
SOME PROPERTIES OF THE RANGE OF SUPER-BROWNIAN MOTIONJEAN-FRANÇOIS DELMASAbstract. We consider a super-Brownian motion X. Its canonical measures can be stud-ied through the path-valued process called the Brownian snake. We obtain the limitingbehavior of the volume of the "-neighborhood for the range of the Brownian snake, and as aconsequence we derive the analogous result for the range of super-Brownian motion and forthe support of the integrated super-Brownian excursion. Then we prove the support of Xtis capacity-equivalent to [0; 1]2 in Rd , d � 3, and the range of X, as well as the support ofthe integrated super-Brownian excursion are capacity-equivalent to [0; 1]4 in Rd , d � 5.IntroductionSuper-Brownian motion, denoted here by X = (Xt; t � 0), is a measure-valued processin Rd . It can be obtained as a limit of branching Brownian particle systems. We refer toDynkin [8] for such an approximation in a more general setting. Another way to study super-Brownian motion, is to use the path-valued process, called the Brownian snake, which wasintroduced by Le Gall [9, 12]. Furthermore this approach allows us to study also the integratedsuper-Brownian excursion (ISE). This process appears naturally when one consider the limit ofrescaled lattice trees in high dimension (see Derbez and Slade [4, 3]). For every bounded Borelset A � Rd , we denote by A" = �x 2 Rd ; d(x;A) � "	 and by jAj the Lebesgue measure of theset A. Recently Tribe [19] (see also Perkins [16]) proved a convergence result for the volumeof the "-neighborhood of the support at time t > 0, supp Xt, of super-Brownian motionin dimension d � 3. More precisely, Tribe showed that the quantity "2�d j(supp Xt)" \Ajconverges a.s. to a deterministic constant times R 1A(x)Xt(dx). Using results of Le Gall[11] on hitting probabilities for the Brownian snake, we give a similar result for the rangeof the Brownian snake. We then derive an analogous result (theorem 2.1) for the range ofsuper-Brownian motion after time t > 0, Rt(X) de�ned as the closure of [s�tsupp Xs. Moreprecisely, we show that there exists a positive constant C0 depending only on d such that forevery Borel set A � Rd , d � 4, for every t > 0, we have a.s.lim"!0'd(") jRt(X)" \Aj = C0 Z 1t ds Z 1A(z)Xs(dz);where '4(") = log(1=") and 'd(") = "4�d if d � 5. We also give a similar result for thesupport of ISE (corollary 2.4).1991 Mathematics Subject Classi�cation. 60G57, 60J80.Key words and phrases. Superprocesses, integrated super-Brownian excursion, measure valued process,Brownian snake, hitting probabilities, capacity-equivalence.The research was done at the École Nationale des Ponts et Chaussées and at MSRI, supported by NSFgrant DMS-9701755. 1



2 JEAN-FRANÇOIS DELMASPemantle and Peres [14] de�ned the notion of capacity-equivalence for two random Borelsets, and later Pemantle and al. [15] showed that the range of Brownian motion in Rd , d � 3, iscapacity-equivalent to [0; 1]2. As an application of the previous results , we show (proposition4.3) that a.s. on fXt 6= 0g, the set supp Xt � Rd , d � 3, is capacity-equivalent to [0; 1]2, andthat a.s. the range Rt(X) � Rd and the support of ISE for d � 5 are capacity-equivalent to[0; 1]4.Let us now describe more precisely the contents of the following sections. In section 1, werecall the de�nition of the path-valued process W = (Ws; s � 0) called the Brownian snake.We denote by �s the lifetime of the path Ws. We recall the links between the Brownian snake,super-Brownian motion and ISE.In section 1.3, we introduce the main tools concerning the Brownian snake. In particular,we consider T(x;") the hitting time for the Brownian snake of �B(x; "), the closed ball withcenter x and radius ":T(x;") = inf �s � 0;9t 2 [0; �s];Ws(t) 2 �B(x; ")	 :The function u"(x) = N0 �T(x;") <1�, where N0 is the excursion measure of the Browniansnake away from the trivial path 0, is the maximal nonnegative solution of �u = 4u2 onRdn �B(0; ") (see also Dynkin [7]). The study of jR(W )" \Aj = RA dx 1fT(x;")<1g, whereR(W ) is the range of the Brownian snake, relies on the explicit law of the �rst hitting path�WT(x;") ; �T(x;")� under the excursion measure. This law has been computed by Le Gall [11, 13].It is closely related to the law of the process (x"t ; 0 � t � � "), de�ned as the unique strongsolution of dx"t = d�t + ru"(x"t � x)u"(x"t � x) dt; for 0 � t � � ";where � is a Brownian motion in Rd started at �0 = 0 and � " = inf ft � 0; jx"t � xj = "g.In section 2, we state the main result on the convergence of the volume of the "-neighbor-hood of Rt(X). The method of the proof is completely di�erent from the one used by Tribein [19]. It is derived from the convergence of the volume of the "-neighborhood of the rangeof the Brownian snake in L2(N0 ) (proposition 2.3).Section 3 is devoted to the proof of the latter convergence. The proof of the L2(N0) conver-gence is somewhat technical because we need a precise rate of convergence. The derivation ofthis estimate relies heavily on the explicit law of �WT(x;") ; �T(x;")� under N0 . It also dependson precise information on the behavior of the function u1 at in�nity. In particular we givethe asymptotic expansion of u1 at in�nity in section 5.In section 4 we prove the results on capacity-equivalence for the support and the range ofsuper-Brownian motion and for the support of ISE. Let f : [0;1) ! [0;1] be a decreasingfunction. We de�ne the energy of a Radon measure � on Rd with respect to the kernelf by: If(�) = RR f(jx� yj)�(dx)�(dy), and the capacity of a set � � Rd by capf (�) =�inf�(�)=1 If (�)��1. Following the terminology introduced in [14], we say that two sets �1and �2 are capacity-equivalent if there exist two positive constants c and C such that forevery kernel f , we have c capf (�1) � capf (�2) � C capf (�1) :



RANGE OF SUPER-BROWNIAN MOTION 3Proposition 4.3 states that a.s. the set supp Xt � Rd , d � 3, is capacity-equivalent to[0; 1]2, and that a.s. the range Rt(X) � Rd , as well as the support of ISE for d � 5 arecapacity-equivalent to [0; 1]4. The proof follows the method of [15].1. Preliminaries on the Brownian snake and super-Brownian motionWe �rst introduce some notation. We denote by (Mf ;Mf ) the space of all �nite measureson Rd , endowed with the topology of weak convergence. We denote by Bb+(Rp), respectivelyBb+(R+ � Rp), the set of all real bounded nonnegative measurable functions de�ned on Rp ,respectively on R+ � Rp . We also denote by B(Rp) the Borel �-�eld on Rp . For A 2 B(Rp),let Cl(A) = �A be the closure of A. For every measure � 2 Mf , and f 2 Bb+(Rd), we shallwrite R f(y)�(dy) = (�; f). We also denote by supp � the closed support of the measure �. IfS is a Polish space, we denote by C(I; S) the set of all continuous functions from I � R intoS.1.1. The Brownian snake. We recall some facts about the Brownian snake, a path-valuedMarkov process introduced by Le Gall [9, 12]. A stopped path is a continuous functionw : [0; �] ! Rd , where � = �(w) is called the lifetime of the path. We shall denote by ŵ theend point w(�). Let W be the space of all stopped paths in Rd . When equipped with themetric d(w;w0) = ���(w) � �(w0)��+sups�0 ��w(s ^ �(w))� w0(s ^ �(w0))��;the space W is a Polish space.Let w 2 W and a; b � 0, such that a � b^ �(w). There exists a unique probability measureon W denoted by Qwa;b(dw0) such that:(i) �(w0) = b, Qwa;b(dw0)-a.s.(ii) w0(t) = w(t) for every 0 � t � a, Qwa;b(dw0)-a.s.(iii) The law of (w0(t+ a); 0 � t � b� a) under Qwa;b(dw0) is the law of Brownian motion inRd started at w(a) and stopped at time b� a.We shall also consider Qwa;b(dw0) as a probability on the space C([0; b];Rd ). We set Wx =fw 2 W; w(0) = xg for x 2 Rd . Let w 2 Wx. We restate theorem 1.1 from [9]:Theorem 1.1 (Le Gall). There exists a continuous strong Markov process with values inWx,W = (Ws; s � 0), whose law is characterized by the following two properties.(i) The lifetime process � = ��s = �(Ws); s � 0� is a re�ecting Brownian motion in R+ .(ii) Conditionally given (�s; s � 0), the process (Ws; s � 0) is a time-inhomogeneous contin-uous Markov process, whose transition kernel between times s and s0 � s isPs;s0(w; dw0) = Qwm(s;s0);�s0 (dw0);where m(s; s0) := infr2[s;s0] �r.From now on we shall consider the canonical realization of the process W de�ned on thespace C(R+ ;Wx). The law of W started at w is denoted by Ew. We will use the followingconsequence of (ii): outside a Ew-negligible set, for every s0 > s, one has Ws(t) = Ws0(t) forevery t 2 [0;m(s; s0)]. We shall write E�w for the law of the process W killed when its lifetimereaches zero. The distribution of W under E�w can be characterized as in theorem 1.1, except



4 JEAN-FRANÇOIS DELMASthat its lifetime process is distributed as a linear Brownian motion killed at its �rst hittingtime of f0g. The state space for (W; E�w) is the space W�x = Wx [ @, where @ is a cemeterypoint. The trivial path x such that �(x) = 0, x(0) = x is clearly a regular point for the process(W; Ew). Following [2] chapter 3, we can consider the excursion measure, Nx , outside fxg.The distribution of W under Nx can be characterized as in theorem 1.1, except that nowthe lifetime process � is distributed according to Itô measure of positive excursions of linearBrownian motion. We normalize Nx so that, for every " > 0,Nx �sups�0 �s > "� = 12" :The Brownian snake enjoys a scaling property: if � > 0, the law of the process W (�)s (t) =��1W�4s(�2t) under Nx is ��2N��1x.We recall the strong Markov property for the snake under Nx (see [12]). Let T be a stoppingtime of the natural �ltration FW of the process W . Assume T > 0 Nx -a.e., and let F , Hnonnegative measurable functionals on C(R+ ;W�x) such that F is FWT measurable. Then if �denotes the usual shift operator, we haveNx [T <1;F � H � �T ] = Nx �T <1;F � E�WT [H]� :Let � = inf fs > 0; �s = 0g denote the duration of the excursion of � under Nx . The rangeR = R(W ) of W is de�ned under Nx byR = fWs(t); 0 � t � �s; 0 � s � �g :We also have Nx -a.e., R = nŴs; 0 � s � �o.For every nonnegative measurable function F on W�x, we haveNx �Z �0 F (Ws; �s)ds� = Z 10 Ex �F (�[0;t]; t)� dt;where �[0;t] is under Px the restriction to [0; t] of a Brownian motion in Rd started at �0 = x.Now consider under Nx the continuous version �lts; t > 0; s � 0� of the local time of � at levelt and time s. We de�ne a measure valued process Y on Rd by setting for every t > 0, forevery ' 2 Bb+(Rd ), (Yt; ') = Z �0 dlts '(Ŵs):We shall sometimes write Yt(W ) to recall that Yt is a function of the Brownian snake. From thejoint continuity of the local time and the continuity of the map s 7! Ŵs, we get that Nx -a.e.,the process Y is continuous on (0;1) for the Prohorov distance on Mf . Let ' 2 Bb+(Rd). Wede�ne on R+�Rd the function v(t; x) = Nx [1� exp�(Yt; ')], if t > 0, and v(0; x) = '(x). Wewill write v(t) for the function v(t; �). We recall that the function v is the unique nonnegativemeasurable solution of the integral functional equationv(t) + 2Z t0 ds Ps �v(t� s)2� = J(t) t � 0;(1)where J(t; x) = Pt['](x), and (Pt; t � 0) is the Brownian semi-group in Rd . A few otherremarks on the solution of (1) are presented in section 6 below.



RANGE OF SUPER-BROWNIAN MOTION 51.2. Super-Brownian motion and ISE. Let us now recall the de�nition of super-Brownianmotion and its connection with the Brownian snake. The second part of the next theorem islemma 4.1 from [6]. Let � 2Mf .Theorem 1.2. There exists a continuous strong Markov process X = (Xs; s � 0) de�ned onthe canonical space C(R+ ;Mf ), whose law is characterized by the two following propertiesunder PX� .(i) X0 = �, PX� -a.s.(ii) For every ' 2 Bb+(Rd ), t � s > 0, we haveEX� [exp [�(Xt; ')] j �(Xu; 0 � u � s)] = exp [�(Xs; v(t� s))];where the function v is the unique nonnegative solution of (1) with J(t) = Pt['].Furthermore, for every integer m � 1, tm > � � � > t1 � 0, '1; : : : ; 'm 2 Bb+(Rd), we haveEX� 24exp24� Xfi;ti�tg(Xt�ti ; 'i)3535 = exp [�(�; v(t))];(2)where v is the unique nonnegative solution to the integral equation (1) with right-hand sideJ(t) =Pfi;ti�tg Pt�ti ['i].Theorem 1.3 (Le Gall [9, 12]). Let Pi2I �W i be a Poisson measure on C(R+ ;W) with in-tensity R �(dx)Nx [�], then the process Z de�ned by Z0 = � and Zt =Pi2I Yt(W i) if t > 0, isdistributed according to PX� .We deduce from the normalization of Nx that Nx [Yt 6= 0] = 1=2t <1. This implies that forevery t > 0, there is only a �nite number of indices i 2 I such that the process (Ys(W i); s � t)is nonzero.We now recall the connection between ISE and Brownian snake. There exists a uniquecollection �N(r)0 ; r > 0� of probability measure on C(R+ ;W�0 ) such that:1. For every r > 0, N(r)0 [� = r] = 1.2. For every � > 0, r > 0, F , nonnegative measurable functional on C(R+ ;W�0 ),N(r)0 hF (W (�))i = N(��4 r)0 [F (W )] :3. For every nonnegative measurable functional F on C(R+ ;W�0 ),N0 [F ] = 1p2� Z 10 dr r�3=2N(r)0 [F ]:(3)The measurability of the mapping r 7! N(r)0 [F ] follows from the scaling property 2. UnderN(1)0 , the distribution of W is characterized as in theorem 1.1, except that the lifetime processis distributed according to the normalized Itô measure. The law of the ISE is the law of thecontinuous tree associated to p2W , under N(1)0 (see corollary 4 in [10] and [1]). In particularthe law of the support of ISE is the law of p2R under N(1)0 , where we set �A = fx;��1x 2 Ag.



6 JEAN-FRANÇOIS DELMAS1.3. Hitting probabilities for the Brownian snake. We now recall a few results from[11]. Let w 2 W [ C(R+ ;Rd ), we introduce the �rst hitting time of A 2 B(Rd ):�A(w) = inf ft � 0;w(t) 2 Ag ;with the usual convention inf ; =1. We omit w when there is no risk of confusion. Considerthe Brownian snake W , and setT(y;") = inf �s � 0;9t 2 [0; �s];Ws(t) 2 �B(y; ")	 ;where B(y; ") is the open ball in Rd centered at y with radius " > 0, and �B(y; ") its closure.We know from [12] that the function de�ned on Rdn �B(0; "),u"(y) := N0 �T(y;") <1� = N0 �R\ �B(y; ") 6= ;� = N�y �R\ �B(0; ") 6= ;� ;is the maximal nonnegative solution on Rdn �B(0; ") of�u = 4u2:This result was �rst proved in a more general setting by Dynkin [7] in terms of superprocesses.The function u" is strictly positive on Rdn �B(0; "). For every y0 2 @B(0; "), we havelimy2 �B(0;")c;y!y0 u"(y) =1:Scaling and symmetry arguments show that for every y 2 Rdn �B(0; "),u"(y) = "�2u1� jyj" � ;(4)where the function u1(r), r 2 (1;1) is the maximal nonnegative solution on (1;1) ofu001(r) + d� 1r u01(r) = 4u21(r):It is easy to see that the function u1 is decreasing. In section 5 we give the asymptoticexpansion of u1 at in�nity.We give the following result on the probability of the event �T(y;") <1	 (see lemma 2.1of [11]). Assume x0 62 �B(y; "). Then Nx0 -a.e. for every T � 0, we haveE�WT �T(y;") <1� = 2Z �T^�B(y;")(WT )0 dt u"(WT (t)� y)) e[�2 R t0 u"(WT (s)�y)ds](5) = 1� exp"�2Z �T^�B(y;")(WT )0 u"(WT (s)� y)ds#:Let x0; x 2 Rd . We will now describe the law of WT(x;") under Nx0 [� j T(x;") < 1]. Firstof all we denote by � a Brownian motion in Rd started at x0 under Px0 . Assume x0 62�B(x; "). Corollary 2.3 from [11] ensures that there exists Px0-a.s. a unique continuous processx" = (x"t ; 0 � t � � ") taking values in Rd such that for every � 2 (0; jx� x0j �"), for everyt � � "� = inf fs � 0; jx"s � xj � "+ �g,x"t = �t + Z t0 ru"(x"s � x)u"(x"s � x) ds;



RANGE OF SUPER-BROWNIAN MOTION 7furthermore, Px0-a.s. � " = lim�!0 � "� < 1 and jx"�" � xj = ". We also recall that thanks toGirsanov's theorem, we have for every nonnegative measurable function F on C([0; t];Rd)Ex0 h� " > t;F �x"[0;t]�i= Ex0 ��B(x;")(�) > t;F ��[0;t]� u"(�t � x)u"(x0 � x) exp ��2Z t0 u"(�s � x)ds�� ;where x"[0;t] and �[0;t] are the restriction of x" and � to [0; t]. The law of x" under Px0 can beinterpreted as a probability measure on W�x0 . Consider the closed setA = nw 2 W�x0 ; � �B(x;")(w) <1o :It has been proved in [11] (corollary 2.3) that its capacitary measure with respect to theBrownian snake with initial point x0 is exactly u"(x0 � x) times the law of x" under Px0 . Itis not hard to check however that the capacitary measure can be interpreted as the hittingdistribution under Nx0 . This means that for every nonnegative measurable function F onW�x0 , we have Nx0 hT(x;") <1;F (WT(x;") ; �T(x;"))i = u"(x0 � x)Ex0 [F (x"; � ")] :This result was given by Le Gall [13]. This is proved in a way similar to the classical in-terpretation of the capacitary measure as a last exit distribution, see e.g. Port and Stone[17].Hence, we deduce from the above equations that for every nonnegative measurable functionF on C([0; t];Rd ), we have(6) Nx0 hT(x;") <1; �T(x;") > t;F �(WT(x;")(s); s 2 [0; t])�i= Ex0 ��B(x;") > t;F ��[0;t]�u"(�t � x) exp ��2Z t0 u"(�s � x)ds�� :Finally we shall use the following inequality, that can be derived from the Feynman-Kacformula (use the fact that u" solves �u = 4u"u)u"(x) � 2E 0 �Z �B(x;")0 dt u"(�t � x)2 exp ��4Z t0 u"(�s � x)ds�� :(7)There is in fact equality in (7) (see the remark on page 293 of [11]).2. A property of the range of super-Brownian motionFor A 2 B(Rd), " > 0, we set A" := �x 2 Rd ; d(x;A) � "	, with d(x;A) = inf fjx� yj; y 2 Ag.We will write jAj for the Lebesgue measure of A. We also setC0 = a02�d=2�([d� 2]=2)�1;where the constant a0 is de�ned in lemma 5.1 (see also the remark below the lemma). We setRt(X) = Cl �Ss�t supp Xs�. Let 'd(") = "4�d if d � 5 and '4(") = log(1=") for " > 0.



8 JEAN-FRANÇOIS DELMASTheorem 2.1. Let � 2Mf . For every Borel set A � Rd , d � 4, for every t > 0, PX� -a.s.lim"!0'd(") jRt(X)" \Aj = C0 Z 1t ds (Xs;1A):(8)If there exists � < 4 such that lim"!0 "��d j(supp �)"j = 0 then (8) holds with t = 0.Let K a compact subset of Rd . We consider the measure �(K) de�ned by �(K)(A) =jK \Aj. Since the set Rt(X) is compact for t > 0, the theorem implies that a.s. the sequenceof measures ('d(")�(Rt(X)"); " > 0) converges weakly to C0 R1t ds (Xs;1A).Let us recall the main theorem of [19] (see also [16]).Theorem 2.2 (Tribe). Let A a bounded Borel set in Rd , d � 3. Fix t > 0 and � 2Mf . Thenthere exists a positive constant �0 depending only on d such thatlim"!0 "2�d j(supp Xt)" \Aj = �0(Xt;1A);where the convergence holds PX� -a.s. and in L2(PX� ).We shall deduce theorem 2.1 from the next proposition on the range of the Brownian snake,whose proof will be given in the next section. For � 2 (0; 1=d), we set hd;�(") = "1�� if d � 5and h4;�(") = log(1=")�1=� for " 2 (0; 1). For short we will write hd for hd;�.Proposition 2.3. Let d � 4. For every � 2 (0; 1=d) and every R0 > 0, there exists a constant� = �(�) > 0 and "0 > 0 such that for every " 2 (0; "0], for every x0 with jx0j � R0, andevery Borel set A � �B(0; R0), we have����Nx0 �'d(") ��R(W )" \A \ �B(x0; hd("))c���C0 Z 10 ds (Ys;1A)����� � hd(")�=2;and Nx0 "�'d(") ��R(W )" \A \ �B(x0; hd("))c���C0 Z 10 ds (Ys;1A)�2# � hd(")�:Remark. We have trivially B(x0; ") � R(W )", Nx0 -a.e. Since Nx0 is an in�nite measure,Nx0 [jR(W )" \B(x0; �)j] = 1 for every "; � > 0. This is the reason why we consider A \�B(x0; hd("))c rather than A in the previous proposition.We �rst give a consequence of this proposition.Corollary 2.4. Let d � 4. For every Borel set A � Rd , Nx0 -a.e., we havelim"!0'd(") jR(W )" \Aj = C0 Z 10 ds (Ys;1A):The results holds N(1)0 -a.s. if j@Aj = 0.Proof of corollary 2.4. Since Nx0 -a.e. the range R(W ) is bounded, we only need to considera bounded Borel set A. Choose R0 so that A � B(0; R0) and �x � 2 (0; 1=d). Let � > 0be �xed as in proposition 2.3. Let "n such that hd("n) = n�2=� for n � 1. Using the Borel-Cantelli lemma and the second upper bound of proposition 2.3, we get that the sequence



RANGE OF SUPER-BROWNIAN MOTION 9('d("n) jR(W )"n \Aj; n � 1) converges Nx0 -a.e. to C0 R10 ds (Ys;1A). But for "0 � ", sinceR(W )"0 � R(W )", we have'd("0) ���R(W )"0 \A��� � 'd(") jR(W )" \Aj'd("0)='d("):A monotonicity argument using the fact that 'd("n+1)='d("n) converges to 1, completes theproof of the �rst part.The above result implies that N0 -a.e. the sequence of measures ('d(")�(R(W )"); " > 0)converges weakly to C0 R10 ds Ys. Using (3) we see this convergence also holds dr-a.e. N(r)0 -a.s. By the scaling property the Brownian snake and the family (N(r)0 ; r > 0), we get thisconvergence holds N(1)0 -a.s. Thus we have for every Borel set A � Rd , N(1)0 -a.s.C0 Z 10 ds (Ys;1Int(A)) � lim inf"!0 'd(") jR(W )" \Aj� lim sup"!0 'd(") jR(W )" \Aj � C0 Z 10 ds (Ys;1 �A);where Int(A) denotes the interior of A. To prove the second part of the corollary we just needto check that if j@Aj = 0 then R10 ds (Ys;1Int(A)) = R10 ds (Ys;1 �A). It is enough to prove thatjAj = 0 implies R10 ds (Ys;1A) = 0 N(1)0 -a.s. Conditioning on the lifetime process, we getN(1)0 �Z 10 ds (Ys;1A)� = N(1)0 �Z 10 dt 1A(Ŵt)� = Z 10 dt N(1)0 [P�t [1A](0)] :This is equal to zero if jAj = 0. This ends the proof of the second part of the corollary. �Remark. As a byproduct of the proof we get that Nx0 -a.e. and N(1)0 -a.s. the sequence ofmeasures ('d(")�(R(W )"); " > 0) converges weakly to C0 R10 ds Ys.We �rst state some straightforward consequences of (4) and lemma 5.1. We say that "0 > 0satis�es the condition (C) if "��0 � 4=3 if d � 5 or log(1="0) � 4 log(2=�)=� if d = 4. Ford = 4 this implies that for " 2 (0; "0), h4(")=" � 4=3 andlog(log(1="))=[� log(1=")] � 1=2:(9)For d � 4, � 2 (0; 1=d), there exists a constant b1 such that for every " satisfying (C),x 62 B(0; hd(")) we have u"(x) � b0'd(")�1 jxj2�d;(10) u"(x) � 'd(")�1 jxj2�d ha0 + b1hd(")�=2i :(11)For jxj > ", we haveu"(x) � a0'd(")�1 jxj2�d if d � 5;(12) u"(x) � a0'4(")�1 jxj�2 [1 + log(2 jxj)= log(1=")]�1 if d = 4:(13)We will also often use the following inequality for " satisfying (C): 'd(")hd(")d � hd(")3.Proof of theorem 2.1. Recall that for every t > 0, PX� a.s. the set Rt(X) is bounded. Thuswe only need to consider a bounded Borel set A. Thanks to the Markov property of X at time



10 JEAN-FRANÇOIS DELMASt and theorem 2.2 it is clearly enough to prove the second part of theorem 2.1. Let � 2 Mfand � < 4 such that lim"!0 "��d j(supp �)"j = 0. For short we write a.s. for PX� -a.s.First step. Recall we can write for every t > 0, Xt = Pi2I Yt(W i), where Pi2I �W i isa Poisson measure on C(R+ ;W) with intensity measure R �(dx)Nx [�]. We let xi0 denote thestarting point of the Brownian snake W i (i.e. xi0 = W i0(0)). Notice that a.s. for every i 2 I,xi0 2 supp �, which is bounded thanks to the hypothesis on supp �. Fix � 2 (0; 1=d) suchthat d � � � (d � 4)=(1 � �) (and � < 4 � � if d = 4). Fix R0 such that supp � � B(0; R0).Let � and "0 < 1 be chosen as in proposition 2.3. We notice that for every bounded Borel setA � B(0; R0), 'd(") jR0(X)" \Aj �Xi2I V"(W i) + 'd(") ���A \ (supp �)hd(")���;where V"(W i) = 'd(") ��R(W i)" \A \ �B(xi0; hd("))c�� :We set V0(W i) = C0 R10 ds (Ys(W i);1A). We use the second moment formula for a Poissonmeasure to get:EX� 24"Xi2I V"(W i)�Xi2I V0(W i)#235 = Z �(dx)Nx h[V"(W )� V0(W )]2i+ �Z �(dx)Nx [V"(W )� V0(W )]�2 :We deduce from proposition 2.3 that for every " 2 (0; "0],EX� 24"Xi2I V"(W i)�Xi2I V0(W i)#235 � [(�;1) + (�;1)2]hd(")�:Notice the hypothesis on supp � and � imply that lim"!0 'd(") ��(supp �)hd(")�� = 0. Argumentssimilar to those used in the �rst part of the proof of corollary 2.4 show then a.s.lim"!0Xi2I V"(W i) =Xi2I V0(W i):Notice we have Pi2I V0(W i) = C0 R10 ds (Xs;1A). Using the above remark on supp �, wededuce that a.s. lim sup"!0 'd(") jR0(X)" \Aj � C0 Z 10 ds (Xs;1A):Second step. To get a lower bound, consider an increasing sequence (Ep; p � 1) of measur-able subsets of E = C(R+ ;W) such that Sp�1Ep = E and R �(dx)Nx [Ep] = �p < 1. (Forinstance we can take Ep = �W ; sups�0 �s � 1=p	.) Then a.s. the set Ip = �i 2 I;W i 2 Ep	is �nite. We have'd(") jR0(X)" \Aj �Xi2Ip V"(W i)� X(i;j)2I2p ; i 6=jU"(W i;W j);



RANGE OF SUPER-BROWNIAN MOTION 11whereU"(W i;W j) = 'd(") ���R(W i)" \R(W j)" \A \ �B(xi0; hd("))c \ �B(xj0; hd("))c���= 'd(")ZA\ �B(xi0;hd("))c\ �B(xj0;hd("))c dy 1fT(y;")(W i)<1g1fT(y;")(W j)<1g:Arguments similar to those of the �rst step show that a.s.lim"!0Xi2Ip V"(W i) = Xi2Ip V0(W i) = Xi2IpC0 Z 10 ds (Ys(W i);1A):Now conditionally on the cardinality of Ip, the Brownian snakes (W i; i 2 Ip) are independentand have the same law: �p = ��1p R �(dx)Nx [� \ Ep]. For two independent Brownian snakes(W;W 0) under �p 
 �p, we get using (10), that for " satisfying (C),�p 
 �p[U"(W;W 0)] � ��2p ZZ �(dx0)�(dx00)Nx0 
 Nx00 [U"(W;W 0)]� 'd(")��2p ZZ �(dx0)�(dx00)ZA\ �B(x0;hd("))c\ �B(x00;hd("))c dyhb0'd(")�1 jy � x0j2�di hb0'd(")�1 ��y � x00��2�di� 'd(")�1��2p (�;1)2b20 supx02Rd Z �B(0;R0)n �B(x0;hd(")) dy jy � x0j4�2d� � c'd(")�1hd(")4�d if d � 5c'4(")�1 log(log(1=")) if d = 4� chd(")�=2 if d � 4;where the constant c is independent of " and A. Using the Borel-Cantelli lemma for thesequence (hd("n) = n�4=�; n � 1), and a monotonicity argument, we get that �p 
 �p-a.s.lim"!0U"(W;W 0) = 0. Then since the cardinal of Ip is a.s. �nite, we get that for everyinteger p � 1, a.s., lim"!0 X(i;j)2I2p ; i 6=jU"(W i;W j) = 0:We deduce that for every integer p � 1, a.s.lim inf"!0 'd(") jR0(X)" \Aj �Xi2IpC0 Z 10 ds (Ys(W i);1A):We get the lower bound by letting p ! 1. This and the upper bound of the �rst step endsthe proof of the theorem. �3. Proof of proposition 2.3We shall use many times in the sequel the fact that R10 ds (Ys;1A) = R �0 ds 1A(Ŵs) Nx0 -a.e.We assume d � 4. We recall easy equalities, which can readily be deduced from the results of



12 JEAN-FRANÇOIS DELMASsection 6. For every A 2 B(Rd), we haveNx �Z �0 ds 1A(Ŵs)� = ZA dy G(x; y);(14)where G is the Green kernel in Rd : G(x; y) = 2�1��d=2�([d� 2]=2) jx� yj2�d, andNx "�Z �0 ds 1A(Ŵs)�2# = 4Z dy G(x; y) �ZA dz G(y; z)�2 :(15)We can also compute the �rst moment under E�w. For every A 2 B(Rd), w 2 W, we have with� = �(w),E�w �Z �0 ds 1A(Ŵs)� = 2Z �0 dt Nw(t) �Z �0 ds 1A(Ŵs)� = 2Z �0 dtZA dy G(w(t); y):(16)Thanks to the space invariance of the law of the Brownian snake, we shall only consider thecase x0 = 0 and A � �B(0; R0), for R0 �xed. We �x � 2 (0; 1=d) and R0 > 1. Let "00 > 0satisfying (C). We consider " 2 (0; "00). In this section, we denote by c, c1; c2; : : : positiveconstants whose values depend only on d; � and R0. The value of c may vary from line toline. For short we shall write A" = A \ �B(0; hd("))c (not to be confused with A") and R forR(W ).We �rst consider the case d � 5. Notice thatN0 [jR" \A"j] = ZA" dx N0 �T(x;") <1� = ZA" dx u"(x):Thus we deduce from (12) and (11), that for " 2 (0; "00),a0"d�4 ZA dx jxj2�d�a0"d�4 ZB(0;"1��) dx jxj2�d� N0 [jR" \A"j] � "d�4[a0 + b1hd(")�=2]ZA dx jxj2�d :Therefore using also (14), we have����Nx0 �"4�d jR(W )" \A"j �C0 Z 10 ds (Ys;1A)����� � chd(")�=2:Thus we get the �rst bound of proposition 2.3 (take � < �=2 and "0 small enough). The proofis similar for d = 4 (use (13) instead of (12) and the fact that jxj is bounded by R0).Now we will prove the second bound. To this end we have to �nd an upper bound onI = N0 hjR" \A"j2i and a lower bound on J = N0 hjR" \A"j R �0 ds 1A(Ŵs)i.3.1. An upper bound on I. The term I can also be writtenI = ZZ A"�A" dx dy N0 �T(x;") <1;T(y;") <1� :



RANGE OF SUPER-BROWNIAN MOTION 13Consider the above integral as the sum of the integral over jx� yj � 2hd(") (denoted by I1)and the one over jx� yj > 2hd(") (denoted by I2). Using (10) we easily obtain an upperbound on I1: I1 � jB(0; 2hd("))j ZA" dx N0 �T(x;") <1�� chd(")d ZA" dx 'd(")�1b0 jxj2�d � c1'd(")�2hd(")3:Notice the event �T(x;") <1;T(y;") <1	 is a equal tonT(x;") <1;T(y;") � �T(x;") <1o [ nT(y;") <1;T(x;") � �T(y;") <1o ;where �t is the usual shift operator. By symmetry, we getI2 � 2ZZ A"�A" dx dy 1fjx�yj>2hd(")gN0 hT(x;") <1;T(y;") � �T(x;") <1i :(17)Using the strong Markov property of the Brownian snake under N0 at the stopping time T(x;")and (5), we see that the quantity N0 hT(x;") <1;T(y;") � �T(x;") <1i is equal toN0 "T(x;") <1; 2Z �T(x;")^�B(y;")(WT (x;"))0 dt u" �WT(x;")(t)� y� eh�2 R t0 u"�WT(x;")(s)�y�dsi# :Finally the law of the stopped path WT(x;") under N0 is given by (6). Thus the previousexpression is equal to2Z 10 dt E 0 h�B(x;") > t; �B(y;") > t;u"(�t � x)u"(�t � y) e[�2 R t0 ds [u"(�s�x)+u"(�s�y)]]i :We substitute this last expression for N0 hT(x;") <1;T(y;") � �T(x;") <1i in (17), and thendecompose the right-hand side of (17) in three terms by considering the integral in dxdyon the sets j�t � xj ^ j�t � yj > hd(") (integral I21), j�t � xj � hd(") (integral I22), andj�t � yj � hd(") (integral I23) (recall jx� yj > 2hd(")).An upper bound on I21. We shall need the following notation:I0 = 4a20 Z dz G(0; z) �ZA dx jz � xj2�d�2 :We use (11) to bound I21 above by: for " 2 (0; "00),4ZZ A"�A" dx dy 1fjx�yj>2hd(")g Z 10 dt E0h j�t � xj > hd("); j�t � yj > hd(");'d(")�2 j�t � xj2�d j�t � yj2�d �a0 + b1hd(")�=2�2 i� 4'd(")�2 ha20 + chd(")�=2i ZZ A�A dx dy Z dz G(0; z) jz � xj2�d jz � yj2�d� 'd(")�2I0 + c2'd(")�2hd(")�=2:



14 JEAN-FRANÇOIS DELMASAn upper bound on I22 and I23. By symmetry we have I22 = I23. Before getting anupper bound on I22, notice that j�t � xj � hd(") and jx� yj > 2hd(") imply j�t � yj > hd(").Furthermore thanks to (10), we getZA" dy 1fj�t�yj>hd(")gu"(�t � y) e�2 R t0 u"(�s�y)ds � ZA dy hb0'd(")�1 j�t � yj2�di� b0'd(")�1 ZB(0;R0) dy jyj2�d = c3'd(")�1:Thus the sum I22 + I23 is bounded above by8c3'd(")�1 ZA" dx Z 10 dt E 0 h�B(x;") > t;1fj�t�xj�hd(")gu"(�t � x) e�2 R t0 u"(�s�x)dsi :Using the Cauchy-Schwarz inequality and formula (7), we getI22 + I23 � 8c3'd(")�1 �ZA" dx Z 10 dt P0 [j�t � xj � hd(")]�1=2� �ZA" dx Z 10 dt E0 h�B(x;") > t;u"(�t � x)2 e�4 R t0 u"(�s�x)dsi�1=2� 8c3'd(")�1 �ZA dx Z dz G(0; z)1fjz�xj�hd(")g�1=2 �ZA" dx 2�1u"(x)�1=2 :Then thanks to (10), we get I22 + I23 � c4'd(")�3=2hd(")d=2 � c4'd(")�2hd(")3=2.Conclusion on the upper bound on I. By combining the previous results, we get ford � 4 I � c1'd(")�2hd(")3 + 'd(")�2I0 + c2'd(")�2hd(")�=2 + c4'd(")�2hd(")3=2:Thus we get 'd(")2I � I0 + c5hd(")�=2.3.2. A lower bound on J . We shall need the last hitting time of �B(x; ") under N0 for theBrownian snake: L(x;") = sup�s � 0;9t 2 [0; �s];Ws(t) 2 �B(x; ")	 :We then getJ = ZA" dx N0 �T(x;") <1;Z L(x;")0 ds 1A(Ŵs)�+ ZA" dx N0 "T(x;") <1;Z �T(x;") ds 1A(Ŵs)#� ZA" dx N0 "T(x;") <1;Z L(x;")T(x;") ds 1A(Ŵs)# :The time-reversal invariance property of the Itô measure and the characterization of theexcursion measure Nx readily imply that the latter itself enjoys the same invariance property.Thus the �rst two terms of the right-hand side are equal. We shall denote their sum by J1.Let J2 denote the third term.



RANGE OF SUPER-BROWNIAN MOTION 15A lower bound on J1. Let us use the strong Markov property of the Brownian snake attime T(x;"), then (16) and (6), to getJ1 = 2ZA" dx N0 �T(x;") <1; 2Z �T(x;")0 dt ZA dy G�WT(x;")(t); y��= 4ZA" dxZA dy Z 10 dt E0 h�B(x;") > t;G(�t; y)u"(�t � x) e�2 R t0 u"(�s�x)dsi :Fatou's lemma gives that lim inf"!0 'd(")J1 � J0, whereJ0 = 4a0 ZZ A�A dxdy Z dz G(0; z)G(z; y) jz � xj2�d :Unfortunately, we need an estimate on the rate of convergence. This requires some technicalcalculations. Notice that on f�B(x;hd("))(�) > tg, inequalities (12), (13) and (10) implya0'd(")�1Fd(�t � x) j�t � xj2�d � u"(�t � x) � b0'd(")�1 j�t � xj2�d;where Fd(z) = 1 if d � 5 and F4(z) = [1 + log(2 jzj)= log(1=")]�1. For short we write �t =2b0'd(")�1 R t0 j�s � xj2�d ds. Then 'd(")J1 is bounded below byJ 01 = 4a0 ZA"dxZAdy Z 10 dt E 0 h�B(x;hd(")) > t;G(�t; y) j�t � xj2�d Fd(�t � x) e��ti :In order to obtain an upper bound on jJ 01 � J0j, we have to �nd an upper bound onZZ A�A dxdy Z 10 dt E 0 hG(�t; y) j�t � xj2�d h1� 1A"(x)1f�B(x;hd("))>tgFd(�t � x) e��tii :Thus we shall decompose 1�1A"(x)1n�B(x;hd(")) > toFd(�t�x) e��t into a sum of four terms:[1� 1A"(x)] + 1A"(x) h1� 1f�B(x;hd("))>tgi+ 1A"(x)1f�B(x;hd("))>tg [1� Fd(�t � x)] + 1A"(x)1f�B(x;hd("))>tgFd(�t � x) �1� e��t� :We denote by J11, J12, J13 and J14 the corresponding integrals. The integralJ11 = ZAnA" dxZA dy Z 10 dt E0 hG(�t; y) j�t � xj2�diis easily bounded above byZB(0;hd(")) dx ZB(0;R0) dy Z dz G(0; z)G(z; y) jz � xj2�d � c6hd(")2:We bound J12 by applying the strong Markov property of Brownian motion at time �B(x;hd(")),J12 = ZA" dxZA dy Z 10 dt E 0 h�B(x;hd(")) � t;G(�t; y) j�t � xj2�di� ZA" dxZA dy E 0 ��B(x;hd(")) <1;Z dz G(��B(x;hd(")) ; z)G(z; y) jz � xj2�d� :



16 JEAN-FRANÇOIS DELMASAn easy calculation shows that there exists a constant c7 such that for every (x; x0) 2B(0; 2R0)�B(0; 2R0), jx� x0j � 1=2,ZB(0;R0) dy Z dz G(x0; z)G(z; y) jz � xj2�d � c7'd(��x0 � x��)Furthermore we have for every r 2 (0; 1),ZB(0;R0) dx P0 ��B(x;r) <1� = ZB(0;R0) dx "� rjxj�d�2 ^ 1# � crd�2:(18)We deduce from the previous remarks that if d � 5,J12 � chd(")4�d ZA" dx P0 ��B(x;hd(")) <1� � chd(")4�d+d�2 = chd(")2;and if d = 4, J12 � c log(1=hd("))hd(")2. Thus we get that for d � 4, J12 � c8hd(")3=2.If d � 5 then J13 = 0. For d = 4 thanks to (9) we have for jzj � h4("), j1� F4(z)j �2 jlog(2 jzj)j = log(1="). We deduce thatJ13 � log(1=")�1 ZZ A�Adxdy Z 10 dt E0 h�B(x;hd(")) > t;G(�t; y)2 jlog(2 j�t � xj)j j�t � xj�2i� c log(1=")�1 ZZ A�A dxdy Z dz G(0; z) jlog(2 jz � xj)j jz � xj�2G(z; y)� c log(1=")�1 � c9hd(")�:Notice �rst that thanks to (9), Fd(z) � 2 for jzj � hd("). We have, using the Markov propertyfor Brownian motion at time s,J14 � 2ZZ A�A dxdy Z 10 dtE 0"�B(x;hd(")) > t;G(�t; y) j�t � xj2�d 2b0'd(")�1 Z t0 j�s � xj2�d ds#� c'd(")�1 ZZ A�A dxdy Z 10 ds Z 10 dtE 0 hj�s � xj2�d E�s hj�t � xj > hd(");G(�t; y) j�t � xj2�dii� c'd(")�1M(d; hd("));whereM(d; ") = ZZ B(0;R0)2 dxdy ZZ dzdz0 G(0; z) jz � xj2�dG(z; z0)G(z0; y) ��z0 � x��2�d 1jz0�xj>":An easy computation shows there exists a constant c such that for " 2 (0; 1],M(d; ") � 8<: c if d 2 f4; 5g;c+ c log(1=") if d = 6;c"6�d if d � 7:(19)Thus we easily deduce that J14 � c10hd(")�.



RANGE OF SUPER-BROWNIAN MOTION 17We have 'd(")J1 � J0 � 4a0(J11 + J12 + J13 + J14). Putting together the previous results,we get for d � 4,'d(")J1 � J0 � 4a0[c6hd(")2 + c8hd(")3=2 + c9hd(")� + c10hd(")�] � J0 � c11hd(")� :An upper bound on J2. We will �rst recall the decomposition of the Brownian snakeunder E�w (see theorem 2.5 in [12]). We denote by (�i; �i), i 2 I, the excursion intervals of �above its minimum process (i.e. of the process (�t � infs2[0;t] �s) above 0) before � under E�w.For i 2 I the paths Ws; s 2 [�i; �i] coincide over [0; ��i ]. For every i 2 I, and s � 0 we setW is(t) = W(�i+s)^�i(t+ ��i), t 2 [0; �is] with �is = �(�i+s)^�i � ��i . Then W is is a stopped path(W is 2 W) with initial point W(�i+s)^�i(��i) = Ŵ�i = w(��i).Proposition 1 (Le Gall). The random measure Pi2I �(��i ;W i) is under E�w a Poisson pointmeasure on [0; �(w)]� C(R+ ;W) with intensity 2dt Nw(t) [�].The process (Pi2I 1f��i=tg�W i ; t 2 [0; �w]) is a Poisson point process with inhomogeneousintensity. We will now describe the law under E�WT(x;") of the �rst excursion (��i0 ;W i0)which hits the ball �B(x; "), that is, with evident notation, the excursion characterized byT(x;")(W i) = +1 if ��i < ��i0 and T(x;")(W i0) < +1. Notice �rst that under N0 [� j T(x;") <1], E�WT(x;") -a.s. there exist excursions W i which hit the ball �B(x; "). Indeed we have thanksto lemma 2.1 of [11] that N0 [: j T(x;") <1]-a.s.E�WT(x;") [9i 2 I; T(x;")(W i) <1] = 1� exp�2Z �T(x;")0 dt u"(WT(x;")(t)� x) = 1:Since the integral R r0 dt u"(WT(x;")(t) � x) is �nite for r < �T(x;") , we deduce there exists aunique �rst excursion (��i0 ;W i0) which hits �B(x; "). Classical arguments on Poisson pointprocess implies that the law of (��i0 ;W i0) is 21[0;�T(x;") )(t)dt NWT(x;") (t)[T(x;") < 1; �]. Weintroduce the random time M(x;") = inf �s > T(x;"); �s = m(T(x;"); L(x;"))	. It is clear fromthe de�nition of the excursion i0 that �i0 = M(x;") under E�WT(x;") . We will now express J2using the excursion i0. We haveJ2 = 2ZA" dx N0 "T(x;") <1;Z L(x;")M(x;") ds 1A(Ŵs)#= 2ZA" dx N0 "T(x;") <1; E�WT(x;") "Z L(x;")M(x;") ds 1A(Ŵs)##= 2ZA" dx N0 "T(x;") <1; E�WT(x;") "Z L(x;")(W i0 )�i0 ds 1A(Ŵ i0s )##= 4ZA" dx N0 �T(x;") <1;Z �T(x;")0 dt NWT(x;") (t) �T(x;") <1;Z L(x;")0 ds 1A(Ŵs)�� :We used the time reversal property of the Brownian snake for the �rst equality, then thestrong Markov property and at last the de�nition of the excursion i0 and its law. We will



18 JEAN-FRANÇOIS DELMASdistinguish according to �t � �B(x;hd("))	 (integral J21) and �t < �B(x;hd("))	 (integral J22).Notice that since x 2 A" we have �B(x;hd("))(WT(x;")) < �T(x;") N0 -a.e.We now bound J21 using (14).J21 = 4ZA" dx N0 "T(x;") <1;Z �T(x;")�B(x;hd(")) dt NWT(x;") (t) �T(x;") <1;Z L(x;")0 ds 1A(Ŵs)�#� 4ZA" dx N0 "T(x;") <1;Z �T(x;")�B(x;hd(")) dt NWT(x;") (t) �Z �0 ds 1A(Ŵs)�#= 4ZA" dx N0 "T(x;") <1;Z �T(x;")�B(x;hd(")) dt ZA dy G(WT(x;")(t); y)# :Now we use (6), the Cauchy-Schwarz inequality and (7) to getJ21 � 4ZA" dxZ 10 dt E 0 ��B(x;") > t � �B(x;hd("));ZA dy G(�t; y)u"(�t � x) e�2 R t0 u"(�r�x)dr�� 4 �2�1 ZA" dx u"(x)�1=2 "ZA" dxZ 10 dt E 0 "t � �B(x;hd("));�ZA dy G(�t; y)�2##1=2� c'd(")�1=2 "ZA" dx P0 ��B(x;hd(")) <1� supx02B(0;2R0)Z dz G(z; x0)�ZA dy G(z; y)�2#1=2� c'd(")�1=2hd(")(d�2)=2:We used the strong Markov property at time �B(x;hd(")) and (18) for the last two inequalities.This implies that J21 � c12'd(")�1hd(")1=2.Using the time reversal property of the Brownian snake, the strong Markov property attime T(x;") and (16) we getJ22 = 4ZA" dx N0"T(x;") <1;Z �B(x;hd("))0 dt NWT(x;") (t) "T(x;") <1;Z �T(x;") ds 1A(Ŵs)# #= 8ZA" dx N0"T(x;") <1;Z �B(x;hd("))0 dtNWT(x;") (t) �T(x;") <1;Z �T(x;")0 dsZA dy G(WT(x;")(s); y)� #:



RANGE OF SUPER-BROWNIAN MOTION 19We will distinguish according to �s � �B(x;hd("))	 (integral J23) and �s < �B(x;hd("))	 (integralJ24). We now bound J23. Let � and ~� denote two independent Brownian motions. We have
J23 = 8ZA" dx N0"T(x;") <1;Z �B(x;hd("))0 dtNWT(x;") (t) "T(x;") <1;Z �T(x;")�B(x;hd(")) dsZA dy G(WT(x;")(s); y)# #= 8ZA" dxZ 10 dt E 0"�B(x;hd(")) > t;u"(�t � x) e�2 R t0 u"(�r�x)dr Z 10 dsE�t ��B(x;") > s � �B(x;hd("));ZA dy G( ~�s; y)u"( ~�s � x) e�2 R s0 u"( ~�v�x)dv�#� c'd(")�1 ZA" dxZ 10 dt E0"�B(x;hd(")) > t; j�t � xj2�d�Z 10 ds E�t h�B(x;") > s;u"( ~�s � x)2 e�4 R s0 u"( ~�v�x)dvi�1=2"Z 10 ds E�t "s � �B(x;hd("));�ZA dy G( ~�s; y)�2##1=2 #� c'd(")�1 ZA" dx Z 10 dt E 0"�B(x;hd(")) > t; j�t � xj2�d �2�1u"(�t � x)�1=2"E�t "�B(x;hd(")) <1; E ~��B(x;hd (")) "Z 10 ds �ZA dy G( ~�s; y)�2###1=2 #� c'd(")�3=2 ZA" dx Z 10 dt E 0 h�B(x;hd(")) > t; j�t � xj(6�3d)=2 P�t ��B(x;hd(")) <1�1=2i" supx02B(0;2R0)Z dz0G(x0; z0)�ZA dy G(z0; y)�2#1=2� c'd(")�3=2 ZA" dx Zjz�xj�hd(") dz G(0; z) jz � xj(6�3d)=2 hd(")(d�2)=2 jz � xj(2�d)=2 :
We used (6) twice for the second equality, (10) and Cauchy-Schwarz inequality for the �rstinequality, (7) and the strong Markov property at time �B(x;hd(")) for the second and (18) forthe last. We easily deduce that J23 � c13'd(")�1hd(").



20 JEAN-FRANÇOIS DELMASFor J24 we have using (6) twice and (10) twice,J24 = 8ZA" dx N0"T(x;") <1;Z �B(x;hd("))0 dtNWT(x;") (t) �T(x;") <1;Z �B(x;hd("))0 dsZA dy G(WT(x;")(s); y)� #= 8ZA" dx Z 10 dtZ 10 ds E0"�B(x;hd(")) > t;u"(�t � x) e�2 R t0 u"(�r�x)drE�t ��B(x;hd(")) > s;ZA dy G( ~�s; y)u"( ~�s � x) e�2 R s0 u"( ~�v�x)dv�#� c'd(")�2 ZA" dx Z 10 dtZ 10 ds E0"�B(x;hd(")) > t; j�t � xj2�dE�t ��B(x;hd(")) > s;ZA dy G( ~�s; y) ��� ~�s � x���2�d�#� c'd(")�2M(d; hd(")):Using (19) we get J24 � c14'd(")�1hd(")�. As a conclusion we getJ2 � c12'd(")�1hd(")1=2 + c13'd(")�1hd(") + c14'd(")�1hd(")�:Conclusion on the lower bound on J .By combining the previous results, we get for d � 4,'d(")J � J0 � c11hd(")� � 'd(")J2 � J0 � c15hd(")�:3.3. End of the proof of proposition 2.3. We deduce from formula (15), thatJ0 = C0N0 "�Z �0 1A(Ŵs)ds�2# ; and I0 = C02N0 "�Z �0 1A(Ŵs)ds�2# :Thus we get from section 3.1 and 3.2 that for " small enoughN0 "�'d(") jR" \A"j �C0 Z �0 ds 1A(Ŵs)�2# � c5hd(")�=2 + 2c15hd(")�:Take � < �=2 and "0 small to get the second upper bound of proposition 2.3. �4. Capacity equivalence for the support and the range of XLet f : (0;1) ! [0;1) be a decreasing function. We put f(0) = limr#0 f(r) 2 [0;1].We de�ne the energy of a Radon measure � on Rd with respect to the kernel f by: If (�) =RR f(jx� yj)�(dx)�(dy), and the capacity of a set � 2 B(Rd ) bycapf (�) = � inf�(�)=1 If (�)��1 :



RANGE OF SUPER-BROWNIAN MOTION 21Following [14], we say that two sets �1 and �2 are capacity-equivalent if there exist twopositive constants c and C such that for every kernel f , we havec capf (�1) � capf (�2) � C capf (�1) :The next lemma is an immediate consequence of the remarks in [15] p.385.Lemma 4.1. Let � � Rd be a bounded Borel set. Suppose there exist two positive constantsc0 and  such that lim"!0 "�d j�"j = c0:Then there exists a constant C such that for every kernel f , we havecapf (�) � C �Z 10 f(r)r�1dr��1 :For every measure � 2Mf , we setS"(�) = ZZ �(dx)�(dy) p("2; x� y);where p is the Brownian transition density in Rd : p(t; x) = (2�t)�d=2 e� jxj2 =2t, (t; x) 2 (0;1)�Rd . The next lemma is also an immediate consequence of [15] (p.387).Lemma 4.2. Let � � Rd be a bounded Borel set. Suppose there exist two positive constantsc0 and  and a measure � 2Mf such that �(�c) = 0 andlim"!0 "d�S"(�) = c0:Then there exists a constant c such that for every kernel f , we havec �Z 10 f(r)r�1dr��1 � capf (�) :For example, for every integer p � d, we can consider the cube [0; 1]p as a subset of Rd ,and then we obviously havelim"!0 "p�d j([0; 1]p)"j = 2�(d�p)=2=�((d� p)=2);and if � is Lebesgue measure on [0; 1]p,lim"!0 "d�pS"(�) = (2�)(p�d)=2:Thus we deduce from lemma 4.1 and 4.2 that there exist two positive constants c0p, C 0p, suchthat for every kernel f ,c0p �Z 10 f(r)rp�1dr��1 � capf ([0; 1]p) � C 0p �Z 10 f(r)rp�1dr��1 :(20)We shall prove the following result on super-Brownian motion and ISE.Proposition 4.3. (i) Assume d � 3. Let t > 0, � 2 Mf . PX� -a.s. on fXt 6= 0g, the setsupp Xt is capacity-equivalent to [0; 1]2.



22 JEAN-FRANÇOIS DELMAS(ii) Assume d � 5. Let t > 0, � 2 Mf . PX� -a.s. on fXt 6= 0g, the set Rt(X) is capacity-equivalent to [0; 1]4. Furthermore, if there exists a positive number � < 4 such thatlim"!0 "��d j(supp �)"j = 0, then PX� -a.s. the set R0(X) is capacity-equivalent to [0; 1]4.(iii) Assume d � 5. The set Rt(W ) is capacity-equivalent to [0; 1]4 N(1)0 -a.s.Proof of proposition 4.3 (i). Let d � 3. It is well-known that for t > 0, PX� -a.s. the setsupp Xt is bounded. Thus, thanks to theorem 2.2, PX� -a.s., we havelim"!0 "2�d j(supp Xt)"j = �0(Xt;1):Now apply lemma 4.1 to � = supp Xt, with  = 2 and take p = 2 in (20). We get thatPX� -a.s., on fXt 6= 0g, there exists a (random) constant C1 > 0, such that for every kernel f ,capf (supp Xt) � C1 capf ([0; 1]2) :For the second part of (i), we use lemma 4.4 below. Recall notation Yt from section 1.1.Lemma 4.4. Fix t > 0 and x 2 Rd , d � 3. Then we havelim"!0 "d�2(2�)d=2S"(Yt) = 4d� 2(Yt;1);where the convergence holds Nx-a.e. and in L2(Nx).Let us explain how the proof is completed using lemma 4.4. Thanks to lemma 4.2, the abovelemma and (20) imply that Nx -a.e. on fYt 6= 0g, there exists a positive constant c1 such thatfor every kernel f , capf (supp Yt) � c1 capf ([0; 1]2) :Now remember that for t > 0, under PX� , we can write Xt = Pi2I Yt(W i), where Pi2I �W iis a Poisson measure on C(R+ ;W) with intensity R �(dx) Nx [�]. On fXt 6= 0g, there exists i0such that Yt(W i0) 6= 0. Then we have supp Yt(W i0) � supp Xt. Thus the previous lemmaentails that there exists a.s. a positive constant c1(W i0) such that for every kernel f ,capf (supp Xt) � capf (supp Yt(W i0)) � c1(W i0) capf ([0; 1]2)This completes the proof of (i). �Proof of proposition 4.3 (ii). Let d � 5. We argue as in the proof of (i) using theorem 2.1instead of theorem 2.2 and the following lemma instead of lemma 4.4.Lemma 4.5. Fix t � 0 and x 2 Rd , d � 5. Then we have for every T > t � 0,lim"!0 "d�4(2�)d=2S"�Z Tt ds Ys� = 16(d� 2)(d � 4) Z Tt ds (Ys;1);where the convergence holds Nx-a.e. and in L2(Nx). �Proof of proposition 4.3 (iii). Let d � 5. For the �rst part we argue as in the proof of(i) using the second part of corollary 2.4 instead of theorem 2.2. Notice that thanks to (3)and the scaling property of the family (N(r)0 ; r > 0), the convergence in lemma 4.5 also holds



RANGE OF SUPER-BROWNIAN MOTION 23N(1)0 -a.s. The second part of (iii) is then a direct consequence of lemma 4.2 (with � = R T0 ds Ysand  = 4) and (20) (with p = 4). �The proofs of lemma 4.4 and lemma 4.5 are very similar. We shall only prove the latter. Theformer uses the same techniques in a simpler way.Proof of lemma 4.5. We �rst want to show the convergence in L2(Nx). Fix T > t � 0.By standard monotone class arguments, we deduce from the results of section 6 an explicitexpression forNx �Z T0 � � � Z T0 ds1 : : : ds4 Z � � � Z Ys1(dx1) : : : Ys4(dx4)g(s1; : : : ; s4; x1; : : : ; x4)� ;where g is any measurable positive function on (R+)4 � (Rd)4. Specializing to the caseg(s1; : : : ; s4; x1; : : : ; x4) =Q4i=1 1[t;T ](si)p("2; x1 � x2)p("2; x3 � x4), we getNx "S"�Z Tt ds Ys�2#= 13 4!23 Z T0 dsZ dy p(s; x� y)(4Z T�s(t�s)+ ds1 Z dy1 p(s1; y � y1)Z T�s0 ds2Z dy2 p(s2; y � y2)Z T�s�s2(t�s�s2)+ ds3 Z dy3 p(s3; y2 � y3)Z T�s�s20 ds4Z dy4 p(s4; y2 � y4)Z T�s�s2�s4(t�s�s2�s4)+ ds5 Z dy5 p(s5; y4 � y5)Z T�s�s2�s4(t�s�s2�s4)+ ds6 Z dy6 p(s6; y4 � y6)[p("2; y1 � y3)p("2; y5 � y6) + p("2; y1 � y5)p("2; y3 � y6)+ p("2; y1 � y6)p("2; y3 � y5)]+ Z T�s0 ds7 Z dy7 p(s7; y � y7)Z T�s�s7(t�s�s7)+ ds8 Z dy8 p(s8; y7 � y8)Z T�s�s7(t�s�s7)+ ds9 Z dy9 p(s9; y7 � y9)Z T�s0 ds10 Z dy10 p(s10; y � y10)Z T�s�s10(t�s�s10)+ ds11 Z dy11 p(s11; y10 � y11)Z T�s�s10(t�s�s10)+ ds12 Z dy12 p(s12; y10 � y12)[p("2; y8 � y9)p("2; y11 � y12) + p("2; y8 � y11)p("2; y9 � y12)+ p("2; y8 � y12)p("2; y9 � y11)])



24 JEAN-FRANÇOIS DELMASWe write J1, J2, J3, J4, J5, and J6, respectively for the integrals corresponding to the in-tegrands p("2; y1 � y3)p("2; y5 � y6), p("2; y1 � y5)p("2; y3 � y6), p("2; y1 � y6)p("2; y3 � y5),p("2; y8�y9)p("2; y11�y12), p("2; y8�y11)p("2; y9�y12), and p("2; y8�y12)p("2; y9�y11) respec-tively. As we shall see the integral J4 gives the main contribution. Before proceeding to thecalculations, we give three useful bounds: for every positive real number s, "2 < 2�1(T�1^T ),we have for d � 5Z T0 �"2 + s+ r��d=2 dr � 2d� 2 �"2 + s�1�d=2 ;(21) Z T0 �"2 + s+ r�1�d=2 dr � 2d� 4 �"2 + s�2�d=2 ;(22) Z T0 �"2 + r�2�d=2 dr � HT (") := 8><>:2(d� 6)�1"6�d if d � 7;4 ln "�1 if d = 6;p6T if d = 5:(23)From now on, we assume that "2 < 2�1(T�1^T ) and also "2 ln "�1 < T if d = 6. Let us derivean upper bound on J1. By repeated applications of the Chapman-Kolmogorov identities, weget J1 � 28 Z T0 � � � Z T0 ds : : : ds6 Z dy p(s; x� y)Z dy1 p(s1; y � y1)Z dy2 p(s2; y � y2)Z dy3 p(s3; y2 � y3)Z dy4 p(s4; y2 � y4)Z dy5 p(s5; y4 � y5)Z dy6 p(s6; y4 � y6)p("2; y1 � y3)p("2; y5 � y6)= 28 Z T0 � � � Z T0 ds : : : ds6 p("2 + s1 + s2 + s3; 0)p("2 + s5 + s6; 0):We can apply (21), (22) and (23) to get:J1 � 28(2�)dT Z T0 ds1 4(d� 2)(d � 4)("2 + s1)2�d=2 4(d� 2)(d� 4)T"4�d� c1T 2"4�dHT (");where the constant c1 depends only on d. We can use the same method for J2:J2 � 28 Z T0 � � � Z T0 ds : : : ds6 Z dy p(s; x� y)Z dy1 p(s1; y � y1)Z dy2 p(s2; y � y2)Z dy3 p(s3; y2 � y3)Z dy4 p(s4; y2 � y4)Z dy5 p(s5; y4 � y5)Z dy6 p(s6; y4 � y6)p("2; y1 � y5)p("2; y3 � y6)= 28 Z T0 � � � Z T0 ds : : : ds6 Z dz p(s4; z)p("2 + s1 + s2 + s5; z)p("2 + s3 + s6; z);



RANGE OF SUPER-BROWNIAN MOTION 25where we made the change of variables z = y2�y4. Since p("2+s3+s6; z) � p("2+s3+s6; 0)and p("2 + s1 + s2 + s5; z) � p("2 + s1 + s2 + s5; 0) , we can argue as for J1 to get:J2 � 28 Z T0 � � � Z T0 ds : : : ds6 p("2 + s1 + s2 + s5; 0)p("2 + s3 + s6; 0):� c1T 2"4�dHT ("):By symmetry, we get J2 = J3. We want now to �nd an upper bound on J4. Using (21), (22)and (23) we get:J4 = 26 Z T0 dsZ dy p(s; x� y)" Z T�s0 ds7 Z T�s�s7(t�s�s7)+ ds8 Z T�s�s7(t�s�s7)+ ds9Z dy7 p(s7; y � y7)Z dy8 p(s8; y7 � y8)Z dy9 p(s9; y7 � y9)p("2; y8 � y9)#2= 26 Z T0 ds"Z T�s0 ds7 Z T�s�s7(t�s�s7)+ ds8 Z T�s�s7(t�s�s7)+ ds9 p("2 + s8 + s9; 0)#2� 26(2�)�d Z T0 ds"Z T�s0 ds7 4(d� 2)(d � 4) �"2 + 2(t� s� s7)+�2�d=2 #2= 210(2�)d [(d� 2)(d � 4)]2Z T0 ds""4�d[(T � s)� (t� s)+] + Z (t�s)+0 ds7 �"2 + 2(t� s� s7)+�2�d=2 #2� 210(2�)d [(d� 2)(d � 4)]2 Z T0 ds""4�d[(T � s) ^ (T � t)] + 2�1H2T (")#2� 210(2�)d � "4�d(d� 2)(d � 4)�2 �(T � t)33 + (T � t)2t�+ c2T 2"4�dHT (");where the constant c2 depends only on d. We now compute an upper bound on J5:J5 � 26 Z T0 � � � Z T0 ds : : : ds12 Z dy p(s; x� y)Z dy7 p(s7; y � y7)Z dy8 p(s8; y7 � y8)Z dy9 p(s9; y7 � y9)Z dy10 p(s10; y � y10)Z dy11 p(s11; y10 � y11)Z dy12 p(s12; y10 � y12)p("2; y8 � y11)p("2; y9 � y12)= 26 Z T0 � � � Z T0 ds : : : ds12 Z dz p(s7 + s10; z)p("2 + s8 + s11; z)p("2 + s9 + s12; z);



26 JEAN-FRANÇOIS DELMASwhere we made the change of variables z = y10�y7. Since p("2+s9+s12; z) � p("2+s9+s12; 0),and p("2 + s7 + s8 + s10 + s11; 0) � p("2 + s7 + s8 + s10; 0), we can argue as for J1, and get:J5 � c1T 2"4�dHT ("):By symmetry we get J6 = J5. Combining the previous bounds leads toNx "S"�Z t0 ds Ys�2# � 210(2�)d � "4�d(d� 2)(d � 4)�2 �(T � t)33 + (T � t)2t�+ c3T 2"4�dHT (");where the constant c3 depends only on d.We shall now �nd a lower bound for Nx hS"(R Tt ds Ys) R Tt ds (Ys;1)i. Using similar argu-ments as in the beginning of the proof, we getI :=Nx �S"�Z Tt ds Ys�Z Tt ds (Ys;1)�= 13 3!23 Z T0 dsZ dy p(s; x� y)Z T�s(t�s)+ ds1 Z dy1 p(s1; y � y1)Z T�s0 ds2 Z dy2 p(s2; y � y2)Z T�s�s2(t�s�s2)+ ds3 Z dy3 p(s3; y2 � y3)Z T�s�s2(t�s�s2)+ ds4Z dy4 p(s4; y2 � y4) �p("2; y1 � y3) + p("2; y1 � y4) + p("2; y3 � y4)� :Since we are looking for a lower bound, we restrict our attention to the term p("2; y3 � y4).We getI � 24 Z T0 dsZ T�s(t�s)+ ds1 Z T�s0 ds2 Z T�s�s2(t�s�s2)+ ds3 Z T�s�s2(t�s�s2)+ ds4 p("2 + s3 + s4; 0)= 24(2�)d=2 4(d� 2)(d� 4) Z T0 ds [(T � s) ^ (T � t)]Z T�s0 ds2 h�"2 + 2(t� s� s2)+�2�d=2 � 2 �"2 + (T � s� s2)�2�d=2i� 26(2�)d=2 1(d� 2)(d� 4) Z T0 ds [(T � s) ^ (T � t)] h"4�d(T � s� (t� s)+)� 2HT (")i� 26(2�)d=2 "4�d(d� 2)(d� 4) �(T � t)33 + (T � t)2t�� c4T 2HT (");where c4 depends only on d. Finally we deduce from section 6, with '(s) = 1[0;T�t](s), thatNx "�Z Tt ds (Ys;1)�2# = 4 � (T � t)33 + (T � t)2t� :



RANGE OF SUPER-BROWNIAN MOTION 27Combining the previous results, we get for " small enoughNx "�"d�4(2�)d=2S"�Z Tt ds Ys�� 24(d� 2)(d� 4) Z Tt ds (Ys;1)�2# � c5T 2"d�4HT (")� c6T 2";where c6 depends only on d. This gives the convergence in L2(Nx). Now S" �R Tt ds Ys�is monotone decreasing in " (cf lemma 5.3 in [15]). The Nx -a.e. convergence then followsfrom the previous estimate by an application of the Borel-Cantelli lemma and monotonicityarguments. �5. Some properties of the function u1We consider the function u1, which is the maximal solution on (1;1) of the non lineardi�erential equation u00(r) + d� 1r u0(r) = 4u(r)2:Lemma 5.1. There exist positive constants a0, b0 and b01, depending only on d, such thatlimr!1 rd�2u1(r) = a0 if d � 5; limr!1 r2 log(r) u1(r) = a0 = 1=2 if d = 4;furthermore for every r > 1,u1(r) � a0r2�d if d � 5; u1(r) � a0r�2 log(2r)�1 if d = 4;(24)and for every r � 4=3,u1(r) � b0r2�d if d � 5; u1(r) � b0[2r2 log(r)]�1 if d = 4;(25) u1(r) � a0r2�d + b01r6�2d if d � 5;(26) u1(r) � a0r�2 log(r)�1 + b01r�2 log(r)�2 log(log(r)) if d = 4:(27)For d � 5, we will see the constant a0 can be expressed as the radius of convergence of aseries. We will prove this lemma by giving the asymptotic expansion of u1 at 1.Lemma 5.2. If d � 5, we haveu1(r) = r2�d 1Xn=0 anr�n(d�4); r > 1;where a0 is as in the above lemma and the sequence (an) is given by the recurrence:an = 4n�(n� + 1)(d� 2)�2 nXk=0 akan�k�1; for n � 1and � = d� 4d� 2 .



28 JEAN-FRANÇOIS DELMASFor d = 4, we haveu1(r) = 1r2 � 12 log(r) +log(log(r))4 log(r)2 +O �log(r)�2�� at +1:We introduce the auxiliary functionz(t) = 4(d� 2)�2(d�1)=(d�2)t u1 "� td� 2�1=(d�2)# ; for t > d� 2:This function is a positive solution on (d� 2;1) ofy00(t) = t���2y(t)2;(28)Let � > 0 be �xed. Set s = t � d � 2 + �, ~z(s) = z(t) and �(s) = t���2. Then ~z solvesy00(s) = �(s)y(s)2, s � 0. We deduce from [18] p.132 case I (take � = ��� 2, � = 2) that thefunction ~z is decreasing for s � 0. Since � > 0 is arbitrary, we get that z itself (i.e. rd�2u1(r))is decreasing.Proof of lemma 5.2 in the case d � 5. We deduce from theorems 1.1 and 2.4 of [18] (see alsop.132 case 3, where a > 0 is implicit) that the limit q = limt!1 z(t) exists and is positive.Hence by integrating (28) twice from t to 1, we get for t > d� 2,z(t)� q = Z 1t (r � t)r���2z(r)2dr:(29)Now consider the sequence (qn; n � 0) de�ned by q0 = 1 and the recurrenceqn = 1n�(n� + 1) n�1Xk=0 qkqn�k�1; for n � 1:Clearly we have for every n � 0, qn � 2 [4=�]n n+1; where the sequence (n; n � 1) isintroduced in the appendix. Thus the radius of convergence R of the seriesP qnsn is boundedfrom below by �=4. The power series z0(t) = P qnqn+1t��n is convergent and even C1 asa function of t for t > t1 = [q=R]1=�. This power series also solves (29) for t > t1. Thesame arguments as in the proof of the Gronwall lemma show that equation (29) possesses aunique solution bounded in a neighborhood of in�nity. Thus the functions z and z0 agree fort > t1 _ (d� 2).Since limt#d�2 z(t) = +1, we get t1 � d � 2. Let us now prove that t1 � d � 2. Since qand the coe�cients qn are positive, it is enough to prove that for any integer p, z(t) � vp(t)for t 2 (d � 2;+1), where vp(t) = Ppn=0 qnqn+1t��n, and then let p goes to in�nity to gett1 � d � 2. We consider the function f = z � vp de�ned on (d � 2;+1). We have f > 0at least over I = (d � 2; d � 2 + �) [ (��1;+1), for � small. It is easy to check, using thede�nition of qn that f 00(t) � t���2[z(t) + vp(t)]f(t). Hence f is convex when f is positive.If there exists t such that f(t) � 0, then since f is positive on I, there exists a last zerot0 of f that is f(t0) = 0 and f > 0 on J = (t0;+1). Now f is convex and positive onJ , and f(t0) = limt!+1 f(t) = 0. This is absurd. Thus we deduce that f is positive over(d � 2;+1). As we noticed this in turn implies that t1 = d � 2. The radius of convergence



RANGE OF SUPER-BROWNIAN MOTION 29of the series P qnsn is q(d� 2)�� and we have for t > d� 2z(t) = 1Xn=0 qnqn+1t�n�:Thus we get with obvious notation for r > 1,u1(r) = 4�1(d� 2)d=(d�2)r2�d 1Xn=0 qnqn+1(d� 2)�n(d�4)=(d�2)r�n(d�4)= r2�d 1Xn=0 anr�n(d�4):The recurrence formula for (an) is a consequence of the recurrence formula for (qn). �Proof of lemma 5.1 (d � 5). From the above expression we easily deduce (25) and (26).Since the real numbers (an; n � 0) are positive, (24) follows easily. Notice that 4(d � 2)�2a0is the radius of convergence of the series P qnsn. �Proof of lemma 5.2 in the case d = 4. We write f(t) s g(t) at 0+ when the real function fand g are positive or negative on I = (0; 0 + ") for some " > 0 and limt2I;t!0 f(t)=g(t) = 1.We also write f(t) s g(t) at 1 when f(1=t) s g(1=t) at 0+. Since z � 0, we know from [18]p.133 case 4, that z(t) s log(t)�1 at 1. We deduce from (28) that z is convex positive andlimt!+1 z(t) = 0. This implies z0(t) is negative on (2;1). We also have z00(t) s [t log(t)]�2at 1. By integration, we get z0(t) s t�1 log(t)�2 at 1. We now consider the functionw(s) = z(es) which solves w00 � w0 = w2 on (log 2;1). Notice that the function w is positivedecreasing and w0 is negative. We also have w(s) s s�1, w0(s) s �s�2 and w00(s) = o(s�2)at 1. Thus the function de�ned on (0;1) byp(w(s)) = w0(s); for s 2 (log 2;1);is well de�ned and even of class C1, and p0(w(s)) = w00(s)=w0(s). Thus the function p can beextended as a C1 function on [0;1) by setting p(0) = 0 and p0(0) = 0. Furthermore it solvesp(w)p0(w) � p(w) = w2 on [0;1):We also have p(w) s �w2 at 0+. We consider the sequence (�n; n � 2) de�ned by �2 = 1and the recurrence �n = n�1Xk=2 k�k�n�k+1; for n � 3:The radius of convergence of the series P(�1)n+1�nwn is 0, nevertheless we will prove this isthe asymptotic expansion of p at 0+. We set Hn(w) =Pnk=2(�1)k+1�kwk for n � 2. We nowprove by induction that p(w) = Hn(w)+hn(w), where hn(w) = o(wn) at 0+. This is true forn = 2. Let us assume it is true at stage n. Let gn;�(w) = (1 � �)(�1)n�n+1wn+1 � hn(w).We easily haveg0n;�(w)p(w) + gn;�(w)[H 0n(w) � 1] = � �(�1)n�n+1wn+1 + o(wn+1);(�1)n+1�n+2wn+2 + o(wn+2); if � = 0:



30 JEAN-FRANÇOIS DELMASLet us assume n is even. For � = 0, the above right hand side is negative on (0; "], for " smallenough. Since p is negative and [H 0n(w)� 1] < 0 on [0; "], for " small, we see that gn;0(w) < 0implies g0n;0(w) � 0. As gn;0(0) = 0, we get by contradiction that gn;0 � 0 on [0; "]. Thisimplies hn(w) � �n+1wn+1. Similar arguments for � > 0 implies that gn;� � 0 on [0; "�] for"� > 0 small enough. Since this holds for any � > 0 and since hn(w) � �n+1wn+1 for w smallenough, we deduce that hn+1(w) = hn(w) � �n+1wn+1 = o(wn+1). If n is odd the proof issimilar.From the de�nition of p, we then have w0(s) = Hn(w(s)) + O(w(s)n+1) at 1. For n = 3this gives w0(s) = �w(s)2 + 2w(s)3 + O(w(s)4) at 1. Since w(s) s s�1 at +1, we deduceby integration that 1w(s) �2 logw(s) +O(1) = s at in�nity:Standard arguments yields w(s) = s�1 + 2s�2 log(s) +O(s�2) at in�nity. Thus we haveu1(r) = 1r2 � 12 log(r) +log(log(r))4 log(r)2 +O �log(r)�2�� at +1:Notice the previous calculation can be continued to give an asymptotic expansion of u1. �Proof of lemma 5.1 (d = 4). The inequalities (25) and (27) follow easily from the aboveequality. We will now prove that for every r > 1, u1(r) � [2r2 log(2r)]�1. We consider thefunction f(r) = u1(r) � [2r2 log(2r)]�1. The function f is positive at least over (1; 1 + �) \(��1;1) for � small. Let us assume that f achieves its minimum at r0 and that f(r0) � 0.Then we have r0 2 [1 + �; ��1], f 0(r0) = 0 and f 00(r0) � 0. An easy computation givesf 00(r) = 4f(r) �u1(r) + 12r2 log(2r)�� 3r f 0(r)� 12r4(log(2r))3 :Evaluation at r = r0 implies that f 00(r0) < 0. This contradicts the assumption. Hence f ispositive, that is we get (24) for d = 4. �6. AppendixFor the reader's convenience, we recall some explicit formulas for moments of the Browniansnake. These formulas are well-known, at least in the context of superprocesses (see e.g.Dynkin [5]). We can compute the Laplace functional of R t0 ds(Ys; '(s)) for ' 2 Bb+(R+ �Rd).To this end start from the �nite dimensional Laplace functional (2) with ti = i=m, 'i =1m '(i=m) for a nonnegative continuous function ' with compact support on R+�Rd . Thanksto the continuity of the process X, by a suitable passage to the limit, we get for � 2MfEX� �exp ��Z t0 (Xt�s; '(s))ds�� = exp [�(�; v(t))];where v is a nonnegative solution of (1) with right-hand side J(t; x) = R t0 ds Pt�s['(s)](x).This can be extended by monotone class arguments to any ' 2 Bb+(R+�Rd ). The uniquenessof the solution is easily established using arguments similar to the classical Gronwall lemma.Then we get v(t; x) = Nx h1� exp h� R t0 ds (Yt�s; '(s))ii, thanks to theorem 1.3.



RANGE OF SUPER-BROWNIAN MOTION 31Now we introduce an auxiliary power series. Let us consider the analytic function f(�) =1�p1� � for j�j < 1. It is easy to check that for j�j < 1, we havef(�) = 1Xn=1 n�n;where the sequence (n; n � 1) is de�ned by 1 = 1=2 and the recurrencen = 12 n�1Xk=1 kn�k for n � 2(use the fact that f solves 2f(�) = f(�)2+�). Now let T > 0 and J a nonnegative measurablefunction on R+ � Rd , such that MT = sup[0;T ]�Rd J(t; x) < 1. We de�ne the family ofmeasurable functions (hn; n � 1) on R+ � Rd , by the initial conditionh1(t) = J(t);and the recurrencehn(t) = 2 n�1Xk=1 Z t0 ds Ps [hk(t� s)hn�k(t� s)] for n � 2:(30)We clearly have for every n � 1,sup[0;T ]�Rd jhnj � [4T ]n�1[2MT ]nn:Thus the power series w(�; t) = P(�1)n+1�nhn(t) is normally convergent on [0; T ] � Rd forj�j < [8TMT ]�1. And it clearly solves the integral equation on [0; T ]� Rdw(t) + 2Z t0 ds Ps �w(t� s)2� = �J(t):(31)To get the uniqueness of the solution to the previous integral equation, use arguments similarto Gronwall's lemma. Finally we can compute the moments for the process Y under Nx .Indeed, let ' 2 Bb+(R+ � Rd). We have shown that for � > 0, the function v�(t; x) =Nx h1� exp�� R t0 (Yt�s; '(s))dsi is the unique solution to (31) on R+ � Rd with J(t; x) =R t0 ds Ps['(t � s)](x). Thus for � � 0 small enough, we have v�(t) = w(�; t). Then from theseries expansion for w(�; t), we get for every integer n � 1Nx ��Z t0 ds (Yt�s; '(s))�n� = n!hn(t; x);where the functions hn are de�ned by h1(t) = R t0 ds Ps['(t� s)], and the recurrence (30). Inthe same way it can be shown that for every ' 2 Bb+(Rd ), for every t � 0, n � 1,Nx [(Yt; ')n] = n!hn(t; x);where the functions are de�ned by h1(t) = Pt['], and the recurrence (30).Acknowledgements. I would like to thank my advisor J.-F. Le Gall for his help and advices.
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