
Probabilistic approximation for a porous medium equationB.Jourdain�November 6, 1998AbstractIn this paper, we are interested in the one-dimensional porous medium equation whenthe initial condition is the distribution function of a probability measure. We associate anonlinear martingale problem with it. After proving uniqueness for the martingale problem,we show existence thanks to a propagation of chaos result for a system of weakly interactingdi�usion processes. The particle system obtained by increasing reordering from these di�u-sions is proved to solve a stochastic di�erential equation with normal re�ection. Last, weobtain propagation of chaos for the reordered particles to a probability measure which doesnot solve the martingale problem but is also linked to the porous medium equation.IntroductionLet q > 1. We are interested in the the porous medium equation :@u@t = @2(uq)@x2 ; (t; x) 2 [0;+1)� R (0.1)Inoue [6] [7] and Benachour Chassaing Roynette and Vallois [3] have given probabilistic interpre-tations of this equation in terms of nonlinear di�usion processes when the initial condition is aprobability measure on R. We are interested in another class of initial conditions : the cumula-tive distribution functions of probability measures on R. We follow the approach developped byBossy and Talay [5] for the viscous Burgers equation and write the equation satis�ed by v = @xu@v@t = @2@x2 (quq�1v) = @2@x2 (q(H � v(t; :))q�1v(t; :))where H(x) = 1fx�0g denotes the Heaviside function. From a probabilistic point of view, thisequation can be interpreted as a nonlinear Fokker-Planck equation. That way, we associate withit the following martingale problem :De�nition 0.1 Let X denote the canonical process on C([0;+1);R). A probability measureQ 2 P(C([0;+1);R)) with time marginals (Qt)t�0 solves the martingale problem (MP) startingat m 2 P(R) if1. Q0 = m�ENPC-CERMICS, 6-8 av Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne la Vallée Cedex 2,France - e-mail : jourdain@cermics.enpc.fr 1



2. 8� 2 C2b (R); M�t = �(Xt)� �(X0)� q R t0 (H � Ps(Xs))q�1�00(Xs)ds is a Q-martingale3. 8t > 0, Qt does not weight points.We �rst show that if Q solves problem (MP) starting at m then (s; x) ! H � Qs(x) is a weaksolution of the porous medium equation (0.1) for the initial condition H �m(x).Then we prove uniqueness for problem (MP) thanks to the following results concerning equation(0.1) given by [4] [9] and [1] : uniqueness of weak solutions for the initial condition H �m(x) andexistence of a Hölder continuous weak solution.We introduce the interacting di�usion processesXi;nt = Xi0 + Z t0 p2q(H � �ns (Xi;ns ))(q�1)=2dBis; 1 � i � n; with �n = 1n nXj=1 �Xj;n (0.2)where Bi; 1 � i � n are independent Brownian motions and Xi0; 1 � i � n are initial variablesI.I.D. with distribution m independent of the Brownian motions. We prove that the particlesystems (X1;n; : : : ;Xn;n) are P chaotic where P denotes the unique solution of problem (MP)starting at m.Let (Y 1;nt ; : : : ; Y n;nt ) denote the increasing reordering of (X1;nt ; : : : ;Xn;nt ) i.e.Y i;nt = supjAj=n�i+1 infj2AXj;nt where jAj denotes the cardinality of A � f1; : : : ; ng:As 1nPnj=1H(Xi;ns �Xj;ns ) = jfj : Xj;ns � Xi;ns gj=n, we remark that (Y 1;n; : : : ; Y n;n) is a di�usionwith constant diagonal di�usion matrixdiag(2q(1=n)q�1; 2q(2=n)q�1; : : : ; 2q(n=n)q�1)normally re�ected at the boundary of the convex setDn = fy = (y1; : : : ; yn) 2 Rn ; y1 � y2 � : : : � yng:Of course, the driving Brownian motion is not (B1t ; : : : ; Bnt ). Let ~�n = 1nPni=1 �Y i;n denotethe empirical measure of the reordered system. Since for any t � 0, the increasing reorderingpreserves the empirical measure at time t, the variables ~�nt 2 P(R) converge in probability to Pt.But as the increasing reordering does not preserve the sample-paths, the asymptotic behaviour of~�n is di�erent from the one of �n = 1nPni=1 �Xi;n which converges in probability to P (convergenceequivalent to the propagation of chaos to P for (X1;n; : : : ;Xn;n)). The sequence ~�n converges inprobability to ~P which does not solve problem (MP) starting at m. For any i � n, H � ~�ns (Y i;ns )is constant and equal to i=n for s =2 ft; (Y 1;nt ; : : : ; Y n;nt ) 2 @Dng. When n! +1, this propertyyields that ~P a.s., the function s 2 (0;+1)! H � ~Ps(Xs) is constant. The probability measure~P is characterized by this assertion combined with the following property : (s; x) ! H � ~Ps(x)is a weak solution of the porous medium equation (0.1) for the initial condition H �m(x).Our study can be seen as an extension of [12] p.187-190 : Sznitman deals with the simpler case(corresponding to q = 1) of reordered independent Brownian motions with initial distributionm atomless. He proves the convergence in probability of the empirical measures to the constantQ 2 P(C([0;+1);R)) characterized by : Q a.s., 8s � 0; Xs = F�1s (F0(X0))where Fs = H � � 1p2�s exp(�x2=2)� �m:Note that (s; x) ! Fs(x) = H � Qs(x) is the unique weak solution of the heat equation for theinitial condition H �m(x).Acknowledgement : It is a pleasure to thank Claude Martini for numerous fruitful discussions.2



1 A �rst propagation of chaos result1.1 Uniqueness for the martingale problem (MP)This section is dedicated to the proof of the following proposition :Proposition 1.1 The martingale problem (MP) starting at m has no more than one solution.This uniqueness result is a consequence of results concerning the porous medium equation. Letus �rst prove the link between the martingale problem and this equation.Lemma 1.2 If P solves the martingale problem (MP) starting at m then the function (s; x) 2[0;+1)� R ! H � Ps(x) is a weak solution of the porous medium equation (0.1) for the initialcondition H �m(x).Proof : To prove that u(t; x) = H�Pt(x) satis�es (0.1), we �rst give the Fokker-Planck equationsatis�ed by t! Pt in D0((0;+1) � R) (i.e. in the sense of distributions on (0;+1) � R) :@tPt = @xx(quq�1(t; :)Pt):Clearly Pt = @xu(t; :) in D0((0;+1)� R).Let t > 0. By condition 3. of De�nition 0.1, Pt does not weight points. Thus x ! u(t; x) is acontinuous function with bounded variation and8x � y 2 R; uq(t; y)� uq(t; x) = Z yx quq�1(t; z)du(t; z) = Z yx quq�1(t; z)Pt(dz):Hence quq�1(t; :)Pt = @xuq(t; :) in D0((0;+1)� R). The Fokker-Planck equation writes@x�@tu� @xxuq� = 0:As a consequence, the distribution @tu � @xxuq is invariant by spatial translation and for � 2C1K ((0;+1)�R) (the space of C1 functions with compact support on (0;+1)�R) and z 2 R,Z(0;+1)�R�u(t; x)@�@t (t; x) + uq(t; x)@2�@x2 (t; x)�dxdtis equal to Z(0;+1)�R�u(t; x� z)@�@t (t; x) + uq(t; x� z)@2�@x2 (t; x)�dxdt:By Lebesgue theorem, the last integral converges to 0 as z ! +1. HenceZ(0;+1)�R�u(t; x)@�@t (t; x) + uq(t; x)@2�@x2 (t; x)�dxdt = 0and u(t; x) = H � Pt(x) is a weak solution of (0.1).As the map t! Pt is weakly continuous, dx a.e., H � Pt(x) converges to H �m(x) as t! 0 andthe initial condition is H �m(x).The next lemma is dedicated to properties of the porous medium equation (0.1).3



Lemma 1.3 There is no more than one weak solution of the porous medium equation (0.1) withinitial condition H � m(x) of the form H � Ps(x) where P 2 P(C([0;+1);R)). Moreover anysuch solution satis�es :8s > 0; 8x; y 2 R; j(H � Ps)q�1(x)� (H � Ps)q�1(y)j � q � 1q � 2(q + 1)s�12 jx� yj
Proof : Let P 2 P(C([0;+1)R)) be such that H � Ps(x) is a weak solution of the porousmedium equation (0.1) for the initial condition u0(x) = H � m(x). Following the notations ofBénilan Crandall and Pierre [4], we havel(u0) = limr!+1 supR�rR�(1+2=(q�1)) Z R�R ju0(x)jdx = 0 and T (u0) = +1:By the weak continuity of s ! Ps, s ! H � Ps(:) 2 C([0;+1); L1loc(R)). Moreover 8s � 0,H � Ps(:) is bounded by 1. Hence by Theorem U p.75 [4], 8s � 0; H � Ps(:) = U(s; u0)where U(s; u0) denotes the weak solution of the porous medium equation constructed up to timeT (u0) = +1 in Theorem E p.54.For n 2 N� , let u0;n : R ! [0; 1] be a C1 function with compact support included in [�n; n]such that R n�n ju0;n(x)� u0(x)jdx � 1=n.As the function u0;n is continuous and bounded by 1 and the function (u0;n)q is Lipschitz contin-uous, by Oleinik [9] Theorem 2 p.359, there exists a function un(s; x) continuous on [0;+1)�Rand bounded on [0; T ]�R for any T > 0 which solves weakly the porous medium equation (0.1)and satis�es un(0; x) = u0;n(x).Applying Theorem U p.75[4], we deduce that 8s � 0, un(s; :) = U(s; u0;n). By the orderingprinciple p.55, as 8x 2 R; u0;n(x) � 1, the function un is bounded by 1. According to [1], forany � > 0, the functions (s; x)! un(s; x) are Hölder continuous with exponent min(1; 1=(q�1))on [�;+1)� R uniformly in n and the following estimate holds for the space variable :8s > 0; 8x; y 2 R; j(un(s; x))q�1 � (un(s; y))q�1j � q � 1q � 2(q + 1)s� 12 jx� yj: (1.1)By a diagonal extraction procedure, we obtain a subsequence (un0)n0 such that un0 convergesuniformly on compact subsets of (0;+1) � R to a function u. Clearly (1.1) still holds for u.As limn!+1 RR ju0;n(x)� u0(x)j=(1 + x2)dx = 0, by the dependence on data result of TheoremE p.54 [4], 8s � 0, U(s; u0;n0) = un0(s; :) converges to U(s; u0) = H � Ps(:) in L1([�p; p]) for anyp 2 N� . Hence H �Ps(:) = u(s; :). As x! H �Ps(x) is càd, 8s > 0;8x 2 R; H �Ps(x) = u(s; x)and the conclusion holds.We are now ready to prove uniqueness for the martingale problem (MP) starting at m.Proof of Proposition 1.1 : Let P and Q be solutions of problem (MP) starting at m. ByLemmas 1.2 and 1.3,8(s; x) 2 [0;+1) � R; H � Ps(x) = H �Qs(x) = u(s; x)which implies that the time marginals of P and Q are identical. Moreover, the functions x !uq�1(s; x) are Lipschitz continuous uniformly for s � � > 0.Let P � and Q� denote respectively the image of P and Q by the mapping x(:) 2 C([0;+1);R) !4



x(�+ :) 2 C([0;+1);R). Both P � and Q� solve the martingale problem : R 2 P(C([0;+1);R))is a solution if R0 = P� and 8� 2 C2b (R),�(Xt)� �(X0)� Z t0 quq�1(� + s;Xs)�00(Xs)ds is a R-martingale.As the di�usion coe�cient 2quq�1(� + s; x) is lipschitz continuous in x uniformly for s � 0,uniqueness holds for this martingale problem (see for instance [11] Theorem 8.2.1 p.204) andP � = Q� . Taking the limit � ! 0, we conclude that P = Q.
1.2 Convergence of the particle systems (0.2)We are interested in the n-dimensional stochastic di�erential equation (0.2) :Xi;nt = Xi0 + Z t0 p2q� 1n nXj=1 1fXj;ns �Xi;ns g�(q�1)=2dBis 1 � i � nwhere the initial variablesXi0; 1 � i � n are IID with distributionm and (Bi)i�n are independentBrownian motions independent of the initial variables. The corresponding di�usion matrix isdiagonal a(x) = Diag�2q� nXj=1 1fxj�x1g=n�q�1; : : : ; 2q� nXj=1 1fxj�xng=n�q�1�:and uniformly elliptic : 8x; y 2 Rn ; y�a(x)y � 2qjyj2=nq�1. For � 2 Sn the group of permuta-tions on f1; : : : ; ng, let A� denote the polyhedron fx 2 Rn ; x�(1) � x�(2) � : : : � x�(n)g. Theinteriors of the polyhedra (A� )�2Sn are pairwise disjoint and Rd = S�2Sn A� . Moreover, on theinterior of A� , the di�usion matrix is equal to Diag(2q(��1(1)=n)q�1; : : : ; 2q(��1(n)=n)q�1) andtherefore constant. Hence, by Bass and Pardoux [2] Theorem 2.1 p.559, the stochastic di�erentialequation (0.2) admits a weak solution. Moreover, weak uniqueness holds for this equation.Theorem 1.4 The particle systems (X1;n; : : : ;Xn;n) are P chaotic where P denotes the uniquesolution of the martingale problem (MP) starting at m.As the particles Xi;n; 1 � i � n are exchangeable, this result result is equivalent to the con-vergence of the distributions �n of the empirical measures �n = 1nPni=1 �Xi;n to a probabilitymeasure concentrated on solutions of the martingale problem (MP) starting at m (see [12] andthe references cited in it). Again by exchangeability, the tightness of the sequence (�n)n isequivalent to the tightness of the distributions of the variables (X1;n)n. As8n 2 N� ; 8x 2 Rn ; p2q� 1n nXj=1 1fxj�x1g�(q�1)=2 �p2q;the coe�cient before dB1s in (0.2) is bounded and both sequences are tight.Let �1 be the limit of a converging subsequence that we still index by n for simplicity. Weconclude the proof by the two next lemmas. 5



Lemma 1.5 Let Q denote the canonical variable on P(C([0;+1);R)). �1 a.s., the function(s; x)! H�Qs(x) is a weak solution of the porous medium equation (0.1) for the initial conditionH �m(x).Proof : Let g 2 C1K ([0;+1)� R) and �(s; x) = R x�1 g(s; y)dy. By Itô's formula, we get< �nt ; �(t; :) >= < �n0 ; �(0; :) > +Z t0 < �ns ; @�@s (s; :) + q(H � �ns (:))q�1 @2�@x2 (s; :) > ds+ 1n nXi=1 Z t0 p2q(H � �ns (Xi;ns ))(q�1)=2 @�@x (s;Xi;ns ) dBisHenceE�� < �nt ; �(t; :) > � < �n0 ; �(0; :) > �Z t0 < �ns ; @�@s (s; :) + q(H � �ns (:))q�1 @2�@x2 (s; :) > ds�2�� 2qkgk2L1 tn (1.2)By the integration by parts formula,< �nt ; �(t; :) > � < �n0 ; �(0; :) > �Z t0 < �ns ; @�@s (s; :) > ds= ZR g(t; y)dy � ZR g(t; y)H � �nt (y)dy � ZR g(0; y)dy + ZR g(0; y)H � �n0 (y)dy� Z t0 �ZR @g@s (s; y)dy � ZR @g@s (s; y)H � �ns (y)dy�ds= �ZR g(t; y)H � �nt (y)dy + ZR g(0; y)H � �n0 (y)dy + Z t0 ZR @g@s (s; y)H � �ns (y)dyds (1.3)As the di�usion matrix corresponding to the stochastic di�erential equation (0.2) is uniformlyelliptic, applying the occupation times formula (see for instance Revuz Yor [10] p.209) to thesemimartingales Xi;n �Xj;n for 1 � i < j � n, we obtain :a:s:; 81 � i < j � n; 8t � 0; Z t0 1fXi;ns �Xj;ns =0gds = 0: (1.4)Hence a.s., ds a.e., the variables Xi;ns ; 1 � i � n are distinct. Therefore a.s., ds a.e.,< �ns ; q(H � �ns (:))q�1 @2�@x2 (s; :) >= � qn ZR @2g@x2 (s; y) nH��ns (y)Xk=1 �kn�q�1dyWe deduce that a.s.,���� Z t0 < �ns ; q(H � �ns (:))q�1 @2�@x2 (s; :) > ds+ Z t0 ZR @2g@x2 (s; y)(H � �ns (y))qdyds����= ���� Z t0 ZR @2g@x2 (s; y)�� qn nH��ns (y)Xk=1 �kn�q�1 + (H � �ns (y))q�dyds� Kg supl�n ����� ln�q � 1n lXk=1 q�kn�q�1���� � Kg supx;y2[0;1]jx�yj� 1n jqxq�1 � qyq�1j6



As the function x ! xq�1 is uniformly continuous on [0; 1], the left hand side has a limit equalto 0 when n! +1.Combining this convergence with (1.2) and (1.3), we obtain limn!+1 E(G2(�n)) = 0 whereG(Q) = ZR g(t; y)H �Qt(y)dy � ZR g(0; y)H �Q0(y)dy� Z t0 ZR�@g@s (s; y)H �Qs(y) + @2g@x2 (s; y)(H �Qs(y))q�dyds: (1.5)Since the function G : P(C([0;+1);R)) ! R is continuous and bounded, the weak convergenceof (�n)n to �1 implies that E�1 (G2(Q)) = 0. As the variables Xi0 are I.I.D. with distributionm, �1 a.s. Q0 = m. Hence 8g 2 C1K ([0;+1)� R); 8t � 0, �1 a.s.ZR g(t; y)H �Qt(y)dy =ZR g(0; y)H �m(y)dy+ Z t0 ZR�@g@s (s; y)H �Qs(y) + @2g@x2 (s; y)(H �Qs(y))q�dyds (1.6)Choosing t; g in denumerate dense subsets and then taking limits, we obtain that �1 a.s., 8g 2C1K ([0;+1)�R), 8t � 0, (1.6) holds. We conclude that �1 a.s. the function (s; x)! H �Qs(x)is a weak solution of the porous medium equation for the initial condition H �m(x).Lemma 1.6 �1 a.s., Q solves the martingale problem (MP) starting at m.Proof : As the variables Xi0 are I.I.D. with distribution m, �1 a.s., Q0 = m i.e. �1 a.s., Qsatis�es condition 1. of De�nition 0.1.Combining lemmas 1.5 and 1.3, we obtain that �1 a.s., 8s > 0, Qs does not weight points i.e.Q satis�es condition 3. of the de�nition.To prove that �1 a.s., Q satis�es condition 2., we set 0 � s1 � : : : � sp � s � t, g : Rp ! Rcontinuous and bounded, � 2 C2b (R) and de�ne F : P(C([0;+1);R)) ! R byF (Q) =< Q;��(Xt)� �(Xs)� Z ts q(H �Qr(Xr))q�1�00(Xr)dr�g(Xs1 ; : : : ;Xsp) > :By Itô's formula,F (�n) = 1n nXi=1 �Z ts p2q(H � �ns (Xi;ns ))(q�1)=2dBis�g(Xi;ns1 ; : : : ;Xi;nsp ):Hence E (F 2(�n)) � K=n and limn!+1 E�n (F 2(Q)) = 0.For Q;Q0 2 P(C([0;+1);R)),jF (Q)� F (Q0)j � K Z ts supx2R j((H �Qr)(x))q�1 � ((H �Q0r)(x))q�1j dr+ ���� < Q�Q0;��(Xt)� �(Xs)� Z ts q(H �Qr(Xr))q�1�00(Xr)dr�g(Xs1 ; : : : ;Xsp) > ����The functions � 2 P(R) ! H � �(x), x 2 R are equicontinuous at any probability measure onR that does not weight points. Using the uniform continuity of y ! yq�1 on [0; 1] and applyingLebesgue theorem, we deduce that F is continuous at any Q 2 P(C([0;+1);R)) such that7



8s > 0, Qs does not weight points. Hence the continuity points of the bounded mapping F havefull �1 measure. We conclude thatE�1 (F 2(Q)) = limn!+1 E�n (F 2(Q)) = 0which puts an end to the proof.
2 Propagation of chaos for the reordered particle systems2.1 The reordered particle systemsLet Yt = (Y 1;nt ; : : : ; Y n;nt ) denote the order statistics of Xt = (X1;nt ; : : : ;Xn;nt ) ((X;B) is a weaksolution of (0.2)) i.e. Y i;nt = �i(Xt) for�i : x = (x1; : : : ; xn) 2 Rn ! supjAj=n+1�i infj2Axj where jAj denotes the cardinality of A � f1; : : : ; ng:We �rst prove that Y is a di�usion with constant and diagonal di�usion matrix normally re�ectedat the boundary of the convex set Dn = fy = (y1; : : : ; yn) 2 Rn : y1 � : : : � yng. More precisely,let �i = p2q(i=n)(q�1)=2 and �t = (�1t ; : : : ; �nt ) satisfy�t = X�2Sn Z t0 1f81�k�n; �k(Xs)=X�(k);ns gdB�s where B�t = (B�(1)t ; : : : ; B�(n)t ):As by (1.4), ds a.e., the variables Xi;ns ; 1 � i � n are distinct, we check that < �i�j >t= 1fi=jgtwhich implies that the martingale �t is a n-dimensional Brownian motion.Lemma 2.1 8 1 � i � n; Y i;nt = Y i;n0 + �i�it + V itfor V = (V 1; : : : ; V n) a continuous process with bounded variation satisfyingjV jt = Z t0 1f(Y 1;ns ;:::;Y n;ns )2@DngdjV js Vt = Z t0 �sdjV jswhere djV js a.e., �s is a unit vector in the cone of inward normals to Dn (jV jt is the totalvariation of V de�ned as supPnk=1 jVtk � Vtk�1 j where the supremum is taken over all partitionst0 = 0 < t1 < : : : < tn = t.).Remark 2.2 For a given Brownian motion � and given initial variables Y i;n0 ; 1 � i � n in-dependent of �, by Tanaka [13], there exists a unique couple ((Y 1;n; : : : ; Y n;n); (V 1; : : : ; V n)) 2C([0;+1);Dn)� C([0;+1);Rn) satisfying the properties stated in Lemma 2.1.Remark 2.3 If x 2 @Dn, then there exists I � f2; : : : ; ng such thatx 2 f\i2Ifyi�1 = yigg\f\j =2Ifyj�1 < yjgg:Let ei be the canonical basis on Rn . It is easy to check that the cone of inward normals to Dn atx is fPi2I �i(ei � ei�1) : 8i 2 I; �i � 0g. 8



Proof of Lemma 2.1 : By Tanaka formula, when Zt and Z 0t are continuous R-valued semi-martingales, so are sup(Zt; Z 0t) and inf(Zt; Z 0t). Hence8i � n; Y i;nt = �i(Xt) = supjAj=n+1�i infj2AXj;ntis a continuous semimartingale. Let M it and V it denote respectively the martingale componentand the �nite variation component of its decomposition.The function �i is globally Lipschitz continuous and C1 on the opened setO = fx 2 Rn : 81 � i < j � n; xi 6= xjg with derivatives @�i@xj = 1f�i(x)=xjg; @2�i@x2j = 0:Let � be a C1 probability density with compact support on Rn and �k(x) = kn�(kx). We set�ki = �k � �i. Let q 2 Q+ and Tq = infft � q; Xt 2 @Og. Suppose Tq > q and set t 2 (q; Tq).By Itô's formula,�ki (Xt) = �ki (Xq) + nXj=1 Z tq @�ki@xj (Xs)dXj;ns + 12 nXj=1 Z tq @2�ki@x2j (Xs)d < Xj;n >s : (2.1)By continuity of the sample-path s! Xs, inffd(Xs; @O); s 2 [q; t]g > 0. Hence for k big enough,8s 2 [q; t]; 8j � n; @�ki@xj (Xs) = 1f�i(Xs)=Xj;ns g and @2�ki@x2j (Xs) = 0:Taking the limit k ! +1 in (2.1), we getY i;nt = Y i;nq + nXj=1 Z tq 1f�i(Xs)=Xj;ns gp2q� 1n nXk=1 1fXk;ns �Xj;ns g�(q�1)=2dBjs :IfXs 2 O and �i(Xs) = Xj;ns thenPnk=1 1fXk;ns �Xj;ns g = i andp2q( 1nPnk=1 1fXk;ns �Xj;ns g)(q�1)=2 =�i. Moreover, it is easy to check that Pnj=1 1f�i(Xs)=Xj;ns gdBjs = d�is:Hence Y i;nt = Y i;nq + R tq �id�is = Y i;nq + �i(�it � �iq). By continuity of Y i;n and �i,a:s:; 8q 2 Q+ ; 8t 2 [q; Tq]; Y i;nt � Y i;nq = �i(�it � �iq):If we write the open set fs > 0 : Xs 2 Og as a denumerate union of pairwise disjoint openedintervals (al; bl); l 2 N, we deduce thata:s:; 8l 2 N; 8r � s 2 [al; bl]; Y i;ns � Y i;nr = �i(�is � �ir): (2.2)Hence a.s., 8l 2 N, the quadratic variation of Y i;n � �i�i is constant on [al; bl] anda:s:; 8t � 0; Z t0 1fXs2Ogd < Y i;n � �i�i >s=Xl2N Z(al;bl)\[0;t] 1fXs2Ogd < Y i;n � �i�i >s= 0:(2.3)As 8x; x0 2 Rn ; Pni=1(�i(x)��i(x0))2 �Pni=1(xi � x0i)2 (for dimension n = 2 we check this in-equality by an easy computation and for n > 2 we prove it by induction using the two-dimensionalinequality), we easily prove that a.s. the measure Pni=1 d < Y i;n >s is absolutely continuouswith respect to Pni=1 d < Xi;n >s. 9



As a consequence a.s. d < Y i;n >s is absolutely continuous with respect to Lebesgue measure.So is d < �i >s.Since by (1.4), a.s., ds a.e., Xs 2 O, we deduce that a:s:; 8t � 0; R t0 1fXs2@Ogd < Y i;n��i�i >s=0. Taking (2.3) into account we get that a:s:; 8t � 0; < Y i;n � �i�i >t= 0 which ensures thatM it = �i�it .Recalling the decomposition Y i;nt = M it + V it , we obtain from (2.2) that a:s:, t ! jV jt is con-stant on [al; bl], 8l 2 N. As Xs 2 @O if and only if Ys 2 @Dn, we conclude that jV jt =R t0 1fYs2@DngdjV js.Let �s = (�1s ; : : : ; �ns ) = ( dV 1sdjV js ; : : : ; dV nsdjV js ). Clearly, djV js a.e., �s is a unit vector. We are nowgoing to prove that djV js a.e., this vector belongs to the cone of inward normals to Dn. To doso, we introduce 	i(x) = Pnj=i�j(x). This function is C1 in the open set f�i�1(x) < �i(x)g(with the convention �0 � �1). By a reasoning similar to the one made for �i, we prove thata:s:; 81 � i � n; 8t � 0; Z t0 1fY i�1;ns <Y i;ns gd(V i + : : :+ V n)s = 0:(with the convention Y 0;ns � �1). We deduce thatdjV js a:e:; 81 � i � n; (Y i�1;ns < Y i;ns ) =) (�is + : : :+ �ns = 0) (2.4)Therefore djV js a:e:, �1s = �(�2s + : : : + �ns ) and �s = Pni=2(�is + : : : + �ns )(ei � ei�1) whereei; 1 � i � n denotes the canonical basis on Rn . According to (2.4) and Remark 2.3, the proofis completed if we show thatdjV js a:e:; 82 � i � n; �is + : : :+ �ns � 0: (2.5)Let 2 � i � n. As 8s � 0; Y i�1;ns � Y i;ns , applying Tanaka formula to compute (Y i;nt �Y i�1;nt )�,we obtain 8t � 0; Z t0 1fY i�1;ns =Y i;ns gd(Y i;n � Y i�1;n)s = 12L0t (Y i;n � Y i�1;n):where L0t (Y i;n � Y i�1;n) denotes the local time in 0 of Y i;n � Y i�1;n. Since fY i�1;ns = Y i;ns g �fXs 2 @Og, R t0 1fY i�1;ns =Y i;ns gd(M i � M i�1)s = 0. Hence R t0 1fY i�1;ns =Y i;ns gd(V i � V i�1)s =12L0t (Y i;n � Y i�1;n). As the local time is increasing, we deduce thatdjV js a:e:; 82 � i � n; (Y i�1;ns = Y i;ns ) =) (�is � �i�1s ):Combining this property with (2.4), we easily obtain (2.5).Following Sznitman [12] p.187-190, we symmetrize (Y 1;n; : : : ; Y n;n) by a random permutation inorder to obtain tightness. Let � be a random variable uniformly distributed on Sn (independentof the processes (Xi;n; Bi)1�i�n). We set(Z1;n; : : : ; Zn;n) = (Y �(1);n; : : : ; Y �(n);n):Although the two systems are di�erent, their empirical measures are identical.Theorem 2.4 Let X denote the canonical process on C([0;+1);R).The particle systems (Z1;n; : : : ; Zn;n) are ~P -chaotic where ~P denotes the unique probability mea-sure in P(C([0;+1);R)) such that :(i) the function (s; x) ! H � ~Ps(x) is a weak solution of the porous medium equation (0.1) forthe initial condition H �m(x),(ii) ~P a.s., s 2 (0;+1)! H � ~Ps(Xs) is constant.10



2.2 Proof of Theorem 2.4As the variables Zi;n; 1 � i � n are exchangeable, it is enough to check that there is no morethan one Q 2 P(C([0;+1);R)) satisfying (i) and (ii) and that the distributions ~�n of theempirical measures ~�n = 1nPni=1 �Zi;n = 1nPni=1 �Y i;n converge weakly to a probability measuregiving full measure to fQ satisfying (i) and (ii)g. We are going to realize this program thanksto four lemmas. The �rst one is dedicated to the tightness of the sequence (~�n)n.Lemma 2.5 The sequence (~�n)n is tight.Proof : By exchangeability, the conclusion is equivalent to the tightness of the distributions ofthe processes Z1;n.We easily check that for any n � 1, the variables Z1;n0 ; : : : ; Zn;n0 are I.I.D. with distribution m.Hence the sequence (Z1;n0 )n is constant in distribution. Let t � s � 0.E ((Z1;nt � Z1;ns )4) = 1n nXi=1 E ((Y i;nt � Y i;ns )4):As 8x; x0 2 Rn ; Pni=1(�i(x) � �i(x0))4 � Pni=1((xi � x0i)4) (again, for dimension n = 2 wecheck this inequality by an easy computation and for n > 2 we prove it by induction using thetwo-dimensional inequality),E ((Z1;nt � Z1;ns )4) � 1n nXi=1 E((Xi;nt �Xi;ns )4):Since 8n � 1; 8x 2 Rn ; 81 � i � n; p2q(Pnj=1 1fxj�xig=n)(q�1)=2 � p2q, we deduce that9K < +1; 8n � 1; 8t � s � 0; E ((Z1;nt � Z1;ns )4) � K(t� s)2. By Kolmogorov criterion, weconclude that the distributions of the processes Z1;n are tight.Let ~�1 be the limit of a converging subsequence of (~�n)n that we still index by n for notationalsimplicity.As 8s � 0; ~�ns = �ns , for G de�ned in (1.5), G(~�n) = G(�n). Therefore, by a reasoning similar tothe end of the proof of Lemma 1.5, we obtain :Lemma 2.6 ~�1 a.s. the function (s; x) ! H � Qs(x) is a weak solution of the porous mediumequation for the initial condition H �m(x).Hence ~�1 a.s., Q satis�es condition (i) of Theorem 2.4. Let us now deal with condition (ii).Lemma 2.7 ~�1 a.s., Q a.s. the function s 2 (0;+1)! H �Qs(Xs) is constant.Proof : Let i � n� 1. By (1.4), ds a.e., a.s., the variables Y i;ns 1 � i � n are distinct. Hencethere is a Borel set N � (0;+1) with Lebesgue measure 0 such that8s 2 N c; 8n � 2; a.s. Y 1;ns < Y 2;ns < : : : < Y n;nswhich implies that 81 � i � n; H � ~�ns (Y i;ns ) = in11



Let 0 < s < t with s; t 2 N c,E(< ~�n; jH � ~�ns (Xs)�H � ~�nt (Xt)j >) = E� 1n nXi=1 jH � ~�ns (Y i;ns )�H � ~�nt (Y i;nt )j� = 0: (2.6)The functions � 2 P(R) ! H � �(x); x 2 R are equicontinuous at any probability measure onR which does not weight points. Moreover, combining Lemmas 2.6 and 1.3, we obtain that ~�1a.s., 8s > 0, Qs does not weight points. We deduce that ~�1 is concentrated on continuity pointsof the bounded mapping Q!< Q; jH �Qs(Xs)�H �Qt(Xt)j >. HenceE ~�1 (< Q; jH �Qs(Xs)�H �Qt(Xt)j >) = limn!+1 E (< ~�n; jH � ~�ns (Xs)�H � ~�nt (Xt)j >) = 0:Therefore 8s; t 2 (0;+1) \N c, ~�1 a.s., Q a.s., H �Qs(Xs) = H �Qt(Xt).The condition 8s > 0, Qs does not weight points is equivalent to the continuity of (s; x) !H �Qs(x) on (0;+1)�R. Hence ~�1 a.s., Q a.s., s 2 (0;+1)! H �Qs(Xs) is continuous andthe conclusion of the Lemma holds.To conclude the proof of the propagation of chaos result, it is enough to show that there is nomore than one probability measure P satisfying conditions (i) and (ii) of Theorem 2.4.Lemma 2.8 There exists a unique probability measure ~P 2 P(C[0;+1);R)) such that :(i) the function (s; x) ! H � ~Ps(x) is a weak solution of the porous medium equation (0.1) forthe initial condition H �m(x),(ii) ~P a.s., s 2 (0;+1)! H � ~Ps(Xs) is constant.Proof : Existence is ensured by Lemmas 2.6 and 2.7.To prove uniqueness, we consider two probability measures P and Q both satisfying (i) and (ii).By Lemma 1.3, condition (i) implies that 8(t; x) 2 [0;+1)�R; H �Pt(x) = H �Qt(x) = u(t; x)i.e. 8t � 0; Pt = Qt.Let s � 0 and ~u(s; y) = inffx : u(s; x) � yg for 0 � y � 1. We are going to prove thatP (Xs = ~u(s; u(s;Xs))) = 1. We have f~u(s; y) � xg = fy � u(s; x)g. ThereforeP (~u(s; u(s;Xs)) � x) = P (u(s;Xs) � u(s; x)) = P (Xs � x)+P (Xs 2 fy > x : u(s; y) = u(s; x)g)As u(s; x) = P (Xs � x) the second term of right-hand-side is nil and P (~u(s; u(s;Xs)) � x) =u(s; x). Hence P � ~u(s; u(s;Xs))�1 = P �X�1s . Moreover, clearly 8x 2 R; x � ~u(s; u(s; x)) whichimplies P (Xs � ~u(s; u(s;Xs))) = 1. Thus P (Xs = ~u(s; u(s;Xs))) = 1.If t; s > 0, as by (ii) P (u(s;Xs) = u(t;Xt)) = 1, P (Xs = ~u(s; u(t;Xt))) = 1. More generally, for0 < t1 < t2 < : : : < tk,P (Xt2 = ~u(t2; u(t1;Xt1)); : : : ;Xtn = ~u(tn; u(t1;Xt1))) = 1:Hence the �nite dimensional marginal Pt1;:::;tn is the image of Pt1 by the mappingx 2 R ! (x; ~u(t2; u(t1; x)); : : : ; ~u(tn; u(t1; x))) 2 Rn :The same is true for Q. As Pt1 = Qt1 , we deduce that80 < t1 < : : : < tn; Pt1;:::;tn = Qt1;:::;tn :12



By weak continuity, this equality still holds for t1 = 0 and the �nite dimensional marginals of Pand Q are equal which implies P = Q.
3 A possible generalizationLet a; b : R ! R be C1 functions with 8x > 0; a0(x) > 0, (�i)i2N� a sequence of independentBrownian motions and Y 1;n0 � Y 2;n0 � : : : � Y n;n0 the order statistics of n variables I.I.D. withlaw m independent of the Brownian motions. If we are interested in the more general partialdi�erential equation @u@t = 12 @2(a(u))@x2 � @(b(u))@x ; (t; x) 2 [0;+1) � R (3.1)we can consider the unique couple ((Y 1;n; : : : ; Y n;n); (V 1; : : : ; V n)) 2 C([0;+1);Dn � Rn) suchthat 8i � n; Y i;nt = Y i;n0 +pa0(i=n) �it + b0(i=n)t+ V it ;V = (V 1; : : : ; V n) is of bounded variation and satis�esjV jt = Z t0 1f(Y 1;ns ;:::;Y n;ns )2@DngdjV js Vt = Z t0 �sdjV jswhere djV js a.e., �s is a unit vector in the cone of inward normals to Dn (see Tanaka [13]).We can also introduce a weak solution of the stochastic di�erential equation (see [2])Xi;nt = Xi0 + Z t0 pa0(H � �ns (Xi;ns ))dBis + Z t0 b0(H � �ns (Xi;ns ))ds; 1 � i � n; �n = 1n nXi=1 �Xi;nwhere the variables Xi0 are I.I.D. with law m and independent of the n-dimensional Brownianmotion (B1; : : : ; Bn). Adapting the proof of Lemma 2.1, we easily obtain that the particlesystem obtained by increasing reordering from (X1;nt ; : : : ;Xn;nt ) is a weak solution of the previousstochastic di�erential equation with normal re�ection.We still denote �n = 1nPni=1 �Xi;n and ~�n = 1nPni=1 �Y i;n the empirical measures. We say thatQ 2 P(C([0;+1);R)) is a solution of the martingale problem (MP) starting at m if Q0 = m,8� 2 C2b (R),�(Xt)� �(X0)� Z t0 12a0(H � Ps(Xs))�00(Xs) + b0(H � Ps(Xs))�0(Xs)ds is a Q-martingale;and 8t > 0, Qt does not weight points.A key point in the approach developped for the porous medium equation is Lemma 1.3. Indeed,if we show that there is no more than one weak solution of (3.1) of the form H � Ps(x) whereP 2 P(C([0;+1);R)) for the initial condition H �m(x) and that any such solution is continuouson (0;+1)�R, then every result but uniqueness for problem (MP) can be adapted. In particular,the sequence ~�n converges in probability to the unique ~P 2 P(C([0;+1);R)) such that (s; x)!H � ~Ps(x) is a weak solution of (3.1) for the initial condition H �m(x) and ~P a.s., the functions 2 (0;+1) ! H � ~Ps(x) is constant. If we also prove uniqueness for the martingale problem(MP) starting at m, then this problem admits a unique solution P and the sequence �n convergesin probability to the constant P .For instance, in the particular case a(u) = u, both these convergence results hold since :13



Lemma 3.1 Suppose that a(u) = u. Then there is no more than one weak solution of (3.1) ofthe form H � Ps(x) where P 2 P(C([0;+1);R)) for the initial condition H �m(x). Any suchsolution is continuous on (0;+1) � R. Moreover, uniqueness holds for the martingale problem(MP) starting at m.Proof : Let P;Q 2 P(C([0;+1);R)) be such that u(t; x) = H � Pt(x) and v(t; x) = H �Qt(x)are weak solutions of (3.1) for the initial condition H �m(x). For a good choice of test functions,we obtain that8t > 0; dx a:e:; u(t; x) = Gt �H �m(x)� Z t0 @Gt�s@x � (b(u(s; :))(x)ds (3.2)where Gt(x) = exp(�x2=2t)=p2�t denotes the heat kernel. The same equation holds for v.Writing the equation satis�ed by v � u and taking k@Gt@x kL1 =p2=�t into account, we get8t > 0; ku(t; :) � v(t; :)kL1 � Z t0 @Gt�s@x L1kb(u(s; :)) � b(v(s; :))kL1ds�r 2� sup[0;1] jb0jZ t0 ku(s; :) � v(s; :)kL1pt� s dsIterating this equation, we conclude by Gronwall's lemma that 8t > 0; ku(t; :) � v(t; :)kL1 = 0.Hence 8(t; x) 2 [0;+1)� R; H � Pt(x) = H �Qt(x).Let us now prove that (t; x) ! u(t; x) = H � Pt(x) is continuous on (0;+1) � R. As t ! Pt isweakly continuous, it is enough to show that 8t > 0, Pt does not weight points i.e. x! u(t; x) =H � Pt(x) is continuous. Let 0 < � < t,����Gt �H �m(x)� Z t0 @Gt�s@x �(b(u(s; :))(x)ds �Gt �H �m(y) + Z t0 @Gt�s@x � (b(u(s; :))(y)ds����� jGt �H �m(x)�Gt �H �m(y)j+ 2Z t� @Gt�s@x � (b(u(s; :))dsL1+ ���� Z �0 ZR�@Gt�s@x (x� z)� @Gt�s@x (y � z)�b(u(s; z))dzds����The �rst term of the right-hand-side converges to 0 as y ! x. The second term is arbitrarilysmall for � close to t. Last, for �xed �, by Lebesgue theorem, the third term converges to 0 wheny ! x. Hence the function x ! Gt � H � m(x) � R t0 @Gt�s@x � (b(u(s; :))(x)ds is continuous. Asx! u(t; x) is right-continuous, we deduce that equality (3.2) holds 8x 2 R and that x! u(t; x)is continuous.Let now P and Q solve the martingale problem (MP) starting at m. By an easy adaptation of theproof of Lemma 1.2, we get that H �Ps(x) and H �Qs(x) are weak solutions of (3.1) for he initialcondition H �m(x). Hence, by the �rst step of the proof, 8(t; x) 2 [0;+1) � R; H � Pt(x) =H �Qt(x). Therefore both P and Q solve the linear martingale problem with di�usion coe�cientequal to 1 and bounded drift coe�cient b0(H � Pt(x)). By Girsanov theorem, uniqueness holdsfor this problem and P = Q.Remark 3.2 For di�erent proofs of the propagation of chaos result to the unique solution of(MP ) for the di�using particles (X1;n; : : : ;Xn;n) see [5] which deals with the case b(u) = u2=2(viscous Burgers equation) and [8] in which b is supposed to be a C2 function.14
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