
Semilinear elliptic system arising in a threedimensionaltype-II superconductor for in�nite �.R. MonneauEcole Nationale des Ponts et Chauss�eesNovember 9, 1998AbstractWe study a semilinear elliptic system arising in a threedimensional superconductor 
. This modelis formally derived from the Ginzburg-Landau energy at � = +1 for a Meissner solution. If thetangential trace of the magnetic �eld H is given on @
, we prove the existence of a unique solutionfor a small data, and nonexistence for large data. On another hand we prove that the currentJ = curl H is such that J2 is maximum on the boundary @
.AMS Classi�cation: 35B20, 35B30, 35J55, 35Q40.Keywords: Nonlinear elliptic systems; Maximum principle; Ginzburg-Landau energy; Meissnersolution; Inverse function theorem.1 IntroductionLet 
 � R3 be an open set homeomorphic to a ball. We study the following model, whichdescribes the magnetic �eldH in a threedimensional type-II superconductor 
 for a Meissnersolution at � = +1. We search the solutions H such that curl H � n = 0 on @
 and�curl (F (jcurl Hj2)curl H)�H = 0 on 
 (1.1)HT = HextT on @
 (1.2)1



where h = (1� u2)u() u = F (h2)h (1.3)and F is uniquely de�ned for u2 < 13 or equivalently for h2 < 427 and F (0) = 1. Here HTdenotes the tangential trace of the magnetic �eld H: HT = H � (H � n)n, where n is theexterior unit normal to 
. Let us assume that @
 2 C2;�. Then we have:PROPOSITION 1.1 Let HextT 2 C2;�(@
).i) Then 9H1 2 C2;�(
) and H1T = HextT on @
.ii)If 9Hi 2 C2;�(
) and HiT = HextT on @
, for i = 1; 2, then curl H1 � n = curl H2 � n.Then we have theDEFINITION 1.2 If HextT 2 C2;�(@
), such that for some H1 2 C2;�(
), H1T = HextT , wehave curl H1 � n = 0 on @
, then we simply write that curl HextT � n = 0 on @
.Then we prove theTHEOREM 1.3 i)9� > 0; 8HextT 2 C2;�(@
) with curl HextT �n = 0 on @
, if jHextT jC2;�(@
) <�, then there exists a unique H 2 C2;�(
) solution of (1.1)-(1.2).ii) 9C = C(
) > 0, such that if H is solution of (1.1) and J = curl H, thenjHT jH� 12 (@
) � CjF (J2T )JT jH 12 (@
) (1.4)Moreover 8g 2 C2+�(@
); 9�0 > 0; 8� > �0 there is no solution to (1.1)-(1.2) for HT = �g.iii)Let the current J = curl H for some H 2 C2;�(
) solution of (1.1) with J2 < 427 on 
,then J2 is maximal on @
.iv) If JT is the tangential trace of the current J, then there is at most one magnetic �eld Hsolution of (1.1) (and then at most one current J = curl H) such that (curl H)T = JT on@
.Moreover JT cannot be chosen arbitrarily : 8� > 0; 9JT 2 C2;�(@
); jJT jC2;�(@
) < � suchthat there is no solution H (and J).REMARK 1.4 Let us remark that on @
, J � n = 0 and jJT j2 is smaller than the criticalvalue 427 . In particular for J = (1�Q2)Q, we have F (J2T )JT = QT , i.e. jQT j2 < 13 .2



2 Derivation of the modelThe superconductor material is represented by 
, and in R3n
 we would impose (in a real-istic case) an exterior magnetic �eld which is given at in�nity. In fact this exterior magnetic�eld will create an interior magnetic �eld inside the superconductor. And this interior mag-netic �eld will make a perturbation (essentially local in space) of the exterior magnetic �eld.This is the reason why we can only impose the exterior magnetic �eld at in�nity, in a realexperimentation.Let us recall that ifA is the interior magnetic potential vector, and 	 the complex wave func-tion which describes the superconducting state, then the Ginzburg-Landau energy (withoutexterior forces) isE�(A;  ) = Z
 j( 1�r� iA)	j2 + 12(j	j2 � 1)2 + jcurl Aj2 (2.1)In the case where there is no vortex (the Meissner solution), we have j	j > 0, and we cantake (see [3]) the new gauge 	 = fei�, Q = A� 1�r�, where f > 0 and � 2 R. Then forE�(f;Q) = Z
 jrf j2�2 + jcurl Qj2 + (f 2 � 1)22 + f 2Q2we obtain the Euler-Lagrange equations in 
:( 1�2�f = f(f 2 +Q2 � 1)�(curl )2Q = f 2Q (2.2)and the interior magnetic �eld is Hint = curl Q. At the exterior of the superconductormaterial we have the Maxwell equations for the exterior magnetic �eld Hext in R3n
:( div Hext = 0curl Hext = 0 (2.3)Moreover at the interface @
, we have the continuity of the magnetic �eld:Hint = Hext (2.4)and formally from the variation of the Ginzburg-Landau energy we �nd the boundary con-ditions: @nf�2 = 0 (2.5)3



Q � n = 0 (2.6)Moreover we impose in some sense the exterior magnetic �eld at in�nity:Hext = H0 (2.7)whereH0 is the (constant) magnetic �eld that we would have if there was no superconductingmaterial in the space.REMARK 2.1 Let us remark that the tangential trace of the interior magnetic �eld satis�esHintT = HextT and then is not arbitrar. From proposition 1.1, curl Hint � n only depends onHintT , but on the other hand curl Hext = 0, then curl Hint � n = 0. It can also be seenfrom (2.2), (2.6) and the fact that Hint = curl Q. In particular it means that the currentJ = curl H is tangential to @
.Previous modelsThe case H0 = H0e3 along the axis of the cylinder 
 = ! �R with ! � R2 was studied in[3] in the case � = +1, and in [4] for �nite �. See also [1], [2].A model in R3We study the case where 
 is a bounded open set such that R3n
 is connected, for � = +1.For in�nite �, the boundary condition (2.5) has no sense, and then we do not considerit. In this case the �rst equation of (2.2) gives f 2 = 1 � Q2, and the second �curl H =(1 � Q2)Q, where curl Q = H. Now we get with the function F de�ned in (1.3): Q =�F (jcurl Hj2)curl H, and if we take the curl , we get the new system:8>>>>>><>>>>>>: �curl (F (jcurl Hj2)curl H)�H = 0 in 
curl H = 0 in R3n
H continuous on @
div H = 0 in R3H = H0 at in�nity (2.8)The model that we consider in this paper.In fact we are only interested in the magnetic �eld in the superconductor, so we will considerthat the tangential trace of the exterior magnetic �eld is given on the surface of the supercon-ductor. Let us remark that such a model permits us to describe more general situations, for4



example the case of coexistence of many connected components of superconductor material,like grains. Then we consider the model:( �curl (F (jcurl Hj2)curl H)�H = 0 in 
HT = HextT on @
 (2.9)where HextT is chosen such that curl HextT � n = 0.How can we obtain a more simple model?Let us recall that the Ginzburg-Landau energy (2.1) is valuable for scale in space such that� = 1. Now if we reintroduce the wave lenght of London �, we get for 
 denoted by 
�:
1 = �
�, ~x 2 
1, x 2 
�, ~x = �x, ~H(~x) = H(x):( ��2curl (F (�2jcurl ~Hj2)curl ~H)� ~H = 0 in 
1~HT = ~HextT on @
1 (2.10)At the limit �! 0, we get formally ~H = 0 on 
1with some currents on @
 (see subsection 4.2).3 Proof of theorem 1.3.3.1 PreliminariesProof of proposition 1.1The i) is obvious. The fact that curl Hint � n only depends on HT comes fromZ@
 � curl H � n = Z
 curl H � r� = Z@
H ^r� � n (3.1)where we have used div curl = 0, curl r = 0. This proves the ii). Then proposition 1.1 isproved.Now we de�ne the primitive G(s) = R s f for s 2 [0; 427 � �] for some arbitrarily small� > 0, which is extended on R+ as a C1-convex function, which is a�ne on [ 427 ;+1[.In all what follows we consider the new system:�curl (G0(jcurl Hj2)curl H)�H = 0 on 
 (3.2)5



HT = HextT on @
 (3.3)IMPORTANT REMARKFrom now on we will prove results on the system (3.2)-(3.3), which will imply similar resultsfor the system (1.1)-(1.2).3.2 An approach by the inverse function theoremWe assume that @
 2 C2+�, let us de�ne the spaces:X2+�0T;div = fH 2 C2+�(
);HT = 0; div H = 0gXm+�div = fH 2 Cm+�(
); div H = 0g; m = 0; 1; 2We give us HextT 2 C2+�(@
), such that curl HextT � n = 0.LEMMA 3.1 If HextT 2 C2+�(@
), then there exists Hp 2 C2+�(
) such that div Hp = 0and HpT = HextT .Proof of lemma 3.1It is easy to construct a particular interior magnetic �eldHp 2 C2+�(
) such that div Hp = 0and HpT = HextT . To do this, take a �eld H1 2 C2+�(
), such that H1T = HextT . Then searchthe function � 2 C2+�(
) such that �� = div H1, � = 1 on @
, and take Hp = H1 �r� 2C1+�(
). Then 8><>: �Hp = �(curl )2H1 2 C�(
)HpT = HextT in C2+�(@
)div Hp = 0 in C1+�(@
)Then from the Schauder theory for elliptic system (see [9]) we get Hp 2 C2+�(
), whichproves the lemma 3.1.From lemma 3.1, there exists Hp 2 X2+�div such that curl Hp �n = 0, and HpT = HextT . LetX = Hp +X2+�0T;divand A : X �! X�divH 7�! A(H) = �curl (G0(jcurl Hj2)curl H)�HThen we have the 6



PROPOSITION 3.2 For all HextT 2 C2+�(@
), there exists a unique solution H 2 X2+�divsolution of (3.2)-(3.3).This proposition proves in particular the i) of theorem 1.3.Proof of proposition 3.2Let us calulate A(H) = G0(J2)(�(curl )2H)�r(G0(J2))^ curl H�H, where J = curl His the current. But �(curl )2H = �H�r(div H) and div H = 0, Ji = �ijkrjHk, and �ijkis the complelty antisymetric tensor such that �123 = 1. Then we get(A(H))i = Aijmn(J2)D2jmHn �Hiwith Aijmn(J2) = G0(J2)�jm�in � 2G00(J2)Jk�kijJl�lmnwhere we have used for the intermediate calculus: (r(G0(J2)) ^ J)i = �ijkrj(G0(J2))Jk,rj(G0(J2)) = 2G00Jl�jmnrjrmHm.Now we can consider DHA(H) : X2+�0T;div �! X�divh 7�! DHA(H) � hand (DHA(H) � h)i = Aijmn(J2)D2jmhn + 2dAilmnd(J2) (D2jmHn)Jr�rpqrphq � hi (3.4)It is easy to calculate det(Lin(x; �)) where � = (�1; �2; �3), and Lin(x; �) = �j�mAijmn(J2) =G0�2�in + 2G00(� ^ J)i(� ^ J)n. Thus, with J = J(x):det(Lin(x; �)) = G02(J2)�4(G0(J2)�2 + 2G00(J2)j� ^ Jj2) 6= 0 if � 6= 0Then DHA(H) is elliptic on X2+�0T;div, and we want to prove that it satis�es a Schauderestimate, which will be used later. To do this we �rst extend the operator DHA(H), in anelliptic operator L(H) which has the expression (3.4), and is de�ned from X2+�0T;0div = fH 2C2+�;HT = 0; (div H)j@
 = 0g into X� = fH 2 C�g. Now using the results in [9], it is easyto verify that the conditions HT = 0, (div H)j@
 = 0 are complementar conditions, which inparticular permit us to get the Schauder estimate:jhjX2+� � C(H)fjL(H) � hjX� + jhT jC2+�(@
) + jdiv hjC1+�(@
) + jhjL1(
)g (3.5)7



injectivityLet us �rst prove that KerDHA(H) = f0g. To do this we remark that for the energy E(H) =R
 G(jcurl Hj2)2 + H22 , we have E 0(H) � h = R
G0(J2)curl H � curl h+H � h = R
�A(H) � h,where we have used the general equality R
 curl A � B = R
 curl B � A + R@
(A ^ B) � n.Consequently E 00(H) � (h;h) = � Z
(DHA(H) � h) � h (3.6)But on another hand we calculate explicitlyE 00(H) � (h;h) = Z
G0(J2)jcurl hj2 + 2G00(J2)(curl H � curl h)2 + h2 (3.7)then h = 0 if DHA(H) � h = 0, which proves the injectivity of DHA(H).surjectivityOne way to prove the surjectivity of DHA(H), is to prove it for a weak version using the Lax-Milgram theorem. We introduce the following symetric bilinear form de�ned on Y 10T;div =fH 2 H1(
); HT = 0; div H = 0g:a(h;v) = E 00(H) � (h;v); 8h;v 2 Y 10T;divand we want to solve a(h;v) =< �f ;v >; 8v 2 Y 10T;divwhere f 2 (Y 10T;div)0.Let us recall here the classical result (see [7] page 247): For 
 at least of class C2, thereexists a constant C = C(
) > 0 such that8v 2 H1(
); jvjH1 � CfjvjL2 + jcurl vjL2 + jr � vjL2 + jvT jH 12 (@
)g (3.8)From (3.7) and (3.8) we see that there exists a constant C > 0 such that a(h;h) � CjhjH1(
),and then the Lax-Milgram theorem applies. In particular for all f 2 X�div � (Y 10T;div)0, wededuce from (3.6) thatZ
(curl ( ddH(G0(jcurl Hj2)curl H) � h) + h+ f) � v = 0Now we use the following lemma (see theorem 3.4 in [8]):LEMMA 3.3 If v 2 L2(
); div v = 0, then 9� 2 H1(
) such that v = curl �.8



We apply this lemma to h and f such that 9k; g 2 H1(
) such that h = curl k, f = curl g.Then using the general equality R
 v � curl B = R
 curl v �B+ R@
B � (v^n), and v^n = 0on @
 because v 2 Y 10T;div, we get Z
 curl v �A = 0where A = ddH(G0(jcurl Hj2)curl H)�h+k+g 2 L2(
). But from the proof of proposition 4page 260 in [7], we get curl Y 10T;div = curl fH 2 H1(
);HT = 0g, and the orthogonal of thisspace for the scalar product in L2(
) is the space fV 2 L2(
); curl V = 0g. Consequently,curl A = 0, which is the Euler-Lagrange equation : DHA(H) � h = f . Then the Schauderestimate (3.5) applies and proves that h 2 X2+�0T;div, which proves that DHA(H) is surjectif.Then DHA(H) is an isomorphism, and the inverse function theorem applies and proves theproposition 3.2.From the results of Morrey [9], we deduce that H 2 C1(
) and on fjcurl Hj2 < 427 � �g,H is analytic.3.3 Further resultsWe have thePROPOSITION 3.4 If H is solution of (3.2)-(3.3), then the current J = curl H is suchthat J2 is maximal on @
.It implies the iii) of theorem 1.3.Proof of proposition 3.4We have �curl (G0(jcurl Hj2)curl H) � H = 0 in 
 then taking the curl we get theequation satis�ed by the current J:�(curl )2(G0(J2)J)� J = 0 in 
 (3.9)But �(curl )2A = �A�r(r �A), it gives�(G0J)�r(G00J � r(J2))� J = 09



where we have used div J = 0. The calcul of the �rst term gives with the notation u = J2:�(G0J) = G0(u)�J+G00(u)(�u)J+ b1(J;rJ)ru. The second term gives ri(G00J �r(J2)) =G00(u)JjD2iju + (b2(J;rJ)ru)i = 0. Then multiplying by J and using the equality �J22 =J�J+ jrJj2, we get:G0(u)2 �u+G00(u)u Xj 6= JjJj D2jju+ b(J;rJ)ru� u = G0(u)jrJj2 � 0Then from the maximum principle we deduce that u can not be maximum inside 
, exceptin the trivial case where J � 0. This proves the proposition.Moreover, we havePROPOSITION 3.5 If JT is the tangential trace of J on @
, then there is at most onecurrent J = curl H and one magnetic �eld H solution of (3.2) such that (curl H)T = JT .REMARK 3.6 In fact we can prove this result by an inverse function theorem (as previ-ously) applied to the equation ( �(curl )2(G0(J2)J)� J = 0JT = JextT (3.10)We introduce the operator B(J) = �(curl )2(G0(J2)J)� J from Jp+X2+�0T;div into X�div whereJp 2 X2+�div et JpT = JextT , div Jp = 0. We can prove that B(J) = ri(G0(J2)riJ)� J and thatDJB(J) is inversible from X2+�0T;div ! X�div. Then there exists a unique solution J to (3.10).But JT is not arbitrar, because it must be chosen such that moreover the solution J of (3.10)veri�es J � n = 0 on @
.REMARK 3.7 The current J is so not arbitrar that when the London wave length � tendsto 0, we get formally (see remark 4.1) particular currents on the surface @
: these currentsare of free divergence on the surface @
.To build a current JT such that (3.10) has no solutions, i.e. J � n 6� 0, it is su�cient tobuild a magnetic �eld HT 2 C2+�(@
) such that curl HT � n 6� 0. Then the proposition3.2 gives a H 2 C2+�(
) solution of (3.2)-(3.3). Then J = curl H 2 C1+�(
) is solution10



of (3.10) with J � n 6= 0. To �nish we can mollify JT such that JT 2 C2+�(
) and we keepJ � n 6� 0.For example we can take HT = ez ^ n, and from (3.1) we get with �(x; y; z) = z:Z@
 � curl H � n = Z@
HT � (r^ n) = Z@
(ez ^ n)2 > 0then curl HT � n 6� 0.With the proposition 3.5, it proves the iv) of theorem 1.3.Proof of proposition 3.5An easy proof consists to write the di�erence of the equation (3.9) satis�ed by two currentsJ(1) and J(2) and to multiply it by v = G0((J(2))2)J(2) � G0((J(1))2)J(1) and to integrate bypart. The boundary term is nul because J(1)T = J(2)T , and we obtain:Z
 jcurl vj2 + (J(2) � J(1)) � v = 0and by strict convexity of the map J 7�! G(J2), there exists c = c(�) > 0, such that(J(2)�J(1)) �v � c(J(2)�J(1))2, which implies that J(2)�J(1) = 0, and proves the uniquenessof the current. Consequently the magnetic �eld is unique, because H = �curl (G0(J2)J).This ends the proof.We havePROPOSITION 3.8 There exists a constant C > 0, such that if H is a solution of (3.2),then jHT jH� 12 (@
) � CjG0(J2T )JT jH 12 (@
), with J = curl H.Proof of proposition 3.8Multiplying (3.9) by G0(J2)J, and integrating by part, we obtain:Z
H2 + J2G0(J2) = Z@
G0(J2)(J ^H) � n (3.11)Now, from the continuity of the trace map (see theorem 2 page 240 in [7]), we get:jHT j2H� 12 (@
) � C Z
H2 + jcurl Hj211



But curl H = J, then:jHT j2H� 12 (@
) � C R
H2 + J2� CjHT jH� 12 (@
)jG0(J2T )JT jH 12 (@
)where we have used equality (3.11), and the fact that there exists C0 > 0, such thatC0 � G0(J2) � 1C0 . Then we deduce the result.Proof of iv) of theorem 1.3Proposition 3.8 implies the inequality (1.4).From lemma 3.1, for a given g 2 C2+�(@
), 9Hp 2 C2+�(
) such that div Hp = 0, HpT = g.Now we can search to minimize minH2Y 10T;div E(H+Hp)where E(H) = R
H2 + jcurl Hj2 and Y 10T;div = fH 2 H1(
); div H = 0; HT = 0g.Now E is continuous, strictly convex and in�nite at in�nity on Y 10T;div, then there existsa unique minimizer H� 2 Y 10T;div. Moreover H� + Hp 6� 0 (because (H� + Hp)T 6� 0 andH� +Hp 2 H1(
)), then E(H� +Hp) > 0. Now for HT = �g for some � > 0, if there existsa solution H to (1.1)-(1.2), then0 < �2E(H� +Hp) � Z
H2 + J2G0(J2) = Z@
 F (J2T )(JT ^HT ) � n � �CjgjL1(@
)Then for � large enough there is no solution H to (1.1)-(1.2).4 The case of a torus: an heuristical approach.In this section we consider the particular case of a torus supercondutor 
. Let us note thecylindrical basis er = (cos �; sin�; 0), e� = (� sin�; cos�; 0) and ez = (0; 0; 1), and ! � R2a bounded smooth open set such that supx2! jxj < R, which will be the section of the torus.Then we de�ne
 = fM = (R + � cos �)er + � sin �ez; � 2 [0; 2�[; (� cos �; � sin �) 2 !g
12



4.1 A particular submodelIn particular we de�ne ( e� = cos �er + sin �eze� = � sin �er + cos �ezIf H = H�e� +H�e� +H�e�, thencurl H = 0B@ 1r@�H� � 1�@�H� + sin �r H�;1�@�H� � @�H� � 1�H�@�H� � 1r@�H� + cos �r H� 1CAin the direct basis (e�; e�; e�). In particular the metric is (dM)2 = (d�)2 + (�d�)2 + (rd�)2.We are �rstly interested in the solutions which take the form H = f(�; �)e�. If we note(x; z) = (� cos �; � sin �), then we �nd curl H = ( fR+x + @xf)ez � @zfe�. Then for E(H) =R
 G(jcurl Hj2)2 + H22 , we get:E(H) = 2� Z! dxdz(R + x)ff 22 + 12G((@zf)2 + ( fR + x + @xf)2)gIt is easy to verify that the condition curl H � n = 0 is satis�ed if we take the boundarycondition f = Constr = ConstR+x . In particular if we now introduce the new function g = (R+x)f ,and minimizing the energy on g we �nd:( div (G0(( rgR+x)2) rgR+x)� gR+x = 0 in !0 � g � gj@! = ConstIn particular, as R! +1, we �nd formally the model studied in [3].4.2 A model without vortices, but with a phase parameter.We recall that if H = Hrer +H�e� +Hzez, thencurl H = 0B@ 1r@�Hz � @zH�;@zHr � @rHz;1r@r(rH�)� 1r@�Hr 1CAin the direct basis (er; e�; ez). Let us recall that the Ginzburg-Landau energy is:E�(A;  ) = Z
 j( 1�r� iA) j2 + 12(j j2 � 1)2 + jcurl Aj2 (4.1)13



After a gauge transformation, we can assume that for some N 2 Z:(  = eiN�f; f > 0A = Q is realThen E�(A;  ) = E�(N; f;Q) = Z
 jrf j�2 + (N� e� �Q)2f 2 + 12(f 2 � 1)2 + jcurl Qj2In particular for � = +1, we obtain formally for some C 2 R:E1(C; f;Q) = Z
(Ce� �Q)2f 2 + 12(f 2 � 1)2 + jcurl Qj2and we obtain the Euler-Lagrange equations:( (Ce� �Q)2 + f 2 = 1(curl )2Q+ (Q� Ce�)f 2 = 0For H = curl Q, B = Q � Ce�, then as long as B2 < 13 , or equivalently jcurl Hj2 < 427 ,then we get ( �curl (F (jcurl Hj2)curl H)�H = �Cr ez in 
HT = HextT on @
Let us recall that the Ginzburg-Landau energy (4.1) is valuable for scale in space such that� = 1. Now if we reintroduce the wave lenght of London �, we get for 
 noted 
�: 
1 = �
�,~x 2 
1, x 2 
�, ~x = �x, ~H(~x) = H(x), C = C�:( ��2curl (F (�2jcurl ~Hj2)curl ~H)� ~H = ��C�~r ez in 
1~HT = ~HextT on @
1 (4.2)where ~r = q~x21 + ~x22. If we take C� = C1�at the limit �! 0, we get formally ~H = C1~r ez on 
1and near ~x� 2 @
1, the problem is close to (in other good coordinates)( �curl (F (jcurl Hj2)curl H)�H = V = const in �HT = H0e3 on @� 14



where � = fx1 > 0g with H0 = jHT (~x�)j and V is related to C1~r(~x�)ez. Now we can assumeby symetry that H = H(x1), then H1(x1) = �V1 = const, and for H = H�V, we get:( �curl (F (jcurl Hj2)curl H)�H = 0 in �HT = H0e3 �VT on @�and then H = �(x1)HT on � where �(x1) veri�es an ordinary di�erential equation. It ispossible to show that (see [6]), that �(x1)jHT j = p2 sinh(x+a)cosh2(x+a) for some a 2 R. In particularwe can see that jcurl Hj2 < 427 if and only if jHT j < q 518 . Consequently we deduce that as�! 0, the limit ~H veri�es: 8<: ~H = C1~r ez on 
1j ~HT � C1~r (ez)T j � q 518 (4.3)And outside 
1 we have the Maxwell equations( div ~H = 0 on 
c1curl ~H = 0 on 
c1 (4.4)and on @
1, ~HT is discontinuous (because � = 0), and[H � n]extint = 0 on @
1 (4.5)ConclusionThis system (4.3)-(4.5) should permit to calculate the largest admissible constant C1 whichcan be seen as the capacity of storage of magnetic 
ux in the superconducting annulus 
.REMARK 4.1 The current JT are so not arbitrar, that at the limit �! 0, we get a currentJ = JT on the surface @
 of the superconductor. Moreover these currents are formally withfree divergence on the surface @
: there is no sources nor wells.In fact for � = 1, we have div Jj@
 = a�(s)@s�J� + b�(s)J� + an(s)@nJn + bn(s)Jn, wheres = (s1; s2) parametrizes @
 and for � = 1; 2, a�; b�; an; bn are some coe�cients and J�; Jnare the components of J such that J = J�@s� +Jnn where n is the exterior normal to 
. For� > 0 we have Jn = 0 on @
, and at the limit formally the term @nJn disappears becausewe only have currents on the surface @
. It means that formally for � = 0, the currents arewith free divergence on the surface @
.
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5 Appendix: Direct study by a variational formulationWe introduce a variational formulation for the model (3.2)-(3.3). This approach has theadvantage to give us directly a weak solution, but the disadvantage that we have a very poorinformation on the solution.It is natural to introduce the following energyE(H) = Z
 G(jcurl Hj2)2 + H22which is de�ned on the spaceY = fH 2 H1(
); div H = 0;HT = HextT gwhere HextT 2 H 12 (@
) is the given boundary condition, such thatcurl HextT � n = 0 (5.1)Let us remark that from lemma 2.2 in [8], there exists a (not unique) particular vector �eldHp 2 H1(
), such that div Hp = 0 andHpT = HextT on @
. Then Y 6= ;, and Y = Hp+Y 10T;div,where Y 10T;div = fH 2 H1(
);HT = 0; div H = 0g. In particular (see the proof of proposition1.1) 8H 2 Y; curl H � n = 0 on @
. In particular we expect that the minimizer veri�es:( �curl (G0(jcurl Hj2)curl H)�H = 0 on 
HT = HextT on @
 (5.2)Then we have theTHEOREM 5.1 There exists a unique minimmizer H of E on Y . Moreover H is solutionof (5.2).Proof of theorem 5.1The existence and uniqueness of the solution comes from the fact that E is continuous, stri-clty convex and in�nite at in�nity on the space Y , because of the inequality (3.8). On thecontrary the Euler-Lagrange equation (5.2) is not immediate. But with the same argumentas in the proof of proposition 3.2, we can justify this Euler-Lagrange equation. This ends16



the proof of the theorem 5.1.Let us remark that if curl H is continuous on 
, then the results of Morrey (see[9]) permit us to deduce that the magnetic �eld H is C1 in 
, and even analytic wherejcurl Hj2 < 427 � �. Nevertheless this variational formulation seems not so easy to use to de-duce some qualitative properties of the solutions, because we have not found in the literature(except possibly some adapted Nirenberg translations (see [5])) some results which permitus directly to deduce that curl H is continuous, and then that H is a classical solution ifHextT is smooth enough. That is why we have used the inverse function theorem in section 3.2.References[1] A. Aftalion, On the Minimizers of the Ginzburg-Landau Energy for High Kappa: theOne-dimensional Case, preprint.[2] A. Aftalion, On the Minimizers of the Ginzburg-Landau Energy for High Kappa: theAxially Symetric Case, preprint.[3] H. Berestycki, A. Bonnet and J. Chapman, semilinear elliptic equation arising in atype-II superconductor for in�nite �.[4] A. Bonnet, J. Chapman and R. Monneau, Convergence of the Meissner minimizers ofthe Ginzburg-Landau energy as �! +1.[5] H. Brezis, Analyse fonctionnelle.[6] S.J. Chapman, Superheating Field of type-II superconductors, SIAM J. Appl. Math., toappear (1994).[7] R. Dautray and J.-L. Lions, Analyse math�ematique et calcul num�erique pour les scienceset les techniques, Tome 2.[8] V. Girault and P.-A. Raviard, Finite Element Methods for Navier-Stokes Equations,(1986), Springer-Verlag. 17



[9] Morrey, Multiple Integrals in the Calculus of Variations, Spronger-Verlag, 1966.
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