Incremental Inference of Partial Types
MARIO COPPO AND DANIEL HIRSCHKOFF
Novembre 1998

N° 98-139






Incremental Inference of Partial Types

MARIO COoPPO AND DANIEL HIRSCHKOFF

Résumé

Nous présentons une procédure d’inférence de types partiels pour
un A—calcul étendu avec des structures de données. Notre langage de
types comprend des types de données, une notion de sous—typage, et un
plus petit et un plus grand élément, désignés respectivement par L et w;
w correspond a 'absence d’information de typage (si I'on veut, “tous les
types sont possibles”). Par rapport aux études existantes, la singularité
de notre approche réside dans son caractére incrémental, I’information
de typage étant progressivement mise a jour au fur et 4 mesure que de
nouvelles constantes sont définies dans le contexte. Cette maniére de
procéder est bien adaptée par exemple pour des systémes dans lesquels
on définit des fonctions (partielles en général) sur les types de données
par I'intermédiaire d’équations. Nous illustrons le fonctionnement de
nos algorithmes sur une implémentation qui a été réalisée en vue d’une
intégration a la CuCh machine, développée a I’Université de Rome.

Abstract

We present a type inference procedure for partial types for a A—
calculus equipped with datatypes. Our procedure handles a type lan-
guages containing greatest and lesser types (w and L respectively),
subtyping, and datatypes (yielding constants at the level of terms).
The main feature of our algorithm is incrementality; this allows us to
progressively analyse successive term definitions, which is of interest in
the setting of a system like the CuCh machine (cuurently being devel-
opped at the University of Rome). The methods we describe have led
to an implemention; we illustrate its use on a few examples.






1 Introduction

This paper focuses on the problem of type inference for partial types. Partial
types have been introduced in [Tha94| (following [Gom90|), to describe some
terms that are usually considered as ill-typed in a classical setting. Examples
of such terms are auto-applications (e.g. Az.(zz)), or polymorphic lists
(e.g. [true; Af z.(f x)]). In partial types, the language of types is equipped
with a special type, called w, to represent the absence of type information
(or alternatively “any possible type”); w is associated to the “weirdly typed”
subterms of a given term, and allow one to avoid rejecting terms that contain
such ill-typed subparts.

In this setting, to provide some kind of flexibility to the type system,
and to capture by doing so as many terms as possible, the type language
is enriched with a notion of subtyping, w being naturally considered as the
greatest type. This way, the type of any term can be coerced to a greater
type, which allows one to preserve the soundness of the typing as applications
are performed. One is able for example to infer the judgment

Mr.(zxzx) : (w—a)—a

(where « is a type variable), the type associated to the occurrence of z in
argument position being coerced from w—a to w in order to permit the
auto—application, yielding final type «.

The question of partial type inference, as adressed in [Tha94], is shown to
be decidable in [W092|, and [KPS94| provides an efficient algorithm to solve
the problem. Our study differs from these works by two main aspects. First
of all, the language we focus on is equipped with user—defined datatypes (as
well as with a least type, written L, that has to be introduced mainly for
technical reasons). The introduction of (parametrised) datatypes somehow
increases the complexity in the structure of the typing information that has
to be dealt with, as will be seen thorough this study.

The second main original aspect of our work is the stress that is put on
incrementality in defining the type inference method. Indeed, the traditional
approach to type inference in presence of subtyping (not only for partial type
inference, but also in other frameworks, e.g. the study of object—oriented
paradigms) consists in exploring the structure of the term to be typed, and,
while doing so, in collecting the corresponding subtyping constraints. Once
all these constraints are put together, one can attack the problem of con-
straints satisfiability using many different approaches (J[W092]| for example
builds a “table” to represent the typing structure of the term, and [KPS94|
uses an automata-based method).



In this paper, we try on the contrary to preserve the readability of the
type information along the exploration of the term. Our approach, inspired
by [WO92|, consists in representing the typing information on a table; in
doing this, however (and this is were our study differs from [WO092]), we
are interested in inferring the consequences of the type constraints as soon
as they are generated, and in resolving immediately the possible resulting
inconsistencies. To achieve this, we introduce a notion of guarded constraint,
that, in conjunction with an additional axiom for subtyping (stating a—w <
w—w for any type variable ), allows us to define an incremental and quite
flexible type inference procedure, as will be shown below. Intuitively, the
guards are used to get rid of “contradictory” type constraints, in order to
work only with consistent tables, i.e. those tables for which a non—trivial
solution can be found.

Such a type inference method is interesting in the framework of a pro-
gramming language, where the user can succesively define several objects,
possibly using previous definitions for the introduction of new functions.
This is typically the case for the CuCh machine, a system developped at
the University of Rome in the team of Corrado Béhm (the design of a type
inference procedure for this system actually originated our work).

The CuCh machine is a programming language based on the untyped
A-calculus. There are two modes to define objects in CuCh, called @lam and
Qenv; in Q@lam, the user defines A-terms using abstraction, application, and
some built-in constants including natural numbers, strings, lists and boolean
tests. The @env mode is used to define functions on free algebras by sets
of equations, following [BB85|. The introduction of free algebras and of re-
cursive definitions over these algebras is akin to the classic second-order en-
coding of datatypes; however, in CuCh, the solutions to (possibly recursive)
definitions are not defined using a fixpoint operator, but rather following the
B6hm-Piperno technique of [BPG|, using self-application. In this setting,
more freedom is allowed in the construction of terms, and “traditional” type
systems for functional languages ¢ la ML can sometimes be too restrictive.

As said above, this work stems from the will to define a type system that
is well suited for the CuCh. Such a type system is by definition not part of
the design of the programming language, as is usually the case, but should
rather be seen as a feature. Following this remark, the typing judgment in
the CuCh machine is essentially seen as giving a descriptive information,
rather than some kind of advise about correctness (in particular, no term
should be ruled out using the typing relation). Consequently, two aspects
of the type system are important: first, a “pure” type inference approach



should be adopted, as opposed to the type checking method: we do not want
the typing relation to interfer with the activity of the CuCh user, through
the requirement of type annotations or other such informations that could
be useful for the typing procedure. Secondly, the type system should be
adaptive: in a pure calculus setting, it can be the case that one defines some
terms that “look weird” from a classical typing point of view, but then uses
these terms in a certain fashion (akin in some way to a type discipline), that
actually expresses their meaning. These two remarks led to the design of the
type inference procedure that is presented here.

The paper is organised as follows. In Section 2, we introduce our sys-
tem, defined by the terms, the (possibly recursive) definitions, the language
of types (including user—defined datatypes), and the two judgments corre-
sponding to the typing and subtyping relations. Section 3 is devoted to the
technical definitions we need for our type inference procedure, i.e. tables (to
represent the type constraints), properties of tables, and various functions
over tables. We define our type inference method in Section 4, as well as
an heuristic to recover consistency where an inconsistent table is generated
during the type inference process (in general, the type inference procedure is
indeed defined in a non—deterministic way, in order to preserve completeness;
the heuristic is hence given for the purpose of implementation). We finally
conclude, and present in the appendix the implementation of our methods
that has been designed (an example is given to illustrate the behaviour of
our algorithms).

2 The system

Terms The terms we use are defined by the following syntax:

M = XeM|xz|MN |c.

In the definition above, ¢ ranges over datatype constructors, that shall
be introduced below.

Recall that in CuCh, recursive functions are not introduced with a fixpoint—
like construct, but are instead given by recursive equations on datatypes
(introduced below).

Datatypes Following [BB85|, a datatype is introduced by defining its
name, parameters, and constructors (which in turn are characterized by a
name and a list of types for their arguments).

The syntax we will adopt for datatype definitions is:



Datatype D[X1,...,X}] is cP: arg[Tll;...;T,}n]

D arg[Ty. .. ;T |
where the X;s are the parameters of the datatype and each T]Z is either
a parameter X; or another datatype (possibly D itself) having the shape
T;j[Xp,, .-, Xp] where the X, s denote the free occurrences of Xi,..., Xj
in T’i,j ({Xplv e ’Xpl} - {Xl, e ,Xk})

Remark: It is natural in CuCh to manipulate objects like polymorphic
lists (e.g. [true; 1; Az. z]), i.e. objects in which the datatype parameter (here
X in cons : X—list[X]|—list[X]) would be considered as being misused in
a second-order setting (& la [GLT89]). The subtyping relation given below
allows us to accomodate with such objects, in order to give as much type
information as possible (in the case of [true; 1; Az. z], it is preferable to say
“list of anything” rather than just “type error”).

The definition above reads “D is a datatype that has n constructors and
k parameters Xq,..., Xy, each constructor czp, for 1 <1 <n has type

T{—... =T —D[Xy,. .., Xy]

where the T;s are either parameters or datatypes”. Note that nested arrow
types are not allowed in the definition of constructors.

Example: In this framework, the declaration of the dataype List would
be as follows:

Datatype List[X] is ¢t : arg]] (Nil)
cktarg[X; List[X]] (Cons)

Definitions The CuCh definitions are given by the following syntax:
<eq> = <f(cPai...xpm)=€>.

e is an expression possibly containing occurrences of the z;s and of f,
hence we deal in general with recursive equations. Recursive equations are
used as an alternative to the case construct (a case-like definition can easily
be translated into a set of recursive equations).

We write < eqs > to range over a sequence of definitions.



Types Types are either type variables, data types, arrow types, or two
special types, 1 and w, that respectively represent the empty type (or the
least type, see below), and the union of all types.

T = a|D[MT,....T,) | T-U |w| L

Remark 2.1 The intuitive semantics of types in our approach relies on the
notion of types as topologically closed subsets (ideals) of the domain of in-
terpretation of the language [CC90[. This model also support the notion of
recursive type and recursive type equation. In this case the least (undefined)
element of the domain belongs to every type. The type w is then interpreted as
the whole domain while L is interpreted as the singleton containing only the
least element of the domain. This provides a justification of the consistency
and semantic correctness of our subtyping assumptions.

Subtyping relation We define a subtyping relation between types; we
shall use it to coerce types to a greater type (possibly involving w and/or
1) in such a way as to be able to give as much type information as possible
about a “weirdly typed” term.

The subtyping relation is decomposed into two parts; the main judgment
relies on a set of subtyping assumptions of the form 7' < T”, where T' and T’
are type expressions, and writes as follows:

YFALB.

Such a relation reads “under typing assumptions 3, it holds that A < B”.
This judgment is defined in a mutual recursive way together with a form of
“structural subtyping” on datatypes, written D C D', meaning that datatype
D is “structurally smaller” than D’. The rules that define both these judg-
ments are given on Figure 1.

Let us make a few comments about the definition of the subtyping rela-
tion. Regarding relation C, it has to be noted that one can always suppose
that both datatypes have the same number of parameters, some of them pos-
sibly being unused in the smaller type. Moreover, as the context of typing
assumptions is empty in § = 7} < 7"} (rule (Dc)), this condition means that
either Tf and T ; are comparable datatypes, or they represent the same type
variable.

Examples: we illustrate the meaning of relation C on two examples.



D[Xy,..., Xg] is (c1 s arg[TE;. .. TE 1. e s arg[Ty. .3 TR )

) ma 7T My
D'[X1,..., X is (c1 : arg[T'7;. .. ;T',lnl] coepiargT T
el arg[TTTT L ;T'nmtil])
(D) DC D

WhereVH—TfST'f (1<li<n,1<i<m.

(S1) LT (Sy) EFT<w (S ZFa<a
(Spar) ZAT<T'}FT<T (Saz) 2F A-w < w—w

YFA <A YFEB <By
(S_)) X Al—)Bl < AQ—)BQ

(Sp) DCD'" Vi,(1<i<k).XrA <A
b Y FD[Ay;...; A] < DAY .. AL

Figure 1: Subtyping relation

e Consider the datatypes of booleans and tri-valued tags, defined as
follows:

Datatype Bool is true:argl], false: argl];

Datatype Bool' is true’:arg[], false': arg[], unknown : arg|].

It holds that Bool C Bool’, because Bool' has two constructors in com-
mon with Bool, and one extra constructor (no parameter is involved

here).

e Suppose now we want to tag a term (of any type) with an element of
Bool or of Bool'; this would lead to the following definitions:

Datatype T'agged[X] is c:arg[X,Booll;

Datatype Tagged'[X] is ¢ :arg[X, Bool'].

We can derive Tagged T Tagged': indeed, they have the same number
of parameters, the constructors ¢ and ¢’ have the same shape, and we




can derive both subtyping judgments § F X < X and () - Bool < Bool's
for their first and second argument respectively.

Let us now consider the definition of relation <: w is the universal type, as
expressed by rule (S,); dually, L is the least type (sometimes referred to as
unit). As usual, the arrow constructor is antimonotonic in its first argument,
and monotonic in its second argument. As said above, the subtyping rela-
tion for datatypes (instanciated with their parameters) is factorised into the
“structural” relation C and rule (Sp) for deriving actual type inclusions; in
contrast with rule (S—), rule (Sp) introduces monotonicity with respect to
all the parameters of a datatype. Axiom (S,;) somehow weakens this oppo-
sition, as it says that any arrow type can be coerced to the most general type
for functions, namely w—w (which could be seen as a form of monotonicity
of the arrow construct towards its left—hand side argument).

Typing rules

e Typing terms
The typing judgment for terms is of the form

ISFM:T,

where M is a term, T is a type, [' is a set of typing assumptions for
the free variables of M, and X is a set of inequalities between types.
The rules defining this judgment are given below:

(var) Tix : A, X Fz: A (omega) 'Y F M :w
1) TSTF Ap. M : A= B

(=p) ILYFM:A=-B I'YFN:C SFC<A
E CF(MN):B

e Typing definitions

We introduce a judgment, written ¥ : T',< eqs >= I", to express
that adding definitions < eqs > to the context I' assuming the type
inqualities of ¥ we obtain an extended context I''. This judgment is
defined by the rules of Figure 2.

In general, we will be in the situation where we process a sequence of
definitions < egs >, starting from an initial context I'g and a set of
inequalities ¥, and trying to infer a judgment of the form ¥ : D[y, <
eqs >=T.



Dfra,z1: 01, @ B, F ey
o Cofrayey i By Xt By B B fle(xy.. o)) : 0 BEy <6
(C) Y I)<f(cxy...zp) = e>=T.f:a
(e )Z D<egs>=T1" 3 : IV <eqs' >= I"
trans YD, <eqs>.<eqs >=T"

Figure 2: Compatibility relation between contexts and definitions

3 Systems of type constraints

3.1 Type constraints and tables

Our inference procedure is based on the representation of relations between
types by sets of inequalities between types called type constraints in the
literature. In this section we define the procedures to handle them.

A substitution is defined here as a finite mapping o between type vari-
ables and types, that is naturally extended to a congruence between all types.
A single substitution is denoted [t := A]: it replaces ¢t by A and behaves like
the identity on all other variables. Similarly, [t; := Ay,... ,t, := Ap] (where
t; does not occur in A; for all 1 < 4,5 < n) denotes the composition of n
single substitutions. If all the type expressions A; are single variables, we
say that [t) := Ay,... ,t, = A,] is trivial.

A substitution is ground if all types in its domain are ground.

Definition 3.1 (Constraints) A type constraint is an expression of the
form t < D(uy,...,ur), D(uy,...,ux) < t or (0 < n), where D is an
algebraic datatype constructor or the — constructor. and t,u,uy,...,ur are
type variables.

To handle the rule (S,) and the axiom (S,z), we need the notion of guard
an some operators on it.

Definition 3.2 (i) A guard is an ordered list of type variables. Let w range
over guards.

(ii) If wy, we are guards then wi>ws is the guard obtained by concatenat-
ing wy and we and by eliminating from wo the variables which already occur
m wi.

(iii) A guarded constraint (g.c. for short) is an expression of the form
w:g (A < B) where w is a guard and A < B is a type constraint.



IfS={wi:c(A; <Bj)|1<i<n}isasetof g.c. and wis a guard then
w>S denotes the set {wpw;:¢(4; < B;) |1 <i<n}.

A guard hides the constraint associated to it in an expression w:g (4 <
B) whenever at least one of the variables occurring in it is an w-type.

A solution of a set S of g.c. in a pair (og, ¥) where o4 is a ground substitu-
tion and X a set of subtyping assumptions such that for all w:q (A < B) € S
in which o4(t) # w for all variables ¢ in w we have ¥ F 04(A4) < 04(B). A
strong solution of S is a ground substitution o, such that for all w:q (A <
B) € § we have 04(A) < 04(B) (ignoring guards).

The inference algorithm keeps the information about the types involved
in a deduction using the notion of table, which has been inspired by [W092].

A table is simply a structured set of type constraints, which are rep-
resented in a slightly different way via the notion of guarded elementary
expression.

Definition 3.3 (i) A guarded elementary expression (g.e. for short) is an
expression of the shape w :g (D(vi,...,vx)) where vy,...,vp are variables
and D 1is a type constructor.

(ii) A table © is a set of triples (t, L,U) (called the entries of the table),
where t 1s a variable and L and U are sets of g.e. which are said, respectively,
the lower and upper sets of t in ©. If (t,L,U) € © we denote L as Lg(t),
or simply L(t) (when © is understood) and U as Ug(t), or simply U(t).
Moreover define dom(©) = {t | (¢t,L,U) € O}.

A table is just a structured way of representing a set of elementary g.c.s.
In fact each w :¢ (A) € L(t) represents a g.c. w :q (A < t), and each
w:g (A) € U(t) also represents a g.c. w:g(t < A). A solution of a table is a
solution of the corresponding set of g.e.s.

A simplified table (s-table for short) E is a structure which has the same
form of a table but without guards. So the elements of the upper and lower
sets are type expressions (containing only one type constructor) instead of
g.e.s. The kernel of a table O, written kernel(©®) is a s-table E obtained
from © by erasing all guards. S-tables will be useful to build solutions of
tables.

The following operation of closure on tables puts them in a sort of normal
form.

Definition 3.4 A table © is closed if it satisfies the following condition. For
all t € dom(©) such that both L(t) and U(t) are non nonempty and for all
wy :q (Di(u,...,ux)) € L(t) and wy :g (Da(v1,... ,v;)) € U(t) such that
Dy C Dy we must have:



1. If D1, Dy are algebraic data type constructors

- wybwe> L(u;) C L(v;) for 1 < i <k.
- wbwebU(vy) CU(uy) for 1 <i <k

2. If D1,Dy = — (and then k = 2):

- w1 I>’LU2[>L(u2

A table obtained from a set of elementary g.c. is in general not closed.
It is easy to define an algorithm closure that takes a table © in input and
returns its closure closure(®) by adding elements to the sets L(t), U(%)
according to the above definition. Since all the new constraints added to a
table by closure are simply consequences of the definition of the < relation
we have immediately the following lemma:

Lemma 3.5 A table © and its closure closure(O) have the same solutions.

We define now a criterium to decide whether a table has a solution. To
this end recall that the set of type constructors is a partially ordered set.
The notions of inf and sup of a subset of a poset as well as those of L.u.b.
and g.l.b. are standard.

Note that any set of type constructors has a sup (w) and an inf (L).

Let now S be a set of g.e.. Define constructors(S) the set of all type
constructors occurring in the type expressions of the g.e. of S (ignoring
guards).

Definition 3.6 (i) A closed table © is consistent with respect to a vari-
able t € dom(©) if there is a type constructor D which is a sup for the set
constructors(Lg(t)) and an inf for constructors(Ug(t)). We also say
the the entry (t, Lg(t), Ug(t)) is consistent.

(ii) A closed table © is consistent (tout court) if it is consistent with
respect to every t € dom(©).

Note that a table © is always consistent with respect to a variable ¢ if

either Lg(t) or Ug(t) are empty. In this case, w (L ) is actually a sup (inf)
of the empty set.

10



3.2 Solving tables

In this subsection we show that every consistent table admits a strong solu-
tion, and we give an algorithm to represent it in a general way. To obtain
it we need to define some more transformations on tables. Since we are
interested in a strong solution we consider here only simplified tables.

For technical reasons we will need, besides the usual notion of substitu-
tion, the following notion of substitution path. Let an elementary substitu-
tion (e.s. for short) e be an expression of the form [t := D(uy, ... ,u,)] where
D is a type constructor and ui,... ,u, are variables. A substitution path s
(s.p. for short) is a list (ey,...,e,) of e.s. such that for all 1 <i # j <n,
e; and e; have a different variable in the Lh.s.. Let ; = [t := D(uy,... ,up)]
be an e.s. in a s.p. s. We say that a variable u depends on ¢ in s if either
u = uy, for some 1 < k < n or u depends on uy in s. Define s\ ¢ as the s.p.
obtained by eliminating from s the e.s. whose Lh.s. is ¢.

A substitution path (e1,... ,e,) such that none of its variables depends
on themselves defines a substitution obtained as e, o ... o e; (where o de-
notes function composition). In this case we will identify substitution paths
with the corresponding substitutions. Indeed even if there are variables
depending on themselves in a substitution path s, we can always identify s
with ej o...0ey,, but in this case s(t) is a type expression containing ¢, so it
is not a substitution in a strict sense. With some abuse of notation we will
use this in the following.

A substitution path represents in general a substitution and a set of type
equations in the following way.

Definition 3.7 Let s a s.p. and let t1,... ,t, (0 < h) be the variables
occurring in s that depend on themselves. Define

Os = S\tl...th
ES = {ti:S(ti)|0§i§h}

To make more readable the following constructions we will consider only
the case of algebraic type constructors. All definitions and results of this
section apply as well to the — type constructor. In this case it is enough,
when considering the first argument of —, to systematically exchange U and
L, < and >.

Existence of a solution

The aim of this subsection is to show that every consistent table has a strong
solution. We will see that this is all we need to insure the soundness and

11



completeness of the inference algorithm.

First we define a function solve, that takes a simplified table Z, and
returns a pair (2',s) where E' is another simplified table extending E, and
s’ is a s.p. which represents, in some sense, the basic step towards the
solution of =. We define function solve by giving an algorithm to compute

it.

Definition 3.8 The function solve is defined by the following steps. The
basic operation is to build a sequence of s-tables Z; and substitution paths s;
(i > 0). During the construction, we "mark" some entries of the table (to
remember that the substitution for the corresponding variables has already
been generated).

1. Set 1 =0. Let Z¢g = =, sg be the empty list nil. All entries of Eg are
unmarked.

2. Take any unmarked entry (t,L(t),U(t)) of E; such that both L(t) and
U(t) are not empty, mark it and define 2,11 and o;+1 in the following
way:

(a) If there is a marked entry (v, L(v),U(v)) of E; such that L(v) =
L(t) and U(v) = U(t), and such that t depends on v in s;, then
set siy1 = si[t :=v] and E;11 = E;.

(b) Otherwise let D be a type constructor that is a sup for the set
constructors(L(t)) and an inf for constructors(U(t)). Let k >
0 be the arity of D (which is by hypothesis equal to the arity of
any other type constructor in L(t), U(t)) and let tq,... ,tx be new
fresh variables. Then:

e Define sj;1 as the s.p. obtained by appending [t := D(tq,... ,tx)]
to the end of s;.

e Define Z;41 by adding to Z; k entries for the new variables t;
(1 <i<k)and set:

L(t;) = U{Lz, (z;) | D'(z1,...,2x) € L(t)}
U(t;) = U{Uz,(zi) | D'(z1,... ,2x) € U(t)}

3. Repeat step 2. until there are no more unmarked entries with both a
lower and an upper set empty. Let n be the last value of 1.

4. Return (E)s) where E' = E,, and s = s,.

We have the following properties.

12



Lemma 3.9 The construction in Def. 3.8 is always terminating.

Proof hint. The construction builds new upper and lower sets but using
only those type expressions that occur in the original table. Then there can
only be a finite number of possible upper and lower sets. {

Indeed the new sets are built by composing the old ones. So their actual
number is much less than the number of all possible subsets of the type
expressions occurring in =H.

The proof of the following lemma follows directly from the definition of
closure.

Lemma 3.10 Let (Z',s) = solve(E). Then E' is consistent if E is consis-
tent.

Lemma 3.11 A consistent closed s-table Z has a solution.

=/

Proof hint. Let solve(Z) = (2',s). Take the ground substitution ~y

defined by:
| w ifU#)=10
v(t) = { 1 otherwise

where ¢ ranges over all variables having a non-marked entry in Z' (referring
to Def. 3.8). Then it is easy to see that (o og,v(Xs)) solves the table. {

In the end we (immediately) get our final result

Corollary 3.12 A consistent table has a strong solution.

Finding a better solution

In Lemma 3.11, it is proved that a consistent table admits at least one ground
solution. But in presenting the output of a typechecker, we are rather inter-
ested in showing a polymorphic type, possibly a "most general" type scheme
such that all its instances represent legal typings of a term, in the style of
the ML family of languages (see the discussion in the next section). In our
case we define a solution scheme for an s-table E as a pair (o, 3) such that
for all (ground) substitutions v (7 o o,v(X)) is a solution for E.

We define a simple algorithm that builds a solution scheme for a given
table, and which will provide a useful presentation of the type of an ex-
pression. Our goal in this case is to obtain a synthetic presentation of the
functional properties of a term, rather than a complete one. So the solu-
tion scheme that we obtain could fail to capture some possible typings of

13



the term; these could be represented only at the cost of introducing more
complex subtyping expressions. We remark however that the typechecking
procedure defined in the next section keeps the whole table as an internal
representation of the typing of a term, and so the loss of information takes
place only at the level of interface with the user. The table itself is indeed
the "most general" solution scheme for a given table.

We will build a solution scheme of an s-table = through a function get,
that is defined essentially in two steps. In the first step, formalised by a
function collapse, the table is "flattened" into a simpler one, preserving
most of the solutions. In some cases, however, this flattening could fail to
produce a meaningful output.

Definition 3.13 Let = be a simplified table. Then collapse(Z,V) is a
function that returns either a pair (€', p) where E' is an s-table and p is a
trivial substitution (which will identify some variables of V'), or failure.
The function collapse is defined by the steps given below. Also in this
case the basic operation is to build a succession of s-tables Z; and trivial
substitutions p; (i > 0). During the construction, we assume that we are

able to mark (and unmark) some entries of the considered tables.
1. Let Z¢9 = =2 and py be the empty substitution. Mark all entries in Zp.

2. Take any marked entry (t, Ly, Uy) of Z;. If it is not consistent then
report failure.

3. If LyU Uy 1s empty or contains only one element then unmark the entry
(t, L, Uy) in =, define Ej1 = Ej, piy1 = pi and go to step 2.

4. Otherwise let k be the arity of the type constructors in Ly UU,. For all
1 <35 <k, perform the following operations.

- Letvar; ={a|D(_...,a,... )€ LUU} = {ai,...,ap} (1 <p).

TN
Jj—1 k—j
Take a fresh variable u and let p* = [ay :=u,... ,ap := ul.

- Add to E; an entry (u, L,,U,) and set
= Ly = U{L=i(a) | a € varj}
U, = UlU= (@) | a € vary)

- Then eliminate from Z; all entries for the variables in var;, and

replace Z; by p*(Z;), and p; by p* o p;. Finally, mark the new
entry for u.

14



Define Z;41, pi+1 as the result of this process.
5. As long as there are marked entries, go back to step 2.
6. Let n be the current value of i. Return =, and p,

Basically, the key step in procedure collapse consists in reading the var-
ious expressions that occur in the L and U set of a given row “transversally”,
and map all the variables read this way to a single, fresh variable (called u
above). Of course, this corresponds to a simplification, that can imply the
loss of completeness, and sometimes even lead to inconsistent tables (hence
the check at step 2).

It is easy to see that if collapse(Z,V) = (Z',p) (and hence collapse
does not return failure), then E’ is a closed table. Moreover we have the
following lemma.

Lemma 3.14 Let collapse(E,V) = (E,p). If (v,X) is a solution of E/,
then {7y o p,p(X)) is a solution of E.

Owing to the simple structure of the table produced by collapse, it is
now easier to find type schemes to represent a solution. This is achieved via
another algorithm get’, that first applies collapse, and then finds a solution
scheme for the s-table. The function get takes an s-table = and either fails
(if collapse fails) or yields a pair (o, %), that is a solution scheme for =.
get is also defined in two steps via the function get’.

Definition 3.15 (i) Let = be a simplified table. Then get'(Z) is defined by
the following steps. If collapse(Z) returns failure then so does get'(E).
Otherwise get’ yields a pair (s, p) where s is a substitution path and p is a
trivial substitution defined in the following way. Let collapse(Z) = (Z', p).
Apply to E' the following construction (during the construction, we mark
some entries in E'):

1. Let sp =nil. All entries in &' are unmarked.

2. Take any unmarked entry (t,L,U) of Z' such that either L or U or
both are not empty. Then build an e.s. e in the following way:

(a) If both L or U are not empty, then let D be a type construc-
tor that is a sup for the set constructors(L(t)) and an inf for
constructors(U(t)). Let k > 0 be the arity of D and let vy, ... ,vg
be the variables occurring in the type expressions D'(vy,... ,vp) in
LUU (note that they must be the same for all elements of LUU ).
Then take e = [t := D(vy,... ,v)].

15



(b) If L is empty but constructors(U) has an inf D (possibly a lub)
different from L or U is empty but constructors(L) has a sup
(possibly a glb) D different from w define e as in case 2a.

(¢) If L is empty but constructors(U) does not have an inf different
from L, then define e = [t := L]. Similarly if U is empty but
the set constructors(L) has no sup different from w, then define
e=[t:=w]

3. Then append e at the end of s; and mark the entry of t. Let s;4+1 be
the p.e. obtained this way.

/

4. As long as there are unmarked entries in E', return to step 2.

5. Let n the last value of i. Return (sy,p).
(ii) Finally, get(E) returns the pair (os o p, Xs).

Note that the output of get can have several different forms, depending
on the order in which the function get’ chooses the e.s to be appended to
the substitution path. In particular, different orders can result in a different
shape of ¥. It is possible to prove, however, that these different sets of
equations have semantically equivalent solutions.

The main property of this construction is the following.

Lemma 3.16 Let get(Z) = (0,%). Then for all (ground) substitution -y,
(yoo,v(X)) is a solution of E.

Then get(E) is a solution scheme for =.

3.3 w reductions

In order to take into account the non-homogeneous nature of the type assign-
ment system (the w type has a somewhat particular behaviour), we equip the
system with a reduction rule for tables, that non—deterministically generates
all the solutions of a given table.

Indeed, at any stage of the reduction process, we have to face the fact
that by using the type w and its associated properties and rules, we can
assign different and in general incomparable types to a term. We will define
later an heuristic which corresponds to a reasonable strategy for applying
the w-reductions.

The reduction of tables is written

@:>R®I,

16



where ©, © are tables. A step in the reduction process consists in replacing
a variable by w:

Definition 3.17 If © is a table and t o variable occurring in some guards
of © such that Ug(t) is empty (or contains only w), then red,(©,t) is the
table obtained by applying to © the following steps.

1. Eliminate from © all the g.e.s that have an occurrence of t in their
quard.

2. Set both the upper and lower set of t to {w}.
3. Apply the function closure to the resulting table.

The application of closure in step 3. plays the role of propagating w in
the table.

The notion of reduction for tables is defined by the rules of Figure 3.
Note in particular that the reduction step can be applied with any variable
in dom(©’).

(axl) © =, O

O =0 tedom(O)
O =g redw(@l,t)

(w—red)

Figure 3: Table reduction

Note as well that for some expressions, infinitely many non-comparable
typings are possible. An example is given by Az.(z z) which has (among
others) types (w—w)—w, (W—w—w) sw—w, (V—w—w—w)—Sw—w—w ete.
(see [KPS94]). When this happens, all these typings involve w and therefore
are not extremely interesting. We shall define in Section 4.4 an heuristic to
make the choice between them deterministic.

Note that if © = ©’, then, for all variables ¢t € dom(0), if t € dom(O)
then Ly (1) = Lg(t) and Ugy (t) = Ug(t), i.e. the reduction procedure does
neither add nor erase entries from the table.

A basic property of table reduction, which is immediately proved, is the
following.

Lemma 3.18 Let © =, ©'. Then any strong solution of ©' is a solution
of ©.

17



3.4 Operators on tables

We will need in the following a couple of operators to handle tables.

Definition 3.19 (i) If ©; and O3 are two (closed) tables, then O W Oy is
the table defined by merging them and applying closure.

(ii) If g is an elementary g.c. and © is a table, then addtable(O, g) is the
table obtained from © by adding the constraints in g and applying closure
to the resulting table.

Definition 3.20 If O s a table and w a guard, then us© s the table obtained
by replacing the guard w' of each g.e. occurring in the L and U sets of © by

wdw'.

Let © be a table and V a set of type variables. The function simplify
extracts from a table © the subpart of it which is relevant for finding the
solution relative to the variables in V. In particular

simplify(©,V)
is the table ©® obtained from the empty table through the following steps:
1. Put in ©' all the entries for variables in V.

2. Add to ©’ all the entries of variables which occur in the upper or lower
sets of variables already in ©'.

3. Repeat step 2. until no other entry can be added to ©'.

It is easy to see that if © is a closed table, so is the case for simplify(©,V)
as well.
Moreover, the basic property of simplify(,i)s the following.

Lemma 3.21 Let ©' = simplify(©,V). Then all solutions of ©' can be
extended in a solution of ©.
4 Type inference

4.1 From terms to tables

Our type inference method is defined by a set of rules in Natural Semantics
through a judgment of the form

M:>T1F|t|@

18



where ¢ is a variable, I' a typing context and © a consistent table. The
definition of judgment =7y | | involves the application of the reduction
relation = in a nondeterministic way. This is essential to have a complete
inference procedure, owing to the fact that a notion of principal type scheme
does not exists in our system. We will define later a heuristic to avoid
nondeterminism producing a quite general typing procedure. Indeed, as it
will be shown by examples, the cases in which the use of nondeterministic
reduction is needed are rather rare.

Informally, type constraints will be brought along in the computation
and progressively updated as we get new information about the term, thus
insuring the incrementality of our approach.

In a statement M =7 I'|t]©, one should interpret the type parameters
involved in the set of type assignment I' as meta variables, rather than as
actual type expressions. The intended meaning of such a judgment is indeed
to define the type schema of all possible typings that are inferable for M.

4.2 Inference Framework

For technical reasons, in the inference rules a contezt is a set A of statements
of the shape z : ¢ where z is a term variable and t a type variable. We define
on contexts an auxiliary function, called fondi, to merge the assignment
contexts. In particular

fondi(A, Ag) =< A, p >

Where p is the trivial substitution (which is only a variable renaming) which
ientifies all (and only) the type variables which are predicates of the same
term variable in Ay and Ag and A = p(A;) U p(Az). We will use fondi
(which is associative) also with more than two arguments.

We give first a set of natural deduction rules defining a nondeterministic
and terminating inference procedure that is complete with respect to the
inference rules.

Definition 4.1 (Canonical table for datatypes constructors)

Consider a datatype D, with its parameters X, ..., Xy. Recall (Section
2) that a datatype constructor cP (we shall abbreviate it simply to c) is defined
by arg L, where L is a list of type expressions (see corresponding Definition).
We define ©°“"(c), called the canonical table associated to constructor c, as
follows:

19



o let uy,...,ur be fresh variables, we let o = {uy1/Xy,...,ux/Xg}, and
define Opgram as the table consisting in the k rows of the form wu;|0]0,
1<j<k;

o O°“"(c) is then defined by recursion over the list L of “arguments” of
c:

— if L =], take a fresh variable v; ©°“"(c) is then equal to
addtable(Opgram, {vic (Dul,. .. ux] <v)}),

and the “output type variable” (associated to constructor c) is v;

—4f L =z : L', compute ©, the canonical table associated to L',
with its corresponding output type variable t, and distinguish two
cases, according to the shape of :

x of x is X, for some p, then let v be a fresh variable; the
canonical table is then equal to

addtable(v>O, {v:g (up—t <v)}),

the output type variable being v;
* otherwise, let v and v' be two fresh variables, the canonical
table is

addtable(v'>0, {v':¢ (v—t < '), [V50;t]:6 (v < o(2))}),
and the output variable is v'.

Note that by definition, ©*"(c) is already closed and consistent (consis-
tency is insured by the fact that there is no application).
©“"(c) is a table schema rather than a simple table: we shall indeed
instanciate its type variables with newly created variables each time we shall
encounter term c in the type inference procedure. To evidenciate the de-
pendency towards these variables, we will sometimes adopt the notation
O™ (c)[u1,y ..., Uk, V1, ..., Um,t], t being the “output type variable” of ©““"*(c)
(and v1,...,v,, the type variables introduced during the analysis of L de-
scribed above).
Example: consider the list constructor cons, of type X —list[X]—list[X];
its associated canonical table is
U1
t:(up—wvy) | t
t,v1 : (tg—)UQ) V1
t2 t,’Ul,’Ug,tQ H list[ul]
t,v1,v9 : list[ui] | vy

20



Note that variables ¢; and w; collapsed, and we only keep u;. Here are the
scopes of the type variables:

,

V2

—
X —list[X]—list[X] D =list[X],u1 =X.
N e——
ul to

(. ~/
~~
t

cons

We are now ready to define our type inference procedure, given by the
rules of Figure 4. Note that this procedure is still nondeterministic.

(Tvar) T =77 {x:t}|t|®

(Teonst) cZ-D = 0]t @C“”(clp)[ul, ey Uk, ULy e e Uy B

where ©°"(c) is the canonical table associated to cP
t,u1,..., U, V1, ..,Un,,t are fresh variables

(7)) M= ANz:u|v|O
M Xe.M =77 At ]addtable(tv0, {t:q (u—v < 1)})
where v is a fresh variable

M:>T1A1|u|®1 N:>T[A2|U|®2
T fondi(Ap, Ag) =< A, p >
(Tap) M N =7 p(A) | t] simplify(©',t)
where t is a fresh variable,
6 = addtable(p(01) 8 p(02), {tic (p() < p(v)—1)}),
t>0 = O, and O’ is consistent

Figure 4: Type inference procedure

Note that rule (7}y),) is the only case in which we can reduce the size of
the table by applying simplify.

Out inference procedure is correct and complete with respect to the typ-
ing rules in the following sense.

21



Lemma 4.2 I, - M : T iff M =71 A|t|© and (0,%') is a solution of
© such that T = o(t), X is equivalent to an extension of X' and T extends
o(A)

4.3 Typing definitions

We apply the type inference procedure that we just defined in order to pro-
gressively build a table that goes along with a sequence of CuCh definitions.
This is expressed by a judgment of the form

A0 U2 A @

where < egs > is a sequence of term definitions of the form < £ (czy ... x,) =
e >. The above statement means that adding CuCh definitions < egs > to
a context A and a table © yields to context A’ and table ©’. The rules that
define this judgment are given on Figure 5.

6:>T[A1,$1:tl...mn:tn,f:1)|t|@1

flexy...xy) =1 Doz i 01 ... i, fru: 0y |t | O

fondi((Ay, 21 : t1y. .- Xyt by, [ 1 0),
(Ag,xy i ty, e Ty by, fiu), A) =< Al p>

A, © <eqs>.<f(cxi..xTn) = e>> Af t, o'
where addtable((p(t'>01) W p(O2) W p(0)),{t':c(t <t)}) =R O
and ©' is consistent

(T'D¢)

<eqs> <eqs'>
A, o) q A’, @/ AI, @/ q A”, @//

(TDcomp) A, @ M} A”, @”

Figure 5: Building a CuCh context

We have the following soundness and completeness result.
Lemma 4.3 Let < eqs > be a sequence of CuCh definitions. Let 0, () Seas>
A, 0 and let (o4,%) be any solution of ©. Then ¥ : 0, < eqs >= 04(A).

22



Conversely if ¥ : (,< eqs >= T then 0,0 Seds>, A,© and there
is a solution (04,%0) of © such that I' = o4(A) and ¥ is equivalent to an
extension of 3.

4.4 Heuristic

The relation =77 | | as defined in Subsection 4.2 is not deterministic, due
to the presence of w-reductions, but we are interested in turning it into a
deterministic process, in order to get a reasonably efficient implementation
of the inference process. Of course, we do this at the cost of losing the
completeness of the inference procedure.

We present here our heuristic to transform a (closed) table that is not
consistent into a consistent one. The idea is to apply rule (w — red) to
eliminate the constraints on variables with respect to which the table is not
consistent. This actually means simulating an application of rule (omega) to
the subterms for which we are not able to find a meaningful type. Since we
want to preserve as much information as possible, our strategy is to try to
apply rule (omega) starting from the inner subterms. It is intuitive that the
deeper the subterm of a given term that is assigned type w by rule (omega),
the more information shall be contained in the resulting type of the term.

We do this using the notion of guard. For a non-empty guard, we use
the notation w.u to isolate the last element u of the list (i.e. the innermost
one).

Note that in the construction of the table each type variable introduced
in the inference procedure corresponds to a subterm of the expression to
be typed. We assume that in the implementation of the inference procedure
the guards are kept topologically sorted with respect to the inclusion of the
corresponding subterms. ILe. if u is the type variable corresponding to a
subexpression of a subterm to which corresponds a type variable v then in
every guard containing both u and v, the occurrence of u follows the one of
v. This can be naturally achieved simply by listing the variables in the order
in which they have been created, but more sophisticated ordering could be
possible.

We formalize our heuristic under the form of a reduction relation =p,
defined on Figure 6.

We apply this transformation whenever the inference process yields an
inconsistent table.

23



(Dig) ©®© =p©

© =p © Ug(t) not consistent
w.wig (D(vy,...,v)) € Ug(t)
Uu) =10

(Du) ©¢ =p red,(0,u)

Oy =p O Ugl(t) consistent

O not consistent with respect to ¢
(D) w.uig (D(vi,...,v)) € Lg(t)

©¢ =p red,(0,u)

Figure 6: Deterministic reduction relation

5 Conclusion

We have presented a partial type inference procedure for a language equipped
with datatypes. The effectiveness of our methods have made it possible to
develop an implementation, that could in principle be smoothly integrated
to the CuCh machine, due to the incrementality of the inference.

This report presents a preliminary version of our work on this subject.
We indeed plan to extend it in order to include a denotational description
for our language of types, as well as possibly improve our heuristics, and
of course make the implementation available together as part of the CuCh
machine. It seems also that most of the work on the implementation could
be reused to achieve dead—code analysis (see e.g. [Dam98|).

References

[BB85] C. Bohm and A. Berarducci. Automatic Synthesis of Typed
A—programs on Term Algebras. Theoretical Computer Science,
39:135-154, 1985.

[BPG] C.Bohm, A. Piperno, and S. Guerrini. A-definition of Function(al)s
by Normal Forms.

24



[CC90] F. Cardone and M. Coppo. Two Extensions of Curry’s Inference
System. In P. Odifreddi, editor, Logic and Computer Science, pages
19-75. Accademic Press, 1990.

|[Dam98| F. Damiani. Redundant-code detection and elimination for PCF
with algebraic Datatypes. In To appear in the Proceedings of TLCA
'99, LNCS, 1998.

|GLTS89| J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cam-
bridge University Press, 1989.

[Gom90] C. Gomard. Partial Type Inference for Untyped Functional Pro-
grams. In Proceedings of the ACM Conference on Lisp and Func-
tional Programming, pages 282-287, 1990.

[KPS94| D. Kozen, J. Palsberg, and M. I. Schwartzbach. Efficient infer-
ence of partial types. Journal of Computer and System Sciences,
49(2):306-324, 1994. also in Proceedings of FOCS’92, pages 363
371.

[Tha94] S. Thatte. Type inference with partial types. T'CS, 124:127-148,
1994. also in Proceedings of ICALP 88, pages 615—629.

[WO92| Mitchell Wand and Patrick M. O’Keefe. Type inference for partial
types is decidable. In B. Krieg-Briickner, editor, European Sym-
posium on Programmaing 92, volume 582 of LNCS, pages 408-417.
Springer Verlag, 1992.

A A detailed example

We illustrate the way our procedure works on an example, that shows the
building of the table and the treatment of what would be considered as
typing errors in a classical setting.

This example is treated with an implementation of the algorithms we
describe (a WWW interface to the implementation is available at

http://cermics.enpc.fr/~dh/Types3/ ).

The user has the opportunity to incrementally introduce definitions of
terms, and the system answers by showing the table that is constructed
by the type inference procedure starting with this terms, and its evolution
(as the closure function is applied). The initial environment contains sev-
eral constants, such as elements of types bool, int, float, lists, and a few
constant functions of types int—bool, int—int, etc.

25



For the moment, we only have the implementation of the type inference
procedure (table construction), and of the closure function. The generation
of solutions and the heuristic to resolve inconsistencies are in beta version,
and we leave their presentation to a later presentation of this work.

We shall work with the term
M = Xzyy (z3) (zx).

The idea here is to use z both in an auto—application and as function on
integers, to force an typing conflict in the table that is generated (not leading
to an inconsistency, though).

The ascii translation of this term is \x y.((y (x 3)) (x x)); the type
inference procedure yields the following table:

{[i;h;g;e;d]. INT} | {} >
{} | {[i;h;g;f]. b->f;[i;h;g;e;d]. c->d} >
{} | {[i;h;g;el. d->e} >

<i | {[il. b->h} | {3 >

<h | {[i;h]. a->g} | {} >
<gl {31 {3 >

<t | {F| {>>

<e | {} | {[i;h;g]. £->g} >
<d [ {¥ I {}>

<c |

<b |

<a |

Each line corresponds to a row in the table, and for each row, we suc-
cessively give the corresponding type variable, and its sets L and U. For
example, we can see that type variable a has an empty L set, and has the
guarded expression [i; h; g; e]:¢ d—e in its U set.

The system also gives some extra information on the typing procedure:

Current context is:

M:i
To help debugging, here are the "old" variable assumptions

x:b / y:a

This means that to term variables x and y have been associated type
variables b and a respectively. Using this information, and the typing rules
of Section 2, we can reconstruct the structure of the term, by establishing
a correspondence between the type variables and every subterm of the term
M, as follows:

26



The steps in the construction of this decoration of the type can be il-
lustrated on an example: y (x 3) being of type e, we read in the row corre-
sponding to e in the table that e is less than f—g (omitting the guards);
(xz x) being effectively of type f, we get that y (z3) (zz) is of type g.

As the schema above shows, we can reconstruct the type of the whole
expression by looking at the row of 7 (note as well that type variable 4
guards all the expressions of the table, which means that if we decide to put
the whole term to type w, there is no use to keep any information that is
contained in the table). We read in the row of 4 that 7 is “equal to” b—h (i.e.
without other constraints, ¢ will be replaced by b—h). The row for A tells us
that h is a—¢g, and we also see that b is less than b—f and than c¢—d (the
constraint “b— f” comes from the auto—application, hence the occurrence of
b in the expression, while c—d comes from the application to constant 3: ¢
is indeed “equal to” INT): we are facing a problem, since there is indeed a
conflict between INT and the arrow construct. However, we cannot detect
immediately this conflict on the table, due to the shape of M.

The system applies next the closure rules; the previous table being al-
ready closed, we get the same table:

The closed table is:

{[i;h;g;e;d]l. INT} | {3} >
{3 | {[i;h;g;f]. b->f;[i;h;g;e;d]. c->d} >
{} | {[i;h;g;el. d->e} >

<i | {[il. b->h} | {I >
<h | {[i;h]. a->g} | {} >
<g | {31 4{}>

<t | {XI >

<e | {} | {[ish;gl. £->g} >
<d | {31 {3 >

<c |

<b |

<al

As said before, the conflicts coming from the “non—standard” use of x in
M are not visible on the table above. We can evidenciate them by applying

27



M, which will have more or less the effect of instiantiating z, thus bringing
to light the typing information about x.

We first apply M to the identity; the treatment of type M (Az. z) yields
table:

143>
{[1;k]. j->3+ | {} >
314>

{[1;i]. b->h} | {[1]. k->1} >
{[1;i;h]. a->g} | {} >

1 {F>
1 {F>
{3 | {[1;i;h;g]. £->g} >
1 {r>

{[1;i;h;g;e;d]. INT} | {3} >
{3 | {[1;ish;g;£]. b->f;[1;i;h;gse;d]. c->d} >
{} | {[1;ish;g;e]l. d->e} >

AN N AN AN N AN AN AN AN AN AN AN
O T 0 Q0O HER P HC )

To help debugging, here are the "old" variable assumptions

z:j / x:b/ y:a

Still, no conflict can be seen on this table; but this changes if we apply
the closing procedure:

The closed table is:

<1 ]| {[1;i;h]. a->g}r | {} >

<k | {[1;k]. j->3} | {[1;i;h;g;£f]. b->f;[1;i;h;g;e;d]. c->d} >
* < j | {[1;ih;g;f3k]. j->j;[1;ish;gse;d;k]. INTY | {} >

< i | {[1;i]. b->h} | {[1]. k->1} >

<h | {[1;i;h]. a->g} | {} >

<g | {31 4{}>
* < f |

{[1;i3k;h;g;£]. j->j;[1;k;izh;gsf]l. j->5;
[1;k;ish;g;f;e;d]. INT;[1;i;k;h;g;f;e;d]. INT}
I {} >
<e | {} I {[1;i;h;g]. £->g} >

* < d |

{[1;i3k;hsgse;d;£]. j->35[1513k;hsgse;d]. INT;
[(1;k;ish;gse;d;£]. j->j; [1;k;ish;g;se;d]. INT}
I {3} >
<c | {[1;ish;g;e;d]. INT} | {} >
<b | {[1;i;k]. j->j} | {[1;i;h;g;f]. b->f;[1;i;h;g;e;d]. c->d} >
<a | {} | {[1;ish;g;el. d->e} >

28



A star — * — evidenciates the rows where a conflict is apparent (between
an arrow type and datatype INT): this is the case for type variables d, £ and
j (that intuitively correspond to the points where the information about the
two different typings for z is “communicated”). However, the resulting table
is still consistent, since the set U is empty for these entries (which means
that we can put the corresponding variables to w).

A possible type for M (Az.z) is then (w—j—j)—¢g (setting d to w has
the effect of eliminating some constraints, thus resolving some conflicts).

If we apply M I (the term we just considered) to the combinator K, i.e.
we consider the term (M I (Auv.u)), we get the following result:

The type inference procedure yields table:

314>

{[q;pl. m->0} | {I >
143>

{[q;p;0]l. n->m} | {} >
143>

I

I

I

I

I

| O | {[q]. p->q} >

| {[q;1;k]. j->j} | {3} >

[ {31 {F>

| {[q;1;i]. b->h} | {[q;1]. k->1} >
| {[q;1;i;h]. a->g} | {3} >
I

I

I

I

I

I

I

314>
314>
{} | {[qg;1;i;h;gl. £->g} >
1 4{3>

{[q;1;i;h;g;e;d]. INT} | {3 >
O | {lqs13ish;g;£]. b->F;[q;15i5hsg;5e;3d]. c->d} >
{} | {lq51515h;g;e]. d->e} >

AANAANAANAANAAANAANANANANANAANAANANAANAARA
O o0 A0 HRER P R R HB 0 BYQ

To help debugging, here are the "old" variable assumptions
uzm / v:in/ z:j/ x:b/ y:a

We omit here the resulting closed table, where type conflicts appear in L
sets (resp. U sets) for rows whose U sets (resp. L sets) are empty, and hence
do not lead to “real” inconsistencies.

We get some true inconsistencies if we apply a constant f1, of type
INT->INT, to our term (M I K); indeed, the resulting closed table is:

<u | {[u;t]. INT}Y | {} >

29



<t | {[u;t]. s->r} | {[ul. g->u} >
<r | {[u;t]. INT} | {} >

¥ < s |
{[u;t;ish;1;q;p;g;3d;osk;c;fl.
[u;t;i;1sh;q;psg;d;osk;c;fl.
[us;t;izh;1;q9;3p;0;83d;k;c;f].
[us;t;i;1;h;q;3p;0;583d;k;c;3f].
| {[u;t;r]. INT} >

x < q |

INT; [u;t;ish;1;q;p;g;d;osk;cl.
INT; [u;t;i;1;h;q;p;g;d;osk;cl.
INT; [u;t;ish;1;q;p;0;8;d;k;cl.
INT; [u;t;i;1;h;q;p;0;8;d;k;cl.

{lish;1;q5p;g3d505k;c56] .
[i;1;h;q;psgsdsosksc;fl.
[ish;1;9;ps50;8;d5k;c;£].
[i51;h;q;ps50;8:d5k;c;£].

| {[u;t;r]. INT} >

INT; [i;h315q;5p;585d;05k;c].
INT; [i;15h;q;p585d;05k;cl.
INT; [i3h;13q;5p;50;85ds5k;c].
INT; [i;15h3q;5p50;85ds5ksc].

-3
Jj->3s
-3
j->ir

<p | {[q;p]. m->o} | {[i51;q9;h;g;d]. c->d;[q;i;1;h;g;d].

* <n |
{[ish;g;q;p;s1l;d;osk;f].
li;h;g;15q;5p3d;0;k;E].
[i;h;g39;15p;3d;03k;£].
[a;p;is1;h;g;d;osk;£fl.
[i;1;9;h;p3g3d;0;k;E].
lq;i;1;h;ps3g5d;0;k;E].
[ {r>
<o | {[g;ps0]l. n->m} |

{lq;p;i;1;h;g;dl. £->g;[i515q;5h;p585d]. £->g50q;1;1;h;p;g;d]. £->gF >

* <m |
{[i51;q;5h;g3d;p3k;c;5£].
[q;i31;h;g;d;psk;c;fl.
[ish;g;d;15q;psk;esfl.
[ish;g;d;a;1;p;k;csfl.
[

INT; [i3h;g;5q;5p;1l;d;osk;fcl.
INT; [i;h;g;159;p;d;03k;f5cl.
INT; [i;h;g;q9;51;p;d;03k;f5cl.
INT; [q;p;is1;hsgsd;osk;fscl.
INT; [i;1;9;h;p;g;d;03k;f;cl.
INT; [q;i31;h;p;g;d;03k;ficl.

Jj->3s
-3
-3
Jj->3s
-3
j->ir

INT; [i;13q;5h;85d;p5k;cl.
INT; [q;i315h;85d;psk;cl.
INT; [i;h;g3d;15q;psk;cl.
INT; [i;h;g3d;9;1;psk;cl.

J->3s
J->3s
Jj->3s
j->j}

c->d} >

{[qg;p;s03i;1;h;g;d;ust;r]l. INT;[q;p;i;ls;h;gsd;osust;r]. INT;
[i;1;9;h;ps3g5d;05u;t;r]. INT;[q;i315h;p;8;ds05ust;r]. INT}

>

<1 | {[i;1;h]. a->g} | {[q]. p->q} >

* <k | {[1;k]. j->j}

{[1;i;h;g;d;5¢c3k;q;psosust;r]. INT;[1;i;h;g;f]. e->f;[1;i;h;g;d;c]l. b->c} >

*x < 3|

{[1;i;h;g;f;k]. INT;[1;i5h;g5d;¢3k1. j->3;
[ish;gsf;13k]. INT;[ish;gsdsc;lsk]. j->jF

| {[1;isksh;g;d;csqspsosust;r]. INT; [13ksish;gsdscsqspsosust;r]. INTY >
| {[1]. k->1} >

< i | {[il. b->h}

<h | {[i;h]. a->g} | {[i3;1;q]. p->q} >

*<g|
{[g;p;i31;h;g;d;03k;c;f].
[i;15q;h;psg3d;osk;c;fl.
[q;i31;h;p;g;dsosk;c;fl.
[a;p;03i31sh;g;dsk;c;£].

INT; [q;p3i315h;85d;05k;c].
INT; [i;1;5q;5h;ps5g5d;05k;cl.
INT; [q;1;15h;psg5d;05k;cl.
INT; [q;p303i;1;h;8;d;5k;c].

| {[i;h;1;q;ust;r]. INT;[i;1;h;q;u;t;r]. INT} >

30

-3
Jj->3s
Jj->3s
j->ir



* < f |
{[1;i;k;h;g;f]. INT;[1;k;izh;g;f]. INT;
[1;k;izh;g;fidsc]l. j->j;[13iskshsg;fidscl. j->jk
| {F >

Here the row for s (as well as the row for g, actually) is inconsistent,
because of the conflict between the arrow type in the lower set and the
datatype INT in the upper set.

As we did not implement the heuristics to perform the reduction auto-
matically yet, we provide a feature to allow the user to put some variables to
w “by hand”; here a possible choice is to reduce with respect to type variable
f (whose upper set is empty), since f occurs in the guard of type expression
j->j, but not in the guard of INT (f actually corresponds to a term that is
deeper than the terms corresponding to the type variables that occur in the
guard for INT). We then recover a consistent table, through this simulation
of an w-reduction.

31



