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Abstract

In this paper, we are interested in the one-dimensional porous medium equation when
the initial condition is the distribution function of a probability measure. We associate a
nonlinear martingale problem with it. After proving uniqueness for the martingale problem,
we show existence thanks to a propagation of chaos result for a system of weakly interacting
diffusion processes. The particle system obtained by increasing reordering from these diffu-
sions is proved to solve a stochastic differential equation with normal reflection. Last, we
obtain propagation of chaos for the reordered particles to a probability measure which does
not solve the martingale problem but is also linked to the porous medium equation.

Introduction

Let ¢ > 1. We are interested in the the porous medium equation :

ou  0?(u’)
TR (t,z) € [0, +00) x R (0.1)

Inoue [6] [7] and Benachour Chassaing Roynette and Vallois [3] have given probabilistic interpre-
tations of this equation in terms of nonlinear diffusion processes when the initial condition is a
probability measure on R. We are interested in another class of initial conditions : the cumula-
tive distribution functions of probability measures on R. We follow the approach developped by
Bossy and Talay [5] for the viscous Burgers equation and write the equation satisfied by v = dyu
82

(qu?™"v) = 55 (a(H *v(t, )" v(t, )

ov 0?
ot 0x2
where H(r) = 1{;>0) denotes the Heaviside function. From a probabilistic point of view, this

equation can be interpreted as a nonlinear Fokker-Planck equation. That way, we associate with
it the following martingale problem :

Definition 0.1 Let X denote the canonical process on C([0,4+00),R). A probability measure
Q € P(C([0,+00),R)) with time marginals (Q¢)s>0 solves the martingale problem (MP) starting
at m € P(R) if

1. Q():m
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2. V¢ € C(R), Mf) = ¢(Xy) — p(Xp) — qf(f(H * Po(X))9 19" (X,)ds is a Q-martingale

3. Vt > 0, Q; does not weight points.

We first show that if @) solves problem (MP) starting at m then (s,z) — H x Qs(x) is a weak
solution of the porous medium equation (0.1) for the initial condition H x m(x).

Then we prove uniqueness for problem (MP) thanks to the following results concerning equation
(0.1) given by [4] [9] and [1] : uniqueness of weak solutions for the initial condition H *m(x) and
existence of a Holder continuous weak solution.

We introduce the interacting diffusion processes

. . t : . 1 &
X" = X} +/ V2q(H % p(XEm)D/2gBE 1 < i <, with u" = - > oxin  (0.2)
0 .
J=1

where B?, 1 < i < n are independent Brownian motions and Xé, 1 < ¢ < n are initial variables
[.I.D. with distribution m independent of the Brownian motions. We prove that the particle
systems (X7, ..., X™") are P chaotic where P denotes the unique solution of problem (MP)
starting at m.

Let (V;"",...,Y"") denote the increasing reordering of (X", ..., X"") i.e.

Y™ = sup in£ X/™ where |A| denotes the cardinality of A C {1,...,n}.
|A|l=n—i+1 J€

Asi Do H(XP"—XI") = |{j : XI™ < XI™}|/n, we remark that (Y1, ... Y™") is a diffusion
with constant diagonal diffusion matrix

diag(2¢(1/n)*"",2q(2/n)?7", ..., 2q(n/n) ")
normally reflected at the boundary of the convex set

Dn:{y:(yla'-'ayn)eRna yléy?ééyn}

Of course, the driving Brownian motion is not (B{,...,B}"). Let g™ = 13" 6y, denote
the empirical measure of the reordered system. Since for any ¢ > 0, the increasing reordering
preserves the empirical measure at time ¢, the variables i} € P(R) converge in probability to P;.
But as the increasing reordering does not preserve the sample-paths, the asymptotic behaviour of
@™ is different from the one of p™ = % Y ity dxin which converges in probability to P (convergence
equivalent to the propagation of chaos to P for (X', ..., X™")). The sequence ji" converges in
probability to P which does not solve problem (MP) starting at m. For any ¢ < n, H * g"(Y3")
is constant and equal to i/n for s ¢ {t, (Y;l’”, .., Y™ € dD,}. When n — 400, this property
yields that P a.s., the function s € (0, +00) — H * PS(XS) is constant. The probability measure
P is characterized by this assertion combined with the following property : (s,z) — H % Py(z)
is a weak solution of the porous medium equation (0.1) for the initial condition H * m(z).

Our study can be seen as an extension of [12| p.187-190 : Sznitman deals with the simpler case
(corresponding to g = 1) of reordered independent Brownian motions with initial distribution
m atomless. He proves the convergence in probability of the empirical measures to the constant
Q € P(C([0,+00),R)) characterized by : Q a.s., Vs > 0, Xy = F,; (Fy(Xp))

\/21% exp(—x2/2)> * .

Note that (s,z) — Fs(x) = H * Qs(x) is the unique weak solution of the heat equation for the
initial condition H x m(zx).

where Fy, = H * (
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1 A first propagation of chaos result

1.1 Uniqueness for the martingale problem (MP)
This section is dedicated to the proof of the following proposition :
Proposition 1.1 The martingale problem (MP) starting at m has no more than one solution.

This uniqueness result is a consequence of results concerning the porous medium equation. Let
us first prove the link between the martingale problem and this equation.

Lemma 1.2 If P solves the martingale problem (MP) starting at m then the function (s,z) €
[0,4+00) x R — H % Ps(z) is a weak solution of the porous medium equation (0.1) for the initial
condition H x m(x).

Proof : To prove that u(t,z) = Hx*P,(z) satisfies (0.1), we first give the Fokker-Planck equation
satisfied by t — P; in D'((0,400) x R) (i.e. in the sense of distributions on (0, +00) x R) :

0P = Ope(qui™(t,.) P).

Clearly P, = Oyu(t,.) in D'((0,4+00) x R).
Let ¢ > 0. By condition 3. of Definition 0.1, P; does not weight points. Thus x — u(t,z) is a
continuous function with bounded variation and

Ve <yeR ui(t,y) —ul(t,z) = / quqfl(t,z)du(t,z) = /y quqfl(t, z)P(dz).

T T

Y

Hence qui~'(t,.)P;, = 0,u(t,.) in D'((0,+00) x R). The Fokker-Planck equation writes

Oy (8tu — Bmuq> =0.

As a consequence, the distribution dyu — J,,u? is invariant by spatial translation and for ¢ €
C®((0,+00) x R) (the space of C*° functions with compact support on (0,400) x R) and z € R,

8¢ 82¢
/(0,+oo)><]R (u(t, x)g(t, x) + ul(t, x)w (t, x)) dadt

is equal to
2

¢ 54
/(07+OO)XR (u(t, T — Z)E(t’ ) + ul(t,z — z)w(t, x)) dxdt.

By Lebesgue theorem, the last integral converges to 0 as z — +oo. Hence

8¢ 82¢ B
/( N <u(t, x)a(t, z) + ul(t, x)w(t, x)) dzdt =0

and u(t,z) = H * P;(z) is a weak solution of (0.1).
As the map t — P, is weakly continuous, dx a.e., H * P;(z) converges to H * m(z) as t — 0 and
the initial condition is H * m(z). |

The next lemma is dedicated to properties of the porous medium equation (0.1).



Lemma 1.3 There is no more than one weak solution of the porous medium equation (0.1) with
initial condition H * m(x) of the form H % Ps(x) where P € P(C(]0,+00),R)). Moreover any
such solution satisfies :

_ _ -1 2 2
Vs> 0, Ve €. (H P ) — (e ) < T (2 ) ey

Proof : Let P € P(C([0,400)R)) be such that H % Ps(z) is a weak solution of the porous
medium equation (0.1) for the initial condition ug(x) = H % m(z). Following the notations of
Bénilan Crandall and Pierre [4], we have

R
l(up) = lim supR(Hz/(ql))/ luo(z)|de =0 and T(ug) = +oo.
-R

r—+00 p>,

By the weak continuity of s — Ps, s — H * Py(.) € C([0,400), L}, .(R)). Moreover Vs > 0,
H x P(.) is bounded by 1. Hence by Theorem U p.75 [4], Vs > 0, H * Ps(.) = U(s,ug)
where U (s, ug) denotes the weak solution of the porous medium equation constructed up to time

T(up) = +o0o in Theorem E p.54.

For n € N*, let ugp, : R — [0,1] be a C*° function with compact support included in [—n,n]
such that [ |ugn(z) — uo(z)|dz < 1/n.

As the function ug , is continuous and bounded by 1 and the function (ug,)? is Lipschitz contin-
uous, by Oleinik [9] Theorem 2 p.359, there exists a function uy, (s, z) continuous on [0, +00) x R
and bounded on [0,7] x R for any 7" > 0 which solves weakly the porous medium equation (0.1)
and satisfies u,, (0, z) = uo n(z).

Applying Theorem U p.75[4|, we deduce that Vs > 0, u,(s,.) = U(s,ug,). By the ordering
principle p.55, as Vo € R, ug () < 1, the function u, is bounded by 1. According to [1], for
any 7 > 0, the functions (s, z) — u, (s, z) are Hélder continuous with exponent min(1,1/(g— 1))
on [1,400) X R uniformly in n and the following estimate holds for the space variable :

1
s> 0, ¥,y € B, [(un(s, o)~ (i)™ < 2 (2 ) o mal
g \(g+Ds

By a diagonal extraction procedure, we obtain a subsequence (u,), such that u, converges
uniformly on compact subsets of (0,400) x R to a function u. Clearly (1.1) still holds for w.
As limy, oo [g [Uon (@) — uo(z)|/(1 + z?)dxr = 0, by the dependence on data result of Theorem
E p.54 [4], Vs > 0, U(s,ugmn) = uy(s,.) converges to U(s,up) = H = Py(.) in L'([—p,p]) for any
p € N*. Hence H * Ps(.) = u(s,.). Asx — H x Ps(x) is cad, Vs > 0,V € R, H * Ps(z) = u(s, x)
and the conclusion holds. ||

We are now ready to prove uniqueness for the martingale problem (MP) starting at m.
Proof of Proposition 1.1 : Let P and @ be solutions of problem (MP) starting at m. By
Lemmas 1.2 and 1.3,

V(s,z) € [0,400) x R, H * Ps(z) = H x Qs(z) = u(s,x)

which implies that the time marginals of P and @ are identical. Moreover, the functions z —
ud~(s,z) are Lipschitz continuous uniformly for s > 7 > 0.
Let P™ and Q7 denote respectively the image of P and @ by the mapping z(.) € C([0,4+00),R) —



z(Tt+.) € C([0,+00),R). Both P™ and Q" solve the martingale problem : R € P(C([0,+00), R))
is a solution if Ry = P, and V¢ € CZ(R),

t
d(Xy) — d(Xo) — / qut (1 + 5, X,)#"(X,)ds is a R-martingale.
0

As the diffusion coefficient 2qui='(7 + s,z) is lipschitz continuous in z uniformly for s > 0,
uniqueness holds for this martingale problem (see for instance [11] Theorem 8.2.1 p.204) and
P7™ = Q7. Taking the limit 7 — 0, we conclude that P = Q. |

1.2 Convergence of the particle systems (0.2)

We are interested in the n-dimensional stochastic differential equation (0.2) :
) ) t 1™ (¢-1)/2
in .
X, :X3+/0 \/2q<521{xg,ng;,n}> dB, 1<i<n
i=1

where the initial variables X{, 1 < i < n are IID with distribution m and (Bi)ign are independent
Brownian motions independent of the initial variables. The corresponding diffusion matrix is

diagonal
n n q—l
a(x) :Diag<2q<21{xj5m}/n> ,...,Zq(ZI{ijxn}/n> )
j=1 j=1

and uniformly elliptic : Vz,y € R?, y*a(x)y > 2q|y|?/n?~!. For 7 € S, the group of permuta-
tions on {1,...,n}, let A; denote the polyhedron {z € R", 2,1y < 2,3y < ... < 7y} The
interiors of the polyhedra (A;),cs, are pairwise disjoint and R? = Ures, Ar- Moreover, on the
interior of A,, the diffusion matrix is equal to Diag(2¢(7~!(1)/n)?7 %, ..., 2¢(r~(n)/n)?"!) and
therefore constant. Hence, by Bass and Pardoux [2] Theorem 2.1 p.559, the stochastic differential
equation (0.2) admits a weak solution. Moreover, weak uniqueness holds for this equation.

q—1

Theorem 1.4 The particle systems (X", ..., X™") are P chaotic where P denotes the unique
solution of the martingale problem (MP) starting at m.

As the particles X", 1 < i < n are exchangeable, this result result is equivalent to the con-
vergence of the distributions 7™ of the empirical measures p" = %Z?:l dyin to a probability
measure concentrated on solutions of the martingale problem (MP) starting at m (see [12] and
the references cited in it). Again by exchangeability, the tightness of the sequence (7™), is
equivalent to the tightness of the distributions of the variables (X17),. As

. 1 (g—1)/2
Vn € N*, Vo € R", \/2(](5211{%9“}) <+/2q,
‘]:

the coefficient before dB! in (0.2) is bounded and both sequences are tight.
Let 7°° be the limit of a converging subsequence that we still index by n for simplicity. We
conclude the proof by the two next lemmas.



Lemma 1.5 Let QQ denote the canonical variable on P(C(]0,+00),R)). 7> a.s., the function

(s,z) = HxQs(x) is a weak solution of the porous medium equation (0.1) for the initial condition

Proof : Let g € C([0,400) x R) and ¢(s,z) = [*_ g(s,y)dy. By Ito’s formula, we get

o
g(

I~ [! : 0b, i :
- V2q(H # p(XEm) D22 (s, X5 dB]
+n§i:1/o QU it (XEm) 0 D228 (o xim) aps

2
50+ a(H = w2 () 2206, ) > ds

t
U 5= < p 00 >+ [ <t o
0 x

Hence

9¢

B (<ut ot > = < w000 > = [ <t o) +attr =)

2¢( ,.) > d5>2>

2q||gl1 o t
n

dz?
<

(1.2)
By the integration by parts formula,

t
0
< H?,Qﬁ(t, ) >—< Hga¢(0a) > _/0 < M?, 8_f(37 ) > ds

- /R o(t, y)dy — /R gty H * i (y)dy — /R 9(0, y)dy + /R 9(0,9)H * () dy

—/Ot(/R%(s,y)dy—A%(ay)ﬂw?(y)c@)ds
= —/Rg(t,y)H*u?(y)dy+/Rg(0,y)H*u’&(y)dy+/0t/R%(s,y)H*u?(y)dyds (1.3)

As the diffusion matrix corresponding to the stochastic differential equation (0.2) is uniformly
elliptic, applying the occupation times formula (see for instance Revuz Yor [10] p.209) to the
semimartingales X»" — X7 for 1 < i < 7 < n, we obtain :

t
a.s., V1 <i<j<n,Vt>0, /0 I{X‘i,n_xg,n:()}ds =0. (1.4)

Hence a.s., ds a.e., the variables Xﬁ’n, 1 < < n are distinct. Therefore a.s., ds a.e.,

2¢ NH*HS (v) k qg—1
<Mqu(H*Ms()) W :__/ 8$2 <_> dy

n
k=1
We deduce that a.s.,

nH*p}

‘/Ot<u?,q(H*u?(.))q 82(]2'5( ) > ds +/ /8 *(s,y) (H * p(y)) dyds
‘/ 8x2 (_% kz::l( ' (%)H +(H * u?(y))q> dyds

INT 1~ [k\I!
< Ky sup (‘) ——Zq(—> <K, sup |gz?7" — gy
I<n n n k—1 n z,y€[0,1]
lz—y|<i



As the function # — 27! is uniformly continuous on [0, 1], the left hand side has a limit equal
to 0 when n — +o0.
Combining this convergence with (1.2) and (1.3), we obtain limy, o E(G?(u")) = 0 where

G(Q) = [ alt) s Quu)dy ~ [ 901 + Qolwiy
2
[ (Bewm o + S5 e ads. 15)

Since the function G : P(C([0, +o0),R)) — R is continuous and bounded, the weak convergence
of (7™),, to 7 implies that E™ (G?(Q)) = 0. As the variables X{ are L.LD. with distribution
* a.s. Qo =m. Hence Vg € C([0,+00) x R), Vt >0, 7> a.s.

/Rg(tay)H*Qt(y)dy / 9(0,y)H * m(y)dy
/ / ( (s, 9)H * Qs(y) + gig(s,y)(H*Qs(y))‘1>dyds (1.6)

Choosing t, g in denumerate dense subsets and then taking limits, we obtain that 7 a.s., Vg €
CR([0,400) xR), Vt > 0, (1.6) holds. We conclude that 7°° a.s. the function (s,z) = H *Q4(x)
is a weak solution of the porous medium equation for the initial condition H * m(z). ||

Lemma 1.6 7 a.s., Q solves the martingale problem (MP) starting at m.

Proof : As the variables X} are L.LD. with distribution m, 7> a.s., Qo = m i.e. 7 as., Q
satisfies condition 1. of Definition 0.1.

Combining lemmas 1.5 and 1.3, we obtain that 7 a.s., Vs > 0, ()5 does not weight points i.e.
(Q satisfies condition 3. of the definition.

To prove that 7> a.s., @ satisfies condition 2., weset 0 <51 < ... <5, <5 <1, g: R = R
continuous and bounded, ¢ € CZ(R) and define F : P(C([0, +oc),R)) — R by

F(Q) =< Q. (¢(Xt) — o)~ [ atit» QT(XT)V1¢"(Xr)dr)g(xsl, LX) >

By It6’s formula,

n 1 - ¢ n L,M — i i,n L,M
F(u") = ;Z (/ V2q(H % (X Em)) 1)/243) (X, .. LX)
i=1 8

Hence E(F?(p")) < K/n and lim, ;o E™" (F%(Q)) = 0.
For Q,Q" € P(C([0, +0), R)),

t

1F(Q) — F(Q) < K [ sup|((H *Qr)(«)?™! = ((H * Q) (x))"™"| dr

s xR
" ‘ <0-q, (qs(Xt) ~ o) - | g Qr(m)q1¢"(Xr>dr)g(xsl, LX) >

The functions v € P(R) — H xv(z), z € R are equicontinuous at any probability measure on
R that does not weight points. Using the uniform continuity of y — y9~! on [0,1] and applying
Lebesgue theorem, we deduce that F is continuous at any @ € P(C([0,+00),R)) such that



Vs > 0, Qs does not weight points. Hence the continuity points of the bounded mapping F' have
full 7°° measure. We conclude that

ET(F?(Q) = lim E™ (F*(Q)) =0

n—-+00

which puts an end to the proof. [ |

2 Propagation of chaos for the reordered particle systems

2.1 The reordered particle systems

Let Y, = (Y;"",...,Y;™") denote the order statistics of X; = (X;”",..., X;"") (X, B) is a weak

solution of (0.2)) i.e. Y;"" = ®;(X;) for

S, :x=(r1,...,2,) ER" - sup inf 2; where |A| denotes the cardinality of A C {1,...,n}.
|A|=n+1-i JEA

We first prove that Y is a diffusion with constant and diagonal diffusion matrix normally reflected
at the boundary of the convex set D, = {y = (y1,...,yn) € R* : y; < ... <wy,}. More precisely,

let 0 = /2¢(i/n)41/2 and B, = (8},..., ") satisfy

t
1
= Z /0 Livi<k<n, @k(Xs):XsT““)’"}stT where Bj = (BtT( )a---aBtT(n))-
TESK T

As by (1.4), ds a.e., the variables Xﬁ’n, 1 < i < n are distinct, we check that < 337 >;= Lyi=jyt
which implies that the martingale [, is a n-dimensional Brownian motion.

Lemma 2.1 _ ' o .
V1<i<n, YV/"=Yy"+o'6 +V}
for V.= (VL ...,V™) a continuous process with bounded variation satisfying

t t
|V|t :/0 1{(Y:91’n7"':Y:9n,n)EODn}d|V|s ‘/t :/0 Vsd|V|s

where d|V|s a.e., vs is a unit vector in the cone of inward normals to D,, (|V|; is the total
variation of V defined as sup Y p_; |Vz, — Vi,_, | where the supremum is taken over all partitions
thy=0<t1 <...<tp,=t.).

Remark 2.2 For a given Brownian motion 8 and given initial variables Yoi’n, 1 <9< nin-
dependent of B, by Tanaka [13], there exists a unique couple (Y1'",...,Y™™) (VL ...,V")) €
C(]0, +00), Dy) x C([0,400), R™) satisfying the properties stated in Lemma 2.1.

Remark 2.3 If z € OD,,, then there exists I C {2,...,n} such that
z € {( Wy = vt} (V{({wi-1 <y}
icl jelI

Let e; be the canonical basis on R™. It is easy to check that the cone of inward normals to D,, at

wis {D crAilei —ei—1) = Vi€ I, A\ >0},



Proof of Lemma 2.1 : By Tanaka formula, when Z; and Z] are continuous R-valued semi-
martingales, so are sup(Z;, Z;) and inf(Z;, Z}). Hence

Vi < n, Yti’n =®,(X;) = sup inf X]’
|Al=n+1—i JEA

is a continuous semimartingale. Let M} and V;! denote respectively the martingale component
and the finite variation component of its decomposition.
The function ®; is globally Lipschitz continuous and C*° on the opened set

0¥ D;
O={zeR": V1<i<j<n,z; #xj} with derivatives g—x;_ (®i(2)=;}» —.:0.

Let p be a C° probability density with compact support on R" and o*(z) = k"p(kx). We set
Pk = p* x @', Let ¢ € Q4 and T, = inf{t > q, X; € 90}. Suppose T, > ¢ and set t € (q,T}).
By It6’s formula,

! k [P ook 82@'“
BHC0) = @h(x) + Y [ S+ Z / Dd < X 2.)
j=1"4 J

By continuity of the sample-path s — X, inf{d(X§, 00), s € [¢,t]} > 0. Hence for k big enough,

: ok > ok
Vs € g,1], Vi <mn, 7, (Xs) = Lig,(x,)—xsmy and 527 (X,) = 0.

Taking the limit £ — 400 in (2.1), we get

. noopt 1 (¢-1)/2
n __ ,n . .
=Y Z/ Laix=ximy v 2‘1<; I{Xf’"SXé’”}> 4B;.
j=1"4 k=1
If X, € O and ®;(X,) = X2 then Y7_, Loxkneyiny = iand v20(r Shoy gbn gm0/ =
ot. Moreover, it is easy to check that E?:l 1{‘1>V(XS):Xj,n}ng = dﬁg.
Hence Y;Z” = Yqi’n + fqt oldfl = Yqi’n + ot (B — Bé). By continuity of Y»" and 3,

5., Vg € Qu, V€ [q,Ty), V" = Yi" =o'(B) — ).

If we write the open set {s > 0 : X, € O} as a denumerate union of pairwise disjoint opened
intervals (a;, b;), | € N, we deduce that

5., VIEN, Vr < s € [a,b], Y2 =Y =o' (B — ). (2.2)

Hence a.s., VI € N, the quadratic variation of Y»" — ¢?3’ is constant on [a;, b;] and

S., Vit Z 0, / 1{X EO}d < Yln - Z,BZ >e= Z/ 1{X5€O}d < Yi’n - O'i/Bi >e= 0.
1eN 7 (anb0)n
(2.3)

AsVz,2' € R, Y30 (®i(z) — ®;(2'))? < Y0 (z; — 2})? (for dimension n = 2 we check this in-
equality by an easy computation and for n > 2 we prove it by induction using the two-dimensional
inequality), we easily prove that a.s. the measure Y o d < Y% > is absolutely continuous
with respect to 1, d < Xb" >



As a consequence a.s. d < Y™ > is absolutely continuous with respect to Lebesgue measure.
Sois d < 3 >.

Since by (1.4), a.s., ds a.e., X5 € O, we deduce that a.s., V¢ > 0, f(f_l{Xseao}d <Yin—glfl > =
0. Taking (2.3) into account we get that a.s., V& > 0, < Y»" — ¢*3* >;= 0 which ensures that
M = o', |

Recalling the decomposition Y;"" = M} + V}!, we obtain from (2.2) that a.s., t — |V, is con-
stant on [a;, b, VI € N As X € 00 if and only if Y; € 9dD,, we conclude that |V|; =
Ji Yy,eopydV .

2) = (v )
s/ T V)]s dV]s /T
going to prove that d|V|s a.e., this vector belongs to the cone of inward normals to D,,. To do
so, we introduce W¥;(z) = Z?:l ®;(z). This function is C* in the open set {®;_1(z) < ®;(z)}
(with the convention ®y = —o0). By a reasoning similar to the one made for ®;, we prove that

Let vy = (vl,...,v

o Clearly, d|V|s a.e., vs is a unit vector. We are now

t
a.s., V1 <1 <n, Vi >0, /0 I{Ysifl,n<ysi,n}d(vl +...+ V", =0.

(with the convention Y{" = —o00). We deduce that
dlVl]s a.e., V1 <i<n, (YW <YP") = (W +...+0v"=0) (2.4)

Therefore d|V|s a.e., v} = —(v2 + ...+ V) and vs = Y0 (v + ... + ") (e; — e;—1) where
ei, 1 <14 < n denotes the canonical basis on R”. According to (2.4) and Remark 2.3, the proof
is completed if we show that

dlV]sa.e, ¥2<i<n, vi+... 40" >0. (2.5)

Let 2<i<n. AsVs >0, Y/ < Y applying Tanaka formula to compute (Ytl’" —Yti_l’")*7
we obtain

t
. . 1 . .
Vt Z 0, / ].{Ysifl,n:ni,n}d(yhn - Yl_l’n)s = ELg (YZ,TL - YZ_Ln).
0

where n—y=b enotes the local time in 0 of Y™ — Y=L Since {vi " = Y{"} C
h L? yin _yt 1,n d he 1 1 0of Yo —Y? 1,n S vl 1,n yin

t : . t ~ i
{X; 6. 00}, .fo I{Ysi—l,n:YSi,n}d(Ml — M 1), = 0. Hence I 1{Ysi—1,n:YSi,n}d(VZ — Vi, =
SLY(Yim — Y1) As the local time is increasing, we deduce that

dlV]sae, V2<i<n, (YJ7'"=Y)") = (v, 2v").
Combining this property with (2.4), we easily obtain (2.5). | |
Following Sznitman [12] p.187-190, we symmetrize (Y1", ..., Y™") by a random permutation in

order to obtain tightness. Let © be a random variable uniformly distributed on S, (independent
of the processes (X*", B")1<i<n). We set

(Zb, .. zmm) = (YOWn | y®m)ny

Although the two systems are different, their empirical measures are identical.

Theorem 2.4 Let X denote the canonical process on C([0,+00), R).

The particle systems (Z*", ..., Z™") are P-chaotic where P denotes the unique probability mea-
sure in P(C([0,+00),R)) such that :

(i) the function (s,x) — H * Py(z) is a weak solution of the porous medium equation (0.1) for
the initial condition H * m(x),

(ii) P a.s., s € (0,400) = H % Py(X,) is constant.

10



2.2 Proof of Theorem 2.4

As the variables Z", 1 < i < n are exchangeable, it is enough to check that there is no more
than one Q@ € P(C([0,+0),R)) satisfying (i) and (ii) and that the distributions 7" of the
empirical measures fi" = 2 3" | 70 = 2 37 | y;, converge weakly to a probability measure
giving full measure to {Q satisfying (i) and (ii)}. We are going to realize this program thanks
to four lemmas. The first one is dedicated to the tightness of the sequence (7")y,.

Lemma 2.5 The sequence ("), is tight.

Proof : By exchangeability, the conclusion is equivalent to the tightness of the distributions of
the processes Zb".

We easily check that for any n > 1, the variables Zé’n, ooy Zy" are L1D. with distribution m.
Hence the sequence (Zé ™), is constant in distribution. Let ¢t > s > 0.

1< ; ,
B((Z™ = 23" = 3 B =YY,
=1

As Vz,2' € R, S0 (®;(z) — @i(2")* < o0 ((zi — 25)*) (again, for dimension n = 2 we
check this inequality by an easy computation and for n > 2 we prove it by induction using the
two-dimensional inequality),

1 & - ,
B((Z," = 27 < 0D B - X5M)°.
=1

Since Vn > 1, Vz € R*, V1 < 4 < n, \/2q(2?:1 l{mjgmi}/n)(qfl)/2 < 2q, we deduce that
K < 400, Vn > 1, Vt > s > 0, B((Z/" — Z&™)Y) < K(t — s)2. By Kolmogorov criterion, we
conclude that the distributions of the processes Z'" are tight. | |

Let 7 be the limit of a converging subsequence of (7"),, that we still index by n for notational
simplicity.

AsVs > 0,47 = p?, for G defined in (1.5), G(4™) = G(u"). Therefore, by a reasoning similar to
the end of the proof of Lemma 1.5, we obtain :

Lemma 2.6 7 a.s. the function (s,z) — H x Qs(z) is a weak solution of the porous medium
equation for the initial condition H * m(z).

Hence 7 a.s., @ satisfies condition (i) of Theorem 2.4. Let us now deal with condition (ii).

Lemma 2.7 7 a.s., Q a.s. the function s € (0,+00) = H * Q4(Xs) is constant.

Proof : Let i <n—1. By (14), ds a.e., a.s., the variables Ysi’n 1 <4 < n are distinct. Hence
there is a Borel set N C (0, 4+00) with Lebesgue measure 0 such that

Vs € N Vn > 2 as Y <Y2" <. <Y/"

which implies that V1 < i <n, H % g®(Y}") = %

11



Let 0 < s < t with s,t € N¢,
U< 5+ 00) — H (0] >) =B+ ZiHM () 1 7)) =0, (26)

The functions v € P(R) — H x v(z), z € R are equicontinuous at any probability measure on
R which does not weight points. Moreover, combining Lemmas 2.6 and 1.3, we obtain that 7
a.s., Vs > 0, Qs does not weight points. We deduce that 7 is concentrated on continuity points
of the bounded mapping Q —< Q,|H * Qs(Xs) — H x Q¢(X;)| >. Hence

B (< Q) [H + Qo(Xs) — H Qu(Xy)| >) = Nlim B(< ", [H « i (Xs) — H * i (X;)] >) = 0.
Therefore Vs, t € (0,+00) NN¢, 7 as., Q as., H* Qs(Xs) = H * Q¢(Xy).
The condition Vs > 0, Qs does not weight points is equivalent to the continuity of (s,z) —

H % Qs(z) on (0,400) x R. Hence 7 a.s., Q a.s., s € (0,+00) = H * Qs(X;) is continuous and
the conclusion of the Lemma holds. | |

To conclude the proof of the propagation of chaos result, it is enough to show that there is no
more than one probability measure P satisfying conditions (i) and (ii) of Theorem 2.4.

Lemma 2.8 There exists a unique probability measure P € P(C[0, +o0),R)) such that :
() is a weak solution of the porous medium equation (0.1) for
(z),

(ii) P a.s., s € (0,400) = H % Py(X,) is constant.

(i) the function (s,z) — H * P,
the initial condition H x m

Proof : Existence is ensured by Lemmas 2.6 and 2.7.

To prove uniqueness, we consider two probability measures P and @ both satisfying (i) and (ii).
By Lemma 1.3, condition (i) implies that V(¢,z) € [0,400) xR, H % P;(z) = H * Q¢(x) = u(t, x)
ie. Vt > 0 Pt Qt

Let s > 0 and a(s,y) = inf{z : u(s,z) > y} for 0 <y < 1. We are going to prove that
P(Xs =u(s,u(s,Xs))) =1. We have {a(s,y) <z} = {y < u(s,z)}. Therefore

P(a(s,u(s, Xs)) <z) = Plu(s, Xs) <u(s,z)) = P(Xs < 2)+P(Xs € {y >z :u(s,y) =u(s,z)})

As u(s,z) = P(Xs < z) the second term of right-hand-side is nil and P(”( u(s, X)) < z) =
u(s,z). Hence Poi(s,u(s, X))~ = PoX;!. Moreover, clearly Vz € R, = > (s, u(s,z)) which
implies P(X > (s, u(s, Xs))) = 1. Thus P(X, = u(s,u(s,X ) =1.

If t,s > 0, as by (ii) P(u(s, Xs) = u(t, X)) = 1, P(Xs = a(s,u(t,Xy))) = 1. More generally, for
O0<t <t <...<tyg,

P(Xy, = u(te,ul(t1, Xe,)), -, X, = tltn, u(ts, Xy,))) = 1.
Hence the finite dimensional marginal P, . ;, is the image of P, by the mapping
x € R = (z,u(ta, u(tr, z)), ..., u(ty, u(tr,z))) € R".
The same is true for Q. As P;, = Qy,, we deduce that

VO <ty <...<tpn, Pyt = Q. tn

12



By weak continuity, this equality still holds for ¢; = 0 and the finite dimensional marginals of P
and @ are equal which implies P = Q. [ |

3 A possible generalization

Let a,b : R — R be C! functions with Vo > 0,a'(z) > 0, (8")ien- a sequence of independent
Brownian motions and YOI’" < YOZ’n < ... < Y"" the order statistics of n variables L.L.D. with
law m independent of the Brownian motions. If we are interested in the more general partial
differential equation

ou  10%(a(u))  O(b(u))

— == — t 0 x R 3.1
we can consider the unique couple (Y17, ... Y™™ (V1 ... V")) € C([0,+00), D, x R") such
that

Vi <m, Y =Yg" 4+ \/d(ifn) B+ (i/n)t + V7,
V = (V!,...,V") is of bounded variation and satisfies

t t
|V|,5:/0 LyinyrmcapydIV]s vt:/o ved|V |,

where d|V|s a.e., v is a unit vector in the cone of inward normals to Dy, (see Tanaka [13]).
We can also introduce a weak solution of the stochastic differential equation (see [2|)

. . t . . t . 1<
X" = X} +/ Va!(H  p?(X5"))dB® +/ B (H + p(XP"))ds, 1 <i<n, p"= - > dxin
0 0 =1

where the variables XS are I.I.LD. with law m and independent of the n-dimensional Brownian
motion (B',...,B"). Adapting the proof of Lemma 2.1, we easily obtain that the particle
system obtained by increasing reordering from (X", ..., X;"") is a weak solution of the previous
stochastic differential equation with normal reflection.

We still denote p™ = 13  §yin and " = 2 3" | 634 the empirical measures. We say that
Q € P(C([0,+00),R)) is a solution of the martingale problem (MP) starting at m if Qo = m,
Vo € CZ(R),

d(Xy) — p(Xo) — /t %QI(H * Py(X4)) 9" (Xs) + b (H * Ps(Xs))¢' (Xs)ds is a Q-martingale,
0

and Vt > 0, Q; does not weight points.

A key point in the approach developped for the porous medium equation is Lemma 1.3. Indeed,
if we show that there is no more than one weak solution of (3.1) of the form H % Py(z) where
P € P(C(]0,+00),R)) for the initial condition H xm(z) and that any such solution is continuous
on (0, +00) xR, then every result but uniqueness for problem (MP) can be adapted. In particular,
the sequence i, converges in probability to the unique P € P(C([0, +00),R)) such that (s, ) —
H * P,(z) is a weak solution of (3.1) for the initial condition H % m(z) and P a.s., the function
s € (0,400) — H x ]55(:)0) is constant. If we also prove uniqueness for the martingale problem
(MP) starting at m, then this problem admits a unique solution P and the sequence u™ converges
in probability to the constant P.

For instance, in the particular case a(u) = u, both these convergence results hold since :
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Lemma 3.1 Suppose that a(u) = u. Then there is no more than one weak solution of (3.1) of
the form H x Ps(z) where P € P(C([0,4+00),R)) for the initial condition H * m(z). Any such
solution is continuous on (0,+00) x R. Moreover, uniqueness holds for the martingale problem
(MP) starting at m.

Proof : Let P,Q € P(C([0,400),R)) be such that u(t,z) = H * Pi(z) and v(t,z) = H x Q4(z)
are weak solutions of (3.1) for the initial condition H xm(z). For a good choice of test functions,
we obtain that

t 8G't—s

Vt >0, dz a.e., u(t,z) = Gy * H +*m(zx) —
0 oxr

* (b(u(s,.))(x)ds (3.2)

where Gy(r) = exp(—x?/2t)/V/2rt denotes the heat kernel. The same equation holds for v.
Writing the equation satisfied by v — v and taking || %52 9Gy ||+ = \/2/nt into account, we get

0G5
Vit >0, Jlu(t,.) —v(t, )|z < a;

||b(u(37 ) = b(v(s, )| Lo ds

0
_fsupw / Juuts, ) = vis, =,
Vt—s

Iterating this equation, we conclude by Gronwall’s lemma that V¢t > 0, ||u(t,.) — v(¢t,.)||L~ = 0.
Hence V(t,z) € [0,+00) x R, H x Py(x) = H * Q(x).

Let us now prove that (¢,2) — u(t,z) = H % P,(z) is continuous on (0, 4+00) x R. Ast — P; is
weakly continuous, it is enough to show that V¢ > 0, P, does not weight points i.e. x — u(t,x) =
H % Py(x) is continuous. Let 0 < a < ¢,

t t
0G1—s #(b(u(s,.))(x)ds — Gy« H * m(y) + G-

G+ H «m(x) — . oz . oz

* (b(us, ) (y)ds
8Gt s

 (b(u(s,.))ds

‘/ / <8Gt a —2')—agjj(y—z)>b(u(s,z))dzds

The first term of the right-hand-side converges to 0 as y — z. The second term is arbitrarily
small for « close to t. Last, for fixed a, by Lebesgue theorem, the third term converges to 0 when
y — x. Hence the function z — G¢ * H * m(x) — Ot 803’;5 * (b(u(s,.))(z)ds is continuous. As
x — u(t, x) is right-continuous, we deduce that equality (3.2) holds Vz € R and that z — u(t, z)

1s continuous.

<|Gi* H+m(x) — Gy x H*xm(y |—i—2H/

L(XJ

Let now P and @ solve the martingale problem (MP) starting at m. By an easy adaptation of the
proof of Lemma 1.2, we get that H * Ps(z) and H * Qs(z) are weak solutions of (3.1) for he initial
condition H % m(z). Hence, by the first step of the proof, V(¢,z) € [0,+00) x R, H * Py(z) =
H xQ(z). Therefore both P and @ solve the linear martingale problem with diffusion coefficient
equal to 1 and bounded drift coefficient &'(H * Py(x)). By Girsanov theorem, uniqueness holds
for this problem and P = Q. [ |

Remark 3.2 For different proofs of the propagation of chaos result to the unique solution of
(MP) for the diffusing particles (X5, ..., X™") see [5] which deals with the case b(u) = u?/2
(viscous Burgers equation) and [8] in which b is supposed to be a C? function.
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