On the Benefits of Using the Up—To Techniques
for Bisimulation Verification

DANIEL HIRSCHKOFF
Novembre 1998

N? 98-138

On the Benefits of Using the Up—To
Techniques
for Bisimulation Verification

DANIEL HIRSCHKOFF

Résumé

Nous présentons un outil qui permet la vérification de propriétés
de bisimulation utilisant les techniques de preuve up—to (bisimulation
a congruence structurelle prés, aux restrictions prés, 4 composition
parallele prés). Parmi ces techniques, la possibilité de travailler “a
composition paralléle prés” est particuliérement intéressante dans la
mesure ot elle permet de raisonner sur des termes dont I’espace d’états
est infini. Afin de Pexploiter au mieux, nous adaptons 'algorithme
de vérification a la volée, de maniére a garantir & nos méthodes une
forme de complétude computationnelle. Les techniques de preuve up—
to s’avérent utiles pour exploiter la puissance expressive du w—calcul,
comme le montrent deux études de cas non triviales, concernant la
représentation des structures de données persistantes dans le m—calcul
d’une part, et la vérification du protocole du bit alterné d’autre part.
Ce dernier exemple nous permet de revenir sur des encodages connus en
w—calcul, a la lumiére des critéres propres au contexte de la vérification
automatique.

Abstract

We advocate the use of the up—to techniques for bisimulation in the
field of automatic verification. To this end, we develop a tool to per-
form proofs using the up to structural congruence, the up to restrictions
and the up to parallel composition proof techniques for bisimulation
between w—calculus terms. The latter technique is of particular interest
because it allows the user to reason on infinite state space processes.
To use it in full effect, we adapt the “on the fly” bisimulation checking
algorithm, yielding to a form of computational completeness. The use-
fulness of these techniques in dealing with the expressive power of the
w—calculus is illustrated on two non trivial examples, namely the treat-
ment of persistent data structures and the alternating bit protocol.
These examples are also good opportunities to study how well-known
m—calculus encodings behave in the framework of automatic verifica-
tion.

Introduction

This paper studies the applicability of the so—called up—to techniques for
bisimulation in the field of verification. Bisimilarity, and its correlated proof
method bisimulation, have become popular notions of equivalence used to
reason about concurrent systems. While having a simple and clear mathe-
matical definition, they are far from being straightforward to handle in the
framework of automatic verification, due to their richness and to the many
subtle phenomena they are able to catch in the study of concurrency. The
up—to techniques for bisimulation are presented in [San95]; they can sim-
plify bisimulation proofs by reducing the size of the relations one has to
consider. More precisely, an up—to technique is represented by a function
F from relations to relations, such that proving that processes related in a
relation R evolve to processes related in F(R) is enough to show that R is
contained in bisimilarity. One can thus consider relations that are smaller
than bisimulations, the gap being filled by the application of F.

In this paper, we concentrate on bisimulation between m—calculus terms;
the m—calculus [Mil91] has become a widely accepted algebra for modelling
concurrency, and has demonstrated a great expressive power. It is our belief
that, to use m—calculus as a specification language in the field of verification,
one should be able to cope with the richness of this formalism, in particular
by designing specific verification techniques for it, and not only transpose
methods that are applied to less expressive formalisms. The Mobility Work-
Bench [VM94] is a good example of a verification tool developped specifi-
cally for the m—calculus (and more recently for its evolution fusion calculus),
taking advantage in particular of the nice characterisations given by open
bisimulation [San96]. With these ideas in mind, the up—to methods seem to
be good candidates for this task: the bisimulation up to bisimilarity proof
technique, and more importantly the up to restrictions and the up to parallel
composition proof techniques, have been developped in the theoretical study
of m—calculus, and typically allow one to deal with name extrusion (up to
restrictions proof technique) and with replication (up to parallel composition
proof technique).

Feasability of the automation of the up—to techniques has been adressed
in [Hir98|, where some methods to decide if a pair of processes belongs to a
relation up to structural congruence, up to restrictions, and up to parallel
composition, are introduced. These methods lead to the definition of a gen-
eral verification algorithm for up—to bisimulation between m—calculus terms,
embedded in a prototype tool. In the present work, we extend the capabil-
ities of the system, and, more importantly, try to evaluate the outcome of

such an effort through the study of two non trivial examples that exploit the
n—calculus’ expressive power. With respect to [Hir98], the current version of
the system is provided with a richer notion of structural congruence, and,
moreover, the general bisimulation verification algorithm is modified in order
to take into account the way the up to parallel composition proof technique
works.

The plan of the paper is as follows: in the Section 1, we introduce the
formal background on w—calculus and the up—to techniques for bisimulation.
Section 2 is devoted to the description of our implementation, and of the
general bisimulation algorithm we use to handle the up to parallel com-
position proof technique in a computationally complete fashion. We then
describe two case studies: persistent data structures, as introduced by Mil-
ner [Mil91], are examined in Section 3, while Section 4 is devoted to the
study of the alternating bit protocol, in an encoding adapted from |[Mam98].
We finally conclude by discussing future work.

1 Preliminaries

In this Section, we introduce the syntax and semantics of the language we use,
a restricted though expressive subset of polyadic 7—calculus where replication
is allowed only on prefixed processes. We then define bisimulation, together
with the up—to techniques for bisimulation.

Definition 1 (Syntax) Given an infinite countable set of names N, ranged
over bya,b,c,...,p,q,...,x,y,..., werange over (possibly empty) name lists
with @, b, ..., and we define prefixes, ranged over by «, 3, as follows:

Processes, ranged over with P,Q, R, ..., are then defined as follows:

PY0|aP|(vz)P | PP | la.P.

Prefixed processes are either receptions (prefix a(b)) or emissions (a@[b]);
0 is the inactive process; the restriction operator v makes a name private to
the restricted process; parallel composition is written |, and ! stands for repli-
cation, allowed only on prefixed processes; intuitively, a replicated process
represents any number of copies of this process put in parallel.

Conventions and notations: In prefixes a(b) and @[b], a and b are
called respectively the subject and the object parts of the prefix. We shall

omit the object part of a prefix when it is empty, and use a monadic notation
for single name object parts (thus writing e.g. a(b) and ab). We shall as well
omit the continuation of a prefix when it is the inactive process 0. Free
and bound names are defined by saying that restriction and abstraction
(embodied in the input prefix) are binding operators. As usual, we shall
silently use a—conversion to avoid capture of bound names.

Definition 2 (Transition system) The operational semantics of m—calculus
terms is defined as a labeled transition system. Actions, ranged over with
w, i, are given by the following syntaz:

def o
p'= ab) | W) ably ;| T,

which reads as follows: an action is either a reception, a (possibly bound)
output, or the silent action 7, denoting internal communication. Bound and
free names of actions are defined as usual.

The judgment P LN P', meaning that process P is liable to perform action
w to become P, is defined by the rules of Figure 1 (symmetrical versions of
rules PAR; and CLOSE1 are omitted; :: is the constructor used to add an
element to a list). Note that we adopt an “early” version of the operational
semantics.

S al@)

(inp) a(b).P —> P;_. (out) alb].P =5 P

C

a.P b P’
lo.P 5 1. P|P' (vz) P = (vz) P’
rPLp
PAR ——5 ___bn Nfn =
(eam) b B 0 1)
p (v¥') alb] P .
e t#a,t€b\V
(l/t)P (V .)a[] Pl
Pﬂpl 0 (vb") afb] o'
P|Q = (vV) (P'|Q")

(BANG)

(OPEN)

VN fn(P)=0

(CLOSE;)

Figure 1: Operational semantics

The notion of semantical equivalence on processes we are interested in is
bisimilarity, defined as follows:

Definition 3 (Bisimulation, bisimilarity) A relation R over processes
s a bisimulation iff, whenever PRQ and P LN P’ there exists a process Q'
s.t. Q5 Q' and P'RQ', and conversely for the transitions of Q. Bisimilar-
ity, written ~, is the greatest bistmulation.

Definition 4 (Structural congruence) Structural congruence, written =,
1s the smallest equivalence relation on w—calculus terms that is a congruence
generated by the following rules:

PO=P PQ=QIP PIQR)=(PIQIR (v)0=0
la.Pla.P =la.P la.Plla.P =la.P (vz)P | Q = (vz) (P|Q) if ¢ fn(Q) .

Note that rule for processes of the form !a.P|la. P is new with respect to
the usual definition of structural congruence, and define a straightforward
extension of this relation. Note as well that = is obviously included in ~.

We shall actually use a slightly enriched version of structural congruence,
where we add the following law:

(x occurs in « in subject position) = (vz)a.P = 0.

This rule is usually not included in the definition of structural congruence,
because its signification is too “semantical”, i.e. it expresses a behavioural
property of a process rather than a geometrical one, as structural congru-
ence is intended to do. However, in the framework of the up to bisimilarity
proof technique, it is preferable to equate as many terms as possible, hence
an extended version of structural congruence is of interest; moreover, this
particular law will turn out to be very useful in the example treated in Sec-
tion 4. We extend the notation = to our “enriched” structural congruence
relation.

To introduce up—to bisimulation (see [San95|), we consider functions from
relations to relations, ranged over by F, and modify the definition of bisim-
ulation:

Definition 5 (Up-to bisimulation) Given a function F from relations to
relations, we say that a relation R is ¢ bisimulation up to F iff the property
of Definition 3 holds when we replace “P' R Q'” by “P' F(R) Q"".

Intuitively, an up—to bisimulation relation R is “smaller” than a bisimu-
lation, the gap being filled by function F, that helps building the “future”
of processes related in R. This is of interest, as it allows us to reduce the
size of the relations we handle for the task of proving bisimilarity results,

whenever we have a correct function F: a function F is said to be correct
when (R is a bisimulation up to F) implies (R relates bisimilar processes).
In the context of m—calculus, we shall use the up—to techniques given by the
following Proposition:

Proposition 6 ([San95]) The up to structural congruence, up to restric-
tions and up to parallel composition proof techniques for w—calculus terms
are defined by the following functions over relations, respectively called F1,
]:'2 and]:'3 N

FIR) Y (P,Q); 3Py, Qo s.t. P = Py, PARQy and Qo = Q};
f2(R) déf {(Pa Q)a ElPUaQOafs't'P = (V‘f) P07 Q = (V‘f) QO and PORQO}v
F3(R) Y {(P,Q); 3R, Qo, Ts.t. P = Py|T, Q = Qo|T" and PyRQo}.

Functions F1, Fo and F3 correspond to correct up—to proof techniques, i.e.
proving that R is a bisimulation up to F (where F is one of the aforemen-
tioned functions) is sufficient to prove that R is included in bisimilarity.
Moreover, these functions can be combined together, still yielding a correct
technique.

Note that F1 corresponds to a restriction of the general bisimulation up
to bisimilarity technique (where ~ replaces = in the definition of F7).

2 Automatising Up—To Bisimulation

We discuss here the questions related to the automation of the up—to proof
techniques for bisimulation. As stated before, the improvements with respect
to [Hir98] are twofold: firstly, a narrower relation is handled in the bisim-
ulation up to bisimilarity proof technique, and secondly, the general up—to
bisimulation checking algorithm is modified in order to perform breadth—first
search (and to handle ezpansion as well: see Section 4).

2.1 Deciding Up—To Closure

The cornerstone of our method is the ability to decide whether a pair of
processes belongs to the closure of a relation up to some correct proof tech-
nique; in the sequel, we concentrate on our most powerful proof technique,
namely the up to (extended) structural congruence, up to restrictions and up
to parallel composition proof technique, embedded by function Fgo Fgo0F;
(see Proposition 6 above), where o denotes function composition.

Proposition 7 ([Hir98|) Given a pair (P,Q) of processes and a relation
R, we can decide whether (P,Q) € F3o Fao F1(R).

The proof given in [Hir98| is straightforwardly adapted to handle ex-
tended structural congruence as defined above. Let us now explain how we
exploit this result for up—to bisimulation verification.

2.2 The General Checking Method

Within the framework of bisimulation verification, an immediate though de-
termining remark is that functions F1, Fo and F3 are syntactical operators;
this compells us to use an “on the fly” algorithm for bisimulation checking, in
order to have access to the actual term corresponding to a given state in the
verification process (as opposed for example to the partition refinement al-
gorithm [PT87], which works on unfoldings of processes). The “classical” on
the fly checking method [FM91]| can easily be adapted to the up—to methods,
so as to define a semi—decision procedure for up—to bisimulation verification
in the m—calculus, as is done in [Hir98]. However, to exploit the up—to meth-
ods in full effect, we need to modify the general bisimulation verification
algorithm; this is the subject of the remainder of this Section.

Indeed, one of the crucial improvements brought by the up-to techniques
is the ability, through the up to parallel composition proof technique, to
handle in some cases replicated terms, i.e. terms possibly having an infinite
behaviour. Thus, when applied, this proof method can allow one to cut
infinite branches in the state space of the processes being compared. Using
depth—first search, as the original algorithm of [FM91] does, it can be the case
that we miss two matching branches which can be cut using the up to parallel
composition technique, and instead enter an infinite loop (corresponding to
an infinite growth of the state space). To avoid this, it is preferable to
adopt a breadth—first strategy, in order to enter an infinite loop only when
compulsory. Figure 2 presents the overall behaviour of Mounier’s original
“on the fly” algorithm, that progressively builds a candidate bisimulation
relation, by exploring the states which can be reached starting from two
processes.

Let us explain informally how the verification method works (a more de-
tailed description can be found in [FM91] and in the author’s forthcoming
PhD thesis). The algorithm explores the state space given by the cartesian
product of the transition systems induced by the two processes being checked.
The data structures involved in the algorithm are: a structure S (we shall
return later on to the nature of S), that contains the states that still have

W:=0;
(x) R={(P,Q)}, V:=0, R:= 0, status:=true; insert (P, Q) in S;
while S is not empty do
choose a pair (P, (Q)p) in S and remove it from S;
if (Py, Qo) succeeds
then (add (FPp, Qo) to V (or R, see below); propagate)
else
if (Pp, Qo) fails then
if (P, Qo) ER
then (remove (P, Qp) from V and insert it in W,
status:=false; propagate)
else (insert (P, Qo) in W; propagate);
else (* neither succeeds nor fails *)
compute the successors of (Py, Qo) and insert them in S;
endwhile;
if P ~ Q) then (if status then true else loop back to ()) else false

Figure 2: General “On The Fly” Bisimulation Checking Algorithm

to be examined; three sets V, W, and R, containing the pairs of processes
that are respectively supposed to be bisimilar, known to be non-bisimilar,
and known to be bisimilar. When two new processes are discovered to be
bisimilar, if the corresponding pair is in V, it is stored in R, and symmet-
rically for the case of non-bisimilarity (from V to W). It can be the case,
though, that during the exploration of the state space, an incorrect hypoth-
esis is assumed regarding the bisimilarity of two processes (i.e. a pair in R
is actually made of non-bisimilar processes): to handle this, a boolean flag
called status records the “reliability” of the current computation. When a
computation gives an unreliable result, we start all over again, keeping track
in W of the states that have been proved non bisimilar.

We still have to explain the behaviour of functions succeeds, fails, and
propagate: function fails tests if a failure can be detected by inspecting the
immediate transitions of the two processes to be examined (a failure occurs
if one process performs an action that cannot be done by the other term), or
if the two processes are known to be non-bisimilar (set W). Symmetrically,
succeeds checks if the two processes are trivially bisimilar (i.e. if they are
a—convertible or both have no transition) or if there is an assumption stat-
ing bisimilarity between them (sets V and R). Finally, function propagate
propagates a newly found information along the state space, possibly dis-

covering new (non—)bisimilarity properties, or cutting branches that do not
have to be explored anymore.

As expected, the nature of the structure S determines the exploring strat-
egy: with respect to Mounier’s algorithm, we replace the stack of states that
have to be examined by a queue, thus performing breadth—first instead of
depth-first search. Some extra information regarding the representation of
the “vertical” structure of the state space (i.e. the relationships between
states due to the transition relation), that comes for free in the case of a
stack structure, has to be provided within the objects that are stored in
S'. Using breadth-first search, we get a computationally complete checking
algorithm:

Theorem 8 We say that a bistmulation checking algorithm is computation-
ally complete with respect to a given up—to technique F whenever it diverges
if and only no finite bisimulation up to F relating the two processes to be
checked and derivatives of these processes exists.

With this terminology, the breadth—first version of the algorithm of Figure
2 is computationally complete with respect to the up to structural congruence,
up to restrictions and up to parallel composition proof technique.

The proof of this result follows immediately from the definition of the
breadth—first search. Note that the hypothesis abouth the relation containing
only deriwvatives of the processes we examine is determinant for the proof.
What is really important here is the form of completeness we get: while
for finite—state processes, depth—first and breadth—first searches differ only
“strategically”, in the case of replicated terms, the breadth-first version, in
conjunction with the up to parallel composition proof technique, provides a
real gain in expressiveness, as expressed by Theorem 8. This improvement
of the system, together with the additional structural congruence law seen
above, will be determinant for the treatment of the examples in Sections 3
and 4.

2.3 A Tool for Up—To Bisimulation Verification

The methods presented so far are implemented in a tool, written in O’Caml,
and running under Unix. The system allows the user to define a pair of
processes and to check whether they are bisimilar by choosing between three

!This structural information is even more intricate in the weak case, where some care
has to be provided to avoid 7-loops before an action actually fires (i.e. in the “first =

part” of =% =: see Section 4).

up—to proof techniques and between strong bisimulation and expansion (see
below for the definition of this notion). Facilities for interactively simulat-
ing the behaviour of a process and for debugging (in the case of a check
failure) are also provided. Internally, the system works systematically up
to structural congruence, i.e. with normalised terms, as defined in [Hir98J;
as the algorithm of Figure 2 is run, information can be obtained on the
size of the current state space to be explored. The tool is available at
http://cermics.enpc.fr/~dh/pi.

3 First Case Study: Persistent Values and Sharing

One of the applications of the up to parallel composition proof technique
is the proof of the so—called replication theorems, which express some prop-
erties of processes that model resources. Intuitively, a term of the form
(va) (la(b).P | Q) is viewed as an agent Q) having access to a private resource
P, located at channel a, with the possibility of instantiating the resource with
some parameters b. The resource is usually replicated, because it is meant to
be “always available”. Resource processes of the form !a(g).P are ubiquitous
in the study of m—calculus: they can be found in particular in the encodings
of the A—calculus, where application is represented as (the translation of)
the function having access to its argument as a resource. Resource processes
arise also in the study of higher—order m—calculus, of object calculus, and (as
can be expected) of data structures. We focus here on the latter subject, by
studying Milner’s encoding of lists in the m—calculus.

In [Mil91], lists are represented using two kinds of 7—calculus terms, cor-
responding to each constructor: a process of the form I(¢, n).¢[v; '] represents
a C'ons node, situated at [, and containing a value that can be accessed at
channel v and a reference to the remainder of the list situated at I’, while
I(c,n).m is the empty list Nil situated at [. Lists can be interrogated by send-
ing two names at their location, one for each possible constructor. With this
representation, for example, list L = [true;false] is defined by the following
term, given an encoding of the booleans true and false?:

def _
L = (I/ll, bl) (lo(c, n).c[bl; ll] | by .true

| (l/lg, bg) (ll (C, n).E[bg; lg] | bo.false | Iy (C, n)ﬁ)) .

2 Along the lines of the encoding of booleans in the A-calculus, the value true located

at b, written b.true, is a process waiting for two names ¢t and f, and returning a signal on

t (false would return a signal on f): we write b.true = b(t, f).T (see [Mil91]).

Such a data structure, though, is linear: reading the values in a list
destroys it. To make the structure persistent, we use replication. A priori,
there are two approaches to achieve this, whether we choose to replicate the
nodes and the value cells in the lists, or the subcomponents; in the case of
list L above, this leads to the two following terms:

Ly iy, by) (o(c,m)lbrs 11] | by true

| (I/lg,bg) ('ll (C, n).E[bg;lg] | 1b, false | lg(C,n).ﬁ));

Lo ™ o(e,n).(wly, by) (€[br; 1] | 1by.true
| !ll(C, ’I’L).(I/lg,bg) (E[bQ;lg] | 1bs.false | !lQ(C, n)ﬁ)) .

As we shall see, this design choice gets reflected both on the behaviour
of the corresponding data structure and on questions related to bisimulation
checking.

In the following, to illustrate the behaviour of replicated data, we shall
work with a very simple list, consisting only in the element true; as an
ephemeral data structure, it is encoded by the following process:

Ro ™ (b, 1) (lo(cn) €[11] | Wh.true | 1(c,n). 7).

We simplify this representation by taking R def (vb) (lp(c).¢b | 'btrue). This
process can be viewed as a single constant cell holding the value true, and is
only reminiscent of the list [true]; however, it will be sufficent for our task,
and the reasoning made below holds for “real” lists as well.

Along the lines exposed above, there are two ways to transform R into a
persistent value, represented by the following two processes:

R ™ (wb) ()2 | htrue) and Ry tg(c).(vb) (eb | b.true).
As stated in [Mil91], the difference between R; and Ry is reflected on shar-
ing properties of our data structures. The problem of value sharing can be
expressed in terms of security: suppose we have an agent A, willing to in-
terrogate any number of times the resource R located at lp, and to send a
signal on either one of two channels o and p, depending on the value read at
lp. This agent can be represented by the process

A Ter.ey(0).(vt, £) (B[t f] | £9| 1D,

where ¢ is a name that is specific to A for its communications with R. Sup-
pose now that an evil agent F is willing to interfer with the communications

10

of A, by interrogating R and trying to send the value false as if it was in the
cell located at lyp. To do this, E needs to interrogate once R, to get name b
where the value is located, and then to send false along b. Hence:

E ™ Tocaca(b) b(t,)T -

Our whole system is made of the parallel composition of the resource (being
either Ry or Ry), “innocent” agent A, and “evil” agent E:

Sys, “ Wlp) (Ri | A|E) i=1,2.

We verify that, depending on which representation we take for the per-
sistent cell R, E can either disturb the communications performed by A,
or be innocuous. To this end, we compare the behaviour of the term Sys;
for 4 = 1,2 with the behaviour of the process where each agent A and E
have their own private copy of the resource, corresponding to the following
definition:

de .
Sys. “ (wig,e1) (Ri | A) | (Wlo, o) (R | E) i=1,2.

Indeed, if we run the tool with these definitions, we get the following
results:

e case Sys;: in this case, a location b for the value true is created once
for all and transmitted every process that interrogates the list at lp.
This way, even in the case where A performs only one request at [y,
agent E can send the wrong value false to A, and Sys; and Sys) are
not bisimilar. We check this on a simple session of our tool; we first
define the two components of the pair of processes to be checked:

> Left (710)(~c1) (~c2) ((("b) (*10(c).c[b]l Ib(t;£).t[1))
| 10[c1].c1(b).b(t;f).f[]
| 10[c2].c2(b).("t) (") (blt;f]It.0o[]1£.p[1))

> Right (~10) (“c1) ((("b) (110(c).c[b] Ib(t;£).t[1))
| 10[c1].c1(b).b(t;£).£[1)
| (~10) (~c2) ((("b) (110(c) .c[bl Ib(t;£).t[1))
| 10[c2].c2(b).("t) (") (blt;f]lt.0[11£.p[1))

The syntax for processes is quite natural: ~ stands for abstraction, []
for output and () for input. We now check for bisimilarity:

11

> Check
The processes are not bisimilar.

e case Sys,: in this case, a new name b is created each time the list is
interrogated at ly, and hence processes A and F cannot interfer. Even
in the case where an infinite number of processes interrogate the list,
we can prove that Sys, and Sys), are bisimilar:

> Left (~10) ((('10(c).("b)clbl.b(t;£f).t[1))
| 10[c1].c1(b).b(t;f).f[]
| 110[c2].c2(b). ("t) (") (b[t;£f]1t.o[11£f.p[1))

> Right (~10) (((!110(c).("b)c[bl.b(t;£).t[1))
| 10[c1].c1(b).b(t;£).f[1)
[(710) ((('10(c).("b)c[bl.b(t;£).t[1))
| 110[c2].c2(b).("t) (") (b[t;£f]1t.o[11f.p[1))

> Check
The processes are bisimilar.

When the tool performs this verification, it uses the up to parallel
composition proof technique to erase copies of the cell each time they
appear in both process: an infinite proof is thus replaced by a finite
one.

The latter example exploits the up to parallel composition proof tech-
nique to handle the representation of data structures in the m—calculus. In
this context, our tool has been useful in dealing with non trivial properties
of processes, and it should be stressed that other existing systems cannot
handle replicated processes like those we manipulate here.

Furthermore, it should be remarked that security properties like the one
we have considered can be adressed using type systems for the m—calculus. As
exposed for example in [San97] an easy way to prevent E from “pretending”
to be R by locating the value false at b is to forbid processes that interact
with R to use b in input subject position (as E does).

4 Second Case Study: the Alternating Bit Protocol

We now focus on another example: the well-known alternating bit protocol,
which is probably the most widely used benchmark for verification systems
in concurrency. Our purpose here is not to study it per se, but instead to

12

use it to shed light on issues related to the behaviour of encodings in the
m—calculus. To this end, we shall need ezpansion between processes:

Definition 9 (Expansion) We write = for the reflexive transitive closure
of =, £ for =2 =, and £ for £ if w# 7T, = or = otherwise.

We say that a relation R is an expansion iff, whenever PRQ, P L p
implies that there ezists a Q' s.t. Q & Q' and PRQ', and Q 2 Q' implies
that there exists P' s.t. P % P' and P'RQ'. In this case, we write P < Q
for PRQ.

< is a preorder on processes that is more realistic than (strong) bisimu-
lation for reasoning about larger case—studies such as a protocol. It allows
one to prove that a given term “respects” a behaviour, modulo some ex-
tra 7 steps (given by transitions éL;>) typically, the duality specification vs.
implementation can be expressed using expansion. Our treatment of the
up—to techniques is straightforwardly adapted to handle expansion; the user
of our tool can choose between a strong and a weak mode, corresponding to
relations ~ and < respectively.

We first informally introduce the protocol, then present an encoding
adapted from [Mam98|, and finally discuss the encodings we use in order
to automatically perform the correctness proof of the protocol. Our purpose
in the latter part is to show that the question of defining encodings in the
framework of verification differs from the usual problem (i.e. the study of
expressiveness), as exemplified on our case study.

4.1 The Protocol

\ac kn

acc deli

AN

trans

Figure 3: The Alternating Bit Protocol

Figure 3 presents the entities involved in the communication protocol:
a first agent receives a message (whose content is not taken into account
here) on channel acc. It then transmits this message on a channel called
trans to a second agent. But channel trans is unreliable, and some messages

13

transiting on it may get lost: to handle that, a boolean tag is associated to
the message being sent on this channel, and the first agent keeps sending this
information on trans. By reception, the second agent transmits the message
on deli and is willing to send back the boolean to the first agent on ackn,
as an acknowledgment. Channel ackn being lossy as well, the second agent
has to repeatedly send on it. When the acknowledgment finally arrives, a
new cycle can start with the negated boolean, so that the first agent can tell
when the message has actually been received.

The m—calculus processes® implementing this protocol are defined on Fig-
ure 4 (again, our encoding is adapted from [Mam98]): the first agent’s be-
haviour is given by processes Send and Wait, while the second agent corre-
sponds to process Receive; message losses on trans and ackn are managed by
process Noise, that sends a signal on a channel loss whenever a signal gets
lost (one could see these synchronisations on loss as a representation of a
timer mechanism to detect losses). Note that the agents are parametrised
upon two booleans: this will be discussed below. Finally, process Specif is
an ideal specification of the protocol’s behaviour: it receives a signal on acc,
sends one on deli, and starts again by sending a signal on the trigger channel
c.

Send Isend (b1, by).acc.trans[by; by].wait[bo; b1]
Wait % wait(by, b).(ackn (b}, bY).send [0 ; L]
+loss.trans[b; ; bo].wait[by ; bo])
Receive ! Irec(by, by).trans(by, bh).if by = by
then ackn[bl; bQ] | @[bl; bg]
else deli.(ackn[bo; b1] | Fec[ba; by])
Noise % Inoise. (trans(b, b').loss.noise 4 ackn (b, d').loss.noise)
System def (v trans, ackn, send, wait, rec, loss, noise, by, by)

(Send | Wait | Receive | Noise | 1b;.true | !by.false
| send[by; bo] | Tec]by; by | noise)

Specif el (ve) (Ic.acc.deliE | €)

Figure 4: Modelling the Alternating Bit Protocol

3The language we use here is actually value-passing CCS; for the encodings discussed
below, however, we shall need the full power of m—calculus.

14

4.2 The Encodings — Discussion

Choice — To model the alternating bit protocol in our system, we have to
deal with two constructs that are not present in our language, namely oper-
ators on booleans and the choice operator. Well-known encodings of these
constructs exist (see [Mil91, Nes97]); these encodings belong to theoretical
studies, and have been mechanised e.g. in the programming language PICT
|[PT97]. We shall see here the problems that arise as we try to use them in
the context of verification, and how they can be treated.

Various encodings of guarded choice are investigated in [NP96, Nes97|;
the general idea is to represent each branch of the choice by a parallel com-
ponent, and to implement a lock mechanism to prevent other branches to
fire when one branch has comitted. In general, once a choice has been taken,
the “dead” branches remain, and, depending on the encoding we choose, are
“more or less alive”; when it comes to automatic verification, we need to be
able to erase these branches syntactically, to prevent our relation from grow-
ing. We have chosen to encode the binary choice of Figure 4 as follows ([]
represents the encoding function):

[a(@).P + b(§).Q] <) (1 | a(@).15(7).P | b().1.a(2).Q).

This encoding represents an adaptation of those described in [NP96]; here,
a lock channel [is created and when one branch is chosen, it deactivates the
other branch by consuming its head prefix, thus leading to a subterm of the
form (vl) (1.T), that can immediately be garbage collected using the addi-
tional law for structural congruence (see Section 1). Our simplified encoding
is correct due to an important property of the terms we consider: each time
a choice construct is encountered in a run of the protocol (agents Wait and
Noise), at most one process can interact with the branches involved in the
choice (that is, we cannot have simultaneous emissions on ackn and loss, nor
on ackn and trans). Thus, it cannot be the case that both branches com-
mit before the lock [is consumed, and the untaken branch can be safely
deactivated before the chosen branch proceeds.

Furthermore, note as well that the simplest encoding of guarded choice,
defined as follows

[o(@).P + b(i).Q1 Y (1) (1 | La(@).P | Lb().Q)

and called internal choice in [NP96|, cannot be adopted here, as the choice
of the comitting branch depends on the context (since at most one branch
can commit), and cannot be done internally before synchronisation.

15

Note that the original encoding of [NP96| could not be chosen, since
it allows the computation to proceed before the dead branches have been
deactivated.

Booleans — We have already seen how booleans are encoded in the 7—
calculus. The encoding presented in [Mam98| uses a single boolean as pa-
rameter for the various agents, and the negation operator for the recursive
calls in Send and Receive. We could have encoded the latter operator as

6] < W (e Nt 1) G £11E 715D (+)
this encoding is not convenient for the purpose of verification, because each
time the protocol loops, it keeps adding new terms corresponding to the
negation operator to the system, making the relation grow ad infinitum (in-
tuitively, =—b does not reduce to b). We therefore use a trick, that consists
in parametrising all the agents upon two booleans, that are exchanged as we
want to make a recursive call with the negated bit (see Figure 4).

We also have to manage the testing construct in agent Receive: here
again, we take advantage of the additional law for structural congruence to
get rid of inactive terms once the test performed. We represent the boolean
operator “=" (that can be seen as the negation of the XOR operator) by:

B=b1 < bo(T,F). (v, £, ')

(Blt: £) | D1 £ | (¢ TIf F) | £.0F|f T)).

Once the test has taken place, non—chosen branches are automatically garbage
collected in the normalisation process.

Having defined the encoding of the protocol into our simple language,
we provide our tool with the corresponding definitions, and the correctness
proof of the property Specif < System is performed automatically:

> Left (“c)('c.acc.delil].c[] | c[1)

> Right (~tra) (“sen) ("wai) ("ack) (“rec) ("b1) ("b2) (“1t) (~loss) (
'sen(bl;b2).acc.tral[b2;bl] .wail[b2;bl]
| 'wai(b1l;b2).(1) (L[] | ack(bpl;bp2).1.loss[].sen[bpl;bp2]
| loss.l.ack[b1l;b2].1t[].tra[bl;b2].wail[bl;b2])
| 'rec(bl;b2).tra(bpl;bp2).("t) (") ("t1) ("£1) (“tp) ("fp)
(b1lt;£]1 | bpilti;£1] | t.(t1l.tpll | £1.fpll)
| £.(t1.£p[] | £1.tp[1) | tp.(ack[bl;b2].rec[bl;b2])
| fp.del[]. (ack[b2;b1].rec[b2;b1]))

16

| !'1t.("1lo) (tra(bx;by).lo.ack[bx;by].loss[] |
ack(bz;bt) .lo.tral[bz;bt].loss[] | 1lo[])
| 1t[] | sen[bl;b2] | recl[bl;b2] | 'bi(t;f).t[] | 'b2(t;£).£[1)

> Mode
Checking mode is weak, verbose mode is off,
proof technique is up to restriction up to parallel composition.

> Check
The right process expands the left omne.

Conclusion

We have seen how the up-to techniques for bisimulation can be adapted for
the purpose of verification. The examples of persistent lists and of the proof
of the alternating bit protocol suggest that the task of dealing with encodings
in the m—calculus can be managed using these techniques. It is questionable,
though, whether one should adopt a standpoint analogous to the design
choices of PICT [PT97| , where a full-size programming language is built
by adding successive layers to a simple core language through encodings of
higher-level constructs. Indeed, developping an implementation in a system
built this way adds transitions to the terms and calls for clever use of garbage
collection (as seen on the examples); such issues are critical in the field of
verification. Nevertheless, the experiments shown above are interesting both
from a theoretical and from a practical point of view.

From a theoretical point of view, we have seen how the application of
theoricians’ techniques (as the up—to methods originally are) for the purpose
of verification gives extra insight on results such as the encodings of language
constructs or of data. A striking example is the straightforward definition of
the negation operator for booleans (see equation marked with (%)), which is
catastrophic in terms of state space growth, as stated above.

From a practical point of view, this work seems encouraging for the use
of the up—to techniques in the field of verification. Of course, constructs like
booleans or the choice operator should probably belong to a “real size” sys-
tem. However, the task of specification in a verification tool usually involves
some formalisations that, on a larger scale, are quite akin to the encodings we
have seen, at least from a methodological point of view. In this approach, the
up—to techniques have been shown to be helpful in terms both of efficiency
and of expressiveness.

Regarding future work, it could be interesting to study whether the up—to

17

techniques can be integrated in a tool like the Mobility WorkBench [VM94],
that is a much richer system than our prototype, and that moreover sup-
ports various supplementary facilities. On its own, however, our tool can
be enriched to perform some more experiments concerning the verification
of m—calculus bisimilarity results; larger case studies, for example, could be
considered, or other encodings. Work is also in progress to adapt the up—to
bisimulation verification method to open terms, i.e. terms possibly con-
taining process variables, in order to be able to prove not only bisimilarity
results, but also general bisimilarity laws. Finally, the issue of the usefulness
of the up—to techniques within other models of concurrency should also be
investigated.

References

[FM91] J.-C. Fernandez and L. Mounier. "On the fly" verification of be-
havioural equivalences and preorders. In Proceedings of CAV’91,
LNCS, 1991.

[Hir98] D. Hirschkoff. Automatically Proving Up To Bisimulation. In
Proceedings of MFCS’98 Workshop on Concurrency, volume 18 of
ENTCS, 1998.

[Mam98] B. Mammas. Une mtéthodologie de preuves orientée contraintes
et basée sur les systémes de transitions modales. Technical report,
LIP6, UPMC, 1998.

[Mil91] R. Milner. The polyadic 7-calculus: a tutorial. Technical Report
ECS-LFCS-91-180, LFCS, October 1991.

[Nes97] U. Nestmann. What is a ‘good’ encoding of guarded choice? In
Proceedings of EXPRESS’97, volume 7 of ENTCS, 1997.

INP96] U. Nestmann and B. C. Pierce. Decoding choice encodings. In Pro-
ceedings of CONCUR ’96, number 1119. LNCS, Springer Verlag,
August 1996.

[PT87] R. Paige and R. E. Tarjan. Three partition refinement algorithms.
SIAM Journal on Computing, 16(6):973-989, 1987.

[PT97] B. C. Pierce and D. N. Turner. Pict: A Programming Language
Based on the Pi-Calculus. Technical Report CSCI 476, Computer
Science Department, Indiana University, 1997.

18

[San95| D. Sangiorgi. On the bisimulation proof method. In Proceedings
of MFCS ’95, volume 969 of LNCS, 1995.

[San96] D. Sangiorgi. A theory of bisimulation for the m-calculus. Acta
Informatica, 33:69-97, 1996.

[San97] D. Sangiorgi. The name discipline of uniform receptiveness. In
Proceedings of ICALP 97, volume 1256 of LNCS, pages 303-313,
1997.

[VM94] B. Victor and F. Moller. The Mobility Workbench — a tool for
the w-calculus. In D. Dill, editor, Proceedings of CAV’94, volume
818 of LNCS, pages 428-440. Springer-Verlag, 1994.

19

