
Inremental Inferene of Partial TypesMario Coppo and Daniel HirshkoffNovembre 1998No 98-139

Inremental Inferene of Partial TypesMario Coppo and Daniel HirshkoffRésuméNous présentons une proédure d'inférene de types partiels pourun ��alul étendu ave des strutures de données. Notre langage detypes omprend des types de données, une notion de sous�typage, et unplus petit et un plus grand élément, désignés respetivement par? et !;! orrespond à l'absene d'information de typage (si l'on veut, �tous lestypes sont possibles�). Par rapport aux études existantes, la singularitéde notre approhe réside dans son aratère inrémental, l'informationde typage étant progressivement mise à jour au fur et à mesure que denouvelles onstantes sont dé�nies dans le ontexte. Cette manière deproéder est bien adaptée par exemple pour des systèmes dans lesquelson dé�nit des fontions (partielles en général) sur les types de donnéespar l'intermédiaire d'équations. Nous illustrons le fontionnement denos algorithmes sur une implémentation qui a été réalisée en vue d'uneintégration à la CuCh mahine, développée à l'Université de Rome.
AbstratWe present a type inferene proedure for partial types for a ��alulus equipped with datatypes. Our proedure handles a type lan-guages ontaining greatest and lesser types (! and ? respetively),subtyping, and datatypes (yielding onstants at the level of terms).The main feature of our algorithm is inrementality; this allows us toprogressively analyse suessive term de�nitions, whih is of interest inthe setting of a system like the CuCh mahine (uurently being devel-opped at the University of Rome). The methods we desribe have ledto an implemention; we illustrate its use on a few examples.

1 IntrodutionThis paper fouses on the problem of type inferene for partial types. Partialtypes have been introdued in [Tha94℄ (following [Gom90℄), to desribe someterms that are usually onsidered as ill�typed in a lassial setting. Examplesof suh terms are auto�appliations (e.g. �x: (xx)), or polymorphi lists(e.g. [true; �f x: (f x)℄). In partial types, the language of types is equippedwith a speial type, alled !, to represent the absene of type information(or alternatively �any possible type�); ! is assoiated to the �weirdly typed�subterms of a given term, and allow one to avoid rejeting terms that ontainsuh ill�typed subparts.In this setting, to provide some kind of �exibility to the type system,and to apture by doing so as many terms as possible, the type languageis enrihed with a notion of subtyping, ! being naturally onsidered as thegreatest type. This way, the type of any term an be oered to a greatertype, whih allows one to preserve the soundness of the typing as appliationsare performed. One is able for example to infer the judgment�x: (xx) : (!!�)!�(where � is a type variable), the type assoiated to the ourrene of x inargument position being oered from !!� to ! in order to permit theauto�appliation, yielding �nal type �.The question of partial type inferene, as adressed in [Tha94℄, is shown tobe deidable in [WO92℄, and [KPS94℄ provides an e�ient algorithm to solvethe problem. Our study di�ers from these works by two main aspets. Firstof all, the language we fous on is equipped with user�de�ned datatypes (aswell as with a least type, written ?, that has to be introdued mainly fortehnial reasons). The introdution of (parametrised) datatypes somehowinreases the omplexity in the struture of the typing information that hasto be dealt with, as will be seen thorough this study.The seond main original aspet of our work is the stress that is put oninrementality in de�ning the type inferene method. Indeed, the traditionalapproah to type inferene in presene of subtyping (not only for partial typeinferene, but also in other frameworks, e.g. the study of objet�orientedparadigms) onsists in exploring the struture of the term to be typed, and,while doing so, in olleting the orresponding subtyping onstraints. Oneall these onstraints are put together, one an attak the problem of on-straints satis�ability using many di�erent approahes ([WO92℄ for examplebuilds a �table� to represent the typing struture of the term, and [KPS94℄uses an automata�based method). 1

In this paper, we try on the ontrary to preserve the readability of thetype information along the exploration of the term. Our approah, inspiredby [WO92℄, onsists in representing the typing information on a table; indoing this, however (and this is were our study di�ers from [WO92℄), weare interested in inferring the onsequenes of the type onstraints as soonas they are generated, and in resolving immediately the possible resultinginonsistenies. To ahieve this, we introdue a notion of guarded onstraint,that, in onjuntion with an additional axiom for subtyping (stating �!! �!!! for any type variable �), allows us to de�ne an inremental and quite�exible type inferene proedure, as will be shown below. Intuitively, theguards are used to get rid of �ontraditory� type onstraints, in order towork only with onsistent tables, i.e. those tables for whih a non�trivialsolution an be found.Suh a type inferene method is interesting in the framework of a pro-gramming language, where the user an suesively de�ne several objets,possibly using previous de�nitions for the introdution of new funtions.This is typially the ase for the CuCh mahine, a system developped atthe University of Rome in the team of Corrado Böhm (the design of a typeinferene proedure for this system atually originated our work).The CuCh mahine is a programming language based on the untyped�-alulus. There are two modes to de�ne objets in CuCh, alled �lam and�env; in �lam, the user de�nes �-terms using abstration, appliation, andsome built-in onstants inluding natural numbers, strings, lists and booleantests. The �env mode is used to de�ne funtions on free algebras by setsof equations, following [BB85℄. The introdution of free algebras and of re-ursive de�nitions over these algebras is akin to the lassi seond-order en-oding of datatypes; however, in CuCh, the solutions to (possibly reursive)de�nitions are not de�ned using a �xpoint operator, but rather following theBöhm-Piperno tehnique of [BPG℄, using self-appliation. In this setting,more freedom is allowed in the onstrution of terms, and �traditional� typesystems for funtional languages à la ML an sometimes be too restritive.As said above, this work stems from the will to de�ne a type system thatis well suited for the CuCh. Suh a type system is by de�nition not part ofthe design of the programming language, as is usually the ase, but shouldrather be seen as a feature. Following this remark, the typing judgment inthe CuCh mahine is essentially seen as giving a desriptive information,rather than some kind of advise about orretness (in partiular, no termshould be ruled out using the typing relation). Consequently, two aspetsof the type system are important: �rst, a �pure� type inferene approah2

should be adopted, as opposed to the type heking method: we do not wantthe typing relation to interfer with the ativity of the CuCh user, throughthe requirement of type annotations or other suh informations that ouldbe useful for the typing proedure. Seondly, the type system should beadaptive: in a pure alulus setting, it an be the ase that one de�nes someterms that �look weird� from a lassial typing point of view, but then usesthese terms in a ertain fashion (akin in some way to a type disipline), thatatually expresses their meaning. These two remarks led to the design of thetype inferene proedure that is presented here.The paper is organised as follows. In Setion 2, we introdue our sys-tem, de�ned by the terms, the (possibly reursive) de�nitions, the languageof types (inluding user�de�ned datatypes), and the two judgments orre-sponding to the typing and subtyping relations. Setion 3 is devoted to thetehnial de�nitions we need for our type inferene proedure, i.e. tables (torepresent the type onstraints), properties of tables, and various funtionsover tables. We de�ne our type inferene method in Setion 4, as well asan heuristi to reover onsisteny where an inonsistent table is generatedduring the type inferene proess (in general, the type inferene proedure isindeed de�ned in a non�deterministi way, in order to preserve ompleteness;the heuristi is hene given for the purpose of implementation). We �nallyonlude, and present in the appendix the implementation of our methodsthat has been designed (an example is given to illustrate the behaviour ofour algorithms).2 The systemTerms The terms we use are de�ned by the following syntax:M = �x:M j x j M N j :In the de�nition above, ranges over datatype onstrutors, that shallbe introdued below.Reall that in CuCh, reursive funtions are not introdued with a �xpoint�like onstrut, but are instead given by reursive equations on datatypes(introdued below).Datatypes Following [BB85℄, a datatype is introdued by de�ning itsname, parameters, and onstrutors (whih in turn are haraterized by aname and a list of types for their arguments).The syntax we will adopt for datatype de�nitions is:3

Datatype D[X1; : : : ;Xk℄ is D1 : arg[T 11 ; : : : ;T 1m1 ℄...Dn : arg[T n1 ; : : : ;T nmn ℄where the Xis are the parameters of the datatype and eah T ij is eithera parameter Xj or another datatype (possibly D itself) having the shapeTi;j [Xp1 ; : : : ;Xpl ℄ where the Xpj s denote the free ourrenes of X1; : : : ;Xkin Ti;j (fXp1 ; : : : ;Xplg � fX1; : : : ;Xkg).Remark: It is natural in CuCh to manipulate objets like polymorphilists (e.g. [true; 1;�x: x℄), i.e. objets in whih the datatype parameter (hereX in ons : X!list[X℄!list[X℄) would be onsidered as being misused ina seond�order setting (à la [GLT89℄). The subtyping relation given belowallows us to aomodate with suh objets, in order to give as muh typeinformation as possible (in the ase of [true; 1;�x: x℄, it is preferable to say�list of anything� rather than just �type error�).The de�nition above reads �D is a datatype that has n onstrutors andk parameters X1; : : : ;Xk; eah onstrutor Di , for 1 � i � n has typeT i1! : : :!T imi!D[X1; : : : ;Xk℄where the Tis are either parameters or datatypes�. Note that nested arrowtypes are not allowed in the de�nition of onstrutors.Example: In this framework, the delaration of the dataype List wouldbe as follows:Datatype List[X℄ is List1 : arg[℄ (Nil)List2 : arg[X; List[X℄℄ (Cons)De�nitions The CuCh de�nitions are given by the following syntax:< eq > = < f (Di x1 : : : xmi) = e > :e is an expression possibly ontaining ourrenes of the xis and of f,hene we deal in general with reursive equations. Reursive equations areused as an alternative to the ase onstrut (a ase�like de�nition an easilybe translated into a set of reursive equations).We write < eqs > to range over a sequene of de�nitions.4

Types Types are either type variables, data types, arrow types, or twospeial types, ? and !, that respetively represent the empty type (or theleast type, see below), and the union of all types.T = � j D[T1; : : : ; Tn℄ j T!U j ! j ?Remark 2.1 The intuitive semantis of types in our approah relies on thenotion of types as topologially losed subsets (ideals) of the domain of in-terpretation of the language [CC90℄. This model also support the notion ofreursive type and reursive type equation. In this ase the least (unde�ned)element of the domain belongs to every type. The type ! is then interpreted asthe whole domain while ? is interpreted as the singleton ontaining only theleast element of the domain. This provides a justi�ation of the onsistenyand semanti orretness of our subtyping assumptions.Subtyping relation We de�ne a subtyping relation between types; weshall use it to oere types to a greater type (possibly involving ! and/or?) in suh a way as to be able to give as muh type information as possibleabout a �weirdly typed� term.The subtyping relation is deomposed into two parts; the main judgmentrelies on a set of subtyping assumptions of the form T � T 0, where T and T 0are type expressions, and writes as follows:� ` A � B :Suh a relation reads �under typing assumptions �, it holds that A � B�.This judgment is de�ned in a mutual reursive way together with a form of�strutural subtyping� on datatypes, written D v D0, meaning that datatypeD is �struturally smaller� than D0. The rules that de�ne both these judg-ments are given on Figure 1.Let us make a few omments about the de�nition of the subtyping rela-tion. Regarding relation v, it has to be noted that one an always supposethat both datatypes have the same number of parameters, some of them pos-sibly being unused in the smaller type. Moreover, as the ontext of typingassumptions is empty in ; ` T il � T 0il (rule (Dv)), this ondition means thateither T il and T 0il are omparable datatypes, or they represent the same typevariable.Examples: we illustrate the meaning of relation v on two examples.5

(Dv) D[X1; : : : ;Xk℄ is (1 : arg[T 11 ; : : : ;T 1m1 ℄ : : : n : arg[T n1 ; : : : ;T nmn ℄)D0[X1; : : : ;Xk℄ is (1 : arg[T 011; : : : ;T 01m1 ℄ : : : n : arg[T 0n1 ; : : : ;T 0nmn ℄ : : :: : : n+l : arg[T 0n+l1 ; : : : ;T 0n+lmn+l ℄)D v D0where ; ` T il � T 0il (1 � l � n, 1 � i � ml).(S?) � ` ? � T (S!) � ` T � ! (Sid) � ` � � �(Svar) �:fT � T 0g ` T � T 0 (Sax) � ` A!! � !!!(S!) � ` A2 � A1 � ` B1 � B2� ` A1!B1 � A2!B2(SD) D v D0 8i; (1 � i � k) :� ` Ai � A0i� ` D[A1; : : : ;Ak℄ � D0[A01; : : : ;A0k℄Figure 1: Subtyping relation� Consider the datatypes of booleans and tri�valued tags, de�ned asfollows:Datatype Bool is true : arg[℄; false : arg[℄ ;Datatype Bool0 is true0 : arg[℄; false0 : arg[℄; unknown : arg[℄ :It holds that Bool v Bool0, beause Bool0 has two onstrutors in om-mon with Bool, and one extra onstrutor (no parameter is involvedhere).� Suppose now we want to tag a term (of any type) with an element ofBool or of Bool0; this would lead to the following de�nitions:Datatype Tagged[X℄ is : arg[X;Bool℄ ;Datatype Tagged0[X℄ is 0 : arg[X;Bool0℄ :We an derive Tagged v Tagged0: indeed, they have the same numberof parameters, the onstrutors and 0 have the same shape, and we6

an derive both subtyping judgments ; ` X � X and ; ` Bool � Bool0sfor their �rst and seond argument respetively.Let us now onsider the de�nition of relation �: ! is the universal type, asexpressed by rule (S!); dually, ? is the least type (sometimes referred to asunit). As usual, the arrow onstrutor is antimonotoni in its �rst argument,and monotoni in its seond argument. As said above, the subtyping rela-tion for datatypes (instaniated with their parameters) is fatorised into the�strutural� relation v and rule (SD) for deriving atual type inlusions; inontrast with rule (S!), rule (SD) introdues monotoniity with respet toall the parameters of a datatype. Axiom (Sax) somehow weakens this oppo-sition, as it says that any arrow type an be oered to the most general typefor funtions, namely !!! (whih ould be seen as a form of monotoniityof the arrow onstrut towards its left�hand side argument).Typing rules� Typing termsThe typing judgment for terms is of the form�;� `M : T ;where M is a term, T is a type, � is a set of typing assumptions forthe free variables of M , and � is a set of inequalities between types.The rules de�ning this judgment are given below:(var) �:x : A;� ` x : A (omega) �;� `M : !(!I) �:x : A;� `M : B�;� ` �x:M : A!B(!E) �;� `M : A!B �;� ` N : C � ` C � A� ` (M N) : B� Typing de�nitionsWe introdue a judgment, written � : �; < eqs >) �0, to expressthat adding de�nitions < eqs > to the ontext � assuming the typeinqualities of � we obtain an extended ontext �0. This judgment isde�ned by the rules of Figure 2.In general, we will be in the situation where we proess a sequene ofde�nitions < eqs >, starting from an initial ontext �0 and a set ofinequalities �, and trying to infer a judgment of the form � : �0; <eqs >) �. 7

(Cf) �; f : �; x1 : �1; : : : ; xn : �n;� ` e : �; f : �; x1 : �1; : : : ; xn : �n;� ` f((x1 : : : xn)) : Æ � ` � Æ� : �; < f (x1 : : : xn) = e >) �:f : �(Ctrans) � : �; < eqs >) �0 � : �0; < eqs0 >) �00� : �; < eqs > : < eqs0 >) �00Figure 2: Compatibility relation between ontexts and de�nitions3 Systems of type onstraints3.1 Type onstraints and tablesOur inferene proedure is based on the representation of relations betweentypes by sets of inequalities between types alled type onstraints in theliterature. In this setion we de�ne the proedures to handle them.A substitution is de�ned here as a �nite mapping � between type vari-ables and types, that is naturally extended to a ongruene between all types.A single substitution is denoted [t := A℄: it replaes t by A and behaves likethe identity on all other variables. Similarly, [t1 := A1; : : : ; tn := An℄ (whereti does not our in Aj for all 1 � i; j � n) denotes the omposition of nsingle substitutions. If all the type expressions Ai are single variables, wesay that [t1 := A1; : : : ; tn := An℄ is trivial.A substitution is ground if all types in its domain are ground.De�nition 3.1 (Constraints) A type onstraint is an expression of theform t � D(u1; : : : ; uk), D(u1; : : : ; uk) � t or (0 � n), where D is analgebrai datatype onstrutor or the ! onstrutor. and t; u; u1; : : : ; uk aretype variables.To handle the rule (S!) and the axiom (Sax), we need the notion of guardan some operators on it.De�nition 3.2 (i) A guard is an ordered list of type variables. Let w rangeover guards.(ii) If w1; w2 are guards then w1.w2 is the guard obtained by onatenat-ing w1 and w2 and by eliminating from w2 the variables whih already ourin w1.(iii) A guarded onstraint (g.. for short) is an expression of the formw :G (A � B) where w is a guard and A � B is a type onstraint.8

If S = fwi :G (Ai � Bi) j 1 � i � ng is a set of g.. and w is a guard thenw.S denotes the set fw.wi :G (Ai � Bi) j 1 � i � ng.A guard hides the onstraint assoiated to it in an expression w :G (A �B) whenever at least one of the variables ourring in it is an !-type.A solution of a set S of g.. in a pair h�g;�i where �g is a ground substitu-tion and � a set of subtyping assumptions suh that for all w :G (A � B) 2 Sin whih �g(t) 6= ! for all variables t in w we have � ` �g(A) � �g(B). Astrong solution of S is a ground substitution �g suh that for all w :G (A �B) 2 S we have �g(A) � �g(B) (ignoring guards).The inferene algorithm keeps the information about the types involvedin a dedution using the notion of table, whih has been inspired by [WO92℄.A table is simply a strutured set of type onstraints, whih are rep-resented in a slightly di�erent way via the notion of guarded elementaryexpression.De�nition 3.3 (i) A guarded elementary expression (g.e. for short) is anexpression of the shape w :G (D(v1; : : : ; vk)) where v1; : : : ; vk are variablesand D is a type onstrutor.(ii) A table � is a set of triples ht; L; Ui (alled the entries of the table),where t is a variable and L and U are sets of g.e. whih are said, respetively,the lower and upper sets of t in �. If ht; L; Ui 2 � we denote L as L�(t),or simply L(t) (when � is understood) and U as U�(t), or simply U(t).Moreover de�ne dom(�) = ft j ht; L; Ui 2 �g.A table is just a strutured way of representing a set of elementary g..s.In fat eah w :G (A) 2 L(t) represents a g.. w :G (A � t), and eahw :G (A) 2 U(t) also represents a g.. w :G (t � A). A solution of a table is asolution of the orresponding set of g.e.s.A simpli�ed table (s-table for short) � is a struture whih has the sameform of a table but without guards. So the elements of the upper and lowersets are type expressions (ontaining only one type onstrutor) instead ofg.e.s. The kernel of a table �, written kernel(�) is a s-table � obtainedfrom � by erasing all guards. S-tables will be useful to build solutions oftables.The following operation of losure on tables puts them in a sort of normalform.De�nition 3.4 A table � is losed if it satis�es the following ondition. Forall t 2 dom(�) suh that both L(t) and U(t) are non nonempty and for allw1 :G (D1(u1; : : : ; uk)) 2 L(t) and w2 :G (D2(v1; : : : ; vk)) 2 U(t) suh thatD1 v D2 we must have: 9

1. If D1;D2 are algebrai data type onstrutors- w1.w2.L(ui) � L(vi) for 1 � i � k.- w1.w2.U(vi) � U(ui) for 1 � i � k2. If D1;D2 =! (and then k = 2):- w1.w2.L(u2) � L(v2).- w1.w2.U(v2) � U(u2)- v2.w1.w2.L(v1) � L(u1)- v2.w1.w2.U(u1) � U(v1)A table obtained from a set of elementary g.. is in general not losed.It is easy to de�ne an algorithm losure that takes a table � in input andreturns its losure losure(�) by adding elements to the sets L(t); U(t)aording to the above de�nition. Sine all the new onstraints added to atable by losure are simply onsequenes of the de�nition of the � relationwe have immediately the following lemma:Lemma 3.5 A table � and its losure losure(�) have the same solutions.We de�ne now a riterium to deide whether a table has a solution. Tothis end reall that the set of type onstrutors is a partially ordered set.The notions of inf and sup of a subset of a poset as well as those of l.u.b.and g.l.b. are standard.Note that any set of type onstrutors has a sup (!) and an inf (?).Let now S be a set of g.e.. De�ne onstrutors(S) the set of all typeonstrutors ourring in the type expressions of the g.e. of S (ignoringguards).De�nition 3.6 (i) A losed table � is onsistent with respet to a vari-able t 2 dom(�) if there is a type onstrutor D whih is a sup for the setonstrutors(L�(t)) and an inf for onstrutors(U�(t)). We also saythe the entry ht; L�(t); U�(t)i is onsistent.(ii) A losed table � is onsistent (tout ourt) if it is onsistent withrespet to every t 2 dom(�).Note that a table � is always onsistent with respet to a variable t ifeither L�(t) or U�(t) are empty. In this ase, ! (?) is atually a sup (inf)of the empty set. 10

3.2 Solving tablesIn this subsetion we show that every onsistent table admits a strong solu-tion, and we give an algorithm to represent it in a general way. To obtainit we need to de�ne some more transformations on tables. Sine we areinterested in a strong solution we onsider here only simpli�ed tables.For tehnial reasons we will need, besides the usual notion of substitu-tion, the following notion of substitution path. Let an elementary substitu-tion (e.s. for short) e be an expression of the form [t := D(u1; : : : ; un)℄ whereD is a type onstrutor and u1; : : : ; un are variables. A substitution path s(s.p. for short) is a list he1; : : : ; eni of e.s. suh that for all 1 � i 6= j � n,ei and ej have a di�erent variable in the l.h.s.. Let ei = [t := D(u1; : : : ; un)℄be an e.s. in a s.p. s. We say that a variable u depends on t in s if eitheru = uk for some 1 � k � n or u depends on uk in s. De�ne s n t as the s.p.obtained by eliminating from s the e.s. whose l.h.s. is t.A substitution path he1; : : : ; eni suh that none of its variables dependson themselves de�nes a substitution obtained as en Æ : : : Æ e1 (where Æ de-notes funtion omposition). In this ase we will identify substitution pathswith the orresponding substitutions. Indeed even if there are variables tdepending on themselves in a substitution path s, we an always identify swith e1 Æ : : : Æ en, but in this ase s(t) is a type expression ontaining t, so itis not a substitution in a strit sense. With some abuse of notation we willuse this in the following.A substitution path represents in general a substitution and a set of typeequations in the following way.De�nition 3.7 Let s a s.p. and let t1; : : : ; th (0 � h) be the variablesourring in s that depend on themselves. De�ne�s = s n t1 : : : th�s = fti = s(ti) j 0 � i � hgTo make more readable the following onstrutions we will onsider onlythe ase of algebrai type onstrutors. All de�nitions and results of thissetion apply as well to the ! type onstrutor. In this ase it is enough,when onsidering the �rst argument of!, to systematially exhange U andL, � and �.Existene of a solutionThe aim of this subsetion is to show that every onsistent table has a strongsolution. We will see that this is all we need to insure the soundness and11

ompleteness of the inferene algorithm.First we de�ne a funtion solve, that takes a simpli�ed table �, andreturns a pair h�0; si where �0 is another simpli�ed table extending �, ands0 is a s.p. whih represents, in some sense, the basi step towards thesolution of �. We de�ne funtion solve by giving an algorithm to omputeit.De�nition 3.8 The funtion solve is de�ned by the following steps. Thebasi operation is to build a sequene of s-tables �i and substitution paths si(i � 0). During the onstrution, we "mark" some entries of the table (toremember that the substitution for the orresponding variables has alreadybeen generated).1. Set i = 0. Let �0 = �, s0 be the empty list nil. All entries of �0 areunmarked.2. Take any unmarked entry ht; L(t); U(t)i of �i suh that both L(t) andU(t) are not empty, mark it and de�ne �i+1 and �i+1 in the followingway:(a) If there is a marked entry hv; L(v); U(v)i of �i suh that L(v) =L(t) and U(v) = U(t), and suh that t depends on v in si, thenset si+1 = si[t := v℄ and �i+1 = �i.(b) Otherwise let D be a type onstrutor that is a sup for the setonstrutors(L(t)) and an inf for onstrutors(U(t)). Let k �0 be the arity of D (whih is by hypothesis equal to the arity ofany other type onstrutor in L(t), U(t)) and let t1; : : : ; tk be newfresh variables. Then:� De�ne si+1 as the s.p. obtained by appending [t := D(t1; : : : ; tk)℄to the end of si.� De�ne �i+1 by adding to �i k entries for the new variables ti(1 � i � k) and set:L(ti) = SfL�i(xi) j D0(x1; : : : ; xk) 2 L(t)gU(ti) = SfU�i(xi) j D0(x1; : : : ; xk) 2 U(t)g3. Repeat step 2. until there are no more unmarked entries with both alower and an upper set empty. Let n be the last value of i.4. Return h�0; si where �0 = �n and s = sn.We have the following properties.12

Lemma 3.9 The onstrution in Def. 3.8 is always terminating.Proof hint. The onstrution builds new upper and lower sets but usingonly those type expressions that our in the original table. Then there anonly be a �nite number of possible upper and lower sets. }Indeed the new sets are built by omposing the old ones. So their atualnumber is muh less than the number of all possible subsets of the typeexpressions ourring in �.The proof of the following lemma follows diretly from the de�nition oflosure.Lemma 3.10 Let h�0; si = solve(�). Then �0 is onsistent if � is onsis-tent.Lemma 3.11 A onsistent losed s-table � has a solution.Proof hint. Let solve(�) = h�0; si. Take the ground substitution de�ned by: (t) = � ! if U(t) = ;? otherwisewhere t ranges over all variables having a non�marked entry in �0 (referringto Def. 3.8). Then it is easy to see that h Æ �s; (�s)i solves the table. }In the end we (immediately) get our �nal resultCorollary 3.12 A onsistent table has a strong solution.Finding a better solutionIn Lemma 3.11, it is proved that a onsistent table admits at least one groundsolution. But in presenting the output of a typeheker, we are rather inter-ested in showing a polymorphi type, possibly a "most general" type shemesuh that all its instanes represent legal typings of a term, in the style ofthe ML family of languages (see the disussion in the next setion). In ourase we de�ne a solution sheme for an s-table � as a pair h�;�i suh thatfor all (ground) substitutions h Æ �; (�)i is a solution for �.We de�ne a simple algorithm that builds a solution sheme for a giventable, and whih will provide a useful presentation of the type of an ex-pression. Our goal in this ase is to obtain a syntheti presentation of thefuntional properties of a term, rather than a omplete one. So the solu-tion sheme that we obtain ould fail to apture some possible typings of13

the term; these ould be represented only at the ost of introduing moreomplex subtyping expressions. We remark however that the typehekingproedure de�ned in the next setion keeps the whole table as an internalrepresentation of the typing of a term, and so the loss of information takesplae only at the level of interfae with the user. The table itself is indeedthe "most general" solution sheme for a given table.We will build a solution sheme of an s-table � through a funtion get,that is de�ned essentially in two steps. In the �rst step, formalised by afuntion ollapse, the table is "�attened" into a simpler one, preservingmost of the solutions. In some ases, however, this �attening ould fail toprodue a meaningful output.De�nition 3.13 Let � be a simpli�ed table. Then ollapse(�; V) is afuntion that returns either a pair h�0; �i where �0 is an s-table and � is atrivial substitution (whih will identify some variables of V), or failure.The funtion ollapse is de�ned by the steps given below. Also in thisase the basi operation is to build a suession of s-tables �i and trivialsubstitutions �i (i � 0). During the onstrution, we assume that we areable to mark (and unmark) some entries of the onsidered tables.1. Let �0 = � and �0 be the empty substitution. Mark all entries in �0.2. Take any marked entry ht; Lt; Uti of �i. If it is not onsistent thenreport failure.3. If Lt[Ut is empty or ontains only one element then unmark the entryht; Lt; Uti in �i, de�ne �i+1 = �i, �i+1 = �i and go to step 2.4. Otherwise let k be the arity of the type onstrutors in Lt [Ut. For all1 � j � k, perform the following operations.- Let varj = fa j D(: : :|{z}j�1 ; a; : : :|{z}k�j) 2 L[Ug = fa1; : : : ; apg (1 � p).Take a fresh variable u and let �� = [a1 := u; : : : ; ap := u℄.- Add to �i an entry hu;Lu; Uui and set� Lu = SfL�i(a) j a 2 varjg� Uu = SfU�i(a) j a 2 varjg- Then eliminate from �i all entries for the variables in varj, andreplae �i by ��(�i), and �i by �� Æ �i. Finally, mark the newentry for u. 14

De�ne �i+1, �i+1 as the result of this proess.5. As long as there are marked entries, go bak to step 2.6. Let n be the urrent value of i. Return �n and �nBasially, the key step in proedure ollapse onsists in reading the var-ious expressions that our in the L and U set of a given row �transversally�,and map all the variables read this way to a single, fresh variable (alled uabove). Of ourse, this orresponds to a simpli�ation, that an imply theloss of ompleteness, and sometimes even lead to inonsistent tables (henethe hek at step 2).It is easy to see that if ollapse(�; V) = h�0; �i (and hene ollapsedoes not return failure), then �0 is a losed table. Moreover we have thefollowing lemma.Lemma 3.14 Let ollapse(�; V) = h�0; �i. If h;�i is a solution of �0,then h Æ �; �(�)i is a solution of �.Owing to the simple struture of the table produed by ollapse, it isnow easier to �nd type shemes to represent a solution. This is ahieved viaanother algorithm get0, that �rst applies ollapse, and then �nds a solutionsheme for the s-table. The funtion get takes an s-table � and either fails(if ollapse fails) or yields a pair h�;�i, that is a solution sheme for �.get is also de�ned in two steps via the funtion get0.De�nition 3.15 (i) Let � be a simpli�ed table. Then get0(�) is de�ned bythe following steps. If ollapse(�) returns failure then so does get0(�).Otherwise get0 yields a pair hs; �i where s is a substitution path and � is atrivial substitution de�ned in the following way. Let ollapse(�) = h�0; �i.Apply to �0 the following onstrution (during the onstrution, we marksome entries in �0):1. Let s0 = nil. All entries in �0 are unmarked.2. Take any unmarked entry ht; L; Ui of �0 suh that either L or U orboth are not empty. Then build an e.s. e in the following way:(a) If both L or U are not empty, then let D be a type onstru-tor that is a sup for the set onstrutors(L(t)) and an inf foronstrutors(U(t)). Let k � 0 be the arity of D and let v1; : : : ; vkbe the variables ourring in the type expressions D0(v1; : : : ; vh) inL[U (note that they must be the same for all elements of L[U).Then take e = [t := D(v1; : : : ; vk)℄.15

(b) If L is empty but onstrutors(U) has an inf D (possibly a lub)di�erent from ? or U is empty but onstrutors(L) has a sup(possibly a glb) D di�erent from ! de�ne e as in ase 2a.() If L is empty but onstrutors(U) does not have an inf di�erentfrom ?, then de�ne e = [t := ?℄. Similarly if U is empty butthe set onstrutors(L) has no sup di�erent from !, then de�nee = [t := !℄.3. Then append e at the end of si and mark the entry of t. Let si+1 bethe p.e. obtained this way.4. As long as there are unmarked entries in �0, return to step 2.5. Let n the last value of i. Return hsn; �i.(ii) Finally, get(�) returns the pair h�s Æ �;�si.Note that the output of get an have several di�erent forms, dependingon the order in whih the funtion get0 hooses the e.s to be appended tothe substitution path. In partiular, di�erent orders an result in a di�erentshape of �. It is possible to prove, however, that these di�erent sets ofequations have semantially equivalent solutions.The main property of this onstrution is the following.Lemma 3.16 Let get(�) = h�;�i. Then for all (ground) substitution ,h Æ �; (�)i is a solution of �.Then get(�) is a solution sheme for �.3.3 ! redutionsIn order to take into aount the non�homogeneous nature of the type assign-ment system (the ! type has a somewhat partiular behaviour), we equip thesystem with a redution rule for tables, that non�deterministially generatesall the solutions of a given table.Indeed, at any stage of the redution proess, we have to fae the fatthat by using the type ! and its assoiated properties and rules, we anassign di�erent and in general inomparable types to a term. We will de�nelater an heuristi whih orresponds to a reasonable strategy for applyingthe !-redutions.The redution of tables is written�)R �0 ;16

where �, �0 are tables. A step in the redution proess onsists in replainga variable by !:De�nition 3.17 If � is a table and t a variable ourring in some guardsof � suh that U�(t) is empty (or ontains only !), then red!(�; t) is thetable obtained by applying to � the following steps.1. Eliminate from � all the g.e.s that have an ourrene of t in theirguard.2. Set both the upper and lower set of t to f!g.3. Apply the funtion losure to the resulting table.The appliation of losure in step 3. plays the r�le of propagating ! inthe table.The notion of redution for tables is de�ned by the rules of Figure 3.Note in partiular that the redution step an be applied with any variablein dom(�0). (ax1) �)R �(! � red) �)R �0 t 2 dom(�0)�)R red!(�0; t)Figure 3: Table redutionNote as well that for some expressions, in�nitely many non-omparabletypings are possible. An example is given by �x:(x x) whih has (amongothers) types (!!!)!!, (!!!!!)!!!!, (!!!!!!!)!!!!!! et.(see [KPS94℄). When this happens, all these typings involve ! and thereforeare not extremely interesting. We shall de�ne in Setion 4.4 an heuristi tomake the hoie between them deterministi.Note that if �)R �0, then, for all variables t 2 dom(�), if t 2 dom(�0)then L�0(t) = L�(t) and U�0(t) = U�(t), i.e. the redution proedure doesneither add nor erase entries from the table.A basi property of table redution, whih is immediately proved, is thefollowing.Lemma 3.18 Let �)R �0. Then any strong solution of �0 is a solutionof �. 17

3.4 Operators on tablesWe will need in the following a ouple of operators to handle tables.De�nition 3.19 (i) If �1 and �2 are two (losed) tables, then �1 ℄ �2 isthe table de�ned by merging them and applying losure.(ii) If g is an elementary g.. and � is a table, then addtable(�; g) is thetable obtained from � by adding the onstraints in g and applying losureto the resulting table.De�nition 3.20 If � is a table and w a guard, then w.� is the table obtainedby replaing the guard w0 of eah g.e. ourring in the L and U sets of � byw.w0.Let � be a table and V a set of type variables. The funtion simplifyextrats from a table � the subpart of it whih is relevant for �nding thesolution relative to the variables in V. In partiularsimplify(�;V)is the table �0 obtained from the empty table through the following steps:1. Put in �0 all the entries for variables in V.2. Add to �0 all the entries of variables whih our in the upper or lowersets of variables already in �0.3. Repeat step 2. until no other entry an be added to �0.It is easy to see that if � is a losed table, so is the ase for simplify(�;V)as well.Moreover, the basi property of simplify(,i)s the following.Lemma 3.21 Let �0 = simplify(�;V). Then all solutions of �0 an beextended in a solution of �.4 Type inferene4.1 From terms to tablesOur type inferene method is de�ned by a set of rules in Natural Semantisthrough a judgment of the formM)TI � j t j�18

where t is a variable, � a typing ontext and � a onsistent table. Thede�nition of judgment)TI j j involves the appliation of the redutionrelation)R in a nondeterministi way. This is essential to have a ompleteinferene proedure, owing to the fat that a notion of prinipal type shemedoes not exists in our system. We will de�ne later a heuristi to avoidnondeterminism produing a quite general typing proedure. Indeed, as itwill be shown by examples, the ases in whih the use of nondeterministiredution is needed are rather rare.Informally, type onstraints will be brought along in the omputationand progressively updated as we get new information about the term, thusinsuring the inrementality of our approah.In a statement M)TI � j t j�, one should interpret the type parametersinvolved in the set of type assignment � as meta variables, rather than asatual type expressions. The intended meaning of suh a judgment is indeedto de�ne the type shema of all possible typings that are inferable for M .4.2 Inferene FrameworkFor tehnial reasons, in the inferene rules a ontext is a set � of statementsof the shape x : t where x is a term variable and t a type variable. We de�neon ontexts an auxiliary funtion, alled fondi, to merge the assignmentontexts. In partiular fondi(�1;�2) =< �; � >Where � is the trivial substitution (whih is only a variable renaming) whihienti�es all (and only) the type variables whih are prediates of the sameterm variable in �1 and �2 and � = �(�1) [�(�2). We will use fondi(whih is assoiative) also with more than two arguments.We give �rst a set of natural dedution rules de�ning a nondeterministiand terminating inferene proedure that is omplete with respet to theinferene rules.De�nition 4.1 (Canonial table for datatypes onstrutors)Consider a datatype D, with its parameters X1; : : : ;Xk. Reall (Setion2) that a datatype onstrutor Di (we shall abbreviate it simply to) is de�nedby arg L, where L is a list of type expressions (see orresponding De�nition).We de�ne �an(), alled the anonial table assoiated to onstrutor , asfollows: 19

� let u1; : : : ; uk be fresh variables, we let � = fu1=X1; : : : ; uk=Xkg, andde�ne �param as the table onsisting in the k rows of the form uj j;j;,1 � j � k;� �an() is then de�ned by reursion over the list L of �arguments� of: � if L = [℄, take a fresh variable v; �an() is then equal toaddtable(�param; fv :G (D[u1; : : : ; uk℄ � v)g) ;and the �output type variable� (assoiated to onstrutor) is v;� if L = x :: L0, ompute �, the anonial table assoiated to L0,with its orresponding output type variable t, and distinguish twoases, aording to the shape of x:� if x is Xp for some p, then let v be a fresh variable; theanonial table is then equal toaddtable(v.�; fv :G (up!t � v)g) ;the output type variable being v;� otherwise, let v and v0 be two fresh variables, the anonialtable isaddtable(v0.�; fv0 :G (v!t � v0); [v0; v; t℄ :G (v � �(x))g) ;and the output variable is v0.Note that by de�nition, �an() is already losed and onsistent (onsis-teny is insured by the fat that there is no appliation).�an() is a table shema rather than a simple table: we shall indeedinstaniate its type variables with newly reated variables eah time we shallenounter term in the type inferene proedure. To evideniate the de-pendeny towards these variables, we will sometimes adopt the notation�an()[u1; : : : ; uk; v1; : : : ; vm; t℄, t being the �output type variable� of�an()(and v1; : : : ; vm the type variables introdued during the analysis of L de-sribed above).Example: onsider the list onstrutor ons, of typeX!list[X℄!list[X℄;its assoiated anonial table is u1t : (u1!v1) tt; v1 : (t2!v2) v1t2 t; v1; v2; t2 : list[u1℄t; v1; v2 : list[u1℄ v220

Note that variables t1 and u1 ollapsed, and we only keep u1. Here are thesopes of the type variables:ons : X|{z}u1 ! v1z }| {list[X℄| {z }t2 ! v2z }| {list[X℄| {z }t D = list[X℄; u1 = X :We are now ready to de�ne our type inferene proedure, given by therules of Figure 4. Note that this proedure is still nondeterministi.(Tvar) x)TI fx : tg j t j ;(Tonst) Di)TI ; j t j�an(Di)[u1; : : : ; uk; v1; : : : ; vmi ; t℄where �an() is the anonial table assoiated to Dit; u1; : : : ; uk; v1; : : : ; vmi ; t are fresh variables(T�) M)TI �; x : u j v j��x:M)TI � j t j addtable(t.�; ft :G (u!v � t)g)where u is a fresh variable(Tapp) M)TI �1 j u j�1 N)TI �2 j v j�2fondi(�1;�2) =< �; � >M N)TI �(�) j t j simplify(�0; t)where t is a fresh variable,� = addtable(�(�1) ℄ �(�2); ft :G (�(u) � �(v)!t)g);t.�)R �0, and �0 is onsistent
Figure 4: Type inferene proedureNote that rule (Tapp) is the only ase in whih we an redue the size ofthe table by applying simplify.Out inferene proedure is orret and omplete with respet to the typ-ing rules in the following sense. 21

Lemma 4.2 �;� ` M : T i� M)TI � j t j � and h�;�0i is a solution of� suh that T = �(t), � is equivalent to an extension of �0 and � extends�(�)4.3 Typing de�nitionsWe apply the type inferene proedure that we just de�ned in order to pro-gressively build a table that goes along with a sequene of CuCh de�nitions.This is expressed by a judgment of the form�;� <eqs>����! �0;�0 ;where< eqs > is a sequene of term de�nitions of the form< f (x1 : : : xn) =e >. The above statement means that adding CuCh de�nitions < eqs > toa ontext � and a table � yields to ontext �0 and table �0. The rules thatde�ne this judgment are given on Figure 5.
(TDf) e)TI �1; x1 : t1 : : : xn : tn; f : v j t j�1f (x1 : : : xn))TI �2; x1 : Æ1 : : : x :n; f : u : Æn j t0 j�2fondi((�1; x1 : t1; : : : xn : tn; f : v);(�2; x1 : t1; : : : ; xn : tn; f : u); �) = < �0; � >�;� <eqs>:<f (x1:::xn) = e>����������������! �0:f : t;�0 f =2 dom(�0)where addtable((�(t0.�1) ℄ �(�2) ℄ �(�)); ft0 :G (t � t0)g))R �0and �0 is onsistent

(TDomp) �;� <eqs>����! �0;�0 �0;�0 <eqs0>����! �00;�00�;� <eqs>:<eqs0>���������! �00;�00
Figure 5: Building a CuCh ontextWe have the following soundness and ompleteness result.Lemma 4.3 Let < eqs > be a sequene of CuCh de�nitions. Let ;; ; <eqs>����!�;� and let h�g;�i be any solution of �. Then � : ;; < eqs >) �g(�).22

Conversely if � : ;; < eqs >) � then ;; ; <eqs>����! �;� and thereis a solution h�g;�0i of � suh that � = �g(�) and � is equivalent to anextension of �0.4.4 HeuristiThe relation)TI j j as de�ned in Subsetion 4.2 is not deterministi, dueto the presene of !-redutions, but we are interested in turning it into adeterministi proess, in order to get a reasonably e�ient implementationof the inferene proess. Of ourse, we do this at the ost of losing theompleteness of the inferene proedure.We present here our heuristi to transform a (losed) table that is notonsistent into a onsistent one. The idea is to apply rule (! � red) toeliminate the onstraints on variables with respet to whih the table is notonsistent. This atually means simulating an appliation of rule (omega) tothe subterms for whih we are not able to �nd a meaningful type. Sine wewant to preserve as muh information as possible, our strategy is to try toapply rule (omega) starting from the inner subterms. It is intuitive that thedeeper the subterm of a given term that is assigned type ! by rule (omega),the more information shall be ontained in the resulting type of the term.We do this using the notion of guard. For a non-empty guard, we usethe notation w:u to isolate the last element u of the list (i.e. the innermostone).Note that in the onstrution of the table eah type variable introduedin the inferene proedure orresponds to a subterm of the expression tobe typed. We assume that in the implementation of the inferene proedurethe guards are kept topologially sorted with respet to the inlusion of theorresponding subterms. I.e. if u is the type variable orresponding to asubexpression of a subterm to whih orresponds a type variable v then inevery guard ontaining both u and v, the ourrene of u follows the one ofv. This an be naturally ahieved simply by listing the variables in the orderin whih they have been reated, but more sophistiated ordering ould bepossible.We formalize our heuristi under the form of a redution relation)D,de�ned on Figure 6.We apply this transformation whenever the inferene proess yields aninonsistent table.
23

(Did) �)D �(DU) �0)D � U�(t) not onsistentw:u :G (D(v1; : : : ; vk)) 2 U�(t)U(u) = ;�0)D red!(�; u)
(DL) �0)D � U�(t) onsistent� not onsistent with respet to tw:u :G (D(v1; : : : ; vk)) 2 L�(t)�0)D red!(�; u)Figure 6: Deterministi redution relation5 ConlusionWe have presented a partial type inferene proedure for a language equippedwith datatypes. The e�etiveness of our methods have made it possible todevelop an implementation, that ould in priniple be smoothly integratedto the CuCh mahine, due to the inrementality of the inferene.This report presents a preliminary version of our work on this subjet.We indeed plan to extend it in order to inlude a denotational desriptionfor our language of types, as well as possibly improve our heuristis, andof ourse make the implementation available together as part of the CuChmahine. It seems also that most of the work on the implementation ouldbe reused to ahieve dead�ode analysis (see e.g. [Dam98℄).Referenes[BB85℄ C. Böhm and A. Berardui. Automati Synthesis of Typed��programs on Term Algebras. Theoretial Computer Siene,39:135�154, 1985.[BPG℄ C. Böhm, A. Piperno, and S. Guerrini. ��de�nition of Funtion(al)sby Normal Forms.

24

[CC90℄ F. Cardone and M. Coppo. Two Extensions of Curry's InfereneSystem. In P. Odifreddi, editor, Logi and Computer Siene, pages19�75. Aademi Press, 1990.[Dam98℄ F. Damiani. Redundant�ode detetion and elimination for PCFwith algebrai Datatypes. In To appear in the Proeedings of TLCA'99, LNCS, 1998.[GLT89℄ J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cam-bridge University Press, 1989.[Gom90℄ C. Gomard. Partial Type Inferene for Untyped Funtional Pro-grams. In Proeedings of the ACM Conferene on Lisp and Fun-tional Programming, pages 282�287, 1990.[KPS94℄ D. Kozen, J. Palsberg, and M. I. Shwartzbah. E�ient infer-ene of partial types. Journal of Computer and System Sienes,49(2):306�324, 1994. also in Proeedings of FOCS'92, pages 363�371.[Tha94℄ S. Thatte. Type inferene with partial types. TCS, 124:127�148,1994. also in Proeedings of ICALP '88, pages 615�629.[WO92℄ Mithell Wand and Patrik M. O'Keefe. Type inferene for partialtypes is deidable. In B. Krieg-Brükner, editor, European Sym-posium on Programming '92, volume 582 of LNCS, pages 408�417.Springer Verlag, 1992.A A detailed exampleWe illustrate the way our proedure works on an example, that shows thebuilding of the table and the treatment of what would be onsidered astyping errors in a lassial setting.This example is treated with an implementation of the algorithms wedesribe (a WWW interfae to the implementation is available athttp://ermis.enp.fr/~dh/Types3/).The user has the opportunity to inrementally introdue de�nitions ofterms, and the system answers by showing the table that is onstrutedby the type inferene proedure starting with this terms, and its evolution(as the losure funtion is applied). The initial environment ontains sev-eral onstants, suh as elements of types bool, int, float, lists, and a fewonstant funtions of types int!bool, int!int, et.25

For the moment, we only have the implementation of the type infereneproedure (table onstrution), and of the losure funtion. The generationof solutions and the heuristi to resolve inonsistenies are in beta version,and we leave their presentation to a later presentation of this work.We shall work with the termM = �x y:y (x 3) (xx) :The idea here is to use x both in an auto�appliation and as funtion onintegers, to fore an typing on�it in the table that is generated (not leadingto an inonsisteny, though).The asii translation of this term is \x y.((y (x 3)) (x x)); the typeinferene proedure yields the following table:< i | {[i℄. b->h} | {} >< h | {[i;h℄. a->g} | {} >< g | {} | {} >< f | {} | {} >< e | {} | {[i;h;g℄. f->g} >< d | {} | {} >< | {[i;h;g;e;d℄. INT} | {} >< b | {} | {[i;h;g;f℄. b->f;[i;h;g;e;d℄. ->d} >< a | {} | {[i;h;g;e℄. d->e} >Eah line orresponds to a row in the table, and for eah row, we su-essively give the orresponding type variable, and its sets L and U. Forexample, we an see that type variable a has an empty L set, and has theguarded expression [i;h; g; e℄ :G d!e in its U set.The system also gives some extra information on the typing proedure:Current ontext is:M:iTo help debugging, here are the "old" variable assumptionsx:b / y:aThis means that to term variables x and y have been assoiated typevariables b and a respetively. Using this information, and the typing rulesof Setion 2, we an reonstrut the struture of the term, by establishinga orrespondene between the type variables and every subterm of the termM , as follows: 26

iz }| {�xb: hz }| {�ya: y (x 3)| {z }d| {z }e (xx)| {z }f| {z }gThe steps in the onstrution of this deoration of the type an be il-lustrated on an example: y (x 3) being of type e, we read in the row orre-sponding to e in the table that e is less than f!g (omitting the guards);(xx) being e�etively of type f , we get that y (x 3) (xx) is of type g.As the shema above shows, we an reonstrut the type of the wholeexpression by looking at the row of i (note as well that type variable iguards all the expressions of the table, whih means that if we deide to putthe whole term to type !, there is no use to keep any information that isontained in the table). We read in the row of i that i is �equal to� b!h (i.e.without other onstraints, i will be replaed by b!h). The row for h tells usthat h is a!g, and we also see that b is less than b!f and than !d (theonstraint �b!f � omes from the auto�appliation, hene the ourrene ofb in the expression, while !d omes from the appliation to onstant 3: is indeed �equal to� INT): we are faing a problem, sine there is indeed aon�it between INT and the arrow onstrut. However, we annot detetimmediately this on�it on the table, due to the shape of M .The system applies next the losure rules; the previous table being al-ready losed, we get the same table:The losed table is:< i | {[i℄. b->h} | {} >< h | {[i;h℄. a->g} | {} >< g | {} | {} >< f | {} | {} >< e | {} | {[i;h;g℄. f->g} >< d | {} | {} >< | {[i;h;g;e;d℄. INT} | {} >< b | {} | {[i;h;g;f℄. b->f;[i;h;g;e;d℄. ->d} >< a | {} | {[i;h;g;e℄. d->e} >As said before, the on�its oming from the �non�standard� use of x inM are not visible on the table above. We an evideniate them by applying27

M , whih will have more or less the e�et of instiantiating x, thus bringingto light the typing information about x.We �rst apply M to the identity; the treatment of type M (�z: z) yieldstable:< l | {} | {} >< k | {[l;k℄. j->j} | {} >< j | {} | {} >< i | {[l;i℄. b->h} | {[l℄. k->l} >< h | {[l;i;h℄. a->g} | {} >< g | {} | {} >< f | {} | {} >< e | {} | {[l;i;h;g℄. f->g} >< d | {} | {} >< | {[l;i;h;g;e;d℄. INT} | {} >< b | {} | {[l;i;h;g;f℄. b->f;[l;i;h;g;e;d℄. ->d} >< a | {} | {[l;i;h;g;e℄. d->e} >To help debugging, here are the "old" variable assumptionsz:j / x:b / y:aStill, no on�it an be seen on this table; but this hanges if we applythe losing proedure:The losed table is:< l | {[l;i;h℄. a->g} | {} >< k | {[l;k℄. j->j} | {[l;i;h;g;f℄. b->f;[l;i;h;g;e;d℄. ->d} >* < j | {[l;i;h;g;f;k℄. j->j;[l;i;h;g;e;d;k℄. INT} | {} >< i | {[l;i℄. b->h} | {[l℄. k->l} >< h | {[l;i;h℄. a->g} | {} >< g | {} | {} >* < f |{[l;i;k;h;g;f℄. j->j;[l;k;i;h;g;f℄. j->j;[l;k;i;h;g;f;e;d℄. INT;[l;i;k;h;g;f;e;d℄. INT}| {} >< e | {} | {[l;i;h;g℄. f->g} >* < d |{[l;i;k;h;g;e;d;f℄. j->j;[l;i;k;h;g;e;d℄. INT;[l;k;i;h;g;e;d;f℄. j->j;[l;k;i;h;g;e;d℄. INT}| {} >< | {[l;i;h;g;e;d℄. INT} | {} >< b | {[l;i;k℄. j->j} | {[l;i;h;g;f℄. b->f;[l;i;h;g;e;d℄. ->d} >< a | {} | {[l;i;h;g;e℄. d->e} >28

A star � * � evideniates the rows where a on�it is apparent (betweenan arrow type and datatype INT): this is the ase for type variables d, f andj (that intuitively orrespond to the points where the information about thetwo di�erent typings for x is �ommuniated�). However, the resulting tableis still onsistent, sine the set U is empty for these entries (whih meansthat we an put the orresponding variables to !).A possible type for M (�z: z) is then (!!j!j)!g (setting d to ! hasthe e�et of eliminating some onstraints, thus resolving some on�its).If we apply M I (the term we just onsidered) to the ombinator K, i.e.we onsider the term (M I (�uv: u)), we get the following result:The type inferene proedure yields table:< q | {} | {} >< p | {[q;p℄. m->o} | {} >< n | {} | {} >< o | {[q;p;o℄. n->m} | {} >< m | {} | {} >< l | {} | {[q℄. p->q} >< k | {[q;l;k℄. j->j} | {} >< j | {} | {} >< i | {[q;l;i℄. b->h} | {[q;l℄. k->l} >< h | {[q;l;i;h℄. a->g} | {} >< g | {} | {} >< f | {} | {} >< e | {} | {[q;l;i;h;g℄. f->g} >< d | {} | {} >< | {[q;l;i;h;g;e;d℄. INT} | {} >< b | {} | {[q;l;i;h;g;f℄. b->f;[q;l;i;h;g;e;d℄. ->d} >< a | {} | {[q;l;i;h;g;e℄. d->e} >To help debugging, here are the "old" variable assumptionsu:m / v:n / z:j / x:b / y:aWe omit here the resulting losed table, where type on�its appear in Lsets (resp. U sets) for rows whose U sets (resp. L sets) are empty, and henedo not lead to �real� inonsistenies.We get some true inonsistenies if we apply a onstant f1, of typeINT->INT, to our term (M I K); indeed, the resulting losed table is:< u | {[u;t℄. INT} | {} > 29

< t | {[u;t℄. s->r} | {[u℄. q->u} >< r | {[u;t℄. INT} | {} >* < s |{[u;t;i;h;l;q;p;g;d;o;k;;f℄. INT;[u;t;i;h;l;q;p;g;d;o;k;℄. j->j;[u;t;i;l;h;q;p;g;d;o;k;;f℄. INT;[u;t;i;l;h;q;p;g;d;o;k;℄. j->j;[u;t;i;h;l;q;p;o;g;d;k;;f℄. INT;[u;t;i;h;l;q;p;o;g;d;k;℄. j->j;[u;t;i;l;h;q;p;o;g;d;k;;f℄. INT;[u;t;i;l;h;q;p;o;g;d;k;℄. j->j}| {[u;t;r℄. INT} >* < q |{[i;h;l;q;p;g;d;o;k;;f℄. INT;[i;h;l;q;p;g;d;o;k;℄. j->j;[i;l;h;q;p;g;d;o;k;;f℄. INT;[i;l;h;q;p;g;d;o;k;℄. j->j;[i;h;l;q;p;o;g;d;k;;f℄. INT;[i;h;l;q;p;o;g;d;k;℄. j->j;[i;l;h;q;p;o;g;d;k;;f℄. INT;[i;l;h;q;p;o;g;d;k;℄. j->j}| {[u;t;r℄. INT} >< p | {[q;p℄. m->o} | {[i;l;q;h;g;d℄. ->d;[q;i;l;h;g;d℄. ->d} >* < n |{[i;h;g;q;p;l;d;o;k;f℄. INT;[i;h;g;q;p;l;d;o;k;f;℄. j->j;[i;h;g;l;q;p;d;o;k;f℄. INT;[i;h;g;l;q;p;d;o;k;f;℄. j->j;[i;h;g;q;l;p;d;o;k;f℄. INT;[i;h;g;q;l;p;d;o;k;f;℄. j->j;[q;p;i;l;h;g;d;o;k;f℄. INT;[q;p;i;l;h;g;d;o;k;f;℄. j->j;[i;l;q;h;p;g;d;o;k;f℄. INT;[i;l;q;h;p;g;d;o;k;f;℄. j->j;[q;i;l;h;p;g;d;o;k;f℄. INT;[q;i;l;h;p;g;d;o;k;f;℄. j->j}| {} >< o | {[q;p;o℄. n->m} |{[q;p;i;l;h;g;d℄. f->g;[i;l;q;h;p;g;d℄. f->g;[q;i;l;h;p;g;d℄. f->g} >* < m |{[i;l;q;h;g;d;p;k;;f℄. INT;[i;l;q;h;g;d;p;k;℄. j->j;[q;i;l;h;g;d;p;k;;f℄. INT;[q;i;l;h;g;d;p;k;℄. j->j;[i;h;g;d;l;q;p;k;;f℄. INT;[i;h;g;d;l;q;p;k;℄. j->j;[i;h;g;d;q;l;p;k;;f℄. INT;[i;h;g;d;q;l;p;k;℄. j->j}|{[q;p;o;i;l;h;g;d;u;t;r℄. INT;[q;p;i;l;h;g;d;o;u;t;r℄. INT;[i;l;q;h;p;g;d;o;u;t;r℄. INT;[q;i;l;h;p;g;d;o;u;t;r℄. INT}>< l | {[i;l;h℄. a->g} | {[q℄. p->q} >* < k | {[l;k℄. j->j} |{[l;i;h;g;d;;k;q;p;o;u;t;r℄. INT;[l;i;h;g;f℄. e->f;[l;i;h;g;d;℄. b->} >* < j |{[l;i;h;g;f;k℄. INT;[l;i;h;g;d;;k℄. j->j;[i;h;g;f;l;k℄. INT;[i;h;g;d;;l;k℄. j->j}| {[l;i;k;h;g;d;;q;p;o;u;t;r℄. INT;[l;k;i;h;g;d;;q;p;o;u;t;r℄. INT} >< i | {[i℄. b->h} | {[l℄. k->l} >< h | {[i;h℄. a->g} | {[i;l;q℄. p->q} >* < g |{[q;p;i;l;h;g;d;o;k;;f℄. INT;[q;p;i;l;h;g;d;o;k;℄. j->j;[i;l;q;h;p;g;d;o;k;;f℄. INT;[i;l;q;h;p;g;d;o;k;℄. j->j;[q;i;l;h;p;g;d;o;k;;f℄. INT;[q;i;l;h;p;g;d;o;k;℄. j->j;[q;p;o;i;l;h;g;d;k;;f℄. INT;[q;p;o;i;l;h;g;d;k;℄. j->j}| {[i;h;l;q;u;t;r℄. INT;[i;l;h;q;u;t;r℄. INT} >30

* < f |{[l;i;k;h;g;f℄. INT;[l;k;i;h;g;f℄. INT;[l;k;i;h;g;f;d;℄. j->j;[l;i;k;h;g;f;d;℄. j->j}| {} >Here the row for s (as well as the row for q, atually) is inonsistent,beause of the on�it between the arrow type in the lower set and thedatatype INT in the upper set.As we did not implement the heuristis to perform the redution auto-matially yet, we provide a feature to allow the user to put some variables to! �by hand�; here a possible hoie is to redue with respet to type variablef (whose upper set is empty), sine f ours in the guard of type expressionj->j, but not in the guard of INT (f atually orresponds to a term that isdeeper than the terms orresponding to the type variables that our in theguard for INT). We then reover a onsistent table, through this simulationof an !�redution.

31

