
On the Bene�ts of Using the Up�To Tehniquesfor Bisimulation Veri�ationDaniel HirshkoffNovembre 1998No 98-138

On the Bene�ts of Using the Up�ToTehniquesfor Bisimulation Veri�ationDaniel HirshkoffRésuméNous présentons un outil qui permet la véri�ation de propriétésde bisimulation utilisant les tehniques de preuve up�to (bisimulationà ongruene struturelle près, aux restritions près, à ompositionparallèle près). Parmi es tehniques, la possibilité de travailler �àomposition parallèle près� est partiulièrement intéressante dans lamesure où elle permet de raisonner sur des termes dont l'espae d'étatsest in�ni. A�n de l'exploiter au mieux, nous adaptons l'algorithmede véri�ation à la volée, de manière à garantir à nos méthodes uneforme de omplétude omputationnelle. Les tehniques de preuve up�to s'avèrent utiles pour exploiter la puissane expressive du ��alul,omme le montrent deux études de as non triviales, onernant lareprésentation des strutures de données persistantes dans le ��aluld'une part, et la véri�ation du protoole du bit alterné d'autre part.Ce dernier exemple nous permet de revenir sur des enodages onnus en��alul, à la lumière des ritères propres au ontexte de la véri�ationautomatique.

AbstratWe advoate the use of the up�to tehniques for bisimulation in the�eld of automati veri�ation. To this end, we develop a tool to per-form proofs using the up to strutural ongruene, the up to restritionsand the up to parallel omposition proof tehniques for bisimulationbetween ��alulus terms. The latter tehnique is of partiular interestbeause it allows the user to reason on in�nite state spae proesses.To use it in full e�et, we adapt the �on the �y� bisimulation hekingalgorithm, yielding to a form of omputational ompleteness. The use-fulness of these tehniques in dealing with the expressive power of the��alulus is illustrated on two non trivial examples, namely the treat-ment of persistent data strutures and the alternating bit protool.These examples are also good opportunities to study how well�known��alulus enodings behave in the framework of automati veri�a-tion.

2

IntrodutionThis paper studies the appliability of the so�alled up�to tehniques forbisimulation in the �eld of veri�ation. Bisimilarity, and its orrelated proofmethod bisimulation, have beome popular notions of equivalene used toreason about onurrent systems. While having a simple and lear mathe-matial de�nition, they are far from being straightforward to handle in theframework of automati veri�ation, due to their rihness and to the manysubtle phenomena they are able to ath in the study of onurreny. Theup�to tehniques for bisimulation are presented in [San95℄; they an sim-plify bisimulation proofs by reduing the size of the relations one has toonsider. More preisely, an up�to tehnique is represented by a funtionF from relations to relations, suh that proving that proesses related in arelation R evolve to proesses related in F(R) is enough to show that R isontained in bisimilarity. One an thus onsider relations that are smallerthan bisimulations, the gap being �lled by the appliation of F .In this paper, we onentrate on bisimulation between ��alulus terms;the ��alulus [Mil91℄ has beome a widely aepted algebra for modellingonurreny, and has demonstrated a great expressive power. It is our beliefthat, to use ��alulus as a spei�ation language in the �eld of veri�ation,one should be able to ope with the rihness of this formalism, in partiularby designing spei� veri�ation tehniques for it, and not only transposemethods that are applied to less expressive formalisms. The Mobility Work-Benh [VM94℄ is a good example of a veri�ation tool developped spei�-ally for the ��alulus (and more reently for its evolution fusion alulus),taking advantage in partiular of the nie haraterisations given by openbisimulation [San96℄. With these ideas in mind, the up�to methods seem tobe good andidates for this task: the bisimulation up to bisimilarity prooftehnique, and more importantly the up to restritions and the up to parallelomposition proof tehniques, have been developped in the theoretial studyof ��alulus, and typially allow one to deal with name extrusion (up torestritions proof tehnique) and with repliation (up to parallel ompositionproof tehnique).Feasability of the automation of the up�to tehniques has been adressedin [Hir98℄, where some methods to deide if a pair of proesses belongs to arelation up to strutural ongruene, up to restritions, and up to parallelomposition, are introdued. These methods lead to the de�nition of a gen-eral veri�ation algorithm for up�to bisimulation between ��alulus terms,embedded in a prototype tool. In the present work, we extend the apabil-ities of the system, and, more importantly, try to evaluate the outome of1

suh an e�ort through the study of two non trivial examples that exploit the��alulus' expressive power. With respet to [Hir98℄, the urrent version ofthe system is provided with a riher notion of strutural ongruene, and,moreover, the general bisimulation veri�ation algorithm is modi�ed in orderto take into aount the way the up to parallel omposition proof tehniqueworks.The plan of the paper is as follows: in the Setion 1, we introdue theformal bakground on ��alulus and the up�to tehniques for bisimulation.Setion 2 is devoted to the desription of our implementation, and of thegeneral bisimulation algorithm we use to handle the up to parallel om-position proof tehnique in a omputationally omplete fashion. We thendesribe two ase studies: persistent data strutures, as introdued by Mil-ner [Mil91℄, are examined in Setion 3, while Setion 4 is devoted to thestudy of the alternating bit protool, in an enoding adapted from [Mam98℄.We �nally onlude by disussing future work.1 PreliminariesIn this Setion, we introdue the syntax and semantis of the language we use,a restrited though expressive subset of polyadi ��alulus where repliationis allowed only on pre�xed proesses. We then de�ne bisimulation, togetherwith the up�to tehniques for bisimulation.De�nition 1 (Syntax) Given an in�nite ountable set of names N , rangedover by a; b; ; : : : ; p; q; : : : ; x; y; : : : , we range over (possibly empty) name listswith ~a;~b; : : : , and we de�ne pre�xes, ranged over by �; �, as follows:� def= a(~b) j a[~b℄ ;Proesses, ranged over with P;Q;R; : : : , are then de�ned as follows:P def= 0 j �:P j (�x)P j P1jP2 j !�:P :Pre�xed proesses are either reeptions (pre�x a(~b)) or emissions (a[~b℄);0 is the inative proess; the restrition operator � makes a name private tothe restrited proess; parallel omposition is written j, and ! stands for repli-ation, allowed only on pre�xed proesses; intuitively, a repliated proessrepresents any number of opies of this proess put in parallel.Conventions and notations: In pre�xes a(~b) and a[~b℄, a and ~b arealled respetively the subjet and the objet parts of the pre�x. We shall2

omit the objet part of a pre�x when it is empty, and use a monadi notationfor single name objet parts (thus writing e.g. a(b) and ab). We shall as wellomit the ontinuation of a pre�x when it is the inative proess 0. Freeand bound names are de�ned by saying that restrition and abstration(embodied in the input pre�x) are binding operators. As usual, we shallsilently use ��onversion to avoid apture of bound names.De�nition 2 (Transition system) The operational semantis of ��alulusterms is de�ned as a labeled transition system. Ations, ranged over with�; �0, are given by the following syntax:� def= a(~b) j (�~b0) a[~b℄~b0�~b j � ;whih reads as follows: an ation is either a reeption, a (possibly bound)output, or the silent ation � , denoting internal ommuniation. Bound andfree names of ations are de�ned as usual.The judgment P ��! P 0, meaning that proess P is liable to perform ation� to beome P 0, is de�ned by the rules of Figure 1 (symmetrial versions ofrules parl and lose1 are omitted; :: is the onstrutor used to add anelement to a list). Note that we adopt an �early� version of the operationalsemantis.(inp) a(~b):P a(~)��! P~b:=~ (out) a[~b℄:P a[~b℄��! P(bang) �:P ��! P 0!�:P ��! !�:P jP 0 (res) P ��! P 0(�x)P ��! (�x)P 0 x =2 n(�)(parl) P ��! P 0P jQ ��! P 0jQ bn(�) \ fn(Q) = ;(open) P (�~b0) a[~b℄�����! P 0(�t)P (�t::~b0) a[~b℄������! P 0 t 6= a; t 2 ~b n ~b0(lose1) P a(~b)��! P 0 Q (�~b0) a[~b℄�����! Q0P jQ ��! (�~b0) (P 0jQ0) ~b0 \ fn(P) = ;Figure 1: Operational semantisThe notion of semantial equivalene on proesses we are interested in isbisimilarity, de�ned as follows: 3

De�nition 3 (Bisimulation, bisimilarity) A relation R over proessesis a bisimulation i�, whenever PRQ and P ��! P 0, there exists a proess Q0s.t. Q ��! Q0 and P 0RQ0, and onversely for the transitions of Q. Bisimilar-ity, written �, is the greatest bisimulation.De�nition 4 (Strutural ongruene) Strutural ongruene, written �,is the smallest equivalene relation on ��alulus terms that is a ongruenegenerated by the following rules:P j0 � P P jQ � QjP P j(QjR) � (P jQ)jR (�x)0 � 0!�:P j�:P �!�:P !�:P j!�:P �!�:P (�x)P j Q � (�x) (P jQ) if x =2fn(Q) :Note that rule for proesses of the form !�:P j!�:P is new with respet tothe usual de�nition of strutural ongruene, and de�ne a straightforwardextension of this relation. Note as well that � is obviously inluded in �.We shall atually use a slightly enrihed version of strutural ongruene,where we add the following law:(x ours in � in subjet position)) (�x)�:P � 0 :This rule is usually not inluded in the de�nition of strutural ongruene,beause its signi�ation is too �semantial�, i.e. it expresses a behaviouralproperty of a proess rather than a geometrial one, as strutural ongru-ene is intended to do. However, in the framework of the up to bisimilarityproof tehnique, it is preferable to equate as many terms as possible, henean extended version of strutural ongruene is of interest; moreover, thispartiular law will turn out to be very useful in the example treated in Se-tion 4. We extend the notation � to our �enrihed� strutural ongruenerelation.To introdue up�to bisimulation (see [San95℄), we onsider funtions fromrelations to relations, ranged over by F , and modify the de�nition of bisim-ulation:De�nition 5 (Up-to bisimulation) Given a funtion F from relations torelations, we say that a relation R is a bisimulation up to F i� the propertyof De�nition 3 holds when we replae �P 0 R Q0� by �P 0 F(R) Q0�.Intuitively, an up�to bisimulation relation R is �smaller� than a bisimu-lation, the gap being �lled by funtion F , that helps building the �future�of proesses related in R. This is of interest, as it allows us to redue thesize of the relations we handle for the task of proving bisimilarity results,4

whenever we have a orret funtion F : a funtion F is said to be orretwhen (R is a bisimulation up to F) implies (R relates bisimilar proesses).In the ontext of ��alulus, we shall use the up�to tehniques given by thefollowing Proposition:Proposition 6 ([San95℄) The up to strutural ongruene, up to restri-tions and up to parallel omposition proof tehniques for ��alulus termsare de�ned by the following funtions over relations, respetively alled F1,F2 and F3:F1(R) def= f(P;Q); 9P0; Q0 s:t: P � P0; P0RQ0 and Q0 � Qg;F2(R) def= f(P;Q); 9P0; Q0; ~x s:t: P = (�~x)P0; Q = (�~x)Q0 and P0RQ0g;F3(R) def= f(P;Q); 9P0; Q0; T s:t: P = P0jT; Q = Q0jT and P0RQ0g:Funtions F1, F2 and F3 orrespond to orret up�to proof tehniques, i.e.proving that R is a bisimulation up to F (where F is one of the aforemen-tioned funtions) is su�ient to prove that R is inluded in bisimilarity.Moreover, these funtions an be ombined together, still yielding a orrettehnique.Note that F1 orresponds to a restrition of the general bisimulation upto bisimilarity tehnique (where � replaes � in the de�nition of F1).2 Automatising Up�To BisimulationWe disuss here the questions related to the automation of the up�to prooftehniques for bisimulation. As stated before, the improvements with respetto [Hir98℄ are twofold: �rstly, a narrower relation is handled in the bisim-ulation up to bisimilarity proof tehnique, and seondly, the general up�tobisimulation heking algorithm is modi�ed in order to perform breadth��rstsearh (and to handle expansion as well: see Setion 4).2.1 Deiding Up�To ClosureThe ornerstone of our method is the ability to deide whether a pair ofproesses belongs to the losure of a relation up to some orret proof teh-nique; in the sequel, we onentrate on our most powerful proof tehnique,namely the up to (extended) strutural ongruene, up to restritions and upto parallel omposition proof tehnique, embedded by funtion F3 ÆF2 ÆF1(see Proposition 6 above), where Æ denotes funtion omposition.5

Proposition 7 ([Hir98℄) Given a pair (P;Q) of proesses and a relationR, we an deide whether (P;Q) 2 F3 Æ F2 Æ F1(R).The proof given in [Hir98℄ is straightforwardly adapted to handle ex-tended strutural ongruene as de�ned above. Let us now explain how weexploit this result for up�to bisimulation veri�ation.2.2 The General Cheking MethodWithin the framework of bisimulation veri�ation, an immediate though de-termining remark is that funtions F1, F2 and F3 are syntatial operators;this ompells us to use an �on the �y� algorithm for bisimulation heking, inorder to have aess to the atual term orresponding to a given state in theveri�ation proess (as opposed for example to the partition re�nement al-gorithm [PT87℄, whih works on unfoldings of proesses). The �lassial� onthe �y heking method [FM91℄ an easily be adapted to the up�to methods,so as to de�ne a semi�deision proedure for up�to bisimulation veri�ationin the ��alulus, as is done in [Hir98℄. However, to exploit the up�to meth-ods in full e�et, we need to modify the general bisimulation veri�ationalgorithm; this is the subjet of the remainder of this Setion.Indeed, one of the ruial improvements brought by the up�to tehniquesis the ability, through the up to parallel omposition proof tehnique, tohandle in some ases repliated terms, i.e. terms possibly having an in�nitebehaviour. Thus, when applied, this proof method an allow one to utin�nite branhes in the state spae of the proesses being ompared. Usingdepth��rst searh, as the original algorithm of [FM91℄ does, it an be the asethat we miss two mathing branhes whih an be ut using the up to parallelomposition tehnique, and instead enter an in�nite loop (orresponding toan in�nite growth of the state spae). To avoid this, it is preferable toadopt a breadth��rst strategy, in order to enter an in�nite loop only whenompulsory. Figure 2 presents the overall behaviour of Mounier's original�on the �y� algorithm, that progressively builds a andidate bisimulationrelation, by exploring the states whih an be reahed starting from twoproesses.Let us explain informally how the veri�ation method works (a more de-tailed desription an be found in [FM91℄ and in the author's forthomingPhD thesis). The algorithm explores the state spae given by the artesianprodut of the transition systems indued by the two proesses being heked.The data strutures involved in the algorithm are: a struture S (we shallreturn later on to the nature of S), that ontains the states that still have6

W:= ;;(�) R={(P;Q)g, V:= ;, R:= ;, status:=true; insert (P;Q) in S;while S is not empty dohoose a pair (P0; Q0) in S and remove it from S;if (P0; Q0) sueedsthen (add (P0; Q0) to V (or R, see below); propagate)elseif (P0; Q0) fails thenif (P0; Q0) 2 Rthen (remove (P0; Q0) from V and insert it in W,status:=false; propagate)else (insert (P0; Q0) in W; propagate);else (* neither sueeds nor fails *)ompute the suessors of (P0; Q0) and insert them in S;endwhile;if P � Q then (if status then true else loop bak to (�)) else falseFigure 2: General �On The Fly� Bisimulation Cheking Algorithmto be examined; three sets V, W, and R, ontaining the pairs of proessesthat are respetively supposed to be bisimilar, known to be non�bisimilar,and known to be bisimilar. When two new proesses are disovered to bebisimilar, if the orresponding pair is in V, it is stored in R, and symmet-rially for the ase of non�bisimilarity (from V to W). It an be the ase,though, that during the exploration of the state spae, an inorret hypoth-esis is assumed regarding the bisimilarity of two proesses (i.e. a pair in Ris atually made of non�bisimilar proesses): to handle this, a boolean �agalled status reords the �reliability� of the urrent omputation. When aomputation gives an unreliable result, we start all over again, keeping trakin W of the states that have been proved non bisimilar.We still have to explain the behaviour of funtions sueeds, fails, andpropagate: funtion fails tests if a failure an be deteted by inspeting theimmediate transitions of the two proesses to be examined (a failure oursif one proess performs an ation that annot be done by the other term), orif the two proesses are known to be non�bisimilar (set W). Symmetrially,sueeds heks if the two proesses are trivially bisimilar (i.e. if they are��onvertible or both have no transition) or if there is an assumption stat-ing bisimilarity between them (sets V and R). Finally, funtion propagatepropagates a newly found information along the state spae, possibly dis-7

overing new (non�)bisimilarity properties, or utting branhes that do nothave to be explored anymore.As expeted, the nature of the struture S determines the exploring strat-egy: with respet to Mounier's algorithm, we replae the stak of states thathave to be examined by a queue, thus performing breadth��rst instead ofdepth��rst searh. Some extra information regarding the representation ofthe �vertial� struture of the state spae (i.e. the relationships betweenstates due to the transition relation), that omes for free in the ase of astak struture, has to be provided within the objets that are stored inS1. Using breadth��rst searh, we get a omputationally omplete hekingalgorithm:Theorem 8 We say that a bisimulation heking algorithm is omputation-ally omplete with respet to a given up�to tehnique F whenever it divergesif and only no �nite bisimulation up to F relating the two proesses to beheked and derivatives of these proesses exists.With this terminology, the breadth��rst version of the algorithm of Figure2 is omputationally omplete with respet to the up to strutural ongruene,up to restritions and up to parallel omposition proof tehnique.The proof of this result follows immediately from the de�nition of thebreadth��rst searh. Note that the hypothesis abouth the relation ontainingonly derivatives of the proesses we examine is determinant for the proof.What is really important here is the form of ompleteness we get: whilefor �nite�state proesses, depth��rst and breadth��rst searhes di�er only�strategially�, in the ase of repliated terms, the breadth��rst version, inonjuntion with the up to parallel omposition proof tehnique, provides areal gain in expressiveness, as expressed by Theorem 8. This improvementof the system, together with the additional strutural ongruene law seenabove, will be determinant for the treatment of the examples in Setions 3and 4.2.3 A Tool for Up�To Bisimulation Veri�ationThe methods presented so far are implemented in a tool, written in O'Caml,and running under Unix. The system allows the user to de�ne a pair ofproesses and to hek whether they are bisimilar by hoosing between three1This strutural information is even more intriate in the weak ase, where some arehas to be provided to avoid ��loops before an ation atually �res (i.e. in the ��rst)part� of) ��!): see Setion 4). 8

up�to proof tehniques and between strong bisimulation and expansion (seebelow for the de�nition of this notion). Failities for interatively simulat-ing the behaviour of a proess and for debugging (in the ase of a hekfailure) are also provided. Internally, the system works systematially upto strutural ongruene, i.e. with normalised terms, as de�ned in [Hir98℄;as the algorithm of Figure 2 is run, information an be obtained on thesize of the urrent state spae to be explored. The tool is available athttp://ermis.enp.fr/�dh/pi.3 First Case Study: Persistent Values and SharingOne of the appliations of the up to parallel omposition proof tehniqueis the proof of the so�alled repliation theorems, whih express some prop-erties of proesses that model resoures. Intuitively, a term of the form(�a) (!a(~b):P j Q) is viewed as an agent Q having aess to a private resoureP , loated at hannel a, with the possibility of instantiating the resoure withsome parameters ~b. The resoure is usually repliated, beause it is meant tobe �always available�. Resoure proesses of the form !a(~b):P are ubiquitousin the study of ��alulus: they an be found in partiular in the enodingsof the ��alulus, where appliation is represented as (the translation of)the funtion having aess to its argument as a resoure. Resoure proessesarise also in the study of higher�order ��alulus, of objet alulus, and (asan be expeted) of data strutures. We fous here on the latter subjet, bystudying Milner's enoding of lists in the ��alulus.In [Mil91℄, lists are represented using two kinds of ��alulus terms, or-responding to eah onstrutor: a proess of the form l(; n):[v; l0℄ representsa Cons node, situated at l, and ontaining a value that an be aessed athannel v and a referene to the remainder of the list situated at l0, whilel(; n):n is the empty list Nil situated at l. Lists an be interrogated by send-ing two names at their loation, one for eah possible onstrutor. With thisrepresentation, for example, list L = [true; false℄ is de�ned by the followingterm, given an enoding of the booleans true and false2:L def= (�l1; b1) (l0(; n):[b1; l1℄ j b1:truej (�l2; b2) (l1(; n):[b2; l2℄ j b2:false j l2(; n):n)) :2Along the lines of the enoding of booleans in the ��alulus, the value true loatedat b, written b:true, is a proess waiting for two names t and f , and returning a signal ont (false would return a signal on f): we write b:true def= b(t; f):t (see [Mil91℄).9

Suh a data struture, though, is linear: reading the values in a listdestroys it. To make the struture persistent, we use repliation. A priori,there are two approahes to ahieve this, whether we hoose to repliate thenodes and the value ells in the lists, or the subomponents; in the ase oflist L above, this leads to the two following terms:L1 def= (�l1; b1) (!l0(; n):[b1; l1℄ j !b1:truej (�l2; b2) (!l1(; n):[b2; l2℄ j !b2:false j l2(; n):n)) ;L2 def= !l0(; n):(�l1; b1) ([b1; l1℄ j !b1:truej !l1(; n):(�l2; b2) ([b2; l2℄ j !b2:false j !l2(; n):n)) :As we shall see, this design hoie gets re�eted both on the behaviourof the orresponding data struture and on questions related to bisimulationheking.In the following, to illustrate the behaviour of repliated data, we shallwork with a very simple list, onsisting only in the element true; as anephemeral data struture, it is enoded by the following proess:R0 def= (�b; l1) (l0(:n) [b; l1℄ j !b:true j l1(; n):n) :We simplify this representation by taking R def= (�b) (l0():b j !b true). Thisproess an be viewed as a single onstant ell holding the value true, and isonly reminisent of the list [true℄; however, it will be su�ent for our task,and the reasoning made below holds for �real� lists as well.Along the lines exposed above, there are two ways to transform R into apersistent value, represented by the following two proesses:R1 def= (�b) (!l0(): j !b:true) and R2 def= !l0():(�b) (b j !b:true) :As stated in [Mil91℄, the di�erene between R1 and R2 is re�eted on shar-ing properties of our data strutures. The problem of value sharing an beexpressed in terms of seurity: suppose we have an agent A, willing to in-terrogate any number of times the resoure R loated at l0, and to send asignal on either one of two hannels o and p, depending on the value read atl0. This agent an be represented by the proessA def= !l01:1(b):(�t; f) (b[t; f ℄ j t:o j f:p) ;where 1 is a name that is spei� to A for its ommuniations with R. Sup-pose now that an evil agent E is willing to interfer with the ommuniations10

of A, by interrogating R and trying to send the value false as if it was in theell loated at l0. To do this, E needs to interrogate one R, to get name bwhere the value is loated, and then to send false along b. Hene:E def= l02:2(b):b(t; f)f :Our whole system is made of the parallel omposition of the resoure (beingeither R1 or R2), �innoent� agent A, and �evil� agent E:Sysi def= (�l0) (Ri j A j E) i = 1; 2 :We verify that, depending on whih representation we take for the per-sistent ell R, E an either disturb the ommuniations performed by A,or be innouous. To this end, we ompare the behaviour of the term Sysifor i = 1; 2 with the behaviour of the proess where eah agent A and Ehave their own private opy of the resoure, orresponding to the followingde�nition:Sys0i def= (�l0; 1) (Ri j A) j (�l0; 2) (Ri j E) i = 1; 2 :Indeed, if we run the tool with these de�nitions, we get the followingresults:� ase Sys1: in this ase, a loation b for the value true is reated onefor all and transmitted every proess that interrogates the list at l0.This way, even in the ase where A performs only one request at l0,agent E an send the wrong value false to A, and Sys1 and Sys01 arenot bisimilar. We hek this on a simple session of our tool; we �rstde�ne the two omponents of the pair of proesses to be heked:> Left (^l0)(^1)(^2)(((^b)(!l0().[b℄|b(t;f).t[℄))| l0[1℄.1(b).b(t;f).f[℄| l0[2℄.2(b).(^t)(^f)(b[t;f℄|t.o[℄|f.p[℄))> Right (^l0)(^1)(((^b)(!l0().[b℄|b(t;f).t[℄))| l0[1℄.1(b).b(t;f).f[℄)| (^l0)(^2)(((^b)(!l0().[b℄|b(t;f).t[℄))| l0[2℄.2(b).(^t)(^f)(b[t;f℄|t.o[℄|f.p[℄))The syntax for proesses is quite natural: ^ stands for abstration, [℄for output and () for input. We now hek for bisimilarity:11

> ChekThe proesses are not bisimilar.� ase Sys2: in this ase, a new name b is reated eah time the list isinterrogated at l0, and hene proesses A and E annot interfer. Evenin the ase where an in�nite number of proesses interrogate the list,we an prove that Sys2 and Sys02 are bisimilar:> Left (^l0)(((!l0().(^b)[b℄.b(t;f).t[℄))| l0[1℄.1(b).b(t;f).f[℄| !l0[2℄.2(b).(^t)(^f)(b[t;f℄|t.o[℄|f.p[℄))> Right (^l0)(((!l0().(^b)[b℄.b(t;f).t[℄))| l0[1℄.1(b).b(t;f).f[℄)| (^l0)(((!l0().(^b)[b℄.b(t;f).t[℄))| !l0[2℄.2(b).(^t)(^f)(b[t;f℄|t.o[℄|f.p[℄))> ChekThe proesses are bisimilar.When the tool performs this veri�ation, it uses the up to parallelomposition proof tehnique to erase opies of the ell eah time theyappear in both proess: an in�nite proof is thus replaed by a �niteone.The latter example exploits the up to parallel omposition proof teh-nique to handle the representation of data strutures in the ��alulus. Inthis ontext, our tool has been useful in dealing with non trivial propertiesof proesses, and it should be stressed that other existing systems annothandle repliated proesses like those we manipulate here.Furthermore, it should be remarked that seurity properties like the onewe have onsidered an be adressed using type systems for the ��alulus. Asexposed for example in [San97℄ an easy way to prevent E from �pretending�to be R by loating the value false at b is to forbid proesses that interatwith R to use b in input subjet position (as E does).4 Seond Case Study: the Alternating Bit ProtoolWe now fous on another example: the well�known alternating bit protool,whih is probably the most widely used benhmark for veri�ation systemsin onurreny. Our purpose here is not to study it per se, but instead to12

use it to shed light on issues related to the behaviour of enodings in the��alulus. To this end, we shall need expansion between proesses:De�nition 9 (Expansion) We write) for the re�exive transitive losureof ��! , �) for) ��!), and �̂�! for ��! if � 6= � , = or ��! otherwise.We say that a relation R is an expansion i�, whenever PRQ, P ��! P 0implies that there exists a Q0 s.t. Q �) Q0 and P 0RQ0, and Q ��! Q0 impliesthat there exists P 0 s.t. P �̂�! P 0 and P 0RQ0. In this ase, we write P . Qfor PRQ.. is a preorder on proesses that is more realisti than (strong) bisimu-lation for reasoning about larger ase�studies suh as a protool. It allowsone to prove that a given term �respets� a behaviour, modulo some ex-tra � steps (given by transitions �)): typially, the duality spei�ation vs.implementation an be expressed using expansion. Our treatment of theup�to tehniques is straightforwardly adapted to handle expansion; the userof our tool an hoose between a strong and a weak mode, orresponding torelations � and . respetively.We �rst informally introdue the protool, then present an enodingadapted from [Mam98℄, and �nally disuss the enodings we use in orderto automatially perform the orretness proof of the protool. Our purposein the latter part is to show that the question of de�ning enodings in theframework of veri�ation di�ers from the usual problem (i.e. the study ofexpressiveness), as exempli�ed on our ase study.4.1 The Protool
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

acc

ackn

trans

deli

Figure 3: The Alternating Bit ProtoolFigure 3 presents the entities involved in the ommuniation protool:a �rst agent reeives a message (whose ontent is not taken into aounthere) on hannel a. It then transmits this message on a hannel alledtrans to a seond agent. But hannel trans is unreliable, and some messages13

transiting on it may get lost: to handle that, a boolean tag is assoiated tothe message being sent on this hannel, and the �rst agent keeps sending thisinformation on trans. By reeption, the seond agent transmits the messageon deli and is willing to send bak the boolean to the �rst agent on akn,as an aknowledgment. Channel akn being lossy as well, the seond agenthas to repeatedly send on it. When the aknowledgment �nally arrives, anew yle an start with the negated boolean, so that the �rst agent an tellwhen the message has atually been reeived.The ��alulus proesses3 implementing this protool are de�ned on Fig-ure 4 (again, our enoding is adapted from [Mam98℄): the �rst agent's be-haviour is given by proesses Send and Wait, while the seond agent orre-sponds to proess Reeive; message losses on trans and akn are managed byproess Noise, that sends a signal on a hannel loss whenever a signal getslost (one ould see these synhronisations on loss as a representation of atimer mehanism to detet losses). Note that the agents are parametrisedupon two booleans: this will be disussed below. Finally, proess Speif isan ideal spei�ation of the protool's behaviour: it reeives a signal on a,sends one on deli, and starts again by sending a signal on the trigger hannel. Send def= !send(b1; b2):a:trans[b2; b1℄:wait[b2; b1℄Wait def= !wait(b1; b2):(akn(b01; b02):send[b01; b02℄+loss:trans[b1; b2℄:wait[b1; b2℄)Reeive def= !re(b1; b2):trans(b01; b02):if b1 = b01then akn[b1; b2℄ j re[b1; b2℄else deli:(akn[b2; b1℄ j re[b2; b1℄)Noise def= !noise:(trans(b; b0):loss:noise + akn(b; b0):loss:noise)System def= (� trans; akn; send;wait; re; loss; noise; b1; b2)(Send j Wait j Reeive j Noise j !b1:true j !b2:falsej send[b1; b2℄ j re[b1; b2℄ j noise)Speif def= (�) (!:a:deli: j)Figure 4: Modelling the Alternating Bit Protool3The language we use here is atually value�passing CCS; for the enodings disussedbelow, however, we shall need the full power of ��alulus.14

4.2 The Enodings � DisussionChoie � To model the alternating bit protool in our system, we have todeal with two onstruts that are not present in our language, namely oper-ators on booleans and the hoie operator. Well�known enodings of theseonstruts exist (see [Mil91, Nes97℄); these enodings belong to theoretialstudies, and have been mehanised e.g. in the programming language PICT[PT97℄. We shall see here the problems that arise as we try to use them inthe ontext of veri�ation, and how they an be treated.Various enodings of guarded hoie are investigated in [NP96, Nes97℄;the general idea is to represent eah branh of the hoie by a parallel om-ponent, and to implement a lok mehanism to prevent other branhes to�re when one branh has omitted. In general, one a hoie has been taken,the �dead� branhes remain, and, depending on the enoding we hoose, are�more or less alive�; when it omes to automati veri�ation, we need to beable to erase these branhes syntatially, to prevent our relation from grow-ing. We have hosen to enode the binary hoie of Figure 4 as follows ([[℄℄represents the enoding funtion):[[a(~x):P + b(~y):Q℄℄ def= (�l) (l j a(~x):l:b(~y):P j b(~y):l:a(~x):Q) :This enoding represents an adaptation of those desribed in [NP96℄; here,a lok hannel l is reated and when one branh is hosen, it deativates theother branh by onsuming its head pre�x, thus leading to a subterm of theform (�l) (l:T), that an immediately be garbage olleted using the addi-tional law for strutural ongruene (see Setion 1). Our simpli�ed enodingis orret due to an important property of the terms we onsider: eah timea hoie onstrut is enountered in a run of the protool (agents Wait andNoise), at most one proess an interat with the branhes involved in thehoie (that is, we annot have simultaneous emissions on akn and loss, noron akn and trans). Thus, it annot be the ase that both branhes om-mit before the lok l is onsumed, and the untaken branh an be safelydeativated before the hosen branh proeeds.Furthermore, note as well that the simplest enoding of guarded hoie,de�ned as follows[[a(~x):P + b(~y):Q℄℄ def= (�l) (l j l:a(~x):P j l:b(~y):Q) ;and alled internal hoie in [NP96℄, annot be adopted here, as the hoieof the omitting branh depends on the ontext (sine at most one branhan ommit), and annot be done internally before synhronisation.15

Note that the original enoding of [NP96℄ ould not be hosen, sineit allows the omputation to proeed before the dead branhes have beendeativated.Booleans � We have already seen how booleans are enoded in the ��alulus. The enoding presented in [Mam98℄ uses a single boolean as pa-rameter for the various agents, and the negation operator for the reursivealls in Send and Reeive. We ould have enoded the latter operator as[[:b℄℄ def= !b0(t; f)(�t0; f 0) (b[t0; f 0℄jt0:f jf 0:t) ; (�)this enoding is not onvenient for the purpose of veri�ation, beause eahtime the protool loops, it keeps adding new terms orresponding to thenegation operator to the system, making the relation grow ad in�nitum (in-tuitively, ::b does not redue to b). We therefore use a trik, that onsistsin parametrising all the agents upon two booleans, that are exhanged as wewant to make a reursive all with the negated bit (see Figure 4).We also have to manage the testing onstrut in agent Reeive: hereagain, we take advantage of the additional law for strutural ongruene toget rid of inative terms one the test performed. We represent the booleanoperator �=� (that an be seen as the negation of the XOR operator) by:[[b = b0℄℄ def= b0(T; F): (�t; f; t0; f 0)(b[t; f ℄ j b0[t0; f 0℄ j t:(t0:T jf 0:F) j f:(t0:F jf 0:T)) :One the test has taken plae, non�hosen branhes are automatially garbageolleted in the normalisation proess.Having de�ned the enoding of the protool into our simple language,we provide our tool with the orresponding de�nitions, and the orretnessproof of the property Speif . System is performed automatially:> Left (^)(!.a.deli[℄.[℄ | [℄)> Right (^tra)(^sen)(^wai)(^ak)(^re)(^b1)(^b2)(^lt)(^loss)(!sen(b1;b2).a.tra[b2;b1℄.wai[b2;b1℄| !wai(b1;b2).(^l)(l[℄ | ak(bp1;bp2).l.loss[℄.sen[bp1;bp2℄| loss.l.ak[b1;b2℄.lt[℄.tra[b1;b2℄.wai[b1;b2℄)| !re(b1;b2).tra(bp1;bp2).(^t)(^f)(^t1)(^f1)(^tp)(^fp)(b1[t;f℄ | bp1[t1;f1℄ | t.(t1.tp[℄ | f1.fp[℄)| f.(t1.fp[℄ | f1.tp[℄) | tp.(ak[b1;b2℄.re[b1;b2℄)| fp.del[℄.(ak[b2;b1℄.re[b2;b1℄))16

| !lt.(^lo)(tra(bx;by).lo.ak[bx;by℄.loss[℄ |ak(bz;bt).lo.tra[bz;bt℄.loss[℄ | lo[℄)| lt[℄ | sen[b1;b2℄ | re[b1;b2℄ | !b1(t;f).t[℄ | !b2(t;f).f[℄)> ModeCheking mode is weak, verbose mode is off,proof tehnique is up to restrition up to parallel omposition.> ChekThe right proess expands the left one.ConlusionWe have seen how the up�to tehniques for bisimulation an be adapted forthe purpose of veri�ation. The examples of persistent lists and of the proofof the alternating bit protool suggest that the task of dealing with enodingsin the ��alulus an be managed using these tehniques. It is questionable,though, whether one should adopt a standpoint analogous to the designhoies of PICT [PT97℄ , where a full-size programming language is builtby adding suessive layers to a simple ore language through enodings ofhigher�level onstruts. Indeed, developping an implementation in a systembuilt this way adds transitions to the terms and alls for lever use of garbageolletion (as seen on the examples); suh issues are ritial in the �eld ofveri�ation. Nevertheless, the experiments shown above are interesting bothfrom a theoretial and from a pratial point of view.From a theoretial point of view, we have seen how the appliation oftheoriians' tehniques (as the up�to methods originally are) for the purposeof veri�ation gives extra insight on results suh as the enodings of languageonstruts or of data. A striking example is the straightforward de�nition ofthe negation operator for booleans (see equation marked with (�)), whih isatastrophi in terms of state spae growth, as stated above.From a pratial point of view, this work seems enouraging for the useof the up�to tehniques in the �eld of veri�ation. Of ourse, onstruts likebooleans or the hoie operator should probably belong to a �real size� sys-tem. However, the task of spei�ation in a veri�ation tool usually involvessome formalisations that, on a larger sale, are quite akin to the enodings wehave seen, at least from a methodologial point of view. In this approah, theup�to tehniques have been shown to be helpful in terms both of e�ienyand of expressiveness.Regarding future work, it ould be interesting to study whether the up�to17

tehniques an be integrated in a tool like the Mobility WorkBenh [VM94℄,that is a muh riher system than our prototype, and that moreover sup-ports various supplementary failities. On its own, however, our tool anbe enrihed to perform some more experiments onerning the veri�ationof ��alulus bisimilarity results; larger ase studies, for example, ould beonsidered, or other enodings. Work is also in progress to adapt the up�tobisimulation veri�ation method to open terms, i.e. terms possibly on-taining proess variables, in order to be able to prove not only bisimilarityresults, but also general bisimilarity laws. Finally, the issue of the usefulnessof the up�to tehniques within other models of onurreny should also beinvestigated.Referenes[FM91℄ J.-C. Fernandez and L. Mounier. "On the �y" veri�ation of be-havioural equivalenes and preorders. In Proeedings of CAV'91,LNCS, 1991.[Hir98℄ D. Hirshko�. Automatially Proving Up To Bisimulation. InProeedings of MFCS'98 Workshop on Conurreny, volume 18 ofENTCS, 1998.[Mam98℄ B. Mammas. Une mtéthodologie de preuves orientée ontrainteset basée sur les systèmes de transitions modales. Tehnial report,LIP6, UPMC, 1998.[Mil91℄ R. Milner. The polyadi �-alulus: a tutorial. Tehnial ReportECS-LFCS-91-180, LFCS, Otober 1991.[Nes97℄ U. Nestmann. What is a `good' enoding of guarded hoie? InProeedings of EXPRESS'97, volume 7 of ENTCS, 1997.[NP96℄ U. Nestmann and B. C. Piere. Deoding hoie enodings. In Pro-eedings of CONCUR '96, number 1119. LNCS, Springer Verlag,August 1996.[PT87℄ R. Paige and R. E. Tarjan. Three partition re�nement algorithms.SIAM Journal on Computing, 16(6):973�989, 1987.[PT97℄ B. C. Piere and D. N. Turner. Pit: A Programming LanguageBased on the Pi-Calulus. Tehnial Report CSCI 476, ComputerSiene Department, Indiana University, 1997.18

[San95℄ D. Sangiorgi. On the bisimulation proof method. In Proeedingsof MFCS '95, volume 969 of LNCS, 1995.[San96℄ D. Sangiorgi. A theory of bisimulation for the �-alulus. AtaInformatia, 33:69�97, 1996.[San97℄ D. Sangiorgi. The name disipline of uniform reeptiveness. InProeedings of ICALP '97, volume 1256 of LNCS, pages 303�313,1997.[VM94℄ B. Vitor and F. Moller. The Mobility Workbenh � a tool forthe �-alulus. In D. Dill, editor, Proeedings of CAV'94, volume818 of LNCS, pages 428�440. Springer-Verlag, 1994.

19

