CHARACTERIZATION OF G-REGULARITY FOR SUPER-BROWNIAN
MOTION AND CONSEQUENCES FOR PARABOLIC PARTIAL
DIFFERENTIAL EQUATIONS

JEAN-FRANCOIS DELMAS AND JEAN-STEPHANE DHERSIN

ABsTRACT. We give a characterization of G-regularity for super-Brownian motion and
the Brownian snake. More precisely, we define a capacity on E = (0,00) X R?, which
is not invariant by translation. We then prove that the measure of hitting a Borel set
A C E for the graph of the Brownian snake excursion starting at (0,0) is comparable,
up to multiplicative constants, to its capacity. This implies that super-Brownian motion
started at time 0 at the Dirac mass do hits immediately A (that is (0, 0) is G-regular for
A°) if and only if its capacity is infinite. As a direct consequence, if Q C E is a domain
such that (0,0) € 0Q, we give a necessary and sufficient condition for the existence on
@ of a positive solution of dyu + Au = 2u® which blows up at (0,0). We also give an
estimate of the hitting probabilities for the support of super-Brownian motion at fixed
time. We prove that if d > 2, the support of super-Brownian motion is intersection-
equivalent to the range of Brownian motion.

1. INTRODUCTION

The purpose of this paper is to give a characterization of the so called G-regularity for
super-Brownian motion introduced by Dynkin [8]. Thus we say that a point (r,z) € Rx R?
is G-regular for a Borel set A C RxR? if a.s. the graph of a super-Brownian motion started
at time r with the Dirac mass at  immediately intersects A€, the complementary of A.
In case A = @ is an open set, this is equivalent to the existence of nonnegative solutions
of the equation % + %Au = 2u? on the open set @, which blow up at (r,z) € 9Q (cf [8]).

Let E = (0,00) x R?. We prove that (0,0) is G-regular for a Borel set A C R x R? if
and only if the capacity of A°N FE is infinite, for the following capacity: for any Borel set
A CE,

cap(4') = [inf I(v)] *, where

I(v) = //E dsdy p(s,y) <//E v(dt, d@%)z :
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and p denotes the heat kernel:

_ [ @rtyi2emRF2 i (t,2) € B,
p(t,2) {0 if (t,2) € (—o00,0] x RZ,

(|| denotes the Euclidean norm on R?.) The infimum is taken over all probability measures
v on E such that v(A’) = 1. Notice this capacity is not invariant by translation in time
or space. This capacity arises naturally when one consider the Brownian snake, a useful
tool to study super-Brownian motion. Indeed, using potential theory of symmetric Markov
process, I(v) can be viewed as the energy, with respect to the Brownian snake, of a certain
probability measure (see section 4 for more details).

We extend a result due to Dhersin and Le Gall [6] where the authors study G-regularity
of (0,0) for sets Q@ = {(s,y) € E; |y| < +/sh(s)}, where h is a positive decreasing function
defined on (0,00). Our result can also be viewed as a parabolic extension of the Wiener’s
test proved by Dhersin and Le Gall |5] in an elliptic setting.

The proof of our results relies on the Brownian snake introduced by Le Gall. We only give
definition and some properties for completeness in this paper, and refer to Le Gall [10, 12]
for a detailed presentation. We will use time inhomogeneous notations.

Let (r,z) € R x R? be a fixed point. We denote by W,z the set of all stopped paths in
R? started at = at time 7. An element w of W, ; is a continuous mapping w : [r,(] — R?
such that w(r) = z, and ¢ = () [r o0) is called its lifetime. We denote by w the end
point w(¢). With the metric d(w, w') ‘C + SUpg>, ‘w 5 A Cwy) — W (s A Q(Wz))‘,
the space W, ; is a Polish space. The Browman snake started at z at tlme r is a continuous
strong Markov process W = (Ws, s > 0) with values in W, ,, whose law is characterized
by the following two properties.

(i) The lifetime process ( = (g‘s = ((wy)s S 2 0) is a reflecting Brownian motion in [r, 00).
(ii) Conditionally given ((s,s > 0), the process (Ws,s > 0) is a time-inhomogeneous con-
tinuous Markov process, such that for s’ > s:
- Wy (t) = Wi(t) for r <t <m(s,s) = in vEss Cv
- Wy (m(s,s') +t) — Wy (m(s,s')),0 <t <y —m(s,s")) is a Brownian motion in
R? independent of Wj.

From now on we shall consider the canonical realization of the process W defined on the
space @ = C(RT, W, ), and denote by &, the law of W started at w € W, ;. The trivial
path x, such that () =r, x;(r) = z is clearly a regular point for the process (W, &,,).
We denote by N, , the excursion measure outside {x,}, normalized by: for every € > 0,

Nz |:Sup<s > 6+7':| = i -
’ 5>0 2¢e
Notice that N, ; is an infinite measure. The distribution of W under N, ; can be character-
ized as above, except that now the lifetime process ( is distributed according to the It6 mea-
sure of excursions of linear reflecting Brownian motion in [r,00). Let 0 = inf {s > 0;(; = r}
denote the duration of the excursion of ¢ under N, ;. The graph G* of W is defined under
Nz by

g*Z{(t,Ws(t));r<t§§s,0<s<a}:{(Cs, 2); 0<s<a}
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We write G*(W) for G* when there is a risk of confusion.

Let us now explain the connection between the Brownian snake and super-Brownian
motion. First of all, we introduce some notations. We denote by (M, M) the space of
all finite measures on R?, endowed with the topology of weak convergence. We denote by
B(S) (resp. By, (S)) the set of all real measurable (resp. bounded nonnegative measurable)
functions defined on a polish space S. We also denote by B(S) the Borel o-field on S. For
every measure v € My, and f € By (R?), we shall write (v, f) = [ f(y)v(dy). We also
denote by supp v the closed support of the measure v.

We consider under N, ; the continuous version (lg, t>r,s> 0) of the local time of ¢ at
level ¢ and time s, and define the measure valued process Y on R? by setting for every
t > r, for every ¢ € By (R?),

(Vi) = / "Il (V).

Let W, = UweRd W,z Let pu be a finite measure on RY, and Eiel Oy be a Poisson measure
on C(R",W,) with intensity [ p(dz)N, [-]. Then the process X defined by X, = p and
Xy =3c; Ye(W?) if t > r, is a super-Brownian motion started at time r at p (see [10, 12]).
We shall denote by P,., (resp. P, ;) the law of the super-Brownian motion started at time
r at p (resp. at the Dirac mass d,). We deduce from the normalization of N, , that, for
every t > r, N, [Y; # 0] = 1/2(t —r) < oo. This implies that there is only a finite number
of indices i € I such that G*(W?) N [t,00) x R? is non empty for ¢ > r.
We consider the graph of X:

G(x)=J | ULt} xsupp X, | = Jg" (W),

e>r \t>e icl

where A denotes the closure of A. A set A C B(RxR?) is called G-polar if P, ;[G(X)NA #
] = 0 for every (r,z) € R x R?. From Poisson measure theory, we have

P, [G(X)NA#] =1—e Nreld"nazi]

Hence A is G-polar if and only if N, ;[G* N A # 0] = 0 for all (r,z) € R x RY. We consider
the capacity defined by: for A € B(R x R?),
-1

2
cap’(A) = |inf // dsdy (// v(dt,dz)p(t — s,z —y) e—(t—s)/2> ’
RxRd (s,00) x R4

where the infimum is taken over all probability measures v on R x R? such that v(A) = 1.
Dynkin proved (see Theorem 3.2 in [7]) that A € B(R x R?) is G-polar if and only if
cap’(A) = 0. (We have cap’(A) =0 & N, ,[G* N A # 0] =0 for all (r,z) € R x RL) It is
easy to check that if A C E is a compact set then

cap’(A) = 0 < cap(A) = 0.

This can be extended to all Borel subsets of E since the two capacities are inner capacities
(see Meyers [13]). In fact it seems more relevant to consider the capacity cap to characterize
G-regularity, as we shall see. We have the following quantitative theorem.
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Theorem 1. There exists a constant Cy such that for any A € B(E),
41 cap(A) < Nyo[G* N A # (] < Cycap(A).

The proof of Theorem 1 is split in two parts. In section 2, we introduce a capacity
associated with a weighted Sobolev space, which is equivalent to the capacity cap. In
section 3, using the connections between super-Brownian motion and partial differential
equations, we prove the upper bound with this new capacity, and hence for the capacity
cap. The lower bound is obtain in section 4, by using additive functionals of the Brownian
snake introduced in [5].

Now, for A € B(R x R?), we consider under P, , the random time

T4 = inf{t > r, ({t} x supp X;) N A # 0}.

Arguments similar to those of [5] yield that 74 is a stopping time for the natural filtration
of X completed the usual way. Thus we have P, (74 =) =1 or 0. Following Dynkin [8,
section I1-6], we say a point (r,z) € Rx R? is G-regular for A¢ if P, z-a.s. 74 = r. Let AT
denote the set of all points that are G-regular for A°. From the known path properties
of super-Brownian motion it is obvious that int(A) C A%" C A, where int(A) denotes the

interior of A. We set T4 = inf{s >0, (¢, W) € A}. Following [5] it is easy to deduce
from Theorem 1 the next result.

Proposition 2. Let A € B(R x R?). The following properties are equivalent:
1. (r,z) is G-regular for A;
2. Nz [6FNA# 0] = oo
3. &x,-a.s. Ty =0;
4. cap(A,; N E) = oo, where A, , = {(s,y); (s +r,y+z) € A}.

We can give a straightforward analytic consequence of Proposition 2 and the link between
super-Brownian motion and nonlinear differential equation.

Corollary 3. Let Q a domain in E such that (0,0) € 0Q. The following three conditions
are equivalent.

1. (0,0) is G-regular for Q ;

2. cap(Q°NE) =00 ;

3. There exists a nonnegative solution of % + %u =2u? in Q such that

lim u(s,y) = oo.
(5,9)—(0,0), (s,y)e@Q

The equivalence of assertions 1) and 3) is due to Dynkin |8, Theorem II.6.1]. The
equivalence of 1) and 2) is given by Proposition 2.

Finally, using Theorem 1 we give in section 5 an estimate of the hitting probability of
the support of X;. And we prove that in dimension d > 2, the support of super-Brownian
motion and the range of d-dimensional Brownian motion are intersection-equivalent.

2. EQUIVALENCE OF CAPACITIES FOR A WEIGHTED SOBOLEV SPACE

In this section, we introduce a new capacity, associated with a weighted Sobolev space,
which is equivalent to the capacity cap. This capacity will be very useful in the next section
to prove the upper bound for Theorem 1.
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If S is an open subset of R, we denote by C§°(S) the set of all functions of class C*>
defined on S with compact support. If f is a measurable function defined on S then

| floo = SupPges | f(s)]. We consider the Hilbert space L?(p) = {f € B(E); || [l < oo},

where || f|[2,) = [  dtde p(t, ) f(t,2)*.

Notice the kernel defined on E x E by k(t,z; s,y) = p(t—s,z—vy)p(t, ) "' is nonnegative
and lower semi-continuous. Thus we can introduce the operator A defined on the set of
nonnegative functions f € B(E) by:

Af)y=p 'p*(pf)] = //E dsdy k(-5 s,y)p(s,y) f(s,9),

where * denotes the usual convolution product on E. Furthermore, the function A(f) is
even lower semi-continuous (see |9, Lemma 2.2.1]).
We define the capacity Cap on E in the following way: if A C F, then

Cap(4) =inf {| /|2 />0, f € L*(p), A(f)>1 on A},

with the convention inf ) = co. Notice this capacity is not invariant by translation in time
or space. This capacity is an outer capacity (see Meyers [13, Theorem 1]). Moreover, it
coincides with the capacity cap on the analytic sets (see [13, Theorem 14]). Now, we want
to connect this capacity to an analytic capacity (see Baras and Pierre [3] for similar results
but with different norms). Therefore we consider the weighted Sobolev space Wp which is
the completion of C§°(£) with respect to the norm ||-||,, defined by

2
lol3 = llawl?, +Z||alogp ol +Z|| 2ol @€ CE(B),

with the usual notations Og(t, z) = 8—§(t,x), 0ig(t,x) = gg (t,z) for x = (21,--- ,24) € R?
and 8% = 0;0;. Notice the non zero constants do not belong to Wp. We can introduce the
outer capacity capp associated to Wp defined as follows. For any compact set K C E, we
set

capp(K) = inf {|l¢|}: v € C°(B), >0, > 1on K }
= inf{“go“%; v € Cy°(E), ¢ >0, ¢ > 1 on a neighborhood of K}
Then we set for any open set G C E,
(1) capp(G) =sup{capp(K); K C G, K compact},
and, for any analytic set A C F,
capp(A) = inf {capp(G); A C G, G open}.
Notice the definition is consistent (see [2] for example).

Proposition 4. There exists a constant C such that for any set A C F,
Cap(4) < capp(4) < C Cap(A).
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Proof. Since the two capacities are outer capacities, it is enough to consider open sets.
Now, using (1) and [13, Theorem 8|, we see it is enough to consider compact sets.

Let us introduce the operator H = 0; — % A. We consider a non empty compact set K C
E. Let ¢ € C§°(E) be such that ¢ >0 and ¢ > 1 on K. Notice that (in the distribution
sense) Hp = §( ), where d(g) is the Dirac mass at (0,0) € R x R%. Then we have
p* [H(pp)] = (Hp) * (pyp) = pp. The function f =p ' |H(pp)| = [H(p) — (Vlogp, Vi)]
is nonnegative and

A(f)=p '(p*|H(pp)|) = p ' (p = H(pp)) = .

Thus we have A(f) > 1 on K. We also have
1
17114y < 190 = 580 = (VIogp. Vo) | < el

Hence we have Cap(K) < ||¢||3,. The first inequality follows by taking a sequence (¢,,)
such that ||, ||3, converges to capp (K).

To prove the other inequality, let us consider a nonnegative function f; € L?(p), such
that A(f1) > 1 on K. Notice this implies || fi[[,) > 0. Let § > 0. It is easy to construct
a function ¢ € L?(p) such that ¢ > 0 on E and lellpy < 0l f1llpy- We set fa = fi1+e.
Since the function A(f2) is lower semi-continuous, the set {(¢,z) € E; A(f2) > 1} is open
and it also contains K. It is then obvious that for ¢’ > 0 small enough, if we set f3(¢,z) =
fo(t,2) 15 cyeg-1 |g)<or-1y for (¢, 2) € E, we get A(f3) > 1 on an open set containing K.
Let us introduce a nonnegative function h € C§°(E) such that [, h(t,z)dtdz = 1. For
0 > 0, we write hy(t,z) = 6~ 'h(t/0,1/0). Now using the uniform continuity of p on
[6'/2,00) x R?, it is easy to see that if f = hg* f3 , then A(f) > 1 on an open set containing
K for 0 small enough. The function f is nonnegative, belongs to C§°(£) and the function
A(f) is of class C*°. We can choose § and 6 small enough so that || f |,y < 2/ f1 (-

Let a € C§°([0,00)) such that 0 < o < 1, @ =1 on [0,1/2] and @ = 0 on [1,00).
Let & € C°(R?) such that 0 < ¢ < 1 and £ = 1 in a neighborhood of 0. We define
an(t) = a(t/n) and &,(z) = &(x/n). The function ¢, = a,&,A(f) belongs to C§°(E), is
nonnegative and ¢, > 1 on a neighborhood of K for n great enough.

Let us now give two key lemmas. If M is a bounded operator from L?(p) into itself, we
denotes by || M ||, = sup{||M(f) ;[ € L%(p), [/l = 1} its norm. We define the
operator Ag: for f € B(E) nonnegative, Ag(f)(t,z) =t 'A(f)(t,x), (t,x) € E. For T > 0,
let us introduce Ep = (0,7) x R?,

Lemma 5. The operators 1g,. A and Ag are bounded operators from L*(p) into itself. Fur-
thermore, we have || ]'ETA“(p) < T/V?2 and || Ay lpy <2
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Proof of Lemma 5. Let f € L?(p). We have

IMdﬂﬁwz//;w&f%UleUYE%@p@—&w—wM&wﬂ&wr

< // dtdx t2p(t,z) !
E

1/2 1/212
[// dsdy p(t — s,z — y)p(s,y) (8’1/215515) (31/2f(3ay)2ls§t> ]
E
< // dtdz t?p(t, z)~" // ds'dy’ p(t — ',z —y (s, y)s' ™ 14
E E
// dsdy p(t — 5,5 — y)p(s, 952 (5, 9)* o<
E

t
< [ awase® [Cass™? [ asaypie = sio = ppts,0)s 2 s
E 0 E
=2 // dtdz t2¢'/? // dsdy p(t — s,z — y)p(s,y)s"* f (s,y) Le<y
E E

fw//dwwmwvuw%”/ 32 < 4| P,
E

S

where we used the Cauchy-Schwarz inequality for the second inequality. Hence the operator
A is a bounded operator from L?(p) into itself. And we have || Ag l(py < 2. The operator
1, A can be handled in a very similar way. g

Lemma 6. The operators defined on C§°(E) by: g € C§°(E)

Al(g) = 8tA(g)a
for € d) Aogle) = 5 ORAg),
and for i€ {1,---,d}, As;(g) = di(logp) 9;A(g),

can be uniquely extended into bounded operators from L?(p) into itself. And we have

@) Al <1434,
(3) fOT' (S {17 7d}7 “AZ,lH(p) S ]-7
(4) fOT' (S {17 U 7d}7 “A3,l||(p) < 4.

The proof of this lemma is given in appendix.
We now bound || || 5. Lemma 5 provides an upper bound for || 9ypn || )

19u0ulliyy < 1910 llg 115, AL D1y + 1AL
(5) < (l0all0 272+ A1l ) 1 1l -
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Using Lemma 5 we derive an upper bound for E?:l | 0i log p Dieon || )

d d
S 1101 0gp ion lly < 3 (uAg,i(f) ) + sup [2:04¢ (@) | Ao() ||(p)>

i=1 i=1 zeR?
d
(6) <Y (HA:&@ ) + sup |zi0i€ ()] || Ao H(;;)) 1 Nl py
i=1 zeR

In order to give an upper bound for ZZ 1020, H (p)> We need an intermediary lemma.

Lemma 7. There exists a constant ¢1 (depending on &) such that for alln > 1, g €
C[?O(E)7 1€ {17' te 7d}7

115, 0in OiA(g) [l () < an” g )

Proof. Recall that &, has compact support. Then, an integration by parts, the Cauchy-
Schwarz inequality and Lemma 5 give for 1 <14 < d,

| 1, :600:A (g) / / P, A(9)(0:64)?02A(g)
- //EPlEnA(g)(aiﬁn)zaiA(g)ai log p

2 [[ e A0a6aA0)5,
E
<10k 2, 11 A(9) ) 12 (0) )
+110:n 1% 115, Alg) lpy 19:A(g) Oilogpll
+ 210560 oo 112, A9) | ) | 11, 0i00iM(9) [ )
<22 (2 Mgy ) + sl | 191 912
£ R gl 11 0EnBiA ()
Notice that if a, b, ¢ are positive then a? < ¢ + ba implies a < ¢+ b. Thus we get
11E, 0i&n0iA(g) || )
i 1/2 -
<202 (20 8y F sl | 10l gl +212n 102D gl
which, thanks to Lemma 6, ends the proof. O

Using this lemma and Lemma 5, we get that

d
> 10%enll, Z [2 182 () llpy + 19580 Nl oo 115, A ]y +2 1 LB, 036 OA(H)) N )
=1

d
(7) <3 [20 80l +27 20 03¢ N +2em™ 2] 11 £

=1
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Then we deduce from (5), (6), (7) and Lemma 6 that there exists a constant ¢y independent
of f and n > 1 such that

loullp < exll £l

Thus we have ||¢nllp < 2c2 | f1ll(,). The second inequality of the proposition is then
obvious with C' = 4¢3. O

We shall need the following lemma.

Lemma 8. For any compact set K C E with capp(K) > 0, there exists ¢ € Cg°(E) such
that:

(i) 0<p <1,

(ii) o = 1 on a neighborhood of K,

(iii) || |7 < v capp (K),
where v is a constant independent of K and ¢.

The proof is classic, but we give it for completeness.
Proof. Let h € C*([0,00)) such that 0 < h <1, h=0o0n[0,1/4] and h =1 on [3/4,0).
Since capp (K) > 0, there exists g € C§°(E) such that ¢ > 0, g > 1 in a neighborhood of
K, and 2capp(K) > ||g||3. Let ¢ = hog. The function ¢ € C$°(E) satisfies (i) and (ii).
Let us check (iii). We have

10 llpy < 1A lloo 1 0eg )

10 log p Dipllpy < 1A' [log | 95 10g p Digl
1050 1y < 18 lloo 119559 1y + (h"og) (3:9)° Il p)

Only the upper bound for the second right hand-side term of the last inequality is not
obvious. We first search an upper bound for || (9;¢1)%/(1 + 1) (), Where ©1 € CG°(E) is
a nonnegative function. An integration by parts and the Cauchy-Schwarz inequality give

1901 5 (Oip1)? (31901)
0 0; 1 0;
// (14 ¢1)? // ¥ "1 // P oiosp oiery

< 311951l + 11 9: 1ogp dipr || ) I (Dispr)? /(1 + 901) )

Thus we get

(8) 1 @p1)2/ (1 + )l gy < 3 (10301 1+ 1191 Togp Bi ) -

Since we have |h”(t)] < 2(14+t)~! ||h" |, taking 1 = g in the above inequality we deduce
that

1(" 0 9) (9:9)* gy < 211 (@9) /(L + )l gy 11 1o
< 6(132g ) + 105108 p il ) 111"

The previous inequalities imply there exists a constant ¢ depending only on A and d such
that ||¢|lp < cllgllp- Thus (iii) holds with v = 2¢2. O
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3. UPPER BOUND FOR HITTING PROBABILITIES

In this section we prove the second inequality of Theorem 1 for compact sets. Let us
introduce K C Er, a compact set such that capp(K) > 0. Let ¢ be as in Lemma 8. We
set ¢ = 0 outside £. We introduce the function ) = 1 — ¢, which takes values in [0, 1].
We consider the function u defined on R x R? by u(t,z) = Ny, [G* N K # 0] (€ [0,0]).
With the convention 0.co0 = 0, the function ui)* is bounded nonnegative and of class C™
on RxRY. Let (By,t > 0) denote under Py a d-dimensional Brownian motion started from
0. Itd’s formula implies that for all ¢ > 0, Py-a.s.,

w630 = 0,0 + [ U (s, By)ds

t A A t 4
+/0 5(1“# )(S,Bs)d3+/0 V(uyp®)(s, Bs)dB:s.

Consider the stopping time T, = T Ainf{t > 0; |By| > a}. We can then apply the optional
stopping theorem at time 7}, and get

Ty Ta A
Bougs*(Tn, Br.) = u(0,0) + Bo [ 9y(ugs™)(s, By)ds +E0/ = (") (s, B,)ds
0 0
Tu
=u(0,0) + Eg / [2u2¢4 + 4uyp® Opp + 4(Vu, Vip)ip®
0

+ 6uy® (Vip, Vip) + 2u1/)3A1/)] (s, By)ds.
We have used that dyu + %Au = 2u? to get the last equality. Notice that each integrand

is either nonnegative or bounded. By dominated convergence and monotone convergence,
we get as a goes to infinity

0,0) + 21w L, Iy = B (2,80) = [ p |0y + 47, vy
Er
+ 6uy)® (Vip, Vi) + 2u¢3A¢] :
Since K C Ep, we deduce that u(t,z) = 0 for ¢ > T. Thus we have:

u(0,0)+ 2 up? I}y = [[ Ep[4u¢3at¢ 4V, Vi)

(9) + 6urp? (Vp, Vip) + 2u1/)3A¢] .
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We now bound the right hand side. Using the Cauchy-Schwarz inequality, that 0 < <1,
and that —p and v have the same derivatives, we get

- / / o < i g 10
-/ o < i ) 155l

d
and  — //Epuwz(w,vw < flu®lly) ; 1(9:0)* ll s

< 2[lug? gy D 11@i)*/ (L + ) Il

=1

d
<6 | ug)® ) Z(Hai?i@“(p) +[19; logp Oip | ()
i=1

where we have used (8) with ¢; = ¢ for the last inequality. Now an integration by parts
and the Cauchy-Schwarz inequality give

- // P (Vu, Vip) = // pusp? [(V logp, Vip) + 3(Vep, V) + pAy)
E E

<Nl Iy D [110:10gp il ) +3 11 @i0)2 1) + 11030 )|
1=1
d

<19/|u? gy 3 119 1ogp il + 11030 |

i=1
where we have used again (8) for the last inequality. Taking those results together, we
deduce from (9) that

2
u(0,0) + 2 [ u? |2, < s llug? 191
where the constant c3 depends only on d. Since || ut)? () 1s finite (recall us is bounded, and

zero on [T, 00) x R?), this implies that ||u)? lp) < esllellp and hence u(0,0) < Aol
This last inequality and the definition of ¢ imply that

Noo[G" N K # 0] =u(0,0) < cgy capp(K) < 0370 Cap(K) = cg'yC cap(K).

4. LOWER BOUND FOR HITTING PROBABILITIES AND PROOF OF THEOREM 1

In this section, we prove the first inequality of Theorem 1 for compact sets. Let us introduce
a compact set K C F, v a probability measure on K, and 7' > 0 such that K C E;. We
consider the probability measure p defined on Wy o by

utaw) = [[ vtat.dz) P ),
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where PS"T is the law on Wy of the Brownian bridge starting at time 0 at point 0 and
ending at time ¢ at point z. Notice that the measure p is in fact a measure on Wy, the
set of non trivial path in Wy ¢ (a trivial path is a path of lifetime zero). The measure Pg’x
can also be viewed as a probability measure on the canonical space C(R*,R?) endowed
with the filtration (C;) generated by the coordinate mappings. Let Py be the law on the
canonical space of the standard Brownian motion. For s € [0,¢), we have

p(t — s,z — w(s))
p(t,z)

We consider the energy of p with respect to the process (Ws) (see [11] for a precise de-

scription and definition). Thanks to [11, Proposition 1.1] we have:

(//E v(dt,dz)p(t — s,z — w(s))/p(t, x)> 2

Now, using |5, Proposition 5|, we know there exists an additive functional A of the Brownian
snake killed when its lifetime reaches 0 such that:

(i) For every Borel function F > 0 on Wy, Noo [Jo° F(W,)dAs] = [ p(dw)F(w).
(i) Noo[AZ] = 2E(n).
We deduce from (i) that the additive functional increases only when W, € supp v C K.
Therefore, using the Cauchy-Schwarz inequality, we get
Noo[G* N K # 0] > Noo[Aoo > 0] > No[Aoo]* /No [A%].

We get Noo[G*NK # 0] > [4I(v)] 1. Since the above inequality is true for any probability
v on K, we get that

P§® (dw) e, = Po(dw)c,.-

=2I(v).

g(u)zz/ ds Py
0

NoolG* NK # 0] > 47 Cap(K) = 47! cap(K).

Proof of Theorem 1. Notice the application defined on B(E) by T(A) = Nyo[G* N A # (]
for A € B(F) is a Choquet capacity (see |4, théoréme 1|). Since the capacity cap is an inner
capacity (see |13, Theorem 12]), it is enough to prove the theorem for compact subsets of

E. The result is then given by the previous section (with Cy = c3yC) and the above result.
U

5. BROWNIAN RANGE AND SUPPORT OF X

In this section, we first give an estimate for the hitting probabilities of the support of
X;. Then we prove that the range of Brownian motion and the support of super-Brownian
motion at fixed time are intersection equivalent.

Let us fix d > 2. We denote by capy_, the usual Newtonian (logarithmic if d = 2)
capacity in R%:

-1

capa o) = [inf [ ptas)ptas) haalo—al)|

with A, (r) =77 if v > 0 and ho(r) = log, (1/r). The infimum is taken over all probability
measures p on R? such that p(A) = 1. Let B(0,h) be the open ball of R? centered at 0
with radius h.



CHARACTERIZATION OF G-REGULARITY 13

Proposition 9. Let M > 0. There exist two positive constants a and b such that for any
Borel set A C B(0,1), for any finite measure u on B(0,1), with (u,1) < M, we have

a(p, 1) capy o(A) < Py [supp Xy N A # 0] < b(p, 1) capy o(A).

Proof. Let A C B(0,2) be a Borel set. Let v be a probability measure on E such that
v({1} x A) = 1. Then we have v = {1} X p, where p is a probability measure on R? such
that p(A) = 1. We get

1) = [f - dstypoy
//AxA p(dz)p(da’)p(1 — s,z — y)p(1 — 5,2’ — y)p(1,z) 'p(1,2') "

Since z,z' are in B(0,2) and since s € (0,1) it is easy to see there exist two positive
constants a; and by (independent of A and p) such that

aI(v) < / / L pldn)olde’) ha (o =) < T,

This implies that for any Borel set A C B(0,2),
ay capg_5(A) < cap({1} x A) < by capy 5(A).

Since the capacity cap,_, is invariant by translation, we get that for any Borel set A C
B(0,1), for any z € B(0,1),

aycapy o(A) < cap({1} x Az) < by capy_»(4),
where Ay = {y;y —z € A}. We deduce from Theorem 1 that
47 ay capy_o(A) < No[G* N ({1} x A) # 0] < Coby capy_o(A).

Since X7 = 3",.; Y1(W?), where Y, ; 6+ is a Poisson measure on C(R*,Wp) with inten-
sity [ pu(dz)Noz[-], we have

Poufsupp X1 NA#0) =1—e” J 1(dz)No, [supp YiNAZI]

Notice that Ny z-a.e., {1} x (supp Y1 N A) = G* N ({1} x A). Since (pu,1) < M, we then
easily get the result. O

Intersection-equivalence between random sets has been defined by Peres [15]. Two ran-
dom Borel sets F} and F, in R? are intersection-equivalent in an open set U, if there exist
positive constants a and b such that, for any Borel set A C U,

aP[A ﬂFl] S P[Aﬂ FQ] S bP[A ﬂFl].

If 7 is a probability measure on B(0, 1), then we denote by P, the law of a d-dimensional
Brownian motion (By,t > 0) started with the law 7. For d > 3 the range of Brownian
motion is defined by Rp = {B;,t > 0} in R?. For d = 2, we also denote by Rp the
set Rp = {By;,t € [0,€]}, where ¢ is an exponential random variable of parameter 1
independent of (By,t > 0).
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Corollary 10. Let M > 0. There exist two positive constants a and b such that for any
Borel set A C B(0,1), for any absolutely continuous probability measure m on B(0,1) with
density bounded by M, for any finite measure u on B(0,1), with (u,1) < M, we have

a(:“a l)Pﬂ'[RB NA 7é Q)] < PO,u[Supp XN A 7é Q)] < b(:“a l)Pﬂ'[RB NA 7é [Z)]

Proof. This is a consequence of Proposition 9 and the fact that there exist two positive
constants ag and by such that for any Borel set A C B(0,1), for any absolutely continuous
probability measure m on B(0,1) with density bounded by M,

agcapy_o(A) <P [RpNA#0] <bycapy_s(A)
(see for example [15, Proposition 3.2| for d > 3 and [14] for d = 2). O

6. APPENDIX

In this section, we give the proof of Lemma 6, which relies on the properties of the Hermite
polynomials. We first recall the definition and some properties of those polynomials.

6.1. Hermite polynomials. For n = (ny,--- ,ng) € N¢, we set |n| = 2?21 n;, n! =
ngl niland ) oo = E?:l > m—o- For j € {1,---,d}, let §(j) be the element of N? such
that 0(j); = d; j, the standard Kronecker symbol. If z = (21, ,24) is an element of RY,

then we set 2" = [J%, 2. Let (-,-) be the Euclidean product on R?.

i=17%i
The function ¢(z) = e~ 121 =2(=:2)l/2 i an entire function defined on R?. We have

—1|2 2_ T,z 1 n
(10) et e - 5 Lonpe, (o),
n>0
where the n-th term He,(z) is a polynomial of (z1,---,x4) of degree |n| called the n-

th Hermite polynomial. Those polynomials can easily be expressed with the usual one
dimensional Hermite polynomials (He,(cl),k e N): Hey(x) = ngl He,(lli) (x;), where z =
(.’El, e axd)-

Now, let us recall some basic properties of the polynomials He,. The following recur-
rence formula can be deduced from (10) by differentiating w.r.t. z: for all n € N? such
that n; > 0,

(11) Hey(z) = ziHe,_s(;) () — (n — 1) Hep_o5) (z), Vo € RY,

where by convention He,,_js5;) = 0 if n; — k < 0. The differential formula can be deduced
from (10) by differentiating w.r.t. z;: for all n € N¢,

(12) O;Hen = n;Hep,_s(;)-

We also recall the upper bound for He, (see |1, 22.14.17]): there exists a universal constant
1 < ¢p < 2 such that

(13) |Hey,(z)| ch\/memz/4 forall ze€ R, nelN.
Using the definition of the Hermite polynomials, it is also easy to prove that:

d
(14) / d p(t, z)Hey, (x/VE)Hem (2/VE) = ) [ ] 0ni -

=1
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It is also well known that the Hermite polynomials is a complete orthogonal system in

L?(R?%, e~ jol* /2 dr). Finally, standard arguments on Hilbert spaces show that if f € L?(p)
then

f(t,$) = an(t,$) = ZHen(x/\/g)gn(t)a

n>0 n>0

where g, (t) = (n!)™! [dz p(t,z)He,(z/V1)f(t,z) and g, € L*((0,00)). Furthermore, we
have

(15) 112, =St /0 0t ga(1)?.

n>0

Since C§°((0,00)) is dense in L?((0,00)), it is clear that the set A of functions f(¢,z) =
Yoo Hen(z/V1)gn(t) where g, € C§°((0,00)) is non zero for a finite number of indices
n, is dense in L?(p).

6.2. Proof of Lemma 6. In a first step we prove there exist unique bounded extensions
A4, ZNngi and Agyi in L?(p) of the operators Ay, As; and A3 ; defined on A. Then in a second
step we check that the extensions ZNXl, AQ,Z' and Agyi and the operators Aj, Ag; and Az,
which are also defined on C§°(E), agree on C§°(E).

First step. Let us compute A(f) for very particular functions f € A. Let g €
C§°((0,00)), a and B be two positive reals such that supp g € [a, 8], and G(t) = f[f ds g(s).
For n € N?, and (t,7) € E, we set

hn,g (t, .T) = Hen(x/\/i)ti il /2g(t).
Let us prove that
(16) A(hn,g) = hng.

For z € R, we introduce the function H, . defined on E by

1 —[|z|* =2(z,2
Hyo(t,0) = 3 = by (t,2) = g(t) 127 =220,

n>0
Then we have

t
p(tlx) /0 ds / dy p(t — 5T y)p(svy)Hg,Z(Svy)

= [ [ (-2 ) g

t
_ o2 22t / ds g(s) = Ha,. (t, 7).
0

A(Hg,z)(ta x) =




16 JEAN-FRANCOIS DELMAS AND JEAN-STEPHANE DHERSIN

Using (13), Chapman-Kolmogorov equation, and that supp g € [«, ], we get

Al gt 2) < Vil cfpt, )" // dsdy p(t = 5,0 = s, y) e s g(s)
< vVl (V2¢)p(t, z) ! /t ds p(t+ s,z)s~I"/% |g(s)]

0

< VA (Vaeo) o [ s 112 o)
0
< Vil (V2eo) el 14t g || (8 — a)a 7 12,

The radius of the series S a*(kla®)~/2 is infinite. Thus for any (t,x) € E the series
S (n!) 12" A(|hng|) (£, z) are convergent. Fubini’s theorem implies that

1 1
> =2 M) (tx) = A [ D — g | (t,2) = Ha [t 2).

n>0 n>0

Hence the two series Y (n!) 12" A(hy4) (¢, z) and > (n!)"12"hy, ¢(t, =) agree. Since their
radius of convergence is positive (in fact infinite), we get that (16) is true.
Let us prove that Ag; has a bounded extension on L?(p). We deduce from (12) that

1
Asi(hng)(t,T) = 5aZiA(hn,g)(t,x)
1

a7) = gt = D Heq sy oV [ gl

Let us introduce f € A, ie. for (t,z) € E, f(t,z) = Y., Hen(z/Vt)gn(t), where

gn € C§°((0,00)) and g,, = 0 except for a finite number of terms. By linearity, we have

Aoi(f = 27 ni(ni — 1) He, o5 (x/ V)t "'/2/ ds 5™ g, (s).

n>0

Thus, using (14), we have

3] t 2
||A2,z~(f)u?p)=Z(n—2a<z')>'4 U (n; — 1) / dt 2 [/ dss”/zgn(s)]

n>0 0
4 o
< 2 / dt gn(t)?
I A TE1 g
< ||f||(p)

where we used the Hardy inequality: for & > —1,

/OOO dtt 2k [/Ot Sk/2h(s)ds]2 < ﬁ /OOO dt h(t)?

for the first inequality and (15) for the second one. This means that Ay, defined on A,
can be uniquely extended into a bounded operator Ay ; from L?(p) into itself. The above
inequality implies || Az, < 1.
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Forie {1,---,d}, weset Ay; = A3 ;+2Ay;. Using (12) and (11), we deduce from (16)
that

(18) A4 i(hng)(t, z)

= (sl Vi Hen (V) + miln — 1) He,gso (/D] £ "|/2/ ds g(s)
= —niHey,(z/Vt)t 17"/ /t ds g(s).

0
Arguing as above, we get for f € A,

00 t 2
8011y = St [T | [z, )

n>0

< Zn'n 12 | / dt gn(t)?
n>0 "

< 4||f||(p)

Thus the operators A4; and Aj;, defined on A, can be uniquely extended in bounded
operators Ay; and Aj; from L?(p) into itself. Furthermore we have | Agi |l ) < 2 and
| As, p) < Ay “(p) 2| Az ||(p) <4

The proof concerning A; easily follows from the previous results. From (16), we get

Al (hn,g) (tv x)

d
= hng(t,z) — = [|n|H6n z/Vt) + Z

Then using (17) and (18), we get

Tig vl 2 [ g ats).
\[Hn /\f)]t /Odg()

Al(h ,g) I+ - Z A4z+A3z]

=1

(hng) = (P g)-

d
I+ [Agi— Ayl
i=1

This means that A; =1 + E?:l [As; — Ao ] on A. Hence A; can be uniquely extended in
a bounded operator A; from L?(p) into itself and A =T+ Egzl [ZNXM — ]\g,l} . We deduce
that [|A1 ]|,y <1+ 3d. O

Second step. We first consider the operators As; for i € {1,---,d}. To check that
Az and Aj; agree on CG°(E), it is enough to check that for ¢ € C§°(E), Az i(p)(t,x) =
A3i(p)(t,z) dtdz-a.e. Let ¢ € C§°(E). For k € N, we define,

= ¥ Heala/ Vo) [ dy it Healu/Viplt,n)

In|<k

The sequence (¢, k > 0) converges in L?(p) to .
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IfzeRY yeR, ic{l,---,d}, we denote by z = 56; the element of R? such that z; =y
and z; = z; for j # 4. Since As;(f)(t,2) = —t7'2;0,A(f)(t,z) for f € AUC(E), we see
that an integration by parts gives

(19) /0 "y Asa(F)(6d0) =~ wA () (8 ) + /0 Yy A8 6.

For short we write P;(f) for the operator P;(f)(t,z) = [, dy f(t,:fcé). Let R > 0 and
T > ¢ > 0 be fixed. Let Q = [¢,T] x [-R, R]%. The heat kernel p is bounded below and
above on ) by positive constant, say cg and Cg. Using the Cauchy-Schwarz inequality we
have

1Ry < CoR? [ duds £,)* < Cocg! R 1y

Thus the operator 1o PF; is continuous from L?(p) to L?(p). Thanks to Lemma 5 and the
above first step, we get that the sequences (1o P;(Ao(¢x)),k > 0) and (19 Pi(A3:(vr)), k >
0) converge in L?(p) respectively to 1gP;(Ao(yp)) and 1gPi(As;(p)). Notice also that
(1oA(pk), k > 0) converges in L?(p) to 1gA(p). Thus, there is a subsequence (o(k),k >
0) such that the sequences (1oP;(Ao(Po(r))),k > 0), (LoPi(A3i(psk))),k > 0) and
(A(gog(k)), k > 0) converge dtdz-a.e. respectively to 1oP;(Ao(p)), 19Pi(Asi(p)) and A(p).
Now (19) holds for f = ¢4y, this means that for (t,z) € Q,

H(A3,i(‘p0(k)))(ta $) = _t_lxiA(‘pa(k))(ta $) + Pi(AO(‘;DG(k)))(ta $)
Taking the limit we get that dtdz-a.e. in @),

Pi(A3,i(9))(t2) = =t~ i () (8, 2) + Pi(Ao()) (, ).

Since R, T, e are arbitrary, the above equality holds dtdz-a.e. in E. Since (19) holds also
for f = ¢, we deduce that dtdz-a.e.,

/0 dy As () (t,2}) = /0 dy Az i(p)(t, 2)-

Hence we have dtdz-a.e., Az;(p)(t,2) = Aszi(0)(t, z).
The proofs concerning the operators A; and Ay ;, for i € {1,--- ,d}, and their extensions
follow the same ideas. O
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