
On the Bene�ts of Using the Up�To Te
hniquesfor Bisimulation Veri�
ationDaniel Hirs
hkoffNovembre 1998No 98-138

On the Bene�ts of Using the Up�ToTe
hniquesfor Bisimulation Veri�
ationDaniel Hirs
hkoffRésuméNous présentons un outil qui permet la véri�
ation de propriétésde bisimulation utilisant les te
hniques de preuve up�to (bisimulationà
ongruen
e stru
turelle près, aux restri
tions près, à
ompositionparallèle près). Parmi
es te
hniques, la possibilité de travailler �à
omposition parallèle près� est parti
ulièrement intéressante dans lamesure où elle permet de raisonner sur des termes dont l'espa
e d'étatsest in�ni. A�n de l'exploiter au mieux, nous adaptons l'algorithmede véri�
ation à la volée, de manière à garantir à nos méthodes uneforme de
omplétude
omputationnelle. Les te
hniques de preuve up�to s'avèrent utiles pour exploiter la puissan
e expressive du ��
al
ul,
omme le montrent deux études de
as non triviales,
on
ernant lareprésentation des stru
tures de données persistantes dans le ��
al
uld'une part, et la véri�
ation du proto
ole du bit alterné d'autre part.Ce dernier exemple nous permet de revenir sur des en
odages
onnus en��
al
ul, à la lumière des
ritères propres au
ontexte de la véri�
ationautomatique.

Abstra
tWe advo
ate the use of the up�to te
hniques for bisimulation in the�eld of automati
 veri�
ation. To this end, we develop a tool to per-form proofs using the up to stru
tural
ongruen
e, the up to restri
tionsand the up to parallel
omposition proof te
hniques for bisimulationbetween ��
al
ulus terms. The latter te
hnique is of parti
ular interestbe
ause it allows the user to reason on in�nite state spa
e pro
esses.To use it in full e�e
t, we adapt the �on the �y� bisimulation
he
kingalgorithm, yielding to a form of
omputational
ompleteness. The use-fulness of these te
hniques in dealing with the expressive power of the��
al
ulus is illustrated on two non trivial examples, namely the treat-ment of persistent data stru
tures and the alternating bit proto
ol.These examples are also good opportunities to study how well�known��
al
ulus en
odings behave in the framework of automati
 veri�
a-tion.

2

Introdu
tionThis paper studies the appli
ability of the so�
alled up�to te
hniques forbisimulation in the �eld of veri�
ation. Bisimilarity, and its
orrelated proofmethod bisimulation, have be
ome popular notions of equivalen
e used toreason about
on
urrent systems. While having a simple and
lear mathe-mati
al de�nition, they are far from being straightforward to handle in theframework of automati
 veri�
ation, due to their ri
hness and to the manysubtle phenomena they are able to
at
h in the study of
on
urren
y. Theup�to te
hniques for bisimulation are presented in [San95℄; they
an sim-plify bisimulation proofs by redu
ing the size of the relations one has to
onsider. More pre
isely, an up�to te
hnique is represented by a fun
tionF from relations to relations, su
h that proving that pro
esses related in arelation R evolve to pro
esses related in F(R) is enough to show that R is
ontained in bisimilarity. One
an thus
onsider relations that are smallerthan bisimulations, the gap being �lled by the appli
ation of F .In this paper, we
on
entrate on bisimulation between ��
al
ulus terms;the ��
al
ulus [Mil91℄ has be
ome a widely a

epted algebra for modelling
on
urren
y, and has demonstrated a great expressive power. It is our beliefthat, to use ��
al
ulus as a spe
i�
ation language in the �eld of veri�
ation,one should be able to
ope with the ri
hness of this formalism, in parti
ularby designing spe
i�
 veri�
ation te
hniques for it, and not only transposemethods that are applied to less expressive formalisms. The Mobility Work-Ben
h [VM94℄ is a good example of a veri�
ation tool developped spe
i�-
ally for the ��
al
ulus (and more re
ently for its evolution fusion
al
ulus),taking advantage in parti
ular of the ni
e
hara
terisations given by openbisimulation [San96℄. With these ideas in mind, the up�to methods seem tobe good
andidates for this task: the bisimulation up to bisimilarity proofte
hnique, and more importantly the up to restri
tions and the up to parallel
omposition proof te
hniques, have been developped in the theoreti
al studyof ��
al
ulus, and typi
ally allow one to deal with name extrusion (up torestri
tions proof te
hnique) and with repli
ation (up to parallel
ompositionproof te
hnique).Feasability of the automation of the up�to te
hniques has been adressedin [Hir98℄, where some methods to de
ide if a pair of pro
esses belongs to arelation up to stru
tural
ongruen
e, up to restri
tions, and up to parallel
omposition, are introdu
ed. These methods lead to the de�nition of a gen-eral veri�
ation algorithm for up�to bisimulation between ��
al
ulus terms,embedded in a prototype tool. In the present work, we extend the
apabil-ities of the system, and, more importantly, try to evaluate the out
ome of1

su
h an e�ort through the study of two non trivial examples that exploit the��
al
ulus' expressive power. With respe
t to [Hir98℄, the
urrent version ofthe system is provided with a ri
her notion of stru
tural
ongruen
e, and,moreover, the general bisimulation veri�
ation algorithm is modi�ed in orderto take into a

ount the way the up to parallel
omposition proof te
hniqueworks.The plan of the paper is as follows: in the Se
tion 1, we introdu
e theformal ba
kground on ��
al
ulus and the up�to te
hniques for bisimulation.Se
tion 2 is devoted to the des
ription of our implementation, and of thegeneral bisimulation algorithm we use to handle the up to parallel
om-position proof te
hnique in a
omputationally
omplete fashion. We thendes
ribe two
ase studies: persistent data stru
tures, as introdu
ed by Mil-ner [Mil91℄, are examined in Se
tion 3, while Se
tion 4 is devoted to thestudy of the alternating bit proto
ol, in an en
oding adapted from [Mam98℄.We �nally
on
lude by dis
ussing future work.1 PreliminariesIn this Se
tion, we introdu
e the syntax and semanti
s of the language we use,a restri
ted though expressive subset of polyadi
 ��
al
ulus where repli
ationis allowed only on pre�xed pro
esses. We then de�ne bisimulation, togetherwith the up�to te
hniques for bisimulation.De�nition 1 (Syntax) Given an in�nite
ountable set of names N , rangedover by a; b;
; : : : ; p; q; : : : ; x; y; : : : , we range over (possibly empty) name listswith ~a;~b; : : : , and we de�ne pre�xes, ranged over by �; �, as follows:� def= a(~b) j a[~b℄ ;Pro
esses, ranged over with P;Q;R; : : : , are then de�ned as follows:P def= 0 j �:P j (�x)P j P1jP2 j !�:P :Pre�xed pro
esses are either re
eptions (pre�x a(~b)) or emissions (a[~b℄);0 is the ina
tive pro
ess; the restri
tion operator � makes a name private tothe restri
ted pro
ess; parallel
omposition is written j, and ! stands for repli-
ation, allowed only on pre�xed pro
esses; intuitively, a repli
ated pro
essrepresents any number of
opies of this pro
ess put in parallel.Conventions and notations: In pre�xes a(~b) and a[~b℄, a and ~b are
alled respe
tively the subje
t and the obje
t parts of the pre�x. We shall2

omit the obje
t part of a pre�x when it is empty, and use a monadi
 notationfor single name obje
t parts (thus writing e.g. a(b) and ab). We shall as wellomit the
ontinuation of a pre�x when it is the ina
tive pro
ess 0. Freeand bound names are de�ned by saying that restri
tion and abstra
tion(embodied in the input pre�x) are binding operators. As usual, we shallsilently use ��
onversion to avoid
apture of bound names.De�nition 2 (Transition system) The operational semanti
s of ��
al
ulusterms is de�ned as a labeled transition system. A
tions, ranged over with�; �0, are given by the following syntax:� def= a(~b) j (�~b0) a[~b℄~b0�~b j � ;whi
h reads as follows: an a
tion is either a re
eption, a (possibly bound)output, or the silent a
tion � , denoting internal
ommuni
ation. Bound andfree names of a
tions are de�ned as usual.The judgment P ��! P 0, meaning that pro
ess P is liable to perform a
tion� to be
ome P 0, is de�ned by the rules of Figure 1 (symmetri
al versions ofrules parl and
lose1 are omitted; :: is the
onstru
tor used to add anelement to a list). Note that we adopt an �early� version of the operationalsemanti
s.(inp) a(~b):P a(~
)��! P~b:=~
 (out) a[~b℄:P a[~b℄��! P(bang) �:P ��! P 0!�:P ��! !�:P jP 0 (res) P ��! P 0(�x)P ��! (�x)P 0 x =2 n(�)(parl) P ��! P 0P jQ ��! P 0jQ bn(�) \ fn(Q) = ;(open) P (�~b0) a[~b℄�����! P 0(�t)P (�t::~b0) a[~b℄������! P 0 t 6= a; t 2 ~b n ~b0(
lose1) P a(~b)��! P 0 Q (�~b0) a[~b℄�����! Q0P jQ ��! (�~b0) (P 0jQ0) ~b0 \ fn(P) = ;Figure 1: Operational semanti
sThe notion of semanti
al equivalen
e on pro
esses we are interested in isbisimilarity, de�ned as follows: 3

De�nition 3 (Bisimulation, bisimilarity) A relation R over pro
essesis a bisimulation i�, whenever PRQ and P ��! P 0, there exists a pro
ess Q0s.t. Q ��! Q0 and P 0RQ0, and
onversely for the transitions of Q. Bisimilar-ity, written �, is the greatest bisimulation.De�nition 4 (Stru
tural
ongruen
e) Stru
tural
ongruen
e, written �,is the smallest equivalen
e relation on ��
al
ulus terms that is a
ongruen
egenerated by the following rules:P j0 � P P jQ � QjP P j(QjR) � (P jQ)jR (�x)0 � 0!�:P j�:P �!�:P !�:P j!�:P �!�:P (�x)P j Q � (�x) (P jQ) if x =2fn(Q) :Note that rule for pro
esses of the form !�:P j!�:P is new with respe
t tothe usual de�nition of stru
tural
ongruen
e, and de�ne a straightforwardextension of this relation. Note as well that � is obviously in
luded in �.We shall a
tually use a slightly enri
hed version of stru
tural
ongruen
e,where we add the following law:(x o

urs in � in subje
t position)) (�x)�:P � 0 :This rule is usually not in
luded in the de�nition of stru
tural
ongruen
e,be
ause its signi�
ation is too �semanti
al�, i.e. it expresses a behaviouralproperty of a pro
ess rather than a geometri
al one, as stru
tural
ongru-en
e is intended to do. However, in the framework of the up to bisimilarityproof te
hnique, it is preferable to equate as many terms as possible, hen
ean extended version of stru
tural
ongruen
e is of interest; moreover, thisparti
ular law will turn out to be very useful in the example treated in Se
-tion 4. We extend the notation � to our �enri
hed� stru
tural
ongruen
erelation.To introdu
e up�to bisimulation (see [San95℄), we
onsider fun
tions fromrelations to relations, ranged over by F , and modify the de�nition of bisim-ulation:De�nition 5 (Up-to bisimulation) Given a fun
tion F from relations torelations, we say that a relation R is a bisimulation up to F i� the propertyof De�nition 3 holds when we repla
e �P 0 R Q0� by �P 0 F(R) Q0�.Intuitively, an up�to bisimulation relation R is �smaller� than a bisimu-lation, the gap being �lled by fun
tion F , that helps building the �future�of pro
esses related in R. This is of interest, as it allows us to redu
e thesize of the relations we handle for the task of proving bisimilarity results,4

whenever we have a
orre
t fun
tion F : a fun
tion F is said to be
orre
twhen (R is a bisimulation up to F) implies (R relates bisimilar pro
esses).In the
ontext of ��
al
ulus, we shall use the up�to te
hniques given by thefollowing Proposition:Proposition 6 ([San95℄) The up to stru
tural
ongruen
e, up to restri
-tions and up to parallel
omposition proof te
hniques for ��
al
ulus termsare de�ned by the following fun
tions over relations, respe
tively
alled F1,F2 and F3:F1(R) def= f(P;Q); 9P0; Q0 s:t: P � P0; P0RQ0 and Q0 � Qg;F2(R) def= f(P;Q); 9P0; Q0; ~x s:t: P = (�~x)P0; Q = (�~x)Q0 and P0RQ0g;F3(R) def= f(P;Q); 9P0; Q0; T s:t: P = P0jT; Q = Q0jT and P0RQ0g:Fun
tions F1, F2 and F3
orrespond to
orre
t up�to proof te
hniques, i.e.proving that R is a bisimulation up to F (where F is one of the aforemen-tioned fun
tions) is su�
ient to prove that R is in
luded in bisimilarity.Moreover, these fun
tions
an be
ombined together, still yielding a
orre
tte
hnique.Note that F1
orresponds to a restri
tion of the general bisimulation upto bisimilarity te
hnique (where � repla
es � in the de�nition of F1).2 Automatising Up�To BisimulationWe dis
uss here the questions related to the automation of the up�to proofte
hniques for bisimulation. As stated before, the improvements with respe
tto [Hir98℄ are twofold: �rstly, a narrower relation is handled in the bisim-ulation up to bisimilarity proof te
hnique, and se
ondly, the general up�tobisimulation
he
king algorithm is modi�ed in order to perform breadth��rstsear
h (and to handle expansion as well: see Se
tion 4).2.1 De
iding Up�To ClosureThe
ornerstone of our method is the ability to de
ide whether a pair ofpro
esses belongs to the
losure of a relation up to some
orre
t proof te
h-nique; in the sequel, we
on
entrate on our most powerful proof te
hnique,namely the up to (extended) stru
tural
ongruen
e, up to restri
tions and upto parallel
omposition proof te
hnique, embedded by fun
tion F3 ÆF2 ÆF1(see Proposition 6 above), where Æ denotes fun
tion
omposition.5

Proposition 7 ([Hir98℄) Given a pair (P;Q) of pro
esses and a relationR, we
an de
ide whether (P;Q) 2 F3 Æ F2 Æ F1(R).The proof given in [Hir98℄ is straightforwardly adapted to handle ex-tended stru
tural
ongruen
e as de�ned above. Let us now explain how weexploit this result for up�to bisimulation veri�
ation.2.2 The General Che
king MethodWithin the framework of bisimulation veri�
ation, an immediate though de-termining remark is that fun
tions F1, F2 and F3 are synta
ti
al operators;this
ompells us to use an �on the �y� algorithm for bisimulation
he
king, inorder to have a

ess to the a
tual term
orresponding to a given state in theveri�
ation pro
ess (as opposed for example to the partition re�nement al-gorithm [PT87℄, whi
h works on unfoldings of pro
esses). The �
lassi
al� onthe �y
he
king method [FM91℄
an easily be adapted to the up�to methods,so as to de�ne a semi�de
ision pro
edure for up�to bisimulation veri�
ationin the ��
al
ulus, as is done in [Hir98℄. However, to exploit the up�to meth-ods in full e�e
t, we need to modify the general bisimulation veri�
ationalgorithm; this is the subje
t of the remainder of this Se
tion.Indeed, one of the
ru
ial improvements brought by the up�to te
hniquesis the ability, through the up to parallel
omposition proof te
hnique, tohandle in some
ases repli
ated terms, i.e. terms possibly having an in�nitebehaviour. Thus, when applied, this proof method
an allow one to
utin�nite bran
hes in the state spa
e of the pro
esses being
ompared. Usingdepth��rst sear
h, as the original algorithm of [FM91℄ does, it
an be the
asethat we miss two mat
hing bran
hes whi
h
an be
ut using the up to parallel
omposition te
hnique, and instead enter an in�nite loop (
orresponding toan in�nite growth of the state spa
e). To avoid this, it is preferable toadopt a breadth��rst strategy, in order to enter an in�nite loop only when
ompulsory. Figure 2 presents the overall behaviour of Mounier's original�on the �y� algorithm, that progressively builds a
andidate bisimulationrelation, by exploring the states whi
h
an be rea
hed starting from twopro
esses.Let us explain informally how the veri�
ation method works (a more de-tailed des
ription
an be found in [FM91℄ and in the author's forth
omingPhD thesis). The algorithm explores the state spa
e given by the
artesianprodu
t of the transition systems indu
ed by the two pro
esses being
he
ked.The data stru
tures involved in the algorithm are: a stru
ture S (we shallreturn later on to the nature of S), that
ontains the states that still have6

W:= ;;(�) R={(P;Q)g, V:= ;, R:= ;, status:=true; insert (P;Q) in S;while S is not empty do
hoose a pair (P0; Q0) in S and remove it from S;if (P0; Q0) su

eedsthen (add (P0; Q0) to V (or R, see below); propagate)elseif (P0; Q0) fails thenif (P0; Q0) 2 Rthen (remove (P0; Q0) from V and insert it in W,status:=false; propagate)else (insert (P0; Q0) in W; propagate);else (* neither su

eeds nor fails *)
ompute the su

essors of (P0; Q0) and insert them in S;endwhile;if P � Q then (if status then true else loop ba
k to (�)) else falseFigure 2: General �On The Fly� Bisimulation Che
king Algorithmto be examined; three sets V, W, and R,
ontaining the pairs of pro
essesthat are respe
tively supposed to be bisimilar, known to be non�bisimilar,and known to be bisimilar. When two new pro
esses are dis
overed to bebisimilar, if the
orresponding pair is in V, it is stored in R, and symmet-ri
ally for the
ase of non�bisimilarity (from V to W). It
an be the
ase,though, that during the exploration of the state spa
e, an in
orre
t hypoth-esis is assumed regarding the bisimilarity of two pro
esses (i.e. a pair in Ris a
tually made of non�bisimilar pro
esses): to handle this, a boolean �ag
alled status re
ords the �reliability� of the
urrent
omputation. When a
omputation gives an unreliable result, we start all over again, keeping tra
kin W of the states that have been proved non bisimilar.We still have to explain the behaviour of fun
tions su

eeds, fails, andpropagate: fun
tion fails tests if a failure
an be dete
ted by inspe
ting theimmediate transitions of the two pro
esses to be examined (a failure o

ursif one pro
ess performs an a
tion that
annot be done by the other term), orif the two pro
esses are known to be non�bisimilar (set W). Symmetri
ally,su

eeds
he
ks if the two pro
esses are trivially bisimilar (i.e. if they are��
onvertible or both have no transition) or if there is an assumption stat-ing bisimilarity between them (sets V and R). Finally, fun
tion propagatepropagates a newly found information along the state spa
e, possibly dis-7

overing new (non�)bisimilarity properties, or
utting bran
hes that do nothave to be explored anymore.As expe
ted, the nature of the stru
ture S determines the exploring strat-egy: with respe
t to Mounier's algorithm, we repla
e the sta
k of states thathave to be examined by a queue, thus performing breadth��rst instead ofdepth��rst sear
h. Some extra information regarding the representation ofthe �verti
al� stru
ture of the state spa
e (i.e. the relationships betweenstates due to the transition relation), that
omes for free in the
ase of asta
k stru
ture, has to be provided within the obje
ts that are stored inS1. Using breadth��rst sear
h, we get a
omputationally
omplete
he
kingalgorithm:Theorem 8 We say that a bisimulation
he
king algorithm is
omputation-ally
omplete with respe
t to a given up�to te
hnique F whenever it divergesif and only no �nite bisimulation up to F relating the two pro
esses to be
he
ked and derivatives of these pro
esses exists.With this terminology, the breadth��rst version of the algorithm of Figure2 is
omputationally
omplete with respe
t to the up to stru
tural
ongruen
e,up to restri
tions and up to parallel
omposition proof te
hnique.The proof of this result follows immediately from the de�nition of thebreadth��rst sear
h. Note that the hypothesis abouth the relation
ontainingonly derivatives of the pro
esses we examine is determinant for the proof.What is really important here is the form of
ompleteness we get: whilefor �nite�state pro
esses, depth��rst and breadth��rst sear
hes di�er only�strategi
ally�, in the
ase of repli
ated terms, the breadth��rst version, in
onjun
tion with the up to parallel
omposition proof te
hnique, provides areal gain in expressiveness, as expressed by Theorem 8. This improvementof the system, together with the additional stru
tural
ongruen
e law seenabove, will be determinant for the treatment of the examples in Se
tions 3and 4.2.3 A Tool for Up�To Bisimulation Veri�
ationThe methods presented so far are implemented in a tool, written in O'Caml,and running under Unix. The system allows the user to de�ne a pair ofpro
esses and to
he
k whether they are bisimilar by
hoosing between three1This stru
tural information is even more intri
ate in the weak
ase, where some
arehas to be provided to avoid ��loops before an a
tion a
tually �res (i.e. in the ��rst)part� of) ��!): see Se
tion 4). 8

up�to proof te
hniques and between strong bisimulation and expansion (seebelow for the de�nition of this notion). Fa
ilities for intera
tively simulat-ing the behaviour of a pro
ess and for debugging (in the
ase of a
he
kfailure) are also provided. Internally, the system works systemati
ally upto stru
tural
ongruen
e, i.e. with normalised terms, as de�ned in [Hir98℄;as the algorithm of Figure 2 is run, information
an be obtained on thesize of the
urrent state spa
e to be explored. The tool is available athttp://
ermi
s.enp
.fr/�dh/pi.3 First Case Study: Persistent Values and SharingOne of the appli
ations of the up to parallel
omposition proof te
hniqueis the proof of the so�
alled repli
ation theorems, whi
h express some prop-erties of pro
esses that model resour
es. Intuitively, a term of the form(�a) (!a(~b):P j Q) is viewed as an agent Q having a

ess to a private resour
eP , lo
ated at
hannel a, with the possibility of instantiating the resour
e withsome parameters ~b. The resour
e is usually repli
ated, be
ause it is meant tobe �always available�. Resour
e pro
esses of the form !a(~b):P are ubiquitousin the study of ��
al
ulus: they
an be found in parti
ular in the en
odingsof the ��
al
ulus, where appli
ation is represented as (the translation of)the fun
tion having a

ess to its argument as a resour
e. Resour
e pro
essesarise also in the study of higher�order ��
al
ulus, of obje
t
al
ulus, and (as
an be expe
ted) of data stru
tures. We fo
us here on the latter subje
t, bystudying Milner's en
oding of lists in the ��
al
ulus.In [Mil91℄, lists are represented using two kinds of ��
al
ulus terms,
or-responding to ea
h
onstru
tor: a pro
ess of the form l(
; n):
[v; l0℄ representsa Cons node, situated at l, and
ontaining a value that
an be a

essed at
hannel v and a referen
e to the remainder of the list situated at l0, whilel(
; n):n is the empty list Nil situated at l. Lists
an be interrogated by send-ing two names at their lo
ation, one for ea
h possible
onstru
tor. With thisrepresentation, for example, list L = [true; false℄ is de�ned by the followingterm, given an en
oding of the booleans true and false2:L def= (�l1; b1) (l0(
; n):
[b1; l1℄ j b1:truej (�l2; b2) (l1(
; n):
[b2; l2℄ j b2:false j l2(
; n):n)) :2Along the lines of the en
oding of booleans in the ��
al
ulus, the value true lo
atedat b, written b:true, is a pro
ess waiting for two names t and f , and returning a signal ont (false would return a signal on f): we write b:true def= b(t; f):t (see [Mil91℄).9

Su
h a data stru
ture, though, is linear: reading the values in a listdestroys it. To make the stru
ture persistent, we use repli
ation. A priori,there are two approa
hes to a
hieve this, whether we
hoose to repli
ate thenodes and the value
ells in the lists, or the sub
omponents; in the
ase oflist L above, this leads to the two following terms:L1 def= (�l1; b1) (!l0(
; n):
[b1; l1℄ j !b1:truej (�l2; b2) (!l1(
; n):
[b2; l2℄ j !b2:false j l2(
; n):n)) ;L2 def= !l0(
; n):(�l1; b1) (
[b1; l1℄ j !b1:truej !l1(
; n):(�l2; b2) (
[b2; l2℄ j !b2:false j !l2(
; n):n)) :As we shall see, this design
hoi
e gets re�e
ted both on the behaviourof the
orresponding data stru
ture and on questions related to bisimulation
he
king.In the following, to illustrate the behaviour of repli
ated data, we shallwork with a very simple list,
onsisting only in the element true; as anephemeral data stru
ture, it is en
oded by the following pro
ess:R0 def= (�b; l1) (l0(
:n)
[b; l1℄ j !b:true j l1(
; n):n) :We simplify this representation by taking R def= (�b) (l0(
):
b j !b true). Thispro
ess
an be viewed as a single
onstant
ell holding the value true, and isonly reminis
ent of the list [true℄; however, it will be su�
ent for our task,and the reasoning made below holds for �real� lists as well.Along the lines exposed above, there are two ways to transform R into apersistent value, represented by the following two pro
esses:R1 def= (�b) (!l0(
):
 j !b:true) and R2 def= !l0(
):(�b) (
b j !b:true) :As stated in [Mil91℄, the di�eren
e between R1 and R2 is re�e
ted on shar-ing properties of our data stru
tures. The problem of value sharing
an beexpressed in terms of se
urity: suppose we have an agent A, willing to in-terrogate any number of times the resour
e R lo
ated at l0, and to send asignal on either one of two
hannels o and p, depending on the value read atl0. This agent
an be represented by the pro
essA def= !l0
1:
1(b):(�t; f) (b[t; f ℄ j t:o j f:p) ;where
1 is a name that is spe
i�
 to A for its
ommuni
ations with R. Sup-pose now that an evil agent E is willing to interfer with the
ommuni
ations10

of A, by interrogating R and trying to send the value false as if it was in the
ell lo
ated at l0. To do this, E needs to interrogate on
e R, to get name bwhere the value is lo
ated, and then to send false along b. Hen
e:E def= l0
2:
2(b):b(t; f)f :Our whole system is made of the parallel
omposition of the resour
e (beingeither R1 or R2), �inno
ent� agent A, and �evil� agent E:Sysi def= (�l0) (Ri j A j E) i = 1; 2 :We verify that, depending on whi
h representation we take for the per-sistent
ell R, E
an either disturb the
ommuni
ations performed by A,or be inno
uous. To this end, we
ompare the behaviour of the term Sysifor i = 1; 2 with the behaviour of the pro
ess where ea
h agent A and Ehave their own private
opy of the resour
e,
orresponding to the followingde�nition:Sys0i def= (�l0;
1) (Ri j A) j (�l0;
2) (Ri j E) i = 1; 2 :Indeed, if we run the tool with these de�nitions, we get the followingresults:�
ase Sys1: in this
ase, a lo
ation b for the value true is
reated on
efor all and transmitted every pro
ess that interrogates the list at l0.This way, even in the
ase where A performs only one request at l0,agent E
an send the wrong value false to A, and Sys1 and Sys01 arenot bisimilar. We
he
k this on a simple session of our tool; we �rstde�ne the two
omponents of the pair of pro
esses to be
he
ked:> Left (^l0)(^
1)(^
2)(((^b)(!l0(
).
[b℄|b(t;f).t[℄))| l0[
1℄.
1(b).b(t;f).f[℄| l0[
2℄.
2(b).(^t)(^f)(b[t;f℄|t.o[℄|f.p[℄))> Right (^l0)(^
1)(((^b)(!l0(
).
[b℄|b(t;f).t[℄))| l0[
1℄.
1(b).b(t;f).f[℄)| (^l0)(^
2)(((^b)(!l0(
).
[b℄|b(t;f).t[℄))| l0[
2℄.
2(b).(^t)(^f)(b[t;f℄|t.o[℄|f.p[℄))The syntax for pro
esses is quite natural: ^ stands for abstra
tion, [℄for output and () for input. We now
he
k for bisimilarity:11

> Che
kThe pro
esses are not bisimilar.�
ase Sys2: in this
ase, a new name b is
reated ea
h time the list isinterrogated at l0, and hen
e pro
esses A and E
annot interfer. Evenin the
ase where an in�nite number of pro
esses interrogate the list,we
an prove that Sys2 and Sys02 are bisimilar:> Left (^l0)(((!l0(
).(^b)
[b℄.b(t;f).t[℄))| l0[
1℄.
1(b).b(t;f).f[℄| !l0[
2℄.
2(b).(^t)(^f)(b[t;f℄|t.o[℄|f.p[℄))> Right (^l0)(((!l0(
).(^b)
[b℄.b(t;f).t[℄))| l0[
1℄.
1(b).b(t;f).f[℄)| (^l0)(((!l0(
).(^b)
[b℄.b(t;f).t[℄))| !l0[
2℄.
2(b).(^t)(^f)(b[t;f℄|t.o[℄|f.p[℄))> Che
kThe pro
esses are bisimilar.When the tool performs this veri�
ation, it uses the up to parallel
omposition proof te
hnique to erase
opies of the
ell ea
h time theyappear in both pro
ess: an in�nite proof is thus repla
ed by a �niteone.The latter example exploits the up to parallel
omposition proof te
h-nique to handle the representation of data stru
tures in the ��
al
ulus. Inthis
ontext, our tool has been useful in dealing with non trivial propertiesof pro
esses, and it should be stressed that other existing systems
annothandle repli
ated pro
esses like those we manipulate here.Furthermore, it should be remarked that se
urity properties like the onewe have
onsidered
an be adressed using type systems for the ��
al
ulus. Asexposed for example in [San97℄ an easy way to prevent E from �pretending�to be R by lo
ating the value false at b is to forbid pro
esses that intera
twith R to use b in input subje
t position (as E does).4 Se
ond Case Study: the Alternating Bit Proto
olWe now fo
us on another example: the well�known alternating bit proto
ol,whi
h is probably the most widely used ben
hmark for veri�
ation systemsin
on
urren
y. Our purpose here is not to study it per se, but instead to12

use it to shed light on issues related to the behaviour of en
odings in the��
al
ulus. To this end, we shall need expansion between pro
esses:De�nition 9 (Expansion) We write) for the re�exive transitive
losureof ��! , �) for) ��!), and �̂�! for ��! if � 6= � , = or ��! otherwise.We say that a relation R is an expansion i�, whenever PRQ, P ��! P 0implies that there exists a Q0 s.t. Q �) Q0 and P 0RQ0, and Q ��! Q0 impliesthat there exists P 0 s.t. P �̂�! P 0 and P 0RQ0. In this
ase, we write P . Qfor PRQ.. is a preorder on pro
esses that is more realisti
 than (strong) bisimu-lation for reasoning about larger
ase�studies su
h as a proto
ol. It allowsone to prove that a given term �respe
ts� a behaviour, modulo some ex-tra � steps (given by transitions �)): typi
ally, the duality spe
i�
ation vs.implementation
an be expressed using expansion. Our treatment of theup�to te
hniques is straightforwardly adapted to handle expansion; the userof our tool
an
hoose between a strong and a weak mode,
orresponding torelations � and . respe
tively.We �rst informally introdu
e the proto
ol, then present an en
odingadapted from [Mam98℄, and �nally dis
uss the en
odings we use in orderto automati
ally perform the
orre
tness proof of the proto
ol. Our purposein the latter part is to show that the question of de�ning en
odings in theframework of veri�
ation di�ers from the usual problem (i.e. the study ofexpressiveness), as exempli�ed on our
ase study.4.1 The Proto
ol
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

acc

ackn

trans

deli

Figure 3: The Alternating Bit Proto
olFigure 3 presents the entities involved in the
ommuni
ation proto
ol:a �rst agent re
eives a message (whose
ontent is not taken into a

ounthere) on
hannel a

. It then transmits this message on a
hannel
alledtrans to a se
ond agent. But
hannel trans is unreliable, and some messages13

transiting on it may get lost: to handle that, a boolean tag is asso
iated tothe message being sent on this
hannel, and the �rst agent keeps sending thisinformation on trans. By re
eption, the se
ond agent transmits the messageon deli and is willing to send ba
k the boolean to the �rst agent on a
kn,as an a
knowledgment. Channel a
kn being lossy as well, the se
ond agenthas to repeatedly send on it. When the a
knowledgment �nally arrives, anew
y
le
an start with the negated boolean, so that the �rst agent
an tellwhen the message has a
tually been re
eived.The ��
al
ulus pro
esses3 implementing this proto
ol are de�ned on Fig-ure 4 (again, our en
oding is adapted from [Mam98℄): the �rst agent's be-haviour is given by pro
esses Send and Wait, while the se
ond agent
orre-sponds to pro
ess Re
eive; message losses on trans and a
kn are managed bypro
ess Noise, that sends a signal on a
hannel loss whenever a signal getslost (one
ould see these syn
hronisations on loss as a representation of atimer me
hanism to dete
t losses). Note that the agents are parametrisedupon two booleans: this will be dis
ussed below. Finally, pro
ess Spe
if isan ideal spe
i�
ation of the proto
ol's behaviour: it re
eives a signal on a

,sends one on deli, and starts again by sending a signal on the trigger
hannel
. Send def= !send(b1; b2):a

:trans[b2; b1℄:wait[b2; b1℄Wait def= !wait(b1; b2):(a
kn(b01; b02):send[b01; b02℄+loss:trans[b1; b2℄:wait[b1; b2℄)Re
eive def= !re
(b1; b2):trans(b01; b02):if b1 = b01then a
kn[b1; b2℄ j re
[b1; b2℄else deli:(a
kn[b2; b1℄ j re
[b2; b1℄)Noise def= !noise:(trans(b; b0):loss:noise + a
kn(b; b0):loss:noise)System def= (� trans; a
kn; send;wait; re
; loss; noise; b1; b2)(Send j Wait j Re
eive j Noise j !b1:true j !b2:falsej send[b1; b2℄ j re
[b1; b2℄ j noise)Spe
if def= (�
) (!
:a

:deli:
 j
)Figure 4: Modelling the Alternating Bit Proto
ol3The language we use here is a
tually value�passing CCS; for the en
odings dis
ussedbelow, however, we shall need the full power of ��
al
ulus.14

4.2 The En
odings � Dis
ussionChoi
e � To model the alternating bit proto
ol in our system, we have todeal with two
onstru
ts that are not present in our language, namely oper-ators on booleans and the
hoi
e operator. Well�known en
odings of these
onstru
ts exist (see [Mil91, Nes97℄); these en
odings belong to theoreti
alstudies, and have been me
hanised e.g. in the programming language PICT[PT97℄. We shall see here the problems that arise as we try to use them inthe
ontext of veri�
ation, and how they
an be treated.Various en
odings of guarded
hoi
e are investigated in [NP96, Nes97℄;the general idea is to represent ea
h bran
h of the
hoi
e by a parallel
om-ponent, and to implement a lo
k me
hanism to prevent other bran
hes to�re when one bran
h has
omitted. In general, on
e a
hoi
e has been taken,the �dead� bran
hes remain, and, depending on the en
oding we
hoose, are�more or less alive�; when it
omes to automati
 veri�
ation, we need to beable to erase these bran
hes synta
ti
ally, to prevent our relation from grow-ing. We have
hosen to en
ode the binary
hoi
e of Figure 4 as follows ([[℄℄represents the en
oding fun
tion):[[a(~x):P + b(~y):Q℄℄ def= (�l) (l j a(~x):l:b(~y):P j b(~y):l:a(~x):Q) :This en
oding represents an adaptation of those des
ribed in [NP96℄; here,a lo
k
hannel l is
reated and when one bran
h is
hosen, it dea
tivates theother bran
h by
onsuming its head pre�x, thus leading to a subterm of theform (�l) (l:T), that
an immediately be garbage
olle
ted using the addi-tional law for stru
tural
ongruen
e (see Se
tion 1). Our simpli�ed en
odingis
orre
t due to an important property of the terms we
onsider: ea
h timea
hoi
e
onstru
t is en
ountered in a run of the proto
ol (agents Wait andNoise), at most one pro
ess
an intera
t with the bran
hes involved in the
hoi
e (that is, we
annot have simultaneous emissions on a
kn and loss, noron a
kn and trans). Thus, it
annot be the
ase that both bran
hes
om-mit before the lo
k l is
onsumed, and the untaken bran
h
an be safelydea
tivated before the
hosen bran
h pro
eeds.Furthermore, note as well that the simplest en
oding of guarded
hoi
e,de�ned as follows[[a(~x):P + b(~y):Q℄℄ def= (�l) (l j l:a(~x):P j l:b(~y):Q) ;and
alled internal
hoi
e in [NP96℄,
annot be adopted here, as the
hoi
eof the
omitting bran
h depends on the
ontext (sin
e at most one bran
h
an
ommit), and
annot be done internally before syn
hronisation.15

Note that the original en
oding of [NP96℄
ould not be
hosen, sin
eit allows the
omputation to pro
eed before the dead bran
hes have beendea
tivated.Booleans � We have already seen how booleans are en
oded in the ��
al
ulus. The en
oding presented in [Mam98℄ uses a single boolean as pa-rameter for the various agents, and the negation operator for the re
ursive
alls in Send and Re
eive. We
ould have en
oded the latter operator as[[:b℄℄ def= !b0(t; f)(�t0; f 0) (b[t0; f 0℄jt0:f jf 0:t) ; (�)this en
oding is not
onvenient for the purpose of veri�
ation, be
ause ea
htime the proto
ol loops, it keeps adding new terms
orresponding to thenegation operator to the system, making the relation grow ad in�nitum (in-tuitively, ::b does not redu
e to b). We therefore use a tri
k, that
onsistsin parametrising all the agents upon two booleans, that are ex
hanged as wewant to make a re
ursive
all with the negated bit (see Figure 4).We also have to manage the testing
onstru
t in agent Re
eive: hereagain, we take advantage of the additional law for stru
tural
ongruen
e toget rid of ina
tive terms on
e the test performed. We represent the booleanoperator �=� (that
an be seen as the negation of the XOR operator) by:[[b = b0℄℄ def= b0(T; F): (�t; f; t0; f 0)(b[t; f ℄ j b0[t0; f 0℄ j t:(t0:T jf 0:F) j f:(t0:F jf 0:T)) :On
e the test has taken pla
e, non�
hosen bran
hes are automati
ally garbage
olle
ted in the normalisation pro
ess.Having de�ned the en
oding of the proto
ol into our simple language,we provide our tool with the
orresponding de�nitions, and the
orre
tnessproof of the property Spe
if . System is performed automati
ally:> Left (^
)(!
.a

.deli[℄.
[℄ |
[℄)> Right (^tra)(^sen)(^wai)(^a
k)(^re
)(^b1)(^b2)(^lt)(^loss)(!sen(b1;b2).a

.tra[b2;b1℄.wai[b2;b1℄| !wai(b1;b2).(^l)(l[℄ | a
k(bp1;bp2).l.loss[℄.sen[bp1;bp2℄| loss.l.a
k[b1;b2℄.lt[℄.tra[b1;b2℄.wai[b1;b2℄)| !re
(b1;b2).tra(bp1;bp2).(^t)(^f)(^t1)(^f1)(^tp)(^fp)(b1[t;f℄ | bp1[t1;f1℄ | t.(t1.tp[℄ | f1.fp[℄)| f.(t1.fp[℄ | f1.tp[℄) | tp.(a
k[b1;b2℄.re
[b1;b2℄)| fp.del[℄.(a
k[b2;b1℄.re
[b2;b1℄))16

| !lt.(^lo)(tra(bx;by).lo.a
k[bx;by℄.loss[℄ |a
k(bz;bt).lo.tra[bz;bt℄.loss[℄ | lo[℄)| lt[℄ | sen[b1;b2℄ | re
[b1;b2℄ | !b1(t;f).t[℄ | !b2(t;f).f[℄)> ModeChe
king mode is weak, verbose mode is off,proof te
hnique is up to restri
tion up to parallel
omposition.> Che
kThe right pro
ess expands the left one.Con
lusionWe have seen how the up�to te
hniques for bisimulation
an be adapted forthe purpose of veri�
ation. The examples of persistent lists and of the proofof the alternating bit proto
ol suggest that the task of dealing with en
odingsin the ��
al
ulus
an be managed using these te
hniques. It is questionable,though, whether one should adopt a standpoint analogous to the design
hoi
es of PICT [PT97℄ , where a full-size programming language is builtby adding su

essive layers to a simple
ore language through en
odings ofhigher�level
onstru
ts. Indeed, developping an implementation in a systembuilt this way adds transitions to the terms and
alls for
lever use of garbage
olle
tion (as seen on the examples); su
h issues are
riti
al in the �eld ofveri�
ation. Nevertheless, the experiments shown above are interesting bothfrom a theoreti
al and from a pra
ti
al point of view.From a theoreti
al point of view, we have seen how the appli
ation oftheori
ians' te
hniques (as the up�to methods originally are) for the purposeof veri�
ation gives extra insight on results su
h as the en
odings of language
onstru
ts or of data. A striking example is the straightforward de�nition ofthe negation operator for booleans (see equation marked with (�)), whi
h is
atastrophi
 in terms of state spa
e growth, as stated above.From a pra
ti
al point of view, this work seems en
ouraging for the useof the up�to te
hniques in the �eld of veri�
ation. Of
ourse,
onstru
ts likebooleans or the
hoi
e operator should probably belong to a �real size� sys-tem. However, the task of spe
i�
ation in a veri�
ation tool usually involvessome formalisations that, on a larger s
ale, are quite akin to the en
odings wehave seen, at least from a methodologi
al point of view. In this approa
h, theup�to te
hniques have been shown to be helpful in terms both of e�
ien
yand of expressiveness.Regarding future work, it
ould be interesting to study whether the up�to17

te
hniques
an be integrated in a tool like the Mobility WorkBen
h [VM94℄,that is a mu
h ri
her system than our prototype, and that moreover sup-ports various supplementary fa
ilities. On its own, however, our tool
anbe enri
hed to perform some more experiments
on
erning the veri�
ationof ��
al
ulus bisimilarity results; larger
ase studies, for example,
ould be
onsidered, or other en
odings. Work is also in progress to adapt the up�tobisimulation veri�
ation method to open terms, i.e. terms possibly
on-taining pro
ess variables, in order to be able to prove not only bisimilarityresults, but also general bisimilarity laws. Finally, the issue of the usefulnessof the up�to te
hniques within other models of
on
urren
y should also beinvestigated.Referen
es[FM91℄ J.-C. Fernandez and L. Mounier. "On the �y" veri�
ation of be-havioural equivalen
es and preorders. In Pro
eedings of CAV'91,LNCS, 1991.[Hir98℄ D. Hirs
hko�. Automati
ally Proving Up To Bisimulation. InPro
eedings of MFCS'98 Workshop on Con
urren
y, volume 18 ofENTCS, 1998.[Mam98℄ B. Mammas. Une mtéthodologie de preuves orientée
ontrainteset basée sur les systèmes de transitions modales. Te
hni
al report,LIP6, UPMC, 1998.[Mil91℄ R. Milner. The polyadi
 �-
al
ulus: a tutorial. Te
hni
al ReportECS-LFCS-91-180, LFCS, O
tober 1991.[Nes97℄ U. Nestmann. What is a `good' en
oding of guarded
hoi
e? InPro
eedings of EXPRESS'97, volume 7 of ENTCS, 1997.[NP96℄ U. Nestmann and B. C. Pier
e. De
oding
hoi
e en
odings. In Pro-
eedings of CONCUR '96, number 1119. LNCS, Springer Verlag,August 1996.[PT87℄ R. Paige and R. E. Tarjan. Three partition re�nement algorithms.SIAM Journal on Computing, 16(6):973�989, 1987.[PT97℄ B. C. Pier
e and D. N. Turner. Pi
t: A Programming LanguageBased on the Pi-Cal
ulus. Te
hni
al Report CSCI 476, ComputerS
ien
e Department, Indiana University, 1997.18

[San95℄ D. Sangiorgi. On the bisimulation proof method. In Pro
eedingsof MFCS '95, volume 969 of LNCS, 1995.[San96℄ D. Sangiorgi. A theory of bisimulation for the �-
al
ulus. A
taInformati
a, 33:69�97, 1996.[San97℄ D. Sangiorgi. The name dis
ipline of uniform re
eptiveness. InPro
eedings of ICALP '97, volume 1256 of LNCS, pages 303�313,1997.[VM94℄ B. Vi
tor and F. Moller. The Mobility Workben
h � a tool forthe �-
al
ulus. In D. Dill, editor, Pro
eedings of CAV'94, volume818 of LNCS, pages 428�440. Springer-Verlag, 1994.

19

