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Abstract
We study a semilinear elliptic system arising in a threedimensional superconductor 2. This model
is formally derived from the Ginzburg-Landau energy at k = +o0o for a Meissner solution. If the
tangential trace of the magnetic field H is given on 9€), we prove the existence of a unique solution
for a small data, and nonexistence for large data. On another hand we prove that the current

J = curl H is such that J? is maximum on the boundary 0.
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1 Introduction

Let © C R? be an open set homeomorphic to a ball. We study the following model, which
describes the magnetic field H in a threedimensional type-II superconductor €2 for a Meissner

solution at Kk = +00. We search the solutions H such that curl H-n = 0 on 92 and
—curl (F(|curl H*)curl H) — H =0 on (1.1)

Hy = HS" on 09 (1.2)



where

h=(1-vu*)u<<= u=F(h*)h (1.3)

and F is uniquely defined for u? < % or equivalently for A < & and F(0) = 1. Here Hy
denotes the tangential trace of the magnetic field H: Hy = H — (H - n)n, where n is the

exterior unit normal to 2. Let us assume that 09 € C%®. Then we have:

PROPOSITION 1.1 Let HS™ € C29(9K).
i) Then FH' € C**(Q) and HL = H on 09.
i)If FH? € C?%(Q) and HE: = HE on 09, for i = 1,2, then curl H' - n = curl H? - n.

Then we have the

DEFINITION 1.2 If H$*' € C%%(09), such that for some H' € C?%(Q), HL: = HS*, we

have curl H' - n = 0 on 99, then we simply write that curl H*' - n = 0 on 09.
Then we prove the

THEOREM 1.3 i)3¢ > 0, VHE! € C%2(0Q) with curl H%n = 0 on 09, if |HE| 2.0 (00) <
€, then there exists a unique H € C**(Q) solution of (1.1)-(1.2).
ii) 3C = C(Q2) > 0, such that if H is solution of (1.1) and J = curl H, then

Bl oy < CIF(33) (1.4)

o0 Il (99)

Moreover Vg € C*T*(9Q), I > 0,V > pg there is no solution to (1.1)-(1.2) for Hy = ug.
iti)Let the current J = curl H for some H € C**(Q) solution of (1.1) with J* < 5 on €,
then J? is mazimal on OS).

i) If Jr is the tangential trace of the current J, then there is at most one magnetic field H
solution of (1.1) (and then at most one current J = curl H) such that (curl H)r = J7 on
9.

Moreover Jp cannot be chosen arbitrarily : Ye > 0, 3Ip € C**(0Q), |Ir|czaq) < € such
that there is no solution H (and J).

REMARK 1.4 Let us remark that on 0Q, J-n =0 and |J7|* is smaller than the critical
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value o=. In particular for J = (1 — Q*)Q, we have F(33)Jr = Qr, i.e. |Qr|* < 3.



2 Derivation of the model

The superconductor material is represented by €2, and in Rg\Q we would impose (in a real-
istic case) an exterior magnetic field which is given at infinity. In fact this exterior magnetic
field will create an interior magnetic field inside the superconductor. And this interior mag-
netic field will make a perturbation (essentially local in space) of the exterior magnetic field.
This is the reason why we can only impose the exterior magnetic field at infinity, in a real
experimentation.

Let us recall that if A is the interior magnetic potential vector, and ¥ the complex wave func-
tion which describes the superconducting state, then the Ginzburg-Landau energy (without

exterior forces) is
1 1
En(A,0) = /Q (V= iA) B[ + S ([ — 1)* + [cur] AP (2.1)

In the case where there is no vortex (the Meissner solution), we have |¥| > 0, and we can

take (see [3]) the new gauge ¥ = fe™X, Q = A — Vy, where f > 0 and x € R. Then for

(f*-1)

V 2
| 5 + f2Q2

f1? 2
5+ |curl Q| +
K

E1.Q) = [
-
we obtain the Euler-Lagrange equations in 2:

LAf=f(f2+Q -1

and the interior magnetic field is H™ = curl Q. At the exterior of the superconductor

material we have the Maxwell equations for the exterior magnetic field H*** in R*\Q:

div H®®! = 0
{ curl H*' =0 (2:3)
Moreover at the interface 0€2, we have the continuity of the magnetic field:
Hint — Hea:t (2‘4)

and formally from the variation of the Ginzburg-Landau energy we find the boundary con-
ditions:
— =0 (2.5)



Q-n=0 (2.6)

Moreover we impose in some sense the exterior magnetic field at infinity:
He:vt - HO (27)

where Hy is the (constant) magnetic field that we would have if there was no superconducting

material in the space.

REMARK 2.1 Let us remark that the tangential trace of the interior magnetic field satisfies
H = HE and then is not arbitrar. From proposition 1.1, curl H™ - n only depends on
H but on the other hand curl H®*' = 0, then curl H™ - n = 0. It can also be seen
from (2.2), (2.6) and the fact that H™ = curl Q. In particular it means that the current
J = curl H is tangential to 0S2.

Previous models
The case Hy = Hyez along the axis of the cylinder 2 = w x R with w C R? was studied in
[3] in the case k = +00, and in [4] for finite k. See also [1], [2].
A model in R?
We study the case where € is a bounded open set such that R*\( is connected, for k = 4o0.
For infinite x, the boundary condition (2.5) has no sense, and then we do not consider
it. In this case the first equation of (2.2) gives f2 = 1 — Q?, and the second —curl H =
(1 - Q*Q, where curl Q = H. Now we get with the function F' defined in (1.3): Q =
—F(|curl H|?)curl H, and if we take the curl , we get the new system:
—curl (F(Jcurl H*)curl H) — H =0 in Q
curl H=0in R*\Q
H continuous on 0f2 (2.8)
divH=0in R?
H = H, at infinity
The model that we consider in this paper.
In fact we are only interested in the magnetic field in the superconductor, so we will consider
that the tangential trace of the exterior magnetic field is given on the surface of the supercon-

ductor. Let us remark that such a model permits us to describe more general situations, for



example the case of coexistence of many connected components of superconductor material,
like grains. Then we consider the model:

{ —curl (F(Jcurl H)?)curl H) — H =0 in Q

HT == H%It on 0f) (29)

where H§ is chosen such that curl H§ - n = 0.

How can we obtain a more simple model?
Let us recall that the Ginzburg-Landau energy (2.1) is valuable for scale in space such that
A = 1. Now if we reintroduce the wave lenght of London A, we get for {2 denoted by €2,:
QL =M, Z€Q, x €0, 7=\r, HZ) = H(x):

—\2curl (F(A\?|curl H|?)curl H) — H =0 in O, (2.10)
HT == H%xt on 891 ’
At the limit A — 0, we get formally
H=0o0n
with some currents on 02 (see subsection 4.2).
3 Proof of theorem 1.3.
3.1 Preliminaries
Proof of proposition 1.1
The i) is obvious. The fact that curl H™ - n only depends on Hy comes from
¢cur1H-n:/curlH-V¢:/ HAVé-n (3.1)
B Q B

where we have used div curl = 0, curl V = 0. This proves the ii). Then proposition 1.1 is

proved.

Now we define the primitive G(s) = [* f for s € [0,5 — ¢] for some arbitrarily small

6 > 0, which is extended on R* as a C*°-convex function, which is affine on [, +o0|.

In all what follows we consider the new system:
—curl (G'(|curl H*)curl H) — H =0 on (3.2)
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H; = H on 09 (3.3)

IMPORTANT REMARK
From now on we will prove results on the system (3.2)-(3.3), which will imply similar results

for the system (1.1)-(1.2).

3.2 An approach by the inverse function theorem

We assume that 92 € C?*, let us define the spaces:
X4, = {H e C***(Q), Hy = 0,div H = 0}
Xyt ={H e C"™**(Q),div H=0}, m =0,1,2

We give us HS* € C?7*(9Q), such that curl H5*" - n = 0.

LEMMA 3.1 If HS*t € C?**(99Q), then there exists HP € C***(Q) such that div HP = 0
and HY. = HE™,

Proof of lemma 3.1

It is easy to construct a particular interior magnetic field H? € C?7*(Q) such that div H? = 0
and HY. = HS*. To do this, take a field H* € C?t%(Q), such that HL. = HS*'. Then search
the function ¢ € C**%(Q) such that A¢ = div H, ¢ = 1 on 92, and take H? = H* — V¢ €
C'**(Q2). Then

HY = He in O+ (99)

div H? = 0 in C**(9Q)
Then from the Schauder theory for elliptic system (see [9]) we get H? € C*"*(Q), which

{ AH? = —(curl )?H! € C*(Q)

proves the lemma 3.1.

From lemma 3.1, there exists H? € X7 such that curl H? -n = 0, and H}. = HE®. Let
X =H’ + Xg/9,

and
A: X — Xg,
H — A(H)= —curl (G'(Jcurl H?)curl H) - H

Then we have the



PROPOSITION 3.2 For all H¥#' € C**(09)), there exists a unique solution H € X3
solution of (3.2)-(3.3).

This proposition proves in particular the i) of theorem 1.3.

Proof of proposition 3.2
Let us calulate A(H) = G'(J?)(—(curl )?H) — V(G'(J?)) A curl H— H, where J = curl H
is the current. But —(curl )?H = AH — V(div H) and div H =0, J; = €4V ;Hy, and €

is the complelty antisymetric tensor such that ;53 = 1. Then we get
(A(H)); = Aijmn(3*) D}, H, — H;

with
Aijmn(JQ) = G,(J2)5]m5m — QGII(JQ)Jk€kile€lmn

where we have used for the intermediate calculus: (V(G'(J?)) A J); = €V, (G'(I%)) Ty,
Vi (G'(J?)) = 2G"J 1€V jV i Hyp,.
Now we can consider

DHA(H) X(?Z—L—,?léw — X%v

and
dAilmn

d(J?)
It is easy to calculate det(L;,(x, \)) where A = (A1, Ao, A3), and Ly, (2, A) = AjAm Ajjmn(J?) =
G'N20i, + 2G" (AN J)i(AAJ),,. Thus, with J = J(z):

det(Lin(2,\)) = G*(I)N(G (TN +2G" (I AN AT[2) £ 03 A £ 0

Then Dy A(H) is elliptic on X%, and we want to prove that it satisfies a Schauder
estimate, which will be used later. To do this we first extend the operator Dy A(H), in an
elliptic operator £(H) which has the expression (3.4), and is defined from Xg;¢,, = {H €
C*te Hy = 0, (div H)jpo = 0} into X* = {H € C*}. Now using the results in [9], it is easy
to verify that the conditions Hy = 0, (div H)|spo = 0 are complementar conditions, which in

particular permit us to get the Schauder estimate:
lh|x2+e < CH){|L(H) - h|xe + [hp|e2ta@o) + [div h|cita@o) + [hLio)} (3.5)
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injectivity

Let us first prove that Ker Dg A(H) = {0}. To do this we remark that for the energy £(H) =
Ja G(‘C+1HP) + HTQ, we have &'(H)-h = [,G'(J*)curl H-curl h+ H-h = [, —A(H) - h,
where we have used the general equality [,curl A-B = [jcurl B- A + [,(A AB) - n.

Consequently
£"(H) - (h,h) = — /Q (D A(H) -h) - h (3.6)

But on another hand we calculate explicitly
E"(H) - (h,h) = / G'(J%)|curl h|? +2G"(J*)(curl H - curl h)® + h? (3.7)
Q

then h = 0 if Dy A(H) - h = 0, which proves the injectivity of Dg. A(H).
surjectivity
One way to prove the surjectivity of Dg. A(H), is to prove it for a weak version using the Lax-

Milgram theorem. We introduce the following symetric bilinear form defined on Yy 4, =
{He H'Y(Q), Hr =0, div H=0}:

a(h,v) =E&"(H) - (h,v), Vh,v € Yy 4,
and we want to solve
a(h,v) =< —f,V >, Vv € YVOIT,dz'v

where f € (Y7 4i,)"-
Let us recall here the classical result (see [7] page 247): For Q at least of class C?, there
exists a constant C'= C(Q2) > 0 such that

Yo € HYHQ), |v]sn < C{|v|pe + |curl v|: + |V - 0] + |UT|7-L%(69)} (3.8)

From (3.7) and (3.8) we see that there exists a constant C' > 0 such that a(h, h) > Clhly1 (),
and then the Lax-Milgram theorem applies. In particular for all f € Xg, C (Yyr4,), we
deduce from (3.6) that
d
/(curl (E(G'ﬂcurl H|*)curl H)-h) + h+f).-v=0
0

Now we use the following lemma (see theorem 3.4 in [8]):
LEMMA 3.3 Ifv € L*(Q), divv =0, then 3¢ € H' () such that v = curl ¢.
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We apply this lemma to h and f such that dk, g € H!(2) such that h = curl k, f = curl g.
Then using the general equality [ov-curl B = [,curl v-B+ [, B-(vAn), and vAn =0

on 09 because v € Yy 4., We get
/ curl v-A =0
Q

where A = -4 (G'(|curl H|?)curl H)-h+k+g € L*(Q2). But from the proof of proposition 4
page 260 in [7], we get curl Y. 4, = curl {H € H'(Q), Hy = 0}, and the orthogonal of this
space for the scalar product in L?*(2) is the space {V € L*(Q2),curl V = 0}. Consequently,
curl A = 0, which is the Euler-Lagrange equation : DgA(H) - h = f. Then the Schauder
estimate (3.5) applies and proves that h € X§/%;,, which proves that Dy A(H) is surjectif.

Then Dy A(H) is an isomorphism, and the inverse function theorem applies and proves the

proposition 3.2.

From the results of Morrey [9], we deduce that H € C*°(Q) and on {|curl H?> < o+ —§},
H is analytic.

3.3 Further results

We have the

PROPOSITION 3.4 If H is solution of (5.2)-(3.3), then the current J = curl H is such

that J? is mazximal on OS).

It implies the iii) of theorem 1.3.

Proof of proposition 3.4
We have —curl (G'(Jcurl H?)curl H) — H = 0 in Q then taking the curl we get the

equation satisfied by the current J:

—(curl )*(G"(J*)J) —J =0in Q (3.9)
But —(curl )2A = AA —V(V - A), it gives

A(G'Y) = V(G"T-V(I?) =T =0
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where we have used div J = 0. The calcul of the first term gives with the notation u = J*:
A(G'T) = G'(u) AT+ G" (u)(Au)T + b, (I, VI)Vu. The second term gives V;(G"J-V(J?)) =
G"(u)J;Dfu + (bo(J, VI)Vu); = 0. Then multiplying by J and using the equality A% =
JATJ + |VJI?, we get:

G’( )

Au+G"(w)u Yy Diu+b(J,VI)Vu—u=G'(w)|VI >0
]3‘&‘_]‘
Then from the maximum principle we deduce that u can not be maximum inside €2, except

in the trivial case where J = 0. This proves the proposition.

Moreover, we have

PROPOSITION 3.5 If Jp is the tangential trace of J on OS2, then there is at most one
current J = curl H and one magnetic field H solution of (3.2) such that (curl H)r = Jr.

REMARK 3.6 In fact we can prove this result by an inverse function theorem (as previ-
ously) applied to the equation

{ —(curl )3(G'(I*)I) - T =0 (3.10)

JT == J%It
We introduce the operator B(J) = —(curl )*(G'(3*)J) — J from J? + X315, into X, where
JP e X3t et Jb = J5*t, div JP = 0. We can prove that B(J) = V;(G"(J*)V,;J) —J and that
D3B(J) is inversible from X5, — X&,. Then there exists a unique solution J to (3.10).

But Jp is not arbitrar, because it must be chosen such that moreover the solution J of (3.10)

verifies J - n =0 on 0S).

REMARK 3.7 The current J is so not arbitrar that when the London wave length )\ tends
to 0, we get formally (see remark 4.1) particular currents on the surface 0S): these currents

are of free divergence on the surface 0.

To build a current Jz such that (3.10) has no solutions, i.e. J-n # 0, it is sufficient to
build a magnetic field Hy € C?T*(99Q) such that curl Hy - n # 0. Then the proposition
3.2 gives a H € C**(Q) solution of (3.2)-(3.3). Then J = curl H € C'**(Q) is solution
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of (3.10) with J - n # 0. To finish we can mollify J; such that J; € C***(Q) and we keep
J-n#0.
For example we can take Hy = e, A n, and from (3.1) we get with ¢(z,y, z) = z:

¢curlH-n:/ HT-(V/\n):/ (e, An)? >0
o0 P

0N Q

then curl Hy - n # 0.
With the proposition 3.5, it proves the iv) of theorem 1.3.

Proof of proposition 3.5
An easy proof consists to write the difference of the equation (3.9) satisfied by two currents

JM and J? and to multiply it by v = G'((J*)?)J? — G'((IM)2)JM) and to integrate by

part. The boundary term is nul because Jg) = Jgg), and we obtain:

/ lcurl v|* + (J@ —JW).v =0
Q

and by strict convexity of the map J —— G(J?), there exists ¢ = ¢(§) > 0, such that
(IO —JW).v > ¢(J® —JW)2 which implies that J@ —J1) = 0, and proves the uniqueness
of the current. Consequently the magnetic field is unique, because H = —curl (G'(J?)J).
This ends the proof.

We have

PROPOSITION 3.8 There ezists a constant C' > 0, such that if H is a solution of (3.2),

then |HT|H*%(39) < C|G'(J2T)JT|H%(3Q)’ with J = curl H.

Proof of proposition 3.8
Multiplying (3.9) by G'(J?)J, and integrating by part, we obtain:

/ H? + J2G'(J?) :/ G'(I2) (I AH) -0 (3.11)
Q 20
Now, from the continuity of the trace map (see theorem 2 page 240 in [7]), we get:

H 2 . < C/ H? + |curl H|?
H2(00) Q
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But curl H = J, then:

2 < 2 2
Hil oy, € ClH 4+ 2
/
S C|HT|%*%(SQ)|G (JT)JT|7{%(6Q)

where we have used equality (3.11), and the fact that there exists Cy > 0, such that
Co <G'(J*) < Cio Then we deduce the result.

Proof of iv) of theorem 1.3
Proposition 3.8 implies the inequality (1.4).
From lemma 3.1, for a given g € C?*%(982), IH? € C***(Q) such that div H? = 0, H} = g.
Now we can search to minimize

min E(H + HP)

1
HEYr 4iv

where E(H) = [, H? + |curl H|* and Y4, = {H € #'(Q), divH = 0, Hy = 0}.
Now E is continuous, strictly convex and infinite at infinity on Y 4,, then there exists
a unique minimizer H* € Y{j 4;,. Moreover H* + H? # 0 (because (H* + H?); # 0 and
H* + H? € #'(Q2)), then E(H* + H?) > 0. Now for Hy = ug for some p > 0, if there exists
a solution H to (1.1)-(1.2), then

0<p*B(H+H’) < / H’ + J*G'(J?) = / FJI3)(JIr AHy) -1 < pClglron)
0 o0

Then for p large enough there is no solution H to (1.1)-(1.2).

4 The case of a torus: an heuristical approach.

In this section we consider the particular case of a torus supercondutor €. Let us note the
cylindrical basis e, = (cos ¢,sin ¢,0), e5 = (— sin ¢, cos ¢,0) and e, = (0,0,1), and w C R?
a bounded smooth open set such that sup, 5 |z| < R, which will be the section of the torus.

Then we define

Q={M = (R+ pcosb)e, + psinbe,, ¢ € [0,27[, (pcosb, psinf) € w}
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4.1 A particular submodel
In particular we define

e, = cos fe, + sinfe,
eg = — sin fe, + cos e,

If H=H_,e, + Hyey, + Hyey, then

t0,Hy — 1 0pH, + "2 H,,
curl H = —89H - 0,Hy — —Hg
0 H¢ 10,H, + COS"H

in the direct basis (e,, 4, €p). In particular the metric is (dM)? = (dp)® + (pdf)* + (rde)>.
We are firstly interested in the solutions which take the form H = f(p,0)e,. If we note
(x,z) = (pcosb, psinh), then we find curl H = (RLHC + 0, f)e, — 0. fe,. Then for E(H) =

Jo 7(;(‘(:1112.1 HE) H72, we get:

EH) = 27r/wd:cdz(R+a:){; + %G((azf)2 (% +0.f)*)}

It is easy to verify that the condition curl H - n = 0 is satisfied if we take the boundary

Const __ Const

= > In particular if we now introduce the new function g = (R+z)f,

condition f =

and minimizing the energy on g we find:

R+x R+x

div (G'((7L)) L) — 7= =0inw
0 < g < gja = Const

In particular, as R — +o0, we find formally the model studied in [3].

4.2 A model without vortices, but with a phase parameter.

We recall that if H = H,e, + Hye, + He,, then

Lo,H, — 9.H,,
curl H = 0,H, — 0,H,,
%& (’I“H¢) — %8¢Hr

in the direct basis (e,, €4, €,). Let us recall that the Ginzburg-Landau energy is:

E(A0) = [1CF — A + S(10F — 1) + |curl AP (4.1)
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After a gauge transformation, we can assume that for some N € Z:

{d):em‘z’f, f>0

A = Q is real
Then
\Y N
Ex(A, ) = E(N, [,Q) = /Q | K2f| + (;% —Q)*f*+ %(f2 —1)? + |curl QJ?

In particular for kK = 400, we obtain formally for some C' € R:

1
(0, f,Q) = /Q(C% - Q)?f + 5(f2 —1)2 + |curl QJ?
and we obtain the Euler-Lagrange equations:

(Cesg — Q)+ f2=1
(curl )2Q+ (Q — Cey)f2=0

4

For H = curl Q, B = Q — Ce,, then as long as B? < £, or equivalently |curl H? < ,

3 Y
then we get
—curl (F(Jcurl H[*)curl H) —H = —%e, in Q
Hr = H on 00
Let us recall that the Ginzburg-Landau energy (4.1) is valuable for scale in space such that
A = 1. Now if we reintroduce the wave lenght of London A, we get for 2 noted §2: 21 = A,
FeW, zeQy, =M, H@Z) = H(z), C = C):

= —&Aez in Ql
7

—_)\2 2 12 -
{ -Mcurl (F()’|curl Hf?)curl H) (4.2)

HT = H%wt on 891

where 7 = /27 + 73. If we take

at the limit A — 0, we get formally

and near z* € 02y, the problem is close to (in other good coordinates)

—curl (F(|curl H|?)curl H) — H =V = const in II
HT = H0€3 on OI1
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where II = {x; > 0} with Hy = |Hy(2*)| and V is related to F(%l*)ez. Now we can assume

by symetry that H = H(z,), then H;(z,) = =V} = const, and for H=H — V, we get:

—curl (F(Jcurl H?)curl H) - H =0 in II
HT = H0€3 - VT on OI1I

and then H = ¢(x1)Hy on II where ¢(z;) verifies an ordinary differential equation. It is

possible to show that (see [6]), that ¢(z,)|Hr| = 2% for some a € R. In particular

we can see that |curl H|? < 5- if and only if [Hy| < /5. Consequently we deduce that as
A — 0, the limit H verifies:

H= %ez on £y (4.3)
[y - Se)rl <3/ |
And outside €2; we have the Maxwell equations
div H = 0 on
~ 4.4
{curlH:OonQ‘{ (44)
and on 09, Hy is discontinuous (because A = 0), and
[H - n]¢* =0 on 0 (4.5)

Conclusion
This system (4.3)-(4.5) should permit to calculate the largest admissible constant C; which

can be seen as the capacity of storage of magnetic flux in the superconducting annulus (2.

REMARK 4.1 The current Jp are so not arbitrar, that at the limit A\ — 0, we get a current
J =Jp on the surface OS2 of the superconductor. Moreover these currents are formally with
free divergence on the surface 0S): there is no sources nor wells.

In fact for X = 1, we have div Jjpq = ap(s)0s,J5 + bs(s)Js + an(5)0nJn + by(s)Jn, where
s = (s1, 52) parametrizes 02 and for f = 1,2, ag, bg, a,, b, are some coefficients and Jg, J,
are the components of J such that J = Jz0s, + Jun where n is the exterior normal to Q. For
A > 0 we have J, = 0 on 022, and at the limit formally the term 0,.J, disappears because
we only have currents on the surface 0S). It means that formally for A = 0, the currents are

with free divergence on the surface 0S2.
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5 Appendix: Direct study by a variational formulation

We introduce a variational formulation for the model (3.2)-(3.3). This approach has the
advantage to give us directly a weak solution, but the disadvantage that we have a very poor

information on the solution.

It is natural to introduce the following energy

G(|curl H|? H?
piap < [ Clowl ) | 2

which is defined on the space
Y ={Hec#H (Q),div H=0,H; = H
where HE* € 72 (9Q) is the given boundary condition, such that
curl HY - n =0 (5.1)

Let us remark that from lemma 2.2 in [8], there exists a (not unique) particular vector field
H? € H'(Q), such that div H? = 0 and H}, = H¥" on 9Q. Then Y # (), and Y = HP + Y5 45,
where Yii 5, = {H € H'(Q),Hy = 0,div H = 0}. In particular (see the proof of proposition
1.1) VH € Y,curl H-n =0 on J9Q. In particular we expect that the minimizer verifies:

{ —curl (G'(Jecurl H?)curl H) — H =0 on

H; = Het on 09 (5.2)

Then we have the

THEOREM 5.1 There exists a unique minimmizer H of £ on'Y. Moreover H is solution
of (5.2).

Proof of theorem 5.1

The existence and uniqueness of the solution comes from the fact that £ is continuous, stri-
clty convex and infinite at infinity on the space Y, because of the inequality (3.8). On the
contrary the Euler-Lagrange equation (5.2) is not immediate. But with the same argument

as in the proof of proposition 3.2, we can justify this Euler-Lagrange equation. This ends
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the proof of the theorem 5.1.

Let us remark that if curl H is continuous on (2, then the results of Morrey (see
[9]) permit us to deduce that the magnetic field H is C* in 2, and even analytic where
|curl H|? < % — 0. Nevertheless this variational formulation seems not so easy to use to de-
duce some qualitative properties of the solutions, because we have not found in the literature
(except possibly some adapted Nirenberg translations (see [5])) some results which permit
us directly to deduce that curl H is continuous, and then that H is a classical solution if

H<*" is smooth enough. That is why we have used the inverse function theorem in section 3.2.
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