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Logi
 programming and
o-indu
tive de�nitionsMathieu JaumeAbstra
tThis paper fo
uses on the assignment of meaning to in�nite deriva-tions in logi
 programming. Several approa
hes have been developpedby 
onsidering in�nite elements in the universe of the dis
ourse butnone are 
omplete. By 
onsidering proofs as obje
ts in a 
o-indu
tiveset, standard properties of 
o-indu
tive de�nitions are used both toexplain this in
ompleteness and to de�ne a sound and 
omplete seman-ti
s, based on the �logi
 program as 
o-indu
tive de�nition� paradigm,for a sub
lass of in�nite derivations, 
alled in�nite derivations over a�nite domain (i.e. derivations whi
h do not 
ompute in�nite terms).
Programmation logique et dé�nitions
o-indu
tivesRésuméLes SLD-dérivations in�nies sont étudiées en identi�ant un pro-gramme dé�ni ave
 un ensemble de dé�nitions 
o-indu
tives. Plusieursappro
hes ont déjà été développées en 
onsidérant des termes in�nisdans l'univers du dis
ours mais au
une n'a permis de dé�nir une sé-mantique 
omplète. Les dé�nitions 
o-indu
tives fournissent un 
adreadéquat pour expliquer 
es phénomènes d'in
omplètude et permettentde dé�nir une sémantique valide et 
omplète pour la 
lasse des dériva-tions in�nies qui ne 
al
ulent pas de termes in�nis.





1 Introdu
tionStandard semanti
s of de�nite programs, based on the traditional paradigm�logi
 program as �rst order logi
�, is only 
on
erned with refutations andthen is strongly related to termination. Hen
e, in�nite derivations are nottaken into a

ount in this 
lassi
al semanti
s. For these derivations, thereis no satisfa
tory semanti
s but several approa
hes. In all of them, the setproposed for the denotation of a de�nite program 
ontains possibly in�niteatoms. Unfortunately, the semanti
s obtained, based on the 
on
ept of �in-�nite atoms being 
omputable at in�nity�, are not 
omplete (i.e. there existin�nite atoms in the denotation of a program whi
h are not 
omputable byan in�nite derivation). In these approa
hes, only in�nite derivations �doinguseful 
omputations, in some sense� are 
onsidered: these derivations must
ompute an in�nite obje
t to be �useful�. This 
orresponds to the informallyintended meaning of in�nite 
omputations. As a typi
al example, with thefollowing program: P = fLN(x; [xjl℄) LN(S(x); l)g (1)we 
an obtain, from the query LN(k; l0), an in�nite derivation 
omputing atevery step a better approximation of the se
ond argument:� � � ! LN(Si�1(k); li�1) 24 xi li�1Si�1(k) [Si�1(k)jli℄ 35�! LN(Si(k); li)! � � � (2)The ��nal result� is the �limit� of the sequen
e of approximations and 
orre-sponds to the in�nite sequen
e of integers starting from k. In
ompletenessof these approa
hes 
omes from programs often 
alled �bad� programs: atypi
al example of �bad� program is the following one.P = fp(x) p(x)g (3)Of 
ourse, the in�nite derivation:p(z)! p(z)! � � � ! p(z)! � � � (4)does not 
ompute anything and the denotation of p should be empty. How-ever, we will see that when the denotation of P is de�ned by a greatest�xpoint of a transformation asso
iated with P , these predi
ates have a non-empty denotation.Our approa
h is the exa
t opposite: we investigate the 
lass of in�nitederivations whi
h do not 
ompute in�nite terms. These derivations 
an be1



�useful� to des
ribe the behaviour of nondeterministi
 programs (�owgraphprograms). As stated by K.R. Apt and M.H. Van Emden [4℄, there is a 
orre-sponden
e between 
omputations of a �owgraph F and derivations obtainedfrom a de�nite program P (F ) asso
iated with F . Sin
e, the only fun
tionsymbols o

urring in the 
lauses of P (F ) are 
onstant symbols, these deriva-tions do not 
ompute anything. Another important and pra
ti
al 
lass offun
tion-free logi
 programs 
orresponds to Datalog programs. This spe-
ial 
lass of in�nite derivations will be 
onsidered in se
tion 5.2. However,this 
lass of derivations is too restri
ted and in�nite derivations 
omputingonly �nite terms 
an be envisaged. These derivations, 
alled derivations overa �nite domain, are 
onsidered in se
tion 5.3.It is now well-known that standard semanti
s of de�nite programs 
anbe expressed by purely proof-theoreti
 methods. The most immediate wayto give su
h a semanti
s is to 
onsider 
lauses as inferen
e rules, rather thanlogi
 formulas, and then a de�nite program as a formal system. From thispoint of view, the denotation of a program is the set of theorems whi
h
an be derived in this system. Within this framework, indu
tive de�nitionsare a natural way to de�ne the denotation of logi
 programs. Sin
e, proof-theoreti
ally, we 
an look at a 
lause A B1; � � � ; Bn as an introdu
tion rulefor A (or similarly as a 
lause in an indu
tive de�nition), by following theCurry-Howard isomorphism, it is possible to represent 
lauses by 
onstru
-tors of a fun
tional language and ea
h proof 
an be viewed as a fun
tionalexpression. Hen
e, there is a 
orresponden
e between proof trees and andproof terms.In the literature, one 
an �nd several approa
hes dealing with in�niteSLD-derivations. Most of them are based on the greatest �xpoint of opera-tors asso
iated to programs and then 
orrespond to the �logi
 programs as
o-indu
tive de�nitions� paradigm. In this way, the denotation of a de�niteprogram P is de�ned as the set of theorems whi
h are the results of a possi-bly in�nite number of appli
ations of instan
es of 
lauses in P (viewed as aformal system). By following the Curry-Howard isomorphism, proof termsasso
iated with these proofs are produ
tive: at ea
h step, a 
onstru
tor (i.e.a 
lause) is applied. In this paper, we investigate in�nite SLD-derivationsby 
onsidering the proof terms asso
iated with these derivations. We willsee that an approa
h in whi
h an in�nite SLD-derivation must 
ompute anin�nite obje
t leads to in
ompleteness sin
e with this requirement an SLD-derivation is rather viewed as a 
omputation than as a proof. That's whywe investigate the 
lass of in�nite derivations whi
h do not 
ompute in�-nite terms and therefore 
an be dire
tly identi�ed with proofs. Hen
e, ourapproa
h de�nes an empty denotation for program (1), while derivation (4)2



viewed as a proof of 8xp(x), where the result proved is re
ursively used, leadsto the de�nition of a non-empty denotation for program (3). We will see thatthere exists a sound and 
omplete semanti
s for this 
lass of derivations.2 Ba
kground and notations2.1 Indu
tive and 
o-indu
tive de�nitionsIndu
tive and 
o-indu
tive sets 
an be de�ned by some rules for generatingelements of the set and by adding that an obje
t is to be in the set onlyif it has been generated by applying these rules (for more details, see [3℄).A rule is a pair (E; e), usually written E ! e, where E is a set, 
alledthe set of premises, and e is the 
on
lusion. Let � be a rule set and Aa set. A is �-
losed if ea
h rule in � whose premises are in A also hasits 
on
lusion in A and A is �-dense if for every a 2 A there is a setE � A su
h that (E ! a) 2 �. The set indu
tively (resp. 
o-indu
tively)de�ned by a rule set �, written Ind(�) (resp. CoInd(�)), is de�ned byInd(�) = \fA; A is �-
losedg (resp. CoInd(�) = [fA; A is �-denseg). �-
losed sets and �-dense sets exist and the interse
tion of any 
olle
tion of�-
losed sets is �-
losed (in parti
ular, Ind(�) is the smallest �-
losed set).Indu
tive and 
o-indu
tive sets 
an also be expressed by using monotoneoperators (an operator ' : 2B ! 2B, where 2B denotes the set of all sub-sets of B, is monotone if E1 � E2 � B implies '(E1) � '(E2)). Givena monotone operator ' : 2B ! 2B, a set A � B is said to be '-
losed(resp. '-dense) i� '(A) � A (resp. A � '(A)). The set indu
tively (resp.
o-indu
tively) de�ned by ', written Ind(') (resp. CoInd(')) is de�ned byInd(') = \'(A)�A�BA (resp. CoInd(') = [A�'(A)�BA). If � is a rule set,we may de�ne a monotone operator T� : 2B ! 2B as follows:B = [e E2�ffeg [Eg T�(A) = fe 2 B; 9 e E 2 � E � Ag (5)and we have Ind(�) = Ind(T�) and CoInd(�) = CoInd(T�). The followingresult is a spe
ial 
ase of one of Tarski's theorems.Theorem 1 If ' is a monotone operator, then Ind(') is the least �xpoint of' (lfp(')) and CoInd(') is the greatest �xpoint of ' (gfp(')).It is possible to iterate towards these �xpoints as follows. For every ordinal�, we de�ne ordinal powers of ' by: '"0 = ; and '#0 = B, '"�+1 = '('"�)and '#�+1 = '('#�), if � is a limit ordinal, then '"� = [�<�'"� and '#� =3



\�<�'#� . The operator ' is said to be "-
ontinuous (resp. #-
ontinuous) iffor every in
reasing (resp. de
reasing) sequen
e (En)n�0 of subsets of B, wehave '([n�0En) = [n�0'(En) (resp. '(\n�0En) = \n�0'(En)).Theorem 2 If ' is a "-
ontinuous (resp. #-
ontinuous) operator, thenInd(') = lfp(') = '"! (resp. CoInd(') = gfp(') = '#!).This theorem does not hold without the 
ontinuity assumption. However, if' is �nitary (i.e. if for every in
reasing sequen
e (En)n�0 of subsets of B,we have '([n�0En) � [n�0'(En)) and monotone, then ' is "-
ontinuous,so lfp(') = '"!. If ' is the operator obtained from a rule set �, as des
ribedby (5), then ' is �nitary if the set of premises of ea
h rule of � is �nite (inthis 
ase, we also say that � is �nitary).2.2 Standard 
on
epts of logi
 programming2.2.1 Herbrand semanti
sIn the following se
tions, we assume familiarity with the standard notions oflogi
 programming as introdu
ed in [24℄. �, � and X denote respe
tively aset of fun
tion symbols, a set of predi
ate symbols, and a set of variable sym-bols. Elements of T�[X℄ are terms over �[X. A substitution is a mappingfrom X to T�[X℄ su
h that fx; x 6= �xg = dom(�) is �nite. range(�) denotesthe set fvar(�x); x 2 dom(�)g. We write ��var(E) for the restri
tion of � tovar(E). Composition of substitutions indu
es a preorder on substitutions(�1 � �2 , 9�; ��1 = �2) and on expressions (E1 � E2 , 9�; �E1 = E2).A renaming substitution is a mapping r:X ! X su
h that 8x; y 2 dom(r),x 6= y ) r(x) 6= r(y). A mgu is a minimal idempotent uni�er. The pre-order � indu
es an equivalen
e relation � (
alled varian
e): E1 � E2 i�there exist two renaming substitutions �1 and �2 su
h that �1E1 = E2 and�2E2 = E1. At�;�[X℄ denotes the set of atoms. Given a 
lause C, we writeC+ its head and C� its body. An SLD-derivation from R0 with a programP is a possibly in�nite sequen
e of transitions:A1; � � � ; Ak; � � � ; An| {z }R C;�!P �(A1; � � � ; Ak�1; B1; � � � ; Bq; Ak+1; � � � ; An)| {z }�R[k C�℄where � is a mgu of C+ and Ak and where C is a variant of a 
lause inP , whose body is B1; � � � ; Bq. The renaming pro
ess required in an SLD-derivation: R0 C1;�1!P R1 !P � � � !P Ri�1 Ci;�i!P Ri !P � � �4



is su
h that for all i � 1, var(Ci) \ ([j<ivar(Cj) [ var(R0)) = ;. An SLD-derivation is fair if it is either failed or, for every atom B in the derivation,(some further instantiated version of) B is sele
ted within a �nite number ofsteps. The model-theoreti
 semanti
s of logi
 programs is based on Herbrandinterpretations (subsets of the Herbrand base). From this point of view, themeaning of a program P is de�ned as the least Herbrand model of P (i.e.ground atoms whi
h are logi
al 
onsequen
es of P ). This set 
oin
ides withthe ground su

ess set of P (ground atoms A from whi
h there exists anSLD-refutation). This 
orresponden
e is proved by using �xpoint resultsof the operator TP over Herbrand interpretations, asso
iated with P andde�ned by:TP (I) = fA 2 At�;�[;℄; 9A0  A1; � � � ; An 2 P 9�:X ! T�[;℄�A0 = A and �Ai 2 I (1 � i � n)gIn this paper, we use the following notations, 
oming from [10℄:E � At�;�[X℄ dEe = f�A 2 At�;�[X℄; A 2 Eg[E℄ = f�A 2 At�;�[;℄; A 2 Eg2.2.2 C-semanti
sThe standard semanti
s of logi
 programs (à la Herbrand), based on theground su

ess set, is not 
ompletely adequate as operational semanti
s sin
eno variable o

urs in this semanti
s. The C-semanti
s has been revisited indetails by M. Falas
hi, G. Levi, C. Palamidessi and M. Martelli [10, 11℄and allows variables in the elements of the domain. The Herbrand universe
onsidered, written T�[X℄=�, is the quotient set of T�[X℄ with respe
t tothe varian
e equivalen
e relation �. For the sake of simpli
ity, the elementsof T�[X℄=� will have the same representation as the elements of T�[X℄ (theintended meaning of f(x) 2 T�[X℄=� is the equivalen
e 
lass of f(x) belongsto T�[X℄=�). It is well-known that the preorder � on T�[X℄ indu
es an orderrelation, still denoted by �, on T�[X℄=�. The Herbrand base 
onsidered isthe quotient set At�;�[X℄=� whi
h 
an be ordered by p(~t1) � p(~t2), ~t1 � ~t2.Interpretations are subsets of At�;�[X℄=� and the notion of truth 
oin
ideswith the one of being a member of. In order to avoid the situation where anatom A is true with respe
t to an interpretation I whi
h does not 
ontaininstan
es of A, we require interpretations to be "-
losed (i.e. (A 2 I ^ A �B) ) B 2 I): "-
losed subsets of At�;�[X℄=� are 
alled C-interpretations.Note that given any subset I of At�;�[X℄=�, dIe is a C-interpretation (saidanother way, I is a C-interpretation i� I = dIe). Given a C-interpretation I,C-truth is de�ned as follows: 5



� an atom A is C-true in I i� A 2 I (i.e. the equivalen
e 
lass of A 2 I).� a 
lause A  B1; � � � ; Bq is C-true in I i� for every substitution �, ifatoms �Bi (1 � i � q) are C-true in I, then �A is C-true in I.A C-interpretation I is a C-model of a de�nite program P if every 
lause inP is C-true in I. C-models and (standard) Herbrand models 
an be related:if I is a C-model of a de�nite program P , then [I℄ is a (standard) Herbrandmodel of P . Note also that the 
lass of C-interpretations is a 
ompletelatti
e with respe
t to set in
lusion (if E is a set of C-interpretations, thenglb(E) = \I2EI and lub(E) = [I2EI). Interse
tion of C-models of a programP is a C-model of P and every program P has a least C-model, writtenMCP ,whi
h gives the de
larative meaning of a program. Operational semanti
s,de�ned by: SCP = fA 2 At�;�[X℄; A �;�!P � and �A = Agis related toMCP by 
onsidering the least �xpoint of the "-
ontinuous oper-ator de�ned by:T CP (I) = fA 2 At�;�[X℄; 9A0  A1; � � � ; An 2 P 9�:X ! T�[X℄�A0 = A and �Ai 2 I (1 � i � n)gsatisfying standard properties: a C-interpretation I is a C-model of a programP i� T CP (I) � I andMCP = lfp(T CP ) = Ind(T CP ) = T C "!P = SCP .Theorem 3 (Soundness and 
ompleteness [11℄)1. If there exists an SLD-refutation R = A1; � � � ; Aq �;�!P �, then thereexist a substitution �0 and fA01; � � � ; A0qg � MCP su
h that �0 is a mguof (A1; � � � ; Aq) and (A01; � � � ; A0q) and �0�var(R) = ��var(R).2. Let R be the query A1; � � � ; Aq. If there exist fA01; � � � ; A0qg � MCP anda mgu �0 of (A1; � � � ; Aq) and (A01; � � � ; A0q), then there exists an SLD-refutation A1; � � � ; Aq �;�!P � su
h that �0�var(R) � ��var(R).3 Obje
ts 
omputed at in�nityIn 
omputer s
ien
e, termination of programs is a traditional requirement.Logi
 programming does not es
ape from this in�uen
e and there exist manyworks about termination of logi
 programs (for a survey, see [8℄). However,6



in�nite behaviour of programs 
an be useful to model some situations andnonterminating �
omputations� have been 
onsidered for many programmingparadigms: �-
al
ulus [22℄, rewrite systems [9℄, 
onstraint logi
 program-ming [21℄, 
on
urrent 
onstraint programming [7℄ ... In this se
tion, we re-view the main approa
hes to assign some meaning to in�nite derivations in�pure� logi
 programming o

urring in the literature [1, 2, 15, 19, 23, 24, 25℄.All of them 
on
entrate on the aspe
ts related to the semanti
s of in�niteobje
ts and to the models for logi
 programs whi
h take them into a

ount.The universe of the dis
ourse 
onsidered in these approa
hes 
ontains in�niteelements. There are mainly two reasons for this requirement:1. They all argue that �a natural requirement for modeling in�nite deriva-tions is the presen
e of in�nite elements in the universe of the dis-
ourse�. This allows to 
onsider derivations, like (2), whi
h 
omputein�nite obje
ts at in�nity. The sense of a �useful� in�nite 
omputationis given by the notion of atom 
omputed at in�nity (i.e. an in�niteatom A su
h that there exists a �nite atom from whi
h there exists anin�nite derivation whi
h �
omputes at in�nity� A).2. Most of them are based on a greatest �xed point 
hara
terisation ofin�nite obje
ts 
omputed by nonterminating derivations and in this
ase, they all try to obtain the identi�
ation gfp(TP ) = T #!P . Generally,this property does not hold in the Herbrand base. However, programssatisfying this property, 
alled 
anoni
al programs, have been studiedby J. Ja�ar and P.J. Stu
key [20℄. For example, with the program:P = fp(0) q(x) ; q(S(x)) q(x)g (6)we have:T #!P = \n�0T #nP = \n�00�[i�nfq(Si(0))g [ fp(0)g1A = fp(0)gwhile when a �good� 
ompletion of the Herbrand base is de�ned, weobtain:T #!P = Tn�0T #nP = Tn�0 Si�nfq(Si(0))g [ fp(0); q(S!)g!= fp(0); q(S!)g = gfp(TP )and then TP be
omes #-
ontinuous.7



Therefore, the �rst step of these approa
hes 
onsists in de�ning a 
ompletionof the Herbrand base. The most used 
ontinuous stru
tures are 
ompletemetri
 spa
es and 
omplete partial orders whi
h are both 
hara
terised bythe presen
e of in�nite elements viewed as the limits of in�nite sequen
es of�nite obje
ts.3.1 The metri
 approa
hThe more immediate approa
h to the 
ompletion of the Herbrand base, dueto M.A. Nait Abdallah [1℄ and used by J.W. Lloyd [24℄, is the metri
 one: theHerbrand base is made a 
omplete metri
 spa
e by introdu
ing a distan
ebetween terms as follows:d(t1; t2) = � 0 if t1 = t22� inffn; �n(t1)6=�n(t2)g otherwisewhere �n(t) denotes the trun
ation at height n of the tree t. Now by adding toT�[X℄ all the limits of Cau
hy sequen
es of terms, we obtain the set T1� [X℄ of�nite and in�nite terms and (T1� [X℄; d) is a 
omplete metri
 spa
e (for moredetails, see [6℄). The distan
e d 
an be extended to ground atoms and thenew Herbrand base 
onsidered is the metri
 
ompletion of At�;�[;℄, writtenAt1�;�[;℄. Now, the operator TP is both "-
ontinuous and #-
ontinuous andthe main results 
oming from [1℄ are expressed as follows. Given a derivation:R0 C1;�1!P R1 C2;�2!P � � � Ci;�i!P Ri Ci+1;�i+1!P � � �we write dji for the derivation R0 �! Ri and [[dji(R0)℄℄ stands for groundinstan
es, over the 
ompleted Herbrand base, of dji(R0) = �i � � � �1R0. Sin
eAt1�;�[;℄ is a 
omplete metri
 spa
e, [[d(R0)℄℄ = \i2IN[[dji(R0)℄℄ is a non-emptyset (while \i2IN[dji(R0)℄ 
an be empty) and we have the following results:1. For every atom A, [[A℄℄ \ T #!P = Sf[[d(A)℄℄; d is fairg.2. A 2 At1�;�[;℄ begins a su

essful derivation i� A 2 T "!P .3. A 2 At1�;�[;℄ is the root of a �nite and failed SLD-tree i� A 62 T #!P .4. A 2 At1�;�[;℄ begins a fair derivation i� A 2 T #!P .Note that assertion 4. does not 
orrespond to a 
ompleteness result for logi
programming sin
e queries 
annot 
ontain in�nite terms. In [24℄, J.W. Lloydde�nes the set CP of atoms 
omputable at in�nity from P as atoms A su
h8



there exists a �nite atom B and an in�nite fair derivation from B with mgu's�1; �2; � � � su
h that limn!1 d(A; �n � � � �1B) = 0. The soundness theoremobtained in [24℄ is expressed as follows:CP � gfp(TP )However, the metri
 approa
h does not lead to a 
omplete semanti
s: thereexist atoms in gfp(TP ) whi
h are not 
omputable by an in�nite derivation.As a typi
al example, if we 
onsider the logi
 program (3), we have p(f!) 2gfp(TP ) but p(f!) is not 
omputable by an in�nite derivation (i.e p(f!) 62CP ): the 
onstru
tion of the greatest �xpoint does not re�e
t how the in�niteterms are 
onstru
ted during a 
omputation. However, the metri
 approa
h
an be very useful when latti
e-theoreti
 arguments 
annot be used (forexample with programs, 
ontaining negations, whi
h are not strati�ed). Inthis 
ase, M. Fitting suggests in [12℄ to �nd a metri
 with respe
t to whi
hTP is a 
ontra
tion and then has a unique �xpoint1.3.2 Completion by idealsAnother approa
h, due to W.G. Golson [15℄, is an order-theoreti
 one andis based on the 
ompletion by ideals of atoms. Given a partial ordered setE, an ideal I is a dire
ted (every pair of elements has a leat upper boundin I) and downward 
losed (if x 2 E, y 2 I and x � y, then x 2 I) subsetof E. Sin
e the set of all the ideals ordered by set in
lusion is a 
ompletepartial order, every 
hain of ideals has a least upper bound whi
h is againan ideal, representing its limits. In [15℄, ideals of At�;�[X℄, 
alled obje
ts,are de�ned as the sets A� = fA0; 9� 2 � A0 � �Ag where A is a setof �nite atoms and � is a dire
ted set of substitutions. Su
h an obje
t isin�nite if the 
ardinality of � (modulo renaming) is in�nite. Interpretationsare upward 
losed sets of ideals with respe
t to set in
lusion (i.e. if �1 2 Iand �1 � �2 then �2 2 I) and given an interpretation I, min(I) denotes theset f� 2 I; 8� 2 I � � �) � = �g. The operator TP is de�ned by:TP (I) = f � (obje
t); 9fAi  A0ig 2 P9� (dire
ted set of substitutions)� = A� (A = [fAig)A0� 2 I (A0 = [Ai) g1Given a metri
 spa
e (E; d), a mapping f : E ! E is a 
ontra
tion if for a k (0 � k < 1)we have for all x; y 2 E, d(f(x); f(y)) � k:d(x; y). A 
ontra
tion on a 
omplete metri
spa
e has a unique �xpoint 9



and is shown #-
ontinuous by 
onsidering only programs whose 
lauses aresu
h that any variable in the body also appears in the head (for example,program (6) 
annot be 
onsidered). The main result expressed in [15℄ isstated as follows: � 2 min(gfp(TP )) i� there exists a fair derivation fromA with mgu's (�i)i su
h that Af[if�igg = � where A is a 
olle
tion ofdistin
t rule head variants of P . For example, with program (3), we havemin(gfp(TP )) = fp(z)gf[ ℄g whi
h is not an in�nite obje
t (derivation (4)does not 
ompute an in�nite term), while with the program:P = fp(f(x)) p(x)g (7)we have: min(gfp(TP )) = fp(z)g�� zf i(xi) ��i�0whi
h is an in�nite obje
t 
omputed by the following fair infnite derivation:p(z) 24 zf(x1) 35�! p(x1) 24 x1f(x2) 35�! � � � 24 xi�1f(xi) 35�! p(xi) 24 xif(xi+1) 35�! � � � (8)However, in�nite SLD-derivations are not 
ompletely 
hara
terised: TP isshown #-
ontinuous by 
onsidering a sub
lass of de�nite programs and fur-thermore, only a sub
lass of the �nite and in�nite elements 
onstru
tible bynonterminating 
omputations of a logi
 program (
alled �minimal� obje
ts)are 
hara
terised by a proper subset of gfp(TP ). For example, with the pro-gram P = fp(f(x); y) p(x; y)g, the in�nite derivation starting from p(x; y)
omputes a minimal obje
t:fp(x; y)g�� xf i(xi) ��i�0while from p(x; g(y)), no minimal obje
t is 
omputed.4 Indu
tion, 
o-indu
tion and logi
 programming4.1 Logi
 programs as indu
tive de�nitionsThe �orthodox� view of logi
 programming is based on the identi�
ation ofa logi
 program with a �rst order theory: every 
lause in a de�nite programstands for a �rst order formula. De�nite 
lauses enjoy a remarkable property:the model interse
tion property (if P is a de�nite program and fMigi2I is10



a non-empty set of Herbrand models of P , then \i2IMi is an Herbrandmodel of P ). The usual model-theoreti
 semanti
s is given by the leastHerbrand model, written MP , whi
h is the interse
tion of all Herbrandmodels. From the operational point of view, this set 
oin
ides with theground su

ess set of P . This 
orresponden
e is proved by 
onsidering theleast �xpoint of the operator TP , asso
iated with the program P , also 
alledthe �xed point semanti
s. This �xed point semanti
s is an alternative tothe traditional paradigm and 
an be obtained by 
onsidering logi
 programsas indu
tive de�nitions of sets and relations: a de�nite program de�nes anew �logi
� (i.e. a formal system) and denotes a set of theorems in thislogi
. In this way, a 
lause A  A1; � � � ; An 
an be viewed as a rule usedto prove A from the proofs of A1; � � � ; An. From this point of view, this
lause 
 is a fun
tion mapping a n-uple of proofs �Ai of Ai to a proof �Aof A. We write �A:A to express that �A is a proof of A and we say thetype of �A is A. This 
orresponden
e between, proofs and fun
tions, and,propositions and types, is now well-known and is based on the Curry-Howardisomorphism [14℄. As we said, the traditional semanti
s of logi
 programs isde�ned in terms of least Herbrand model and ground su

ess set. Within the�logi
 program as indu
tive de�nition� paradigm, the same semanti
s 
an beexpressed by 
onsidering a program P as a s
hemati
 rule whi
h abbreviatesan in�nite set of rules [P ℄: all ground instan
es over the Herbrand universe.By following this approa
h, 
lauses should not be viewed as assertions in�rst order logi
, but as rules generating a set. The �xed point semanti
s haslong been used as a te
hni
al devi
e. It 
orresponds to the �logi
 program asindu
tive de�nition� paradigm and 
an be 
onsidered as the logi
 program'sintrinsi
 de
larative 
ontent. Indeed, many properties of logi
 programs aresimilar to these enjoyed by indu
tive de�nitions. Re
all that an Herbrandinterpretation I is a model of P i� TP (I) � I and the model interse
tionproperty, allows to 
onsider the least Herbrand model of P as the interse
tionof all Herbrand models of P . Sin
e TP is exa
tly the operator T[P ℄ obtainedfrom the rule set [P ℄, as des
ribed by (5), ea
h Herbrand model of P is aT[P ℄-
losed set (i.e. a [P ℄-
losed set) and, sin
e Ind(T[P ℄) is de�ned as theinterse
tion of all T[P ℄-
losed sets, we have MP = Ind([P ℄). By theorem 1,it follows MP = Ind([P ℄) = lfp(T[P ℄). Now, sin
e the body of ea
h de�nite
lause 
ontains a �nite number of atoms, the rule set [P ℄ is �nitary andtherefore T[P ℄ is "-
ontinuous. Hen
e by theorem 2, we obtain the well-known result MP = \T[P ℄(I)�II = lfp(T[P ℄) = T "![P ℄ whi
h only follows fromproperties of indu
tive de�nitions: the least Herbrand model 
an be dire
tlyexpressed by an indu
tive de�nition. In a similar way, the least C-model 
an11



be also dire
tly expressed by an indu
tive de�nition based on the rule set:dP e = f�C; C 2 P; � : X ! T�[X℄gTherefore, T CP is the operator TdP e asso
iated, as des
ribed by (5), with dP e.Sin
e grammars are indu
tive de�nitions, this approa
h 
an explain whylogi
 programming works so well at natural language pro
essing. Indu
tivede�nitions are also useful to give a semanti
s to negation in logi
 program-ming: when the program 
an be partitioned into several indu
tive de�nitions,so that ea
h negation refers to a set that has already been de�ned (i.e. whenthe dependen
y graph is a
y
li
), it 
an be interpreted as an iterated indu
-tive de�nition. This �logi
 program as indu
tive de�nition� paradigm hasalso be used to extend logi
 programming languages in order to in
rease thepower of �pure� de
larative programming [16, 17, 18, 26℄.4.2 Logi
 programs as 
o-indu
tive de�nitions4.2.1 Atoms 
omputed at in�nity and greatest �xpointsAs we said in se
tion 3, the main approa
hes to assign some meaning toin�nite SLD-derivations are based on a greatest �xed point 
hara
terisationof in�nite obje
ts 
omputed by nonterminating derivations. For programs,like program (7), these approa
hes are sound and 
omplete sin
e we havep(f!) 2 gfp(TP ) and p(f!) is 
omputable by the in�nite derivation (8).This may be explained by 
onsidering the �logi
 program as 
o-indu
tivede�nition� paradigm: the greatest �xpoint of the operator TP over the 
om-pleted Herbrand base 
orresponds to the 
o-indu
tive set CoInd(T[[P ℄℄), where[[P ℄℄ denotes all the ground instan
es of 
lauses o

urring in P over the 
om-pleted Herbrand base, and then we have p(f!) 2 CoInd([[P ℄℄) sin
e the 
lausep(f!) p(f!) is in [[P ℄℄ and therefore fp(f!)g is [[P ℄℄-dense (i.e. T[[P ℄℄-dense)be
ause f(f!) = f!. However, these approa
hes do not lead to a 
om-plete semanti
s: there exist atoms in gfp(TP ) whi
h are not 
omputable byan in�nite derivation. As a typi
al example, if we 
onsider the logi
 pro-gram (3), p(f!) is not 
omputable by an in�nite derivation but we havep(f!) 2 gfp(TP ) by the same density argument. The in
ompleteness 
omesfrom the fa
t that 
lauses of [[P ℄℄ are expressed over a language ri
her than thelanguage of 
lauses of P and the language of queries. However, by allowingin�nite elements in queries and programs, the metri
 approa
h be
omes 
om-plete: for example, with program (3) we have the following in�nite derivationfrom the query p(f!):p(f!)! p(f!)! � � � p(f!)! � � � (9)12



whi
h will be viewed as a proof of p(f!).4.2.2 In�nite SLD-derivations as produ
tive termsLogi
 programs express properties on terms whi
h 
an be proved throughSLD-derivations. Within the �logi
 programs as 
o-indu
tive de�nitions�paradigm, it is also possible to establish these properties by 
o-indu
tion.In this se
tion, we 
ompare proofs by 
o-indu
tion a

ording to the use ofin�nite terms or not. Co-indu
tion is a proof prin
iple based on the followingremark:(T. Coquand [5℄) In order to establish that a proposition � followsfrom other propositions �1, � � � , �q, it is enough to build a proofterm e for it, using not only natural dedu
tion, 
ase analysis, andalready proven lemmas, but also using the proposition we wantto prove re
ursively, provided su
h a re
ursive 
all is guarded byintrodu
tion rules.Let us �rst introdu
e some examples. Sequen
es of positive integers 
an bede�ned with the two following introdu
tion rules:(nil) : nil:LIN (
ons) : n: IN l:LIN
ons(n; l):LINIn the 
ase of an indu
tive de�nition, these two rules are asso
iated with thefollowing elimination s
heme:
(LIN-Ind) : P : LIN ! Propl : LIN�1 : P (nil)�2 : (n0: IN)(l0:LIN)P (l0)! P (
ons(n0; l0))0BB� Fix F (l0) : P (l0):=mat
h l0 withnil ! �1 j
ons(n1; l1) ! �2(n1; l1; F (l1)): 1CCA (l) : P (l)and elements of LIN are the result of a �nite number of appli
ations of thesetwo rules. A 
o-indu
tive de�nition is obtained by relaxing this 
ondition andadmitting that an element 
an also be introdu
ed by a non-ending pro
essof 
onstru
tion de�ned by these rules. Given su
h a de�nition, we have the13



following elimination s
heme:
(LIN-CoInd) : P : LIN ! Propl : LIN�1 : P (nil)�2 : (n0: IN)(l0:LIN)P (
ons(n0; l0))Case l of �1 �2 end :P (l)asso
iated with the two redu
tion rules:Case nil of �1 �2 end ! �1Case 
ons(n; l) of �1 �2 end ! �2(n; l)Now, it is possible to de�ne several in�nite sequen
es of integers in a re
ursiveway. For example, the (in�nite) sequen
e of 
onse
utive integers startingfrom n 
an be de�ned by from(n) where:from := �n: IN:
ons(n; from(S(n))) : IN! LINHowever, every re
ursive de�nition is not valid: any �nite segment of thesequen
e must be expli
itly 
onstru
ted using the two rules (for more details,see [13℄). For example, we have :from(n) ! 
ons(n,from(S(n))) ! 
ons(n,
ons(S(n),from(S2(n)))) ! � � �The de�nition of from is 
orre
t be
ause it starts building the obje
t pro-viding an expli
it �nite initial segment. Now, if we 
onsider the followingde�nition: zeros := 
ons(0,tail(zeros)) : LINwhere tail is de�ned by:tail(l) := mat
h l with nil ! nil | 
ons(n0; l0) ! l0.then we have the following sequen
e of redu
tions:zeros ! 
ons(0,tail(zeros)) ! 
ons(0,tail(zeros)) ! � � �Hen
e, any �nite segment of length greater than 1 
annot be obtained by re-du
tions. from is said to be a produ
tive term, while zeros is not a produ
tiveterm.In a more formal way, produ
tive terms are de�ned as follows. Re
allthat a term t in T is in 
anoni
al form i� it starts with a 
onstru
tor ofT . A (dire
t) 
omponent of a term t in T is a term t0 in T if t 
an be14



redu
ed to a 
anoni
al term 
(� � � ; t0; � � �). A term t is produ
tive i� it 
an beredu
ed to a 
anoni
al term and if all its 
omponents are produ
tive. Forexample, a term in LIN is produ
tive i� it 
an be redu
ed either to nil or
ons(a; b) where b is produ
tive. Like for terminaison of re
ursive fun
tionson indu
tive sets, there exists a simple synta
ti
al 
riteria for produ
tiveterms over 
o-indu
tive sets: guardedness. This 
lass of de�nitions, 
alledguarded (by 
onstru
tors) de�nitions, has been noti
ed, in the 
ontext oftype theory, by T. Coquand [5℄. A guarded by 
onstru
tors de�nition is ade�nition su
h that all the re
ursive 
alls of the de�nition are done afterhaving expli
itly gived whi
h is (at least) the �rst rule to start building theelement and su
h that no other fun
tions apart from 
onstru
tors are appliedto re
ursive 
alls. However, note that this 
ondition is too restri
tive: thereexist produ
tive terms whi
h do not satisfy this 
ondition.In the following, we 
onsider equality as an indu
tive relation. Thatis, given a set A and an x in A, the set fz; z = xg is the smallest whi
h
ontains x. This de�nition, due to C. Paulin-Mohring, is equivalent to de�ne= as the smallest re�exive relation:(=) : x = xLeibniz'equality is obtained as the elimination s
heme asso
iated with thisde�nition:
(eq_ind) :

x : AP : A! Prop�1 : P (x)y : A�2 : x = yP (y)A fair SLD-derivation, like (2), whi
h 
omputes at least one in�nite term tis both a 
omputation (of the in�nite term t) and a proof that this in�niteterm is su
h that p(� � � ; t; � � �) for a predi
ate p. In this 
ase, it 
an be noti
edthat the proof term 
orresponding to the proof of p(� � � ; t; � � �) is de�ned byusing the elimination s
heme eq_ind. For example, with program (7), theproof term of p(f!) is de�ned by:�:= eq_ind(f(f!); �x:p(x); C(f!; �); f!; `!) : p(f!) (10)where the re
ursive 
all is guarded by the 
onstru
tor C where C is the
lause of P and where `! is a proof of f! = f(f!)2, and does not 
orrespond2Note that f! is de�ned by a guarded by 
onstru
tors de�nition (f!:=f(f!)) sin
epossibly in�nite terms are 
o-indu
tively de�ned with fun
tion symbols as 
onstru
tors.15



to the in�nite derivation (8) 
omputing f!. However, proof term (10) 
an beviewed as the derivation (9) we 
ould obtain from the query p(f!). That'swhy by allowing in�nite terms in queries, a 
omplete semanti
s for all in�nitederivations 
ould be obtained. Another example 
an be shown by 
onsideringthe logi
 program (1), where the 
lause C 
orresponds to a 
o-indu
tivede�nition. We 
an prove that 8n LN(n; from(n)). For this we need thefollowing property:`! : 8n from(n) = 
ons(n; from(S(n)))The proof term � of 8n LN(n; from(n)) 
an be de�ned by the followingguarded by 
onstru
tors de�nition:� :=�n: eq_ind( 
ons(n; from(S(n)));�u:LN(n; u);C(n; from(S(n)); �(S(n)));from(n);`!(n))Clearly, this proof does not 
orrespond to the in�nite derivation (2).Let us 
onsider now an in�nite proof over a �nite obje
t: with pro-gram (3), it is possible to prove that 8x p(x). The 
orresponding proof �is de�ned by the guarded by 
onstru
tors term �:=�x:C(x; �(x)) and 
anbe dire
tly related to the in�nite derivation (4). The appli
ation of the
onstru
tor C 
orresponds to the �rst transition of this derivation, whilethe re
ursive 
all 
orresponds to the next ones. In a similar way, with theprogram P = fp(x) p(f(x))g, we 
an prove 8xp(x) as follows:�:=�z:C �z; ��� zf(z) � p(z)��and 
learly � 
orresponds to the derivation:p(z)! � zf(z) � p(z)! � zf(z) � � zf(z) � p(z)! � � �Here again, the appli
ation of the 
onstru
tor C 
orresponds to the �rsttransition of this derivation, while the re
ursive 
all 
orresponds to the nextones (i.e. the derivation starting from the query p(f(z))). A more signi�
antexample is the program testing 
onne
tivity in a dire
ted graph. Sin
e thedire
ted graph 
onsidered by the program (see �gure 1) is 
y
li
, there existsan in�nite derivation from the query path(a; x):path(a; x) ! edge(a; b); path(b; x)! path(b; x)! edge(b; 
); path(
; x)! path(
; x)! edge(
; a); path(a; x)! path(a; x)! � � �16



b a 
 da2 : edge(b; 
) a1 : edge(a; b) a3 : edge(
; a) 
1 : path(x; x) 
2 : path(x; z) edge(x; y); path(y; z)Figure 1: Conne
tivity in a dire
ted graphThis derivation 
an be viewed as a proof of 8x path(a; x) whi
h 
an be de�nedre
ursively:� :=�x:
2(a; b; x; a1; 
2(b; 
; x; a2; 
2(
; a; x; a3; �(x))))Of 
ourse, with the following version of the predi
ate path:path(0; x; x) path(S(n); x; z)  edge(x; y); path(n; y; z)we have path(S!; x; d) for x 2 fa; b; 
g sin
e the length of this �path� isin�nite (as the length of the proof) and Ind[path℄ 
hara
terises �nite pathsin the graph.Proof terms over �nite obje
ts do not use eq_ind and 
an be viewed asde�nitions of the sequen
es of 
lauses used in the 
orresponding derivations.Furthermore, sin
e a 
lause is applied at ea
h resolution step of a derivation,the asso
iated proof terms should be produ
tive. However, it is not alwayspossible to asso
iate a produ
tive proof term with an in�nite SLD-derivation.Consider, for example, the following program:P = fp(x) p(f(x))| {z }C1 ; p(x) p(g(x))| {z }C2 g (11)At ea
h resolution step in a derivation from the query p(z), we 
an applyboth C1 and C2 and if the following fun
tion:FC : IN! fC1; C2gde�ning the 
lause used at the n-th transition, is not �
omputable�, then theproof term asso
iated with the derivation 
annot be written in a �nite form,17



sin
e this term is de�ned by:�:=�x:�d(0; x) : �xp(x) with�d:=�n:�x:(FC(n))(x; �d(S(n); (FF (n))(x))) andFF : IN! ff; gg:=�n:(if FC(n) = C1 then f else g)This means that the proof term asso
iated with a derivation 
an be viewedas the de�nition of the in�nite sequen
e of the 
lauses applied during thederivation: given a produ
tive proof term, it is possible to de�ne the sequen
eof the 
lauses used during the asso
iated derivation. For example, 
lauses inprogram (11) stands for the following introdu
tion rules:(C1) : x : T�[X℄� : p(f(x))C1(x; �(x)) : p(x) (C2) : x : T�[X℄� : p(g(x))C2(x; �(x)) : p(x)asso
iated with the following 
o-indu
tive elimination s
heme:
(Elimination) :

x : T�[X℄P : p(x)! s� : p(x)�1 : (x : T�[X℄)(�f : p(f(x)))P(C1(x; �f ))�2 : (x : T�[X℄)(�g : p(g(x)))P(C2(x; �g))Case � of �1 �2 end : P(�)Redu
tion rules are:Case C1(x; �0) of �1 �2 end ! �1(x; �0)Case C2(x; �0) of �1 �2 end ! �2(x; �0)and allows to de�ne FP : 8xp(x)! IN! fC1; C2g as follows:FP (�; n):= mat
h � withC1(x; �0)! (mat
h n with 0! C1 jS(k)! FP (�0; k))jC2(x; �0)! (mat
h n with 0! C2 jS(k)! FP (�0; k)):Hen
e, we have FC = FP (�).Sin
e the presen
e of in�nite elements in the Herbrand base leads toin
ompleteness of the approa
hes based on the greatest �xpoint, we fo
us inthe following on the in�nite derivations whi
h do not 
ompute in�nite terms.
18



5 In�nite SLD-proofsExamples presented in se
tion 4.2.2 show that in�nite derivations whi
h donot 
ompute in�nite terms 
an be related to proof terms over 
o-indu
tivesets. Therefore, we investigate in this se
tion this 
lass of derivations. Re-
all that one of the underlying ideas of logi
 programming is to 
onsider a
omputation as the extra
tion of a result from a proof.De�nition 1 (SLD-proofs) An SLD-proof is either an SLD-refutation ora fair in�nite SLD-derivation.5.1 Proof trees and fair derivationsIn order to prove the 
ompleteness of our approa
h, we prove in this se
tionthat, given a rule set �, there exists an SLD-proof with � as program,whi
h do not 
ompute anything, from ea
h element in CoInd(�). For this,we introdu
e the 
lassi
al notion of proof trees and we relate this notion toSLD-derivations.De�nition 2 (Proof trees) Given a rule set �, a proof tree of x for � isa possibly in�nite tree T su
h that x is the root of T , and for every node zo

urring in T with z1; � � � ; zn as sons, there exists a rule z  z1; � � � ; zn 2 �(in parti
ular, if z is a leaf, there exists a rule z  2 �).In the following, we say that T is a partial proof tree if T is a proof treewhose leaves do not ne
essarily 
orrespond to a (unit) rule. We have thefollowing well-known lemma.Lemma 1 x 2 CoInd(�) i� x is the root of a proof tree for �.Furthermore, the proof tree is �nite i� x 2 Ind(�). In order to be ableto �translate� any proof tree into an SLD-derivation, we need two lemmasexpressing properties about variables renaming. Their proofs are quite te
h-ni
al and are presented in appendix. However, it is important to note thatit is ne
essary to take into a

ount the renaming pro
ess used in an SLD-derivation, often 
onsidered as a �minor� detail, in more informal presenta-tions. Of 
ourse, proofs are getting a bit 
ompli
ated but this avoid some
onfusions usually due to the fa
t that the meaning of �renaming� is oftenassumed to be simpler than its formal de�nition implies. Furthermore, weprove the following lemma. 19



Lemma 2 Let A1 and A2 be two atoms su
h that var(A1) \ var(A2) = ;.If for a substitution �, su
h that dom(�) � var(A2), A1 = �A2, then � is amgu of A1 and A2.We are now in position to prove the main result of this se
tion relating prooftrees with SLD-proofs introdu
ed in de�nition 1.Theorem 4 Given a de�nite program P and an atom A, if A 2 CoInd(P ),then there exists an SLD-proof from A with P su
h that, for all i � 1, themgu �i, used during the i-th resolution step of the SLD-proof, is a renamingsubstitution whose domain 
oin
ides with the variables o

urring in the headof the 
lause used.Proof. If A 2 CoInd(P ), then, by lemma 1, A is root of a proof tree T forP . Number the ar
s emanating from ea
h node from left to right, startingwith 1. Ea
h node 
an be designated (indexed) by the word obtained by
on
atenating the numbers of the ar
s of the path leading from the root tothe node (" is the empty word). The breadth-�rst traversal of T produ
eslist a L. Sin
e T is a proof tree for P , for ea
h node A~{ in T , there exists a
lause CT;~{ 2 P whi
h 
an be written A~{  A~{1; � � � ; A~{n~{ . We write �` thelexi
al order over IN? and j~{j the length of ~{ 2 IN?. Indexes of T 
an also beordered by � as follows:~{ � ~| , A~{ o

urs before A~| in L, ((j~{j < j~|j) _ (j~{j = j~|j ^~{ �` ~|))ZT = [var(CT;~{) is the set, possibly in�nite, of variables o

urring in T .By lemma 8, given a 
lause CT;~{ 2 P , a renaming substitution r~{0, su
hthat range(r~{0) \ var(CT;~{) = ;, and a set of variables Z~{, there exists asubstitution �~{, a 
lause C~{ and a renaming substitution r~{1 = r~{r~{0 su
h that:var(C~{) \ (var(r~{0CT;~{) [ Z~{) = ; r~{1C�T;~{ = �~{C�~{dom(�~{) = var(C+~{ ) range(r~{) = var(C�~{ )nvar(C+~{ )where �~{ is an idempotent renaming substitution whi
h is a mgu of C+~{ andr~{0C+T;~{. In the following, we write T (CT;~{; r~{0; Z~{) for the transition:r~{0C+T;~{ C~{;�~{;Z~{!P �~{C�~{
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From L, we 
an de�ne the following sequen
e of resolution steps:8>>><>>>: t" = T (CT;"; sid; ZT )t~{k = T �CT;~{k; r~{k0 ; Z~{k� 1 � k � n~{r~{k0 = r~{1Z~{k = ZT [ S~|�~{k var(C~|)where sid is the empty substitution. In order to verify the soundness of thisde�nition, we have to prove that:8~{ range(r~{0) \ var(CT;~{) = ;For this, let us prove that 8~{ range(r~{0)\ZT = ;. We pro
eed by indu
tionover ~{: suppose the property holds for every ~| � ~{. If j~{j = 0, then theproperty holds sin
e range(sid) \ var(CT;") = ;. Else, ~{ 
an be written ~|kand, by de�nition, we have r~|k0 = r~|1 = r~|r~|0 where r~| is a substitution su
hthat range(r~|) \ ZT = ; sin
e:range(r~|) � var(C�~| )nvar(C+~| ) ZT � Z~| var(C~|) \ Z~| = ;By indu
tion hypothesis, we 
an 
on
lude sin
e ~| � ~|k and:range(r~|k0 ) = range(r~|1) � (range(r~|0) [ range(r~|)) var(CT;~|k) � ZTHen
e, we 
an obtain the following derivation:A C";�";ZT!P R C1;�1;Z1!P R1 ! � � � ! Rn�1 Cn;�n;Zn!P Rn C11;�11;Z11!P R11 ! � � �Clearly, sin
e the derivation is obtained from a breadth-�rst traversal of T ,it is either a refutation or an in�nite fair derivation. We prove in appendixthat this SLD-proof is 
orre
t and satis�es the desired properties. JIn this se
tion, proof trees for a rule set � have been related to SLD-proofs with � viewed as a program. We will see that the appropriate rule setallowing to study in�nite derivations, whi
h do not 
ompute in�nite terms,is the rule set obtained from a program P by 
onsidering all the (�nite)instan
es, not ne
essarily ground, of 
lauses in P . This 
orresponds to theC-semanti
s approa
h.
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5.2 Dire
t SLD-proofsThe derivation obtained by theorem 4 is a spe
ial 
ase of a derivation whi
hdo not 
ompute in�nite terms: su
h a derivation does not 
ompute anythingsin
e the mgu's used are just renaming substitutions. This parti
ular 
lassof derivation 
orrespond to the (
o-)indu
tive de�nition obtained by 
onsid-ering a subset of the rule set dP e. In this paragraph, we present the mainresults obtained for these derivations.De�nition 3 (Dire
t SLD-proofs) A dire
t SLD-proof is an SLD-proof:R0 C1;�1!P R1 !P � � � !P Ri�1 Ci;�i!P Ri !P � � �su
h that for every i � 1, dom(�i) � var(C+i ). In parti
ular, a dire
t SLD-refutation is a dire
t SLD-proof ending with the empty query.In order to give a �model-theoreti
� semanti
s to dire
t SLD-proofs, weextend the notion of C-truth as follows. Given a C-interpretation I, a
lause A  B1; � � � ; Bq is C+-true in I i� for every substitution � su
h thatdom(�) � var(A), if atoms �Bi (1 � i � q) are C+-true in I, then �A isC+-true in I. This notion extends the C-truth sin
e if a 
lause is C-true in Ithen it is C+-true in I. A C-interpretation I is a C+-model of a program P ifevery 
lause in P is C+-true in I. Hen
e, every C-model of P is a C+-modelof P . However, every C+-model of P is not ne
essarily a C-model of P . Forexample, if we 
onsider the program:P = fp(x) p(y) ; p(f(w)) g (12)the C-interpretation I = dp(f(z))e is 
learly a C+-model of P , sin
e for everysubstitution � su
h that dom(�) � var(p(x)), �p(y) = p(y) 62 I. But, I isnot a C-model of P , sin
e with the substitution � = fy=f(y)g, we have�p(y) = p(f(y)) 2 I but �p(x) = p(x) 62 I. However, C+-models enjoy themodel interse
tion property and are useful to de�ne a de
larative semanti
sfor dire
t SLD-proofs.The �logi
 program as indu
tive de�nition� paradigm is obtained by 
on-sidering the rule set asso
iated with P de�ned by:dP e+ = f�C; C 2 P and dom(�) � var(C+)gwhi
h is asso
iated, as des
ribed by (5), with the following operator:TdP e+(I) = fA 2 At�;�[X℄; 9A A1; � � � ; An 2 dP e+Ai 2 I (1 � i � n) gThis operator satis�es the following properties whi
h are proved in appendix:22



� TdP e+ is monotone and "-
ontinuous.� A C-interpretation I is a C+-model of a program P i� TdP e+(I) � I.� MC+P = lfp(TdP e+) = Ind(TdP e+) = T "!dP e+C+-semanti
s is a spe
ial 
ase of C-semanti
s, and not surprisingly, we haveMC+P � MCP . However, the 
onverse in
lusion does not hold: for example,with program (12), we haveMC+P = dp(f(x))e andMCP = dp(x)e. For dire
tSLD-refutations, we have standard results.Theorem 5 (C+-soundness) If there exists a dire
t SLD-refutation froma query A1; � � � ; Aq, then fA1; � � � ; Aqg �MC+P .Proof. Indu
tion over the refutation:A1; � � � ; Aq C1;�1! P R1 !P � � � !P Ri�1 Ci;�i! P Ri !P � � � !P �� If the refutation is a transition, then q = 1 and C1 is a unit 
lauseA  . By hypothesis, we have A1 = �1A and sin
e dom(�1) � var(C+1 ) we
an 
on
lude seeing thatMC+P is a C+-model of P .� Consider the derivation A1; � � � ; Aq C1;�1! P R1 �;�!P �. If k (1 � k �q) is the position of the sele
ted atom in the �rst transition, then R1 isthe query �1(A1; � � � ; Ak�1; C�1 ; Ak+1; � � � ; Aq). Sin
e dom(�1) � var(C+1 ),we have R1 = A1; � � � ; Ak�1; �1C�1 ; Ak+1; � � � ; Aq. By indu
tion hypothesis,R1 �MC+P and now it su�
es to prove Ak 2MC+P . Sin
eMC+P is a C+-modelof P and �1C�1 �MC+P , we have �1C+1 = Ak 2MC+P . JTheorem 6 (C+-
ompleteness) If fA1; � � � ; Aqg �MC+P , then there existsa dire
t SLD-refutation from the query A1; � � � ; Aq.Proof. We �rst prove the theorem for q = 1. By lemma 12, A1 2 T "!dP e+and there exists a natural k su
h that A1 2 T "kdP e+ . We prove by indu
tionthat for all k, if A 2 T "kdP e+ , then there exists a dire
t SLD-refutation from A.� If k = 0, then A 2 T "0dP e+ = ; indu
es a 
ontradi
tion.� If k = m+ 1, then A 2 T "kdP e+ = TdP e+(T "mdP e+) and there exist a 
lauseC 0, written A0  B01; � � � ; B0r, and a substitution �, whose domain is in
ludedin var(A0), su
h that �A0 = A and f�B01; � � � ; �B0rg � T "mdP e+ . Furthermore,23



by lemma 7, we 
an suppose that var(C 0) \ var(A) = ;. Therefore, bylemma 2, � is a mgu of A and A0 and we get the transition:A C0;�!P �B01; � � � ; �B0rNow, sin
e f�B01; � � � ; �B0rg � T "mdP e+ , by indu
tion hypothesis, there exist rdire
t SLD-refutations:�B01 �!P � � � � �B0r �!P �and, there exist r dire
t SLD-refutations:d01: �B01 �!P � � � � d0r: �B0r �!P �su
h that 8i (1 � i � r) #(d0i) \  var(A) [ var(C 0) [ S1�j<i#(d0j)! = ;This allows to get the dire
t SLD-refutation:A C0;�!P �B01; � � � ; �B0r �!P �For q > 1, the theorem is proved in the same way (
ombinaison of dire
tSLD-refutations). JTherefore, atoms in MCP nMC+P are atoms from whi
h SLD-refutations,but no dire
t ones, exist. For example, with program (12), whereas p(z) 2MCP , p(z) 62 MC+P . Even if there exists an SLD-refutation:p(z) 24 x1z 35!P p(y1) 24 y1f(w1) 35!P � (13)there is no dire
t SLD-refutation from p(z). However, for the 
lass of pro-grams P su
h that var(C�) � var(C+) for every 
lause of P , we havedP e+ = dP e (and thenMCP =MC+P ). Another important property satis�edby these programs is T #!dP e = gfp(TdP e). For in�nite dire
t SLD-proofs, wehave the following results.Theorem 7 (C+-soundness) Let P be a de�nite program and A0 be anatom. If there exists a dire
t SLD-proof:A0 C1;�1! P R1 !P � � � !P Ri�1 Ci;�i! P Ri !P � � �then A0 2 gfp(TdP e+). 24



Proof. By de�nition, it su�
es to prove that there exists a TdP e+-denseset 
ontaining A0. Let us prove that [i�1�iC+i satis�es these two properties.� By de�nition, A0 = �1A0 = �1C+1 � [i�1�iC+i .� We have to prove [i�1�iC+i � TdP e+ �[i�1�iC+i �. If A 2 [i�1�iC+i ,then there exists a natural k � 1 su
h that A = �kC+k and, sin
e dom(�k) �var(C+k ) it follows �kCk 2 dP e+. It su�
es to prove that ea
h atom o

ur-ring in �kC�k o

urs in [i�1�iC+i . If Ak 2 �kC�k , then Ak 2 Rk and sin
ethe derivation is either a refutation or a fair in�nite derivation, there existsa resolution step in whi
h the residu (i.e. the further instantiated version)of Ak is the sele
ted atom:� � � Ck;�k! P Rk ! � � � ! Rm Cm+1;�m+1! P Rm+1 ! � � �Hen
e, for m � k, we have �m+1 � � � �k+1Ak = �m+1C+m+1. Sin
e variableso

urring in Ci do not o

ur in 
lauses Cj (j < i) and sin
e, ea
h mgu�j is su
h that dom(�j) � var(C+j ), it follows �m+1 � � � �k+1Ak = Ak =�m+1C+m+1 � [i�1�iC+i and we 
an 
on
lude. JCompleteness theorem for in�nite dire
t SLD-proofs is proved by using thefollowing lemma.Lemma 3 If there exists a transition R0 �C;�! R1 su
h that:dom(�) = var(�C+) var(C) \ var(R0) = ; dom(�) = var(C+)then there exists a transition R0 C;�! R1 su
h that dom(�) = var(C+).Proof. Let A be the sele
ted atom in R0 at position k. Sin
e dom(�) =var(�C+), we have A = �A = ��C+. Moreover, sin
e var(C)\var(R0) = ;,and by lemma 2, the restri
tion � of �� to the variables o

urring in C+ isa mgu of A and C+. Therefore, we get the transition:R0 C;�! R01Let us prove that R01 = R1. Sin
e:R1 = �R0[k  �C�℄ = R0[k  ��C�℄ andR01 = �R0[k  C�℄ = R0[k  �C�℄it su�
es to prove ��C� = �C�. If v 2 var(C�), then two 
ases arepossible: 25



1. If v 2 var(C+), then, by de�nition of �, we have ��v = �v.2. Else, v 2 var(C�)nvar(C+), and by hypothesis v 62 dom(�) and v 62dom(�). Therefore, v 2 var(�C�)nvar(�C+) and v 62 dom(�). Thisterminates the proof sin
e ��v = �v = v. JTheorem 8 (C+-
ompleteness) Let P be a de�nite program and A be anatom. If A 2 gfp(TdP e+), then there exists a dire
t SLD-proof from A with P .Proof. If A 2 gfp(TdP e+), then, by theorem 1, A 2 CoInd(dP e+) and bytheorem 4, there exists a dire
t SLD-proof from A with dP e+ su
h that forall i � 1, the mgu �i, used during the i-th resolution step of the SLD-proof, isa renaming substitution whose domain 
oin
ides with the variables o

urringin the head of the 
lause used:A C1;�1! dP e+ R1 !dP e+ � � � !dP e+ Ri�1 Ci;�i! dP e+ Ri !dP e+ � � �By lemma 14, there exists a set fCP;1; � � � ; CP;i; � � �g of variants of 
lauses ofP su
h that:8i > 0 var(CP;i) \0�var(A0) [ [1�j<i var(CP;j)1A = ;and su
h that ea
h 
lause CP;i satis�es Ci = �iCP;i where �i is an idempotentsubstitution su
h that dom(�i) = var(C+P;i). Then, by lemma 3, there existsa dire
t SLD-proof from A with P . JUnfair in�nite �dire
t� SLD-derivations 
an be viewed as partial proofs. Re-
all that given a derivation:R0 C1;�1! P R1 !P � � � !P Ri�1 Ci;�i! P Ri !P � � �for all i � 1 we have P j= Ri ) P j= �i � � � �1R0. This result 
an begeneralised for �dire
t derivations� by 
onsidering:R1 = [p�0 \p�nRnTheorem 9 Let P be a program and A0 be an atom. If there exists anin�nite derivation:R0 = A0 C1;�1! P R1 !P � � � !P Ri�1 Ci;�i! P Ri !P � � �su
h that for all i > 0, dom(�i) � var(C+i ), then:R1 � gfp(TdP e+)) A0 2 gfp(TdP e+)26
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Figure 2: Proof of theorem 9Proof. Suppose that [p�0 \p�n Rn � gfp(TdP e+) and let us prove thatA0 2 gfp(TdP e+). For this, by theorem 1 and by lemma 1, it su�
es to provethat there exists a proof tree T of A0 for dP e+. Let us de�ne the sequen
eT1; � � � ; Ti; � � � of partial proof trees su
h that every atom o

urring in Ri isa leaf in Ti (see �g. 2).� (T1) T1 is obtained by 
onsidering the �rst transition: its root A0 =�1A0 has atoms in R1 = �1C�1 as sons.� (Tn) We show how we 
an obtain Tn from Tn�1. We know that atomso

urring in Rn�1 are leaves in Tn�1. Let A be the sele
ted atomin Rn�1, sin
e dom(�n) � var(C+n ), Tn is obtained by adding atomso

urring in �nC�n as sons of A. Sin
e, Rn = �nRn�1[k  C�n ℄ =Rn�1[k  �nC�n ℄, Tn is a partial proof tree of A0 for dP e+ su
h thatevery atom o

urring in Rn is a leaf in Tn.By iterating this pro
ess, we obtain a partial proof tree T1 whose leaves areeither the head of a unit 
lause in dP e+ or an atom in R1, whi
h is, byhypothesis, in gfp(TdP e+) and 
orrespond, by theorem 1 and by lemma 1, tothe root of a proof tree for dP e+. Therefore, by adding in T1 these prooftrees at the 
orresponding leaf, we obtain a proof tree of A0 for dP e+. J27



This theorem is not a spe
ial 
ase of theorem 8, it just gives anotherway to interpret in�nite �dire
t derivations�. For example, if we 
onsiderderivation (4), then by theorem 8 we have p(x) 2 gfp(TdP e+) while by the-orem 9, we just have p(x) 2 gfp(TdP e+) ) p(x) 2 gfp(TdP e+) sin
e forthis derivation we have R1 = p(x). C+-semanti
s works well to give asemanti
s to programs whose 
lauses do not 
ontain existential variables(i.e. var(C�) � var(C+)). However, derivations, like derivation (13), arenot 
onsidered in this approa
h. The next se
tion take into a

ount thesederivations by using the C-semanti
s approa
h (but no result about unfairderivations, like theorem 9, will be obtained).5.3 SLD-proofs over a �nite domainSLD-proofs over a �nite domain are SLD-derivations whi
h do not 
omputein�nite terms. In a more formal way, they 
an be de�ned as follows.De�nition 4 (SLD-proofs over a �nite domain) An SLD-proof over a�nite domain is either a refutation or a fair in�nite derivation:R0 C1;�1!P R1 !P � � � !P Ri�1 Ci;�i!P Ri !P � � �su
h that 8k � 0 9p > k 8q � p �q � � � �p � � � �k+1Rk � �p � � � �k+1Rk.It is important to note that it does not su�
e that the 
ondition holds forthe initial query. Consider for example the program:P = fq(x) p(x) ; p(f(x)) p(x)gEven if during the derivation :q(z) �1=24 xz 35!P p(z) �2=24 zf(x1) 35!P p(x1)!P � � � �i�1=24 xi�1f(xi) 35!P p(xi)!P � � �ea
h �i is su
h that �iq(z) = q(z), this derivation 
omputes the in�niteterm f!. We will need an equivalent de�nition for SLD-proofs over a �nitedomain. This de�nition follows from the next lemma.Lemma 4 A derivation R0 C1;�1!P R1 !P � � � !P Ri�1 Ci;�i!P Ri !P � � � is anSLD-proof over a �nite domain i�:8i � 0 9R 8n � i+ 1 �n�n�1 � � � �i+1Ri � Rwhere R is a query (i.e. R does not 
ontain in�nite atoms).28



Proof. ()). By de�nition:8k � 0 9p > k 8q � p �q � � � �p � � � �k+1Rk � �p � � � �k+1Rkand it follows 8k � 0 8q � k + 1 �q � � � �k+1Rk � �p � � � �k+1Rk.((). Let k � 0 and suppose there exists a query R of length ` su
h that8n � k + 1 �n�n�1 � � � �k+1Rk � R. For every atom Ai (1 � i � `)o

urring in Rk, there exists an atom Bi in R su
h that 8n � k + 1,�n�n�1 � � � �k+1Ai � Bi. In a 
lassi
al way, atoms 
an be represented aspartial fun
tions from IN? (words on IN) to �[�[X as follows: A(u) is thesymbol o

urring in the node of the tree representation of A designated bythe word obtained by 
on
atenating the numbers of the ar
s of the path fromthe root to the node (ar
s are numbered from left to right, starting with 1).The extensional representation of su
h a fun
tion is [f(u;A(u))g and O(A)denotes the set of elements u su
h that A(u) is de�ned. Now, seeing that
learly A1 � A2 implies jO(A1)j � jO(A2)j, (jO(�n � � � �k+1Ai)j)n�k+1 is anin
reasing sequen
e with jO(Bi)j as upper bound and therefore, there ex-ists p0i � k + 1 su
h that 8q0i � p0i, jO(�q0i � � � �k+1Ai)j = jO(�p0i � � � �k+1Ai)j.Now, sin
e if A1 � A2 and jO(A1)j = jO(A2)j then jvar(A1)j � jvar(A2)j,(jvar(�n � � � �k+1Ai)j)n�p0i is a de
reasing sequen
e with 0 as lower boundand therefore, there exists pi � p0i su
h that 8qi � pi, jvar(�qi � � � �k+1Ai)j =jvar(�pi � � � �k+1Ai)j. Now, sin
e every �j (j � k+1) is idempotent, we have8qi � pi, �qi � � � �k+1Ai � �pi � � � �k+1Ai (if � is an idempotent substitutionsu
h that �A1 = A2 and if jvar(A1)j = jvar(A2)j and jO(A1)j = jO(A2)j,then A1 � A2). This leads to the 
on
lusion that the derivation 
onsidered isa derivation over a �nite domain sin
e p = max1�i�`(pi) is su
h that 8q � p,�q � � � �p � � � �k+1Rk � �p � � � �k+1Rk. JC-semanti
s results 
orrespond SLD-refutations. Let us investigate in�niteSLD-proofs over a �nite domain. The soundness theorem 
an be proveddire
tly by using proof trees.Lemma 5 If there exists an SLD-proof over a �nite domain :A0 C1;�1!P R1 !P � � � !P Ri�1 Ci;�i!P Ri !P � � �then, for a k � 0, we have �k � � � �1A0 2 gfp(TdP e).
29



�1A0T1�1C�1�n�1 � � � �1A0 �n � � � �1A0 �n � � � �1A0Tn�1 �nTn�1 TnA �nA �nA�nC�nFigure 3: Proof of lemma 5Proof. By theorem 1 and by lemma 1, it su�
es to prove that for a naturalk, there exists a proof tree of �k � � � �1A0 for dP e. For this, let us de�ne thesequen
e T1; � � � ; Ti; � � � of partial proof trees, su
h that every atom o

urringin Ri is a leaf in Ti, whi
h is a partial proof tree of �i � � � �1A0 for dP e (see�g. 3).� (T1) T1 is obtained from the �rst transition: its root is �1A0 whosesons (whi
h are leaves) are all the atoms o

urring in �1C�1 . Sin
e�1C1 2 dP e and �1A0 = �1C+1 , T1 is a partial proof tree of �1A0 fordP e. Furthermore, atoms o

urring in R1 = �1C�1 are leaves of T1.� (Tn) Suppose Tn�1 is a partial proof tree of �n�1 � � � �1A0 for dP e (
or-responding to the n� 1 �rst transitions) su
h that atoms in Rn�1 areleaves of Tn�1. By applying the substitution �n to ea
h node of Tn�1,we get a partial proof tree of �n � � � �1A0 for dP e su
h that atoms in�nRn�1 are leaves. If A is the sele
ted atom in Rn�1, then A is a leafof Tn�1 and �nA is a leaf in the new partial proof tree. Now, it su�
esto add all the atoms in �nC�n as sons of �nA (these sons are leaves).In this way, we obtain a partial proof tree Tn satisfying the desiredproperties sin
e Rn = �nRn�1[k  C�n ℄.30



Be
ause the derivation does not 
ompute in�nite terms and therefore thereexists a natural k � 0 su
h that for all q � k, �q � � � �k � � � �1A0 � �k � � � �1A0,by iterating this pro
ess, we obtain a proof tree of �k � � � �1A0 for dP e. Fur-thermore ea
h leaf 
orresponds to a unit 
lause of dP e sin
e the derivationis fair. JTheorem 10 (Soundness) If there exists an SLD-proof over a �nite do-main: A1; � � � ; An C1;�1!P R1 !P � � � !P Ri�1 Ci;�i!P Ri !P � � �then there exists k � 0, su
h that for all i (1 � i � n) �k � � � �1Ai 2 gfp(TdP e).Proof. The proof is similar to the proof of lemma 5 : instead of buildinga sequen
e of partial proof trees, we build a sequen
e of tuples of n partialproof trees for dP e: ((T 11 ; � � � ; T n1 ); � � � ; (T 1i ; � � � ; T ni ); � � �) su
h that �i � � � �1Ajis the root of T ji (1 � j � n) and su
h that ea
h atom o

urring in Ri is aleaf of T ji for a j. JSin
e, by theorem 4, there exists an SLD-proof with the program dP efrom ea
h atom o

urring in CoInd(TdP e), lemma 6 des
ribes how to �trans-late� an SLD-derivation with dP e into an SLD-derivation with P . It 
an beviewed as a �program lifting lemma� playing the same role as the (
lassi
al)lifting lemma in the proof of the (
lassi
al) 
ompleteness theorem.Lemma 6 (Program lifting lemma) If there exists an SLD-proof :A0 C1;�1!dP e R1 !dP e � � � !dP e Ri�1 Ci;�i!dP e Ri !dP e � � �su
h that for all i � 1, �i is a idempotent renaming substitution su
h thatdom(�i) = var(C+i ), then there exists an SLD-proof over a �nite domain:A0 CP;1;�1!P R01 !P � � � !P R0i�1 CP;i;�i!P R0i !P � � �su
h that for all i � 1, �iA0 = A0 and Ri = �iR0i where �i is the restri
tionof �i�i�i�1�i�1 � � � �1�1 to the variables o

urring in R0i.Proof. By lemma 15, there exists a set fCP;1; � � � ; CP;i; � � �g of variants of
lauses of P su
h that:8i > 0 var(CP;i) \0�var(A0) [ [1�j<i var(CP;j) [ [j�1 var(Cj)1A = ;31



and su
h that ea
h CP;i satis�es Ci = �iCP;i where �i is an idempotent sub-stitution su
h that dom(�i) = var(CP;i).� For the �rst transition. By de�nition �1A0 = �1C+1 = �1�1C+P;1. Further-more, sin
e dom(�1) = var(CP;1) and var(CP;1) \ var(A0) = ;, we have�1A0 = A0 and it follows �1�1A0 = �1�1C+P;1. Similarly, sin
e dom(�1) =var(C+1 ) and var(C1) \ var(A0) = ;, we have �1A0 = A0. Therefore, wehave �1�1A0 = A0 = �1�1C+P;1. By lemma 2, the restri
tion �1 of �1�1 to thevariables o

urring in C+P;1 is a mgu of A0 and C+P;1 and we get the transition:A0 CP;1;�1!P R01Clearly, we have �1A0 = A0 sin
e �1�1A0 = A0. Now, let us prove that therestri
tion �1 of �1�1 to the variables o

urring in R01 satis�es �1R01 = R1.For this, we have to prove that �1R01 = �1�1C�P;1 = �1�1C�P;1 = �1C�1 = R1.Let v 2 var(C�P;1), two 
ases are possible. If v 2 var(C+P;1), then �1v = �1�1vand we 
an 
on
lude sin
e �1�1�1�1v = �1�1v. Else, if v 62 var(C+P;1), thenwe have �1�1v = �1v = �1�1v whi
h settles the 
laim.� For the i-th transition. Let us show how from the transition:Ri�1 Ci;�i!dP e Riwe 
an obtain a transition from a query R0i satisfying �i�1R0i�1 = Ri�1 where�i�1 is the restri
tion of �i�1�i�1 � � � �1�1 to the variables o

urring in R0i�1:R0i�1 CP;i;�i!P R0isu
h that �iA0 = A0 and su
h that the restri
tion �i of �i�i�i�1�i�1 � � � �1�1to the variables o

urring in R0i satis�es �iR0i = Ri. If A is the sele
ted atomin Ri�1 at position k, then there exists an atom A0 o

urring at position kin R0i�1 su
h that A = �i�1A0 and we get �i�i�1A0 = �i�iC+P;i. From:dom(�i�1) � var(R0i�1) �  S1�j<i var(CP;j) [ var(A0)!and var(CP;i) \ S1�j<i var(CP;j) [ var(A0)! = ;it follows �i�1CP;i = CP;i and therefore �i�i�1A0 = �i�i�i�1C+P;i. Fur-thermore, dom(�i) = var(CP;i) and we have �iA = A. Hen
e we have�i�i�i�1A0 = �i�i�i�1C+P;i, and sin
e �i�i � � � �1�1A0 = A0, by lemma 16,32



there exists a mgu �i of A0 and C+P;i su
h that �iA0 = A0 and for a substi-tution �i, we have �i�i = �i�i�i�1. Hen
e, we get the transition:R0i�1 CP;i;�i!P R0iIn order to relate Ri to R0i, let us prove that �i�i�i�1�i = �i�i�i�1. Sin
e �iis idempotent, we have �i�i�i�1�i = �i�i�i = �i�i = �i�i�i�1. We are nowin position to prove �i�i�i�1R0i = Ri:�i�i�i�1R0i = �i�i�i�1�iR0i�1[k  C�P;i℄= �i�i�i�1R0i�1[k  C�P;i℄ (�i�i�i�1�i = �i�i�i�1)= �i�i�1R0i�1[k  �iC�P;i℄ (�iRi�1 = Ri�1)= �i(�i�1R0i�1)[k  �iC�P;i℄ (�i�1Ci = Ci))= �iRi�1[k  Ci℄= RiTherefore, the restri
tion �i of �i�i�i�1 to the variables o

urring in R0isatis�es �iR0i = Ri.To terminate, we have to prove that the derivation obtained is a derivationover a �nite domain. For this, let us prove that:8n � i+ 1 �n�n�n�1 � � � �i+1R0i = RiWe pro
eed by indu
tion over n. For n = i+ 1, we have:�i+1�i+1R0i = �i+1�i+1�i�i+1R0i = �i+1�i+1�iR0i = �i+1�i+1Ri = RiFor n > i + 1, by indu
tion hypothesis, we have �n�1�n�1 � � � �i+1R0i = Ri.Therefore, in order to prove �n�n�n�1 � � � �i+1R0i = Ri, we have to provethat for every variable v o

urring in �n�1 � � � �i+1R0i, �n�nv = �n�1v. First,note that �n�n = �n�n�n�1�n = �n�n�n�1, and it su�
es to prove that�n�n�n�1v = �n�1v. Furthermore, if v 2 �n�1 � � � �i+1R0i, then we have:v 2 0�var(R0i) [ [i+1�j�n�1var(CP;j)1A � 0�var(A0) [ [1�j�n�1var(CP;j)1AHen
e, if v 2 dom(�n�1), then var(�n�1v) � Rn�1 and �n�n�n�1v =�n�1v sin
e �n�nRn�1 = Rn�1, else we 
an also 
on
lude sin
e �n�nv =v. Therefore, sin
e Ri 
ontains only �nite atoms and for all n � i + 1,�n�n�1 � � � �i+1R0i � Ri, by lemma 4, the derivation obtained is a derivationover a �nite domain. JWe are now in position to prove the 
ompleteness theorem.33



Theorem 11 (Completeness) Given a de�nite program P and an atomA, if A 2 gfp(TdP e), then there exists an SLD-proof over a �nite domainfrom A with P :A CP;1;�1!P R01 !P � � � !P R0i�1 CP;i;�i!P R0i !P � � �su
h that for all i � 1, �iA = AProof. Completeness theorem follows from theorem 1, lemma 1, theorem 4and lemma 6. J6 Con
lusionIn this paper, semanti
s of nonterminating derivations has been investigatedwithin a proof-theoreti
 framework: de�nite 
lauses have been 
onsidered asrules of a formal system. Following this approa
h, a semanti
s for the 
lassof in�nite derivations whi
h do not 
ompute in�nite terms has been de�nedand proved sound and 
omplete by using purely proof-theoreti
 methods: anatom is the starting point of an in�nite derivation over a �nite domain if andonly if it is in the greatest �xpoint of the transformation TdP e.The restri
tion to the 
lass of derivations over a �nite domain is justi�edby in
ompleteness results of others approa
hes, allowing in�nite terms, inwhi
h the greatest �xpoint 
onstru
tion, 
orresponding to the �logi
 programas 
o-indu
tive de�nition� paradigm, is not equivalent to the operationalsemanti
s: 
o-indu
tion is too ri
h to give a semanti
s to nonterminatingSLD-derivations. This observation, illustrated in se
tion 4.2.2, explains whymost attempts to give a 
omplete semanti
s to derivations 
omputing in�niteterms have not been su

essful. Therefore, while all the approa
hes existingin this area are based on the 
on
ept of �atoms 
omputable at in�nity�,we have presented a semanti
s based on the 
on
ept of �atoms provable atin�nity�.It seems that the operational notion of �
omputability at in�nity� (asso
i-ated with in�nite derivations 
omputing in�nite terms) is better 
aptured bya least �xpoint 
hara
terisation. This idea has been developped by G. Leviand C. Palamidessi in [25℄ and revisited in [23℄. In an order-theoreti
 frame-work (involving algebrai
 
omplete partial order), they 
onsider the ��nalresult� of an in�nite derivation as the limit of a sequen
e of approximations,
hara
terised by a least �xpoint semanti
s based on a modi�ed version ofthe programs (some suitable unit 
lauses are added and used as the startingpoint of the 
onstru
tion of a sequen
e of non-empty interpretations). Then,34



in�nite obje
ts in the denotation of a program are 
hara
terised by the topo-logi
al 
losure of lfp(TP[C(P )) (where C(P ) is the set of added 
lauses): ea
hin�nite element is the least upper bound of a dire
ted set (of �nite elementswhi
h are its partial approximations) in
luded in lfp(TP[C(P )). However, thesemanti
s obtained is sound but not 
omplete.Of 
ourse, a satisfa
tory semanti
s for all in�nite derivations from a de�-nite program has not yet been found, but this paper allows us to gain a betterunderstanding of the problem and suggests an area for future investigations.Referen
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A ProofsProof of lemma 1 (�). Let x 2 CoInd(�), by theorem 1, x 2 gfp(T�) andit follows x 2 T�(gfp(T�)). Hen
e, there exists a rule x  x1; � � � ; xq 2 �su
h that fx1; � � � ; xqg � gfp(T�). We 
an obtain a partial proof tree with xas root where fx1; � � � ; xqg are sons of x. Now, it su�
es to iterate on thesons of x, whi
h are in CoInd(�), to get a proof tree of x for �. (�). Letx be the root of a proof tree for � and Z be the set of nodes o

urring inthe proof tree. Let us prove that Z � T�(Z). If z 2 Z, then, there existsz  z1; � � � ; zq 2 � where fz1; � � � ; zqg are sons of z. Hen
e, fz1; � � � ; zqg � Zand it follows z 2 T�(Z). Sin
e Z � T�(Z), Z is �-dense and, by de�nition,we have x 2 CoInd(�).Lemma 7 If Z is a set of variables and C is the 
lause A  B1; � � � ; Bq,then there exists a 
lause C 0 and an idempotent renaming substitution � su
hthat: var(C 0) \ (var(C) [ Z) = ; �C 0 = Cdom(�) = var(C 0) range(�) = var(C)Proof of lemma 7 If var(C) = fx1; � � � ; xng and fy1; � � � ; yng is a 
olle
-tion of distin
t variables su
h that fy1; � � � ; yng \ (var(C)[Z) = ;, then C 0and � 
an be de�ned by:C 0 = � x1 � � � xny1 � � � yn �C � = � y1 � � � ynx1 � � � xn �and satisfy the desired properties.Lemma 8 Given a set of variables Z, a 
lause CT , and a renaming substi-tution r0 su
h that range(r0) \ var(CT ) = ;, there exists a transition:r0C+T C;�! �C�where C is a 
lause satisfying var(C) \ (var(r0CT ) [ Z) = ; and where� is an idempotent renaming substitution su
h that dom(�) = var(C+).Furthermore, there exists a renaming substitution r su
h that range(r) =var(C�)nvar(C+) and rr0C�T = �C�.Proof of lemma 8 By lemma 7, there exists a 
lause C and an idempotentrenaming substitution � su
h that:var(C) \ (var(r0CT ) [ Z) = ; �C = r0CTdom(�) = var(C) range(�) = var(r0CT )38



By lemma 2, the restri
tion � of � to the variables o

urring in C+ is a mguof r0C+T and C+. Hen
e the following resolution step is 
orre
t:r0C+T C;�! �C�If � is the substitution de�ned by:� = � x+1 ::: x+n1 x�1 ::: x�n2 x�1 ::: x�n3y+1 ::: y+n1 y�1 ::: y�n2 y�1 ::: y�n3 �where fx+1 ; :::; x+n1g = var(C+)nvar(C�)fx�1 ; :::; x�n2g = var(C+) \ var(C�)fx�1 ; :::; x�n3g = var(C�)nvar(C+)then we 
an de�ne the renaming substitution r1 = rr0 by:r1 = � y�1 ::: y�n3x�1 ::: x�n3 � r0Let us prove that r1C�T = �C�:r1C�T = � y�1 ::: y�n3x�1 ::: x�n3 � r0C�T= � y�1 ::: y�n3x�1 ::: x�n3 � �C�= � y�1 ::: y�n3x�1 ::: x�n3 � � x�1 ::: x�n2 x�1 ::: x�n3y�1 ::: y�n2 y�1 ::: y�n3 �C�= � x�1 ::: x�n2y�1 ::: y�n2 �C�= �C�Proof of lemma 2. First, note that sin
e var(A1) \ var(A2) = ; anddom(�) � var(A2), we have �A1 = A1 = �A2. Therefore, � is a uni�erof A1 and A2. Furthermore, for every variable v, if v 2 range(�), thenthere exists a variable y 2 dom(�) � var(A2) su
h that v 2 �y. It followsv 2 �A2 = A1 and we get v 62 dom(�) sin
e �A1 = A1. Hen
e, � is anidempotent substitution. Now, let us prove that � is a mgu. For this, let� be a uni�er of A1 and A2. Sin
e A1 = �A2, we have ��A2 = �A2 and itsu�
es to prove that for every variable v, ��v = �v. If v 62 dom(�) then��v = �v is immediate, else, sin
e dom(�) � var(A2) we 
an 
on
lude sin
e��A2 = �A2. This leads to � � �. 39



End of the proof of theorem 4 We prove here that the derivation ob-tained in the proof of the theorem 4 is valid and satis�es the desired prop-erties. Given an index ~{ 2 IN? of T , we write  �{ the index of the node justbefore A~{ in L. In a more formal way: �{ = max�f~|; ~| �~{g.k and k/ are indexes of T de�ned as follows:8k 2 IN .k = max�`f~{; j~{j = kgk/ = min�`f~{; j~{j = kgIn order to prove the desired properties of the derivation, it su�
es to provethe following assertions.(1). 8~{ var(C~{) \ var(A) [ S~|�~{ var(C~|)! = ;Immediate by de�nition of Z~{.(2). The resolution step A C";�";ZT!P R is 
orre
t.Immediate sin
e it 
orresponds to t".(3). 8~{ range(r~{1) � S~|�~{�var(C�~| )nvar(C+~| )�Indu
tion over ~{.� If j~{j = 0, then we have:range(r"1) = range(r"0r") = range(r") = var(C�" )nvar(C+" )� If ~{ = ~|k, then, by indu
tion hypothesis, we 
an 
on
lude sin
e:r~|k1 = r~|kr~|k0 = r~|kr~|1 range(r~|k) = var(C�~|k)nvar(C+~|k)(4). 8p 2 IN� 8~{ ((p+ 1)/ �~{ � .(p+ 1)) r~{0A~{ 2 R.p8~{ ((p+ 1)/ �~{ � .(p+ 1)) r~{0A~{ 2 R �{(in parti
ular r(p+1)/0 A(p+1)/ 2 R.p)Indu
tion over p.� If p = 0, then for every k su
h that 1 � k � n, we have:rk0Ak = r"1Ak 2 �"C�" = R" = R.040



Let us prove that for every k (1 < k � n), we have rk0Ak = r"1Ak 2 Rk�1.Sin
e R" = �"C�" = r"1C�T;", we know that r"1Ak 2 R". Furthermore, for everym (1 � m � k � 1), we have:dom(�m) = var(C+m) and var(Cm) \0�ZT [ [j�mCj1A = ;Sin
e r"1 = r"r"0 = r" where range(r") = var(C�" )nvar(C+" ), we have:var(r"1Ak) � (ZT [ var(C"))Hen
e, it follows, var(r"1Ak) \ var(Cm) = ; and we have �mr"1Ak = r"1Ak.We 
an now 
on
lude sin
e at ea
h resolution step m, r"1Am is the sele
tedatom and the mgu used �m does not a�e
t the variables o

urring in r"1Ak.Therefore r"1Ak o

urs in Rm.� If p > 0, then, by indu
tion hypothesis, we have:� 8~{ (p/ �~{ � .p) r~{0A~{ 2 R.(p�1)8~{ (p/ �~{ � .p) r~{0A~{ 2 R �{and it su�
es to prove:8~| (p/ � ~| � .p) dom(�~|) \ var0�[~u�~| n~u[k=1 r~uk0 A~uk1A = ;If ~| is su
h that p/ � ~| � .p, then we know that:dom(�~|) = var(C+~| ) and var(C~|) \0�ZT [[~u�~|C~u1A = ;Furthermore, we have:var0�[~u�~| n~u[k=1 r~uk0 A~uk1A = var0�[~u�~| n~u[k=1 r~u1A~uk1A = var0�[~u�~| r~u1C�T;~u1Aand sin
e: var0�[~u�~| r~u1C�T;~u1A � [~u�~|�range(r~u1 ) [ var(C�T;~u)�(1) and (3) allow to 
on
lude.Lemma 9 TdP e+ is monotone and "-
ontinuous.41



Proof of lemma 9 Sin
e TdP e+ is de�ned from the rule set dP e+, it is
learly monotone. Every 
lause in P has a �nite body and dP e+ is �nitaryand we 
an 
on
lude.Lemma 10 If I is a "-
losed set, then TdP e+(I) is also a "-
losed set.Proof of lemma 10 Let A 2 TdP e+(I). By de�nition, there exists a 
lauseA0  B1; � � � ; Bq in P su
h that for a substitution � satisfying dom(�) �var(A0), we have �A0 = A and f�B1; � � � ; �Bqg � I. Let A0 be an atom su
hthat A � A0. There exists a substitution � su
h that dom(�) � var(A) and�A = A0. By 
onsidering the restri
tion of �� to the variables o

urring inA0, it follows ��A0 = A0 and we 
an 
on
lude sin
e f��B1; � � � ; ��Bqg � Ibe
ause I is "-
losed.Lemma 11 Ind(TdP e+) = lfp(TdP e+) = T "!dP e+Proof of lemma 11 By lemma 9, TdP e+ is monotone and "-
ontinuousand by theorem 1, we 
an 
on
lude.Lemma 12 A C-interpretation I is a C+-model of a de�nite program P i�TdP e+(I) � I.Proof of lemma 12 ()). Let I be a C+-model of P and A 2 TdP e+(I).By de�nition, there exists a 
lause A  B1; � � � ; Bq 2 dP e+ su
h thatfB1; � � � ; Bqg � I. Sin
e I is a C+-model of P , it follows A 2 I and we
an 
on
lude. ((). Let I be a C-interpretation su
h that TdP e+(I) �I. If A  B1; � � � ; Bq is a 
lause in P and � is a substitution su
h thatdom(�) � var(A), then if f�B1; � � � ; �Bqg � I, we have �A 2 TdP e+(I) andsin
e TdP e+(I) � I it follows �A 2 I. Hen
e I is a C+-model of P .Theorem 12 MC+P = lfp(TdP e+) = Ind(TdP e+) = T "!dP e+Proof of theorem 12 By de�nition, MC+P is the interse
tion of all C+-models of P , whi
h are, by lemma 12, TdP e+-
losed sets, whi
h 
orrespondsto Ind(TdP e+), and by lemma 11 we 
an 
on
lude.Lemma 13 MC+P �MCP 42



Proof of lemma 13. Sin
e dP e+ � dP e, we have:8I TdP e+(I) � TdP e(I)) 8n T "ndP e+ � T "ndP e) T "!dP e+ � T "!dP e) MC+P �MCP (by theorem 12)Lemma 14 Let P be a de�nite program and A0 be an atom. Given a possiblyin�nite set of 
lauses fC1; � � � ; Ci; � � �g � dP e+ su
h that:8i > 0 var(Ci) \0�var(A0) [ [1�j<i var(Cj)1A = ;there exists a set fCP;1; � � � ; CP;i; � � �g of variants of 
lauses of P su
h that:8i > 0 var(CP;i) \0�var(A0) [ [1�j<i var(CP;j)1A = ;and su
h that every 
lause CP;i satis�es Ci = �iCP;i where �i is an idempo-tent substitution satisfying dom(�i) = var(C+P;i).Proof of lemma 14 Sin
e Ci 2 dP e+, for all i, there exist a substitution�i and a 
lause CPi 2 P su
h that Ci = �iCPi and dom(�i) � var(CP +i ):�i = � x1 � � � xkt1 � � � tk �Let fy1; � � � ; yqg = var(CP +i )ndom(�i). In order to de�ne a 
lause CP;i =riCPi , as a variant of a 
lause in P , we introdu
e the following idempotentrenaming substitution:ri = � x1 � � � xk y1 � � � yqw1 � � � wk z1 � � � zq �where:range(ri) \0�var(A0) [ [1�j<i var(CP;j) [ [j�1 var(Cj) [ var(CPi )1A = ;43



Let us prove that:8i > 0 var(CP;i) \0�var(A0) [ [1�j<i var(CP;j)1A = ;First, we prove that:8i > 0 var(CP;i) � (range(ri) [ var(Ci))For this, let v 2 var(CP;i). Sin
e CP;i = riCPi , two 
ases are possible:1. if v 2 range(ri), then we 
an 
on
lude2. else, v 2 var(CPi ), and:(a) either v 2 var(CP +i ) and sin
e dom(ri) = var(CP +i ), ri is idem-potent indu
es a 
ontradi
tion(b) or v 2 var(CP �i )nvar(CP +i ) and sin
e Ci = �iCPi and dom(�i) �var(CP +i ), it follows v 2 Ci and we 
an 
on
ludeBy de�nition of ri, variables o

urring both in CP;i and range(ri) satisfy theproperty and sin
e var(Ci) \ var(A0) = ;, it su�
es to prove that:var(Ci) \ [1�j<i var(CP;j) = ;This property holds if:var(Ci) \ [1�j<i(range(rj) [ var(Cj)) = ;whi
h follows from:8j > 0 range(rj) \ [k�1 var(Ck) = ; and var(Ci) \ [1�j<i var(Cj) = ;Now, we have to prove that there exists an idempotent substitution �i su
hthat dom(�i) = var(C+P;i) and Ci = �iCP;i. This substitution is de�ned by:�i = � w1 � � � wk z1 � � � zqt1 � � � tk y1 � � � yq �Let us prove Ci = �iCPi = �iriCPi = �iCP;i. If v 2 var(CPi ), then two 
asesare possible: 44



1. if v 2 var(CP +i ) then:(a) either v = yj (1 � j � q) and we 
an 
on
lude sin
e �iriyj =�izj = yj = �iyj.(b) or v = xj (1 � j � k) and we 
an also 
on
lude sin
e �irixj =�iwj = tj = �ixj.2. else v 2 var(CP �i )nvar(CP +i ) and it follows v 62 dom(�i) and v 62dom(ri), hen
e we 
an 
on
lude sin
e, by de�nition of ri, we havev 62 dom(�i) = range(ri).To terminate, we prove that �i is idempotent, or equivalently dom(�i) \range(�i) = ;. Sin
e ri is idempotent and dom(�i) = range(ri), we havedom(�i) \ fy1; � � � ; yqg = ;. Furthermore, sin
e Ci = �iCPi , we know that:[1�j�k var(tj) � var(Ci)and we 
an 
on
lude sin
e range(ri) \ var(Ci) = ;.Lemma 15 Let P be a de�nite program and A0 be an atom. Given a possiblyin�nite set of 
lauses fC1; � � � ; Ci; � � �g � dP e su
h that :8i > 0 var(Ci) \0�var(A0) [ [1�j<i var(Cj)1A = ;there exists a set fCP;1; � � � ; CP;i; � � �g of variants of 
lauses of P su
h that :8i > 0 var(CP;i) \0�var(A0) [ [1�j<i var(CP;j) [ [k�0 var(Ck)1A = ;and su
h that every 
lause CP;i satis�es Ci = �iCP;i where �i is an idempo-tent substitution satisfying dom(�i) = var(CP;i).Proof of lemma 15 Sin
e Ci 2 dP e, for all i, there exist a substitution�i and a 
lause CPi 2 P , su
h that Ci = �iCPi and dom(�i) � var(CPi ) :�i = � x1 � � � xkt1 � � � tk �45



Let fy1; � � � ; yqg = var(CPi )ndom(�i). In order to de�ne a 
lause CP;i =riCPi , as a variant of a 
lause in P , we introdu
e the following idempotentrenaming substitution:ri = � x1 � � � xk y1 � � � yqw1 � � � wk z1 � � � zq �where : range(ri) \0�var(A0) [ [1�j<i var(CP;j) [[j�1 var(Cj)1A = ;Now, let us prove that there exists an idempotent substitution �i su
h thatdom(�1) = var(CP;i) and Ci = �iCP;i. This substitution is de�ned by:�i = � w1 � � � wk z1 � � � zqt1 � � � tk y1 � � � yq �In order to prove Ci = �iCPi = �iriCPi = �iCP;i, let v 2 var(CPi ). Two
ases are possible : either v 62 dom(�i) and it follows v = yj (1 � j � q)whi
h settles the 
laim sin
e �iyj = yj = �izj = �iriyj, or v 2 dom(�i)and we have v = xj (1 � j � k) whi
h allows to 
on
lude sin
e �ixj =tj = �iwj = �irixj . Let us prove that �i is idempotent, or equivalentlydom(�i) \ range(�i) = ;. Sin
e ri is idempotent and dom(�i) = range(ri),we have dom(�i)\fy1; � � � ; yqg = ;. Furthermore, sin
e Ci = �iCPi , we knowthat: [1�j�k var(tj) � var(Ci)and we 
an 
on
lude sin
e range(ri) \ var(Ci) = ;.Lemma 16 Let A, A0 and B be three atoms, and � be a substitution su
hthat �A = �B and �A0 = A0. There exists a mgu � of A and B su
h that�A0 = A0.Proof of lemma 16 Sin
e �A = �B, there exists a mgu � of A and Bsu
h that � � �. Hen
e for a substitution �, we have �� = �. Furthermore,from �A0 = A0, it follows ��A0 = A0 and therefore, � 
an be viewed as arenaming substitution for the variables o

urring in A0:� = � v1 � � � vk x1 � � � xnt1 � � � tk y1 � � � yn � fv1; � � � ; vkg = dom(�)nvar(A0)fx1; � � � ; xkg = dom(�) \ var(A0)46



Let us de�ne the following idempotent renaming substitution (
orrespondingto a restri
tion of �): r = � y1 � � � ynx1 � � � xn �and let us prove that � = r�. First note that 
learly we have �A0 = A0.Therefore, it su�
es to prove that � is a mgu of A and B. �A = �B isimmediate (be
ause �A = �B). In order to prove that � is idempotent, letv 2 dom(�). Two 
ases are possible.1. If v 2 dom(�), then v = vj (1 � j � k) sin
e �xi = xi for everyi 2 f1; � � � ; ng. Therefore, v 62 fx1; � � � ; xng and v 62 [1�i�kvar(rti)sin
e [1�i�kvar(rti) � [1�i�kvar(ti)[ range(r) and � is idempotent.Hen
e, v 62 range(�).2. If v 2 dom(r), then v = yj (1 � j � n) and sin
e 
learly v 62fx1; � � � ; xng and v 62 [1�i�kvar(rti), we have v 62 range(�).To terminate, we have to prove that � is minimal. For this, let � be asubstitution su
h that �A = �B. Sin
e � is a mgu of A and B we have� � � and there exists a substitution � su
h that �� = �. Therefore, � � �sin
e we prove that �r�1� = �r�1r� = �� = � where r�1 is the inverse ofr (i.e. rr�1 = r�1r = sid). For this, let w be a variable. Two 
ases arepossible.1. If w 2 dom(�), then:(a) if w = vj (1 � j � k), then �r�1r�vj = �r�1rtj and we 
an
on
lude sin
e r�1rtj = tj be
ause for every variable y 2 var(tj):i. either y 2 dom(r) and r�1ry = y is immediateii. or y 62 dom(r) and we have r�1y = y sin
e � is idempotentand var(tj) � range(�) and dom(r�1) � dom(�).(b) if w = xj (1 � j � n), then we 
an 
on
lude sin
e �r�1r�xj =�r�1ryj = �r�1xj = �yj = ��xj.2. If w 62 dom(�), then let us prove that �r�1rw = �w. Indeed, eitherw 2 dom(r) and r�1rw = w whi
h settles the 
laim, or w 62 dom(r)and we have r�1w = w sin
e dom(r�1) � dom(�) and w 62 dom(�).
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