-uniform mesh Th (see for exampleP.G. Ciarlet [9]), which consists of tetrahedral or hexahedral elements K.The diameter of an element K is denoted by hK , and h = maxfhKg. Weconsider the Lagrangian �nite element space de�ned byXkh = fvh 2 C0(
); vhjK 2 Pk(K);8K 2 Thg;when the elements K are tetrahedra or byXkh = fvh 2 C0(
); vhjK 2 Qk(K);8K 2 Thg;4



when the elements K are hexahedra. A classical result of the approximationtheory gives an upper-bound of the di�erence between u 2 Hk+1(K) and itsinterpolate �hu in Xkh :jju��hujjL2(K) + hK jjr(u��hu)jjL2(K) + h2K jj4 (u��hu)jjL2(K)� Chk+1K jujk+1;K :(2.12)The velocity u is approximated in Vh = (Xkh \ H10 (
))3, the pressure p inMh = Xmh \ L20(
) (where L20(
) is the space of L2(
) functions with zeromean in 
) and the magnetic �eld B in Wh = (X lh)3 \ H 1n(
) (where H 1n(
)is the space of vector �elds B belonging to H1(
)3 such that B:n = 0 on �).We shall use the inverse inequality (see e.g. P.G. Ciarlet [9])XK2Th h2K ZK j4 vhj2 dx � d0 Z
 jrvhj2 dx; 8vh 2 Vh; (2.13)where d0 is a non-negative constant independent of h.With the assumption made on 
, we have the following inequality forB 2 H 1n(
) (see V. Girault and P.A. Raviart[21], Theorem 3.9) :Z
 jrBj2 dx � Z
 jcurlBj2 + jdivBj2 dx (2.14)We shall use the formulaeZ
 jdiv uj2 dx � 3Z
 jruj2 dx; (2.15)and Z
 curlB:C dx = Z
B:curlC dx+ Z@
 n�B:C dx: (2.16)2.3 A brief presentation of some stabilized methodsIn this section we show how the advection-di�usion and the Stokes equationscan be solved by the stabilized �nite element methods. This is not an ex-haustive presentation, our aim being just to introduce the basic ideas thatwe use in the following section for the MHD equations. For further details,the reader is referred to the extensive literature we now give a very briefoverview of.The �Streamline Upwind Petrov Galerkin� (SUPG) method (also named�Streamline Di�usion�) is generally presented as the �rst stabilized �niteelement method. It was introduced by A.N. Brooks and T.J.R. Hughesin [8] to cure the numerical oscillations due to a small di�usion in theadvection-di�usion and Navier-Stokes equations. T.J.R. Hughes, M. Mal-let and A. Mizukami propose in [24] to add a term to SUPG in order toavoid oscillations in boundary layers.5



C. Johnson and J. Saranen analyze in [26] an extension of the Stream-line Di�usion method to the transient Navier-Stokes and Euler equations.Other alternative methods are proposed by L.P. Franca and E.G. Dutra doCarmo [13], L.P. Franca, S.L. Frey and T.J.R Hughes [15] for the advection-di�usion equation.T.J.R. Hughes, L.P. Franca and M. Balestra use stabilized �nite elementin [23] to solve the Stokes problem by circumventing the inf-sup condition.J. Douglas and J. Wang propose an unconditionally stable alternative in [11].The fact that the same stabilizing tricks work with both advection-di�usionand Stokes equations is explained in L.P. Franca and T.J.R Hughes [16] wherea symmetric advective-di�usive form of the Stokes equations is presented.L.P. Franca and S.L. Frey study in [14] the linearized Navier-Stokes equa-tions. In their approximation, the pressure and the velocity may be approxi-mated in the same space, and, following their work on the advection-di�usionequation in [15], they use di�erent stabilization parameters according to theregime of the �ow (di�usion or advection-dominated) with a new de�nitionof the local Reynolds number.Some analysis of stabilization methods for the non-linear Navier-Stokesequations can be found in the work [39] by Tian-Xiao Zhou and Min-Fu Feng.Streamline di�usion methods are related to the process of addition andelimination of suitable bubble functions to the �nite element space (seeC. Baiocchi, F .Brezzi and L.P. Franca [2], F. Brezzi, M. Bristeau, L.P. Franca,M. Mallet and G. Rogé [5], and a practical computation of scaled bubble func-tions in J.C. Simo, F Armero and C.A. Taylor in [37]). This establishes theexistence of a link between the two families of stabilizing techniques. Theproblem of determining an optimal stabilization parameter � which is thedi�culty generally considered as the major drawback of streamline di�usionmethods � may be therefore replaced by the problem of an optimal choice ofthe bubble space. The optimal bubble space can be determined by solvinga boundary value problem in each element, this is the so-called �residual-free bubbles� method. These very interesting issues will be not consideredhere, the interested reader is referred to F. Brezzi and A. Russo [7] and toF. Brezzi, D. Marini and A. Russo [6],2.3.1 The advection-di�usion equationWe �rst consider the advection-di�usion equation :��4u+ a:ru = f in 
: (2.17)It is well-known that the �nite element method is not well-suited to solvethis problem when the di�usion is overtaken by the convection at the cellscale, in other words when jjajj1;KhK=� is large. The stabilization methodsimprove the convergence in that case. For the sake of simplicity, we suppose6



that u = 0 on � and that div a = 0. For a more complete study we refer toA. Quarteroni and A. Valli [31] for example.In this subsection, Vh denote the �nite element space Xkh . We de�ne thebilinear form �(w; v) = � Z
rwrv dx+ Z
 a � rw v dx;and < F; v >= Z
 fv dx:In the sequel, the solution of the continuous problem (2.17) is denoted by u,the interpolate of u in Vh is denoted by ~uh and the solution of the discreteGalerkin problem is denoted by uh. Thus we have :�(uh; vh) =< F; vh >;8vh 2 Vh: (2.18)The interpolation error is denoted by �h = u� ~uh, the approximation erroreh = ~uh � uh and the global error �h = u� uh. We have �h = �h + eh.By very standard estimates, one shows that the interpolation error isbounded as follows jjrehjjL2 � Cs1 + jjajj21h2�2 jujk+1hk; (2.19)where C is a constant that does not depend on h, a, u and �. For advection-dominated �ows, the right-hand side of this estimate is large and numericalresults exhibit oscillations.The way to estimate the Galerkin method's error is based on four proper-ties : linearity, strong consistence, coercivity and continuity. The stabilizedmethods we consider here are some generalized Galerkin methods where thebilinear form � of the continuous formulation is replaced by a bilinear form�h depending on the mesh and still satisfying the four above properties.We de�ne �h on Vh � Vh :�h(w; v) = �(w; v)+ XK2Th ZK �(��4w+a �rw)(��4 v+a �rv) dx; (2.20)and < Fh; v >= Z
 fv dx+ XK2Th ZK �f(��4 v + a � rv) dx: (2.21)The coe�cient � is the stabilization parameter. It is de�ned on 
 by :� jK = �K with �K(x) = �hKja(x)j ; 8x 2 K;7



where � is a nonnegative constant that will be �xed later to ensure thestability of the approximation.The value of � depends on the method : -1(Douglas-Wang method, DWG), 0 (�Streamline Upwind Petrov Galerkin�,SUPG) or 1 (�Galerkin Least Square�, GLS).It can be proved that the error estimate for the stabilization methods isjjrehjjL2 � Cs1 + jjajj1h� jujk+1hk; (2.22)where C is a constant independent of h, a, u and �.Comparing (2.19) and (2.22), this shows that the stabilized methods mayimprove the results when jjajj1h=� is large. In the case when jjajj1h=� < 1(di�usion-dominated �ow), the estimate (2.22) is worse than those obtainedwith the classical Galerkin approximation. To avoid this drawback we canchoose �K = �h2K=� in the cells K where di�usion dominates; thus we �nd aestimated like (2.19) and the stabilization parameter � remains continuouswhen jjajj1h=� takes the value 1.2.3.2 The Stokes equationsThe Galerkin mixed formulation of the Stokes problem reads : �nd (uh; ph) 2Vh �Mh such that (vh; qh) 2 Vh �Mh,�(uh; ph; vh; qh) =< F ; vh; qh >;with�(uh; ph; vh; qh) = Z
 �ruh � rvh dx� Z
 phdiv vh dx+ Z
 qhdivuh dx;and < F ; vh; qh >= Z
 f � vh dx:It is well-known that the spaces Vh and Mh must satisfy a compatibilitycondition. Following the same idea as for the advection-di�usion equation,the stabilized method consists in adding a �strongly consistent� term to theclassical Galerkin formulation, in other words, � is replaced by �h :�h(uh; ph; vh; qh) = �(uh; ph; vh; qh)+XK2Th ZK �(��4uh+rph)�(���4 vh+rqh) dx;and F by Fh :< Fh; vh; qh >=< F ; vh; qh > + XK2Th ZK �f:(���4 vh +rqh) dx:8



where � jK = �h2K , � is a constant, and � is equal to �1, 0 or 1 dependingon the method.The convergence of the stabilized method may then be proved withoutany inf-sup condition. This property is interesting for the practical imple-mentation, specially in 3D. We refer to J. Douglas and J. Wang [11], T.J.R.Hughes, L.P. Franca and M. Balestra [23] for the original papers and toA. Quarteroni and A. Valli [31] for a pedagogical presentation.3 Stabilized �nite element methods for the MHDequationsIn this section our aim is to extend the stabilized �nite element methodsintroduced above to the MHD problem (2.5)-(2.11). As far as we know,this has never been presented in the literature before. We consider thenon-dimensional form of the MHD equations and we denote 1=Re by � and1=Rm by �. For the sake of simplicity, we deal with the globally advection-dominated case in the Navier-Stokes equations (but see Remark 3.3). Inother words, we suppose that we have within each element K :ja(x)jhK� > 1; 8x 2 K: (3.1)In view of the applications we have in mind, the magnetic equations issupposed to be di�usion-dominated. Let be �u and �B two positive con-stants. We de�ne the stabilization coe�cients by :�ujK = �uhKja(x)j ;and �BjK = �Bh2K� :Note that we have ��ujK � �uh2K : (3.2)The resolution of the linearized MHD equations (2.5)-(2.11) by the clas-sical Galerkin method consists in �nding uh 2 Vh, Bh 2 Wh and ph 2 Mhsuch that for all (vh; Ch; qh) 2 (Vh;Wh;Mh)�G(uh; Bh; ph; vh; Ch; qh) =< FG; vh; Ch; qh >;
9



with�G(u;B; p; v; C; q) = Z
(�ru � rv + a � ru � v � pdiv v + S b� curlB � v) dx+Z
 q divu dx+ Z
(�S curlB � curlC + �S divBdivC � S u� b � curlC) dx;and< FG; v; C; q > = Z
 f � v dx:Let us now de�ne the stabilization terms :�S(u;B; p; v; C; q) = XK2Th ZK �u (a � ru� �4u+rp+ S b� curlB)�(a � rv + ��4 v +rq + S b� curlC) dx+ XK2Th ZK �B (��S4B � Scurl (u� b))�(��4C � curl (v � b)) dx;and< FS ; v; C; q > = XK2Th ZK �u f � (a � rv + ��4 v +rq + S b� curlC) dx:where � is a constant equal to �1, 0 or 1 according to the stabilizationmethod (namely the Douglas-Wang, the SUPG or the Galerkin Least Squaremethods in the context of the advection di�usion equation). Notice that thethree methods coincide when linear or bilinear elements are used.The stabilized problem that we now propose to analyze reads : �nduh 2 Vh, Bh 2Wh and ph 2Mh such that for all (vh; Ch; qh) 2 (Vh;Wh;Mh)�(uh; Bh; ph; vh; Ch; qh) =< F ; vh; Ch; qh > (3.3)with � = �G +�S and F = FG + FS . Our main result is :Theorem 1Let us recall that Vh = (Xkh\H10(
))3, Mh = Xmh \L20(
) andWh = (X lh)3\H 1n(
). We denote by (u;B; p) the exact solution of the MHD equations(2.5)-(2.11), by (~uh; ~Bh; ~ph) the interpolate of (u;B; p) in Vh � Wh � Mhand by (uh; Bh; ph) the solution obtained by the stabilized �nite elementmethod (3.3).Then, under hypothesis (3.1), the approximation error (eu; eB ; ep) =
10



(~uh � uh; ~Bh �Bh; ~ph � ph) can be estimated as follows :12 Z
(�jreuj2 + S�jcurl eB j2 + S�jdiv eB j2) dx+Z
 �BSjcurl (eu � b)j2 dx+Z
 �uja:reu +rep + S b� curl eB j2 dx �C�u;�B ���u(jjajj1h+ �) + S2h2� (jjbjj21 + h2jjrbjj21)�h2kjuj2k+1+� �uhjjajj1 + h2� �h2mjpj2m+1+��uS2jjbjj21jjajj1 h+ �B��h2ljBj2l+1� : (3.4)This shows the convergence of the approximation 3.3.}It is useful to notice that the stabilization terms in the Navier-Stokesequations are necessary to prove the convergence of the pressure but thestabilization terms in the Maxwell equation are not necessary to prove theconvergence of Bh (see Remark 3.2).The following of this section is devoted to the proof of this theorem. Webegin by proving the stability in the three cases � = �1; 0; 1, and then theconvergence in the case � = 1 (the cases � = �1; 0 may be treated by thesame arguments).Remark 3.1 It has already been mentioned in Section 2.1 that the �elds aand b might be seen as the �elds un and Bn occurring in the Picard iter-ations. Then a 2 Vh and b 2 Wh. Let us see what should be changed inthis case. First, the �eld a is no longer divergence free. Nevertheless, in thefollowing proof, this assumption is only needed to ensure the antisymmetryof the trilinear advection term. Thus, it su�ces to replace classically (seeR. Temam [38]) Z
 a � rv � w dxby Z
 a � rv � w dx+ 12 Z
w � v div a dx:Let us now see what involve the assumption b 2 Wh. We have the followinginverse inequality (see P.G. Ciarlet [9], Theorem 17.2 for example) :jjrbjj1 � Ch jjbjj1:Thus, the term (jjbjj21 + h2jjrbjj21) could be replaced by Cjjbjj21 in esti-mate (3.4). 11



3.1 StabilityIn this section, we prove the stability of the approximation (3.3). Let us startwith �G(u;B; p;u;B; p) corresponding to the classical Galerkin method. Theassumption div a = 0 yields the cancellation of the advection term. The termrp is compensated by divu. Likewise the Lorentz force is compensated bythe Maxwell advection term because of the relationZ
 Sb� curlB � u dx = Z
 Su� b � curlB dx:This relation makes useless the assumption div b = 0, and this is to use thisimportant cancellation property that we have chosen to linearize the MHDequations like that for the Picard iterations 2.4. Finally, we get :�G(u;B; p;u;B; p) = Z
 ��jruj2 + �SjcurlBj2 + �SjdivBj2� dx: (3.5)Let us now consider the stabilization terms.� Case � = 1.Using (3.2) and the inverse inequality (2.13), we have :�S(u;B; p;u;B; p) = XK2Th ZK(�uja:ru+rp+ S b� curlBj2 � �u�2j4uj2) dx+XK2Th ZK(�BSjcurl (u� b)j2 � �BS�2j4Bj2) dx� Z
 �uja:ru+rp+ S b� curlBj2 dx� d0�u Z
 �jruj2 dx+Z
 �BSjcurl (u� b)j2 dx� d0�B Z
 S�jrBj2 dx:Along with (2.14) and (3.5), we deduce�(u;B; p;u;B; p) � (1� d0�u)Z
 �jruj2 dx+ (1� d0�B)Z
 S�jcurlBj2 dx+ (1� d0�B)Z
 S�jdivBj2 dx+ Z
 �BSjcurl (u� b)j2 dx+ Z
 �uja:ru+rp+ S b� curlBj2 dx:The stability of the approximation is therefore achieved as soon as �u and�B are such that :1� d0�B > 0 and 1� d0�u > 0: (3.6)12



� Case � = �1.Let 
 > 1 be an arbitrary constant. Using the obvious inequalityjA�Bj2 � jAj2 � 2jAjjBj+ jBj2 � (1� 1=
)jBj2 � (
 � 1)jAj2;we have�S(u;B; p;u;B; p) = XK2Th ZK �uja:ru� �4u+rp+ S b� curlBj2 dx+XK2Th ZK �BSj � curl (u� b)� �4Bj2 dx� �(
 � 1) XK2Th ZK �2�uj4uj2 + �2S�B j4Bj2 dx+(1� 1=
)Z
 �uja � ru+rp+ S b� curlBj2 dx++(1� 1=
)Z
 �BSjcurl (u�B)j2 dx:With (3.2) and (2.13), this yields�S(u;B; p;u;B; p) � �(
 � 1)�ud0 Z
 �jruj2 dx� (
 � 1)�Bd0 Z
 �SjrBj2 dx+(1� 1=
)Z
 �uja � ru+rp+ S b� curlBj2 dx+(1� 1=
)Z
 �BSjcurl (u�B)j2 dx:Therefore, with 
 > 1 such that 1 > (
 � 1)�ud0 and 1 > (
 � 1)�Bd0, wededuce the stability just like in the previous case. Notice that we do notneed any assumptions on �u and �B .� Case � = 0.Following the same steps as in the case � = 1 :�S(u;B; p;u;B; p) =XK2Th ZK(�uja:ru+rp+ S b� curlBj2 � �u�4u � (a � ru+rp+ S b� curlB)) dx+ XK2Th ZK(�BSjcurl (u� b)j2 + �BS�4B � curl (u� b)) dx �� 12 Z
 �uja:ru+rp+ S b� curlBj2 dx� 12�ud0 Z
 �jruj2 dx+ 12 Z
 �BSjcurl (u� b)j2 � 12�Bd0 Z
 �SjrBj2 dx:Thus, we deduce the stability as soon as1� 12d0�B > 0 and 1� 12d0�u > 0:13



3.2 ConvergenceWe now proceed to establish the convergence in the case when � = 1 (cases� = 0;�1 can be treated with the same arguments). We choose �u and �Bsuch that 1 � d0�u � 1=2 and 1 � d0�B � 1=2. In view of (3.6), this yieldsthe stability of the approximation.We denote by u, B, p the solution of the continuous problem (2.5)-(2.11),~u the interpolate of u in Vh, ~B the interpolate of B inWh, ~p the interpolate ofp in Mh. We denote by uh, Bh and ph the solution of the stabilized discreteproblem. We denote the interpolation error for the velocity �eld �u = u�~uh,the approximation error eu = ~uh � uh, and the global error by �u = u� uh.We de�ne in the same way �B, eB , �B for the magnetic �eld and �p, ep, �pfor the pressure. Note that we have the relation �u = �u+ eu, �B = �B+ eB ,�p = �p + ep.The strong consistence of the stabilized formulation implies :�(eu; eB ; ep; eu; eB ; ep) = �(�u � �u; �B � �B; �p � �p; eu; eB ; ep)= ��(�u; �B ; �p; eu; eB ; ep):Therefore, the stability property proved in the previous section yieldsZ
(�jreuj2 + S�jcurl eB j2 + S�jdiv eB j2) dx+2Z
 �BSjcurl (eu � b)j2 dx+2Z
 �uja:reu +rep + S b� curl eB j2 dx � 2j�(�u; �B ; �p; eu; eB ; ep)j:(3.7)We now estimate the right-hand side of this inequality in order to �swal-low� the terms eu, eB and ep in the left-hand side. Let us recall � has beensplit into a classical Galerkin part �G and a stabilization part �S . As far asthe Galerkin part is concerned, we have2�G(�u; �B ; �p; eu; eB ; ep) = 2Z
 ep div�u dx+2Z
(�r�u � reu + a � r�u � eu � �p div eu + S b� curl �B � eu) dx+2Z
(�S curl �B � curl eB + �S div�Bdiv eB � S �u � b � curl eB) dx:The di�usion terms are treated straightforwardly :2� Z
 jr�ujjreuj dx � 
1� Z
 jr�uj2 dx+ �
1 Z
 jreuj2 dx;2�S Z
(jcurl �Bjjcurl eB j+ jdiv�B jjdiv eB j) dx �
2�S Z
(jcurl �B j2 + jdiv �Bj2) dx+ �S
2 Z
(jcurl eB j2 + jdiv eB j2) dx:14



We use the stabilization terms in order to control the convection and theincompressibility terms :2����Z
 a � r�u � eu + epdiv�u � S�u � b � curl eB dx���� �1
3 Z
 �uja:reu +rep + S b� curl eBj2 dx+ 
3 ZK 1�u j�uj2 dx:Intuitively, it is worth noticing that there is a �swap� between the Navier-Stokes and the Maxwell equations : on the one hand, the term �u�b �curl eBcomes from the Maxwell equations and it is �swallowed� by the stabilizationterm of the Navier-Stokes equations. On the other hand, b�curl �B �eu whichcomes from the Lorentz force of the Navier-Stokes equations is �swallowed�by the stabilization term of the Maxwell equations (see Remark 3.2). Usingformula (2.16), we actually have :2 ����Z
 S b� curl �B � eu dx���� � S
4 Z
 �B jcurl (eu� b)j2 dx+S
4 Z
 1�B j�Bj2 dx:Finally the pressure term is bounded by using (2.15) :2Z
 j�pjjdiv euj dx � 3�
5 Z
 jreuj2 dx+ 
5� Z
 j�pj2 dx:Note that this control would be slightly di�erent if we introduce the term ofRemark 3.4).Let us now estimate the stabilization part :�S(�u; �B ; �p; eu; eB ; ep) = XK2Th ZK �u (a � r�u � �4�u +r�p + S b� curl �B)�(a � reu + �4 eu +rep + S b� curl eB) dx+ XK2Th ZK �B (��S4�B � Scurl (�u � b))�(�4 eB � curl (eu � b)) dx:The stabilization terms of the Navier-Stokes equations are bounded as fol-lows :2XK2Th ZK �uja � r�ujja � reu +rep + S b� curl eB j dx � 
3 Z
 �uja � r�uj2 dx+1
3 Z
 �uja � reu +rep + S b� curl eB j2 dx;2XK2Th ZK �uja � r�ujj�4 euj dx � 
6 Z
 �uja � r�uj2 dx+ d0�u
6 Z
 �jreuj2 dx;15



2XK2Th ZK �uj�4�ujja � reu +rep + S b� curl eB j dx � 
3 XK2Th ZK �u�2j4�uj2 dx+1
3 Z
 �uja � reu +rep + S b� curl eB j2 dx;2XK2Th ZK �uj�4�ujj�4 euj dx � d0�u
6 Z
 �jreuj2 dx+ 
6 XK2Th ZK �u�2j4�uj2 dx;2XK2Th ZK �ujr�pjja � reu +rep + S b� curl eB j dx � 
3 Z
 �ujr�pj2 dx+1
3 Z
 �uja � reu +rep + S b� curl eBj2 dx;2XK2Th ZK �ujr�pjj�4 euj dx � d0�u
6 Z
 �jreuj2 dx+ 
6 Z
 �ujr�pj2 dx;2XK2Th ZK �ujS b� curl �Bjja � reu +rep + S b� curl eB j dx �
3 Z
 �uS2 jb� curl �Bj2 dx+ 1
3 Z
 �uja � reu +rep + S b� curl eB j2 dx;2XK2Th ZK �ujS b� curl �Bjj�4 euj dx �d0�u
6 Z
 �jreuj2 dx+ 
6 Z
 �uS2jb� curl�B j2 dx:Finally, let us estimate the stabilization terms of the Maxwell equations :2XK2Th ZK �Bj�S4�B jj�4 eB j dx � d0�B
7 Z
 �jcurl eB j2 + �jdiv eB j2 dx+XK2Th 
7 ZK �B�2S2j4�Bj2 dx;2XK2Th ZK �B j�S4�B jjcurl (eu � b)j dx � 1
4 Z
 �Bjcurl (eu � b)j2 dx+XK2Th
4 ZK �B�2S2j4�B j2 dx;2XK2Th ZK �BjS curl (�u � b)jj�4 eB j dx � 
7 Z
 �BS2jcurl (�u � b)j2 dx+d0�B
7 Z
 �jcurl eB j2 + �jdiv eB j2 dx;2XK2Th ZK �BjS curl (�u � b)jjcurl (eu � b)j dx � 
4 Z
 �BS2jcurl (�u � b)j2 dx+1
4 Z
 �Bjcurl (eu � b)j2 dx:16



If we now insert the above inequality (with convenient 
i) in (3.7), we obtain :12 Z
(�jreuj2 + S�jcurl eB j2 + S�jdiv eB j2) dx+Z
 �BSjcurl (eu � b)j2 dx+Z
 �uja:reu +rep + S b� curl eB j2 dx �c1 Z
 �uja � r�uj2 dx+ c2 XK2Th ZK �u�2j4�uj2 dx+c3 Z
 �ujr�pj2 dx+ c4� Z
 j�pj2 dx+ c5 Z
 �uS2jb� curl �Bj2+c6 XK2Th ZK �B�2j4�Bj2 dx+ c7 ZK S2�Bjcurl (�u � b)j2 dx; (3.8)where the constants ci does not depend on hK , �, �, a and b. In order toachieve the proof, we establish the following interpolation estimates. Using�u�2 � �u�h2K , we have :c1 ZK �uja �r�uj2 dx+c2 ZK �u�2j4�uj2 dx � C(jjajj1hK+�)�uh2kK juj2k+1;K ;c3 ZK �ujr�pj2 dx+ c4� ZK j�pj2 dx � C( �ujjajj1 + hK� )h2m+1K jpj2m+1;K ;c5 ZK �uS2jb�curl �Bj2+c6 ZK �B�2j4�B j2 dx � C ��uS2jjbjj21jjajj1 hK + �B�� h2lK jBj2l+1;K ;c7 ZK S2�Bjcurl (�u � b)j2 dx = c7 ZK S2�B j�uj2(jdiv bj2 + jrbj2) dx+c7 ZK S2�Bjbj2(jdiv �uj2 + jr�uj2) dx� C(jjbjj21 + h2K jjrbjj21)S2h2K� h2kK juj2k+1;K :Inserting these inequalities in (3.8), we obtain (3.4). This concludes theproof of Theorem 1. }Remark 3.2 It has been noticed in this proof that �u � b � curl eB comingfrom the Maxwell equations was swallowed by the stabilization term of theNavier-Stokes equations, and conversely for b� curl �B � eu. That is why wehave stabilized also the Maxwell equation. It is worth mentioning how onewould control b� curl �B � eu if the Maxwell equations were not stabilized (inother words if �B = 0) :����Z
 b� curl �B � eu dx���� = ����Z
 curl (eu � b) � �B dx����� 2C(jjbjj1 + jjrbjj1)jjreujjL2 jj�B jjL2� �
1 Z
 jreuj2 dx+C 
1jjbjj2W 1;1� Z
 j�B j2 dx:17



Thus, the following term would occur in the error estimate on B :h2jjbjj2W 1;1� h2ljBj2l+1:This yields the convergence of the approximation, but the control is less ac-curate than that of Theorem 1 as soon as jjajj1h=� is large.Remark 3.3 For the sake of simplicity, it has been assumed in this proofthat the regime was advection-dominated on the whole domain. Nevertheless,for the numerical simulations, we have used the more sophisticated de�nitionof the stabilization parameters proposed by L.P. Franca and S.L. Frey in [14]in order to adapt the stabilization to the regime of the �ow.Remark 3.4 It is proposed in [14] to add the following term to � :Z
 �div udiv v dx;where � is a variable parameter. It is straightforward to modify the aboveproof taking into account this term by following the arguments of [14]. Ournumerical tests have been done with this slight modi�cation.4 Numerical resultsThe numerical tests presented in this section have been performed with anacademic code. The �uid dynamic code FIDAP has been used for the gridsgeneration and the postprocessing.As far as we know, the experiments presented here are new in the frame-work of the scienti�c computing literature on MHD. Other experiments canbe found in F. Armero and J.C. Simo [1] (Hartmann �ows in 2D and MHD�ow past a cylinder) and in J.-F. Gerbeau [18] (Hartmann �ows in 2D and3D with perfectly conducting and insulating walls).4.1 MHD �ow over a stepIn the �rst experiment, we consider the �ow of a �uid over a step in presenceof a transverse magnetic �eld B0(0; 1). The sides of the duct are assumedto be perfectly conducting. The inlet and the outlet values of the velocityare the Poiseuille pro�le (Hartmann pro�le might be better but this is notrelevant for our purpose). See Figure 1 for the de�nition of the geometryand the boundary conditions.We �rst compare the pressure contours obtained with the Q2/P1 classicalelements and with the Q1/Q1 stabilized elements. Figure 2 show a goodagreement between the two results. 18



On Figure 3, we show that the magnetic �eld acting on the �uid tendsto decrease the recirculation after the step. This brings to the fore, in thisparticular con�guration, a well-known property of a MHD �ow (see e.g.R. Moreau [30]).
Bo
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Figure 1: Flow over a step in presence of a transverse magnetic �eld.
(i) Q2/P1 �nite elements

(ii) stabilized Q1/Q1 �nite elementsFigure 2: Pressure in a MHD �ow over a step Re=100, Rm=0.125, S=1.4.2 A �uid carrying current in presence of a magnetic �eldThe following 3D computations model the behavior of a �uid crossed byan homogeneous electric current from the top to the bottom. The �uid isenclosed within a parallelepiped whose top and bottom are assumed to beperfectly conducting and whose side is perfectly insulating. Two linear con-ductors surround the parallelepiped and create a magnetic �eld (see Fig. 4).The grid we used is coarse (about 4000 nodes, Fig. 5). We emphasize that19



(i) Re=100, Ha=0 (no magnetic �eld).
(i) Re=100, Ha=1.
(ii) Re=100, Ha=5.
(iii) Re=100, Ha=10.
(iv) Re=100, Ha=20.Figure 3: E�ect of a magnetic �eld on a �ow over a step. Notice the diminu-tion of the recirculating area when the Hartmann number increases.20
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Figure 4: A �uid crossed by a current in presence of external conductorssuch an experiment may be interesting from an industrial viewpoint, in thecontext of aluminum electrolysis cells for example (more sophisticated exter-nal conductors should of course be considered in this case).The magnetic �eld created by the external conductors and the homo-geneous current crossing the parallelepiped (the �uid being at rest) can bestraightforwardly computed by the Biot and Savart formula. This �eld isused to enforce the boundary conditions on B in order to perform the MHDcomputation. This is of course an approximation of the reality since we donot take into account the in�uence of the hydrodynamic on the magneticboundary values. Nevertheless, as will be shown, the results we obtain arequalitatively good.Three con�gurations are considered for the external conductors. Thetops of Figures 6, 7 and 8 show the di�erent con�gurations and their e�ectson the �uid according to the physical intuition (see J.M. Blanc and P. Ent-ner [4] for example). Our numerical results are in perfect agreement withthe predictions.The computations of Figures 6, 7 and 8 are performed with Re = 100.In this range of Reynolds number, similar results may be obtained with clas-sical �nite elements. But when the Reynolds number increases, oscillationsappear with the classical approximation whereas the stabilization methodsstill exhibit good results. This is shown on Figures 9 and 10 (this casecorresponds to the same experiment as on Figure 6 but with Re = 300).Finally, for the experiment of Figure 6 (one vortex), we have compared21



Figure 5: The mesh (about 4000 nodes).the three following kinds of approximation with various Reynolds num-bers : Q1/P0 (non-stabilized), Q1/Q1 when the Navier-Stokes is stabilized(�Q1/Q1 Stab NS�) and Q1/Q1 when the Navier-Stokes and the Maxwellequations are stabilized (�Q1/Q1 Stab NS+Max�).The computation is initialized by four Picard iterations and the conver-gence is achieved with a Newton algorithm. The relative non-linear residualis 10�3. The linear systems are solved with an ILU preconditioned CGSalgorithm, the relative linear residual is 10�9. Tabular 1 shows the totalnumber of CGS iterations required to solve the linear systems. This valuegives a good idea of the CPU time since the total computational time isessentially dedicated to the resolution of the linear systems.Re Q1/P0 Q1/Q1 Stab NS Q1/Q1 Stab NS+Max100 309 146 141200 1274 239 213500 diverges 420 3731000 diverges diverges 560Table 1: Total number of iterations required to solve the linear systems.It is worth noticing that these results con�rm Remark 3.2 following theproof of the convergence theorem : it is all the more interesting to stabilizethe magnetic equation as the Reynolds number is large, even if the magneticReynolds number is small. 22
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(i) Predicted result.

(ii) 3D computation, top view, plane z=1.Figure 6: First con�guration. Re=100, S=Rm=1.
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(i) Predicted result.

(ii) 3D computation, top view, plane z=1.Figure 7: Second con�guration. Re=100, S=Rm=1.
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(i) Predicted result.

(ii) 3D computation, top view, plane z=1.Figure 8: Third con�guration. Re=100, S=Rm=1.
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(i) Q1/P0 elements (notice the oscillations).

(ii) Stabilized Q1/Q1 elements.Figure 9: Same experiment as on Figure 6 with Re = 300.26



Figure 10: Computation of Figure 9 : �rst component of the velocity alonga straight line with Q1/P0 (oscillations) and stabilized Q1/Q1 elements.27



5 ConclusionAfter a brief presentation of some well-known stabilized �nite element meth-ods for the advection-di�usion and the Stokes equations, we have proposedand analyzed an extension of such methods for the incompressible MHDequations. Three remarks may be drawn from our study. First, the pres-sure contours obtained with equal order stabilized �nite element spaces areas good as those obtained with classical pairs of �nite elements satisfyingthe inf-sup conditions (in our experiments at least). Second, non-stabilizedmethods exhibit oscillations when the Reynolds number tends to realisticphysical values whereas stabilized methods do not. Third, even when themagnetic di�usion is high � this is generally the case in the physical appli-cations we have in mind � it may be useful to stabilized both Navier-Stokesand Maxwell equations. These conclusions have of course to be con�rmed infurther tests.References[1] F. Armero and J.C. Simo. Long-time dissipativity of time-stepping al-gorithms for an abstract evolution equation with applications to the in-compressible MHD and Navier-Stokes equations. Comp. Methods Appl.Mech. Engrg., 131:41�90, 1996.[2] C. Baiocchi, F. Brezzi, and L.P. Franca. Virtual bubbles and Galerkin-least-squares type methods. Comp. Meth. Appl. Mech. Eng., 105:125�141, 1993.[3] R. Berton. Magnétohydrodynamique. Masson, 1991.[4] J.M. Blanc and P. Entner. Application of computer calculations toimprove electromagnetic behaviour of pots. AIME, pages 285�295, 1980.[5] F. Brezzi, M. Bristeau, L.P. Franca, M. Mallet, and G. Rogé. A relation-ship between stabilized �nite element method and the galerkin methodwith bubble functions. Comp. Meth App. Mech. Eng., 96:117�129, 1992.[6] F. Brezzi, D. Marini, and A. Russo. Pseudo residual-free bubbles andstabilized methods. In Computational method in Applied sciences. EC-COMAS, Wiley, 1996.[7] F. Brezzi and A. Russo. Choosing bubbles for advection-di�usion prob-lems. Math. Mod. Meth. Appl. Sci., 4:571�587, 1994.[8] A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkinformulations for convection dominated �ows with particular emphasis onthe incompressible Navier-Stokes equations. Comp. Meth. App. Mech.Eng., 32:199�259, 1982. 28
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