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Abstract

We first consider a super Brownian motion X with a general branching mechanism.
Using the Brownian snake representation with subordination, we get the Hausdorff di-
mension of supp X;, the topological support of X;, and more generally the Hausdorff
dimension of Uscpsupp X;. We also provide estimations on the hitting probability of
small balls for those random measures. We then deduce that the support is totally dis-
connected in high dimension. Eventually, considering a super a-stable process with a
general branching mechanism, we prove that in low dimension, this random measure is
absolutely continuous with respect to the Lebesgue measure.
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1 Introduction

Superprocesses (X;,t > 0) are measure valued branching processes whose distribution can
be characterized by a pair (v, V), where « is the underlying Markov process, playing the
role of the spatial motion and W is the branching mechanism function. We refer to Dynkin
[10, 11] for basic facts about superprocesses and their construction as limits of branching
particle systems. Some recent studies on super-Brownian motion (corresponding to the case
when «y is a Brownian motion in R? and ¥(\) = A\?) give the exact Hausdorff measure of its
support supp Xy, at fixed time ¢ > 0, see Perkins [20, 21], Dawson, Iscoe, and Perkins [§],
Tribe [25], see also Dawson [7], theorem 9.3.3.5 for the Hausdorff dimension of supp X; with
U(A) = At p € (0,1). The proof relies on approximation of super-Brownian motion by
branching particle systems. Another way to study this superprocess is to use the Brownian
snake introduced by Le Gall [17, 18] which is a path valued Markov process. In [3], Bertoin,
Le Gall and Le Jan succeeded through a subordination method to use the Brownian snake
to represent superprocesses with a rather general branching mechanism. Their construction
applies in particular to the stable case U(A) = A*? for p € (0,1]. In the present paper,
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we shall use this path representation to derive some properties of the (v, V) superprocess
when 7 is a Brownian motion in R and ¥ is of the type considered in [3]. In particular we
give the Hausdorff dimension of the closure of | J;c 5 supp X;, when B is a closed subset of
(0,00) (theorem 2.1). We also provide sufficient conditions for the a.s. absolute continuity
of the measure X; (theorem 2.5), thus extending to a general branching mechanism a well-
known result for super-Brownian motion (see Dawson [7]). The result can be generalized to
a-stable superprocesses, extending results of Fleischmann [15] and of Dawson [7]. We then
use exit measures to give precise lower and upper bounds for hitting probabilities of small
balls (theorem 2.3). As an application, we can prove that if the dimension is large enough,
the support of X; is totally disconnected (theorem 2.4). This extends a result of Tribe [26]
concerning super-Brownian motion.

Let us now describe more precisely the contents of the following sections. In section
2, we recall the definition of Hausdorff dimension and upper box-counting dimension. We
introduce the special type of branching mechanism function ¥ that we will consider. We
recall the definition of the (y, ¥) superprocess X, where v is a Brownian motion in R?. The
Laplace transform of X is related to the solution of an integral equation (1). We then state
the main results of this paper. In particular, theorem 2.1 provides upper and lower bounds
on the Hausdorff dimension of the closure of | J;c 5 supp X;. Under suitable assumptions, the
lower and upper bounds coincide and we get the exact value of the dimension.

With the branching mechanism W, we can associate a subordinator S that plays a key
role in the subordination method. Section 3 is devoted to some preliminary results on this
subordinator. We give short proofs for the reader’s convenience.

In section 4, we first recall the subordination method of [3] based on the Brownian snake.
Precisely, we consider the path-valued process of [17] when the underlying (Markov) spatial
motion is a triple (&, L, I';) whose law can be described as follows. First ¢ is the residual
lifetime process associated with S: ¢ = inf{S, —¢;7 >0, S, > t}. Second L; is the right-
continuous inverse of S (equivalently it is the local time at 0 of £). Finally I'; = vz,, where
is a Brownian motion in R? independent of S. Using the Brownian snake with spatial motion
(&, L,T'), we can give an explicit formula for the (y, ¥)-superprocess. This formula is crucial
for our investigation of path properties.

In section 5, we prove theorem 2.1. The proof of the lower bound on the Hausdorff
dimension uses a “Palm measure formula” for the exit measure associated to the Brownian
snake (proposition 4.2), classical results from Falconer [13] and technical results that are
derived in the appendix. The upper bound is a bit more complex, and really relies on the
path properties of the Brownian snake and its transition kernel. At this point, the Brownian
snake approach is used in its full strength.

Section 6 is devoted to our bounds on hitting probabilities of small balls and the result
about connected components of the support of super-Brownian motion. Lower bounds on
hitting probabilities are quite easy to prove from the integral equation (1). The upper bounds
use the special Markov property of the Brownian snake and the connection between exit
measures and solutions of nonlinear partial differential equations (see Dynkin [11, 12], see
also Le Gall [18] for the snake approach). The proof of the theorem on connected components
then follows from a technique of Perkins (see [22] p.1041).

Finally in section 7, we discuss the absolute continuity of the measure [ p(ds) Xs. Assume
that [[ pu(ds)p(dt) |s —t] 7 < oo, where ¢ € [0,1). Then we prove that in the p-stable
branching case (U(X) = A7), [u(ds) X, is absolutely continuous if d < 2(¢ + 1/p). If



the underlying Brownian motion is replaced by an a-stable symmetric Lévy process in R?,
a € (0,2), then the measure [ u(ds) X5 is absolutely continuous if d < a(q + 1/p).

2 Notation and results

First we introduce some notation. We denote by (M, M) the space of all finite nonnegative
measures on R?, endowed with the topology of weak convergence. We denote by B(RP) the
set of all measurable functions defined on RP taking values in R. With a slight abuse of
notation, we also denote by B(RP) the Borel o-field on RP. For every measure v € My, and
every nonnegative function f € B(R?), we shall use both notations [ f(y)v(dy) = (v, f). We
also write v(A4) = (v,1,4) for A € B(RY). For A € B(RP), let CI(A) be the closure of A.
We recall briefly the definition of Hausdorff dimension and upper box-counting dimension (cf
[13]). Let A € B(R?) bounded. Let C.(A) denote the set of all coverings C' = {B;,i € I} of
A with balls B; of radius |B;| < e. Then for every r > 0, we consider

H'(A) = inf Bl
7(A) CElcrt(A)iEZI| il

Clearly H!(A) increases to H"(A) € [0,00], as € decreases to 0+. The mapping r — H"(A)
is decreasing. Moreover we see that if H"(A) < co, then H" (A) = 0 for every 7' > r; and if
H"(A) > 0, then H" (A) = oo for every r’ < r. The critical value

dimA =sup{r >0,H"(A) = oo} =inf{r > 0,H" (A) =0},

with the convention sup () = 0, is called the Hausdorfl dimension of A. Then consider N.(A)
the minimal number of balls of radius € necessary to cover A. Define the upper box-counting
dimension of A by

S log N:(A
dim A = lim sup L‘E().
e—0+ IOg 1/8
Plainly we have dim A > dim A.
We consider the increasing function ¥ defined on R™ by

2h\2
T(\) = 2622 +/

S TI(dh),
(0,00) 1+ 2hA

where b > 0 and IT is a Radon measure on (0,00) such that f(O,oo) (L Ah)II(dh) < oo. To
avoid trivial cases, we assume either b > 0 or II((0,00)) = co. Note that W(A\) < ¢ for
A € [0,1]. The function ¥ can be expressed in the usual form for branching mechanism
functions:

W(N) = 2602 + /

- T (du) [e*“* —14 u)\} ,

where II'(du) = |:f(0,oo) II(dh) e*“/zh(4h2)*1} du satisfies f(O,oo)(u A u)IT'(du) < oo. Notice

that if we take b = 0 and II(dh) = ¢’h ! Pdh then we get the stable case U(\) = cAl*7.
Let v be a Brownian motion in R?, and (P, s > 0) its transition kernel.



We then consider X := ((X¢,¢ > 0), (P;',v € My)) the canonical realization of the (v, ¥)-
superprocess defined on D := D ([0, 00), M), the set of all cadlag functions defined on [0, 0o0)
with values in M;. We refer to [9, 10, 12, 14] for its construction and general properties.
We recall that the superprocess X is a cadlag strong Markov process with values in My
characterized by Xy = v P-a.s. and for every nonnegative bounded function f € B(R?),
t>s2>0,

EX [e*(xt’f) | 0(Xy,0<u< s)] = o~ (Xsv(t=s,)),
where v is the unique nonnegative measurable solution of the integral equation
v(t,x) + /Ot ds Py 4[¥(v(s,))](z) = Pif(z), t>0,z¢€ R, (1)
We define the constants p and p by:

log W(A log U( A\
p:—l—l—liminfL(), and ﬁ:—l—i—limsupL().
= A—oco  log A Asoo  log A

Since f(o OO)(1 A h)II(dh) < oo, we easily get 0 < p <p < 1. From the definition of p, p, for
every d € (0,1), there exists A\s € (0,00) such that for every A > A;

)\1+B75 < \I/(A) < >\1+ﬁ+5. (2)
We will consider the following two assumptions:
(H1): We have 0 < p.

(H2): The function ¥ is regularly varying at oo with index 1+ p where p € (0, 1], that is to
say:
U(tA)

lim ——

— t1+p
A—00 \I/()\)

for every t > 0.

Notice that (H2) implies (H1) and p = p = p. The stable case ¥(X) = cA*” satisfies (H2).
We can now give our first result about the Hausdorff dimension of the topological support

of the measure X;. Let supp v denote the topological support of a measure v € M. Set
ox =inf{s > 0; X, =0}.

Theorem 2.1. Assume (H1). Then for every v € My, for every nonempty compact set
B C (0,00), we have PX-a.s. on {B C (0,0x)},

2 2 -

(: + 2dimB> ANd < dimCl <U supp Xt> < (— —I—2dimB> Ad.
P teB p

Moreover, if (H2) holds, then P: -a.s. on {B C (0,0x)},

2
dimCl (U supp Xt> = (— —I—2dimB> Ad.
P

teB



Let R = J.+,Cl (Ut>6 supp Xt> be the range of the superprocess X. We deduce then

Corollary 2.2. Assume (H1). Then a.s. we have

<%+2>Ad§dim7€§ <g+2>/\d.
P P

Moreover, if (H2) holds, then a.s. we have
) 2
dimR = (— +2> Ad.
P

In the special case W(\) = A2, Tribe [25] (theorem 2.13) proved a stronger form of theorem
2.1. Precisely, Tribe showed that the last assertion of the theorem holds simultaneously for all
sets B outside a set of zero probability. Our next result is about the hitting probabilities of
small balls. We denote by B.(0) the ball centered at 0 with radius e, and by p the Brownian
transition density on R?

1 ks
p(t,,’I)) = Wexp—Z—t, (t,x) S (0,00) X Rd.

We say a positive function [, defined on (0, 00) is slowly varying at 0+, if for every ¢ > 0,
limy o {(At)/I(A) = 1. Let &, be the Dirac mass at point z € RY.

Theorem 2.3. Assume (H2) and pd > 2. There ezists a positive function ly, which is slowly
varying ot 04, such that for every t >0, € > 0:

PY [Xy(B.(0)) > 0] <t ¥2e42/r) (Vi ne).

Moreover if limsupy_,q, A"I=PW(N) < oo, then for every M > 0, there exists a positive
increasing function ly, which is slowly varying at 04, such that for every M/t > ¢ > 0, we
have

Py [X;(B.(0)) > 0] > % A [8d_2/pp <1fp,x> 12(6)] .

Our next result is about the connected components of X;.

Theorem 2.4. Assume (H2) and d > 4/p. Let v € My, t > 0. Then Py -a.s. the support of
Xy is totally disconnected.

The last result deals with the absolute continuity of superprocesses in the case where the
underlying process is not only a Brownian motion but also a symmetric a-stable process. We
first introduce the a-stable superprocess.

Let v* be a symmetric a-stable process on R? of index a € (0,2) started at = under P,.
For every y € R?, for every ¢t > 0, we have

IE‘t efi<ya7ta 751") — e_tf|z\=l ‘(yyz>|a X(dz)



where (.,.) denotes the usual scalar product on R? and Y is a finite symmetric measure on
the sphere {z ERY |z| = 1}. In order to avoid degenerate cases we assume that

inf / (y, 2)[* x(dz) > 0.
lyl=1J|z|=1

In particular the transition density is continuous on (0,00) x R? (see [16] theorem 10.1). For
a = 2 we consider 72 = 7, the Brownian motion in R? started at z under P,. We consider
X = (X§, ¢t > 0) the canonical realization of the (y*, ¥)-superprocess defined on D. We
refer again to [9, 10, 12, 14] for its construction and general properties.

Theorem 2.5. Assume (H1). Let a € (0,2]. Let u be a finite positive measure with support
in (0,00) and q € [0,1) such that

[ [ watutas) it sl < .

o

If = +aq >d, then for every v € My, PX-a.s. [ u(dt) Xy is absolutely continuous with
D

respect to Lebesgue measure.

As a particular case, taking p = d; for t > 0, and ¢ = 0, we get that if a/p > d, then for
t >0, PX-a.s. X is absolutely continuous with respect to Lebesgue measure.
Hypothesis (H1) will be in force from now on.

3 Preliminary estimates

Notice that the function defined on R by n(X) = bA+ [;* [1 — exp(—Ah)] II(dh) is the Laplace
exponent of a subordinator. By comparing the functions 2u/(1 4+ 2u) and 1 — exp (—u), it is
easy to obtain the following bounds:

gxn(x) <TA) < 22m(N), A20. (3)

The constants p and p thus correspond to the lower index and upper index of the subordinator
associated to n (cf [6]). We give an elementary result about 7.

Lemma 3.1. If (H2) is satisfied and if p < 1, then the function n is regularly varying at 0o
with indez p.

We shall need the usual notation II(h) = II ([h, 00))
Proof. Assume (H2) and p < 1. The latter condition implies b = 0. Fubini’s theorem gives

T(N) = /Ooo 2% (1 4 2\R) 2 TI(h)dh = 2)\2 /Ooo (h +2X) 21I(1/h)dh.

Thanks to theorems 1.7.4 and 1.7.2 of [4], we deduce that the function II is regularly varying
with index —p at 0+. Then theorem 1.7.1° of [4] implies that the function 7 is regularly
varying with index p at oc. D

We now give some simple results about the subordinator with Laplace exponent . We
refer to [2] for definitions and properties of subordinators. Let S = (S;,t > 0) be a subordi-
nator with Laplace exponent 7. We denote by L = (L, t > 0) the right continuous inverse of
S, that is L; = inf {u > 0;S, > t}.



Lemma 3.2. 1. For every § > 0, there exists hs > 0 such that for every h € [0, hs],
ELj, < he™0.
Furthermore there exists a constant Cy, such that for every h > 0, EL, < C5(hV h27%).
2. The process L is locally Holder with exponent c, for every a € [0, p).

3. For every a € [0,1/p), s > 0, a.s. there exists € € (0,s), depending on (S;,0 <t < s)
and «, such that for every u € [s — €, s), we have

Ss— — Sy < (s —u)*.

4. For every 6 > 0, there exists a sequence (Ry,n > 1) of positive real numbers, decreasing
to zero, such that for every M € (0,00), we have

lim P [inf R U

n—00 i>n

LRi>M] =1.

5. If (H2) holds, then for every (6, M) € (0,00)?, we have

limP[ inf B PO, > M] =1.
r—0 he(0,r]

Proof. 1. Using the links between S and L, we have for A > 0,

n(\) "t :/ dt Be Mt = E/ dLj, e \' = A/ dh e ME[Ly]
0 0 0

2/X
Z >\/ dh 6_2 ]E[Ll//\] = 6_2 ]E[Ll//\]
1/A

The first part of the lemma follows from (2) and (3). The second one is then trivial.

2. The variable Ly, — L; is bounded from above in distribution by Lj. By a standard
argument for additive functionals, we have also E[(Lp)?] < p! (E[Ly])?. Thus for every ¢ > 0,
§ > 0, if hy is defined as in 1., and h € [0, hg], we have

E[(Lysn — L)) < E[(Ly)?] < p! (B[Ly))” < pth?e=?),

From the classical Kolmogorov lemma, we obtain that L is locally Holder with exponent «,
for any o« € [0, p).
3. Let s > 0. The two processes (Ss— —Sy,0 < u < s) and (S(S,u),,O <u< s) have the
same law. So it is sufficient to prove the analogous result for Vi, = S(s_y)—.
- If p =1, the result is a consequence of proposition 8 p.84 of [2].
-If p <1, then b =0, and we have
oo

T(\) > ,\/1/A 2hA(1 + 2R\) " HTI(dh) >

ALI(1/0).

Wl N



Then the upper bound (2) implies that the integral [, [1(t¥)dt is convergent for every a €
(0,1/p). Thanks to theorem 9 p.85 of [2], we have for every a € (1,1/p) a.s.

lim V,/(s—u)*=0.

u—Ss, u<s

The desired result follows.
4. Fix § € (0,00). Note that (2) and (3) imply liminfy_,o A"20H9/2p(X) = 0. We can
find a sequence (R,,n > 1) of positive reals decreasing to zero such that

for every n>1, n(l/R,) < R;B(Hdﬂ) and ZRZ/Q < 00.
n>1
In order to bound for every M € (0, c0),
1+0 _
P[Lp, < MR )} —Pp [RnlsMR%@H) >1],

we consider the Laplace transform of S:

(1+0

]EeXp [—REISMRE(LH;)] = exp |:_MR’I'BL p5/2} ‘

W1/ Ra)| > exp [~ MRS

An easy calculation shows that

0/2
£(1+5)H < (11— 1/6)71MR% / .

P RS, e > 1} <(1-1/e) [1 — Eexp [—R;lsMRn

. . pd/2
Since the series ), -, Rn / converges, we get

Sp [LRn < MR < 0.

n>1

(1+5)}

The desired result then follows from the Borel-Cantelli lemma.
5. If (H2) holds, we have p = p, and we deduce from the proof of 3., that for every m > 0,

sup w /PO G <m| = 1.

ue(0,r]

lim P

r—0

The desired result follows since L is the inverse of S.

4 The subordination approach to superprocesses

4.1 The Brownian snake

Our main goal in this section is to explain how superprocesses with a general branching
mechanism can be constructed using the Brownian snake and a subordination method taken
from [3]. We start from a subordinator S = (S, ¢t > 0) as in section 3. We denote by ¢ the
associated residual lifetime process defined by & = inf {Ss; — ;S5 > t}, and by L the right
continuous inverse of S, L; = inf {s; S5 > ¢t}. We also consider an independent Brownian mo-
tion in R? denoted by v = (74, > 0). We shall be interested in the process & = (&, L, vL,),



which is a Markov process with values in F = Rt x Rt x R?. Let P, be the law of £ started
at z € E. For simplicity we write I'; = 7;,, and P, = P, when z = (0,0, z).

We then introduce the Brownian snake with spatial motion ¢ (cf [17], our construction
is slightly different here because the first coordinate of ¢ is not a continuous process). The
Brownian snake is a Markov process taking values in the set of all killed paths in E. By
definition a killed path in E is a cadlag mapping w : [0,{) — E where ( = (,, > 0 is called
the lifetime of the path. By convention we also agree that every point z € F is a killed path
with lifetime 0. The set W of all killed paths is a Polish space when equipped with the metric

g’
d(w,w') == [¢ = [+ |w(0) —w'(0)] —i—/o [dy, (wSu,w'Su) A1) du,

where w<, denotes the restriction of w to [0,u], and d, is the Skorokhod distance on the
space of all cadlag functions from [0, u] into E.

Let us fix z € E and denote by W, the subset of W of all killed paths with initial point
w(0) = z (in particular z € W,). Let w € W, with lifetime ( > 0. If 0 < a < (, and b > «a,
we let Qg 5(w,dw’) be the unique probability measure on W, such that:

- (' =0, Qup(w,duw')-as.,
- W (t) = w(t), Yt € [0, a], Qupl(w, du')-as.

- the law under Qg (w,dw’) of (w'(a +t),0 <t < b— a) is the law of (£,0 <t < b —a)
under I@’w(a).

By convention we set Qg (2, dw') for the law of (£,0 < t < b) under P,.

Denote by 65 (dadb) the joint distribution of (infjo,5) Br, Bs) where B is a one dimensional
reflecting Brownian motion in R* with initial value By = ¢ > 0.

20 +b—2 b—2a)?

05 (dadb) = 2(C+b—2a) exp (_u

%5 > 1{0<a<cAb}dadb

/2 (€ +0)?
+ E exp (— %5 1{0<b}50 (da)db

Proposition 4.1. There exists a continuous strong Markov process in W,, denoted by W =
(W, s > 0), whose transition kernels are given by the formula

2ms3

We recall proposition 5 of [3].

Q. (w, dw') = / 66 (dadb) Qo (w, du).

[0,00)?

If (s denotes the lifetime of Wy, the process ((s,s > 0) is a reflecting Brownian motion in

R, .

Intuitively the path W; is erased from its tip when the lifetime (s decreases, and it is
extended, independently of the past, when (; increases, according to the law of the underlying
spatial motion £. It is easy to check that a.s. for every s < s', the two killed paths Wy and W



coincide for t < m(s,s') := inf, (s o) (. They also coincide at t = m(s, s') if m(s, s") < (sAly.
In the sequel, we shall refer to this property as the “snake property” of W.

Denote by &, the probability measure under which W starts at w, and by & the proba-
bility under which W starts at w and is killed when ( reaches zero.

Here thanks to the properties of the process ¢ (and in particular assumption (H1)), we
can get stronger continuity properties for the process W. First introduce an obvious notation
for the coordinates of a path w € W:

w(t) = (&(w), Ly(w), Ty(w)) for 0 <t < (.

We also set @ = limyy¢, I'y(w) if the limit exists, @ = O otherwise, where 0 is a cemetery
point added to R?. Fix wg € W,, such that the functions ¢ +— L;(wg) and t — T'y(wp)
are continuous on [0, (y,) and have a continuous extension on [0, (y,]. By using the Holder
properties of the processes L (cf lemma 3.2) and I' one can prove that &,,-a.s. for every
s > 0, the functions ¢ — L;(Ws) and t — [';(W,) which are a priori defined on [0, () are
continuous and have a continuous extension to [0, (] (cf lemma 10 and its proof in [3], see
also the proof of lemma 5.3 below). Furthermore the mappings s — (Lia¢, (Ws),t > 0) and
s+ (Cyac,(Ws),t > 0) are continuous with respect to the uniform topology. The processes
L¢, (W) and W, are continuous Ewy-a.s.

It is clear that the trivial path z € W, is a regular recurrent point for W. We denote
by N, the associated excursion measure (see [5]). The law under N, of ({s,s > 0) is the It
measure of positive excursions of linear Brownian motion. We assume that N, is normalized
so that

1
N, |:SupCs > 5:| = 5.
5>0 2¢e

We also set o = inf {s > 0, (s = 0}, which represents the duration of the excursion. Then for
any nonnegative measurable function G on W,, we have:

Nz/O Gw,) ds:/o dsE. [G (6,0 <t < s))]. (4)

For simplicity we write N, = N, when z = (0,0,z). The continuity properties mentioned
above under &, also hold under N,. In particular the two processes (L¢, (W),s > 0) and

(WS, s> 0) are well defined and continuous under N,.

Remark. We set G := {(LCS(WS),VT@) ,8 > 0}. Since L¢, (W) and W, are continuous

under &,, we deduce that for any open set A C Rt x R? such that (0,z) € A, we have
Ny [G N AC # (] < 0.

4.2 Exit measures

Let D be an open subset of E with z € D (or wo(0) € D). As in [3], we can define the exit
local time from D, denoted by (LSD, s> 0). N,-a.e. (or Ey,-a.s.), the exit local time L is a
continuous increasing process given by the approximation: for every s > 0,

S

D .
L :lg%l e Jo Lirp (W) <Gu<rp (W) +e U,

10



where 7p(w) = inf{r;w(r) ¢ D} with the convention inf() = +o0co. We then define under
the excursion measure N, a random measure Y2 on R? by the formula: for every bounded
nonnegative function ¢ € B(R%),

(YD, ¢) = /OU p(W,)dL? .

The first moment of the random measure can be derived from the following fact. By passing to
the limit in (4) (see [18] proposition 3.3 for details), we have for every nonnegative measurable
function G on W,

N [ 6w dL? 52 (6, (5)
0

where PP is the sub-probability on W, defined as the law of ¢ stopped at time 7p under
]IDZ(- N {TD < OO})

We apply this construction with D = D; = Rt x [0,t) x R, For convenience we write
m(w) = mp,(w), Lt = LPt Y, = Yp,, and P, = PPt. We also will write P! = P! when
z = (0,0,z). When z ¢ D;, we then take LY = 0 for all s > 0 and Y; = 0. Using (5), we
get in particular the first moment for the process (Y;,t > 0): for every bounded nonnegative
function ¢ € B(R?),

Nz [(V3, ¢)] = Prp(w).

To get a measurable version of (Y;,¢ > 0), we take a measurable version of (Lg, t>0,s> 0):
for t such that z € Dy,

. . -p
L! = liminf LH?77,
p—00

1 S
Where for € > 07 L?g = E l{Tt(Wu)<<u<Tt(Wu)+€}du'

Remark. As a simple consequence of (4), we have for ¢ > 0,

€ 1 " *
N, [LY] = EE’” [/0 Lir cucrterdu| =1,

If 41 is a finite Radon measure on [0,00), then u(dt)-a.e. N,-a.e. the function s — LI is
increasing and continuous. Similar observations hold under &,,. We shall be interested in
the random measure [ p(ds) Y;. By arguing as in [18], theorem 4.1, we easily get a “Palm
measure formula” for this random measure.

Proposition 4.2. For every nonnegative measurable function F' on R% x My, for everyt >0
and z € Dy, we have

N, [/Yt(dy)F (y, /Ooou(dS) Ys>]
= [ e[ (o, [ Notauaw) [~ @) VW2

where for every w € W,, Ny(du,dW) denotes a Poisson measure on RT x C (RT, W) with
intensity

4 1g,¢,1(w) du Ny [dW].
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4.3 The subordinate superprocess

We introduced the process Y because its distribution under the excursion measure N, is
the canonical measure of the (y, ¥)-superprocess started at d,. More precisely, we have the
following result.

Proposition 4.3. Let v € My and let Y, .; oy be a Poisson measure on C(RY, W) with
intensity [v(dz)N,[-]. The process
Xo=v, X;=)» Yi(W', for t>0,
el

is a (U, y)-superprocess. Moreover, a.s. for everyt > 0, the collection ((Ys(Wl), s> t) 1€ I)
has only a finite number of non zero terms.

The proposition is proved in [3], except for the last assertion. For this it is enough to
check that N, [Y; # 0] < oo for £ > 0. We know from [3], that

N, [1 - e_”(Yt’l)} = vu(t,z), t>0, z€R,

is the only nonnegative measurable solution of (1) with f = n. By a uniqueness argument,
we have v, (t,z) = vp(t). Then (1) implies v,(0) = n, %vn(t) = —U(vp(t)), from which we
easily get:

n
/ U(u)"tdu=t, for t>0.
vn (t)

By (2) and (H1), we have [* U(u)"'du < co. Thus if v(t) = limy, e v, () = N, [V; # 0], we
get from the previous equation that v(t) < oo and more precisely

/ U(u) tdu=t, for t>0. (6)
v(t)

Remark. We can use the continuity of the mapping ¢ — v(¢) to derive a fact that will be
useful later. For ¢t > 0 fixed, observe that N,-a.e.

{supLCS(WS) > t} C{Y; #0} C {supLCS(Ws) > t} .
§>0 §>0

The second inclusion follows from the construction of L! and the first one is easily deduced
from the special Markov property (cf [3] proposition 7). It follows that

N, [sup Lo, (W) > t] SN, [ £ 0] = o(t),
5>0

and so

N [sup L, (W) = t] =0.
5>0

We shall also need the following result, which is a consequence of (6) and theorem 1.5.12
of [4]:

Corollary 4.4. Under (H2), the function v(t) = N, [Y; # 0] is regularly varying at 0+ with
index —1/p.
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4.4 The support of the exit measure

In this section, we give a technical result about the support of the exit measure L!, which is
crucial for the proof of theorem 2.1. Recall that we defined 74(W;) = inf {r < (5; L, (Ws) > t}.
However we know that N,-a.e. (or &y,-a.s.), for every s > 0 the mapping r — L, (W),
r € [0,(s) has a continuous extension to [0,(s]. Thanks to this fact, we slightly modify the
previous definition of 7; by taking 7,(Wy) = (s when L¢, (W,) =t and L, (W,) <t for r < (.
For ¢ > 0, we introduce under N, the set

Hy = {S € [070];Cs = Tt(Ws)} :
Recall that supp v denotes the closed topological support of a measure v.

Lemma 4.5. Ny -a.e. for everyt > 0, the set Hy is closed. Furthermore for every fized t > 0,
Ny -a.e., we have supp dL! C H;.

Proof. We prove the first part of the lemma. From the “snake property”, it is easy to see
that {s; (W) < (s — €} is open. Note also that the set {s;7(W,) < (} = {s; L¢, (Wy) > t}
is closed since the function s — L¢, (W) is continuous. Thus A, = {s;(; —e < 7(Wy) < (s}
is closed. We deduce the set H; = N,>14, /n is closed.

For the second part of the lemma, fix ¢ > 0. By the definition of L%, we have

supp dL"® cCl ({S; Tt(Ws) < Cs < Tt(Ws) + 6}) C {S; Cs —e< Tt(Ws) < Cs} .

Since Li = lim._,¢ L’;’E, we deduce that supp L' C H; Ny-a.e. O

5 Proof of theorem 2.1

We prove theorem 2.1 in three steps. In the first one we reduce the proof to proposition 5.1.
The second and third steps deal respectively with the proof of the lower bound and the proof
of the upper bound of proposition 5.1.

5.1 Preliminary reduction

Let ¢ € [0,1), and p a measure on Rt such that supp x4 C (0,00) and

0< //,u(dt) p(ds) |t —s| 7 < oo. (7)
Let B a compact subset of (0,00). We set oy = supy¢jg o) L¢, (Ws) and Hp = UiepHa.

Proposition 5.1. Let z € R?. N;-a.e., on {supp u C (0,0y)}, we have the lower bound

2
dim supp /,u(ds) Y, > (: + 2q> Ad.
p

Nz-a.e., on {B C (0,0y)}, we have the upper bound
. 5 2 ——
dlm{Ws;s € HB} < <; + 2d1mB> Ad.
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Moreover if (H2) holds, then we have the stronger upper bound: Ny-a.e., on {B C (0,0y)},
. 2
dim{Ws; s € HB} < (— ¥ 2dimB> Ad.
p

We first show how theorem 2.1 follows from proposition 5.1. For every ¢ € (0, dim B) (take
g = 0 if dim B = 0), there exists a Radon measure p, supported on B, such that (7) holds
(cf theorem 4.13 of [13]). We deduce from proposition 4.3 and the first part of proposition
5.1 that PX-a.s., on {B C (0,0x)},

2
dim supp /,u(ds) X > (: + 2q> Ad.
D

Since supp [ u(ds) Xy C Cl (UtE 5 Supp Xt) and since ¢ can be chosen arbitrarily close to
dim B, we get the lower bound of theorem 2.1.

Let B’ be a countable subset of B such that every point of B is the limit of a decreasing
sequence of points of B’. The proof of the following lemma is postponed until the end of this
subsection.

Lemma 5.2. We have N -a.e.
Cl <U supp Y}) C {Ws;s € HB}.
teB'

Since the process X is cadlag, and all points of B are limits of decreasing sequences of points
of B', it is clear that on {B C (0,0x)},

cl (U supp Xt> =Cl < |J supp Xt> .

teB teB’

It is then easy to deduce the upper bounds in theorem 2.1 from the upper bounds in propo-
sition 5.1, proposition 4.3 and lemma 5.2. d

Proof of lemma 5.2. Using the properties of the Brownian snake (in particular the “snake
property”), N -a.e. for every ¢ > 0, we have {Ws; s € Ht} = {Ws; s €[0,0],L¢, (W) = t}.

Thus, we have {Ws;s € HB} = {Ws;s € [0,0], L¢, (Ws) € B}. Since the mappings s +—
L¢,(Wy) and s — W are continuous, we deduce that the set {Ws; s €[0,0], L, (Wy) € B} is

compact, and thus closed. Finally we deduce from lemma 4.5 that N, -a.e., for every ¢t € B,
supp Y; = {Ws;s € supp st} C {Ws;s € Ht} C {Ws;s € HB}.

The desired result follows. O
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5.2 The lower bound of proposition 5.1

We introduce the set K = {s € supp p; [ p(dt) |t — s| 7 < co}. Notice that p(K¢) =0. In a
first step we show that for every x € (0, (2¢g + 2/p) Ad), 0 € (0,k/2), sp € K,

N, [ [ Yaolds) i ( [ it Y)] 0,

where if @ > 0, Fj is the measurable function on R? x M ¢ defined by

Fy(y,v) =1 )
’ {lim supv(Bg-n(y))2" > 0}

n—00

where B,.(y) is the ball centered at y with radius r. By proposition 4.2, we have
| [ Valdn o (3 [ wia) v) |
= [ By | £ (o, [ Ml aW) [ ) ooy ¥iow) )| ®
In order to use the Borel-Cantelli lemma, we first bound [[ P (dw)P(dw)14, (w,w), where

A= {0 2 [ 0) 1, W) ) L VW) (Bnl) 2 G2 ™ |

and Cy = Cy(w) is a finite positive constant that does not depend on n and w, and depends
on w only through (S,(w),0 < v < sp) (the choice of this constant will be made precise later).
Conditioning on Sy = o (S,(w),0 < v < sp), and using the Markov inequality, we obtain

s
s

Ep [E[14,]

< B [0 B[ 0120 [ Nl dW) [ a1 ucngon HW) (B ()]

_ _ Co
= on(x=O [CEI [Eﬁ:‘) [/M(dt)‘lfo du 1y <, (w)1Nuu) [Ye (Be=n (¥)]y—s

&l

—1
¢t [ utar /[) dSy By [Py, Do € wa)]y%,()ﬂ ,

B _ Tsq ATt _

— 47k R

where « is under P, a Brownian motion in R? started at z. In the first equality we used
the form of the intensity of the Poisson measure A,,. In the second one, we applied (5) with
D = Dy. In the third one, we made the formal change of variable u = S/, using the specific
properties of the process &, and in particular the fact that I' is constant over each interval
(Su—, Su). We have

E:E |:]P)'Yu’ [’Yt—ul € B2_"(y)]y=%0 = 92(2_77/, sp + t— 2ul)7
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where go(r,t) = Py[|v] < r]. We prove in the appendix (lemma 8.1) that under the assump-
tion sg € K, we can choose a finite constant Cy, depending only on (S, (w),0 < v < s¢) such
that for r € (0, 1],

/u(dt) / g2(ryso +t —2u)dS, < Cyrr.
[0,s0At)

As a consequence, we have for every n > 1,
B0 [E[14,]] < 4277,

Applying the Borel-Cantelli lemma to the sequence (A,,n > 1), we get P$-a.s., P-a.s.

lim sup 2"(*~2%) / N (du, dW) / p(dt) Liycry(wyy Ye(W) (By=n (b)) = 0.

n—0o0

Hence by the definition of Fy and (8), we get for every sp € K,

N, [ [ Yool oz (y [ i Y)] 0.

Since p(K°¢) = 0, integrating with respect to u(dsg) gives N;-a.e.

[ wtas) [ Yot Eeas (y [ wta Y) 0 )

We deduce from theorem 4.9 of [13], that for every x € (0, (2¢ +2/p) Ad), § € (0,K/2),
Nz-a.e. on { [ p(dt) V; # 0},

dim supp /u(ds)Ys > Kk — 20.

The lower bound of proposition 5.1 follows. |

5.3 The upper bounds of proposition 5.1

First of all we give a technical result about the Brownian snake.

Lemma 5.3. 1. Ng-a.e. the function s — L¢, (Ws), respectively s W, = e, (Wy), is
locally Hélder with index p/2 — 0§, respectively p/4 — 6, for every 6 € (0,p/4).
2. The adapted increasing process (My,t > 0), defined by:

|LU(WS) - LU(WS)|
lu — v|g(1*5/2) ’

M; := sup sup
SE(O,t} U#U,(U,U)E[O,CSP

is Ny -a.e. finite for every § € (0,1).
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Proof. 1. Recall that &;-a.s. the mapping s — (Lgs(Ws),Ws> is continuous. Thanks to

the Kolmogorov lemma, it is sufficient to prove that for every integer £ > 1, and § € (0, p),
N > 0, there exists a constant ¢y such that for every 0 <s,s' < N,

ba [‘LCs(WS) = L¢, (Wy) Qk] < dyls— 8'\(3_6)k, (10)
Ea [‘WS_WS, 2k:| < CIN‘S—SI‘(B_(S)]C/Z. (11)

First, we prove (11). Since E;-a.8. L'y ) (Ws) = Ly, (W), we have by symmetry

&, UW W,

2k:| < 2.22k_lgm [‘ng (Ws) — Fm(s,s’)(WS)‘Qk} :

Conditionally on ¢ the distribution of T'¢,(Ws) — Ty, (Ws) is the same as that of I'¢, —
Ly(s,sr) under Py, Thus we get

L R A L IR

By scaling and using the same arguments as in the proof of lemma 3.2, we get
B [[0u = Do *| = Eo [ Bo [Lu = Lo)* < Eo [ K [E[Lu-u]l*
<a [|u—v|\/|u—v|3 } ,

by lemma 3.2,1. From this inequality and standard bounds on the moments of the increments
of ¢, we easily get
e |

where the constant ¢y is independent of s and s'. Since s and s’ are bounded, (11) follows.
The proof of (10) is similar.

2. Thanks to lemma 3.2,1. for every integer £k > 1, and 1/2 > § >0, A > 0, T > 0, there
exists a constant c; such that for every (u,v) € [0, A%,

p—5] k/2

. . 12k
Wy — Wy ] < ¢ [‘S—S,‘\/‘s—sl‘—

?

E [|Lu - Lvﬂ < ¢y Ju—ovfF070)
Furthermore, there exists a constant cy, such that for every (s,t) € [0, T2,

i t|k£(1—6)/2 )

ex[ sup |G — ¢ | < ey s

,q€ls,t]

For convenience, we put L,(Ws) = L¢,(Ws) when u > (,. Using the above inequalities and
the snake properties, we then bound for every integer k > 23*1, and u > v, (u,v) € [0, AJ?,

17



(s,t) €0,TP,

Ex [ILu(Wy) = Lu(Ws) = Lu(Wi) + Ly(Wo) ]
< & (Lo yzoza [(La(Ws) = Lo(Wy)) + (Lu(We) — Ly(We)))*]
+ & |:]-v<m(s,t)§u [(Lu(Ws) = Lungs,ny(W5)) + (Lu(Wr) — Lm(s,t)(Wt))]k}
< &30 [ Lm(eycocu [lG Aw = G A v+ G Au— G A[F20 )]

+c3Es [1u<m(s,t)§u [[€s Au+ G Au—2m(s, t)|]k£(175)}

S 04817 (U — U)kﬁ(l_(s) /\ Sup |C7‘ — <q|k3(1_6)]
T,q€(s,t]

?

kp(1—46
<es |lu—vlAls - '] e

where the constant cs is independent of u,v,s and £. For s,t fixed consider the continuous
random process Zy"' = Ly, (W) — Ly, (W;). Fix 5 € (1/2,1). The previous inequality gives:

& ||zat - 73

kj| S cs |'u, _ v|k377£(175) |t _ 8|k(1777)£(175)/2 ‘

The Kolmogorov lemma (theorem 1.2.1 of [23]) implies that the process Z*' is locally Holder
with exponent 6y = np(1l — 3§/2), and moreover a close look at the arguments of the proof
shows that

Z’Z)t _ Z{j)t

EI sup < ¢ |t _ S|k(1*7l)ﬁ(1*5)/2

b)
wtvi(up)e. A2 |u—v|®

where the constant cg is independent of ¢,s. Now consider the norm on the Banach space
of all real functions f on [0, A] that are Holder with exponent 6y and such that f(0) = 0,
defined by

||f||00 = sup |f(u) — f(v)] |u—v|_‘9°.

u#v;(u,v)€[0,A]2

The above inequality can be written as
& [I1LW.) = W) [, | < sl — 50072,
We can again use the Kolmogorov lemma to get £;-a.s.

s€[0,T

Note that &z-a.s. supgcp (s is finite, and so supycpp (s < A if A is large enough. The
fact that M; < oo follows from the last bound by taking 7 sufficiently close to 1 and ¢ small
enough. This completes the proof. D
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Since we have proved the function s — W, is Ny-a.e. locally Holder with index % — 9, for
any ¢ € (0,p/4), proposition 2.2 from [13] implies that N -a.e.,

dim{Ws,s e HB} < %dimHB.

We will now prove in three steps that for every [, 5] € (0,00), ¢’ € (0,1/2), Ny-a.e.,

1 .
dim(HpNla,f]) < 5(1+golimB)+5’. (12)
Moreover if (H2) is satisfied then Ny-a.e.,
1
dim (Hp N e, G]) < 5(1+pdimB)+5’. (13)

This will be sufficient to prove the upper bounds of proposition 5.1.
Proof of (12) and (13). In a first step we start from a covering of B by open sets and
construct an associated covering of Hp N [, 3]. In a second step, lemma 5.4 gives us an
upper bound on the cardinality of this covering. In the last step, we prove (12) and (13) by
letting the maximal diameter of the open sets in the covering of B tend to 0.

Let [a, 3] C (0,00), with o < 1, and let 0 > 0 small enough. We set 8 = p(1 + §)/2.
First step. Let i be an integer and € > 0, h > /. We define the stopping times:

T7 = inf {u € lie, (1 + 1)e]su € Hy_o ) N[, B+ 1]} ,
with the convention inf () = 0. If [¢] is the unique integer k such that k <t < k+ 1, we define

[8/€]
Nens = Z 1{Tia<0}-
i=[a/e]
The random variable N j s represents an upper bound on the total number of intervals of the
form [ie, (i + 1)e) which intersect Hp,_.0 5 N [cv, B]. Let eg € (0,/2), and ((hn,7y),n > 1) a
possibly finite sequence in (0, 00) x (0, ] such that h, > 7, > 0 for all n. > 1, and the family
of open sets (hy,, — r,, hy,) covers the compact set B. It is clear that

Hp N e, B C U Hiny—ro ) N [0, 8]

n>1

We finally denote by A the collection of all pairs (i,¢) € N* x (0,e0] such that there exists
n > 1 for which

€= r,ll/o, and  [ig, (i + 1)e) N Hpy—r, ha) N [0, Bl # 0.

The collection of balls ([ig, (i + 1)e]; (i,e) € A) covers the set Hp N [a, G]. Moreover for e

fixed of the form & = rL/?,

Card {i € {[a/e],...,[B/e]l};(1,e) € A} < Nep,se
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Second step. We are mainly concerned by a control on the expectation of N;j 5. Recall
the notation of 4.2, and observe that for € € (0,a/2),

B+1
hoE o 1
1 Z NxL Z _{-: Nx /C; ) 1{Th(Wu)<Cu<Th(Wu)+\/E}du

B+1 \/— /

[B/¢] i (i+2)e
= T ? I Th (W) <Cu<Th (Wu)+VeE
2\/5 i=[a/e] L e " "
1 [B/e] e
= 2\/e [Z/ }Nx _Ti < U;EWT;' |:/0 1{Th(Wu)<Cu<Th(Wu)+\/E}du:|:| ’

where we used the strong Markov property at time 77 for the last inequality. To go further,
let us introduce some notation and state a technical lemma. Recall the notation of lemma
3.2 to define, for every real number u > 0 of the form u = (4R,)?,

ZL(y) == o [inf | R 1>] :

i>n
Note that the sequence (R,,) depends on 4. If (H2) holds, then consider
2 =B | _int oL, > 4 ).
M) =B | it o>+

We will use the same notation Z,(y), for both functions Z}(y) and Z2(y). This function is
defined for (u,y) € F x R", where F = {(4R,)%*n > 1} in the first case and F = (0, o0)
in the second one. Clearly the function Z is positive and bounded above by 1, and is de-
creasing in both variables v and y. Moreover thanks to lemma 3.2, we have for every y > 0,
limycry—o0+ Zu(y) = 1. Recall the process M; was defined in lemma 5.3. The proof of the
following lemma is postponed to the end of this section.

Lemma 5.4. There exists a universal constant Cy, such that for every § € (0,1/2), h > 0,
e € FN(0,1/2), Ny-a.e. for every stopping time T taking values in (H[h_ge,h] N[, ﬁ]) u{o},
we have

3
* 1+6 *
EWT |:/0 1{Th(Wu)<Cu<Th(Wu)+\/E}du] >Coe'” Ze(Mr)lr<y EWT [o> ]
Using this lemma with T' = T}, we get for e € F N (0,1/2)
&
€ L o%
Na} |:j-; < O—,EWTg |:/0 l{Th(Wu)<Cu<Th(Wu)+\/g}du:|:|
> Coe 0N, [TF < 03 Z:(Miy) &y, [0 > €]

> Coel PN, [T; <030 > (i+2)g; ZE(MTia)]
> Coe' N, [T§ < 03 Ze(Mr=)] — Coe' TN, [0 € [ie, (i + 2)e]] -
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We then sum over i € {[a/¢],... ,[B/€]}, and use the monotonicity of the mapping y — Z.(y)
to get

[8/¢]
1>N, Lg;{ > Lo 1+ Z N, [TF < 03 Ze (Mg, 1)] — —0051+5N [0 > a/2]]
2ve i=[a/e] Ve
> 27 Coe' /PN, [Z(Mp41) Ne 5] — 2Coe' > ] 72,

In the last bound we also used the definition of NV, j, 5 and the well-known formula N, [0 > a] =
(2/ma)/?. From the monotonicity of the mapping € — Z.(y), we get for g € F small enough
and eg > e €F

Ny [Zey(Mps1)Neps] < 4Cy te /270

Third step. Let s be such that 2(x —1/2)/p > di where d; = dim B if (H2) is satisfied,
di = dim B otherwise. Let d > 0 be so small that (k—1/2—6)/6 > di +6 with 6 = p(1+6)/2.
By the definition of upper box-counting dimension, and Hausdorff dimension, for every integer
p there exists a sequence ((hh,rh),n > 1), where hl, > rh > 0, such that the family of open
sets (hh, — 5, hh) covers B and such that (r5)Y? € FN (0,277 A /2] for all n > 1 and

Z(TZ)dIJHS < 9-2p.

n>1

For each p consider the set A, associated to the sequence ((hf,,7h),n > 1) as in the first step
of the proof. For p big enough we deduce from the last inequality of the second step that, if
eo(p) =supF N (0, (a/2) A27P],

Goea, | axl
< 40(;1 Z(TZ)(H—I/Z—(”/H

n>1
<4Cy 127,

By the Borel-Cantelli lemma we get the existence of p’ such that for every integer p > p/,

Mﬂ+1 Z 6 < 27P,
(i,e)eA,

We have lim,_, o £9(p) = 0. Thanks to the properties of Z, we get limy, o0 Zc,(p) (Mpy1) = 1.
We have thus proved that N;-a.e.,

plggo Z e" =0.

(i,e)ENy
Since the collection ([ie, (i + 1)¢]; (4,€) € Ap) covers Hp N [e, B], we obtain that N,-a.e.

dimHp N[a, f] < k.
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Since this bound holds for every & such that 2(k—1/2)/p > dim B (and 2(k—1/2)/p > dim B,
if (H2) is satisfied), we obtain (12) and (13), which completes the proof of proposition 5.1. [

Proof of lemma 5.4. Let § € (0,1/2), h > 0, ¢ € FN(0,1/2). We set 8 = p(1 + 6)/2.
Let T be a stopping time with values in (’H[h,ge,h] N [a,ﬁ]) U {o}. Note that, on {T < o},

L,(Wr) < L¢(Wy) for every r € [0,{7). We introduce the following three sets, where
m(s,s') = inf, ¢ ¢ ¢ and b 1= (& e T2 A (Cr/2)?,

AL = {m(T,T +b.) € [ = Vbo, Gr = Voo 2] (T + 0., T+ 2/2) > s

(rieg2 € [Cr 4 3VE/8, Cr + 5Ve/8] },

Ao = ALN{Vs € [T +¢/2,T +¢l,¢s € (Cr + V4, Cr +3vE/4] )

and
B. = {Lya+\/5/4(WT+s/2) - Lye(WTJrE/?) = EG(MT + 1)} ’

where y. := inf {r > m(T,T + ¢€); Ly(Wr) > Ly 4e(Wr)}. The lemma is then a simple
consequence of the following two results:

A. Ny-a.e. on A. N B N{T < o}, we have

T+e
/71 l{Th(WS)<CS<Th(WS)+\/E}dS Z 5‘/2,

B. There exists a universal constant Cj such that

S;VT [Ag N BE] > 200661T<0'ZE(MT)5;/(VT [0’ > 6] .

g

Proof of A. The proof is based on the properties of the Brownian snake. Let us first show
that on A, N B, N {T < o}, for every s € [T +¢/2,T + ¢], 7,(Ws) < (5. Notice that we
have y. < (p on {T' <o} N{m(T, T +¢) <(r} C{T <o} NA.. On{T <o}NA. we get
m(T +¢e/2,T +¢) > (r+e/4 > ye +/e/4. Thus for every s € [T + ¢/2,T + €], the paths
t — Li(W) coincide for t € [0, y. + v/¢/4]. Thus we have for every s € [T +¢/2,T + €]

Ly zjsWries2) = Ly 4 /z7a(Ws) < L, (Ws).

Furthermore, the paths ¢ — L;(W7) and ¢ — Li(Wy,./2) coincide over [0,m(T,T + ¢/2)].
Since m(T,T + ¢/2) > {1 — /b, we get

Lys (WT+6/2) 2 Lm(T,T+6/2)(WT+€/2)
= Loy r4e/2)(Wr) > Lo, 5z (Wr).
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Using the definition of M; (cf lemma 5.3), we see that

(1-6/2)/2

Le,— i-(Wr) > L, (Wr) — Mpbt > L, (Wr) — Mpe’.

Then we get that on the event {T' < o} N A, for every s € [T +¢/2,T + €],

LCS(Ws) > Ly5+ﬁ/4(WT+s/2) — LyE (WT+5/2) + LyE(WT+E/2)
> Lyt esWriep2) = Ly (W ye2) + Loy (Wr) — Mye’.

It is then clear that on A. N B: N {T < o}, we have for every s € [T +¢/2,T + €],
L¢,(Wy) > (Mg + 1) e’ + Le,,(Wr) — Mye® = Le,(Wr) + €°.

Since, on {T' < o}, T € Hy,_.0 ), we have L (Wr) > h — e?. It follows that L¢, (W,) > h
for s € [T +¢/2,T + ¢]. Thus we have also 7,(W;) < (s for s € [T +¢/2,T + €.

Finally let us prove that on {T' < o }NA,, forevery s € [T +¢/2,T + €], 7,(Ws) > (s—+/e.
For every s € [T, T + ¢, the paths ¢t — Ly(Wj) coincide over [0, m(T',T + ¢)]. The inequality

Lonr146)(Ws) = Liyrr40)(Wr) < Lo (Wr) < h,

implies 7,(Ws) > m(T,T + ¢) for every s € [T +¢/2,T + ¢]. Recall that on {T <o} N A,
for every s € [T'+¢/2,T + €],

m(T, T +¢) > Cr — V/be > (s — V/be = 3V/e/4 > (s — V.

Then we have for every s € [T'+¢/2,T + €], 7,(Ws) > (s—+/¢. In a nutshell we have obtained
that Ny-a.e. on A. N B.N{T < o}, for every s € [T'+¢/2,T + ¢,

Th(Ws) < (s < Th(Ws) + \/g
This completes the proof of A. 0

Proof of B. Let ¢ € Fn (0,1/2). By conditioning on o (Ws,0 < s <T +¢/2) and using a
scaling argument we get

Elvy [A:] > Ely, [AL] Py [¥s € 0,1/2], | By| < 1/8],

where B is under P, a linear Brownian motion started at y € R. We set m(s,t) = inf,¢[; 1 By
Using the Markov property at time b. for B, we get:

Eiv, [41] =P |00 € [or = V.o = Voo/2]
(0 £12) 2 G Bepo € [Gr + VS, Gr + V8]
>Py [m(o, b.) € |=v/be=V/be/2] 5 V/be/2 < By, < Vb
Pg, [m(o, g ~b:) > 0,B:,, € [3\/5/8,5\/5/8]] ]
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Using standard properties of linear Brownian motion, we easily see that the above expression
is bounded below by a universal constant times \/b./e. So there exists a universal constant
Cy such that

Eiv [Ac] > 8 Cor/b. [

We finally get a lower bound on &, [Ac N B.]. We denote by Sy the o-field o(Wy, s <
T)Vo((s,s > 0). Recall that the two paths Wy and W/, coincide over [0, m(T, T +¢/2)].
Conditionally on St, the distribution of

((5m(T,T+€/2)+u(WT+5/2)a Lm(T,T+€/2)+u(WT+€/2)) 0<u< CT+€/2 - m(Tv T+ 6/2))

is the law of (&,,L,), started at (fm(T,T+s/2)(WT)7 Lm(T,T-l—E/Z)(WT)) and killed at time
Crye2 — m(T, T + €/2). Notice y. = inf {r>m(T,T+e¢); L,(Wr) > Lm(T7T+€)(WT)} is
Sr-measurable by construction. Moreover on {T' < o} N A., we have y. = m(T,T +¢/2) +
Em(T,T+¢/2) (Wr), as a consequence of the behavior of the process £. Thus conditionally on Sy,
on {T < o} N A, we obtain that ((&y. +u(Wriey2); Lyctu(Wrie/2)) 0 < u < Cpyepp — ve) is
distributed as (&, Ly,), started at (0, Lm(T,T-l—s/Z)(WT)) and killed at time (7. /2 —y.. Notice
also that on {T" < o} N A., we have

Yo +Ve/4 < r+Veld < (riepa

Thus, conditionally on Sz, on {T' < 0} NA., (Ly.4u(Wrie2) = Ly, (Wrey2),0 < u < /E/4)
is distributed as (L, 0 < u < /e/4), under Py. Hence we get

1T<o' E;;VT [Ag N Bg] = 1T<0— E;;VT [Ag,E;VT [Bg | ST”
=1y, S;VT [AEaEDO |:L\/g/4 > 89(M + 1):|:|

M=My
Since € € F, by the definition of Z., we have
By [Lyeys > " (M +1)] > Z.(M).
Then we have
1r<o Eyy [Ae N Be] 2 1r<o Eiyy, [Ae] Ze(M7) > 11<5 8 Co/be /€ Zo(MT). (14)

To conclude note that the law of o under &y, is the law of (2N~% where N is a standard
normal variable. Thus we have

Eivplo > e <IN (Cre™?) <4~ G/,

Combine this with the inequality (14) to complete the proof of B. O

6 Hitting probability of small balls and proofs of theorems 2.3
and 2.4

From now on we assume (H2) holds. In the next two sections, we state and prove upper and
lower bound for the hitting probability of small balls for the process Y; (cf [1] for ¥(\) = \?).
Then we derive theorem 2.3. In the fourth section, we prove theorem 2.4.
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6.1 Upper bound for the hitting probability of small balls

The next proposition gives an upper bound for the hitting probability of small balls.

Proposition 6.1. Assume pd > 2. There exists a positive function Iy, which is slowly vary-
ing at 0+, such that for every t >0, ¢ > 0:

N, [Y;(B-(0)) > 0] < t~%2e472/° [ (Vi Ne).

Proof. We are following the proof of proposition 8 from [19]. We first consider the case
0 < 2e < v/t. We introduce the open set

A= {(r,y) eR" xR, r <t |y >26}U{(r,y) R xRY, r<t—e? |y < 28}.

Formula (5), with D = R x A implies the measure Y+, 5 defined in section 4.2 is supported
on {0} x DA. For convenience, let us denote by Ya its restriction to 9A C Rt x RY, that is
80 ® YA = Y4y a. By the special Markov property (cf [3] proposition 7), if N is the number
of excursions of the Brownian snake outside Rt x A, that reach R* x {t} x B.(0), then we
have:

Ng [¥; (B:(0)) > 0] < N, [N] =N, [/ Ya(dr,dy)Ne .y 1G N ({t} x B:(0) # 0], (15)

where the set G has been defined in section 4.1. Since the measure Y is supported by 9A,
it is sufficient to bound the integrand for (r,y) € 0A:

- if r =1, Jy| > ¢, then G N ({t} x B:(0)) = 0, N y)-a-e.

- if r =t — €% and |y| < 2¢, then using the function v defined in section 4.3, we get
N [0 71 ({8) % B.(0) # 0] < Noay) [sup e, > 22| = o(e). (16
s_

- if t —e2 <r <t and |y| = 2¢, then by time translation and symmetry we get

I\I(O,r,y) [g N ({t} X BE(O)) 7é Q)] < N(O,O,y) [g N (R+ X BE(O)) 7é 0]
< Nooy) [0 (B x ((—00, 00 x BE1)) 20],

where 3 = (£,0,...,0) € R%. Let u(y') denotes the right-hand side of the previous formula.
It can be deduced from the remark in section 4.1 that the function u is bounded on every
compact set of (0,00) x R¥~!. The arguments of propositions 6 to 8 from [3] and propositions
4.3 to 5.3 from [18] can be adapted to prove that u solves

% Au = ¥ (u),

on (0,00) x R¥! with the boundary condition

Iim w =00
y1>0, y1—0 (v) ’
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where we write y = (y1,... ,yq). Obviously, by space homogeneity, the function u depends
only on y;. For simplicity we write u(y1) for u((y1,-...,94)). Therefore u : (0,00) — R
solves

u”(s) =2¥(u(s)), s>0 and limu(s)= oo.

s—0

Using the fact that u is decreasing, we get for r > 1
u(r) 1/2
u'(r) = — [u'(1)2 +4/ \I/(h)dh] .
u(l)

Integrating over (0, s] and making the change of variable ¢ = u(r), we get for s € (0,1):

0o ¢ —-1/2
/ [u'(1)2 + 4/ \If(h)dh] dt = s.
u(s) u(l)

Notice that the integrand is regularly varying at oo with index —1— p/2. Thanks to theorems
1.5.10 and 1.5.12 of [4], we deduce that u is regularly varying at 0+ with index —2/p. Recall
that

N,y [G N ({t} x B=(0)) # 0] < ule). (17)

Recall that the function v is regularly varying at 0+ with index —1/p. Since the functions
u and v are positive, there exists a positive function, I’, which is slowly varying at 0+ such
that u(e) + v(e?) < e=2/PI'(€). We can then substitute (16) and (17) into inequality (15) to
obtain

N, [¥5 (B(0)) > 0] < e 20 ()N, [ (Va, Lo e )|

Then formula (5) gives
N, [(f/A, 1(0,,5)%[1)] =P, [Ta < 1],

where Ta = inf {s > 0, (s,7s) € A} (recall that 7, is a Brownian motion in R? started at =
under ;). Then we easily get the existence of constants ¢; depending only on d such that:

P, [Tp <t] < et~ 42l
Thus we have
N, [V; (B-(0)) > 0] < et~ 242/0] ().
Now if 0 < v/t < €, we have the elementary upper bound:
N, [Y;(B:(0)) > 0] < v(t) < t~U2e4=2/0 '(\/1).
Taking I3 = (c¢1 + 1)I’ gives the desired inequality. O

Notice that in the stable case, a scaling argument shows that we can replace [ by a
constant.
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6.2 Lower bound for the hitting probability of small balls
We assume only in this section that

limsup A1 7P¥ () < oo. (18)
A—0+

Proposition 6.2. Assume that pd > 2. For every M > 0, there exists a positive increasing
function la, which is slowly varying at 0+, such that for every M/t > ¢ > 0, we have

N, [Y; (B(0)) > 0] > e 2/7p (1 ffp,x> Io(e).

Moreover, if limsupy_,, A~ P¥(\) < oo, we can replace ly by a positive constant.

Notice that all the assumptions on ¥ are satisfied in the stable case.
Proof. Let A >k > 0. We have (cf [3]):

N, [Y; (B.(0)) > 0] > v.(t,z) := N, [1 —exp [—ﬁ6_2/th (BE(O))H ,
where the function v, is the only nonnegative solution of (1) with f = ke /1 B.(0)- As

ve(t,z) < Ii€_2/th]-B€(0) (@),

we deduce from (1) and the monotonicity of ¥, that

t
ve(t,7) > ke 2P Pl g ) (x) — / du P, [g, (m*2/ﬂpt,u136(0))] (2). (19)
0

We now bound the second term of the right-hand side, which we denote by I;. Thanks to
(18) and [4] (ex:4 p.58), we know that the function [4 defined on (0,00) by

Ia(r):= sup A"17PU(N)
A€(0,Ar—2/r]

is decreasing and slowly varying at 0+. Using the monotonicity of [ 4, it follows that

4p [t
o< (kele) /0 du P, [ (Preali0)) 7] (@) (2)

_ ! I+p
ol tog 2(1+1/P)t/0 du P, [(Pl—ulBE/ﬁ(0)> ] (z/Vt)la(e).

IN

Let A € (0, M). We now give an upper bound on

L 1+p
/ du/dzp(u,z—x) [/ dyp(l—u,y—z)]
0 Bx(0)

We decompose the above integral in two terms by considering the integral du on the sets
{u < 1/2} (integral Jy), {v > 1/2} (integral J3). Using pd > 2, the integral J; is bounded
above by

1/2 14
/ du/dz p(u,z — x) [c)\d] g < e A2,
0
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where ¢; depends only on M and d. Now by scaling we get

1/2 1+p
JQS/ du/dz [/ dyp(u,y—z)]
0 B(0)
00 L+p
< )\‘HQ/ du/dz [/ dy p(u,y — z)]
0 B1(0)

= ¢y >\d+2 )

We use pd > 2 to get co < co. Combining those results together with A\ = £/v/%, we get that
there exists a constant ¢}, depending only on M and d such that

I, < Cl]\4lﬁ1+p672(1+1/p)tlf(d+2)/28d+2lA(8)‘ (20)

On the other hand, there exists a constant ¢y depending only on d such that:

Pilp )(z) > cq [1 A ((5/\/Z)de— |w|2/2t>]

Thus for M/t > ¢ > 0, we have
Plp )(7) > cgM 42l o jal” /2¢
Plugging the previous inequality and (20) into (19), we get
ve(t,z) > Kt~ Y2ed=2/p [ch*d e Il /2t —c'M/iplA(a)] .

Since the constants A and x are arbitrary, we can take A = (ch*dc';/[l)l/p and Kk =

Ale” jal* /2t [1+1a(e)]7HY* to get
N, [Y; (B:(0) > 0] > ve(t, @) > eme®™*Pp (pt/(1+ p),x) I(e),

where () = [1 4+ lA(e)]_l_l/p is increasing and slowly varying at 0+, and the constant cps
is independent of x, ¢ and e. Moreover, if lim supy_,o, A~ 7?¥()\) < oo, then [, is bounded
above by a positive constant independent of A, and we can let [ be a constant. Il

6.3 Proof of theorem 2.3
We deduce from proposition 4.3 that for every A > 0,

pX [e—)\Xt(BE(O))] — o—Ne[l—exp —AY(B:(0))]

Letting A — oo, we get
Py [X,(BL(0)) > 0] = 1 — o NeDeB0)>0]

Then theorem 2.3 is a consequence of proposition 6.1, proposition 6.2 and the inequality
(1Au)/2<1—e""<u.
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6.4 Proof of theorem 2.4

Before proving the theorem, we give a result on the intersection of the support of two inde-
pendent copies of Y. In the next lemma, we consider the product measure N;, ® N;, on the
space C(RT,W)2. The canonical process on this space is denoted by (W', W?2), and we write
YL, respectively Y2, for the measure-valued process associated with W1, respectively W?2.

Lemma 6.3. Assume pd > 4. Then for every t >0, s > 0, we have N, ® N, -a.e.
supp V' Nsupp Y2 = 0.

Proof. Fixt > 0and s > 0, and let § € (0,1 AVt A /s), y € R:. We can cover the ball
d

B (y) with less than [4\/&6*1} balls (Bs(y;),i € J) with radius 0 and centers y; belonging

to y + 6d—1/271. Use proposition 6.1 to write

Nazl &® Nwz [SUPP Y;fl N supp Ys2 N Bl (y) 7é m]
<D Ny [supp i N Bs(yi) # 0] Ny, [supp Yy N Bs(yi) # 0]
ieJ
< Z t—d/QS—d/Q |:5d—2/p l(é)] 2
icJ
< (ts)"Y2(av/a)tod=4P 1(5)2.

Since pd > 4, let § go to 0 to see that the left-hand side is 0. As this is true for every y € R?,
the desired result follows. O

Recall from section 4.1 the definition of the set G.

Lemma 6.4. Fore > 0,t> 0 set
he(t) = No [G N ([0,2] x B:(0)°) # 0] .
Then for every € > 0, limg g h.(t) = 0.

Proof. We start by making the simple observation that Ny-a.e. for every s > 0 such that
L¢, (W) = 0 we have (; = 0, and thus W, = 0. Indeed, if there would exist s such that
L¢,(Ws) = 0 and (, > 0, then the snake property would yield a rational s’ “close” to s
such that L;(Wy) = 0 for t € [0,0), for some # > 0. This is impossible since under Ny,
conditionally on (g, Wy is distributed as ¢ started at (0,0,0) and killed at time (.

Then let (t,) be a sequence decreasing to 0, and let A, = {G N ([0,t,] x B:(0)°) # 0}.
Thanks to the remark in section 4.1, we have Ny [4,] < co. We claim that Ny [ﬂn>1 An} =0.
In fact, on the event (,~; A, # 0, the definition of G yields a sequence (s,) in [0, 0] such
that

L, (W) <t, and W,, € B-(0)".

We can extract from the sequence (s,) a subsequence converging to s«. By the continuity
of the mappings s — L¢, (W) and s — Wy, we get that L, (Ws,) =0 and Wy € B.(0)¢,
which contradicts the beginning of the proof.
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Since the function h. is monotone increasing and h.(t,) = Ny[4,], the statement of lemma
6.4 follows from the fact that N [ﬂn>1 An} =0. O

Proof of theorem 2.4. We adapt an argument of Perkins ([22], p.1041). Let us fix ¢ > 0
and § € (0,t). By combining the Markov property of X at time ¢ — § and proposition 4.3,
we obtain that the distribution of X; under P, is the same as the law of >, ; Y5(W?),
where conditionally on X; 5, 3. ; 0y is a Poisson measure on C(R",W) with intensity
[ Xi—s5(dy)Ny[]. With a slight abuse of notation, we may assume that the point measure
>ics Ys(W?) is also defined under P;X. It follows from lemma 6.3 and properties of Poisson
measures that a.s. for every ¢ # j,

supp Ys(W*) N supp Ys(W7) = 0.

For € > 0, let U, denote the event “supp X; is contained in a finite union of disjoint com-
pact sets with diameter less than €”. It is easy to check that U; is measurable. Furthermore,
by the previous observations, and denoting by %; the common starting point of the paths W7,

PX[U.] > Py [Vi € I, diam (supp Y;(W?)) < €]
> IP’X [Vi € I,supp Y(;(Wi) C BE/Q(yi)]

=EX [exp /Xt 5(dy)Ny [supp Y5 N BE/Q( )¢ £ 0]
= IE,),( [exp —(Xt—5,1)Ny[supp Y5 N BE/Q ]
> B [exp —h./2(6)(Xi—5,1)] .

We can now let § go to 0, using lemma 6.4, to conclude that ;X [U.] = 1. Since this holds for
every € > 0, we conclude that supp X; is totally disconnected Pf -a.8. O

7 Absolute continuity of the superprocess in the Brownian
case and in the symmetric a-stable case

In this section we prove theorem 2.5. In fact, it is enough to prove the theorem for a finite
measure p with support in [m,m] C (0,00). The construction of the Brownian snake W
associated with the process & = (ft,Lt,q/gt) is performed as in section 4, following the
general results of [3] (see section 4 and hypothesis (H) therein). In fact only the spatial
motion I' has to be modified. However the processes ¢t — I'y(Wy) and s — Ws are no longer
continuous. The construction of the measure L! in section 4.2 remain valid and we can still
define the exit measure by the formula

(Vi) = /OU Q(W,)dLL.

Proposition 4.2 remains also valid.
Let v € My. Let >, dyi be a Poisson measure on C(R", W) with intensity [ v(dz)N,[-].
The process

Xg=v, Xp=> VW), for t>0,



is a (y*, ¥)-superprocess (see [3]). Moreover, a.s. the collection ((Y;(W?),s > m),i € I) has
finitely many non zero terms. Then theorem 2.5 is a consequence of the next proposition.

Proposition 7.1. Let y a finite measure on [m, m] C (0,00) and q € [0,1) such that
//,u(dt)u(ds) |t — |77 < oo

If g + aq > d, then for every z € RY, N, -a.e. the measure [ w(dt)Yy is absolutely continuous
I

with respect to Lebesgue measure.

We shall now give a proof of this proposition. The arguments are very similar to section
5.2.
Proof. Thanks to theorem 7.15 from [24], it is sufficient to prove that Ny-a.e. [ pu(dt)Y;(dy)-
a.e.

! (y’/u(dt) Yt> . 1{liminf2"d/ﬂ(dt)Yt(Bgn(y)) = 00} -

n— 00

Let K = {s € supp p; [ p(dt) |t — s|7? < co}. Notice that p(K¢) = 0. Therefore it is enough

to verify that for sg € K,
N, [/YSO(dz) F (z,/,u(dt) Y})] =0, (21)

Thanks to proposition 4.2, we get

N, [ / Vi (dy) F (y, / (dt) Yt)]

_ / B2 (dw)E [F (w / N,y (du, W) / 1(d) Lgucry o) Yt(W)>]. (22)

Conditioning on Sy = o (Sy(w),0 < v < sp), we shall prove that P5°-a.s.,

U =E° |E| lim inf 2" / Noy(du, dW) / By ry () Yi(W) (By o (10))

n— 00

S[)] < 00.

:

To this end, we use Fatou’s lemma to get
U < lim inf 24 E50 []E [/Nw(du,dW) / p(dt) Ly <ry () Ye (W) (BQn(zb))]

n—00
|

_ Cw
= lim inf 2% E2° [/M(dt)4/0 du 1y <ry(w)} Nuw) [Ye (Ba=n (¥))],—p

n—0o0
|

y:"r‘slo} )

_ Ssg=NSt— _
= 41lim inf 2" E20 [ / 1u(dt) /0 du Pl [t € By (y)],_p

n— 00

:4liminf2nd/,u dt / dSy Ey |Pye |y, € Ba-n(y
im in @l . [Pas, (7 € Byn ()]
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We used the formula for the intensity of A, in the first equality, then formula (5) in the
second one, and finally the change of variables u = S,/ in the last one. We have

K, [HD’YS/ [%ﬁoiu’ € By-n (y)] = ga(2_n, So+1— 2u'),

y=7§‘0]

where gqo(r,t) = Po [|7{*| < r]. Since sp € K and 3 + aq > d, we can apply lemma 8.1 below
with k = d, and we get U < 4C);, < oo P$0-a.s. Formula (22) then gives (21), which completes
the proof of the proposition. O

8 Appendix

Let v* be a symmetric a-stable process in R? as in section 2. Let the function g, be defined
on R* x (0,00) by

ga(r,t) = Py [lyf] < 1] = Py [0l < rt™/7]

Since the law of the random variable {* has a continuous density with respect to Lebesgue
measure on RY, there exists a constant c,, such that gq(r,t) < co [L A7%% %] on (r,t) €
Rt x (0,00). Hence we have also gq (r, 1) < cor?t=%/ for every 6 € [0, d]. Let u be a non zero
finite measure with support in [m,m] C (0,00). Let s¢ € supp p, and ¢ € [0,1) such that

/u(dt) lso —t] ! < o0
Let S be a subordinator as in section 3.

Lemma 8.1. Let s € [0,d], such that k < a(q+1/p). Then P50 (dw)-a.s. there exists a finite
constant Cy, depending on w only through (S,(w),0 < v < sg), such that for every r < 1:

/u(dt) / Ga(r,so +t —2u) dS, < Cyr".
[0,50At)
Proof. Let x € [0,d], such that xk < a(q + 1/p). Let 6 € (0,1) small enough such that

k< alqg+ % —0) and Kk # a(% —6). Recall the upper bound go(r,t) < cort—"/®. The lemma,
will be proved as soon as we can verify that P5°-a.s.

/,u(dt) / [so + & — 2u]~*/* dS,, < co. (23)
[0,s0At)

By lemma 3.2 3., we can find P$0-a.s. a (random) constant ¢ € (0,m/2), such that for every
u € [so — ¢, 50),

Sso— — Su < [s0 — u]% -,

In order to bound the left-hand side of (23), we first observe that
(so—e)At
/ u(dt) / (50 + £ — 2u]"/% dS, < (1, 1)e="/*Sm.
0
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Consider the case u € [(so —€) At,s0 At). If t # 59 or ¢ = 0, an integration by parts gives

/ [so +t — 2u] ~*/* dS,
[(so—e)At,soAt)

= [Stsont)— — S((so_eynn)] [80 +t — 2((so — &) At)] /@
2% So/At
+ — [80 +t— 2u]—1—n/a [S(so/\t)— - Su] du.
Q@ J(sg—e)At
Now for u € [(sg —€) At,s9 At), we have

=

D=

S(so/\t)f — 8y < Ssp— — Su < (50 —u)

Thus the integral f(i%/i)/\t[so +t— 2“]_1_K/a[5(so/\t)_ — Sy]du is bounded above by
Sso/At B B 7§+£ s ' .
/ [so +1— 2u]7175+% =0 < C'lso — 1| P if k> 2 ad,
(so—e)At C it k< % — ad,

where the constant C' is independent of ¢ € [m,m]. Notice that p({sp}) > 0 implies ¢ = 0.
Thus by combining the previous estimates, we see that the left-hand side of (23) is bounded
above by

250 [ u(dt) |so—t) TP 0 i k>
250, 1) if kK<

— ad,

2, 1)e " S + {
— ad.

DR DR

This quantity is finite by the assumption [ p(dt) |sp —¢| ¢ < oo and the choice of §. The
lemma follows. g
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