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In
remental Inferen
e of Partial TypesMario Coppo and Daniel Hirs
hkoffRésuméNous présentons une pro
édure d'inféren
e de types partiels pourun ��
al
ul étendu ave
 des stru
tures de données. Notre langage detypes 
omprend des types de données, une notion de sous�typage, et unplus petit et un plus grand élément, désignés respe
tivement par? et !;! 
orrespond à l'absen
e d'information de typage (si l'on veut, �tous lestypes sont possibles�). Par rapport aux études existantes, la singularitéde notre appro
he réside dans son 
ara
tère in
rémental, l'informationde typage étant progressivement mise à jour au fur et à mesure que denouvelles 
onstantes sont dé�nies dans le 
ontexte. Cette manière depro
éder est bien adaptée par exemple pour des systèmes dans lesquelson dé�nit des fon
tions (partielles en général) sur les types de donnéespar l'intermédiaire d'équations. Nous illustrons le fon
tionnement denos algorithmes sur une implémentation qui a été réalisée en vue d'uneintégration à la CuCh ma
hine, développée à l'Université de Rome.
Abstra
tWe present a type inferen
e pro
edure for partial types for a ��
al
ulus equipped with datatypes. Our pro
edure handles a type lan-guages 
ontaining greatest and lesser types (! and ? respe
tively),subtyping, and datatypes (yielding 
onstants at the level of terms).The main feature of our algorithm is in
rementality; this allows us toprogressively analyse su

essive term de�nitions, whi
h is of interest inthe setting of a system like the CuCh ma
hine (
uurently being devel-opped at the University of Rome). The methods we des
ribe have ledto an implemention; we illustrate its use on a few examples.





1 Introdu
tionThis paper fo
uses on the problem of type inferen
e for partial types. Partialtypes have been introdu
ed in [Tha94℄ (following [Gom90℄), to des
ribe someterms that are usually 
onsidered as ill�typed in a 
lassi
al setting. Examplesof su
h terms are auto�appli
ations (e.g. �x: (xx)), or polymorphi
 lists(e.g. [true; �f x: (f x)℄). In partial types, the language of types is equippedwith a spe
ial type, 
alled !, to represent the absen
e of type information(or alternatively �any possible type�); ! is asso
iated to the �weirdly typed�subterms of a given term, and allow one to avoid reje
ting terms that 
ontainsu
h ill�typed subparts.In this setting, to provide some kind of �exibility to the type system,and to 
apture by doing so as many terms as possible, the type languageis enri
hed with a notion of subtyping, ! being naturally 
onsidered as thegreatest type. This way, the type of any term 
an be 
oer
ed to a greatertype, whi
h allows one to preserve the soundness of the typing as appli
ationsare performed. One is able for example to infer the judgment�x: (xx) : (!!�)!�(where � is a type variable), the type asso
iated to the o

urren
e of x inargument position being 
oer
ed from !!� to ! in order to permit theauto�appli
ation, yielding �nal type �.The question of partial type inferen
e, as adressed in [Tha94℄, is shown tobe de
idable in [WO92℄, and [KPS94℄ provides an e�
ient algorithm to solvethe problem. Our study di�ers from these works by two main aspe
ts. Firstof all, the language we fo
us on is equipped with user�de�ned datatypes (aswell as with a least type, written ?, that has to be introdu
ed mainly forte
hni
al reasons). The introdu
tion of (parametrised) datatypes somehowin
reases the 
omplexity in the stru
ture of the typing information that hasto be dealt with, as will be seen thorough this study.The se
ond main original aspe
t of our work is the stress that is put onin
rementality in de�ning the type inferen
e method. Indeed, the traditionalapproa
h to type inferen
e in presen
e of subtyping (not only for partial typeinferen
e, but also in other frameworks, e.g. the study of obje
t�orientedparadigms) 
onsists in exploring the stru
ture of the term to be typed, and,while doing so, in 
olle
ting the 
orresponding subtyping 
onstraints. On
eall these 
onstraints are put together, one 
an atta
k the problem of 
on-straints satis�ability using many di�erent approa
hes ([WO92℄ for examplebuilds a �table� to represent the typing stru
ture of the term, and [KPS94℄uses an automata�based method). 1



In this paper, we try on the 
ontrary to preserve the readability of thetype information along the exploration of the term. Our approa
h, inspiredby [WO92℄, 
onsists in representing the typing information on a table; indoing this, however (and this is were our study di�ers from [WO92℄), weare interested in inferring the 
onsequen
es of the type 
onstraints as soonas they are generated, and in resolving immediately the possible resultingin
onsisten
ies. To a
hieve this, we introdu
e a notion of guarded 
onstraint,that, in 
onjun
tion with an additional axiom for subtyping (stating �!! �!!! for any type variable �), allows us to de�ne an in
remental and quite�exible type inferen
e pro
edure, as will be shown below. Intuitively, theguards are used to get rid of �
ontradi
tory� type 
onstraints, in order towork only with 
onsistent tables, i.e. those tables for whi
h a non�trivialsolution 
an be found.Su
h a type inferen
e method is interesting in the framework of a pro-gramming language, where the user 
an su

esively de�ne several obje
ts,possibly using previous de�nitions for the introdu
tion of new fun
tions.This is typi
ally the 
ase for the CuCh ma
hine, a system developped atthe University of Rome in the team of Corrado Böhm (the design of a typeinferen
e pro
edure for this system a
tually originated our work).The CuCh ma
hine is a programming language based on the untyped�-
al
ulus. There are two modes to de�ne obje
ts in CuCh, 
alled �lam and�env; in �lam, the user de�nes �-terms using abstra
tion, appli
ation, andsome built-in 
onstants in
luding natural numbers, strings, lists and booleantests. The �env mode is used to de�ne fun
tions on free algebras by setsof equations, following [BB85℄. The introdu
tion of free algebras and of re-
ursive de�nitions over these algebras is akin to the 
lassi
 se
ond-order en-
oding of datatypes; however, in CuCh, the solutions to (possibly re
ursive)de�nitions are not de�ned using a �xpoint operator, but rather following theBöhm-Piperno te
hnique of [BPG℄, using self-appli
ation. In this setting,more freedom is allowed in the 
onstru
tion of terms, and �traditional� typesystems for fun
tional languages à la ML 
an sometimes be too restri
tive.As said above, this work stems from the will to de�ne a type system thatis well suited for the CuCh. Su
h a type system is by de�nition not part ofthe design of the programming language, as is usually the 
ase, but shouldrather be seen as a feature. Following this remark, the typing judgment inthe CuCh ma
hine is essentially seen as giving a des
riptive information,rather than some kind of advise about 
orre
tness (in parti
ular, no termshould be ruled out using the typing relation). Consequently, two aspe
tsof the type system are important: �rst, a �pure� type inferen
e approa
h2



should be adopted, as opposed to the type 
he
king method: we do not wantthe typing relation to interfer with the a
tivity of the CuCh user, throughthe requirement of type annotations or other su
h informations that 
ouldbe useful for the typing pro
edure. Se
ondly, the type system should beadaptive: in a pure 
al
ulus setting, it 
an be the 
ase that one de�nes someterms that �look weird� from a 
lassi
al typing point of view, but then usesthese terms in a 
ertain fashion (akin in some way to a type dis
ipline), thata
tually expresses their meaning. These two remarks led to the design of thetype inferen
e pro
edure that is presented here.The paper is organised as follows. In Se
tion 2, we introdu
e our sys-tem, de�ned by the terms, the (possibly re
ursive) de�nitions, the languageof types (in
luding user�de�ned datatypes), and the two judgments 
orre-sponding to the typing and subtyping relations. Se
tion 3 is devoted to thete
hni
al de�nitions we need for our type inferen
e pro
edure, i.e. tables (torepresent the type 
onstraints), properties of tables, and various fun
tionsover tables. We de�ne our type inferen
e method in Se
tion 4, as well asan heuristi
 to re
over 
onsisten
y where an in
onsistent table is generatedduring the type inferen
e pro
ess (in general, the type inferen
e pro
edure isindeed de�ned in a non�deterministi
 way, in order to preserve 
ompleteness;the heuristi
 is hen
e given for the purpose of implementation). We �nally
on
lude, and present in the appendix the implementation of our methodsthat has been designed (an example is given to illustrate the behaviour ofour algorithms).2 The systemTerms The terms we use are de�ned by the following syntax:M = �x:M j x j M N j 
 :In the de�nition above, 
 ranges over datatype 
onstru
tors, that shallbe introdu
ed below.Re
all that in CuCh, re
ursive fun
tions are not introdu
ed with a �xpoint�like 
onstru
t, but are instead given by re
ursive equations on datatypes(introdu
ed below).Datatypes Following [BB85℄, a datatype is introdu
ed by de�ning itsname, parameters, and 
onstru
tors (whi
h in turn are 
hara
terized by aname and a list of types for their arguments).The syntax we will adopt for datatype de�nitions is:3



Datatype D[X1; : : : ;Xk℄ is 
D1 : arg[T 11 ; : : : ;T 1m1 ℄...
Dn : arg[T n1 ; : : : ;T nmn ℄where the Xis are the parameters of the datatype and ea
h T ij is eithera parameter Xj or another datatype (possibly D itself) having the shapeTi;j [Xp1 ; : : : ;Xpl ℄ where the Xpj s denote the free o

urren
es of X1; : : : ;Xkin Ti;j (fXp1 ; : : : ;Xplg � fX1; : : : ;Xkg).Remark: It is natural in CuCh to manipulate obje
ts like polymorphi
lists (e.g. [true; 1;�x: x℄), i.e. obje
ts in whi
h the datatype parameter (hereX in 
ons : X!list[X℄!list[X℄) would be 
onsidered as being misused ina se
ond�order setting (à la [GLT89℄). The subtyping relation given belowallows us to a

omodate with su
h obje
ts, in order to give as mu
h typeinformation as possible (in the 
ase of [true; 1;�x: x℄, it is preferable to say�list of anything� rather than just �type error�).The de�nition above reads �D is a datatype that has n 
onstru
tors andk parameters X1; : : : ;Xk; ea
h 
onstru
tor 
Di , for 1 � i � n has typeT i1! : : :!T imi!D[X1; : : : ;Xk℄where the Tis are either parameters or datatypes�. Note that nested arrowtypes are not allowed in the de�nition of 
onstru
tors.Example: In this framework, the de
laration of the dataype List wouldbe as follows:Datatype List[X℄ is 
List1 : arg[℄ (Nil)
List2 : arg[X; List[X℄℄ (Cons)De�nitions The CuCh de�nitions are given by the following syntax:< eq > = < f (
Di x1 : : : xmi) = e > :e is an expression possibly 
ontaining o

urren
es of the xis and of f,hen
e we deal in general with re
ursive equations. Re
ursive equations areused as an alternative to the 
ase 
onstru
t (a 
ase�like de�nition 
an easilybe translated into a set of re
ursive equations).We write < eqs > to range over a sequen
e of de�nitions.4



Types Types are either type variables, data types, arrow types, or twospe
ial types, ? and !, that respe
tively represent the empty type (or theleast type, see below), and the union of all types.T = � j D[T1; : : : ; Tn℄ j T!U j ! j ?Remark 2.1 The intuitive semanti
s of types in our approa
h relies on thenotion of types as topologi
ally 
losed subsets (ideals) of the domain of in-terpretation of the language [CC90℄. This model also support the notion ofre
ursive type and re
ursive type equation. In this 
ase the least (unde�ned)element of the domain belongs to every type. The type ! is then interpreted asthe whole domain while ? is interpreted as the singleton 
ontaining only theleast element of the domain. This provides a justi�
ation of the 
onsisten
yand semanti
 
orre
tness of our subtyping assumptions.Subtyping relation We de�ne a subtyping relation between types; weshall use it to 
oer
e types to a greater type (possibly involving ! and/or?) in su
h a way as to be able to give as mu
h type information as possibleabout a �weirdly typed� term.The subtyping relation is de
omposed into two parts; the main judgmentrelies on a set of subtyping assumptions of the form T � T 0, where T and T 0are type expressions, and writes as follows:� ` A � B :Su
h a relation reads �under typing assumptions �, it holds that A � B�.This judgment is de�ned in a mutual re
ursive way together with a form of�stru
tural subtyping� on datatypes, written D v D0, meaning that datatypeD is �stru
turally smaller� than D0. The rules that de�ne both these judg-ments are given on Figure 1.Let us make a few 
omments about the de�nition of the subtyping rela-tion. Regarding relation v, it has to be noted that one 
an always supposethat both datatypes have the same number of parameters, some of them pos-sibly being unused in the smaller type. Moreover, as the 
ontext of typingassumptions is empty in ; ` T il � T 0il (rule (Dv)), this 
ondition means thateither T il and T 0il are 
omparable datatypes, or they represent the same typevariable.Examples: we illustrate the meaning of relation v on two examples.5



(Dv) D[X1; : : : ;Xk℄ is (
1 : arg[T 11 ; : : : ;T 1m1 ℄ : : : 
n : arg[T n1 ; : : : ;T nmn ℄)D0[X1; : : : ;Xk℄ is (
1 : arg[T 011; : : : ;T 01m1 ℄ : : : 
n : arg[T 0n1 ; : : : ;T 0nmn ℄ : : :: : : 
n+l : arg[T 0n+l1 ; : : : ;T 0n+lmn+l ℄)D v D0where ; ` T il � T 0il (1 � l � n, 1 � i � ml).(S?) � ` ? � T (S!) � ` T � ! (Sid) � ` � � �(Svar) �:fT � T 0g ` T � T 0 (Sax) � ` A!! � !!!(S!) � ` A2 � A1 � ` B1 � B2� ` A1!B1 � A2!B2(SD) D v D0 8i; (1 � i � k) :� ` Ai � A0i� ` D[A1; : : : ;Ak℄ � D0[A01; : : : ;A0k℄Figure 1: Subtyping relation� Consider the datatypes of booleans and tri�valued tags, de�ned asfollows:Datatype Bool is true : arg[℄; false : arg[℄ ;Datatype Bool0 is true0 : arg[℄; false0 : arg[℄; unknown : arg[℄ :It holds that Bool v Bool0, be
ause Bool0 has two 
onstru
tors in 
om-mon with Bool, and one extra 
onstru
tor (no parameter is involvedhere).� Suppose now we want to tag a term (of any type) with an element ofBool or of Bool0; this would lead to the following de�nitions:Datatype Tagged[X℄ is 
 : arg[X;Bool℄ ;Datatype Tagged0[X℄ is 
0 : arg[X;Bool0℄ :We 
an derive Tagged v Tagged0: indeed, they have the same numberof parameters, the 
onstru
tors 
 and 
0 have the same shape, and we6




an derive both subtyping judgments ; ` X � X and ; ` Bool � Bool0sfor their �rst and se
ond argument respe
tively.Let us now 
onsider the de�nition of relation �: ! is the universal type, asexpressed by rule (S!); dually, ? is the least type (sometimes referred to asunit). As usual, the arrow 
onstru
tor is antimonotoni
 in its �rst argument,and monotoni
 in its se
ond argument. As said above, the subtyping rela-tion for datatypes (instan
iated with their parameters) is fa
torised into the�stru
tural� relation v and rule (SD) for deriving a
tual type in
lusions; in
ontrast with rule (S!), rule (SD) introdu
es monotoni
ity with respe
t toall the parameters of a datatype. Axiom (Sax) somehow weakens this oppo-sition, as it says that any arrow type 
an be 
oer
ed to the most general typefor fun
tions, namely !!! (whi
h 
ould be seen as a form of monotoni
ityof the arrow 
onstru
t towards its left�hand side argument).Typing rules� Typing termsThe typing judgment for terms is of the form�;� `M : T ;where M is a term, T is a type, � is a set of typing assumptions forthe free variables of M , and � is a set of inequalities between types.The rules de�ning this judgment are given below:(var) �:x : A;� ` x : A (omega) �;� `M : !(!I) �:x : A;� `M : B�;� ` �x:M : A!B(!E) �;� `M : A!B �;� ` N : C � ` C � A� ` (M N) : B� Typing de�nitionsWe introdu
e a judgment, written � : �; < eqs >) �0, to expressthat adding de�nitions < eqs > to the 
ontext � assuming the typeinqualities of � we obtain an extended 
ontext �0. This judgment isde�ned by the rules of Figure 2.In general, we will be in the situation where we pro
ess a sequen
e ofde�nitions < eqs >, starting from an initial 
ontext �0 and a set ofinequalities �, and trying to infer a judgment of the form � : �0; <eqs >) �. 7



(Cf) �; f : �; x1 : �1; : : : ; xn : �n;� ` e : 
�; f : �; x1 : �1; : : : ; xn : �n;� ` f(
(x1 : : : xn)) : Æ � ` 
 � Æ� : �; < f (
 x1 : : : xn) = e >) �:f : �(Ctrans) � : �; < eqs >) �0 � : �0; < eqs0 >) �00� : �; < eqs > : < eqs0 >) �00Figure 2: Compatibility relation between 
ontexts and de�nitions3 Systems of type 
onstraints3.1 Type 
onstraints and tablesOur inferen
e pro
edure is based on the representation of relations betweentypes by sets of inequalities between types 
alled type 
onstraints in theliterature. In this se
tion we de�ne the pro
edures to handle them.A substitution is de�ned here as a �nite mapping � between type vari-ables and types, that is naturally extended to a 
ongruen
e between all types.A single substitution is denoted [t := A℄: it repla
es t by A and behaves likethe identity on all other variables. Similarly, [t1 := A1; : : : ; tn := An℄ (whereti does not o

ur in Aj for all 1 � i; j � n) denotes the 
omposition of nsingle substitutions. If all the type expressions Ai are single variables, wesay that [t1 := A1; : : : ; tn := An℄ is trivial.A substitution is ground if all types in its domain are ground.De�nition 3.1 (Constraints) A type 
onstraint is an expression of theform t � D(u1; : : : ; uk), D(u1; : : : ; uk) � t or (0 � n), where D is analgebrai
 datatype 
onstru
tor or the ! 
onstru
tor. and t; u; u1; : : : ; uk aretype variables.To handle the rule (S!) and the axiom (Sax), we need the notion of guardan some operators on it.De�nition 3.2 (i) A guard is an ordered list of type variables. Let w rangeover guards.(ii) If w1; w2 are guards then w1.w2 is the guard obtained by 
on
atenat-ing w1 and w2 and by eliminating from w2 the variables whi
h already o

urin w1.(iii) A guarded 
onstraint (g.
. for short) is an expression of the formw :G (A � B) where w is a guard and A � B is a type 
onstraint.8



If S = fwi :G (Ai � Bi) j 1 � i � ng is a set of g.
. and w is a guard thenw.S denotes the set fw.wi :G (Ai � Bi) j 1 � i � ng.A guard hides the 
onstraint asso
iated to it in an expression w :G (A �B) whenever at least one of the variables o

urring in it is an !-type.A solution of a set S of g.
. in a pair h�g;�i where �g is a ground substitu-tion and � a set of subtyping assumptions su
h that for all w :G (A � B) 2 Sin whi
h �g(t) 6= ! for all variables t in w we have � ` �g(A) � �g(B). Astrong solution of S is a ground substitution �g su
h that for all w :G (A �B) 2 S we have �g(A) � �g(B) (ignoring guards).The inferen
e algorithm keeps the information about the types involvedin a dedu
tion using the notion of table, whi
h has been inspired by [WO92℄.A table is simply a stru
tured set of type 
onstraints, whi
h are rep-resented in a slightly di�erent way via the notion of guarded elementaryexpression.De�nition 3.3 (i) A guarded elementary expression (g.e. for short) is anexpression of the shape w :G (D(v1; : : : ; vk)) where v1; : : : ; vk are variablesand D is a type 
onstru
tor.(ii) A table � is a set of triples ht; L; Ui (
alled the entries of the table),where t is a variable and L and U are sets of g.e. whi
h are said, respe
tively,the lower and upper sets of t in �. If ht; L; Ui 2 � we denote L as L�(t),or simply L(t) (when � is understood) and U as U�(t), or simply U(t).Moreover de�ne dom(�) = ft j ht; L; Ui 2 �g.A table is just a stru
tured way of representing a set of elementary g.
.s.In fa
t ea
h w :G (A) 2 L(t) represents a g.
. w :G (A � t), and ea
hw :G (A) 2 U(t) also represents a g.
. w :G (t � A). A solution of a table is asolution of the 
orresponding set of g.e.s.A simpli�ed table (s-table for short) � is a stru
ture whi
h has the sameform of a table but without guards. So the elements of the upper and lowersets are type expressions (
ontaining only one type 
onstru
tor) instead ofg.e.s. The kernel of a table �, written kernel(�) is a s-table � obtainedfrom � by erasing all guards. S-tables will be useful to build solutions oftables.The following operation of 
losure on tables puts them in a sort of normalform.De�nition 3.4 A table � is 
losed if it satis�es the following 
ondition. Forall t 2 dom(�) su
h that both L(t) and U(t) are non nonempty and for allw1 :G (D1(u1; : : : ; uk)) 2 L(t) and w2 :G (D2(v1; : : : ; vk)) 2 U(t) su
h thatD1 v D2 we must have: 9



1. If D1;D2 are algebrai
 data type 
onstru
tors- w1.w2.L(ui) � L(vi) for 1 � i � k.- w1.w2.U(vi) � U(ui) for 1 � i � k2. If D1;D2 =! (and then k = 2):- w1.w2.L(u2) � L(v2).- w1.w2.U(v2) � U(u2)- v2.w1.w2.L(v1) � L(u1)- v2.w1.w2.U(u1) � U(v1)A table obtained from a set of elementary g.
. is in general not 
losed.It is easy to de�ne an algorithm 
losure that takes a table � in input andreturns its 
losure 
losure(�) by adding elements to the sets L(t); U(t)a

ording to the above de�nition. Sin
e all the new 
onstraints added to atable by 
losure are simply 
onsequen
es of the de�nition of the � relationwe have immediately the following lemma:Lemma 3.5 A table � and its 
losure 
losure(�) have the same solutions.We de�ne now a 
riterium to de
ide whether a table has a solution. Tothis end re
all that the set of type 
onstru
tors is a partially ordered set.The notions of inf and sup of a subset of a poset as well as those of l.u.b.and g.l.b. are standard.Note that any set of type 
onstru
tors has a sup (!) and an inf (?).Let now S be a set of g.e.. De�ne 
onstru
tors(S) the set of all type
onstru
tors o

urring in the type expressions of the g.e. of S (ignoringguards).De�nition 3.6 (i) A 
losed table � is 
onsistent with respe
t to a vari-able t 2 dom(�) if there is a type 
onstru
tor D whi
h is a sup for the set
onstru
tors(L�(t)) and an inf for 
onstru
tors(U�(t)). We also saythe the entry ht; L�(t); U�(t)i is 
onsistent.(ii) A 
losed table � is 
onsistent (tout 
ourt) if it is 
onsistent withrespe
t to every t 2 dom(�).Note that a table � is always 
onsistent with respe
t to a variable t ifeither L�(t) or U�(t) are empty. In this 
ase, ! (? ) is a
tually a sup (inf)of the empty set. 10



3.2 Solving tablesIn this subse
tion we show that every 
onsistent table admits a strong solu-tion, and we give an algorithm to represent it in a general way. To obtainit we need to de�ne some more transformations on tables. Sin
e we areinterested in a strong solution we 
onsider here only simpli�ed tables.For te
hni
al reasons we will need, besides the usual notion of substitu-tion, the following notion of substitution path. Let an elementary substitu-tion (e.s. for short) e be an expression of the form [t := D(u1; : : : ; un)℄ whereD is a type 
onstru
tor and u1; : : : ; un are variables. A substitution path s(s.p. for short) is a list he1; : : : ; eni of e.s. su
h that for all 1 � i 6= j � n,ei and ej have a di�erent variable in the l.h.s.. Let ei = [t := D(u1; : : : ; un)℄be an e.s. in a s.p. s. We say that a variable u depends on t in s if eitheru = uk for some 1 � k � n or u depends on uk in s. De�ne s n t as the s.p.obtained by eliminating from s the e.s. whose l.h.s. is t.A substitution path he1; : : : ; eni su
h that none of its variables dependson themselves de�nes a substitution obtained as en Æ : : : Æ e1 (where Æ de-notes fun
tion 
omposition). In this 
ase we will identify substitution pathswith the 
orresponding substitutions. Indeed even if there are variables tdepending on themselves in a substitution path s, we 
an always identify swith e1 Æ : : : Æ en, but in this 
ase s(t) is a type expression 
ontaining t, so itis not a substitution in a stri
t sense. With some abuse of notation we willuse this in the following.A substitution path represents in general a substitution and a set of typeequations in the following way.De�nition 3.7 Let s a s.p. and let t1; : : : ; th (0 � h) be the variableso

urring in s that depend on themselves. De�ne�s = s n t1 : : : th�s = fti = s(ti) j 0 � i � hgTo make more readable the following 
onstru
tions we will 
onsider onlythe 
ase of algebrai
 type 
onstru
tors. All de�nitions and results of thisse
tion apply as well to the ! type 
onstru
tor. In this 
ase it is enough,when 
onsidering the �rst argument of!, to systemati
ally ex
hange U andL, � and �.Existen
e of a solutionThe aim of this subse
tion is to show that every 
onsistent table has a strongsolution. We will see that this is all we need to insure the soundness and11




ompleteness of the inferen
e algorithm.First we de�ne a fun
tion solve, that takes a simpli�ed table �, andreturns a pair h�0; si where �0 is another simpli�ed table extending �, ands0 is a s.p. whi
h represents, in some sense, the basi
 step towards thesolution of �. We de�ne fun
tion solve by giving an algorithm to 
omputeit.De�nition 3.8 The fun
tion solve is de�ned by the following steps. Thebasi
 operation is to build a sequen
e of s-tables �i and substitution paths si(i � 0). During the 
onstru
tion, we "mark" some entries of the table (toremember that the substitution for the 
orresponding variables has alreadybeen generated).1. Set i = 0. Let �0 = �, s0 be the empty list nil. All entries of �0 areunmarked.2. Take any unmarked entry ht; L(t); U(t)i of �i su
h that both L(t) andU(t) are not empty, mark it and de�ne �i+1 and �i+1 in the followingway:(a) If there is a marked entry hv; L(v); U(v)i of �i su
h that L(v) =L(t) and U(v) = U(t), and su
h that t depends on v in si, thenset si+1 = si[t := v℄ and �i+1 = �i.(b) Otherwise let D be a type 
onstru
tor that is a sup for the set
onstru
tors(L(t)) and an inf for 
onstru
tors(U(t)). Let k �0 be the arity of D (whi
h is by hypothesis equal to the arity ofany other type 
onstru
tor in L(t), U(t)) and let t1; : : : ; tk be newfresh variables. Then:� De�ne si+1 as the s.p. obtained by appending [t := D(t1; : : : ; tk)℄to the end of si.� De�ne �i+1 by adding to �i k entries for the new variables ti(1 � i � k) and set:L(ti) = SfL�i(xi) j D0(x1; : : : ; xk) 2 L(t)gU(ti) = SfU�i(xi) j D0(x1; : : : ; xk) 2 U(t)g3. Repeat step 2. until there are no more unmarked entries with both alower and an upper set empty. Let n be the last value of i.4. Return h�0; si where �0 = �n and s = sn.We have the following properties.12



Lemma 3.9 The 
onstru
tion in Def. 3.8 is always terminating.Proof hint. The 
onstru
tion builds new upper and lower sets but usingonly those type expressions that o

ur in the original table. Then there 
anonly be a �nite number of possible upper and lower sets. }Indeed the new sets are built by 
omposing the old ones. So their a
tualnumber is mu
h less than the number of all possible subsets of the typeexpressions o

urring in �.The proof of the following lemma follows dire
tly from the de�nition of
losure.Lemma 3.10 Let h�0; si = solve(�). Then �0 is 
onsistent if � is 
onsis-tent.Lemma 3.11 A 
onsistent 
losed s-table � has a solution.Proof hint. Let solve(�) = h�0; si. Take the ground substitution 
de�ned by: 
(t) = � ! if U(t) = ;? otherwisewhere t ranges over all variables having a non�marked entry in �0 (referringto Def. 3.8). Then it is easy to see that h
 Æ �s; 
(�s)i solves the table. }In the end we (immediately) get our �nal resultCorollary 3.12 A 
onsistent table has a strong solution.Finding a better solutionIn Lemma 3.11, it is proved that a 
onsistent table admits at least one groundsolution. But in presenting the output of a type
he
ker, we are rather inter-ested in showing a polymorphi
 type, possibly a "most general" type s
hemesu
h that all its instan
es represent legal typings of a term, in the style ofthe ML family of languages (see the dis
ussion in the next se
tion). In our
ase we de�ne a solution s
heme for an s-table � as a pair h�;�i su
h thatfor all (ground) substitutions 
 h
 Æ �; 
(�)i is a solution for �.We de�ne a simple algorithm that builds a solution s
heme for a giventable, and whi
h will provide a useful presentation of the type of an ex-pression. Our goal in this 
ase is to obtain a syntheti
 presentation of thefun
tional properties of a term, rather than a 
omplete one. So the solu-tion s
heme that we obtain 
ould fail to 
apture some possible typings of13



the term; these 
ould be represented only at the 
ost of introdu
ing more
omplex subtyping expressions. We remark however that the type
he
kingpro
edure de�ned in the next se
tion keeps the whole table as an internalrepresentation of the typing of a term, and so the loss of information takespla
e only at the level of interfa
e with the user. The table itself is indeedthe "most general" solution s
heme for a given table.We will build a solution s
heme of an s-table � through a fun
tion get,that is de�ned essentially in two steps. In the �rst step, formalised by afun
tion 
ollapse, the table is "�attened" into a simpler one, preservingmost of the solutions. In some 
ases, however, this �attening 
ould fail toprodu
e a meaningful output.De�nition 3.13 Let � be a simpli�ed table. Then 
ollapse(�; V ) is afun
tion that returns either a pair h�0; �i where �0 is an s-table and � is atrivial substitution (whi
h will identify some variables of V ), or failure.The fun
tion 
ollapse is de�ned by the steps given below. Also in this
ase the basi
 operation is to build a su

ession of s-tables �i and trivialsubstitutions �i (i � 0). During the 
onstru
tion, we assume that we areable to mark (and unmark) some entries of the 
onsidered tables.1. Let �0 = � and �0 be the empty substitution. Mark all entries in �0.2. Take any marked entry ht; Lt; Uti of �i. If it is not 
onsistent thenreport failure.3. If Lt[Ut is empty or 
ontains only one element then unmark the entryht; Lt; Uti in �i, de�ne �i+1 = �i, �i+1 = �i and go to step 2.4. Otherwise let k be the arity of the type 
onstru
tors in Lt [Ut. For all1 � j � k, perform the following operations.- Let varj = fa j D( : : :|{z}j�1 ; a; : : :|{z}k�j ) 2 L[Ug = fa1; : : : ; apg (1 � p).Take a fresh variable u and let �� = [a1 := u; : : : ; ap := u℄.- Add to �i an entry hu;Lu; Uui and set� Lu = SfL�i(a) j a 2 varjg� Uu = SfU�i(a) j a 2 varjg- Then eliminate from �i all entries for the variables in varj, andrepla
e �i by ��(�i), and �i by �� Æ �i. Finally, mark the newentry for u. 14



De�ne �i+1, �i+1 as the result of this pro
ess.5. As long as there are marked entries, go ba
k to step 2.6. Let n be the 
urrent value of i. Return �n and �nBasi
ally, the key step in pro
edure 
ollapse 
onsists in reading the var-ious expressions that o

ur in the L and U set of a given row �transversally�,and map all the variables read this way to a single, fresh variable (
alled uabove). Of 
ourse, this 
orresponds to a simpli�
ation, that 
an imply theloss of 
ompleteness, and sometimes even lead to in
onsistent tables (hen
ethe 
he
k at step 2).It is easy to see that if 
ollapse(�; V ) = h�0; �i (and hen
e 
ollapsedoes not return failure), then �0 is a 
losed table. Moreover we have thefollowing lemma.Lemma 3.14 Let 
ollapse(�; V ) = h�0; �i. If h
;�i is a solution of �0,then h
 Æ �; �(�)i is a solution of �.Owing to the simple stru
ture of the table produ
ed by 
ollapse, it isnow easier to �nd type s
hemes to represent a solution. This is a
hieved viaanother algorithm get0, that �rst applies 
ollapse, and then �nds a solutions
heme for the s-table. The fun
tion get takes an s-table � and either fails(if 
ollapse fails) or yields a pair h�;�i, that is a solution s
heme for �.get is also de�ned in two steps via the fun
tion get0.De�nition 3.15 (i) Let � be a simpli�ed table. Then get0(�) is de�ned bythe following steps. If 
ollapse(�) returns failure then so does get0(�).Otherwise get0 yields a pair hs; �i where s is a substitution path and � is atrivial substitution de�ned in the following way. Let 
ollapse(�) = h�0; �i.Apply to �0 the following 
onstru
tion (during the 
onstru
tion, we marksome entries in �0):1. Let s0 = nil. All entries in �0 are unmarked.2. Take any unmarked entry ht; L; Ui of �0 su
h that either L or U orboth are not empty. Then build an e.s. e in the following way:(a) If both L or U are not empty, then let D be a type 
onstru
-tor that is a sup for the set 
onstru
tors(L(t)) and an inf for
onstru
tors(U(t)). Let k � 0 be the arity of D and let v1; : : : ; vkbe the variables o

urring in the type expressions D0(v1; : : : ; vh) inL[U (note that they must be the same for all elements of L[U).Then take e = [t := D(v1; : : : ; vk)℄.15



(b) If L is empty but 
onstru
tors(U) has an inf D (possibly a lub)di�erent from ? or U is empty but 
onstru
tors(L) has a sup(possibly a glb) D di�erent from ! de�ne e as in 
ase 2a.(
) If L is empty but 
onstru
tors(U) does not have an inf di�erentfrom ?, then de�ne e = [t := ?℄. Similarly if U is empty butthe set 
onstru
tors(L) has no sup di�erent from !, then de�nee = [t := !℄.3. Then append e at the end of si and mark the entry of t. Let si+1 bethe p.e. obtained this way.4. As long as there are unmarked entries in �0, return to step 2.5. Let n the last value of i. Return hsn; �i.(ii) Finally, get(�) returns the pair h�s Æ �;�si.Note that the output of get 
an have several di�erent forms, dependingon the order in whi
h the fun
tion get0 
hooses the e.s to be appended tothe substitution path. In parti
ular, di�erent orders 
an result in a di�erentshape of �. It is possible to prove, however, that these di�erent sets ofequations have semanti
ally equivalent solutions.The main property of this 
onstru
tion is the following.Lemma 3.16 Let get(�) = h�;�i. Then for all (ground) substitution 
,h
 Æ �; 
(�)i is a solution of �.Then get(�) is a solution s
heme for �.3.3 ! redu
tionsIn order to take into a

ount the non�homogeneous nature of the type assign-ment system (the ! type has a somewhat parti
ular behaviour), we equip thesystem with a redu
tion rule for tables, that non�deterministi
ally generatesall the solutions of a given table.Indeed, at any stage of the redu
tion pro
ess, we have to fa
e the fa
tthat by using the type ! and its asso
iated properties and rules, we 
anassign di�erent and in general in
omparable types to a term. We will de�nelater an heuristi
 whi
h 
orresponds to a reasonable strategy for applyingthe !-redu
tions.The redu
tion of tables is written�)R �0 ;16



where �, �0 are tables. A step in the redu
tion pro
ess 
onsists in repla
inga variable by !:De�nition 3.17 If � is a table and t a variable o

urring in some guardsof � su
h that U�(t) is empty (or 
ontains only !), then red!(�; t) is thetable obtained by applying to � the following steps.1. Eliminate from � all the g.e.s that have an o

urren
e of t in theirguard.2. Set both the upper and lower set of t to f!g.3. Apply the fun
tion 
losure to the resulting table.The appli
ation of 
losure in step 3. plays the r�le of propagating ! inthe table.The notion of redu
tion for tables is de�ned by the rules of Figure 3.Note in parti
ular that the redu
tion step 
an be applied with any variablein dom(�0). (ax1) �)R �(! � red) �)R �0 t 2 dom(�0)�)R red!(�0; t)Figure 3: Table redu
tionNote as well that for some expressions, in�nitely many non-
omparabletypings are possible. An example is given by �x:(x x) whi
h has (amongothers) types (!!!)!!, (!!!!!)!!!!, (!!!!!!!)!!!!!! et
.(see [KPS94℄). When this happens, all these typings involve ! and thereforeare not extremely interesting. We shall de�ne in Se
tion 4.4 an heuristi
 tomake the 
hoi
e between them deterministi
.Note that if � )R �0, then, for all variables t 2 dom(�), if t 2 dom(�0)then L�0(t) = L�(t) and U�0(t) = U�(t), i.e. the redu
tion pro
edure doesneither add nor erase entries from the table.A basi
 property of table redu
tion, whi
h is immediately proved, is thefollowing.Lemma 3.18 Let � )R �0. Then any strong solution of �0 is a solutionof �. 17



3.4 Operators on tablesWe will need in the following a 
ouple of operators to handle tables.De�nition 3.19 (i) If �1 and �2 are two (
losed) tables, then �1 ℄ �2 isthe table de�ned by merging them and applying 
losure.(ii) If g is an elementary g.
. and � is a table, then addtable(�; g) is thetable obtained from � by adding the 
onstraints in g and applying 
losureto the resulting table.De�nition 3.20 If � is a table and w a guard, then w.� is the table obtainedby repla
ing the guard w0 of ea
h g.e. o

urring in the L and U sets of � byw.w0.Let � be a table and V a set of type variables. The fun
tion simplifyextra
ts from a table � the subpart of it whi
h is relevant for �nding thesolution relative to the variables in V. In parti
ularsimplify(�;V)is the table �0 obtained from the empty table through the following steps:1. Put in �0 all the entries for variables in V.2. Add to �0 all the entries of variables whi
h o

ur in the upper or lowersets of variables already in �0.3. Repeat step 2. until no other entry 
an be added to �0.It is easy to see that if � is a 
losed table, so is the 
ase for simplify(�;V)as well.Moreover, the basi
 property of simplify(,i)s the following.Lemma 3.21 Let �0 = simplify(�;V). Then all solutions of �0 
an beextended in a solution of �.4 Type inferen
e4.1 From terms to tablesOur type inferen
e method is de�ned by a set of rules in Natural Semanti
sthrough a judgment of the formM )TI � j t j�18



where t is a variable, � a typing 
ontext and � a 
onsistent table. Thede�nition of judgment )TI j j involves the appli
ation of the redu
tionrelation )R in a nondeterministi
 way. This is essential to have a 
ompleteinferen
e pro
edure, owing to the fa
t that a notion of prin
ipal type s
hemedoes not exists in our system. We will de�ne later a heuristi
 to avoidnondeterminism produ
ing a quite general typing pro
edure. Indeed, as itwill be shown by examples, the 
ases in whi
h the use of nondeterministi
redu
tion is needed are rather rare.Informally, type 
onstraints will be brought along in the 
omputationand progressively updated as we get new information about the term, thusinsuring the in
rementality of our approa
h.In a statement M )TI � j t j�, one should interpret the type parametersinvolved in the set of type assignment � as meta variables, rather than asa
tual type expressions. The intended meaning of su
h a judgment is indeedto de�ne the type s
hema of all possible typings that are inferable for M .4.2 Inferen
e FrameworkFor te
hni
al reasons, in the inferen
e rules a 
ontext is a set � of statementsof the shape x : t where x is a term variable and t a type variable. We de�neon 
ontexts an auxiliary fun
tion, 
alled fondi, to merge the assignment
ontexts. In parti
ular fondi(�1;�2) =< �; � >Where � is the trivial substitution (whi
h is only a variable renaming) whi
hienti�es all (and only) the type variables whi
h are predi
ates of the sameterm variable in �1 and �2 and � = �(�1) [ �(�2). We will use fondi(whi
h is asso
iative) also with more than two arguments.We give �rst a set of natural dedu
tion rules de�ning a nondeterministi
and terminating inferen
e pro
edure that is 
omplete with respe
t to theinferen
e rules.De�nition 4.1 (Canoni
al table for datatypes 
onstru
tors)Consider a datatype D, with its parameters X1; : : : ;Xk. Re
all (Se
tion2) that a datatype 
onstru
tor 
Di (we shall abbreviate it simply to 
) is de�nedby arg L, where L is a list of type expressions (see 
orresponding De�nition).We de�ne �
an(
), 
alled the 
anoni
al table asso
iated to 
onstru
tor 
, asfollows: 19



� let u1; : : : ; uk be fresh variables, we let � = fu1=X1; : : : ; uk=Xkg, andde�ne �param as the table 
onsisting in the k rows of the form uj j;j;,1 � j � k;� �
an(
) is then de�ned by re
ursion over the list L of �arguments� of
: � if L = [℄, take a fresh variable v; �
an(
) is then equal toaddtable(�param; fv :G (D[u1; : : : ; uk℄ � v)g) ;and the �output type variable� (asso
iated to 
onstru
tor 
) is v;� if L = x :: L0, 
ompute �, the 
anoni
al table asso
iated to L0,with its 
orresponding output type variable t, and distinguish two
ases, a

ording to the shape of x:� if x is Xp for some p, then let v be a fresh variable; the
anoni
al table is then equal toaddtable(v.�; fv :G (up!t � v)g) ;the output type variable being v;� otherwise, let v and v0 be two fresh variables, the 
anoni
altable isaddtable(v0.�; fv0 :G (v!t � v0); [v0; v; t℄ :G (v � �(x))g) ;and the output variable is v0.Note that by de�nition, �
an(
) is already 
losed and 
onsistent (
onsis-ten
y is insured by the fa
t that there is no appli
ation).�
an(
) is a table s
hema rather than a simple table: we shall indeedinstan
iate its type variables with newly 
reated variables ea
h time we shallen
ounter term 
 in the type inferen
e pro
edure. To eviden
iate the de-penden
y towards these variables, we will sometimes adopt the notation�
an(
)[u1; : : : ; uk; v1; : : : ; vm; t℄, t being the �output type variable� of�
an(
)(and v1; : : : ; vm the type variables introdu
ed during the analysis of L de-s
ribed above).Example: 
onsider the list 
onstru
tor 
ons, of typeX!list[X℄!list[X℄;its asso
iated 
anoni
al table is u1t : (u1!v1) tt; v1 : (t2!v2) v1t2 t; v1; v2; t2 : list[u1℄t; v1; v2 : list[u1℄ v220



Note that variables t1 and u1 
ollapsed, and we only keep u1. Here are thes
opes of the type variables:
ons : X|{z}u1 ! v1z }| {list[X℄| {z }t2 ! v2z }| {list[X℄| {z }t D = list[X℄; u1 = X :We are now ready to de�ne our type inferen
e pro
edure, given by therules of Figure 4. Note that this pro
edure is still nondeterministi
.(Tvar) x)TI fx : tg j t j ;(T
onst) 
Di )TI ; j t j�
an(
Di )[u1; : : : ; uk; v1; : : : ; vmi ; t℄where �
an(
) is the 
anoni
al table asso
iated to 
Dit; u1; : : : ; uk; v1; : : : ; vmi ; t are fresh variables(T�) M )TI �; x : u j v j��x:M )TI � j t j addtable(t.�; ft :G (u!v � t)g)where u is a fresh variable(Tapp) M )TI �1 j u j�1 N )TI �2 j v j�2fondi(�1;�2) =< �; � >M N )TI �(�) j t j simplify(�0; t)where t is a fresh variable,� = addtable(�(�1) ℄ �(�2); ft :G (�(u) � �(v)!t)g);t.�)R �0, and �0 is 
onsistent
Figure 4: Type inferen
e pro
edureNote that rule (Tapp) is the only 
ase in whi
h we 
an redu
e the size ofthe table by applying simplify.Out inferen
e pro
edure is 
orre
t and 
omplete with respe
t to the typ-ing rules in the following sense. 21



Lemma 4.2 �;� ` M : T i� M )TI � j t j � and h�;�0i is a solution of� su
h that T = �(t), � is equivalent to an extension of �0 and � extends�(�)4.3 Typing de�nitionsWe apply the type inferen
e pro
edure that we just de�ned in order to pro-gressively build a table that goes along with a sequen
e of CuCh de�nitions.This is expressed by a judgment of the form�;� <eqs>����! �0;�0 ;where< eqs > is a sequen
e of term de�nitions of the form< f (
 x1 : : : xn) =e >. The above statement means that adding CuCh de�nitions < eqs > toa 
ontext � and a table � yields to 
ontext �0 and table �0. The rules thatde�ne this judgment are given on Figure 5.
(TDf) e)TI �1; x1 : t1 : : : xn : tn; f : v j t j�1f (
 x1 : : : xn))TI �2; x1 : Æ1 : : : x :n; f : u : Æn j t0 j�2fondi((�1; x1 : t1; : : : xn : tn; f : v);(�2; x1 : t1; : : : ; xn : tn; f : u); �) = < �0; � >�;� <eqs>:<f (
 x1:::xn) = e>����������������! �0:f : t;�0 f =2 dom(�0)where addtable((�(t0.�1) ℄ �(�2) ℄ �(�)); ft0 :G (t � t0)g) )R �0and �0 is 
onsistent

(TD
omp) �;� <eqs>����! �0;�0 �0;�0 <eqs0>����! �00;�00�;� <eqs>:<eqs0>���������! �00;�00
Figure 5: Building a CuCh 
ontextWe have the following soundness and 
ompleteness result.Lemma 4.3 Let < eqs > be a sequen
e of CuCh de�nitions. Let ;; ; <eqs>����!�;� and let h�g;�i be any solution of �. Then � : ;; < eqs >) �g(�).22



Conversely if � : ;; < eqs >) � then ;; ; <eqs>����! �;� and thereis a solution h�g;�0i of � su
h that � = �g(�) and � is equivalent to anextension of �0.4.4 Heuristi
The relation )TI j j as de�ned in Subse
tion 4.2 is not deterministi
, dueto the presen
e of !-redu
tions, but we are interested in turning it into adeterministi
 pro
ess, in order to get a reasonably e�
ient implementationof the inferen
e pro
ess. Of 
ourse, we do this at the 
ost of losing the
ompleteness of the inferen
e pro
edure.We present here our heuristi
 to transform a (
losed) table that is not
onsistent into a 
onsistent one. The idea is to apply rule (! � red) toeliminate the 
onstraints on variables with respe
t to whi
h the table is not
onsistent. This a
tually means simulating an appli
ation of rule (omega) tothe subterms for whi
h we are not able to �nd a meaningful type. Sin
e wewant to preserve as mu
h information as possible, our strategy is to try toapply rule (omega) starting from the inner subterms. It is intuitive that thedeeper the subterm of a given term that is assigned type ! by rule (omega),the more information shall be 
ontained in the resulting type of the term.We do this using the notion of guard. For a non-empty guard, we usethe notation w:u to isolate the last element u of the list (i.e. the innermostone).Note that in the 
onstru
tion of the table ea
h type variable introdu
edin the inferen
e pro
edure 
orresponds to a subterm of the expression tobe typed. We assume that in the implementation of the inferen
e pro
edurethe guards are kept topologi
ally sorted with respe
t to the in
lusion of the
orresponding subterms. I.e. if u is the type variable 
orresponding to asubexpression of a subterm to whi
h 
orresponds a type variable v then inevery guard 
ontaining both u and v, the o

urren
e of u follows the one ofv. This 
an be naturally a
hieved simply by listing the variables in the orderin whi
h they have been 
reated, but more sophisti
ated ordering 
ould bepossible.We formalize our heuristi
 under the form of a redu
tion relation )D,de�ned on Figure 6.We apply this transformation whenever the inferen
e pro
ess yields anin
onsistent table.
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(Did) �)D �(DU ) �0 )D � U�(t) not 
onsistentw:u :G (D(v1; : : : ; vk)) 2 U�(t)U(u) = ;�0 )D red!(�; u)
(DL) �0 )D � U�(t) 
onsistent� not 
onsistent with respe
t to tw:u :G (D(v1; : : : ; vk)) 2 L�(t)�0 )D red!(�; u)Figure 6: Deterministi
 redu
tion relation5 Con
lusionWe have presented a partial type inferen
e pro
edure for a language equippedwith datatypes. The e�e
tiveness of our methods have made it possible todevelop an implementation, that 
ould in prin
iple be smoothly integratedto the CuCh ma
hine, due to the in
rementality of the inferen
e.This report presents a preliminary version of our work on this subje
t.We indeed plan to extend it in order to in
lude a denotational des
riptionfor our language of types, as well as possibly improve our heuristi
s, andof 
ourse make the implementation available together as part of the CuChma
hine. It seems also that most of the work on the implementation 
ouldbe reused to a
hieve dead�
ode analysis (see e.g. [Dam98℄).Referen
es[BB85℄ C. Böhm and A. Berardu

i. Automati
 Synthesis of Typed��programs on Term Algebras. Theoreti
al Computer S
ien
e,39:135�154, 1985.[BPG℄ C. Böhm, A. Piperno, and S. Guerrini. ��de�nition of Fun
tion(al)sby Normal Forms.
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[CC90℄ F. Cardone and M. Coppo. Two Extensions of Curry's Inferen
eSystem. In P. Odifreddi, editor, Logi
 and Computer S
ien
e, pages19�75. A

ademi
 Press, 1990.[Dam98℄ F. Damiani. Redundant�
ode dete
tion and elimination for PCFwith algebrai
 Datatypes. In To appear in the Pro
eedings of TLCA'99, LNCS, 1998.[GLT89℄ J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cam-bridge University Press, 1989.[Gom90℄ C. Gomard. Partial Type Inferen
e for Untyped Fun
tional Pro-grams. In Pro
eedings of the ACM Conferen
e on Lisp and Fun
-tional Programming, pages 282�287, 1990.[KPS94℄ D. Kozen, J. Palsberg, and M. I. S
hwartzba
h. E�
ient infer-en
e of partial types. Journal of Computer and System S
ien
es,49(2):306�324, 1994. also in Pro
eedings of FOCS'92, pages 363�371.[Tha94℄ S. Thatte. Type inferen
e with partial types. TCS, 124:127�148,1994. also in Pro
eedings of ICALP '88, pages 615�629.[WO92℄ Mit
hell Wand and Patri
k M. O'Keefe. Type inferen
e for partialtypes is de
idable. In B. Krieg-Brü
kner, editor, European Sym-posium on Programming '92, volume 582 of LNCS, pages 408�417.Springer Verlag, 1992.A A detailed exampleWe illustrate the way our pro
edure works on an example, that shows thebuilding of the table and the treatment of what would be 
onsidered astyping errors in a 
lassi
al setting.This example is treated with an implementation of the algorithms wedes
ribe (a WWW interfa
e to the implementation is available athttp://
ermi
s.enp
.fr/~dh/Types3/ ).The user has the opportunity to in
rementally introdu
e de�nitions ofterms, and the system answers by showing the table that is 
onstru
tedby the type inferen
e pro
edure starting with this terms, and its evolution(as the 
losure fun
tion is applied). The initial environment 
ontains sev-eral 
onstants, su
h as elements of types bool, int, float, lists, and a few
onstant fun
tions of types int!bool, int!int, et
.25



For the moment, we only have the implementation of the type inferen
epro
edure (table 
onstru
tion), and of the 
losure fun
tion. The generationof solutions and the heuristi
 to resolve in
onsisten
ies are in beta version,and we leave their presentation to a later presentation of this work.We shall work with the termM = �x y:y (x 3) (xx) :The idea here is to use x both in an auto�appli
ation and as fun
tion onintegers, to for
e an typing 
on�i
t in the table that is generated (not leadingto an in
onsisten
y, though).The as
ii translation of this term is \x y.((y (x 3)) (x x)); the typeinferen
e pro
edure yields the following table:< i | {[i℄. b->h} | {} >< h | {[i;h℄. a->g} | {} >< g | {} | {} >< f | {} | {} >< e | {} | {[i;h;g℄. f->g} >< d | {} | {} >< 
 | {[i;h;g;e;d℄. INT} | {} >< b | {} | {[i;h;g;f℄. b->f;[i;h;g;e;d℄. 
->d} >< a | {} | {[i;h;g;e℄. d->e} >Ea
h line 
orresponds to a row in the table, and for ea
h row, we su
-
essively give the 
orresponding type variable, and its sets L and U. Forexample, we 
an see that type variable a has an empty L set, and has theguarded expression [i;h; g; e℄ :G d!e in its U set.The system also gives some extra information on the typing pro
edure:Current 
ontext is:M:iTo help debugging, here are the "old" variable assumptionsx:b / y:aThis means that to term variables x and y have been asso
iated typevariables b and a respe
tively. Using this information, and the typing rulesof Se
tion 2, we 
an re
onstru
t the stru
ture of the term, by establishinga 
orresponden
e between the type variables and every subterm of the termM , as follows: 26



iz }| {�xb: hz }| {�ya: y (x 3
)| {z }d| {z }e (xx)| {z }f| {z }gThe steps in the 
onstru
tion of this de
oration of the type 
an be il-lustrated on an example: y (x 3) being of type e, we read in the row 
orre-sponding to e in the table that e is less than f!g (omitting the guards);(xx) being e�e
tively of type f , we get that y (x 3) (xx) is of type g.As the s
hema above shows, we 
an re
onstru
t the type of the wholeexpression by looking at the row of i (note as well that type variable iguards all the expressions of the table, whi
h means that if we de
ide to putthe whole term to type !, there is no use to keep any information that is
ontained in the table). We read in the row of i that i is �equal to� b!h (i.e.without other 
onstraints, i will be repla
ed by b!h). The row for h tells usthat h is a!g, and we also see that b is less than b!f and than 
!d (the
onstraint �b!f � 
omes from the auto�appli
ation, hen
e the o

urren
e ofb in the expression, while 
!d 
omes from the appli
ation to 
onstant 3: 
is indeed �equal to� INT): we are fa
ing a problem, sin
e there is indeed a
on�i
t between INT and the arrow 
onstru
t. However, we 
annot dete
timmediately this 
on�i
t on the table, due to the shape of M .The system applies next the 
losure rules; the previous table being al-ready 
losed, we get the same table:The 
losed table is:< i | {[i℄. b->h} | {} >< h | {[i;h℄. a->g} | {} >< g | {} | {} >< f | {} | {} >< e | {} | {[i;h;g℄. f->g} >< d | {} | {} >< 
 | {[i;h;g;e;d℄. INT} | {} >< b | {} | {[i;h;g;f℄. b->f;[i;h;g;e;d℄. 
->d} >< a | {} | {[i;h;g;e℄. d->e} >As said before, the 
on�i
ts 
oming from the �non�standard� use of x inM are not visible on the table above. We 
an eviden
iate them by applying27



M , whi
h will have more or less the e�e
t of instiantiating x, thus bringingto light the typing information about x.We �rst apply M to the identity; the treatment of type M (�z: z) yieldstable:< l | {} | {} >< k | {[l;k℄. j->j} | {} >< j | {} | {} >< i | {[l;i℄. b->h} | {[l℄. k->l} >< h | {[l;i;h℄. a->g} | {} >< g | {} | {} >< f | {} | {} >< e | {} | {[l;i;h;g℄. f->g} >< d | {} | {} >< 
 | {[l;i;h;g;e;d℄. INT} | {} >< b | {} | {[l;i;h;g;f℄. b->f;[l;i;h;g;e;d℄. 
->d} >< a | {} | {[l;i;h;g;e℄. d->e} >To help debugging, here are the "old" variable assumptionsz:j / x:b / y:aStill, no 
on�i
t 
an be seen on this table; but this 
hanges if we applythe 
losing pro
edure:The 
losed table is:< l | {[l;i;h℄. a->g} | {} >< k | {[l;k℄. j->j} | {[l;i;h;g;f℄. b->f;[l;i;h;g;e;d℄. 
->d} >* < j | {[l;i;h;g;f;k℄. j->j;[l;i;h;g;e;d;k℄. INT} | {} >< i | {[l;i℄. b->h} | {[l℄. k->l} >< h | {[l;i;h℄. a->g} | {} >< g | {} | {} >* < f |{[l;i;k;h;g;f℄. j->j;[l;k;i;h;g;f℄. j->j;[l;k;i;h;g;f;e;d℄. INT;[l;i;k;h;g;f;e;d℄. INT}| {} >< e | {} | {[l;i;h;g℄. f->g} >* < d |{[l;i;k;h;g;e;d;f℄. j->j;[l;i;k;h;g;e;d℄. INT;[l;k;i;h;g;e;d;f℄. j->j;[l;k;i;h;g;e;d℄. INT}| {} >< 
 | {[l;i;h;g;e;d℄. INT} | {} >< b | {[l;i;k℄. j->j} | {[l;i;h;g;f℄. b->f;[l;i;h;g;e;d℄. 
->d} >< a | {} | {[l;i;h;g;e℄. d->e} >28



A star � * � eviden
iates the rows where a 
on�i
t is apparent (betweenan arrow type and datatype INT): this is the 
ase for type variables d, f andj (that intuitively 
orrespond to the points where the information about thetwo di�erent typings for x is �
ommuni
ated�). However, the resulting tableis still 
onsistent, sin
e the set U is empty for these entries (whi
h meansthat we 
an put the 
orresponding variables to !).A possible type for M (�z: z) is then (!!j!j)!g (setting d to ! hasthe e�e
t of eliminating some 
onstraints, thus resolving some 
on�i
ts).If we apply M I (the term we just 
onsidered) to the 
ombinator K, i.e.we 
onsider the term (M I (�uv: u)), we get the following result:The type inferen
e pro
edure yields table:< q | {} | {} >< p | {[q;p℄. m->o} | {} >< n | {} | {} >< o | {[q;p;o℄. n->m} | {} >< m | {} | {} >< l | {} | {[q℄. p->q} >< k | {[q;l;k℄. j->j} | {} >< j | {} | {} >< i | {[q;l;i℄. b->h} | {[q;l℄. k->l} >< h | {[q;l;i;h℄. a->g} | {} >< g | {} | {} >< f | {} | {} >< e | {} | {[q;l;i;h;g℄. f->g} >< d | {} | {} >< 
 | {[q;l;i;h;g;e;d℄. INT} | {} >< b | {} | {[q;l;i;h;g;f℄. b->f;[q;l;i;h;g;e;d℄. 
->d} >< a | {} | {[q;l;i;h;g;e℄. d->e} >To help debugging, here are the "old" variable assumptionsu:m / v:n / z:j / x:b / y:aWe omit here the resulting 
losed table, where type 
on�i
ts appear in Lsets (resp. U sets) for rows whose U sets (resp. L sets) are empty, and hen
edo not lead to �real� in
onsisten
ies.We get some true in
onsisten
ies if we apply a 
onstant f1, of typeINT->INT, to our term (M I K); indeed, the resulting 
losed table is:< u | {[u;t℄. INT} | {} > 29



< t | {[u;t℄. s->r} | {[u℄. q->u} >< r | {[u;t℄. INT} | {} >* < s |{[u;t;i;h;l;q;p;g;d;o;k;
;f℄. INT;[u;t;i;h;l;q;p;g;d;o;k;
℄. j->j;[u;t;i;l;h;q;p;g;d;o;k;
;f℄. INT;[u;t;i;l;h;q;p;g;d;o;k;
℄. j->j;[u;t;i;h;l;q;p;o;g;d;k;
;f℄. INT;[u;t;i;h;l;q;p;o;g;d;k;
℄. j->j;[u;t;i;l;h;q;p;o;g;d;k;
;f℄. INT;[u;t;i;l;h;q;p;o;g;d;k;
℄. j->j}| {[u;t;r℄. INT} >* < q |{[i;h;l;q;p;g;d;o;k;
;f℄. INT;[i;h;l;q;p;g;d;o;k;
℄. j->j;[i;l;h;q;p;g;d;o;k;
;f℄. INT;[i;l;h;q;p;g;d;o;k;
℄. j->j;[i;h;l;q;p;o;g;d;k;
;f℄. INT;[i;h;l;q;p;o;g;d;k;
℄. j->j;[i;l;h;q;p;o;g;d;k;
;f℄. INT;[i;l;h;q;p;o;g;d;k;
℄. j->j}| {[u;t;r℄. INT} >< p | {[q;p℄. m->o} | {[i;l;q;h;g;d℄. 
->d;[q;i;l;h;g;d℄. 
->d} >* < n |{[i;h;g;q;p;l;d;o;k;f℄. INT;[i;h;g;q;p;l;d;o;k;f;
℄. j->j;[i;h;g;l;q;p;d;o;k;f℄. INT;[i;h;g;l;q;p;d;o;k;f;
℄. j->j;[i;h;g;q;l;p;d;o;k;f℄. INT;[i;h;g;q;l;p;d;o;k;f;
℄. j->j;[q;p;i;l;h;g;d;o;k;f℄. INT;[q;p;i;l;h;g;d;o;k;f;
℄. j->j;[i;l;q;h;p;g;d;o;k;f℄. INT;[i;l;q;h;p;g;d;o;k;f;
℄. j->j;[q;i;l;h;p;g;d;o;k;f℄. INT;[q;i;l;h;p;g;d;o;k;f;
℄. j->j}| {} >< o | {[q;p;o℄. n->m} |{[q;p;i;l;h;g;d℄. f->g;[i;l;q;h;p;g;d℄. f->g;[q;i;l;h;p;g;d℄. f->g} >* < m |{[i;l;q;h;g;d;p;k;
;f℄. INT;[i;l;q;h;g;d;p;k;
℄. j->j;[q;i;l;h;g;d;p;k;
;f℄. INT;[q;i;l;h;g;d;p;k;
℄. j->j;[i;h;g;d;l;q;p;k;
;f℄. INT;[i;h;g;d;l;q;p;k;
℄. j->j;[i;h;g;d;q;l;p;k;
;f℄. INT;[i;h;g;d;q;l;p;k;
℄. j->j}|{[q;p;o;i;l;h;g;d;u;t;r℄. INT;[q;p;i;l;h;g;d;o;u;t;r℄. INT;[i;l;q;h;p;g;d;o;u;t;r℄. INT;[q;i;l;h;p;g;d;o;u;t;r℄. INT}>< l | {[i;l;h℄. a->g} | {[q℄. p->q} >* < k | {[l;k℄. j->j} |{[l;i;h;g;d;
;k;q;p;o;u;t;r℄. INT;[l;i;h;g;f℄. e->f;[l;i;h;g;d;
℄. b->
} >* < j |{[l;i;h;g;f;k℄. INT;[l;i;h;g;d;
;k℄. j->j;[i;h;g;f;l;k℄. INT;[i;h;g;d;
;l;k℄. j->j}| {[l;i;k;h;g;d;
;q;p;o;u;t;r℄. INT;[l;k;i;h;g;d;
;q;p;o;u;t;r℄. INT} >< i | {[i℄. b->h} | {[l℄. k->l} >< h | {[i;h℄. a->g} | {[i;l;q℄. p->q} >* < g |{[q;p;i;l;h;g;d;o;k;
;f℄. INT;[q;p;i;l;h;g;d;o;k;
℄. j->j;[i;l;q;h;p;g;d;o;k;
;f℄. INT;[i;l;q;h;p;g;d;o;k;
℄. j->j;[q;i;l;h;p;g;d;o;k;
;f℄. INT;[q;i;l;h;p;g;d;o;k;
℄. j->j;[q;p;o;i;l;h;g;d;k;
;f℄. INT;[q;p;o;i;l;h;g;d;k;
℄. j->j}| {[i;h;l;q;u;t;r℄. INT;[i;l;h;q;u;t;r℄. INT} >30



* < f |{[l;i;k;h;g;f℄. INT;[l;k;i;h;g;f℄. INT;[l;k;i;h;g;f;d;
℄. j->j;[l;i;k;h;g;f;d;
℄. j->j}| {} >Here the row for s (as well as the row for q, a
tually) is in
onsistent,be
ause of the 
on�i
t between the arrow type in the lower set and thedatatype INT in the upper set.As we did not implement the heuristi
s to perform the redu
tion auto-mati
ally yet, we provide a feature to allow the user to put some variables to! �by hand�; here a possible 
hoi
e is to redu
e with respe
t to type variablef (whose upper set is empty), sin
e f o

urs in the guard of type expressionj->j, but not in the guard of INT (f a
tually 
orresponds to a term that isdeeper than the terms 
orresponding to the type variables that o

ur in theguard for INT). We then re
over a 
onsistent table, through this simulationof an !�redu
tion.
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