Logic programming and
co-inductive definitions

MATHIEU JAUME
Novembre 1998

N? 98-140

Logic programming and
co-inductive definitions

MATHIEU JAUME

Abstract

This paper focuses on the assignment of meaning to infinite deriva-
tions in logic programming. Several approaches have been developped
by considering infinite elements in the universe of the discourse but
none are complete. By considering proofs as objects in a co-inductive
set, standard properties of co-inductive definitions are used both to
explain this incompleteness and to define a sound and complete seman-
tics, based on the “logic program as co-inductive definition” paradigm,
for a subclass of infinite derivations, called infinite derivations over a
finite domain (i.e. derivations which do not compute infinite terms).

Programmation logique et définitions
co-inductives

Résumé

Les SLD-dérivations infinies sont étudiées en identifiant un pro-
gramme défini avec un ensemble de définitions co-inductives. Plusieurs
approches ont déja été développées en considérant des termes infinis
dans l'univers du discours mais aucune n’a permis de définir une sé-
mantique compléte. Les définitions co-inductives fournissent un cadre
adéquat pour expliquer ces phénoménes d’incomplétude et permettent
de définir une sémantique valide et compléte pour la classe des dériva-
tions infinies qui ne calculent pas de termes infinis.

1 Introduction

Standard semantics of definite programs, based on the traditional paradigm
“logic program as first order logic”, is only concerned with refutations and
then is strongly related to termination. Hence, infinite derivations are not
taken into account in this classical semantics. For these derivations, there
is no satisfactory semantics but several approaches. In all of them, the set
proposed for the denotation of a definite program contains possibly infinite
atoms. Unfortunately, the semantics obtained, based on the concept of “in-
finite atoms being computable at infinity”, are not complete (i.e. there exist
infinite atoms in the denotation of a program which are not computable by
an infinite derivation). In these approaches, only infinite derivations “doing
useful computations, in some sense” are considered: these derivations must
compute an infinite object to be “useful”. This corresponds to the informally
intended meaning of infinite computations. As a typical example, with the
following program:

P = {LN(z, [z|l]) < LN(S(z),l)} (1)

we can obtain, from the query LN(k,ly), an infinite derivation computing at
every step a better approximation of the second argument:

xI; li,
. S (k) [Si*l(/i)lli] ,
oo = LN(S" Y (K), ;1) — LN(S(k),1;) = - (2)

The “final result” is the “limit” of the sequence of approximations and corre-
sponds to the infinite sequence of integers starting from k. Incompleteness
of these approaches comes from programs often called “bad” programs: a
typical example of “bad” program is the following one.

P ={p(z) < p(z)} (3)
Of course, the infinite derivation:
p(z) = p(z) = - = plz) = - (4)

does not compute anything and the denotation of p should be empty. How-
ever, we will see that when the denotation of P is defined by a greatest
fixpoint of a transformation associated with P, these predicates have a non-
empty denotation.

Our approach is the exact opposite: we investigate the class of infinite
derivations which do not compute infinite terms. These derivations can be

“useful” to describe the behaviour of nondeterministic programs (flowgraph
programs). As stated by K.R. Apt and M.H. Van Emden [4], there is a corre-
spondence between computations of a flowgraph F' and derivations obtained
from a definite program P(F') associated with F. Since, the only function
symbols occurring in the clauses of P(F') are constant symbols, these deriva-
tions do not compute anything. Another important and practical class of
function-free logic programs corresponds to DATALOG programs. This spe-
cial class of infinite derivations will be considered in section 5.2. However,
this class of derivations is too restricted and infinite derivations computing
only finite terms can be envisaged. These derivations, called derivations over
a finite domain, are considered in section 5.3.

It is now well-known that standard semantics of definite programs can
be expressed by purely proof-theoretic methods. The most immediate way
to give such a semantics is to consider clauses as inference rules, rather than
logic formulas, and then a definite program as a formal system. From this
point of view, the denotation of a program is the set of theorems which
can be derived in this system. Within this framework, inductive definitions
are a natural way to define the denotation of logic programs. Since, proof-
theoretically, we can look at a clause A < Bji,---, B, as an introduction rule
for A (or similarly as a clause in an inductive definition), by following the
Curry-Howard isomorphism, it is possible to represent clauses by construc-
tors of a functional language and each proof can be viewed as a functional
expression. Hence, there is a correspondence between proof trees and and
proof terms.

In the literature, one can find several approaches dealing with infinite
SLD-derivations. Most of them are based on the greatest fixpoint of opera-
tors associated to programs and then correspond to the “logic programs as
co-inductive definitions” paradigm. In this way, the denotation of a definite
program P is defined as the set of theorems which are the results of a possi-
bly infinite number of applications of instances of clauses in P (viewed as a
formal system). By following the Curry-Howard isomorphism, proof terms
associated with these proofs are productive: at each step, a constructor (i.e.
a clause) is applied. In this paper, we investigate infinite SLD-derivations
by considering the proof terms associated with these derivations. We will
see that an approach in which an infinite SLD-derivation must compute an
infinite object leads to incompleteness since with this requirement an SLD-
derivation is rather viewed as a computation than as a proof. That’s why
we investigate the class of infinite derivations which do not compute infi-
nite terms and therefore can be directly identified with proofs. Hence, our
approach defines an empty denotation for program (1), while derivation (4)

viewed as a proof of Vzp(z), where the result proved is recursively used, leads
to the definition of a non-empty denotation for program (3). We will see that
there exists a sound and complete semantics for this class of derivations.

2 Background and notations

2.1 Inductive and co-inductive definitions

Inductive and co-inductive sets can be defined by some rules for generating
elements of the set and by adding that an object is to be in the set only
if it has been generated by applying these rules (for more details, see [3]).
A rule is a pair (E,e), usually written E — e, where F is a set, called
the set of premises, and e is the conclusion. Let ® be a rule set and A
a set. A is ®-closed if each rule in ® whose premises are in A also has
its conclusion in A and A is ®-dense if for every a € A there is a set
E C A such that (£ — a) € ®. The set inductively (resp. co-inductively)
defined by a rule set ®, written Ind(®) (resp. Colnd(®)), is defined by
Ind(®) = N{A, Ais ®-closed} (resp. Colnd(®) = U{A, A is ®-dense}). -
closed sets and ®-dense sets exist and the intersection of any collection of
®-closed sets is ®-closed (in particular, Ind(®) is the smallest ®-closed set).
Inductive and co-inductive sets can also be expressed by using monotone
operators (an operator ¢ : 28 — 28 where 28 denotes the set of all sub-
sets of B, is monotone if £y C Fy C B implies p(F1) C p(Es)). Given
a monotone operator ¢ : 25 — 28 a set A C B is said to be ¢-closed
(resp. @-dense) iff p(A) C A (resp. A C p(A)). The set inductively (resp.
co-inductively) defined by ¢, written Ind(¢) (resp. Colnd(ip)) is defined by
Ind(¢) = NyaycacsA (resp. Colnd(p) = Uacyaycpd). If @ is a rule set,
we may define a monotone operator Ty : 28 — 28 as follows:

B=|J {{eJUE} To(A)={c€B, e« Ec® ECA} (5
e« FEcd

and we have Ind(®) = Ind(T3) and Colnd(®) = Colnd(T%). The following
result is a special case of one of Tarski’s theorems.

Theorem 1 If ¢ is a monotone operator, then Ind(p) is the least fizpoint of
@ (Ifp(¢)) and Colnd(yp) is the greatest fizpoint of ¢ (gfp(v)).

It is possible to iterate towards these fixpoints as follows. For every ordinal
a, we define ordinal powers of ¢ by: ¢! = () and !0 = B, PP+ = p(p!?)
and P+ = ("), if o is a limit ordinal, then ¢! = Ug 4p'® and p** =

ﬂg<acpw. The operator ¢ is said to be T-continuous (resp. }-continuous) if
for every increasing (resp. decreasing) sequence (Ey)p>o of subsets of B, we
have SO(UnZOEn) = UnZO‘P(En) (resp. So(ﬂnZOEn) = ngO‘P(En))-

Theorem 2 If ¢ is a T-continuous (resp. |-continuous) operator, then
Ind(p) = Ifp(p) = ¢ (resp. Colnd(yp) = gfp(p) = p*).

This theorem does not hold without the continuity assumption. However, if
@ is finitary (i.e. if for every increasing sequence (E,),>o of subsets of B,
we have ¢(U,>0E,) C Up>09(F,)) and monotone, then ¢ is f-continuous,
so Ifp(p) = 1. If p is the operator obtained from a rule set ®, as described
by (5), then ¢ is finitary if the set of premises of each rule of ® is finite (in
this case, we also say that ® is finitary).

2.2 Standard concepts of logic programming
2.2.1 Herbrand semantics

In the following sections, we assume familiarity with the standard notions of
logic programming as introduced in [24|. X, II and X denote respectively a
set of function symbols, a set of predicate symbols, and a set of variable sym-
bols. Elements of Tx[X] are terms over X U X. A substitution is a mapping
from X to Tx[X] such that {z,z # 0z} = dom(#) is finite. range(#) denotes
the set {var(z),z € dom(0)}. We write 0},,,(g) for the restriction of & to
var(E). Composition of substitutions induces a preorder on substitutions
(01 < 0y & Fu, by = O2) and on expressions (Ey < Ey < Ju, uFy = E»).
A renaming substitution is a mapping r: X — X such that Vz,y € dom(r),
x #y = r(z) # r(y). A mgu is a minimal idempotent unifier. The pre-
order < induces an equivalence relation = (called variance): Ey =~ E iff
there exist two renaming substitutions #; and 65 such that 61 F; = Es and
0,Ey = E,. Aty 1[X] denotes the set of atoms. Given a clause C, we write
CT its head and C~ its body. An SLD-deriation from Ry with a program
P is a possibly infinite sequence of transitions:

C,0
:’417"'7Ak7"'7An1_>P Q(Ala"'aAkflaBla"'7Bq7Ak+17"'7Anl

R OR[k+C~]

where 6 is a mgu of C* and Ay and where C is a variant of a clause in
P, whose body is By,---,By. The renaming process required in an SLD-
derivation:

CL0 Cinbs
Ry <p Ry —p - —p Ri_1 —p Ry —p -+

is such that for all 4 > 1, var(C;) N (Uj<var(Cj) Uvar(Ry)) = 0. An SLD-
derivation is fair if it is either failed or, for every atom B in the derivation,
(some further instantiated version of) B is selected within a finite number of
steps. The model-theoretic semantics of logic programs is based on Herbrand
interpretations (subsets of the Herbrand base). From this point of view, the
meaning of a program P is defined as the least Herbrand model of P (i.e.
ground atoms which are logical consequences of P). This set coincides with
the ground success set of P (ground atoms A from which there exists an
SLD-refutation). This correspondence is proved by using fixpoint results
of the operator Tp over Herbrand interpretations, associated with P and
defined by:

Tp(I) ={A € Aty (0], 3A" + Ay, ---,A, € P 30: X — Tx[0)
0A'=Aand 04, €I (1<i<n)}

In this paper, we use the following notations, coming from [10]:

[E] = {pA€ Atyy[X],A€E}
E C Aty u[X] [E] = {#Ae Atz,ﬁ[@], Ac B}

2.2.2 (C-semantics

The standard semantics of logic programs (a la Herbrand), based on the
ground success set, is not completely adequate as operational semantics since
no variable occurs in this semantics. The C-semantics has been revisited in
details by M. Falaschi, G. Levi, C. Palamidessi and M. Martelli [10, 11]
and allows variables in the elements of the domain. The Herbrand universe
considered, written Tx[X]/y, is the quotient set of Tx[X] with respect to
the variance equivalence relation . For the sake of simplicity, the elements
of Tx[X]/» will have the same representation as the elements of Tx[X] (the
intended meaning of f(x) € Tx[X]/x is the equivalence class of f(x) belongs
to Tx[X]/x). It is well-known that the preorder < on Tx[X] induces an order
relation, still denoted by <, on Tx[X] . The Herbrand base considered is
the quotient set Atng[X]/N which can be ordered by p(ﬂ) < p(fg) a1 < t.
Interpretations are subsets of Aty n[X]/~ and the notion of truth coincides
with the one of being a member of. In order to avoid the situation where an
atom A is true with respect to an interpretation I which does not contain
instances of A, we require interpretations to be T-closed (i.e. (A€ INA <
B) = B € I): f-closed subsets of Aty 11[X]/~ are called C-interpretations.
Note that given any subset I of Ats, 11[X]/~, [1] is a C-interpretation (said
another way, I is a C-interpretation iff I = [I]). Given a C-interpretation I,
C-truth is defined as follows:

e an atom A is C-true in I iff A € I (i.e. the equivalence class of A € I).

e a clause A < By,---, By is C-true in I iff for every substitution 6, if
atoms 0B; (1 <i < q) are C-true in I, then #A is C-true in I.

A C-interpretation I is a C-model of a definite program P if every clause in
P is C-true in I. C-models and (standard) Herbrand models can be related:
if I is a C-model of a definite program P, then [I] is a (standard) Herbrand
model of P. Note also that the class of C-interpretations is a complete
lattice with respect to set inclusion (if £ is a set of C-interpretations, then
glb(E) = Nrepl and lub(E) = Uregl). Intersection of C-models of a program
P is a C-model of P and every program P has a least C-model, written M,
which gives the declarative meaning of a program. Operational semantics,
defined by:

S¢ = {A € Aty n[X], A5 O and 04 = A}

is related to M% by considering the least fixpoint of the f-continuous oper-
ator defined by:

TS(I) ={A € Aty n[X], 3A « Ay,---, A, € P 30: X — T5[X]
0A'=Aand 04, €1 (1<i<n)}

satisfying standard properties: a C-interpretation [is a C-model of a program
P iff TS(I) C I and M$ = Ifp(TS) = Ind(TS) = T5 1 = 5.

Theorem 3 (Soundness and completeness [11])

1. If there exists an SLD-refutation R = Aj,---, A, —*iga O, then there
exist a substitution 0" and {AY,---, A} C MS, such that 6 is a mgu
Of (Ala T 7Aq) and (Alla to 7A:1) and elrvar(R) = Q[var(R)'

2. Let R be the query Ay, ---, Ay If there exist {AY,---, AL} C MS, and
a mgu 0" of (Ar,---,Aq) and (A},---, Ap), then there exists an SLD-

. ,0
refutation Ay,---, Aqg —p O such that H'MM(R) > Ovar(R) -

3 Objects computed at infinity

In computer science, termination of programs is a traditional requirement.
Logic programming does not escape from this influence and there exist many
works about termination of logic programs (for a survey, see [8]). However,

infinite behaviour of programs can be useful to model some situations and
nonterminating “computations” have been considered for many programming
paradigms: A-calculus [22], rewrite systems [9], constraint logic program-
ming [21], concurrent constraint programming [7] ... In this section, we re-
view the main approaches to assign some meaning to infinite derivations in
“pure” logic programming occurring in the literature [1, 2, 15, 19, 23, 24, 25].
All of them concentrate on the aspects related to the semantics of infinite
objects and to the models for logic programs which take them into account.
The universe of the discourse considered in these approaches contains infinite
elements. There are mainly two reasons for this requirement:

1. They all argue that “a natural requirement for modeling infinite deriva-
tions is the presence of infinite elements in the universe of the dis-
course”’. This allows to consider derivations, like (2), which compute
infinite objects at infinity. The sense of a “useful” infinite computation
is given by the notion of atom computed at infinity (i.e. an infinite
atom A such that there exists a finite atom from which there exists an
infinite derivation which “computes at infinity” A).

2. Most of them are based on a greatest fixed point characterisation of
infinite objects computed by nonterminating derivations and in this
case, they all try to obtain the identification gfp(Tp) = T#”. Generally,
this property does not hold in the Herbrand base. However, programs
satisfying this property, called canonical programs, have been studied
by J. Jaffar and P.J. Stuckey [20]. For example, with the program:

P = {p(0) + q(z) ; q(S(x)) + q(z)} (6)
we have:
T = (T = () | ULl 0)} u{p(0)} | = {p(0)}
n>0 n>0 \i>n

while when a “good” completion of the Herbrand base is defined, we
obtain:

Ty = NT¢ =N <U {a(s*(0))} U {p(O),Q(S‘“)}>

n>0 n>0 \(>n
= {p(0),q(5*)} = gfp(Tp)

and then Tp becomes |-continuous.

Therefore, the first step of these approaches consists in defining a completion
of the Herbrand base. The most used continuous structures are complete
metric spaces and complete partial orders which are both characterised by
the presence of infinite elements viewed as the limits of infinite sequences of
finite objects.

3.1 The metric approach

The more immediate approach to the completion of the Herbrand base, due
to M.A. Nait Abdallah [1] and used by J.W. Lloyd [24], is the metric one: the
Herbrand base is made a complete metric space by introducing a distance
between terms as follows:

0 if t1 = t9
d(t1,t2) = { 9~ inf{n, 7(t1)#7 (t2)} otherwise

where 7,(t) denotes the truncation at height n of the tree ¢. Now by adding to
T [X] all the limits of Cauchy sequences of terms, we obtain the set T9°[X] of
finite and infinite terms and (T3°[X], d) is a complete metric space (for more
details, see [6]). The distance d can be extended to ground atoms and the
new Herbrand base considered is the metric completion of Aty 11[], written
At [0]. Now, the operator Tp is both t-continuous and |-continuous and
the main results coming from [1] are expressed as follows. Given a derivation:

C1,0 C>,0 C;,0; Cit1,0i+1
Ry =p R, 3p --- Sp R, "=p" -

we write d); for the derivation Rp % R; and [d);(Ro)] stands for ground
instances, over the completed Herbrand base, of d|i(R0) =0;---01Ry. Since
At$1[0] is a complete metric space, [d(Ro)] = Niew[d};(Ro)] is a non-empty
set (while Njen[d|;(Ro)] can be empty) and we have the following results:

1. For every atom A, [A] N Ty = J{[d(A)], d is fair}.
2. A € Atg[0] begins a successful derivation iff A € T;“’.
3. A€ At¥[0] is the root of a finite and failed SLD-tree iff A ¢ Ty

4. A € At59[0] begins a fair derivation iff A € T}J;“’.

Note that assertion 4. does not correspond to a completeness result for logic
programming since queries cannot contain infinite terms. In [24], J.W. Lloyd
defines the set Cp of atoms computable at infinity from P as atoms A such

there exists a finite atom B and an infinite fair derivation from B with mgu’s
01,05, such that lim, ,. d(A,0,---01B) = 0. The soundness theorem
obtained in [24] is expressed as follows:

Cp C gfp(Tp)

However, the metric approach does not lead to a complete semantics: there
exist atoms in gfp(7Tp) which are not computable by an infinite derivation.
As a typical example, if we consider the logic program (3), we have p(f¥) €
gfp(Tp) but p(f“) is not computable by an infinite derivation (i.e p(f¥) &
Cp): the construction of the greatest fixpoint does not reflect how the infinite
terms are constructed during a computation. However, the metric approach
can be very useful when lattice-theoretic arguments cannot be used (for
example with programs, containing negations, which are not stratified). In
this case, M. Fitting suggests in [12] to find a metric with respect to which
Tp is a contraction and then has a unique fixpoint'.

3.2 Completion by ideals

Another approach, due to W.G. Golson [15], is an order-theoretic one and
is based on the completion by ideals of atoms. Given a partial ordered set
E, an ideal 7 is a directed (every pair of elements has a leat upper bound
in Z) and downward closed (if x € E, y € Z and = < y, then = € Z) subset
of E. Since the set of all the ideals ordered by set inclusion is a complete
partial order, every chain of ideals has a least upper bound which is again
an ideal, representing its limits. In [15], ideals of Aty ;1[X], called objects,
are defined as the sets A® = {A’, 30 € © A" < 0 A} where A is a set
of finite atoms and © is a directed set of substitutions. Such an object is
infinite if the cardinality of © (modulo renaming) is infinite. Interpretations
are upward closed sets of ideals with respect to set inclusion (i.e. if o € 7
and a1 C g then as € 7) and given an interpretation I, min(I) denotes the
set {a € I, VB eI B C a= a=}. Theoperator Tp is defined by:

Tp(I) ={ « (object), FH{A;+ A} eP
30 (directed set of substitutions)
a=A40 (A=U{4;})
Ael (A =UA) }

! Given a metric space (F, d), amapping f : E — Fis a contraction if forak (0 < k < 1)
we have for all z,y € E, d(f(x), f(y)) < k.d(z,y). A contraction on a complete metric
space has a unique fixpoint

and is shown J|-continuous by considering only programs whose clauses are
such that any variable in the body also appears in the head (for example,
program (6) cannot be considered). The main result expressed in [15] is
stated as follows: « € min(gfp(7'p)) iff there exists a fair derivation from
A with mgu’s (0;); such that A{U;{o;}} = a where A is a collection of
distinct rule head variants of P. For example, with program (3), we have
min(gfp(Tr)) = {p(z)}{[]} which is not an infinite object (derivation (4)
does not compute an infinite term), while with the program:

P =A{p(f(2)) < p(z)} (7)

e have: min(gfp(Tp)) = {p(2)} { [e] }iZO

which is an infinite object computed by the following fair infnite derivation:

R v O v P
o) VT oy DL) TR T

However, infinite SLD-derivations are not completely characterised: Tp is
shown |-continuous by considering a subclass of definite programs and fur-
thermore, only a subclass of the finite and infinite elements constructible by
nonterminating computations of a logic program (called “minimal” objects)
are characterised by a proper subset of gfp(Tp). For example, with the pro-
gram P = {p(f(z),y) < p(z,y)}, the infinite derivation starting from p(z,y)
computes a minimal object:

{p(z,y)} {[fi(xwi)]}izo

while from p(z, g(y)), no minimal object is computed.

4 Induction, co-induction and logic programming

4.1 Logic programs as inductive definitions

The “orthodox” view of logic programming is based on the identification of
a logic program with a first order theory: every clause in a definite program
stands for a first order formula. Definite clauses enjoy a remarkable property:
the model intersection property (if P is a definite program and {M;}cr is

10

a non-empty set of Herbrand models of P, then N;cyM; is an Herbrand
model of P). The usual model-theoretic semantics is given by the least
Herbrand model, written Mp, which is the intersection of all Herbrand
models. From the operational point of view, this set coincides with the
ground success set of P. This correspondence is proved by considering the
least fixpoint of the operator Tp, associated with the program P, also called
the fixed point semantics. This fired point semantics is an alternative to
the traditional paradigm and can be obtained by considering logic programs
as inductive definitions of sets and relations: a definite program defines a
new “logic” (i.e. a formal system) and denotes a set of theorems in this
logic. In this way, a clause A < Ap,---, A, can be viewed as a rule used
to prove A from the proofs of Ay,---,A,. From this point of view, this
clause ¢ is a function mapping a n-uple of proofs w4, of A; to a proof my
of A. We write m4: A to express that m4 is a proof of A and we say the
type of w4 is A. This correspondence between, proofs and functions, and,
propositions and types, is now well-known and is based on the Curry-Howard
isomorphism [14]. As we said, the traditional semantics of logic programs is
defined in terms of least Herbrand model and ground success set. Within the
“logic program as inductive definition” paradigm, the same semantics can be
expressed by considering a program P as a schematic rule which abbreviates
an infinite set of rules [P]: all ground instances over the Herbrand universe.
By following this approach, clauses should not be viewed as assertions in
first order logic, but as rules generating a set. The fixed point semantics has
long been used as a technical device. It corresponds to the “logic program as
inductive definition” paradigm and can be considered as the logic program’s
intrinsic declarative content. Indeed, many properties of logic programs are
similar to these enjoyed by inductive definitions. Recall that an Herbrand
interpretation I is a model of P iff Tp(l) C I and the model intersection
property, allows to consider the least Herbrand model of P as the intersection
of all Herbrand models of P. Since Tp is exactly the operator 7}p) obtained
from the rule set [P], as described by (5), each Herbrand model of P is a
Tipj-closed set (i.e. a [P]-closed set) and, since Ind(T]p)) is defined as the
intersection of all T}p)-closed sets, we have Mp = Ind([P]). By theorem 1,
it follows Mp = Ind([P]) = p(T}p]). Now, since the body of each definite
clause contains a finite number of atoms, the rule set [P] is finitary and
therefore Tipj is f-continuous. Hence by theorem 2, we obtain the well-
known result Mp = Ng,ncrl = Ifp(T1p)) = T[E;‘j which only follows from
properties of inductive definitions: the least Herbrand model can be directly
expressed by an inductive definition. In a similar way, the least C-model can

11

be also directly expressed by an inductive definition based on the rule set:
[P]|={6C, CeP 0: X - Tx[X]}

Therefore, TS is the operator T'py associated, as described by (5), with [P].

Since grammars are inductive definitions, this approach can explain why
logic programming works so well at natural language processing. Inductive
definitions are also useful to give a semantics to negation in logic program-
ming: when the program can be partitioned into several inductive definitions,
so that each negation refers to a set that has already been defined (i.e. when
the dependency graph is acyclic), it can be interpreted as an iterated induc-
tive definition. This “logic program as inductive definition” paradigm has
also be used to extend logic programming languages in order to increase the
power of “pure” declarative programming [16, 17, 18, 26].

4.2 Logic programs as co-inductive definitions
4.2.1 Atoms computed at infinity and greatest fixpoints

As we said in section 3, the main approaches to assign some meaning to
infinite SLD-derivations are based on a greatest fixed point characterisation
of infinite objects computed by nonterminating derivations. For programs,
like program (7), these approaches are sound and complete since we have
p(f¥) € gfp(Tp) and p(f¥) is computable by the infinite derivation (8).
This may be explained by considering the “logic program as co-inductive
definition” paradigm: the greatest fixpoint of the operator Tp over the com-
pleted Herbrand base corresponds to the co-inductive set Colnd(Tjpj), where
[P] denotes all the ground instances of clauses occurring in P over the com-
pleted Herbrand base, and then we have p(f“) € Colnd([P]) since the clause
p(f¥) < p(f*) is in [P] and therefore {p(f“)} is [P]-dense (i.e. Tjpj-dense)
because f(f“) = f“. However, these approaches do not lead to a com-
plete semantics: there exist atoms in gfp(Tp) which are not computable by
an infinite derivation. As a typical example, if we consider the logic pro-
gram (3), p(f“) is not computable by an infinite derivation but we have
p(f¥) € gfp(Tp) by the same density argument. The incompleteness comes
from the fact that clauses of [P] are expressed over a language richer than the
language of clauses of P and the language of queries. However, by allowing
infinite elements in queries and programs, the metric approach becomes com-
plete: for example, with program (3) we have the following infinite derivation
from the query p(f“):

p(f*) = p(f*) = ---p(f) = -~ (9)

12

which will be viewed as a proof of p(f“).

4.2.2 Infinite SLD-derivations as productive terms

Logic programs express properties on terms which can be proved through
SLD-derivations. Within the “logic programs as co-inductive definitions”
paradigm, it is also possible to establish these properties by co-induction.
In this section, we compare proofs by co-induction according to the use of
infinite terms or not. Co-induction is a proof principle based on the following
remark:

(T. Coquand [5]) In order to establish that a proposition ¢ follows
from other propositions ¢, -+ , ¢q, it is enough to build a proof
term e for it, using not only natural deduction, case analysis, and
already proven lemmas, but also using the proposition we want
to prove recursively, provided such a recursive call is guarded by
introduction rules.

Let us first introduce some examples. Sequences of positive integers can be
defined with the two following introduction rules:

n:IN [: L
cons(n,l): Ly

(nil) :

- cons) :
nil: Ly ()
In the case of an inductive definition, these two rules are associated with the
following elimination scheme:

P : Ly — Prop
l . L]N
m : P(nil)
Ty (ng:]N)(lo:L]N)P(lg)—>P(c0ns(n0,l0))
Fix F(I') : P(I'):=
match [’ with
nil —m |
cons(nl,ll) —>7r2(n1,l1,F(l1)).

(L]N—lnd) .

(1) : P()

and elements of Ly are the result of a finite number of applications of these
two rules. A co-inductive definition is obtained by relaxing this condition and
admitting that an element can also be introduced by a non-ending process
of construction defined by these rules. Given such a definition, we have the

13

following elimination scheme:

P : Ly — Prop

l . L]N

m o P(nil)

g (ng:]N)(lotL]N)P(COHS(TL()J()))
Case [of m w3 end : P(I)

(Lv-Colnd) :

associated with the two reduction rules:

Case nil of Ty my end — T
Case cons(n,l) of my my end = ma(n,l)

Now, it is possible to define several infinite sequences of integers in a recursive
way. For example, the (infinite) sequence of consecutive integers starting
from n can be defined by from(n) where:

from := An:IN.cons(n, from(S(n))) : N — L

However, every recursive definition is not valid: any finite segment of the
sequence must be explicitly constructed using the two rules (for more details,
see [13]). For example, we have :

from(n) — cons(n,from(S(n))) — cons(n,cons(S(n),from(S?(n)))) — ---

The definition of from is correct because it starts building the object pro-
viding an explicit finite initial segment. Now, if we consider the following
definition:

zeros := cons(0,tail(zeros)) : Ly
where tail is defined by:
tail({) := match [with nil — nil | cons(ng,ly) — lo.
then we have the following sequence of reductions:
zeros — cons(0,tail(zeros)) — cons(0,tail(zeros)) — - - -

Hence, any finite segment of length greater than 1 cannot be obtained by re-
ductions. from is said to be a productive term, while zeros is not a productive
term.

In a more formal way, productive terms are defined as follows. Recall
that a term ¢ in T is in canonical form iff it starts with a constructor of
T. A (direct) component of a term ¢ in T is a term ¢ in T if ¢ can be

14

reduced to a canonical term c¢(---,t',--+). A term ¢ is productive iff it can be
reduced to a canonical term and if all its components are productive. For
example, a term in Ly is productive iff it can be reduced either to nil or
cons(a, b) where b is productive. Like for terminaison of recursive functions
on inductive sets, there exists a simple syntactical criteria for productive
terms over co-inductive sets: guardedness. This class of definitions, called
guarded (by constructors) definitions, has been noticed, in the context of
type theory, by T. Coquand [5]. A guarded by constructors definition is a
definition such that all the recursive calls of the definition are done after
having explicitly gived which is (at least) the first rule to start building the
element and such that no other functions apart from constructors are applied
to recursive calls. However, note that this condition is too restrictive: there
exist productive terms which do not satisfy this condition.

In the following, we consider equality as an inductive relation. That
is, given a set A and an z in A, the set {z, z = z} is the smallest which
contains x. This definition, due to C. Paulin-Mohring, is equivalent to define
= as the smallest reflexive relation:

(=):

Leibniz’equality is obtained as the elimination scheme associated with this
definition:

r =2

z : A
P : A— Prop
m : P(x)
y A
. o X =Y
eq ind):
(ea_ind W)

A fair SLD-derivation, like (2), which computes at least one infinite term ¢
is both a computation (of the infinite term ¢) and a proof that this infinite
term is such that p(---,¢,---) for a predicate p. In this case, it can be noticed
that the proof term corresponding to the proof of p(---,¢,---) is defined by
using the elimination scheme eq ind. For example, with program (7), the
proof term of p(f¥) is defined by:

m= eq_ind(f(f*), Az.p(x), C(f*, m), [,) : p(f*) (10)

where the recursive call is guarded by the constructor C' where C is the
clause of P and where £, is a proof of f* = f(f“)?, and does not correspond

“Note that f* is defined by a guarded by constructors definition (f“:=f(f*)) since
possibly infinite terms are co-inductively defined with function symbols as constructors.

15

to the infinite derivation (8) computing f“. However, proof term (10) can be
viewed as the derivation (9) we could obtain from the query p(f“). That’s
why by allowing infinite terms in queries, a complete semantics for all infinite
derivations could be obtained. Another example can be shown by considering
the logic program (1), where the clause C corresponds to a co-inductive
definition. We can prove that Vn LN(n,from(n)). For this we need the
following property:

2, : ¥n from(n) = cons(n, from(S(n)))

The proof term 7 of Vn LN(n,from(n)) can be defined by the following
guarded by constructors definition:

m:=An. eq_ind(cons(n,from(S(n))),
Au.LN(n,u),
C(n, from(S(n)), 7(S(n))),
from(n),

ly(n))

Clearly, this proof does not correspond to the infinite derivation (2).

Let us consider now an infinite proof over a finite object: with pro-
gram (3), it is possible to prove that Vz p(x). The corresponding proof m
is defined by the guarded by constructors term m:=Az.C(z,n(z)) and can
be directly related to the infinite derivation (4). The application of the
constructor C corresponds to the first transition of this derivation, while
the recursive call corresponds to the next ones. In a similar way, with the
program P = {p(z) < p(f(x))}, we can prove Vzp(z) as follows:

ree (s ([2,]r0))

and clearly 7 corresponds to the derivation:

p(z) — [f(zz)]p(z) - [f(zz)] [f(zz)]p(z) N

Here again, the application of the constructor C corresponds to the first
transition of this derivation, while the recursive call corresponds to the next
ones (i.e. the derivation starting from the query p(f(2))). A more significant
example is the program testing connectivity in a directed graph. Since the
directed graph considered by the program (see figure 1) is cyclic, there exists
an infinite derivation from the query path(a,z):

path(a,z) — edge(a,b),path(b,z) — path(b,z) — edge(b, c), path(c, x)
— path(c, z) — edge(c,a), path(a,) — path(a,z) — - --

16

b &—® d
al : edge(a,b)
a2 : edge(b,c)

a a3 : edge(c,a)

cl : path(z,x) «
c2 : path(z, z) « edge(z,y), path(y, z)

Figure 1: Connectivity in a directed graph

This derivation can be viewed as a proof of Vz path(a,) which can be defined
recursively:

m:=Ar.c2(a, b, x,al, c2(b, ¢, z,a2,c2(c, a,x,a3,7(x))))
Of course, with the following version of the predicate path:

path(0, x, z) +
path(S(n), z,z) < edge(z,y), path(n,y, 2)

we have path(S¥,z,d) for z € {a,b,c} since the length of this “path” is
infinite (as the length of the proof) and Ind[path] characterises finite paths
in the graph.

Proof terms over finite objects do not use eq ind and can be viewed as
definitions of the sequences of clauses used in the corresponding derivations.
Furthermore, since a clause is applied at each resolution step of a derivation,
the associated proof terms should be productive. However, it is not always
possible to associate a productive proof term with an infinite SLD-derivation.
Consider, for example, the following program:

P = {p() « p(f(2)) 5 p(a) < plg(x))} (11)

N

Cl CZ

At each resolution step in a derivation from the query p(z), we can apply
both C; and Cy and if the following function:

fc :IN — {01,02}

defining the clause used at the n-th transition, is not “computable”, then the
proof term associated with the derivation cannot be written in a finite form,

17

since this term is defined by:

m:=Xr.7q(0, z) : lzp(x) with
wg:=An.\z.(Fo(n))(z, mq(S(n), (Fr(n))(z))) and
Fr:IN = {f,g}h:=Mn.(if Fo(n) = Cy then f else g)

This means that the proof term associated with a derivation can be viewed
as the definition of the infinite sequence of the clauses applied during the
derivation: given a productive proof term, it is possible to define the sequence
of the clauses used during the associated derivation. For example, clauses in
program (11) stands for the following introduction rules:

¢ Ty[X] r o Ty[X]
m : p(f(x)) ™ plg(z))

) Gar@) p@ P G @) 2@

associated with the following co-inductive elimination scheme:

P : plx)—s
T p(z)

m o (2 T5[X])(mp : p(f(2)))P(Cr(z, 7y))
m ¢ (2 T5[X])(mg p(g(2)))P(Ca(z,74))
Case 7 of m 79 end : P(m)

(Elimination) :

Reduction rules are:

Case Cy(z,n') of m my end — mi(x,7')
Case Co(z, ') of m m end — mo(z, ')

and allows to define Fp : Vap(z) - IN — {C1, Ca} as follows:

Fp(m,n):= match 7 with
Ci(z,7") — (match n with 0 — C | S(k) — Fp(r', k))|
Co(z,7") — (match n with 0 — Cy | S(k) — Fp(n', k)).

Hence, we have F¢ = Fp(m).

Since the presence of infinite elements in the Herbrand base leads to
incompleteness of the approaches based on the greatest fixpoint, we focus in
the following on the infinite derivations which do not compute infinite terms.

18

5 Infinite SLD-proofs

Examples presented in section 4.2.2 show that infinite derivations which do
not compute infinite terms can be related to proof terms over co-inductive
sets. Therefore, we investigate in this section this class of derivations. Re-
call that one of the underlying ideas of logic programming is to consider a
computation as the extraction of a result from a proof.

Definition 1 (SLD-proofs) An SLD-proof is either an SLD-refutation or
a fair infinite SLD-derivation.

5.1 Proof trees and fair derivations

In order to prove the completeness of our approach, we prove in this section
that, given a rule set ®, there exists an SLD-proof with ® as program,
which do not compute anything, from each element in Colnd(®). For this,
we introduce the classical notion of proof trees and we relate this notion to
SLD-derivations.

Definition 2 (Proof trees) Given a rule set ®, a proof tree of = for ® is
a possibly infinite tree T such that = is the root of T', and for every node z
occurring in T with z1,-- -, z, as sons, there exists a rule z < z1,--+,2, € ®
(in particular, if z is a leaf, there exists a rule z € ®).

In the following, we say that T is a partial proof tree if T is a proof tree
whose leaves do not necessarily correspond to a (unit) rule. We have the
following well-known lemma.

Lemma 1 z € Colnd(®) iff = is the root of a proof tree for ®.

Furthermore, the proof tree is finite iff z € Ind(®). In order to be able
to “translate” any proof tree into an SLD-derivation, we need two lemmas
expressing properties about variables renaming. Their proofs are quite tech-
nical and are presented in appendix. However, it is important to note that
it is necessary to take into account the renaming process used in an SLD-
derivation, often considered as a “minor” detail, in more informal presenta-
tions. Of course, proofs are getting a bit complicated but this avoid some
confusions usually due to the fact that the meaning of “renaming” is often
assumed to be simpler than its formal definition implies. Furthermore, we
prove the following lemma.

19

Lemma 2 Let A; and Ag be two atoms such that var(Ay) Nwvar(As) = 0.
If for a substitution 6, such that dom(0) C var(Asz), A1 = 0As, then 6 is a
mgu of A1 and As.

We are now in position to prove the main result of this section relating proof
trees with SLD-proofs introduced in definition 1.

Theorem 4 Given a definite program P and an atom A, if A € Colnd(P),
then there exists an SLD-proof from A with P such that, for oll © > 1, the
mgu 0;, used during the i-th resolution step of the SLD-proof, is a renaming
substitution whose domain coincides with the variables occurring in the head
of the clause used.

Proof. If A € Colnd(P), then, by lemma 1, A is root of a proof tree T for
P. Number the arcs emanating from each node from left to right, starting
with 1. Each node can be designated (indexed) by the word obtained by
concatenating the numbers of the arcs of the path leading from the root to
the node (e is the empty word). The breadth-first traversal of T produces
list a L. Since T is a proof tree for P, for each node Az in T, there exists a
clause Cry € P which can be written Ay < Az, -+, Az,.. We write <, the
lexical order over IN* and |[7] the length of 7€ IN*. Indexes of T can also be
ordered by < as follows:

<7 Ay occurs before Ayin £

(e < 1a0) v ([e = [7 A ¥ = 7))

Zr = Uvar(Cry) is the set, possibly infinite, of variables occurring in 7.
By lemma 8, given a clause Cry € P, a renaming substitution ’f'g, such
that range(rf) Nwvar(Crz) = 0, and a set of variables Z;, there exists a
substitution 0z, a clause Cy and a renaming substitution 7{ = r;rg such that:

=
A d

var(Cy) N (var (r{Crz) U Z;) = r{CiZ.. = 0;C>
dom(0;) = var(C}) range(r’) = var(C;)\var(C])

where 67 is an idempotent renaming substitution which is a mgu of sz and
TEC; - In the following, we write 7 (Cy r8, Zy) for the transition:

i vt C0nZr
7 + PEVOLEE —
reCy S 0,0

20

From L, we can define the following sequence of resolution steps:

te = T(Crpe, Sid, ZT)

la = T (CT,Z_ku T(i)‘k7 Zi’k) "0

where s;4 is the empty substitution. In order to verify the soundness of this
definition, we have to prove that:

V7 range(ry) Nvar(Crz) =0

For this, let us prove that V&' range(ry) N Zy = (. We proceed by induction
over 7t suppose the property holds for every 77 < 7. If |7] = 0, then the
property holds since range(s;q) N var(Cr.) = 0. Else, 7 can be written 7k
and, by definition, we have rgk = 7“{ = rjrg where 77 is a substitution such
that range(r?) N Zy = () since:

range(r’) C var(C]:)\var(CJj') Zr CZy war(Cy)NZy=10
By induction hypothesis, we can conclude since 7’ < 7k and:
range(rgk) = range(r{) C (range(rg) U range(r7)) var(Cr) C Zr

Hence, we can obtain the following derivation:

CE;_(9>€1:DZT C1,01,71 CrOn,Zn R, Cllﬁ;lazll

A R 5p R —-—Ry_1 5p P Ry — -

Clearly, since the derivation is obtained from a breadth-first traversal of T',
it is either a refutation or an infinite fair derivation. We prove in appendix
that this SLD-proof is correct and satisfies the desired properties. 2 |

In this section, proof trees for a rule set ® have been related to SLD-
proofs with ® viewed as a program. We will see that the appropriate rule set
allowing to study infinite derivations, which do not compute infinite terms,
is the rule set obtained from a program P by considering all the (finite)
instances, not necessarily ground, of clauses in P. This corresponds to the
C-semantics approach.

21

5.2 Direct SLD-proofs

The derivation obtained by theorem 4 is a special case of a derivation which
do not compute infinite terms: such a derivation does not compute anything
since the mgu’s used are just renaming substitutions. This particular class
of derivation correspond to the (co-)inductive definition obtained by consid-
ering a subset of the rule set [P]. In this paragraph, we present the main
results obtained for these derivations.

Definition 3 (Direct SLD-proofs) A direct SLD-proof is an SLD-proof:
Ry %’?91 Ry —=p--—=p Ri %’% Ri —p -

such that for every i > 1, dom(0;) C var(C;"). In particular, a direct SLD-
refutation is a direct SLD-proof ending with the empty query.

In order to give a “model-theoretic” semantics to direct SLD-proofs, we
extend the notion of C-truth as follows. Given a C-interpretation I, a
clause A <— By,---, By is CT-true in I iff for every substitution € such that
dom(0) C var(A), if atoms 6B; (1 < i < q) are CT-true in I, then 0A is
CT-true in I. This notion extends the C-truth since if a clause is C-true in T
then it is CT-true in I. A C-interpretation I is a C*-model of a program P if
every clause in P is CT-true in I. Hence, every C-model of P is a CT-model
of P. However, every C*-model of P is not necessarily a C-model of P. For
example, if we consider the program:

P ={p(z) < py) ; p(f(w)) <} (12)

the C-interpretation I = [p(f(z))] is clearly a CT-model of P, since for every
substitution € such that dom(0) C var(p(x)), Op(y) = p(y) ¢ I. But, I is
not a C-model of P, since with the substitution 8 = {y/f(y)}, we have
Op(y) = p(f(y)) € I but Op(z) = p(xz) € I. However, C*-models enjoy the
model intersection property and are useful to define a declarative semantics
for direct SLD-proofs.

The “logic program as inductive definition” paradigm is obtained by con-
sidering the rule set associated with P defined by:

[P]T ={6C, C € P and dom(f) C var(C*)}
which is associated, as described by (5), with the following operator:

Trpp+(I) = {A € Aty n[X], FA Ay,--, Ay € [P]*
Ajel (1<i<n) }

This operator satisfies the following properties which are proved in appendix:

22

® T7p)+ is monotone and f-continuous.

o A C-interpretation I is a C*-model of a program P iff Trpy+(I) C I.
° ./\/tCJr = |fp(T[p]+) = |nd(T(p]+) = TF;]JF

CT-semantics is a special case of C-semantics, and not surprisingly, we have
Mff C M. However, the converse inclusion does not hold: for example,
with program (12), we have M$" = [p(f(z))] and M$ = [p(z)]. For direct
SLD-refutations, we have standard results.

Theorem 5 (Ct-soundness) If there exists a direct SLD-refutation from
a query Ay, ---,Ag, then {Ay,---, Ay} C ij.

Proof. Induction over the refutation:

C1,01 Ci,0;
Ay, Ay > pRi—op-—op Ry S pRi—p - —op U

e If the refutation is a transition, then ¢ = 1 and C; is a unit clause
A <. By hypothesis, we have A; = 014 and since dom(6,) C var(C;") we

can conclude seeing that Mg is a C*-model of P.

e Consider the derivation Aj,---, A, “'p Ry 2p 0. Ik (1 <k <

q) is the position of the selected atom in the first transition, then R; is
the query 61(Ay, -+, Ak 1,07, Agy1,--+, Ag). Since dom(0)) C var(Cy),
we have Ry = Ay, -, Ap—1,01C; , Ap41, -, Ay By induction hypothesis,
R; C M?f and now it suffices to prove A; € Mg. Since M?f is a CT-model
of P and 6,C] C MC+, we have 016‘;“ = A, € M?j. <

Theorem 6 (C'-completeness) If{A;,---,A4,} C Mg, then there exists
a direct SLD-refutation from the query Aq,---, Aq.

Proof. We first prove the theorem for ¢ = 1. By lemma 12, A; € TF;;’H

and there exists a natural k£ such that A; € TfTII;H' We prove by induction

that for all k£, if A € T[T}’f,H, then there exists a direct SLD-refutation from A.

o If k=0, then A € T[T}g]+ = () induces a contradiction.

elf k=m+1, then A€ T[Tlliﬁ = T(p]+(TFIZ]L+) and there exist a clause

C', written A’ < B{,---, B}, and a substitution 6, whose domain is included
in var(A"), such that 0A" = A and {0B},---,0B.} C TFIZ%JF. Furthermore,

23

by lemma 7, we can suppose that var(C') Nvar(A) = 0. Therefore, by
lemma 2, 6 is a mgu of A and A" and we get the transition:

A%70 0B, 08
Now, since {0Bj,---,0B.} C TF;%JF, by induction hypothesis, there exist r

direct SLD-refutations:

* *

0B, Sp O --- 6B, S3p0

and, there exist r direct SLD-refutations:

*

d:9B, Sp0 --- d.:0B. SpO

such that Vi (1 <i <r) 9d(d;,) N |var(A) Uvar(C)U 19(d;)> =0
1<j<i
This allows to get the direct SLD-refutation:

c'.0
A =SpOB,---,0B. Sp 0
For ¢ > 1, the theorem is proved in the same way (combinaison of direct
SLD-refutations). <

Therefore, atoms in M%\M?f are atoms from which SLD-refutations,
but no direct ones, exist. For example, with program (12), whereas p(z) €
M, p(2) & Mg. Even if there exists an SLD-refutation:

2] L]

z fwr)

p(z) —p ply) ~ —p O (13)
there is no direct SLD-refutation from p(z). However, for the class of pro-
grams P such that var(C~) C wvar(C*) for every clause of P, we have
[Pt = [P] (and then M$, = Mg). Another important property satisfied

by these programs is TfL;.ﬁ’] = gfp(Ttpy). For infinite direct SLD-proofs, we
have the following results.

Theorem 7 (Ct-soundness) Let P be a definite program and Ay be an
atom. If there exists a direct SLD-proof:

C:

C10 0i
Ay ='pRi—p--—p Ry ' p R —p-

then Ag € gfp(T"p]Jr).

24

Proof. By definition, it suffices to prove that there exists a T7pj+-dense
set containing Ag. Let us prove that UizlﬂiC;“ satisfies these two properties.

e By definition, A9 = 01 A9 = 910# C Uizlﬁin

e We have to prove UiZleiCj - T(p]+ (Uizlai(lj). If Ae Ui210z’0i+;
then there exists a natural £ > 1 such that A = HkC,j and, since dom(6y) C
var(C}) it follows 0,Cy € [P]7. It suffices to prove that each atom occur-
ring in 6,C, occurs in uizleicj. If Ay € 0,C, , then A, € R; and since
the derivation is either a refutation or a fair infinite derivation, there exists
a resolution step in which the residu (i.e. the further instantiated version)
of Ay is the selected atom:

Cm+1 7‘9

Ch,0k m
k_)k = +1PRm+1_)"'

ka—)"'—)Rm

Hence, for m > k, we have 0,41 - 0114k = 9m+10;,t+1. Since variables
occurring in C; do not occur in clauses C; (j <) and since, each mgu
6; is such that dom(0;) C var(CJ'-'“), it follows O41 - Ops1 A = Ax =
9m+10$+1 - UizlﬁiC;“ and we can conclude. <

Completeness theorem for infinite direct SLD-proofs is proved by using the
following lemma.

Lemma 3 If there exists a transition Ry #%0 Ry such that:
dom(0) = var(uC™) var(C) Nwvar(Ry) =0 dom(p) = var(C™)
then there exists a transition Ry Y Ry such that dom(c) = var(C™).

Proof. Let A be the selected atom in Ry at position k. Since dom(f) =
var(pC™T), we have A = #A = OuC*. Moreover, since var(C)Nvar(Ry) = 0,
and by lemma 2, the restriction o of fu to the variables occurring in C™ is
a mgu of A and CT. Therefore, we get the transition:

C,o
130) 13/1
Let us prove ‘ha‘ Rll - Rl. Since:

Ry =0Ry[k < nC~]| = Rolk < 0pC] and
Ry = oRylk + C~7] = Rylk < 0C~]

it suffices to prove OuC~ = oC~. If v € var(C™), then two cases are
possible:

25

1. If v € var(CT), then, by definition of o, we have Ouv = ov.

2. Else, v € var(C~)\var(CT), and by hypothesis v & dom(o) and v &
dom(p). Therefore, v € var(upC~)\var(pC*) and v ¢ dom(6). This
terminates the proof since Qpv = ov = v. |

Theorem 8 (Ct-completeness) Let P be a definite program and A be an
atom. If A € gfp(Tipy+), then there exists a direct SLD-proof from A with P.

Proof. If A € gfp(Tjpy+), then, by theorem 1, A € Colnd([P]") and by
theorem 4, there exists a direct SLD-proof from A with [P]* such that for
all 4 > 1, the mgu 0;, used during the i-th resolution step of the SLD-proof, is
a renaming substitution whose domain coincides with the variables occurring

in the head of the clause used:

C1,0 Ci,0;
A2 p1e By —pppe o oy Ricy 2 ey Ri 2y o

By lemma 14, there exists a set {Cp,1,---,Cp;,---} of variants of clauses of
P such that:

Vi >0 wvar(Cp;) N | var(Ag) U U var(Cpy) | =0
1<j<i
and such that each clause Cp; satisfies C; = pu;Cp; where p; is an idempotent

substitution such that dom(u;) = var(C},). Then, by lemma 3, there exists
a direct SLD-proof from A with P. <

Unfair infinite “direct” SLD-derivations can be viewed as partial proofs. Re-
call that given a derivation:

C1,01 Ci.0;
Ry - pRi—p---—pRi_1 = pR;,—p---

for all i > 1 we have P = R; = P = 0;---01Ry. This result can be
generalised for “direct derivations” by considering:

R ={J () Rn
p>0p<n

Theorem 9 Let P be a program and Ay be an atom. If there exists an
infinite derivation:
C1,0 Ci,0;
Ry=A4y ='pRi—p-—=pRi1 S'pRi—p--
such that for all i > 0, dom(0;) C var(C;"), then:

Ry C gfp(T(p]+) = Ay € gfp(T[p]+)

26

‘Ne

Figure 2: Proof of theorem 9

Proof. Suppose that Up>0 Np<n Rn C gfp(T7p1+) and let us prove that
Ao € gfp(I7py+). For this, by theorem 1 and by lemma 1, it suffices to prove
that there exists a proof tree T' of Ay for [P]T. Let us define the sequence
Ty,---,T;, - of partial proof trees such that every atom occurring in R; is
a leaf in T; (see fig. 2).

e (T1) T is obtained by considering the first transition: its root Ay =
01 Ao has atoms in Ry = 6,;C| as sons.

e (T,) We show how we can obtain 7T}, from 7;,_;. We know that atoms
occurring in R, 1 are leaves in T, ;. Let A be the selected atom
in R,_1, since dom(0,) C var(C;}), T, is obtained by adding atoms
occurring in 6,C, as sons of A. Since, R, = 0,R, 1]k < C, | =
R, 1|k < 0,C,], T, is a partial proof tree of Ay for [P]* such that
every atom occurring in R, is a leaf in T,.

By iterating this process, we obtain a partial proof tree T, whose leaves are
either the head of a unit clause in [P]T or an atom in R, which is, by
hypothesis, in gfp(T(p]+) and correspond, by theorem 1 and by lemma 1, to
the root of a proof tree for [P]*. Therefore, by adding in Tw, these proof
trees at the corresponding leaf, we obtain a proof tree of Ay for [P]T. <

27

This theorem is not a special case of theorem 8, it just gives another
way to interpret infinite “direct derivations”. For example, if we consider
derivation (4), then by theorem 8 we have p(x) € gfp(T7p)+) while by the-
orem 9, we just have p(z) € gfp(T1p1+) = p(z) € gfp(Tjpy+) since for
this derivation we have R, = p(z). C*-semantics works well to give a
semantics to programs whose clauses do not contain existential variables
(i.e. var(C~) C war(CT)). However, derivations, like derivation (13), are
not considered in this approach. The next section take into account these
derivations by using the C-semantics approach (but no result about unfair
derivations, like theorem 9, will be obtained).

5.3 SLD-proofs over a finite domain

SLD-proofs over a finite domain are SLD-derivations which do not compute
infinite terms. In a more formal way, they can be defined as follows.

Definition 4 (SLD-proofs over a finite domain) An SLD-proof over a
finite domain is either o refutation or o fair infinite derivation:

C,0 Ci,bi
Ry <p Ry —p - —p Ri_1 =p Ry —p -+
such thatVk > 03dp>kVg>p 04---0,---Op 1Ry =0y 011 Ry,

It is important to note that it does not suffice that the condition holds for
the initial query. Consider for example the program:

P ={q(x) < p(z) ; p(f(2)) < p(e)}

Even if during the derivation :

= z:| 92|: ; :| 9i1|: xz;l :|
a(2) La AR EACR RS FAL

—p p(zi) =p -

each 6; is such that 6;q(z) = ¢(z), this derivation computes the infinite
term f“. We will need an equivalent definition for SLD-proofs over a finite
domain. This definition follows from the next lemma.

Lemma 4 A derivation Ry N R —p-—p Ri_1 =¥p R, =p --- 15 an
SLD-proof over a finite domain iff:

Vi>0 dR Vn>i+1 enen_l---9i+1Ri§R

where R is a query (i.e. R does not contain infinite atoms).

28

Proof. (=). By definition:
VE>0dp>kVg>0p Hq---ep---0k+1Rk zep---HkHRk

and it follows V& >0 Vg>k+1 04 ---0p 1R < 0p--- 011 Ry

(«<). Let k& > 0 and suppose there exists a query R of length £ such that
Vn > k+1 6,0, 1---0p1Rr < R. For every atom A; (1 < i < ¥)
occurring in Ry, there exists an atom B; in R such that Vn > k + 1,
0n0n—1---0p+1A; < B;. In a classical way, atoms can be represented as
partial functions from IN* (words on IN) to X UTITU X as follows: A(u) is the
symbol occurring in the node of the tree representation of A designated by
the word obtained by concatenating the numbers of the arcs of the path from
the root to the node (arcs are numbered from left to right, starting with 1).
The extensional representation of such a function is U{(u, A(u))} and O(A)
denotes the set of elements u such that A(u) is defined. Now, seeing that
clearly A1 S A2 implies |O(A1)| S |O(A2)|, (|O(9n t '0k+1Ai)|)n2k+1 is an
increasing sequence with |O(B;)| as upper bound and therefore, there ex-
ists p; > k + 1 such that Vg; > pi, |00y - Op14;)| =[O0y -~ Op1143)).
Now, since if A; < Ay and |O(4;)| = |O(A2)| then |va7“(A1)| > |var(Asg)|,
(lvar(Op -+ - Op4143))n>p, is @ decreasmg sequence with 0 as lower bound
and therefore, there exists p; > p} such that Vg; > p;, [var(fy, - - - Op114:)| =
lvar(6y, - 0k+1A)|. Now, since every 0; (j > k+1) is 1demp0tent we have
Vi > pi, 04 Op1Ai = 0y, -+ 01 A; (if 0 is an idempotent substitution
such that 9A1 = Ay and if jvar(A4;)| = |var(Asz)| and |O(A1)| = |O(A2)],
then Ay &~ Ay). This leads to the conclusion that the derivation considered is
a derivation over a finite domain since p = max;<;<¢(p;) is such that Vg > p,
Hq---Hp---HkHRkzep---HkHRk. <

C-semantics results correspond SLD-refutations. Let us investigate infinite
SLD-proofs over a finite domain. The soundness theorem can be proved
directly by using proof trees.

Lemma 5 If there exists an SLD-proof over a finite domain :
Ci,0i
Ay BP Ry —p - —p Riyt SR —p -

then, for a k >0, we have O ---01Ag € gfp(T7p)).

29

01Ag

Nem
On_1-- 0140 On---01A0 On - 01Ap
_— enTn—l _—
0, A
% % @

Figure 3: Proof of lemma 5

Proof. By theorem 1 and by lemma 1, it suffices to prove that for a natural
k, there exists a proof tree of 0y --- 61 Ay for [P]. For this, let us define the
sequence 11, ---,T;,- - of partial proof trees, such that every atom occurring
in R; is a leaf in Tj, which is a partial proof tree of 6;--- 61 Ay for [P] (see
fig. 3).

e (T1) Ty is obtained from the first transition: its root is 63 Ay whose
sons (which are leaves) are all the atoms occurring in 6;C; . Since
0.C, € [P] and 61 Ay = 01Cl+, T, is a partial proof tree of 61 Ay for
[P]. Furthermore, atoms occurring in Ry = 6;C are leaves of T}.

e (T,) Suppose T;,_; is a partial proof tree of 6,1 --- 01 Ay for [P] (cor-
responding to the n — 1 first transitions) such that atoms in R,,_; are
leaves of T}, 1. By applying the substitution ,, to each node of T}, 1,
we get a partial proof tree of 0, ---60; Ay for [P] such that atoms in
0, R, 1 are leaves. If A is the selected atom in R,, 1, then A is a leaf
of T,,_1 and 8, A is a leaf in the new partial proof tree. Now, it suffices
to add all the atoms in 6,C,; as sons of 6, A (these sons are leaves).
In this way, we obtain a partial proof tree T, satisfying the desired
properties since R, = 0, R, 1]k < C,/].

30

Because the derivation does not compute infinite terms and therefore there
exists a natural £ > 0 such that for all ¢ > k, 04 --- 0 --- 01 Ag = 0, - - - 01 Ay,
by iterating this process, we obtain a proof tree of 0 - - - 61 Ay for [P]. Fur-
thermore each leaf corresponds to a unit clause of [P] since the derivation
is fair. |

Theorem 10 (Soundness) If there exists an SLD-proof over a finite do-
main:

C1,01 C;,0;
A, Ay =p R —p - —=p Ricg —p Ri —p -

then there exists k > 0, such that for alli (1 <i <n) 6. 61 A; € gfp(T7p7).

Proof. The proof is similar to the proof of lemma 5 : instead of building
a sequence of partial proof trees, we build a sequence of tuples of n partial
proof trees for [P]: ((T¢,---,T1), -+, (T}, -+, T/),- - -) such that 6; - - - 61 A;
is the root of Tij (1 < j < n) and such that each atom occurring in R; is a
leaf of Tij for a j. |

Since, by theorem 4, there exists an SLD-proof with the program [P]
from each atom occurring in Colnd(T}py), lemma 6 describes how to “trans-
late” an SLD-derivation with [P] into an SLD-derivation with P. It can be
viewed as a “program lifting lemma” playing the same role as the (classical)
lifting lemma in the proof of the (classical) completeness theorem.

Lemma 6 (Program lifting lemma) If there exists an SLD-proof :

C1,01 Ci,0;
Ao =ip) By =ppy - = 1p) Rict —fp) Ri = pp) -

such that for oll © > 1, 0; is a tdempotent renaming substitution such that
dom(6;) = var(C;"), then there exists an SLD-proof over a finite domain:

Cpi1,01 ; Cpioi
Ay —=p Rl—)p"'—)pRi_l —p Ri—>p---

such that for all i > 1, 0;Ayg = Ay and R; = p; R} where p; is the restriction
of Oipuibi_1pui—1 - - - 011 to the variables occurring in R).

Proof. By lemma 15, there exists a set {Cp;,---,Cp;,---} of variants of
clauses of P such that:

Vi >0 war(Cp;)N | var(Ay) U U var(Cp,j) U U var(Cy) | =0
1<j<i ji>1

31

and such that each Cp; satisfies C; = p;Cp; where p; is an idempotent sub-
stitution such that dom(u;) = var(Cp;).

e For the first transition. By definition 614y = ch'f' = 91;1101"51. Further-
more, since dom(p1) = var(Cp;) and var(Cpy) Nvar(Ap) =), we have
w1 Ag = Ag and it follows 011 Ay = 91#10;1- Similarly, since dom(0;) =
var(Cf’) and var(C1) Nwvar(Ag) = 0, we have 61 Ay = Ap. Therefore, we
have 0141 Ag = Ay = 01111 C}JS,I. By lemma 2, the restriction o of 811 to the
variables occurring in C}";,l is a mgu of Ay and CEI and we get the transition:

Cp,1,01
Ay =p Rll

Clearly, we have 01 Ag = Ag since 1u1 Ay = Ag. Now, let us prove that the
restriction p; of 614 to the variables occurring in R satisfies p1R] = Rj.
For this, we have to prove that py R} = ,010101371 = Hl,ulC;,l =0,C; = Ry.
Let v € var(Cp), two cases are possible. If v € var(CEl), then oqv = O puqv
and we can conclude since 0114101410 = O1pqv. Else, if v & var(CEl), then
we have pjo1v = prv = 0110 which settles the claim.

e For the i-th transition. Let us show how from the transition:

Ci,0;
Ri_1 —ip) Ri

we can obtain a transition from a query R}, satisfying p;—1 R;_; = R;_1 where
pi—1 is the restriction of €;_jp; 1 --- 01 to the variables occurring in R} :
C 1074
R, &' R
such that ;A9 = Ay and such that the restriction p; of 0;u;0; _1p4;—1 - - - 01141
to the variables occurring in R;, satisfies p; R, = R;. If A is the selected atom

in R;_; at position k, then there exists an atom A’ occurring at position k
in R! | such that A = p; 1A’ and we get 6;p; 1A' = OiuiC;,i. From:

dom(p;—1) Cvar(R_ ;) C (U wvar(Cpy) Uvar(A0)>
1<j<i

1<j<i

and wvar(Cp;) N (U wvar(Cpy) Uvar(A0)> =0

it follows p;—1Cp; = Cp,; and therefore 0;p; 1A' = 91#;‘%-10;5,,-- Fur-
thermore, dom(u;) = var(Cp;) and we have p;A = A. Hence we have
Oipripi—1 A" = 9iMiPi—1C;§,i, and since O;p;---01pu1Ag = Ap, by lemma 16,

32

there exists a mgu o; of A" and C’Iii such that 0;4y = Ay and for a substi-
tution n;, we have 1;0; = 0;u;p;—1. Hence, we get the transition:

C 7904
R, &' R
In order to relate R; to R}, let us prove that 0;u;0;—10; = O;pipi—1. Since o;
is idempotent, we have 0;u;p;_10; = n;0;0; = n;0; = O;uip;—1. We are now
in position to prove 0;u;pi—1 R; = R;:

Oipipi—1 1 = Oipipi10iRi_ [k < Cp]

Oipipi—1 B[k < Cp;l (Oipipi—10i = Oipiipi—1)
Oipi—1 Ri_q[k < iCp;] (wiRi—1 = Ri—1)

= bi(pi-1Ri_y)[k < piCp,] (pi1Ci = Cj))

= HiRifl[k < CZ']

— R,

Therefore, the restriction p; of Oju;p;—1 to the variables occurring in R}
satisfies p; R} = R;.

To terminate, we have to prove that the derivation obtained is a derivation
over a finite domain. For this, let us prove that:

Vn>i+1 p,onon-1---0i1 R, =R;
We proceed by induction over n. For n =i + 1, we have:
pi10i41R; = Oi1piis1pi0i1 By = Oip1piv1piRy = Oiapiii By = R

For n > ¢ + 1, by induction hypothesis, we have pp_10,-1--" UH_le = R;.
Therefore, in order to prove pn,on0y,—1---0iy1 R, = R;, we have to prove
that for every variable v occurring in oy—1 - - - 0j41 R}, pnopv = pp—_1v. First,
note that ppon = Oppinpn_10n = Oppinpn—1, and it suffices to prove that
OntinPn—1v = pp—1v. Furthermore, if v € oy_1 - - - 0541 R}, then we have:

v € | var(R;)U U var(Cp;j) | C | var(Ap) U Uvar(C’p,j)
i+1<j<n—1 1<j<n—1

Hence, if v € dom(pn—1), then var(p,—1v) C R,_1 and Oppuppp_1v =
Prn—1v since O punRy_1 = Ry_1, else we can also conclude since 0,u,v =
v. Therefore, since R; contains only finite atoms and for all n > 7 + 1,
OnOn—1---0i+1R; < R;, by lemma 4, the derivation obtained is a derivation
over a finite domain. |

We are now in position to prove the completeness theorem.

33

Theorem 11 (Completeness) Given a definite program P and an atom
A, if A€ gfp(T[p]), then there exists an SLD-proof over a finite domain
from A with P :

Cp,l,O'l Cp.i,0;
A =p Rll —p —>pR;_1 —gp R; —p

such that for oll i > 1, 0;A = A

Proof. Completeness theorem follows from theorem 1, lemma 1, theorem 4
and lemma 6. |

6 Conclusion

In this paper, semantics of nonterminating derivations has been investigated
within a proof-theoretic framework: definite clauses have been considered as
rules of a formal system. Following this approach, a semantics for the class
of infinite derivations which do not compute infinite terms has been defined
and proved sound and complete by using purely proof-theoretic methods: an
atom is the starting point of an infinite derivation over a finite domain if and
only if it is in the greatest fixpoint of the transformation 77py.

The restriction to the class of derivations over a finite domain is justified
by incompleteness results of others approaches, allowing infinite terms, in
which the greatest fixpoint construction, corresponding to the “logic program
as co-inductive definition” paradigm, is not equivalent to the operational
semantics: co-induction is too rich to give a semantics to nonterminating
SLD-derivations. This observation, illustrated in section 4.2.2, explains why
most attempts to give a complete semantics to derivations computing infinite
terms have not been successful. Therefore, while all the approaches existing
in this area are based on the concept of “atoms computable at infinity”,
we have presented a semantics based on the concept of “atoms provable at
infinity”.

It seems that the operational notion of “computability at infinity” (associ-
ated with infinite derivations computing infinite terms) is better captured by
a least fixpoint characterisation. This idea has been developped by G. Levi
and C. Palamidessi in [25] and revisited in [23]. In an order-theoretic frame-
work (involving algebraic complete partial order), they consider the “final
result” of an infinite derivation as the limit of a sequence of approximations,
characterised by a least fixpoint semantics based on a modified version of
the programs (some suitable unit clauses are added and used as the starting
point of the construction of a sequence of non-empty interpretations). Then,

34

infinite objects in the denotation of a program are characterised by the topo-
logical closure of Hp(Tpyc(py) (where C(P) is the set of added clauses): each
infinite element is the least upper bound of a directed set (of finite elements
which are its partial approximations) included in Ifp(Tpyc(p)). However, the
semantics obtained is sound but not complete.

Of course, a satisfactory semantics for all infinite derivations from a defi-

nite program has not yet been found, but this paper allows us to gain a better
understanding of the problem and suggests an area for future investigations.

References

1]

2]

[6]

7]

M.A. Nait Abdallah. On the interpretation of infinite computations in
logic programming. In J. Paredaens, editor, 11th International Collo-
quium on Automata, Languages and Programming, ICALP’8}, volume
172 of Lecture Notes in Computer Science, pages 358-370. Springer-
Verlag, 1984.

M.A. Nait Abdallah and M.H. van Emden. Top-down semantics of
fair computations of logic programs. Journal of Logic Programming,

2(1):67-76, 1985.

P. Aczel. An introduction to inductive definitions. In K.J. Barwise, edi-
tor, Handbook of Mathematical Logic, Studies in Logic and Foundations
of Mathematics. North Holland, 1977.

K.R. Apt and M.H. Van Emden. Contributions to the theory of logic
programming. Journal of the ACM, 29(3):841-862, 1982.

T. Coquand. Infinite objects in type theory. In H. Barendregt and
T. Nipkow, editors, Selected Papers of the 1st International Workshop
on Types for Proofs and Programs, TYPES’93, volume 806 of Lecture
Notes in Computer Science, pages 62—78. Springer-Verlag, 1994.

B. Courcelle. Fundamental properties of infinite trees. Theoretical Com-
puter Science, 25(2):95-169, 1983.

F.S. de Boer, A. Di Pierro, and C. Palamidessi. Nondeterminism and

infinite computations in constraint programming. Theoretical Computer
Science, 151(1):37-78, 1995.

S. Decorte and D. De Schreye. Termination of logic programs: the never-
ending story. Journal of Logic Programming, 19-20:199-260, 1994.

35

[9] N. Dershowitz, S. Kaplan, and D.A. Plaisted. Rewrite, rewrite, rewrite,
rewrite, rewrite. Theoretical Computer Science, 83(1):71-96, 1991.

[10] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A model-theoretic
reconstruction of the operational semantics of logic programs. Informa-
tion and Computation, 103(1):86-113, 1993.

[11] M. Falaschi, G. Levi, C. Palamidessi, and M. Martelli. Declarative
modeling of the operational behavior of logic languages. Theoretical
Computer Science, 69(3):289-318, 1989.

[12] M. Fitting. Metric methods three examples and a theorem. Journal of
Logic Programming, 21(3):113-127, 1994.

[13] C.E. Giménez. Un calcul des constructions infinies et son application
a la vérification de systéemes communicants. Thése de doctorat, Ecole
Normale Supérieure de Lyon, 1996.

[14] J.Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of
Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, 1989.

[15] W.G. Golson. Toward a declarative semantics for infinite objects in
logic programming. Journal of Logic Programming, 5(2):151-164, 1988.

[16] M. Hagiya and T. Sakurai. Foundation of logic programming based on
inductive definition. New Generation Computing, 2(1):59-77, 1984.

[17] L. Hallnés and P. Schroeder-Heister. A proof-theoretic approach to logic
programming. I. Clauses as rules. Journal of Logic and Computation,
1(2):261-283, 1990.

[18] L. Hallnds and P. Schroeder-Heister. A proof-theoretic approach to
logic programming. II. Programs as definitions. Journal of Logic and
Computation, 1(5):635-660, 1990.

[19] J. Hein. Completions of perpetual logic programs. Theoretical Computer
Science, 99(1):65-78, 1992.

[20] J. Jaffar and P.J. Stuckey. Canonical logic programs. Journal of Logic
Programming, 3(2):143-155, 1986.

[21] J. Jaffar and P.J. Stuckey. Semantics of infinite tree logic programming.
Theoretical Computer Science, 46(2-3):141-158, 1986.

36

[22]

23]

[24]

[25]

[26]

J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Infinitary
lambda calculus. Theoretical Computer Science, 175(1):93-125, 1997.

G. Levi and C. Palamidessi. Contributions to the semantics of logic
perpetual processes. Acta Informatica, 25(6):691-711, 1988.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, sec-
ond, extended edition, 1987.

C. Palamidessi, G. Levi, and M. Falaschi. The formal semantics of
processes and streams in logic programming. In Colloquia Mathematica
Societatis Janos Bolyai, 42, pages 363-377, 1985.

L.C. Paulson and A.W. Smith. Logic programming, functional pro-
gramming, and inductive definitions. In P. Schroeder-Heister, editor,
Proceedings of the International Workshop on Extensions of Logic Pro-
gramming, volume 475 of Lecture Notes in Computer Science, pages
283-310. Springer-Verlag, 1989.

37

A Proofs

Proof of lemma 1 (C). Let z € Colnd(®), by theorem 1, z € gfp(Ts) and
it follows = € Ty (gfp(T)). Hence, there exists a rule z < z1,---,24 € ®
such that {z1,---,2z,} C gfp(Te). We can obtain a partial proof tree with «
as root where {z1,---,z4} are sons of . Now, it suffices to iterate on the
sons of z, which are in Colnd(®), to get a proof tree of z for ®. (D). Let
x be the root of a proof tree for ® and Z be the set of nodes occurring in
the proof tree. Let us prove that Z C Tg(Z). If z € Z, then, there exists
Z 4= 21, 29 € ® where {z1,---,2,} are sons of z. Hence, {z1,---,24} C Z
and it follows z € To(Z). Since Z C Ty(Z), Z is ®-dense and, by definition,
we have z € Colnd(®).

Lemma 7 If Z is a set of variables and C is the clause A < By,---, By,
then there exists a clause C' and an idempotent renaming substitution p such

that:
var(C") N (var(C)UZ) =0 pC' =C

dom(p) = var(C") range(p) = var(C)

Proof of lemma 7 If var(C) = {z1,---,z,} and {y1,---,yn} is a collec-
tion of distinct variables such that {yi, -, yn} N (var(C)U Z) = 0, then C’
and p can be defined by:

e N R L
Y1 Yn Ty In

and satisfy the desired properties.

Lemma 8 Given a set of variables Z, o clause Cr, and a renaming substi-
tution ry such that range(ro) Nwvar(Cr) = 0, there exists a transition:

roC 0~

where C is a clause satisfying var(C) N (var(roCr) U Z) = 0 and where
0 is an idempotent renaming substitution such that dom() = wvar(CT).
Furthermore, there exists a renaming substitution r such that range(r) =

var(C~)\var(C") and rroCp = 0C~.

Proof of lemma 8 By lemma 7, there exists a clause C' and an idempotent
renaming substitution p such that:

var(C) N (var(roCr)U Z) =0 pC =roCr
dom(p) = var(C) range(p) = var(roCr)

38

By lemma 2, the restriction 6 of p to the variables occurring in C* is a mgu
of 7‘00;: and C*. Hence the following resolution step is correct:

roCt ¥ 0C-

If p is the substitution defined by:

+ + - -
p:[xi: .z T xg? TL e Ty
| Yy - y,;"l Y1 o Yny Y1 e Ypg
{z1, ...z} } = var(CT)\var(C™)
where {xli,...,x,i = var(Ct) Nwar(C™)
{27, ...z, } = var(C™)\var(CY)
then we can define the renaming substitution ry = rrg by:
= [UL Ung]TO
Ty e T,
Let us prove that m C, = 0C™:
_— [Yr o e Yns | _
7"10 = _ _ 'I“()C
T [T Ty | T
| Ty e T, |
e = + + -
_ Yo Yng xli :JUQLE2 Ty Tn | o
| 1 - x;s_ Y1 o Yny Yo e y;s
t L s s
_ TP e Ty | o
- + +
L Y1 o Yno |
= 0C

Proof of lemma 2. First, note that since var(A;) Nwvar(As) = 0 and
dom(0) C wvar(As), we have 0A; = Ay = 0As. Therefore, 0 is a unifier
of A; and Ag. Furthermore, for every variable v, if v € range(f), then
there exists a variable y € dom(6) C var(Az) such that v € Oy. It follows
v € OAy = A; and we get v € dom(0) since #A; = A;. Hence, € is an
idempotent substitution. Now, let us prove that 6 is a mgu. For this, let
i be a unifier of A7 and Asy. Since Ay = 0 As, we have ufAs = pA, and it
suffices to prove that for every variable v, ufv = pv. If v & dom(0) then
uhv = po is immediate, else, since dom(0) C var(Asz) we can conclude since
ulAy = pAs. This leads to 6 < p.

39

End of the proof of theorem 4 We prove here that the derivation ob-
tained in the proof of the theorem 4 is valid and satisfies the desired prop-
erties. Given an index 7 € IN* of T', we write % the index of the node just
before A7 in L. In a more formal way:

T =max™{], 7=}
>k and k< are indexes of T' defined as follows:

>k = max~¢{7, 1] =k}

VREN e~ min {7, 7 = k)

In order to prove the desired properties of the derivation, it suffices to prove
the following assertions.

J=v
Immediate by definition of Z;.

(1). V¢ wvar(Cy) N | var(A) U U var(C;)) =0

: Ce e 27 o .
(2). The resolution step A “5p " R is correct.

Immediate since it corresponds to t..

(3). V&' range(ry) C U (var(CJi)\var(C]ﬂ'))
=

Induction over 7.

e If 7] = 0, then we have:

range(r) = range(rir®) = range(r®) = var(C>)\var(CF)
e If = 7k, then, by induction hypothesis, we can conclude since:
T — rjkrgk = rjkr{

it range(r’*) = var(Cﬁc)\var(C]j,;)

Vi((p+1)a=7=p(p+1)) rlAr€ Ry
4). Vp e N 0
(4). vp € {V?((P+1)<<le>(p+l)) roAr € Rér

(in particular r(()pﬂ)qA(pH)q € R.p)

Induction over p.
e If p =0, then for every k such that 1 < k£ < n, we have:

rE A, =r{A, €60.C7 = R. = Ry

40

Let us prove that for every k (1 < k < n), we have rf Ay = r{ Ay € Ryp_1.
Since R, = 0.C_ =] Cig, we know that r{ Ay € R.. Furthermore, for every
m (1 <m <k —1), we have:

dom(0,,) = var(C;5) and war(Cy)N | ZruU U Ci|=0
j<m
Since r§ = rr§ = r® where range(r®) = var(C>)\var(CF), we have:
var(riAg) C (Zr Uvar(Cy))

Hence, it follows, var(ri{Ag) Nvar(Cy,) = 0 and we have 6,,r{ Ay = r{Ay.
We can now conclude since at each resolution step m, r{A,, is the selected
atom and the mgu used 6, does not affect the variables occurring in r{Ay.
Therefore r{ Ay occurs in R,,.

e If p > 0, then, by induction hypothesis, we have:

V7 (pa <7< pp) T%A; € Rp(p,l)
Vi (pa <7 =<pp) riAr € R4~

and it suffices to prove:

ng
V7 (pa < 7= pp) dom(6;) Nwar U U rak A | =0
i<Tk=1

If 7is such that p<a < 7= >p, then we know that:

dom(0;) = var(C]f) and wvar(Cy N | Zr U U Cil =0
u<J

Furthermore, we have:

ng Ny
var U U rgkA@k = var U U riAgk | = var U r1Cr 2

a@=<7k=1 i=<7k=1 @<y

and since:

var U T?Cf,ﬁ - (7"@”96(7"117) U var(Ciﬁ))
=<7

5]
A
Sy
Sy

(1) and (3) allow to conclude.

Lemma 9 T(py+ is monotone and T-continuous.

41

Proof of lemma 9 Since T7p)+ is defined from the rule set [P]*, it is
clearly monotone. Every clause in P has a finite body and [P]* is finitary
and we can conclude.

Lemma 10 If I is a T-closed set, then Tip1+(I) is also a T-closed set.

Proof of lemma 10 Let A € Tjpy+ (/). By definition, there exists a clause
A" < By,---,By in P such that for a substitution @ satisfying dom(#) C
var(A’), we have 0A' = A and {0B,,---,0B,} C I. Let Ay be an atom such
that A < Ap. There exists a substitution p such that dom(u) C var(A) and
1A = Agy. By considering the restriction of pf to the variables occurring in
A’ it follows puhA" = Ay and we can conclude since {u6By,---, 0By} C T
because I is 1-closed.

Lemma 11 Ind(T(p]+) = |fP(T[P]+) = T[T]L;ﬁ

Proof of lemma 11 By lemma 9, Tjpj+ is monotone and f-continuous
and by theorem 1, we can conclude.

Lemma 12 A C-interpretation I is a Ct-model of a definite program P iff
T"P'|+(I) CclI.

Proof of lemma 12 (=). Let I be a C*-model of P and A € Typy+(I).
By definition, there exists a clause A < Bi,---,B, € [P]* such that
{By,---,By} C I. Since I is a CT-model of P, it follows A € I and we
can conclude. (<=). Let I be a C-interpretation such that Tpy+(I) C
I. If A< By, --,B; is a clause in P and 6 is a substitution such that
dom(0) C var(A), then if {6By,---,0B,} C I, we have 0A € Trpy+(I) and
since Trp1+(I) C I it follows 6A € I. Hence I is a CT-model of P.

Theorem 12 MS = |fp(T(p]+) = |nd(T[P]+) = T[Tzfﬁ

Proof of theorem 12 By definition, Mff is the intersection of all C-
models of P, which are, by lemma 12, T7pj+-closed sets, which corresponds
to Ind(Tjp1+), and by lemma 11 we can conclude.

ct C
Lemma 13 M} C M5

42

Proof of lemma 13. Since [P]T C [P], we have:

VI Tip+(I) € Trpy (1)

T T
= quw T“ZHT% T“%
= e S 17

= M%Jr C M% (by theorem 12)

Lemma 14 Let P be a definite program and Ay be an atom. Given a possibly
infinite set of clauses {Cy,---,Cj,---} C [Pt such that:

Vi >0 war(C;)N | var(Ay) U U var(Cy) | =0
1<j<i

there exists a set {Cpy,---,Cp;,---} of variants of clauses of P such that:

Vi >0 wvar(Cp;) N | var(Ap) U U var(Cp;) | =0
1<j<i

and such that every clause Cp; satisfies C; = p;Cp; where p; is an idempo-
tent substitution satisfying dom(u;) = var(C3.).

Proof of lemma 14 Since C; € [P|T, for all 4, there exist a substitution
o; and a clause CiP € P such that C; = aiCZP and dom(o;) C var(CiP *):

gi = t1 o U
Let {y1,---,ys} = var(CF *)\dom(o;). In order to define a clause Cp; =

riCiP , as a variant of a clause in P, we introduce the following idempotent

renaming substitution:

= T Tk yl yq
v wq W 21 zq

where:

range(r;) N [var(Ap) U U var(Cpj) U U var(C;) Uvar(CE) | =0
1<j<i i>1

43

Let us prove that:

Vi >0 war(Cp;)N | var(Ap) U U var(Cpg) | =0
1<j<i

First, we prove that:
Vi >0 war(Cp;) C (range(r;) Uvar(C;))
For this, let v € var(Cp;). Since Cp; = riCZ-P, two cases are possible:
1. if v € range(r;), then we can conclude
2. else, v € var(CYF), and:

(a) either v € var(CH'™) and since dom(r;) = var(CE™), r; is idem-
potent induces a contradiction

(b) or v € var(CF ")\var(CF *) and since C; = 0;C} and dom(s;) C
var(CL 1), it follows v € C; and we can conclude

By definition of r;, variables occurring both in Cp; and range(r;) satisfy the
property and since var(C;) Nwvar(Ag) = 0, it suffices to prove that:

var(C;) N U var(Cpy) =0
1<j<i

This property holds if:

var(C;) N U (range(rj) Uvar(Cj)) =0
1<j<i

which follows from:

Vj >0 range(r;)N U var(Cg) =0 and wvar(C;) N U var(C;) =0
k>1 1<j<i

Now, we have to prove that there exists an idempotent substitution u; such
that dom(pu;) = var(C;;i) and C; = p;Cp,;. This substitution is defined by:

_[wl ... wk Zl e zq]
Hi th o oty oY1 o Y

Let us prove C; = aiCZP = uiriC’ZP =u;iCp;. If v e var(CZP), then two cases
are possible:

44

1. if v € var(CF) then:

(a) either v = y; (1 < j < ¢q) and we can conclude since p;r;y; =
Hizj = Yj = OiYj.

(b) or v = z; (1 <j < k) and we can also conclude since p;rijz; =
uiwj == tj = inj.

2. else v € var(Cy ~)\war(C{ T) and it follows v & dom(o;) and v &
dom(r;), hence we can conclude since, by definition of r;, we have
v & dom(u;) = range(r;).

To terminate, we prove that p; is idempotent, or equivalently dom(u;) N
range(p;) = (). Since r; is idempotent and dom(u;) = range(r;), we have
dom(p;) N {y1,--+,ys} = 0. Furthermore, since C; = 0;C}", we know that:

U var(t;) C var(C;)
1<j<k

and we can conclude since range(r;) Nvar(C;) = 0.

Lemma 15 Let P be a definite program and Ay be an atom. Given a possibly
infinite set of clauses {Cy,---,Cj,---} C [P] such that :

Vi >0 war(C;)N | var(Ay) U U var(Cy) | =0
1<j<i
there exists a set {Cp1,---,Cp;,---} of variants of clauses of P such that :
Vi >0 wvar(Cp;) N | var(Ag) U U var(Cp;) U U var(Cg) | =0
1<5<i E>0

and such that every clause Cp; satisfies C; = p;Cp; where p; is an idempo-
tent substitution satisfying dom(p;) = var(Cpy).

Proof of lemma 15 Since C; € [P], for all i, there exist a substitution
o; and a clause CiP € P, such that C; = aiCiP and dom(o;) C var(CiP) :

0—'_ :‘Cl ... xk
S B R 71

45

Let {y1, -,y,} = var(CI')\dom(o;). In order to define a clause Cp; =
r;CF as a variant of a clause in P, we introduce the following idempotent
renaming substitution:

= xl . xk yl “ e yq
v wl . wk Zl “ e Zq

where :

range(r;) N | var(Ap) U U var(Cp;) U U var(Cy) | =0
1<j<i Jjz1

Now, let us prove that there exists an idempotent substitution u; such that
dom(p1) = var(Cp;) and C; = pu;Cp,;. This substitution is defined by:

'_|:w1 ceeWE 21 e zq:|

In order to prove C; = 0;CF = p;r;CF = wiCp;, let v € var(CF). Two
cases are possible : either v & dom(o;) and it follows v = y; (1 < j < q)
which settles the claim since o;y; = y; = pizj = piriyj, or v € dom(o;)
and we have v = z; (1 < j < k) which allows to conclude since o;z; =
tj = p;wj = pyrizj. Let us prove that pu; is idempotent, or equivalently
dom(p;) N range(p;) = 0. Since r; is idempotent and dom(u;) = range(r;),
we have dom(u;) N{y1,- -, y,} = 0. Furthermore, since C; = 0;CY’, we know
that:
U var(t;) C var(C;)
1<j<k

and we can conclude since range(r;) Nvar(C;) = 0.

Lemma 16 Let A, Ay and B be three atoms, and 6 be a substitution such
that 0A = 0B and 0Ay = Ag. There exists a mgu p of A and B such that
pAO == Ao.

Proof of lemma 16 Since §A = 0B, there exists a mgu o of A and B
such that o < 6. Hence for a substitution n, we have no = 0. Furthermore,
from 8Ay = Ay, it follows nog Ay = Ay and therefore, o can be viewed as a
renaming substitution for the variables occurring in Ap:

vp oo ovp T T | {on,e o} = dom(o)\var(4y)

7= i e y1 o Yn {xla"'axk} = dO?’I’L(O’) ﬂvar(AO)

46

Let us define the following idempotent renaming substitution (corresponding
to a restriction of 7):
T = |: Yyi 0 Un :|
‘/El ... xn

and let us prove that p = ro. First note that clearly we have pAy = Ay.
Therefore, it suffices to prove that p is a mgu of A and B. pA = pB is
immediate (because 0 A = oB). In order to prove that p is idempotent, let
v € dom(p). Two cases are possible.

1. If v € dom(0), then v = v; (1 < j < k) since pz; = z; for every
i € {1,---,n}. Therefore, v & {z1,---,z,} and v € Uj<i<pvar(rt;)
since Uy<;j<gvar(rt;) C Ui<i<pvar(t;) Urange(r) and o is idempotent.
Hence, v & range(p).

2. If v € dom(r), then v = y; (1 < j < n) and since clearly v ¢
{z1, -+, 2z,} and v € Ui<ij<pvar(rt;), we have v € range(p).

To terminate, we have to prove that p is minimal. For this, let u be a
substitution such that yA = pB. Since o is a mgu of A and B we have
o < p and there exists a substitution v such that vo = . Therefore, p < i
since we prove that vr~!'p = vr~'ro = vo = p where r~! is the inverse of

r (i.e. rr~! = r~lr = 5;4). For this, let w be a variable. Two cases are
possible.

1. If w € dom(o), then:

(a) if w =wv; (1 <j < k), then vr~lrov; = vr~'rt; and we can
conclude since r~'rt; = t; because for every variable y € var(t;):
i. either y € dom(r) and r~'ry = y is immediate
ii. or y € dom(r) and we have r~ly = y since o is idempotent
and var(t;) C range(o) and dom(r—t) C dom(o).
(b) if w=z; (1 <j < n), then we can conclude since vr lroz; =
l/r_lryj = l/’)"_lej =VYy; =vox;.

2. If w & dom(o), then let us prove that vr~'rw = vw. Indeed, either

w € dom(r) and r~'rw = w which settles the claim, or w & dom(r)
and we have r~'w = w since dom(r ') C dom(o) and w & dom(o).

47

