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Logi programming ando-indutive de�nitionsMathieu JaumeAbstratThis paper fouses on the assignment of meaning to in�nite deriva-tions in logi programming. Several approahes have been developpedby onsidering in�nite elements in the universe of the disourse butnone are omplete. By onsidering proofs as objets in a o-indutiveset, standard properties of o-indutive de�nitions are used both toexplain this inompleteness and to de�ne a sound and omplete seman-tis, based on the �logi program as o-indutive de�nition� paradigm,for a sublass of in�nite derivations, alled in�nite derivations over a�nite domain (i.e. derivations whih do not ompute in�nite terms).
Programmation logique et dé�nitionso-indutivesRésuméLes SLD-dérivations in�nies sont étudiées en identi�ant un pro-gramme dé�ni ave un ensemble de dé�nitions o-indutives. Plusieursapprohes ont déjà été développées en onsidérant des termes in�nisdans l'univers du disours mais auune n'a permis de dé�nir une sé-mantique omplète. Les dé�nitions o-indutives fournissent un adreadéquat pour expliquer es phénomènes d'inomplètude et permettentde dé�nir une sémantique valide et omplète pour la lasse des dériva-tions in�nies qui ne alulent pas de termes in�nis.





1 IntrodutionStandard semantis of de�nite programs, based on the traditional paradigm�logi program as �rst order logi�, is only onerned with refutations andthen is strongly related to termination. Hene, in�nite derivations are nottaken into aount in this lassial semantis. For these derivations, thereis no satisfatory semantis but several approahes. In all of them, the setproposed for the denotation of a de�nite program ontains possibly in�niteatoms. Unfortunately, the semantis obtained, based on the onept of �in-�nite atoms being omputable at in�nity�, are not omplete (i.e. there existin�nite atoms in the denotation of a program whih are not omputable byan in�nite derivation). In these approahes, only in�nite derivations �doinguseful omputations, in some sense� are onsidered: these derivations mustompute an in�nite objet to be �useful�. This orresponds to the informallyintended meaning of in�nite omputations. As a typial example, with thefollowing program: P = fLN(x; [xjl℄) LN(S(x); l)g (1)we an obtain, from the query LN(k; l0), an in�nite derivation omputing atevery step a better approximation of the seond argument:� � � ! LN(Si�1(k); li�1) 24 xi li�1Si�1(k) [Si�1(k)jli℄ 35�! LN(Si(k); li)! � � � (2)The ��nal result� is the �limit� of the sequene of approximations and orre-sponds to the in�nite sequene of integers starting from k. Inompletenessof these approahes omes from programs often alled �bad� programs: atypial example of �bad� program is the following one.P = fp(x) p(x)g (3)Of ourse, the in�nite derivation:p(z)! p(z)! � � � ! p(z)! � � � (4)does not ompute anything and the denotation of p should be empty. How-ever, we will see that when the denotation of P is de�ned by a greatest�xpoint of a transformation assoiated with P , these prediates have a non-empty denotation.Our approah is the exat opposite: we investigate the lass of in�nitederivations whih do not ompute in�nite terms. These derivations an be1



�useful� to desribe the behaviour of nondeterministi programs (�owgraphprograms). As stated by K.R. Apt and M.H. Van Emden [4℄, there is a orre-spondene between omputations of a �owgraph F and derivations obtainedfrom a de�nite program P (F ) assoiated with F . Sine, the only funtionsymbols ourring in the lauses of P (F ) are onstant symbols, these deriva-tions do not ompute anything. Another important and pratial lass offuntion-free logi programs orresponds to Datalog programs. This spe-ial lass of in�nite derivations will be onsidered in setion 5.2. However,this lass of derivations is too restrited and in�nite derivations omputingonly �nite terms an be envisaged. These derivations, alled derivations overa �nite domain, are onsidered in setion 5.3.It is now well-known that standard semantis of de�nite programs anbe expressed by purely proof-theoreti methods. The most immediate wayto give suh a semantis is to onsider lauses as inferene rules, rather thanlogi formulas, and then a de�nite program as a formal system. From thispoint of view, the denotation of a program is the set of theorems whihan be derived in this system. Within this framework, indutive de�nitionsare a natural way to de�ne the denotation of logi programs. Sine, proof-theoretially, we an look at a lause A B1; � � � ; Bn as an introdution rulefor A (or similarly as a lause in an indutive de�nition), by following theCurry-Howard isomorphism, it is possible to represent lauses by onstru-tors of a funtional language and eah proof an be viewed as a funtionalexpression. Hene, there is a orrespondene between proof trees and andproof terms.In the literature, one an �nd several approahes dealing with in�niteSLD-derivations. Most of them are based on the greatest �xpoint of opera-tors assoiated to programs and then orrespond to the �logi programs aso-indutive de�nitions� paradigm. In this way, the denotation of a de�niteprogram P is de�ned as the set of theorems whih are the results of a possi-bly in�nite number of appliations of instanes of lauses in P (viewed as aformal system). By following the Curry-Howard isomorphism, proof termsassoiated with these proofs are produtive: at eah step, a onstrutor (i.e.a lause) is applied. In this paper, we investigate in�nite SLD-derivationsby onsidering the proof terms assoiated with these derivations. We willsee that an approah in whih an in�nite SLD-derivation must ompute anin�nite objet leads to inompleteness sine with this requirement an SLD-derivation is rather viewed as a omputation than as a proof. That's whywe investigate the lass of in�nite derivations whih do not ompute in�-nite terms and therefore an be diretly identi�ed with proofs. Hene, ourapproah de�nes an empty denotation for program (1), while derivation (4)2



viewed as a proof of 8xp(x), where the result proved is reursively used, leadsto the de�nition of a non-empty denotation for program (3). We will see thatthere exists a sound and omplete semantis for this lass of derivations.2 Bakground and notations2.1 Indutive and o-indutive de�nitionsIndutive and o-indutive sets an be de�ned by some rules for generatingelements of the set and by adding that an objet is to be in the set onlyif it has been generated by applying these rules (for more details, see [3℄).A rule is a pair (E; e), usually written E ! e, where E is a set, alledthe set of premises, and e is the onlusion. Let � be a rule set and Aa set. A is �-losed if eah rule in � whose premises are in A also hasits onlusion in A and A is �-dense if for every a 2 A there is a setE � A suh that (E ! a) 2 �. The set indutively (resp. o-indutively)de�ned by a rule set �, written Ind(�) (resp. CoInd(�)), is de�ned byInd(�) = \fA; A is �-losedg (resp. CoInd(�) = [fA; A is �-denseg). �-losed sets and �-dense sets exist and the intersetion of any olletion of�-losed sets is �-losed (in partiular, Ind(�) is the smallest �-losed set).Indutive and o-indutive sets an also be expressed by using monotoneoperators (an operator ' : 2B ! 2B, where 2B denotes the set of all sub-sets of B, is monotone if E1 � E2 � B implies '(E1) � '(E2)). Givena monotone operator ' : 2B ! 2B, a set A � B is said to be '-losed(resp. '-dense) i� '(A) � A (resp. A � '(A)). The set indutively (resp.o-indutively) de�ned by ', written Ind(') (resp. CoInd(')) is de�ned byInd(') = \'(A)�A�BA (resp. CoInd(') = [A�'(A)�BA). If � is a rule set,we may de�ne a monotone operator T� : 2B ! 2B as follows:B = [e E2�ffeg [Eg T�(A) = fe 2 B; 9 e E 2 � E � Ag (5)and we have Ind(�) = Ind(T�) and CoInd(�) = CoInd(T�). The followingresult is a speial ase of one of Tarski's theorems.Theorem 1 If ' is a monotone operator, then Ind(') is the least �xpoint of' (lfp(')) and CoInd(') is the greatest �xpoint of ' (gfp(')).It is possible to iterate towards these �xpoints as follows. For every ordinal�, we de�ne ordinal powers of ' by: '"0 = ; and '#0 = B, '"�+1 = '('"�)and '#�+1 = '('#�), if � is a limit ordinal, then '"� = [�<�'"� and '#� =3



\�<�'#� . The operator ' is said to be "-ontinuous (resp. #-ontinuous) iffor every inreasing (resp. dereasing) sequene (En)n�0 of subsets of B, wehave '([n�0En) = [n�0'(En) (resp. '(\n�0En) = \n�0'(En)).Theorem 2 If ' is a "-ontinuous (resp. #-ontinuous) operator, thenInd(') = lfp(') = '"! (resp. CoInd(') = gfp(') = '#!).This theorem does not hold without the ontinuity assumption. However, if' is �nitary (i.e. if for every inreasing sequene (En)n�0 of subsets of B,we have '([n�0En) � [n�0'(En)) and monotone, then ' is "-ontinuous,so lfp(') = '"!. If ' is the operator obtained from a rule set �, as desribedby (5), then ' is �nitary if the set of premises of eah rule of � is �nite (inthis ase, we also say that � is �nitary).2.2 Standard onepts of logi programming2.2.1 Herbrand semantisIn the following setions, we assume familiarity with the standard notions oflogi programming as introdued in [24℄. �, � and X denote respetively aset of funtion symbols, a set of prediate symbols, and a set of variable sym-bols. Elements of T�[X℄ are terms over �[X. A substitution is a mappingfrom X to T�[X℄ suh that fx; x 6= �xg = dom(�) is �nite. range(�) denotesthe set fvar(�x); x 2 dom(�)g. We write ��var(E) for the restrition of � tovar(E). Composition of substitutions indues a preorder on substitutions(�1 � �2 , 9�; ��1 = �2) and on expressions (E1 � E2 , 9�; �E1 = E2).A renaming substitution is a mapping r:X ! X suh that 8x; y 2 dom(r),x 6= y ) r(x) 6= r(y). A mgu is a minimal idempotent uni�er. The pre-order � indues an equivalene relation � (alled variane): E1 � E2 i�there exist two renaming substitutions �1 and �2 suh that �1E1 = E2 and�2E2 = E1. At�;�[X℄ denotes the set of atoms. Given a lause C, we writeC+ its head and C� its body. An SLD-derivation from R0 with a programP is a possibly in�nite sequene of transitions:A1; � � � ; Ak; � � � ; An| {z }R C;�!P �(A1; � � � ; Ak�1; B1; � � � ; Bq; Ak+1; � � � ; An)| {z }�R[k C�℄where � is a mgu of C+ and Ak and where C is a variant of a lause inP , whose body is B1; � � � ; Bq. The renaming proess required in an SLD-derivation: R0 C1;�1!P R1 !P � � � !P Ri�1 Ci;�i!P Ri !P � � �4



is suh that for all i � 1, var(Ci) \ ([j<ivar(Cj) [ var(R0)) = ;. An SLD-derivation is fair if it is either failed or, for every atom B in the derivation,(some further instantiated version of) B is seleted within a �nite number ofsteps. The model-theoreti semantis of logi programs is based on Herbrandinterpretations (subsets of the Herbrand base). From this point of view, themeaning of a program P is de�ned as the least Herbrand model of P (i.e.ground atoms whih are logial onsequenes of P ). This set oinides withthe ground suess set of P (ground atoms A from whih there exists anSLD-refutation). This orrespondene is proved by using �xpoint resultsof the operator TP over Herbrand interpretations, assoiated with P andde�ned by:TP (I) = fA 2 At�;�[;℄; 9A0  A1; � � � ; An 2 P 9�:X ! T�[;℄�A0 = A and �Ai 2 I (1 � i � n)gIn this paper, we use the following notations, oming from [10℄:E � At�;�[X℄ dEe = f�A 2 At�;�[X℄; A 2 Eg[E℄ = f�A 2 At�;�[;℄; A 2 Eg2.2.2 C-semantisThe standard semantis of logi programs (à la Herbrand), based on theground suess set, is not ompletely adequate as operational semantis sineno variable ours in this semantis. The C-semantis has been revisited indetails by M. Falashi, G. Levi, C. Palamidessi and M. Martelli [10, 11℄and allows variables in the elements of the domain. The Herbrand universeonsidered, written T�[X℄=�, is the quotient set of T�[X℄ with respet tothe variane equivalene relation �. For the sake of simpliity, the elementsof T�[X℄=� will have the same representation as the elements of T�[X℄ (theintended meaning of f(x) 2 T�[X℄=� is the equivalene lass of f(x) belongsto T�[X℄=�). It is well-known that the preorder � on T�[X℄ indues an orderrelation, still denoted by �, on T�[X℄=�. The Herbrand base onsidered isthe quotient set At�;�[X℄=� whih an be ordered by p(~t1) � p(~t2), ~t1 � ~t2.Interpretations are subsets of At�;�[X℄=� and the notion of truth oinideswith the one of being a member of. In order to avoid the situation where anatom A is true with respet to an interpretation I whih does not ontaininstanes of A, we require interpretations to be "-losed (i.e. (A 2 I ^ A �B) ) B 2 I): "-losed subsets of At�;�[X℄=� are alled C-interpretations.Note that given any subset I of At�;�[X℄=�, dIe is a C-interpretation (saidanother way, I is a C-interpretation i� I = dIe). Given a C-interpretation I,C-truth is de�ned as follows: 5



� an atom A is C-true in I i� A 2 I (i.e. the equivalene lass of A 2 I).� a lause A  B1; � � � ; Bq is C-true in I i� for every substitution �, ifatoms �Bi (1 � i � q) are C-true in I, then �A is C-true in I.A C-interpretation I is a C-model of a de�nite program P if every lause inP is C-true in I. C-models and (standard) Herbrand models an be related:if I is a C-model of a de�nite program P , then [I℄ is a (standard) Herbrandmodel of P . Note also that the lass of C-interpretations is a ompletelattie with respet to set inlusion (if E is a set of C-interpretations, thenglb(E) = \I2EI and lub(E) = [I2EI). Intersetion of C-models of a programP is a C-model of P and every program P has a least C-model, writtenMCP ,whih gives the delarative meaning of a program. Operational semantis,de�ned by: SCP = fA 2 At�;�[X℄; A �;�!P � and �A = Agis related toMCP by onsidering the least �xpoint of the "-ontinuous oper-ator de�ned by:T CP (I) = fA 2 At�;�[X℄; 9A0  A1; � � � ; An 2 P 9�:X ! T�[X℄�A0 = A and �Ai 2 I (1 � i � n)gsatisfying standard properties: a C-interpretation I is a C-model of a programP i� T CP (I) � I andMCP = lfp(T CP ) = Ind(T CP ) = T C "!P = SCP .Theorem 3 (Soundness and ompleteness [11℄)1. If there exists an SLD-refutation R = A1; � � � ; Aq �;�!P �, then thereexist a substitution �0 and fA01; � � � ; A0qg � MCP suh that �0 is a mguof (A1; � � � ; Aq) and (A01; � � � ; A0q) and �0�var(R) = ��var(R).2. Let R be the query A1; � � � ; Aq. If there exist fA01; � � � ; A0qg � MCP anda mgu �0 of (A1; � � � ; Aq) and (A01; � � � ; A0q), then there exists an SLD-refutation A1; � � � ; Aq �;�!P � suh that �0�var(R) � ��var(R).3 Objets omputed at in�nityIn omputer siene, termination of programs is a traditional requirement.Logi programming does not esape from this in�uene and there exist manyworks about termination of logi programs (for a survey, see [8℄). However,6



in�nite behaviour of programs an be useful to model some situations andnonterminating �omputations� have been onsidered for many programmingparadigms: �-alulus [22℄, rewrite systems [9℄, onstraint logi program-ming [21℄, onurrent onstraint programming [7℄ ... In this setion, we re-view the main approahes to assign some meaning to in�nite derivations in�pure� logi programming ourring in the literature [1, 2, 15, 19, 23, 24, 25℄.All of them onentrate on the aspets related to the semantis of in�niteobjets and to the models for logi programs whih take them into aount.The universe of the disourse onsidered in these approahes ontains in�niteelements. There are mainly two reasons for this requirement:1. They all argue that �a natural requirement for modeling in�nite deriva-tions is the presene of in�nite elements in the universe of the dis-ourse�. This allows to onsider derivations, like (2), whih omputein�nite objets at in�nity. The sense of a �useful� in�nite omputationis given by the notion of atom omputed at in�nity (i.e. an in�niteatom A suh that there exists a �nite atom from whih there exists anin�nite derivation whih �omputes at in�nity� A).2. Most of them are based on a greatest �xed point haraterisation ofin�nite objets omputed by nonterminating derivations and in thisase, they all try to obtain the identi�ation gfp(TP ) = T #!P . Generally,this property does not hold in the Herbrand base. However, programssatisfying this property, alled anonial programs, have been studiedby J. Ja�ar and P.J. Stukey [20℄. For example, with the program:P = fp(0) q(x) ; q(S(x)) q(x)g (6)we have:T #!P = \n�0T #nP = \n�00�[i�nfq(Si(0))g [ fp(0)g1A = fp(0)gwhile when a �good� ompletion of the Herbrand base is de�ned, weobtain:T #!P = Tn�0T #nP = Tn�0 Si�nfq(Si(0))g [ fp(0); q(S!)g!= fp(0); q(S!)g = gfp(TP )and then TP beomes #-ontinuous.7



Therefore, the �rst step of these approahes onsists in de�ning a ompletionof the Herbrand base. The most used ontinuous strutures are ompletemetri spaes and omplete partial orders whih are both haraterised bythe presene of in�nite elements viewed as the limits of in�nite sequenes of�nite objets.3.1 The metri approahThe more immediate approah to the ompletion of the Herbrand base, dueto M.A. Nait Abdallah [1℄ and used by J.W. Lloyd [24℄, is the metri one: theHerbrand base is made a omplete metri spae by introduing a distanebetween terms as follows:d(t1; t2) = � 0 if t1 = t22� inffn; �n(t1)6=�n(t2)g otherwisewhere �n(t) denotes the trunation at height n of the tree t. Now by adding toT�[X℄ all the limits of Cauhy sequenes of terms, we obtain the set T1� [X℄ of�nite and in�nite terms and (T1� [X℄; d) is a omplete metri spae (for moredetails, see [6℄). The distane d an be extended to ground atoms and thenew Herbrand base onsidered is the metri ompletion of At�;�[;℄, writtenAt1�;�[;℄. Now, the operator TP is both "-ontinuous and #-ontinuous andthe main results oming from [1℄ are expressed as follows. Given a derivation:R0 C1;�1!P R1 C2;�2!P � � � Ci;�i!P Ri Ci+1;�i+1!P � � �we write dji for the derivation R0 �! Ri and [[dji(R0)℄℄ stands for groundinstanes, over the ompleted Herbrand base, of dji(R0) = �i � � � �1R0. SineAt1�;�[;℄ is a omplete metri spae, [[d(R0)℄℄ = \i2IN[[dji(R0)℄℄ is a non-emptyset (while \i2IN[dji(R0)℄ an be empty) and we have the following results:1. For every atom A, [[A℄℄ \ T #!P = Sf[[d(A)℄℄; d is fairg.2. A 2 At1�;�[;℄ begins a suessful derivation i� A 2 T "!P .3. A 2 At1�;�[;℄ is the root of a �nite and failed SLD-tree i� A 62 T #!P .4. A 2 At1�;�[;℄ begins a fair derivation i� A 2 T #!P .Note that assertion 4. does not orrespond to a ompleteness result for logiprogramming sine queries annot ontain in�nite terms. In [24℄, J.W. Lloydde�nes the set CP of atoms omputable at in�nity from P as atoms A suh8



there exists a �nite atom B and an in�nite fair derivation from B with mgu's�1; �2; � � � suh that limn!1 d(A; �n � � � �1B) = 0. The soundness theoremobtained in [24℄ is expressed as follows:CP � gfp(TP )However, the metri approah does not lead to a omplete semantis: thereexist atoms in gfp(TP ) whih are not omputable by an in�nite derivation.As a typial example, if we onsider the logi program (3), we have p(f!) 2gfp(TP ) but p(f!) is not omputable by an in�nite derivation (i.e p(f!) 62CP ): the onstrution of the greatest �xpoint does not re�et how the in�niteterms are onstruted during a omputation. However, the metri approahan be very useful when lattie-theoreti arguments annot be used (forexample with programs, ontaining negations, whih are not strati�ed). Inthis ase, M. Fitting suggests in [12℄ to �nd a metri with respet to whihTP is a ontration and then has a unique �xpoint1.3.2 Completion by idealsAnother approah, due to W.G. Golson [15℄, is an order-theoreti one andis based on the ompletion by ideals of atoms. Given a partial ordered setE, an ideal I is a direted (every pair of elements has a leat upper boundin I) and downward losed (if x 2 E, y 2 I and x � y, then x 2 I) subsetof E. Sine the set of all the ideals ordered by set inlusion is a ompletepartial order, every hain of ideals has a least upper bound whih is againan ideal, representing its limits. In [15℄, ideals of At�;�[X℄, alled objets,are de�ned as the sets A� = fA0; 9� 2 � A0 � �Ag where A is a setof �nite atoms and � is a direted set of substitutions. Suh an objet isin�nite if the ardinality of � (modulo renaming) is in�nite. Interpretationsare upward losed sets of ideals with respet to set inlusion (i.e. if �1 2 Iand �1 � �2 then �2 2 I) and given an interpretation I, min(I) denotes theset f� 2 I; 8� 2 I � � �) � = �g. The operator TP is de�ned by:TP (I) = f � (objet); 9fAi  A0ig 2 P9� (direted set of substitutions)� = A� (A = [fAig)A0� 2 I (A0 = [Ai) g1Given a metri spae (E; d), a mapping f : E ! E is a ontration if for a k (0 � k < 1)we have for all x; y 2 E, d(f(x); f(y)) � k:d(x; y). A ontration on a omplete metrispae has a unique �xpoint 9



and is shown #-ontinuous by onsidering only programs whose lauses aresuh that any variable in the body also appears in the head (for example,program (6) annot be onsidered). The main result expressed in [15℄ isstated as follows: � 2 min(gfp(TP )) i� there exists a fair derivation fromA with mgu's (�i)i suh that Af[if�igg = � where A is a olletion ofdistint rule head variants of P . For example, with program (3), we havemin(gfp(TP )) = fp(z)gf[ ℄g whih is not an in�nite objet (derivation (4)does not ompute an in�nite term), while with the program:P = fp(f(x)) p(x)g (7)we have: min(gfp(TP )) = fp(z)g�� zf i(xi) ��i�0whih is an in�nite objet omputed by the following fair infnite derivation:p(z) 24 zf(x1) 35�! p(x1) 24 x1f(x2) 35�! � � � 24 xi�1f(xi) 35�! p(xi) 24 xif(xi+1) 35�! � � � (8)However, in�nite SLD-derivations are not ompletely haraterised: TP isshown #-ontinuous by onsidering a sublass of de�nite programs and fur-thermore, only a sublass of the �nite and in�nite elements onstrutible bynonterminating omputations of a logi program (alled �minimal� objets)are haraterised by a proper subset of gfp(TP ). For example, with the pro-gram P = fp(f(x); y) p(x; y)g, the in�nite derivation starting from p(x; y)omputes a minimal objet:fp(x; y)g�� xf i(xi) ��i�0while from p(x; g(y)), no minimal objet is omputed.4 Indution, o-indution and logi programming4.1 Logi programs as indutive de�nitionsThe �orthodox� view of logi programming is based on the identi�ation ofa logi program with a �rst order theory: every lause in a de�nite programstands for a �rst order formula. De�nite lauses enjoy a remarkable property:the model intersetion property (if P is a de�nite program and fMigi2I is10



a non-empty set of Herbrand models of P , then \i2IMi is an Herbrandmodel of P ). The usual model-theoreti semantis is given by the leastHerbrand model, written MP , whih is the intersetion of all Herbrandmodels. From the operational point of view, this set oinides with theground suess set of P . This orrespondene is proved by onsidering theleast �xpoint of the operator TP , assoiated with the program P , also alledthe �xed point semantis. This �xed point semantis is an alternative tothe traditional paradigm and an be obtained by onsidering logi programsas indutive de�nitions of sets and relations: a de�nite program de�nes anew �logi� (i.e. a formal system) and denotes a set of theorems in thislogi. In this way, a lause A  A1; � � � ; An an be viewed as a rule usedto prove A from the proofs of A1; � � � ; An. From this point of view, thislause  is a funtion mapping a n-uple of proofs �Ai of Ai to a proof �Aof A. We write �A:A to express that �A is a proof of A and we say thetype of �A is A. This orrespondene between, proofs and funtions, and,propositions and types, is now well-known and is based on the Curry-Howardisomorphism [14℄. As we said, the traditional semantis of logi programs isde�ned in terms of least Herbrand model and ground suess set. Within the�logi program as indutive de�nition� paradigm, the same semantis an beexpressed by onsidering a program P as a shemati rule whih abbreviatesan in�nite set of rules [P ℄: all ground instanes over the Herbrand universe.By following this approah, lauses should not be viewed as assertions in�rst order logi, but as rules generating a set. The �xed point semantis haslong been used as a tehnial devie. It orresponds to the �logi program asindutive de�nition� paradigm and an be onsidered as the logi program'sintrinsi delarative ontent. Indeed, many properties of logi programs aresimilar to these enjoyed by indutive de�nitions. Reall that an Herbrandinterpretation I is a model of P i� TP (I) � I and the model intersetionproperty, allows to onsider the least Herbrand model of P as the intersetionof all Herbrand models of P . Sine TP is exatly the operator T[P ℄ obtainedfrom the rule set [P ℄, as desribed by (5), eah Herbrand model of P is aT[P ℄-losed set (i.e. a [P ℄-losed set) and, sine Ind(T[P ℄) is de�ned as theintersetion of all T[P ℄-losed sets, we have MP = Ind([P ℄). By theorem 1,it follows MP = Ind([P ℄) = lfp(T[P ℄). Now, sine the body of eah de�nitelause ontains a �nite number of atoms, the rule set [P ℄ is �nitary andtherefore T[P ℄ is "-ontinuous. Hene by theorem 2, we obtain the well-known result MP = \T[P ℄(I)�II = lfp(T[P ℄) = T "![P ℄ whih only follows fromproperties of indutive de�nitions: the least Herbrand model an be diretlyexpressed by an indutive de�nition. In a similar way, the least C-model an11



be also diretly expressed by an indutive de�nition based on the rule set:dP e = f�C; C 2 P; � : X ! T�[X℄gTherefore, T CP is the operator TdP e assoiated, as desribed by (5), with dP e.Sine grammars are indutive de�nitions, this approah an explain whylogi programming works so well at natural language proessing. Indutivede�nitions are also useful to give a semantis to negation in logi program-ming: when the program an be partitioned into several indutive de�nitions,so that eah negation refers to a set that has already been de�ned (i.e. whenthe dependeny graph is ayli), it an be interpreted as an iterated indu-tive de�nition. This �logi program as indutive de�nition� paradigm hasalso be used to extend logi programming languages in order to inrease thepower of �pure� delarative programming [16, 17, 18, 26℄.4.2 Logi programs as o-indutive de�nitions4.2.1 Atoms omputed at in�nity and greatest �xpointsAs we said in setion 3, the main approahes to assign some meaning toin�nite SLD-derivations are based on a greatest �xed point haraterisationof in�nite objets omputed by nonterminating derivations. For programs,like program (7), these approahes are sound and omplete sine we havep(f!) 2 gfp(TP ) and p(f!) is omputable by the in�nite derivation (8).This may be explained by onsidering the �logi program as o-indutivede�nition� paradigm: the greatest �xpoint of the operator TP over the om-pleted Herbrand base orresponds to the o-indutive set CoInd(T[[P ℄℄), where[[P ℄℄ denotes all the ground instanes of lauses ourring in P over the om-pleted Herbrand base, and then we have p(f!) 2 CoInd([[P ℄℄) sine the lausep(f!) p(f!) is in [[P ℄℄ and therefore fp(f!)g is [[P ℄℄-dense (i.e. T[[P ℄℄-dense)beause f(f!) = f!. However, these approahes do not lead to a om-plete semantis: there exist atoms in gfp(TP ) whih are not omputable byan in�nite derivation. As a typial example, if we onsider the logi pro-gram (3), p(f!) is not omputable by an in�nite derivation but we havep(f!) 2 gfp(TP ) by the same density argument. The inompleteness omesfrom the fat that lauses of [[P ℄℄ are expressed over a language riher than thelanguage of lauses of P and the language of queries. However, by allowingin�nite elements in queries and programs, the metri approah beomes om-plete: for example, with program (3) we have the following in�nite derivationfrom the query p(f!):p(f!)! p(f!)! � � � p(f!)! � � � (9)12



whih will be viewed as a proof of p(f!).4.2.2 In�nite SLD-derivations as produtive termsLogi programs express properties on terms whih an be proved throughSLD-derivations. Within the �logi programs as o-indutive de�nitions�paradigm, it is also possible to establish these properties by o-indution.In this setion, we ompare proofs by o-indution aording to the use ofin�nite terms or not. Co-indution is a proof priniple based on the followingremark:(T. Coquand [5℄) In order to establish that a proposition � followsfrom other propositions �1, � � � , �q, it is enough to build a proofterm e for it, using not only natural dedution, ase analysis, andalready proven lemmas, but also using the proposition we wantto prove reursively, provided suh a reursive all is guarded byintrodution rules.Let us �rst introdue some examples. Sequenes of positive integers an bede�ned with the two following introdution rules:(nil) : nil:LIN (ons) : n: IN l:LINons(n; l):LINIn the ase of an indutive de�nition, these two rules are assoiated with thefollowing elimination sheme:
(LIN-Ind) : P : LIN ! Propl : LIN�1 : P (nil)�2 : (n0: IN)(l0:LIN)P (l0)! P (ons(n0; l0))0BB� Fix F (l0) : P (l0):=math l0 withnil ! �1 jons(n1; l1) ! �2(n1; l1; F (l1)): 1CCA (l) : P (l)and elements of LIN are the result of a �nite number of appliations of thesetwo rules. A o-indutive de�nition is obtained by relaxing this ondition andadmitting that an element an also be introdued by a non-ending proessof onstrution de�ned by these rules. Given suh a de�nition, we have the13



following elimination sheme:
(LIN-CoInd) : P : LIN ! Propl : LIN�1 : P (nil)�2 : (n0: IN)(l0:LIN)P (ons(n0; l0))Case l of �1 �2 end :P (l)assoiated with the two redution rules:Case nil of �1 �2 end ! �1Case ons(n; l) of �1 �2 end ! �2(n; l)Now, it is possible to de�ne several in�nite sequenes of integers in a reursiveway. For example, the (in�nite) sequene of onseutive integers startingfrom n an be de�ned by from(n) where:from := �n: IN:ons(n; from(S(n))) : IN! LINHowever, every reursive de�nition is not valid: any �nite segment of thesequene must be expliitly onstruted using the two rules (for more details,see [13℄). For example, we have :from(n) ! ons(n,from(S(n))) ! ons(n,ons(S(n),from(S2(n)))) ! � � �The de�nition of from is orret beause it starts building the objet pro-viding an expliit �nite initial segment. Now, if we onsider the followingde�nition: zeros := ons(0,tail(zeros)) : LINwhere tail is de�ned by:tail(l) := math l with nil ! nil | ons(n0; l0) ! l0.then we have the following sequene of redutions:zeros ! ons(0,tail(zeros)) ! ons(0,tail(zeros)) ! � � �Hene, any �nite segment of length greater than 1 annot be obtained by re-dutions. from is said to be a produtive term, while zeros is not a produtiveterm.In a more formal way, produtive terms are de�ned as follows. Reallthat a term t in T is in anonial form i� it starts with a onstrutor ofT . A (diret) omponent of a term t in T is a term t0 in T if t an be14



redued to a anonial term (� � � ; t0; � � �). A term t is produtive i� it an beredued to a anonial term and if all its omponents are produtive. Forexample, a term in LIN is produtive i� it an be redued either to nil orons(a; b) where b is produtive. Like for terminaison of reursive funtionson indutive sets, there exists a simple syntatial riteria for produtiveterms over o-indutive sets: guardedness. This lass of de�nitions, alledguarded (by onstrutors) de�nitions, has been notied, in the ontext oftype theory, by T. Coquand [5℄. A guarded by onstrutors de�nition is ade�nition suh that all the reursive alls of the de�nition are done afterhaving expliitly gived whih is (at least) the �rst rule to start building theelement and suh that no other funtions apart from onstrutors are appliedto reursive alls. However, note that this ondition is too restritive: thereexist produtive terms whih do not satisfy this ondition.In the following, we onsider equality as an indutive relation. Thatis, given a set A and an x in A, the set fz; z = xg is the smallest whihontains x. This de�nition, due to C. Paulin-Mohring, is equivalent to de�ne= as the smallest re�exive relation:(=) : x = xLeibniz'equality is obtained as the elimination sheme assoiated with thisde�nition:
(eq_ind) :

x : AP : A! Prop�1 : P (x)y : A�2 : x = yP (y)A fair SLD-derivation, like (2), whih omputes at least one in�nite term tis both a omputation (of the in�nite term t) and a proof that this in�niteterm is suh that p(� � � ; t; � � �) for a prediate p. In this ase, it an be notiedthat the proof term orresponding to the proof of p(� � � ; t; � � �) is de�ned byusing the elimination sheme eq_ind. For example, with program (7), theproof term of p(f!) is de�ned by:�:= eq_ind(f(f!); �x:p(x); C(f!; �); f!; `!) : p(f!) (10)where the reursive all is guarded by the onstrutor C where C is thelause of P and where `! is a proof of f! = f(f!)2, and does not orrespond2Note that f! is de�ned by a guarded by onstrutors de�nition (f!:=f(f!)) sinepossibly in�nite terms are o-indutively de�ned with funtion symbols as onstrutors.15



to the in�nite derivation (8) omputing f!. However, proof term (10) an beviewed as the derivation (9) we ould obtain from the query p(f!). That'swhy by allowing in�nite terms in queries, a omplete semantis for all in�nitederivations ould be obtained. Another example an be shown by onsideringthe logi program (1), where the lause C orresponds to a o-indutivede�nition. We an prove that 8n LN(n; from(n)). For this we need thefollowing property:`! : 8n from(n) = ons(n; from(S(n)))The proof term � of 8n LN(n; from(n)) an be de�ned by the followingguarded by onstrutors de�nition:� :=�n: eq_ind( ons(n; from(S(n)));�u:LN(n; u);C(n; from(S(n)); �(S(n)));from(n);`!(n))Clearly, this proof does not orrespond to the in�nite derivation (2).Let us onsider now an in�nite proof over a �nite objet: with pro-gram (3), it is possible to prove that 8x p(x). The orresponding proof �is de�ned by the guarded by onstrutors term �:=�x:C(x; �(x)) and anbe diretly related to the in�nite derivation (4). The appliation of theonstrutor C orresponds to the �rst transition of this derivation, whilethe reursive all orresponds to the next ones. In a similar way, with theprogram P = fp(x) p(f(x))g, we an prove 8xp(x) as follows:�:=�z:C �z; ��� zf(z) � p(z)��and learly � orresponds to the derivation:p(z)! � zf(z) � p(z)! � zf(z) � � zf(z) � p(z)! � � �Here again, the appliation of the onstrutor C orresponds to the �rsttransition of this derivation, while the reursive all orresponds to the nextones (i.e. the derivation starting from the query p(f(z))). A more signi�antexample is the program testing onnetivity in a direted graph. Sine thedireted graph onsidered by the program (see �gure 1) is yli, there existsan in�nite derivation from the query path(a; x):path(a; x) ! edge(a; b); path(b; x)! path(b; x)! edge(b; ); path(; x)! path(; x)! edge(; a); path(a; x)! path(a; x)! � � �16



b a  da2 : edge(b; ) a1 : edge(a; b) a3 : edge(; a) 1 : path(x; x) 2 : path(x; z) edge(x; y); path(y; z)Figure 1: Connetivity in a direted graphThis derivation an be viewed as a proof of 8x path(a; x) whih an be de�nedreursively:� :=�x:2(a; b; x; a1; 2(b; ; x; a2; 2(; a; x; a3; �(x))))Of ourse, with the following version of the prediate path:path(0; x; x) path(S(n); x; z)  edge(x; y); path(n; y; z)we have path(S!; x; d) for x 2 fa; b; g sine the length of this �path� isin�nite (as the length of the proof) and Ind[path℄ haraterises �nite pathsin the graph.Proof terms over �nite objets do not use eq_ind and an be viewed asde�nitions of the sequenes of lauses used in the orresponding derivations.Furthermore, sine a lause is applied at eah resolution step of a derivation,the assoiated proof terms should be produtive. However, it is not alwayspossible to assoiate a produtive proof term with an in�nite SLD-derivation.Consider, for example, the following program:P = fp(x) p(f(x))| {z }C1 ; p(x) p(g(x))| {z }C2 g (11)At eah resolution step in a derivation from the query p(z), we an applyboth C1 and C2 and if the following funtion:FC : IN! fC1; C2gde�ning the lause used at the n-th transition, is not �omputable�, then theproof term assoiated with the derivation annot be written in a �nite form,17



sine this term is de�ned by:�:=�x:�d(0; x) : �xp(x) with�d:=�n:�x:(FC(n))(x; �d(S(n); (FF (n))(x))) andFF : IN! ff; gg:=�n:(if FC(n) = C1 then f else g)This means that the proof term assoiated with a derivation an be viewedas the de�nition of the in�nite sequene of the lauses applied during thederivation: given a produtive proof term, it is possible to de�ne the sequeneof the lauses used during the assoiated derivation. For example, lauses inprogram (11) stands for the following introdution rules:(C1) : x : T�[X℄� : p(f(x))C1(x; �(x)) : p(x) (C2) : x : T�[X℄� : p(g(x))C2(x; �(x)) : p(x)assoiated with the following o-indutive elimination sheme:
(Elimination) :

x : T�[X℄P : p(x)! s� : p(x)�1 : (x : T�[X℄)(�f : p(f(x)))P(C1(x; �f ))�2 : (x : T�[X℄)(�g : p(g(x)))P(C2(x; �g))Case � of �1 �2 end : P(�)Redution rules are:Case C1(x; �0) of �1 �2 end ! �1(x; �0)Case C2(x; �0) of �1 �2 end ! �2(x; �0)and allows to de�ne FP : 8xp(x)! IN! fC1; C2g as follows:FP (�; n):= math � withC1(x; �0)! (math n with 0! C1 jS(k)! FP (�0; k))jC2(x; �0)! (math n with 0! C2 jS(k)! FP (�0; k)):Hene, we have FC = FP (�).Sine the presene of in�nite elements in the Herbrand base leads toinompleteness of the approahes based on the greatest �xpoint, we fous inthe following on the in�nite derivations whih do not ompute in�nite terms.
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5 In�nite SLD-proofsExamples presented in setion 4.2.2 show that in�nite derivations whih donot ompute in�nite terms an be related to proof terms over o-indutivesets. Therefore, we investigate in this setion this lass of derivations. Re-all that one of the underlying ideas of logi programming is to onsider aomputation as the extration of a result from a proof.De�nition 1 (SLD-proofs) An SLD-proof is either an SLD-refutation ora fair in�nite SLD-derivation.5.1 Proof trees and fair derivationsIn order to prove the ompleteness of our approah, we prove in this setionthat, given a rule set �, there exists an SLD-proof with � as program,whih do not ompute anything, from eah element in CoInd(�). For this,we introdue the lassial notion of proof trees and we relate this notion toSLD-derivations.De�nition 2 (Proof trees) Given a rule set �, a proof tree of x for � isa possibly in�nite tree T suh that x is the root of T , and for every node zourring in T with z1; � � � ; zn as sons, there exists a rule z  z1; � � � ; zn 2 �(in partiular, if z is a leaf, there exists a rule z  2 �).In the following, we say that T is a partial proof tree if T is a proof treewhose leaves do not neessarily orrespond to a (unit) rule. We have thefollowing well-known lemma.Lemma 1 x 2 CoInd(�) i� x is the root of a proof tree for �.Furthermore, the proof tree is �nite i� x 2 Ind(�). In order to be ableto �translate� any proof tree into an SLD-derivation, we need two lemmasexpressing properties about variables renaming. Their proofs are quite teh-nial and are presented in appendix. However, it is important to note thatit is neessary to take into aount the renaming proess used in an SLD-derivation, often onsidered as a �minor� detail, in more informal presenta-tions. Of ourse, proofs are getting a bit ompliated but this avoid someonfusions usually due to the fat that the meaning of �renaming� is oftenassumed to be simpler than its formal de�nition implies. Furthermore, weprove the following lemma. 19



Lemma 2 Let A1 and A2 be two atoms suh that var(A1) \ var(A2) = ;.If for a substitution �, suh that dom(�) � var(A2), A1 = �A2, then � is amgu of A1 and A2.We are now in position to prove the main result of this setion relating prooftrees with SLD-proofs introdued in de�nition 1.Theorem 4 Given a de�nite program P and an atom A, if A 2 CoInd(P ),then there exists an SLD-proof from A with P suh that, for all i � 1, themgu �i, used during the i-th resolution step of the SLD-proof, is a renamingsubstitution whose domain oinides with the variables ourring in the headof the lause used.Proof. If A 2 CoInd(P ), then, by lemma 1, A is root of a proof tree T forP . Number the ars emanating from eah node from left to right, startingwith 1. Eah node an be designated (indexed) by the word obtained byonatenating the numbers of the ars of the path leading from the root tothe node (" is the empty word). The breadth-�rst traversal of T produeslist a L. Sine T is a proof tree for P , for eah node A~{ in T , there exists alause CT;~{ 2 P whih an be written A~{  A~{1; � � � ; A~{n~{ . We write �` thelexial order over IN? and j~{j the length of ~{ 2 IN?. Indexes of T an also beordered by � as follows:~{ � ~| , A~{ ours before A~| in L, ((j~{j < j~|j) _ (j~{j = j~|j ^~{ �` ~|))ZT = [var(CT;~{) is the set, possibly in�nite, of variables ourring in T .By lemma 8, given a lause CT;~{ 2 P , a renaming substitution r~{0, suhthat range(r~{0) \ var(CT;~{) = ;, and a set of variables Z~{, there exists asubstitution �~{, a lause C~{ and a renaming substitution r~{1 = r~{r~{0 suh that:var(C~{) \ (var(r~{0CT;~{) [ Z~{) = ; r~{1C�T;~{ = �~{C�~{dom(�~{) = var(C+~{ ) range(r~{) = var(C�~{ )nvar(C+~{ )where �~{ is an idempotent renaming substitution whih is a mgu of C+~{ andr~{0C+T;~{. In the following, we write T (CT;~{; r~{0; Z~{) for the transition:r~{0C+T;~{ C~{;�~{;Z~{!P �~{C�~{
20



From L, we an de�ne the following sequene of resolution steps:8>>><>>>: t" = T (CT;"; sid; ZT )t~{k = T �CT;~{k; r~{k0 ; Z~{k� 1 � k � n~{r~{k0 = r~{1Z~{k = ZT [ S~|�~{k var(C~|)where sid is the empty substitution. In order to verify the soundness of thisde�nition, we have to prove that:8~{ range(r~{0) \ var(CT;~{) = ;For this, let us prove that 8~{ range(r~{0)\ZT = ;. We proeed by indutionover ~{: suppose the property holds for every ~| � ~{. If j~{j = 0, then theproperty holds sine range(sid) \ var(CT;") = ;. Else, ~{ an be written ~|kand, by de�nition, we have r~|k0 = r~|1 = r~|r~|0 where r~| is a substitution suhthat range(r~|) \ ZT = ; sine:range(r~|) � var(C�~| )nvar(C+~| ) ZT � Z~| var(C~|) \ Z~| = ;By indution hypothesis, we an onlude sine ~| � ~|k and:range(r~|k0 ) = range(r~|1) � (range(r~|0) [ range(r~|)) var(CT;~|k) � ZTHene, we an obtain the following derivation:A C";�";ZT!P R C1;�1;Z1!P R1 ! � � � ! Rn�1 Cn;�n;Zn!P Rn C11;�11;Z11!P R11 ! � � �Clearly, sine the derivation is obtained from a breadth-�rst traversal of T ,it is either a refutation or an in�nite fair derivation. We prove in appendixthat this SLD-proof is orret and satis�es the desired properties. JIn this setion, proof trees for a rule set � have been related to SLD-proofs with � viewed as a program. We will see that the appropriate rule setallowing to study in�nite derivations, whih do not ompute in�nite terms,is the rule set obtained from a program P by onsidering all the (�nite)instanes, not neessarily ground, of lauses in P . This orresponds to theC-semantis approah.
21



5.2 Diret SLD-proofsThe derivation obtained by theorem 4 is a speial ase of a derivation whihdo not ompute in�nite terms: suh a derivation does not ompute anythingsine the mgu's used are just renaming substitutions. This partiular lassof derivation orrespond to the (o-)indutive de�nition obtained by onsid-ering a subset of the rule set dP e. In this paragraph, we present the mainresults obtained for these derivations.De�nition 3 (Diret SLD-proofs) A diret SLD-proof is an SLD-proof:R0 C1;�1!P R1 !P � � � !P Ri�1 Ci;�i!P Ri !P � � �suh that for every i � 1, dom(�i) � var(C+i ). In partiular, a diret SLD-refutation is a diret SLD-proof ending with the empty query.In order to give a �model-theoreti� semantis to diret SLD-proofs, weextend the notion of C-truth as follows. Given a C-interpretation I, alause A  B1; � � � ; Bq is C+-true in I i� for every substitution � suh thatdom(�) � var(A), if atoms �Bi (1 � i � q) are C+-true in I, then �A isC+-true in I. This notion extends the C-truth sine if a lause is C-true in Ithen it is C+-true in I. A C-interpretation I is a C+-model of a program P ifevery lause in P is C+-true in I. Hene, every C-model of P is a C+-modelof P . However, every C+-model of P is not neessarily a C-model of P . Forexample, if we onsider the program:P = fp(x) p(y) ; p(f(w)) g (12)the C-interpretation I = dp(f(z))e is learly a C+-model of P , sine for everysubstitution � suh that dom(�) � var(p(x)), �p(y) = p(y) 62 I. But, I isnot a C-model of P , sine with the substitution � = fy=f(y)g, we have�p(y) = p(f(y)) 2 I but �p(x) = p(x) 62 I. However, C+-models enjoy themodel intersetion property and are useful to de�ne a delarative semantisfor diret SLD-proofs.The �logi program as indutive de�nition� paradigm is obtained by on-sidering the rule set assoiated with P de�ned by:dP e+ = f�C; C 2 P and dom(�) � var(C+)gwhih is assoiated, as desribed by (5), with the following operator:TdP e+(I) = fA 2 At�;�[X℄; 9A A1; � � � ; An 2 dP e+Ai 2 I (1 � i � n) gThis operator satis�es the following properties whih are proved in appendix:22



� TdP e+ is monotone and "-ontinuous.� A C-interpretation I is a C+-model of a program P i� TdP e+(I) � I.� MC+P = lfp(TdP e+) = Ind(TdP e+) = T "!dP e+C+-semantis is a speial ase of C-semantis, and not surprisingly, we haveMC+P � MCP . However, the onverse inlusion does not hold: for example,with program (12), we haveMC+P = dp(f(x))e andMCP = dp(x)e. For diretSLD-refutations, we have standard results.Theorem 5 (C+-soundness) If there exists a diret SLD-refutation froma query A1; � � � ; Aq, then fA1; � � � ; Aqg �MC+P .Proof. Indution over the refutation:A1; � � � ; Aq C1;�1! P R1 !P � � � !P Ri�1 Ci;�i! P Ri !P � � � !P �� If the refutation is a transition, then q = 1 and C1 is a unit lauseA  . By hypothesis, we have A1 = �1A and sine dom(�1) � var(C+1 ) wean onlude seeing thatMC+P is a C+-model of P .� Consider the derivation A1; � � � ; Aq C1;�1! P R1 �;�!P �. If k (1 � k �q) is the position of the seleted atom in the �rst transition, then R1 isthe query �1(A1; � � � ; Ak�1; C�1 ; Ak+1; � � � ; Aq). Sine dom(�1) � var(C+1 ),we have R1 = A1; � � � ; Ak�1; �1C�1 ; Ak+1; � � � ; Aq. By indution hypothesis,R1 �MC+P and now it su�es to prove Ak 2MC+P . SineMC+P is a C+-modelof P and �1C�1 �MC+P , we have �1C+1 = Ak 2MC+P . JTheorem 6 (C+-ompleteness) If fA1; � � � ; Aqg �MC+P , then there existsa diret SLD-refutation from the query A1; � � � ; Aq.Proof. We �rst prove the theorem for q = 1. By lemma 12, A1 2 T "!dP e+and there exists a natural k suh that A1 2 T "kdP e+ . We prove by indutionthat for all k, if A 2 T "kdP e+ , then there exists a diret SLD-refutation from A.� If k = 0, then A 2 T "0dP e+ = ; indues a ontradition.� If k = m+ 1, then A 2 T "kdP e+ = TdP e+(T "mdP e+) and there exist a lauseC 0, written A0  B01; � � � ; B0r, and a substitution �, whose domain is inludedin var(A0), suh that �A0 = A and f�B01; � � � ; �B0rg � T "mdP e+ . Furthermore,23



by lemma 7, we an suppose that var(C 0) \ var(A) = ;. Therefore, bylemma 2, � is a mgu of A and A0 and we get the transition:A C0;�!P �B01; � � � ; �B0rNow, sine f�B01; � � � ; �B0rg � T "mdP e+ , by indution hypothesis, there exist rdiret SLD-refutations:�B01 �!P � � � � �B0r �!P �and, there exist r diret SLD-refutations:d01: �B01 �!P � � � � d0r: �B0r �!P �suh that 8i (1 � i � r) #(d0i) \  var(A) [ var(C 0) [ S1�j<i#(d0j)! = ;This allows to get the diret SLD-refutation:A C0;�!P �B01; � � � ; �B0r �!P �For q > 1, the theorem is proved in the same way (ombinaison of diretSLD-refutations). JTherefore, atoms in MCP nMC+P are atoms from whih SLD-refutations,but no diret ones, exist. For example, with program (12), whereas p(z) 2MCP , p(z) 62 MC+P . Even if there exists an SLD-refutation:p(z) 24 x1z 35!P p(y1) 24 y1f(w1) 35!P � (13)there is no diret SLD-refutation from p(z). However, for the lass of pro-grams P suh that var(C�) � var(C+) for every lause of P , we havedP e+ = dP e (and thenMCP =MC+P ). Another important property satis�edby these programs is T #!dP e = gfp(TdP e). For in�nite diret SLD-proofs, wehave the following results.Theorem 7 (C+-soundness) Let P be a de�nite program and A0 be anatom. If there exists a diret SLD-proof:A0 C1;�1! P R1 !P � � � !P Ri�1 Ci;�i! P Ri !P � � �then A0 2 gfp(TdP e+). 24



Proof. By de�nition, it su�es to prove that there exists a TdP e+-denseset ontaining A0. Let us prove that [i�1�iC+i satis�es these two properties.� By de�nition, A0 = �1A0 = �1C+1 � [i�1�iC+i .� We have to prove [i�1�iC+i � TdP e+ �[i�1�iC+i �. If A 2 [i�1�iC+i ,then there exists a natural k � 1 suh that A = �kC+k and, sine dom(�k) �var(C+k ) it follows �kCk 2 dP e+. It su�es to prove that eah atom our-ring in �kC�k ours in [i�1�iC+i . If Ak 2 �kC�k , then Ak 2 Rk and sinethe derivation is either a refutation or a fair in�nite derivation, there existsa resolution step in whih the residu (i.e. the further instantiated version)of Ak is the seleted atom:� � � Ck;�k! P Rk ! � � � ! Rm Cm+1;�m+1! P Rm+1 ! � � �Hene, for m � k, we have �m+1 � � � �k+1Ak = �m+1C+m+1. Sine variablesourring in Ci do not our in lauses Cj (j < i) and sine, eah mgu�j is suh that dom(�j) � var(C+j ), it follows �m+1 � � � �k+1Ak = Ak =�m+1C+m+1 � [i�1�iC+i and we an onlude. JCompleteness theorem for in�nite diret SLD-proofs is proved by using thefollowing lemma.Lemma 3 If there exists a transition R0 �C;�! R1 suh that:dom(�) = var(�C+) var(C) \ var(R0) = ; dom(�) = var(C+)then there exists a transition R0 C;�! R1 suh that dom(�) = var(C+).Proof. Let A be the seleted atom in R0 at position k. Sine dom(�) =var(�C+), we have A = �A = ��C+. Moreover, sine var(C)\var(R0) = ;,and by lemma 2, the restrition � of �� to the variables ourring in C+ isa mgu of A and C+. Therefore, we get the transition:R0 C;�! R01Let us prove that R01 = R1. Sine:R1 = �R0[k  �C�℄ = R0[k  ��C�℄ andR01 = �R0[k  C�℄ = R0[k  �C�℄it su�es to prove ��C� = �C�. If v 2 var(C�), then two ases arepossible: 25



1. If v 2 var(C+), then, by de�nition of �, we have ��v = �v.2. Else, v 2 var(C�)nvar(C+), and by hypothesis v 62 dom(�) and v 62dom(�). Therefore, v 2 var(�C�)nvar(�C+) and v 62 dom(�). Thisterminates the proof sine ��v = �v = v. JTheorem 8 (C+-ompleteness) Let P be a de�nite program and A be anatom. If A 2 gfp(TdP e+), then there exists a diret SLD-proof from A with P .Proof. If A 2 gfp(TdP e+), then, by theorem 1, A 2 CoInd(dP e+) and bytheorem 4, there exists a diret SLD-proof from A with dP e+ suh that forall i � 1, the mgu �i, used during the i-th resolution step of the SLD-proof, isa renaming substitution whose domain oinides with the variables ourringin the head of the lause used:A C1;�1! dP e+ R1 !dP e+ � � � !dP e+ Ri�1 Ci;�i! dP e+ Ri !dP e+ � � �By lemma 14, there exists a set fCP;1; � � � ; CP;i; � � �g of variants of lauses ofP suh that:8i > 0 var(CP;i) \0�var(A0) [ [1�j<i var(CP;j)1A = ;and suh that eah lause CP;i satis�es Ci = �iCP;i where �i is an idempotentsubstitution suh that dom(�i) = var(C+P;i). Then, by lemma 3, there existsa diret SLD-proof from A with P . JUnfair in�nite �diret� SLD-derivations an be viewed as partial proofs. Re-all that given a derivation:R0 C1;�1! P R1 !P � � � !P Ri�1 Ci;�i! P Ri !P � � �for all i � 1 we have P j= Ri ) P j= �i � � � �1R0. This result an begeneralised for �diret derivations� by onsidering:R1 = [p�0 \p�nRnTheorem 9 Let P be a program and A0 be an atom. If there exists anin�nite derivation:R0 = A0 C1;�1! P R1 !P � � � !P Ri�1 Ci;�i! P Ri !P � � �suh that for all i > 0, dom(�i) � var(C+i ), then:R1 � gfp(TdP e+)) A0 2 gfp(TdP e+)26
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Figure 2: Proof of theorem 9Proof. Suppose that [p�0 \p�n Rn � gfp(TdP e+) and let us prove thatA0 2 gfp(TdP e+). For this, by theorem 1 and by lemma 1, it su�es to provethat there exists a proof tree T of A0 for dP e+. Let us de�ne the sequeneT1; � � � ; Ti; � � � of partial proof trees suh that every atom ourring in Ri isa leaf in Ti (see �g. 2).� (T1) T1 is obtained by onsidering the �rst transition: its root A0 =�1A0 has atoms in R1 = �1C�1 as sons.� (Tn) We show how we an obtain Tn from Tn�1. We know that atomsourring in Rn�1 are leaves in Tn�1. Let A be the seleted atomin Rn�1, sine dom(�n) � var(C+n ), Tn is obtained by adding atomsourring in �nC�n as sons of A. Sine, Rn = �nRn�1[k  C�n ℄ =Rn�1[k  �nC�n ℄, Tn is a partial proof tree of A0 for dP e+ suh thatevery atom ourring in Rn is a leaf in Tn.By iterating this proess, we obtain a partial proof tree T1 whose leaves areeither the head of a unit lause in dP e+ or an atom in R1, whih is, byhypothesis, in gfp(TdP e+) and orrespond, by theorem 1 and by lemma 1, tothe root of a proof tree for dP e+. Therefore, by adding in T1 these prooftrees at the orresponding leaf, we obtain a proof tree of A0 for dP e+. J27



This theorem is not a speial ase of theorem 8, it just gives anotherway to interpret in�nite �diret derivations�. For example, if we onsiderderivation (4), then by theorem 8 we have p(x) 2 gfp(TdP e+) while by the-orem 9, we just have p(x) 2 gfp(TdP e+) ) p(x) 2 gfp(TdP e+) sine forthis derivation we have R1 = p(x). C+-semantis works well to give asemantis to programs whose lauses do not ontain existential variables(i.e. var(C�) � var(C+)). However, derivations, like derivation (13), arenot onsidered in this approah. The next setion take into aount thesederivations by using the C-semantis approah (but no result about unfairderivations, like theorem 9, will be obtained).5.3 SLD-proofs over a �nite domainSLD-proofs over a �nite domain are SLD-derivations whih do not omputein�nite terms. In a more formal way, they an be de�ned as follows.De�nition 4 (SLD-proofs over a �nite domain) An SLD-proof over a�nite domain is either a refutation or a fair in�nite derivation:R0 C1;�1!P R1 !P � � � !P Ri�1 Ci;�i!P Ri !P � � �suh that 8k � 0 9p > k 8q � p �q � � � �p � � � �k+1Rk � �p � � � �k+1Rk.It is important to note that it does not su�e that the ondition holds forthe initial query. Consider for example the program:P = fq(x) p(x) ; p(f(x)) p(x)gEven if during the derivation :q(z) �1=24 xz 35!P p(z) �2=24 zf(x1) 35!P p(x1)!P � � � �i�1=24 xi�1f(xi) 35!P p(xi)!P � � �eah �i is suh that �iq(z) = q(z), this derivation omputes the in�niteterm f!. We will need an equivalent de�nition for SLD-proofs over a �nitedomain. This de�nition follows from the next lemma.Lemma 4 A derivation R0 C1;�1!P R1 !P � � � !P Ri�1 Ci;�i!P Ri !P � � � is anSLD-proof over a �nite domain i�:8i � 0 9R 8n � i+ 1 �n�n�1 � � � �i+1Ri � Rwhere R is a query (i.e. R does not ontain in�nite atoms).28



Proof. ()). By de�nition:8k � 0 9p > k 8q � p �q � � � �p � � � �k+1Rk � �p � � � �k+1Rkand it follows 8k � 0 8q � k + 1 �q � � � �k+1Rk � �p � � � �k+1Rk.((). Let k � 0 and suppose there exists a query R of length ` suh that8n � k + 1 �n�n�1 � � � �k+1Rk � R. For every atom Ai (1 � i � `)ourring in Rk, there exists an atom Bi in R suh that 8n � k + 1,�n�n�1 � � � �k+1Ai � Bi. In a lassial way, atoms an be represented aspartial funtions from IN? (words on IN) to �[�[X as follows: A(u) is thesymbol ourring in the node of the tree representation of A designated bythe word obtained by onatenating the numbers of the ars of the path fromthe root to the node (ars are numbered from left to right, starting with 1).The extensional representation of suh a funtion is [f(u;A(u))g and O(A)denotes the set of elements u suh that A(u) is de�ned. Now, seeing thatlearly A1 � A2 implies jO(A1)j � jO(A2)j, (jO(�n � � � �k+1Ai)j)n�k+1 is aninreasing sequene with jO(Bi)j as upper bound and therefore, there ex-ists p0i � k + 1 suh that 8q0i � p0i, jO(�q0i � � � �k+1Ai)j = jO(�p0i � � � �k+1Ai)j.Now, sine if A1 � A2 and jO(A1)j = jO(A2)j then jvar(A1)j � jvar(A2)j,(jvar(�n � � � �k+1Ai)j)n�p0i is a dereasing sequene with 0 as lower boundand therefore, there exists pi � p0i suh that 8qi � pi, jvar(�qi � � � �k+1Ai)j =jvar(�pi � � � �k+1Ai)j. Now, sine every �j (j � k+1) is idempotent, we have8qi � pi, �qi � � � �k+1Ai � �pi � � � �k+1Ai (if � is an idempotent substitutionsuh that �A1 = A2 and if jvar(A1)j = jvar(A2)j and jO(A1)j = jO(A2)j,then A1 � A2). This leads to the onlusion that the derivation onsidered isa derivation over a �nite domain sine p = max1�i�`(pi) is suh that 8q � p,�q � � � �p � � � �k+1Rk � �p � � � �k+1Rk. JC-semantis results orrespond SLD-refutations. Let us investigate in�niteSLD-proofs over a �nite domain. The soundness theorem an be proveddiretly by using proof trees.Lemma 5 If there exists an SLD-proof over a �nite domain :A0 C1;�1!P R1 !P � � � !P Ri�1 Ci;�i!P Ri !P � � �then, for a k � 0, we have �k � � � �1A0 2 gfp(TdP e).
29



�1A0T1�1C�1�n�1 � � � �1A0 �n � � � �1A0 �n � � � �1A0Tn�1 �nTn�1 TnA �nA �nA�nC�nFigure 3: Proof of lemma 5Proof. By theorem 1 and by lemma 1, it su�es to prove that for a naturalk, there exists a proof tree of �k � � � �1A0 for dP e. For this, let us de�ne thesequene T1; � � � ; Ti; � � � of partial proof trees, suh that every atom ourringin Ri is a leaf in Ti, whih is a partial proof tree of �i � � � �1A0 for dP e (see�g. 3).� (T1) T1 is obtained from the �rst transition: its root is �1A0 whosesons (whih are leaves) are all the atoms ourring in �1C�1 . Sine�1C1 2 dP e and �1A0 = �1C+1 , T1 is a partial proof tree of �1A0 fordP e. Furthermore, atoms ourring in R1 = �1C�1 are leaves of T1.� (Tn) Suppose Tn�1 is a partial proof tree of �n�1 � � � �1A0 for dP e (or-responding to the n� 1 �rst transitions) suh that atoms in Rn�1 areleaves of Tn�1. By applying the substitution �n to eah node of Tn�1,we get a partial proof tree of �n � � � �1A0 for dP e suh that atoms in�nRn�1 are leaves. If A is the seleted atom in Rn�1, then A is a leafof Tn�1 and �nA is a leaf in the new partial proof tree. Now, it su�esto add all the atoms in �nC�n as sons of �nA (these sons are leaves).In this way, we obtain a partial proof tree Tn satisfying the desiredproperties sine Rn = �nRn�1[k  C�n ℄.30



Beause the derivation does not ompute in�nite terms and therefore thereexists a natural k � 0 suh that for all q � k, �q � � � �k � � � �1A0 � �k � � � �1A0,by iterating this proess, we obtain a proof tree of �k � � � �1A0 for dP e. Fur-thermore eah leaf orresponds to a unit lause of dP e sine the derivationis fair. JTheorem 10 (Soundness) If there exists an SLD-proof over a �nite do-main: A1; � � � ; An C1;�1!P R1 !P � � � !P Ri�1 Ci;�i!P Ri !P � � �then there exists k � 0, suh that for all i (1 � i � n) �k � � � �1Ai 2 gfp(TdP e).Proof. The proof is similar to the proof of lemma 5 : instead of buildinga sequene of partial proof trees, we build a sequene of tuples of n partialproof trees for dP e: ((T 11 ; � � � ; T n1 ); � � � ; (T 1i ; � � � ; T ni ); � � �) suh that �i � � � �1Ajis the root of T ji (1 � j � n) and suh that eah atom ourring in Ri is aleaf of T ji for a j. JSine, by theorem 4, there exists an SLD-proof with the program dP efrom eah atom ourring in CoInd(TdP e), lemma 6 desribes how to �trans-late� an SLD-derivation with dP e into an SLD-derivation with P . It an beviewed as a �program lifting lemma� playing the same role as the (lassial)lifting lemma in the proof of the (lassial) ompleteness theorem.Lemma 6 (Program lifting lemma) If there exists an SLD-proof :A0 C1;�1!dP e R1 !dP e � � � !dP e Ri�1 Ci;�i!dP e Ri !dP e � � �suh that for all i � 1, �i is a idempotent renaming substitution suh thatdom(�i) = var(C+i ), then there exists an SLD-proof over a �nite domain:A0 CP;1;�1!P R01 !P � � � !P R0i�1 CP;i;�i!P R0i !P � � �suh that for all i � 1, �iA0 = A0 and Ri = �iR0i where �i is the restritionof �i�i�i�1�i�1 � � � �1�1 to the variables ourring in R0i.Proof. By lemma 15, there exists a set fCP;1; � � � ; CP;i; � � �g of variants oflauses of P suh that:8i > 0 var(CP;i) \0�var(A0) [ [1�j<i var(CP;j) [ [j�1 var(Cj)1A = ;31



and suh that eah CP;i satis�es Ci = �iCP;i where �i is an idempotent sub-stitution suh that dom(�i) = var(CP;i).� For the �rst transition. By de�nition �1A0 = �1C+1 = �1�1C+P;1. Further-more, sine dom(�1) = var(CP;1) and var(CP;1) \ var(A0) = ;, we have�1A0 = A0 and it follows �1�1A0 = �1�1C+P;1. Similarly, sine dom(�1) =var(C+1 ) and var(C1) \ var(A0) = ;, we have �1A0 = A0. Therefore, wehave �1�1A0 = A0 = �1�1C+P;1. By lemma 2, the restrition �1 of �1�1 to thevariables ourring in C+P;1 is a mgu of A0 and C+P;1 and we get the transition:A0 CP;1;�1!P R01Clearly, we have �1A0 = A0 sine �1�1A0 = A0. Now, let us prove that therestrition �1 of �1�1 to the variables ourring in R01 satis�es �1R01 = R1.For this, we have to prove that �1R01 = �1�1C�P;1 = �1�1C�P;1 = �1C�1 = R1.Let v 2 var(C�P;1), two ases are possible. If v 2 var(C+P;1), then �1v = �1�1vand we an onlude sine �1�1�1�1v = �1�1v. Else, if v 62 var(C+P;1), thenwe have �1�1v = �1v = �1�1v whih settles the laim.� For the i-th transition. Let us show how from the transition:Ri�1 Ci;�i!dP e Riwe an obtain a transition from a query R0i satisfying �i�1R0i�1 = Ri�1 where�i�1 is the restrition of �i�1�i�1 � � � �1�1 to the variables ourring in R0i�1:R0i�1 CP;i;�i!P R0isuh that �iA0 = A0 and suh that the restrition �i of �i�i�i�1�i�1 � � � �1�1to the variables ourring in R0i satis�es �iR0i = Ri. If A is the seleted atomin Ri�1 at position k, then there exists an atom A0 ourring at position kin R0i�1 suh that A = �i�1A0 and we get �i�i�1A0 = �i�iC+P;i. From:dom(�i�1) � var(R0i�1) �  S1�j<i var(CP;j) [ var(A0)!and var(CP;i) \ S1�j<i var(CP;j) [ var(A0)! = ;it follows �i�1CP;i = CP;i and therefore �i�i�1A0 = �i�i�i�1C+P;i. Fur-thermore, dom(�i) = var(CP;i) and we have �iA = A. Hene we have�i�i�i�1A0 = �i�i�i�1C+P;i, and sine �i�i � � � �1�1A0 = A0, by lemma 16,32



there exists a mgu �i of A0 and C+P;i suh that �iA0 = A0 and for a substi-tution �i, we have �i�i = �i�i�i�1. Hene, we get the transition:R0i�1 CP;i;�i!P R0iIn order to relate Ri to R0i, let us prove that �i�i�i�1�i = �i�i�i�1. Sine �iis idempotent, we have �i�i�i�1�i = �i�i�i = �i�i = �i�i�i�1. We are nowin position to prove �i�i�i�1R0i = Ri:�i�i�i�1R0i = �i�i�i�1�iR0i�1[k  C�P;i℄= �i�i�i�1R0i�1[k  C�P;i℄ (�i�i�i�1�i = �i�i�i�1)= �i�i�1R0i�1[k  �iC�P;i℄ (�iRi�1 = Ri�1)= �i(�i�1R0i�1)[k  �iC�P;i℄ (�i�1Ci = Ci))= �iRi�1[k  Ci℄= RiTherefore, the restrition �i of �i�i�i�1 to the variables ourring in R0isatis�es �iR0i = Ri.To terminate, we have to prove that the derivation obtained is a derivationover a �nite domain. For this, let us prove that:8n � i+ 1 �n�n�n�1 � � � �i+1R0i = RiWe proeed by indution over n. For n = i+ 1, we have:�i+1�i+1R0i = �i+1�i+1�i�i+1R0i = �i+1�i+1�iR0i = �i+1�i+1Ri = RiFor n > i + 1, by indution hypothesis, we have �n�1�n�1 � � � �i+1R0i = Ri.Therefore, in order to prove �n�n�n�1 � � � �i+1R0i = Ri, we have to provethat for every variable v ourring in �n�1 � � � �i+1R0i, �n�nv = �n�1v. First,note that �n�n = �n�n�n�1�n = �n�n�n�1, and it su�es to prove that�n�n�n�1v = �n�1v. Furthermore, if v 2 �n�1 � � � �i+1R0i, then we have:v 2 0�var(R0i) [ [i+1�j�n�1var(CP;j)1A � 0�var(A0) [ [1�j�n�1var(CP;j)1AHene, if v 2 dom(�n�1), then var(�n�1v) � Rn�1 and �n�n�n�1v =�n�1v sine �n�nRn�1 = Rn�1, else we an also onlude sine �n�nv =v. Therefore, sine Ri ontains only �nite atoms and for all n � i + 1,�n�n�1 � � � �i+1R0i � Ri, by lemma 4, the derivation obtained is a derivationover a �nite domain. JWe are now in position to prove the ompleteness theorem.33



Theorem 11 (Completeness) Given a de�nite program P and an atomA, if A 2 gfp(TdP e), then there exists an SLD-proof over a �nite domainfrom A with P :A CP;1;�1!P R01 !P � � � !P R0i�1 CP;i;�i!P R0i !P � � �suh that for all i � 1, �iA = AProof. Completeness theorem follows from theorem 1, lemma 1, theorem 4and lemma 6. J6 ConlusionIn this paper, semantis of nonterminating derivations has been investigatedwithin a proof-theoreti framework: de�nite lauses have been onsidered asrules of a formal system. Following this approah, a semantis for the lassof in�nite derivations whih do not ompute in�nite terms has been de�nedand proved sound and omplete by using purely proof-theoreti methods: anatom is the starting point of an in�nite derivation over a �nite domain if andonly if it is in the greatest �xpoint of the transformation TdP e.The restrition to the lass of derivations over a �nite domain is justi�edby inompleteness results of others approahes, allowing in�nite terms, inwhih the greatest �xpoint onstrution, orresponding to the �logi programas o-indutive de�nition� paradigm, is not equivalent to the operationalsemantis: o-indution is too rih to give a semantis to nonterminatingSLD-derivations. This observation, illustrated in setion 4.2.2, explains whymost attempts to give a omplete semantis to derivations omputing in�niteterms have not been suessful. Therefore, while all the approahes existingin this area are based on the onept of �atoms omputable at in�nity�,we have presented a semantis based on the onept of �atoms provable atin�nity�.It seems that the operational notion of �omputability at in�nity� (assoi-ated with in�nite derivations omputing in�nite terms) is better aptured bya least �xpoint haraterisation. This idea has been developped by G. Leviand C. Palamidessi in [25℄ and revisited in [23℄. In an order-theoreti frame-work (involving algebrai omplete partial order), they onsider the ��nalresult� of an in�nite derivation as the limit of a sequene of approximations,haraterised by a least �xpoint semantis based on a modi�ed version ofthe programs (some suitable unit lauses are added and used as the startingpoint of the onstrution of a sequene of non-empty interpretations). Then,34
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A ProofsProof of lemma 1 (�). Let x 2 CoInd(�), by theorem 1, x 2 gfp(T�) andit follows x 2 T�(gfp(T�)). Hene, there exists a rule x  x1; � � � ; xq 2 �suh that fx1; � � � ; xqg � gfp(T�). We an obtain a partial proof tree with xas root where fx1; � � � ; xqg are sons of x. Now, it su�es to iterate on thesons of x, whih are in CoInd(�), to get a proof tree of x for �. (�). Letx be the root of a proof tree for � and Z be the set of nodes ourring inthe proof tree. Let us prove that Z � T�(Z). If z 2 Z, then, there existsz  z1; � � � ; zq 2 � where fz1; � � � ; zqg are sons of z. Hene, fz1; � � � ; zqg � Zand it follows z 2 T�(Z). Sine Z � T�(Z), Z is �-dense and, by de�nition,we have x 2 CoInd(�).Lemma 7 If Z is a set of variables and C is the lause A  B1; � � � ; Bq,then there exists a lause C 0 and an idempotent renaming substitution � suhthat: var(C 0) \ (var(C) [ Z) = ; �C 0 = Cdom(�) = var(C 0) range(�) = var(C)Proof of lemma 7 If var(C) = fx1; � � � ; xng and fy1; � � � ; yng is a olle-tion of distint variables suh that fy1; � � � ; yng \ (var(C)[Z) = ;, then C 0and � an be de�ned by:C 0 = � x1 � � � xny1 � � � yn �C � = � y1 � � � ynx1 � � � xn �and satisfy the desired properties.Lemma 8 Given a set of variables Z, a lause CT , and a renaming substi-tution r0 suh that range(r0) \ var(CT ) = ;, there exists a transition:r0C+T C;�! �C�where C is a lause satisfying var(C) \ (var(r0CT ) [ Z) = ; and where� is an idempotent renaming substitution suh that dom(�) = var(C+).Furthermore, there exists a renaming substitution r suh that range(r) =var(C�)nvar(C+) and rr0C�T = �C�.Proof of lemma 8 By lemma 7, there exists a lause C and an idempotentrenaming substitution � suh that:var(C) \ (var(r0CT ) [ Z) = ; �C = r0CTdom(�) = var(C) range(�) = var(r0CT )38



By lemma 2, the restrition � of � to the variables ourring in C+ is a mguof r0C+T and C+. Hene the following resolution step is orret:r0C+T C;�! �C�If � is the substitution de�ned by:� = � x+1 ::: x+n1 x�1 ::: x�n2 x�1 ::: x�n3y+1 ::: y+n1 y�1 ::: y�n2 y�1 ::: y�n3 �where fx+1 ; :::; x+n1g = var(C+)nvar(C�)fx�1 ; :::; x�n2g = var(C+) \ var(C�)fx�1 ; :::; x�n3g = var(C�)nvar(C+)then we an de�ne the renaming substitution r1 = rr0 by:r1 = � y�1 ::: y�n3x�1 ::: x�n3 � r0Let us prove that r1C�T = �C�:r1C�T = � y�1 ::: y�n3x�1 ::: x�n3 � r0C�T= � y�1 ::: y�n3x�1 ::: x�n3 � �C�= � y�1 ::: y�n3x�1 ::: x�n3 � � x�1 ::: x�n2 x�1 ::: x�n3y�1 ::: y�n2 y�1 ::: y�n3 �C�= � x�1 ::: x�n2y�1 ::: y�n2 �C�= �C�Proof of lemma 2. First, note that sine var(A1) \ var(A2) = ; anddom(�) � var(A2), we have �A1 = A1 = �A2. Therefore, � is a uni�erof A1 and A2. Furthermore, for every variable v, if v 2 range(�), thenthere exists a variable y 2 dom(�) � var(A2) suh that v 2 �y. It followsv 2 �A2 = A1 and we get v 62 dom(�) sine �A1 = A1. Hene, � is anidempotent substitution. Now, let us prove that � is a mgu. For this, let� be a uni�er of A1 and A2. Sine A1 = �A2, we have ��A2 = �A2 and itsu�es to prove that for every variable v, ��v = �v. If v 62 dom(�) then��v = �v is immediate, else, sine dom(�) � var(A2) we an onlude sine��A2 = �A2. This leads to � � �. 39



End of the proof of theorem 4 We prove here that the derivation ob-tained in the proof of the theorem 4 is valid and satis�es the desired prop-erties. Given an index ~{ 2 IN? of T , we write  �{ the index of the node justbefore A~{ in L. In a more formal way: �{ = max�f~|; ~| �~{g.k and k/ are indexes of T de�ned as follows:8k 2 IN .k = max�`f~{; j~{j = kgk/ = min�`f~{; j~{j = kgIn order to prove the desired properties of the derivation, it su�es to provethe following assertions.(1). 8~{ var(C~{) \ var(A) [ S~|�~{ var(C~|)! = ;Immediate by de�nition of Z~{.(2). The resolution step A C";�";ZT!P R is orret.Immediate sine it orresponds to t".(3). 8~{ range(r~{1) � S~|�~{�var(C�~| )nvar(C+~| )�Indution over ~{.� If j~{j = 0, then we have:range(r"1) = range(r"0r") = range(r") = var(C�" )nvar(C+" )� If ~{ = ~|k, then, by indution hypothesis, we an onlude sine:r~|k1 = r~|kr~|k0 = r~|kr~|1 range(r~|k) = var(C�~|k)nvar(C+~|k)(4). 8p 2 IN� 8~{ ((p+ 1)/ �~{ � .(p+ 1)) r~{0A~{ 2 R.p8~{ ((p+ 1)/ �~{ � .(p+ 1)) r~{0A~{ 2 R �{(in partiular r(p+1)/0 A(p+1)/ 2 R.p)Indution over p.� If p = 0, then for every k suh that 1 � k � n, we have:rk0Ak = r"1Ak 2 �"C�" = R" = R.040



Let us prove that for every k (1 < k � n), we have rk0Ak = r"1Ak 2 Rk�1.Sine R" = �"C�" = r"1C�T;", we know that r"1Ak 2 R". Furthermore, for everym (1 � m � k � 1), we have:dom(�m) = var(C+m) and var(Cm) \0�ZT [ [j�mCj1A = ;Sine r"1 = r"r"0 = r" where range(r") = var(C�" )nvar(C+" ), we have:var(r"1Ak) � (ZT [ var(C"))Hene, it follows, var(r"1Ak) \ var(Cm) = ; and we have �mr"1Ak = r"1Ak.We an now onlude sine at eah resolution step m, r"1Am is the seletedatom and the mgu used �m does not a�et the variables ourring in r"1Ak.Therefore r"1Ak ours in Rm.� If p > 0, then, by indution hypothesis, we have:� 8~{ (p/ �~{ � .p) r~{0A~{ 2 R.(p�1)8~{ (p/ �~{ � .p) r~{0A~{ 2 R �{and it su�es to prove:8~| (p/ � ~| � .p) dom(�~|) \ var0�[~u�~| n~u[k=1 r~uk0 A~uk1A = ;If ~| is suh that p/ � ~| � .p, then we know that:dom(�~|) = var(C+~| ) and var(C~|) \0�ZT [[~u�~|C~u1A = ;Furthermore, we have:var0�[~u�~| n~u[k=1 r~uk0 A~uk1A = var0�[~u�~| n~u[k=1 r~u1A~uk1A = var0�[~u�~| r~u1C�T;~u1Aand sine: var0�[~u�~| r~u1C�T;~u1A � [~u�~|�range(r~u1 ) [ var(C�T;~u)�(1) and (3) allow to onlude.Lemma 9 TdP e+ is monotone and "-ontinuous.41



Proof of lemma 9 Sine TdP e+ is de�ned from the rule set dP e+, it islearly monotone. Every lause in P has a �nite body and dP e+ is �nitaryand we an onlude.Lemma 10 If I is a "-losed set, then TdP e+(I) is also a "-losed set.Proof of lemma 10 Let A 2 TdP e+(I). By de�nition, there exists a lauseA0  B1; � � � ; Bq in P suh that for a substitution � satisfying dom(�) �var(A0), we have �A0 = A and f�B1; � � � ; �Bqg � I. Let A0 be an atom suhthat A � A0. There exists a substitution � suh that dom(�) � var(A) and�A = A0. By onsidering the restrition of �� to the variables ourring inA0, it follows ��A0 = A0 and we an onlude sine f��B1; � � � ; ��Bqg � Ibeause I is "-losed.Lemma 11 Ind(TdP e+) = lfp(TdP e+) = T "!dP e+Proof of lemma 11 By lemma 9, TdP e+ is monotone and "-ontinuousand by theorem 1, we an onlude.Lemma 12 A C-interpretation I is a C+-model of a de�nite program P i�TdP e+(I) � I.Proof of lemma 12 ()). Let I be a C+-model of P and A 2 TdP e+(I).By de�nition, there exists a lause A  B1; � � � ; Bq 2 dP e+ suh thatfB1; � � � ; Bqg � I. Sine I is a C+-model of P , it follows A 2 I and wean onlude. ((). Let I be a C-interpretation suh that TdP e+(I) �I. If A  B1; � � � ; Bq is a lause in P and � is a substitution suh thatdom(�) � var(A), then if f�B1; � � � ; �Bqg � I, we have �A 2 TdP e+(I) andsine TdP e+(I) � I it follows �A 2 I. Hene I is a C+-model of P .Theorem 12 MC+P = lfp(TdP e+) = Ind(TdP e+) = T "!dP e+Proof of theorem 12 By de�nition, MC+P is the intersetion of all C+-models of P , whih are, by lemma 12, TdP e+-losed sets, whih orrespondsto Ind(TdP e+), and by lemma 11 we an onlude.Lemma 13 MC+P �MCP 42



Proof of lemma 13. Sine dP e+ � dP e, we have:8I TdP e+(I) � TdP e(I)) 8n T "ndP e+ � T "ndP e) T "!dP e+ � T "!dP e) MC+P �MCP (by theorem 12)Lemma 14 Let P be a de�nite program and A0 be an atom. Given a possiblyin�nite set of lauses fC1; � � � ; Ci; � � �g � dP e+ suh that:8i > 0 var(Ci) \0�var(A0) [ [1�j<i var(Cj)1A = ;there exists a set fCP;1; � � � ; CP;i; � � �g of variants of lauses of P suh that:8i > 0 var(CP;i) \0�var(A0) [ [1�j<i var(CP;j)1A = ;and suh that every lause CP;i satis�es Ci = �iCP;i where �i is an idempo-tent substitution satisfying dom(�i) = var(C+P;i).Proof of lemma 14 Sine Ci 2 dP e+, for all i, there exist a substitution�i and a lause CPi 2 P suh that Ci = �iCPi and dom(�i) � var(CP +i ):�i = � x1 � � � xkt1 � � � tk �Let fy1; � � � ; yqg = var(CP +i )ndom(�i). In order to de�ne a lause CP;i =riCPi , as a variant of a lause in P , we introdue the following idempotentrenaming substitution:ri = � x1 � � � xk y1 � � � yqw1 � � � wk z1 � � � zq �where:range(ri) \0�var(A0) [ [1�j<i var(CP;j) [ [j�1 var(Cj) [ var(CPi )1A = ;43



Let us prove that:8i > 0 var(CP;i) \0�var(A0) [ [1�j<i var(CP;j)1A = ;First, we prove that:8i > 0 var(CP;i) � (range(ri) [ var(Ci))For this, let v 2 var(CP;i). Sine CP;i = riCPi , two ases are possible:1. if v 2 range(ri), then we an onlude2. else, v 2 var(CPi ), and:(a) either v 2 var(CP +i ) and sine dom(ri) = var(CP +i ), ri is idem-potent indues a ontradition(b) or v 2 var(CP �i )nvar(CP +i ) and sine Ci = �iCPi and dom(�i) �var(CP +i ), it follows v 2 Ci and we an onludeBy de�nition of ri, variables ourring both in CP;i and range(ri) satisfy theproperty and sine var(Ci) \ var(A0) = ;, it su�es to prove that:var(Ci) \ [1�j<i var(CP;j) = ;This property holds if:var(Ci) \ [1�j<i(range(rj) [ var(Cj)) = ;whih follows from:8j > 0 range(rj) \ [k�1 var(Ck) = ; and var(Ci) \ [1�j<i var(Cj) = ;Now, we have to prove that there exists an idempotent substitution �i suhthat dom(�i) = var(C+P;i) and Ci = �iCP;i. This substitution is de�ned by:�i = � w1 � � � wk z1 � � � zqt1 � � � tk y1 � � � yq �Let us prove Ci = �iCPi = �iriCPi = �iCP;i. If v 2 var(CPi ), then two asesare possible: 44



1. if v 2 var(CP +i ) then:(a) either v = yj (1 � j � q) and we an onlude sine �iriyj =�izj = yj = �iyj.(b) or v = xj (1 � j � k) and we an also onlude sine �irixj =�iwj = tj = �ixj.2. else v 2 var(CP �i )nvar(CP +i ) and it follows v 62 dom(�i) and v 62dom(ri), hene we an onlude sine, by de�nition of ri, we havev 62 dom(�i) = range(ri).To terminate, we prove that �i is idempotent, or equivalently dom(�i) \range(�i) = ;. Sine ri is idempotent and dom(�i) = range(ri), we havedom(�i) \ fy1; � � � ; yqg = ;. Furthermore, sine Ci = �iCPi , we know that:[1�j�k var(tj) � var(Ci)and we an onlude sine range(ri) \ var(Ci) = ;.Lemma 15 Let P be a de�nite program and A0 be an atom. Given a possiblyin�nite set of lauses fC1; � � � ; Ci; � � �g � dP e suh that :8i > 0 var(Ci) \0�var(A0) [ [1�j<i var(Cj)1A = ;there exists a set fCP;1; � � � ; CP;i; � � �g of variants of lauses of P suh that :8i > 0 var(CP;i) \0�var(A0) [ [1�j<i var(CP;j) [ [k�0 var(Ck)1A = ;and suh that every lause CP;i satis�es Ci = �iCP;i where �i is an idempo-tent substitution satisfying dom(�i) = var(CP;i).Proof of lemma 15 Sine Ci 2 dP e, for all i, there exist a substitution�i and a lause CPi 2 P , suh that Ci = �iCPi and dom(�i) � var(CPi ) :�i = � x1 � � � xkt1 � � � tk �45



Let fy1; � � � ; yqg = var(CPi )ndom(�i). In order to de�ne a lause CP;i =riCPi , as a variant of a lause in P , we introdue the following idempotentrenaming substitution:ri = � x1 � � � xk y1 � � � yqw1 � � � wk z1 � � � zq �where : range(ri) \0�var(A0) [ [1�j<i var(CP;j) [[j�1 var(Cj)1A = ;Now, let us prove that there exists an idempotent substitution �i suh thatdom(�1) = var(CP;i) and Ci = �iCP;i. This substitution is de�ned by:�i = � w1 � � � wk z1 � � � zqt1 � � � tk y1 � � � yq �In order to prove Ci = �iCPi = �iriCPi = �iCP;i, let v 2 var(CPi ). Twoases are possible : either v 62 dom(�i) and it follows v = yj (1 � j � q)whih settles the laim sine �iyj = yj = �izj = �iriyj, or v 2 dom(�i)and we have v = xj (1 � j � k) whih allows to onlude sine �ixj =tj = �iwj = �irixj . Let us prove that �i is idempotent, or equivalentlydom(�i) \ range(�i) = ;. Sine ri is idempotent and dom(�i) = range(ri),we have dom(�i)\fy1; � � � ; yqg = ;. Furthermore, sine Ci = �iCPi , we knowthat: [1�j�k var(tj) � var(Ci)and we an onlude sine range(ri) \ var(Ci) = ;.Lemma 16 Let A, A0 and B be three atoms, and � be a substitution suhthat �A = �B and �A0 = A0. There exists a mgu � of A and B suh that�A0 = A0.Proof of lemma 16 Sine �A = �B, there exists a mgu � of A and Bsuh that � � �. Hene for a substitution �, we have �� = �. Furthermore,from �A0 = A0, it follows ��A0 = A0 and therefore, � an be viewed as arenaming substitution for the variables ourring in A0:� = � v1 � � � vk x1 � � � xnt1 � � � tk y1 � � � yn � fv1; � � � ; vkg = dom(�)nvar(A0)fx1; � � � ; xkg = dom(�) \ var(A0)46



Let us de�ne the following idempotent renaming substitution (orrespondingto a restrition of �): r = � y1 � � � ynx1 � � � xn �and let us prove that � = r�. First note that learly we have �A0 = A0.Therefore, it su�es to prove that � is a mgu of A and B. �A = �B isimmediate (beause �A = �B). In order to prove that � is idempotent, letv 2 dom(�). Two ases are possible.1. If v 2 dom(�), then v = vj (1 � j � k) sine �xi = xi for everyi 2 f1; � � � ; ng. Therefore, v 62 fx1; � � � ; xng and v 62 [1�i�kvar(rti)sine [1�i�kvar(rti) � [1�i�kvar(ti)[ range(r) and � is idempotent.Hene, v 62 range(�).2. If v 2 dom(r), then v = yj (1 � j � n) and sine learly v 62fx1; � � � ; xng and v 62 [1�i�kvar(rti), we have v 62 range(�).To terminate, we have to prove that � is minimal. For this, let � be asubstitution suh that �A = �B. Sine � is a mgu of A and B we have� � � and there exists a substitution � suh that �� = �. Therefore, � � �sine we prove that �r�1� = �r�1r� = �� = � where r�1 is the inverse ofr (i.e. rr�1 = r�1r = sid). For this, let w be a variable. Two ases arepossible.1. If w 2 dom(�), then:(a) if w = vj (1 � j � k), then �r�1r�vj = �r�1rtj and we anonlude sine r�1rtj = tj beause for every variable y 2 var(tj):i. either y 2 dom(r) and r�1ry = y is immediateii. or y 62 dom(r) and we have r�1y = y sine � is idempotentand var(tj) � range(�) and dom(r�1) � dom(�).(b) if w = xj (1 � j � n), then we an onlude sine �r�1r�xj =�r�1ryj = �r�1xj = �yj = ��xj.2. If w 62 dom(�), then let us prove that �r�1rw = �w. Indeed, eitherw 2 dom(r) and r�1rw = w whih settles the laim, or w 62 dom(r)and we have r�1w = w sine dom(r�1) � dom(�) and w 62 dom(�).
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