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Abstract

We study the mushy region arising between two fluids in a porous medium. We
prove that the interior of the mushy region is an epigraph in the horizontal direction.
Moreover when the interior of the mushy region is empty, we give a necessary and
sufficient condition to claim that the Lebesgue measure of the mushy region is zero.
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1 Introduction

1.1 The physical problem

We study here the interface between two fluids for a steady flow in a porous medium.

One fluid

Let us recall that the steady flow of one fluid in a porous medium, is characterized by its
own pressure p > 0 (p = 0 outside the fluid), and its velocity which is brought about by the

Darcy law:
v=—kVo



Here k is a permeability coefficient which depends on the porous medium and is assumed
constant. The potential ¢ is given by ¢ = p + pgy (p is the volumic mass of the fluid, ¢ the
gravity, y the vertical axis upward oriented); if the soil is given by {y < 0}, then ¢ measures
the difference of p to the hydrostatic pressure py = —pgy. The coordinate x will denote the
horizontal axis, and we will work in two dimensions X = (z,y) € R?. Moreover we assume
that the fluid is incompressible:

dive=0

The research of the free surface of this monofluid can be then reduced (see [2]) to the equation

Ap =20, (x(p > 0)) (L1)

where x(p) = { (1) gg z 8 , A = pg. We should add some boundary conditions.

Two fluids

If now we study in a porous medium two unmiscible fluids of density p; and py, we can give
a formulation of the problem using the stream function 1) € R in place of the potential ¢,
and defined by curl vy = V¢, where curl ¢ = _af*z/)w ) Now a stream line is given by
{1 = const}. In particular the interface I' between these two fluids is a stream line and (up

to an additive constant) we can normalize ¢ such that I' = {1) = 0}. Then the problem can

be reduced (see [5]) to the equation:

Atp = =20, (x(v > 0)) (1.2)

1ify >0
w@mxwoz{oﬁz<0,mmAzuh—mM>o

REMARK 1.1 In particular for a uniform flow v = vye, with vy € R and for a horizontal
interface I' = {y = 0}, we get (x,y) = Ly. We see that the identification of the regions
{p > 0} and {¢ < 0} to each one of these fluids depends on the sign of vo.

REMARK 1.2 If ¢;;0 = 1,2 is the restriction of ¢ on the domain of density p;, we have

on the free boundary (and whatever are the relative position of the fluids 1 and 2):

" o +g(ps — p1) < n,e, >=0 for n =ny_y (1.3)



It is equivalent to take n = —ny_y1. When py > p1, then the fluid 1 is above the fluid 2 in
a physical situation. But equations (1.2) and (1.3) continue to have an interpretation when
the fluid 2 is above the fluid 1, although it does not correspond to a stable physical situation.
In particular if ¢ is a solution of (1.2) with A = (pa — p1)g > 0, and if 1 > 0 on one side of
the free boundary I', and v < 0 on the other side, it can be asked where are the fluid 1 and
the fluid 22 The answer is that we do not know. If one region, say {1 > 0} is always above
the other region {1 < 0}, then it would seem natural to say that the lighter fluid (the fluid
1) is in the region {¢ > 0}, and in this case the solution of the model (1.2) would describe
a physical situation.

But what can be said from a mathematical point of view? Mathematically in one case if we
take Py as the restriction of 1 on the region {1 > 0} and 1y the restriction of b on the region
{p < 0}, from (1.2) we can deduce the equality (1.8) on the free boundary I' = {¢ = 0}.
In another case it is easy to check that the other function ¢ = —1 is also solution of (1.2),
then if we take ¢y as the restriction of ¢ on the region {¢ > 0} and ¢ the restriction of ¢
on the region {¢ < 0}, we deduce the equality (1.3) on the free boundary I' = {¢ = 0} with
@i in place of ;. Therefore it can be mathematically seen that we can chose the fluid 1 in
{p > 0} orin {¢ < 0}, i.e. the mathematical model (1.2) does not show in which region the
lighter fluid is.

REMARK 1.3 In particular if (1,7) is a solution of (1.2), then (1;,'?) is also a solution
with @(x,y) = Y(z,—y),¥(z,y) = v(x,—y). It exchanges the relative position of the two
fluids relatively to the gravity.

REMARK 1.4 One condition to derive the model (1.2) was that {¢p > 0} and {¢p < 0}
are two connected components. In particular every solution of (1.2) with more than two

connected components should be interpretated carefully.

REMARK 1.5 Let us note that we expect that T' is a curve and then H*(T') = 0. In these
case it is not necessary to precise the value of x(v0) on I'. But up to our knowledge there
is mno general existence result of solutions with H*(T') = 0. The only known way to get a
solution is to take the limit of solutions u. of the equation (1.2) with a smooth function x.

in place of x. As e — 0, xc = x and Y. — 1 where ¢ is a weak solution to (1.2). In



particular I' = {14 = 0} could be degenerated with H*(T') > 0, and x(¢);r could take every
value between 0 and 1. In this case the values of x()r would be important to claim that 1

is a solution of equation (1.2).

1.2 The mathematical formulation

From now on, let us use the notations

v

Then the weak solutions to (1.2) over an open set Q@ C R? are given by the following

variational formulation: search (u,v) € H._(Q) x L*°(2) such that

loc

Vo € C5°(2), /QVUVU + Ay0,v =0, and v € H(u) (1.4)
where
{1} ifu>0
H(u)=1<¢ [0,1] ifu=0 (1.5)
{0} ifu<0
and
u = up on Of2 (1.6)

The existence of a solution (u,7) to (1.4)-(1.6) is known under certain assumptions on
0 and on uy (see [7], [14]).

Moreover let us recall:
PROPOSITION 1.6 Every solution (u,v) of (1.4) belongs to CH(Q) x L*®(9).

Proof of proposition 1.6
See [5] p 631, [12] p 52-53.

In this paper we are interested in getting information on the free boundary I' = {u =
0} and to know whether and when there exists a mushy region with H*(I') > 0. The
nonexistence of a mushy region is intimely related to the question of the uniqueness of
the solutions (u,7) to (1.4)-(1.6) , as it is shown in [7] in the particular case of a strip
2 =R x (0,1). In particular we study here the properties of I" without assuming that the
function u is monoton as in [5], or satisfies a property at +oo as in [7]. See also [13], [14].

Here we study the free boundary of the solution in the general case.
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1.3 Main results

Let us recall that in the region {u = 0}, v can have any value between 0 and 1, which permits
us to interprete v as a coefficient of mixing of the two fluids. It justifies the terminology
of mushy region (when H?(T') > 0), that is sometimes given to the region {u = 0} for the
Stephan problem (see [17], [18], [19], [20]).

DEFINITION 1.7 Letw C R? an open set convex in the e, direction, i.e. [(z,vy), (2',y')] C
w while (x,y), (z',y) € w. Then we say that a set A C w is a epigraph on w in the e, direction

if [(z,y), (2',y")] C A while (z,y) € A and [(z,y), (', y)] Cw, z <a’.
We prove the

THEOREM 1.8 If (u,7) is a solution of (1.4) on an open set Q C R?, then for all open

set w convex in the e, direction, w N {u =0} is an epigraph on w in the e, direction.

REMARK 1.9 Shoshana Kamin has noticed that a similar result is true for the Stephan
problem: the mushy region of a one-dimensionnal Stephan problem for (x,t) € R x R can

diseappear in finite time. We find the analogy with the change (z,t) — (y, —x).

REMARK 1.10 The function v can be nonmonoton in y on a connected component of

{u=0}° (see the counter-ezample of section 5).

Moreover we prove

THEOREM 1.11 If (u,v) is a solution of (1.4) and if {u = 0}° = 0, 0{u > 0}\0{u <
0} =0, 0{u < 0}\o{u >0} =0, then H*({u =0}) = 0.

REMARK 1.12 If H*(T) = 0 and {u = 0}° = 0 then Au = =X,y = 0 on {u >
0} U {u < 0}° and from mazimum principle we deduce that 0{u > 0}\d{u < 0} = 0,
o{u < 0}\d{u >0} =0.

REMARK 1.13 We do not know if under general conditions there is uniqueness and/or

even existence of a solution without a mushy region for problem (1.2)-(1.6).



2 Preliminaries

The following proposition is obvious but usefull:

PROPOSITION 2.1 If (u,7) is a solution to (1.4), then (—u,1 — ) is a solution too.

LEMMA 2.2 (linear behaviour lemma, [9], [6]) Let Qy C R" (respectively Qy C R™) such
that there exists a ball B with

B = B,(re,) and B C

( respectively B = B.(—re,) and B C (£22)°

Assume that u is a Lipschitz positive hamonic function in Q) (respectively €y ) vanishing in
0 (respectively 0 ) and assume that 0Q; N B = {0}. Then near zero, u has the asymtotic
development

uw(X) = ax, + o(|X|) on Q; with a >0

Furthermore a > 0 in case €2y, because of Hopf lemma.

PROPOSITION 2.3 If (u,7) is a solution of (1.4) and if u(X) = a < X — Xp,v >T
—B < X —Xp,v>" 4o(|X — Xp|) withv € S' and a, B € R, then there exists two functions
0<%,y <Lwithy)y=1ifa>0,70=0ifa<0,75=0if3>0, andv§ =1 if

B < 0, such that

a—B+A<ves > (valy) —5(y) =0 (2.1)

PROPOSITION 2.4 If locally {u = 0}° = 0, then u is locally a solution for the free
boundary problem (Pg) in the appendiz with G(B,v,X) =3 — X < ez, v >.

Proof of proposition 2.4
From lemma 2.2 and proposition 2.3 we see (even for the particular cases &« = 0 or § = 0, be-
cause {u = 0} = ()) that u is a solution to problem (Pg) in the appendix with G(3,v, X) =
B—A<egzv>.

The main tool that is used by Caffarelli to prove regularity theorems in [8]-[9], is the

monotonicity formula:



THEOREM 2.5 (lemma 5.1 [4]; lemma 18 [8]) Let two continuous functions uy, uy >
0 such that
i) Au; >0 (u; subharmonic)

iii) upug = 0
Let

_ Ji, [V’ pdpdo [, |Vus|*pdpdo

r4

o(r)

where (p,o) are the radial and spheric coordinates in R".

(2.2)

Then ¢ is a nondecreasing function of r. Besides ¢ is bounded near r = 0. In particular if
the functions u; are defined on R?, and if ¢(r) = const > 0, then there exists v € S', oy >
0,2 =1,2 such that u1(X) =a; < X,v >, us(X) = s < X, v >".

Proof of proposition 2.3

From the assumption of proposition 2.3, let us consider the blow-up:

{ Ue(X) _ u(Xo+eX)
7¢ = 7(Xo +eX)

Let us recall that u € C(Q) and v € L®(Q), then by Ascoli theorem up to extraction of

loc

some subsequence (u, 7<) — (u®,~°) on C%*(K) x L2 ,.(K) for every compact set K C R?

weak*

and every a € (0,1). Then (u°+°) satisfies also (1.4) and is a solution on R?. We have
wWW(X)=a< X,v>T -3 < X,v > then

/Rz (041{<X,u>>0} + 51{<X,u><0})V Vo + )\708:1:7} =0 (2.3)

In particular 9,7° = 0 in {< X, v ># 0}, i.e.
0 .
0 | 7e(y) in {< X, v >> 0}

case 1: <wv,e;, >=10
From (2.3) we have A\0,7° = —Av = 0 on {y > 0} and {y < 0}. Then 7* = 7°(y) on R*
Consequently [g270,v = 0 and from (2.3) a = § and equation (2.1) is verified.
case 2: <v,e, >#0

We have X = ze, + ye, = x1€; + 1,0, where vt = ( > Then

Vg

L
T=x1+T,L <V ,e; >
{ ! v T dxdy = drydz,. < vt e, >

y=x,. <vte, >



_ Y _
TyL = <I/'L,6y> { 8:3 - aml )
_ <vtie;> _ 1 _ <vties>
Ty =T - ySTres Oy = 0 22 Oy

vle,> <vle,>"7,L <vl,e,
Moreover < v+, e, >= — <wv,e, >, < vt e, >=<v,e, >, and
1 < v, e, >
v-Vo=——-—0,,0 — —2=0, 0 for o(z,,z,.) = v(z,y)
174

< ey > <V ey >

Similarly let 7°(zy, z,1) = 7°(z,y). Then from (2.3) we get

1 <V ey >

(0] Liay < ——0
/Rg (a {.’131< ;8z>>0} + /B {$1< 76E><0})(< V; e.’l? > xlv < V, ex >

Oy, ) + M0y ¥ = 0
Then (o — 3)0(z=0p + A < v,e5 > 05,7 = 0, therefore & — f+ X < v,e; > (Y2(z,1) —

~0
5(x,1)) = 0 where 3°(z,.) = { Talwy) o {ay > 0} ie. a— B+ A <wve, > (V(y) —
0
g

Yg(wy1) on {z; <0}’
v2(y)) = 0, which proves proposition 2.3.

3 {u=0}"is an epigraph in the e, direction

Here we prove the theorem 1.8.

If the result is false, then we work in w (we can forget ).

Step 1

LEMMA 3.1 Let P = (z1,y1) € {u = 0}° Nw such that 3z > z;, P" = (2],11) €
({u = 0}°)° Nw. Let Iy the connected component of {u = 0} which contains P. Then
Az} > xy,yh, Ir' > 0 such that for I = [y} — ', y; + '], we have wy = [x1,2]] X [ C w and
09 > 0, [x1, 21 + o] X I C I, [z} — 0o, )] x C {u > 0} (up to a change of sign for u).

Proof of lemma 3.1

We know that 3B,(P) C {u = 0}° and by definition of P”, 3P',d(P", P") < £ with say (up
to a change of sign on u, see proposition 2.1) u(P’) > 0. Then 3B,/(P') CC {u > 0} with
r' < 5. Wenote P' = (2, y;) and wy = [21,2]] x I C w with I = [y} —+', 3] +7']. We deduce
the existence of a §y > 0 as in the lemma, decreasing 7’ if necessary. This ends the proof of

lemma 3.1.

Step 2



LEMMA 3.2 Let I'y = {Lo(y) = (fo(y),y), foly) = sup{w, (z,y) € LyNwo}}. Then up
to a change of sign on u there exists a connected component Cy of {u > 0} Nwy, Jy,,y_ €

Iy, >y_ such that To(yy), To(y_) € 0o NIC.

Proof of lemma 3.2
Let C,, the set of all connected components of ({u > 0} Nwy) U ({u < 0} Nwy). For each
C € C,,, two cases appear:
i) either C' is adherent to at most one point of I'y.
ii) or C is adherent to at least two points of I'y.
But C,, is a set of connected components at most denombrable, and I'y is a set of non
denombrable points. Then 3C, € C,, which verifies the case ii), and up to a change of sign
on u we can assume that u;c, > 0, and there exist two points I'o(y ), [o(y™) € I'g, with
y~ < y*. This ends the proof of lemma 3.2.

Step 3

LEMMA 3.3 Decreasing w if necessary, we can assume (up to a change of sign on u) that

u >0 on wp.

Proof of lemma 3.3

Let go a continuous path which links together I'g(y_) to To(yy) in I. Precisely it means
that there exists a injective and continuous map go : [—1,1] — Iy with Im(g) = go,
90((=1,1)) C Iy, and go(—1) =To(y-), go(+1) = L'o(y4 ).

Let ¢g; a continuous path which links together I'y(y_) to Io(yy) in Co. Then from the max-
imum principle u > 0 on the bounded component of boundary gy U g_. This ends the proof

of lemma 3.3.

Step 4: contradiction
Let us take a ball in {u > 0} and slide it in direction —e,. Then it touches 0I, at a point
Xo. Then from the linear behaviour lemma 2.2, we get u(X) = o < X — Xp,v >T —f <
X — Xo,v > 4o(]X — Xy|) for some a > 0 (because of the Hopf lemma) and 5 < 0
(because v > 0) and with < v,e; >> 0. Then from proposition 2.3 we get § = o+ X <
v,ee > (Ya(y) — 73(y)) > 0 because 7o (y) =1 and 0 < v3(y) < 1. Contradiction.
This ends the proof of the theorem 1.8.



4 Proof of theorem 1.11

4.1 Proof of theorem 1.11

DEFINITION 4.1 We say that T'(u) is e-flat in 0 for r < re if and only if

u >0 on {y >er}n B, (0)
Vr € (O,re),{ u <0 on{y < —er}n B, (0)

We say that Xy € ['(u) is a flat point if Ve > 0,3r. > 0, such that I'(u) is e-flat in Xy for

r <.

DEFINITION 4.2 Let I' 4, the set of flat points of ', and let I';cq the set of points Xy € I'
such that ' is analytic in a neighbourhood of X,.

Then we have

PROPOSITION 4.3 If (u,7) is a solution of (1.4) on w simply connected, if {u = 0}°N
w="0and if {u > 0} Nw and {u < 0} Nw are connected components such that (d{u >
0\d{u < 0}) Nw = 0,(0{u < 0}\O{u > 0})Nw =0, then if Xy € I'(u) Nw, such that locally
w(X) = o(|X — Xo|), then Xo € I'pis Nw.

REMARK 4.4 Here the Caffarelli theory [8]-[9] doesn’t apply to improve the regularity of

[' because the solution is degenerate near X,.

PROPOSITION 4.5 Under the same assumptions of proposition 4.3, if u(X) # o(|X —
Xo|) then I' is analytic locally near Xy, i.e. Xo € I'yeg Nw.

Proof of theorem 1.11

DEFINITION 4.6 Let C* (resp. C~) a connected component of {u > 0} N (resp.
{u <0}NQ). Let P, P, € 9C*TNOC~ . Then there exists a continuous path g* = gf p, € CF
which links together Py to P,. Precisely it means that there exists a injective continuous map
gt [=1,1] = T such that Im(3*) = g*, gt ((—=1,1)) C CF, gT(=1) = P, g"(+1) = P,.
Similarly there exists a continuous path g~ = gp p, C C which links together Py to Ps.
We note W(Py, P2) every bounded closed component with boundary g™ U g, with g*, g~ as

previously.
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We use the following lemma (£2 could be not simply connected, that is why we work on some
ball B C Q):

LEMMA 4.7 Let a ball B C Q. Let Ct (resp. C~) a connected component of {u >0} N B
(resp. {u < 0} N B). Then 3P, P, € 0CT NAC~ and w(Py, P,) as in definition 4.6 such
that 0C*T NOC~ C w(Py, Py).

Then from proposition 4.5 and proposition 4.3 we have with w = Int(@w(P;, P,)):
Lo :=0CTNAC™ ={Py, Py} U (Treg Nw) U (Tprar Nw)

Let us consider a compact K CC B. If H*(KNT[y) > 0, then (X)) = lim inf, g W =
1 H*ae X € KNIy In particular 3Xy € [y, 0(Xy) = 1. Then X, ¢ [y, and then
Xo € I'fiq¢ which implies (from proposition 4.3) 8(X,) < € for all e > 0. Contradiction. Then
H*(KNTy) =0 for all K, therefore H*(OC+TNAC™) = 0. The number of pair (C*,C~) is at
most denombrable, therefore by denombrable summability, H*({v. = 0} N B) = 0 for every
ball B C Q. Consequently H?({u = 0}) = 0. This ends the proof of theorem 1.11.
Proof of lemma 4.7

It is easy to prove the lemma 4.7, using the connexity of C* and C~, the fact that we work
with topology in two dimensions, and the fact that B is simply connected. We proceed as
follows. Let Py, P),P) € Ty = 0C* N C~. We consider the sets Epo for i = 1,2 of points
P such that P! € w(Py, P). Each set Epo is ordened by the relation P < P’ if and only if
P € o(P), P') for some set W(P/, P') as in definition 4.6. Let P, = max&po;i = 1,2. To
finish we prove that 0C*T N AC\w(Py, Py) = .

4.2 Proof of proposition 4.5

Let us consider a point Xy € I' N w such that u(X) # o(]X — Xy|). Then let X, = 0,
us(X) = @ Then there exists a subsequence such that u¢ — u” and u® # 0. In particular
from theorem 2.5 if we set uy = u™, ug = u~, we get that ¢,(r) := ¢(r) is nondecreasing.
Now ye(r) = du(er), then gyo(r) = 6,(0).

case 1: ¢,(0) >0

If ¢,(0) > 0 we conclude that u*(X) =a < X,v >T - < X,v >, with a, 8 > 0, € S™.

Then from proposition 2.4 and from theorem 6.3 i) in the appendix we conclude that T is
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locally C'b* near Xy, and then from the result of Kinderlehrer-Mirenberg [16], T is locally
analytic.

case 2: ¢,(0) =0

In this case u® > 0 or u® < 0. Up to a change of sign on u (see proposition 2.1) we can
always assume that «® > 0 and v® £ 0. In particular from theorem 1.8, {u” = 0}° is an

epigraph in the e, direction. Here we prove:

LEMMA 4.8 If u® £ 0, u® > 0 and (u°,7°) is a solution of (1.4), then {u’ = 0} is an

epigraph in the direction e,.

Proof of lemma 4.8

Let us assume that u > 0 on B = B,(1g,%) and 3z, < xg, u(zi,y0) = 0. We have v® > 0
and Au’ = 0 in {u® > 0} and u" is (Lipschitz-) continuous. Then u’ is a subsolution and
97" = —3Au® < 0. We know that v° =1 in B and then Au® = 0 on the left of B. From
the hard maximum principle we deduce that u° > 0 on the left of B, because v > 0 on B.

Consequently u°(zg,yo) > 0. Contradiction. This proves the lemma 4.8.

LEMMA 4.9 If u® # 0, u® > 0 and (u°,1°) is a solution of (1.4), then Yy € R,3x €
R, u’(z,y) >0

Proof of lemma 4.9

Let us assume that Jyy € R,Vz € R, u’(x, o) = 0. Then up to a translation we can assume
that yo = 0. Because v £ 0, AP € {y > 0} U {y < 0}, u°(P) > 0.

Case 1: 3P" € {y > 0},3P € {y < 0}, u*(PT) > 0,u’(P) > 0

Then let us consider the blow-in

{ UO’H(X) — UO(NX)
PH(X) =7 (pX)

If we set uy = u’lyysoy,us = u’lyycop we know from theorem 2.5 that ¢,o(r) := ¢(r) is
nondecreasing in r. In particular ¢uo..(r) = ¢uo(pur) > 0 for p > 0 large enough. Then up

0,00)

to extraction of some subsequence (u®*,y%#) — (u%>, %) which is a solution of (1.4) on

R?, and ¢yo. (1) = ¢yo(+00) > 0. Then from theorem 2.5 u®>(X) = ay* — By~ > 0 with
a > 0, < 0 This is imposible from proposition 2.3.
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Case 2: v’ =0 on {y > 0} or {y < 0}
Let us assume that u° = 0 on {y > 0}. Let for some ¢y > 0:
0 .
0 ] WP (zy+e) ify <0
w(@,y) = { ub(z, —y +¢€) if y >0
0 .
00y — 4 V(@Y +e)ify <O
Viey) = { (2, —y +e) if y >0
Then (@, 4°) is a solution of (1.4) on R? and we get a contradiction as in case 1.

This ends the proof of lemma 4.9.

Now we will use the following result:

PROPOSITION 4.10 Vny > 0,3e > 0, such that if (u,7) is a solution of (1.4) on Q such
that 0{u > 0}\o{u < 0} = 0,0{u < 0}\O{u > 0} = 0, and |u| < € on Ry C , then
for y* = sup{y, (xz,y) € d{u < 0} N Ry, y~ = inf{y, (z,y) € d{u < 0} N R;. we have
Hu<0}nNRy C(—1,1) x ([y~,y~ +5mo] U [y — dno, y]).

We have 0 € 9{u’ = 0}, then from lemma 4.8, u"(x,0) = 0 for > 0. Let for ¢ > 0,

A>1,t>0:
{ uf \(z, y) = LOLHA)
Yialz,y) = v (Aw +t, \y)
0

In particular u;; — u(;o’l uniformly on every compact sets (up to extraction of some sub-

sequence), and 7y, — 73, in Lgo,,,. Then (ud, ;1,7 ;) is a solution of (1.4), ul,, > 0,
and Vo € R,ud  (2,0) = 0, therefore from lemma 4.9 we have u),; = 0. Now we

deduce that |ufy — ud ,] < € on Ry if ¢ is small enough and ¢ large enough. Then
from proposition 4.10 we deduce that there exist y* = (y;)* such that |u;] > 0 on
R\[=1,1] x ([y~,y~ + 5mo] U [y" — 5mo, y™]), and ~;\ = 0 where u;!y < 0, 77\ = 1 where
ugy > 0. If we pass to the limit firstly on ¢; — 0, we deduce that 7)), = u}, = 0
on certain regions of the form [—1,1] x [a,b]. But 7}, is nonincreasing in x, therefore
Vt' > t, ), = up = 0 on [=1,1] x [a,b].

Now if we take A large enough we deduce that there exist y*,y~ € RU{—o0c0} U {400} such
that at = +00, 7° is equal to 0 or 1 on each interval (—oo,y™), (y—,y ™), (y T, +00).

Case 1:7), , = 1 on (a,0) or (0, a)

It implies by construction, and because of lemma 4.9 that «° > 0 on R x (0,a). Then we
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get a contradiction as in the proof of lemma 4.9 because u’(z,0) = 0 for z > 0.
Case 2:73,; =0 on (a,b) 30
Then there exists a ball B,.(Ae;) C {u® = 0}° for some r, A > 0, where 7* = 0. Then we
define v°(z,y) = [ u’(s, y)ds which verifies
v’ >0
AV’ = N {ys0) (4.1)
|D?0°| 10 < max(Lip(u),\) < +00
Moreover (v%)), = —u® < 0 and (v%),, < 0 in {v° > 0}. Then from a result of Alt [1] (see
also lemma 5.2 with A(z') = A = const), 9{v" > 0} = 0{u" > 0} is locally Lipschitz. We

made a new blow-up u%¢(X) = M — uP(X), v"¢(X) = % — v%(X). From Caffarelli

theory [11] we get v%(z,y) = % or v¥(z,y) = %’02 where < e,, v ># 0 because
' is Lipschitz. But 9,0%° = —u® < 0, then «"(X) =< X, v >* for < e,,v >< 0. Once

more, from Caffarelli theory [11] we get that 9{u’ > 0} is analytic near 0. We conclude (see
lemma 6.4 and the proof of theorem 6.3 iii) in the appendix) that I'(u) is analytic near Xj.
Let us remark that if I'(u) is analytic then from the Hopf lemma locally u(X) = o <
X - Xp,v>T = < X — Xo,v > +o(|X]|) with a, 3 > 0 and then ¢,(0) > 0, which proves
that case 2 is impossible (for the two phases problem). This ends the proof of proposition 4.5.

4.3 Flat points: proof of proposition 4.3

REMARK 4.11 Let us remark that VA € R, u(z,y) = e sin\y,v € H(u) is locally a
solution of problem (1.4).

We assume that u(X) = o(|X|) near 0.
For > 0, let R, = (—p, p1)? of center 0, and R,, = [—p, u]*>. We assume that |u| < € on Rs.

LEMMA 4.12 Vg > 0,3e > 0, such that if Jyo € R, |u| < € on [—1,1] X [yo — 70, Yo + 7o),
dxy € (—1,1), and if there ezists a continuous path go C {u > 0} N [0, 1] X [yo — 10, Yo + 1o
with {P1 = (z1,90—m0)} = goN[zo, L] x{yo—10}, {F2 = (22, 90+ m0)} = goN[zo, L] X {yo+1m0},
then {y = yo} N R% C {u > 0}, where P{ = (—1,yo — n0), Py = (=1, y0 + no) and R is the
bounded connected component of boundary [Py P{] U [P|Py] U [PyPs] U go, i.e. the component
of [=1,1] X [yo — 10, Yo + no] at the left of go.
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Proof of lemma 4.12

Step 1: Construction of a subsolution
Let ag > 0 very small. Let C(ag) = {p(cos,sing),p > 0, ¢ € [—ap, a]}, and for § > 0,
Cs(ap) = {X, d(X,C(a)) < &}. For L > 0, let CE(ap) = {X € C5(av), z < L}. We want to
construct a subsolution of the problem 1.4 on C(ayp). For this, we introduce the function

vy defined on C(ap)\CE(ap) by

Av; = 0 on Cs(ap)\CE ()

vy =0 on (0Cs(ap)) N{x < L}

vy =1 on (0Ces(cv)) N{z < L}

v = 4Gle0)) op {5 = L} N Cos(an)\Cs ()

(4.2)

And on Cf(ayp) we define v! by

Av! =0 on CF(ayp)

v! =0 on (0Cs(ap)) N {z < L}

vt = cos(;%) on Cs(ao) N {z = L}

where 2y, = lenght of Cs(ap) N {x = L}

(4.3)

Then let

o1 — | —evnon Co(an)\Ci () (4.4)
‘ nou' on CF(ayg

)
Then on the free boundary, VX, € ['(v7) = (0Cs(ap)) N {x < L}, we have u(X) = a <
X — Xo,vp >7 —f < X — Xo, 1 >~ +0(|]X — Xy|), where vy is the normal to I'(v?) in X,.
But here a = nay, 8 = €fy, < ey, v >> sinay > 0, and we search to verify the condition of
subsolution on the boundary

a>f—-A<ezv> (4.5)

Then we see that de = €(ay, 0, L) > 0 (and € — 0 as «y, 6y — 0) such that we obtain for all
n > 0 a strict subsolution v? of problem (Pg) in the appendix with G(3,z,v) = — A <
e,V >. Let us chose 0 and «ay such that gy > 20 + Lsinag and L = 4.

Step 2

Let v'(z,y) = v(x + t,y — o). For t < —2 we have R% N supp(v') = 0. Then we apply a
sliding method, increasing ¢ continuously. By hypothesis v' is a subsolution on supp(v*) N R%

(see figure 1), and v* can not touch u on d(supp(v') N R%) C supp(v') U gy, because
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i) o' = —e and u > —e on J(supp(v?)).

ii) u > 0 on go and then we can chose 1 > 0 such that v > n > v* on g.
Then v* can only touch u on I'(v') = 9{v* > 0}. But v is a strict subsolution on I'(v?),
consequently it is impossible (see lemma 7 in [8]). Then if we have chosen ¢ and «q small

enough we can increase t until I'(v*) touches {x = —2 + ¢}, which proves lemma 4.12.

REMARK 4.13 The lemma 4.12 is true too if we change {u > 0} by {u < 0} (see propo-
sition 2.1).

figure 1

LEMMA 4.14 Let us assume that |u| < € on Ry. Then it does not exist three points P; =
(w3, y:) € 0{u <O} N Ry, i =1,2,3 such that =1 < yy < y1 + 510 < y2 < yo + 5 < y3 < L.

Then proposition 4.10 is a corollary of lemma 4.14.

Proof of lemma 4.14
Let us assume that there exists three such points. Then there exists Py = (x12,Y12) €
(—=1,1) X (y1 + 2n0,y2 — 212) such that u(Pjz) # 0. By symmetry let us assume that
u(Py2) > 0. Then there exists a continuous path g2 C {u < 0} which links together P

to P,. It is possible that g5 goes outside Ry, but in every cases u < € on the bounded
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component of boundary [P, P;] U g12, because of the maximum principle.

case 1):g;2 goes on the right of Pjs

Because ¢12 goes on the right of Pj5, we can apply the proof of lemma 4.12: let P| =
(—=1,y1), Py = (—1,y2) and RY* the bounded component of boundary [P,P{] U [P{Pj] U
[P P,] U g1a. Then Py € B> = R N {y1 +m <y <y — o} C {u < 0}. Contradiction.
case 2):g;2 goes on the left of Py

Let go3 C {u > 0} a continuous path which links together Pj5 to Ps.

subcase 2)a):go3 goes on the left of gio (see figure 2)

Let R923 the bounded component of boundary g,3 U [P2P;5]. Then as previously we get
Py € RJ» = RN {y < y12 — o} C {u < 0}. Contradiction.

subcase 2)a):go3 goes on the right of g5 (see figure 2)

Then P, € R{® = R N{yiz +n0 <y <ys —mo} N R C {u < 0}. Contradiction.

In every case we get a contradiction. Then it proves the lemma 4.14.

figure 2
Proof of proposition 4.3
Up to consider u(X) = ”(i—llx),y“(X) = 7(,X) with 0 < ¢; < 1 in place of (u,7), we
deduce from proposition 4.10 that we are in one the following cases:
Case C3
We have three parts: |u| > 0 on (—1,1) x (=1,y7),(=1,1) x (y~ + 5o,y — 5np), (—1,1) x
(yt,1), where —1 <y~ <y~ + 100 <yt <land 0 € [y, y~ + 5] U [yt — 5o, yT].

Case C2
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We have two parts: |u| > 0 on (—=1,1) x (—=1,—101n), (—1,1) x (1070, 1).

And each case has subcases: we see the sign of u on each part from the top to the bottom.
For example we note C'3 + +— a situation in case C3 where u > 0 on the two parts above
and v < 0 on the last part below. We will note more generally C'3aab the case C'3 + +— or
the case C'3 — —+.

subcase C3aaa

Let us consider for example the case C'3 — ——. Then the method of proof of lemma 4.14

applies and gives a contradiction (see figure 3).

figure 3
subcase C3aab or C3abb
Let us consider for example the case C'3 — —+. Then the method of proof of lemma 4.14

applies and gives a contradiction (see figure 4).
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figure /

subcase C3aba
Let us consider for example the case C'3 + —+. Then with a zoom with some 0 < ¢; < 1 we

get the case C2ab for (u,~) (see figure 5).

figure 5
subcase C2ab
Let us consider for example the case C'2 + —. Then with a continuous zoom with 0 < ¢; < 1
we get the case C2ab for (u*,y*) (see figure 6), because the only other cases C3aab or C3abb

are impossible. Then the configuartion C2ab is “stable” by zoom.

figure 6
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subcase C2aa (see figure 7)
Let us consider for example the case C'2 — —. Then with a zoom with 0 < ¢; < 1 we can
only get cases:
i) C3aaa: impossible
ii) C3aba, and then C2ab
iii) C2aa
Let us assume that we keep the case C2aa for every 0 < €; < 1. Then for the cones

C* = {X,i<)|()’f"~’> > 1} we have

(CTuCT)NB,(0) C {u<0} (4.6)

if 7y is small enough. But 0 € 9{u > 0}, and if C; = {u > 0} N {z < 0} N B,.(0) # 0,
Cqy={u>0}Nn{x > 0}nNB.(0) #0 for every r > 0 small enough, then there exists a
continuous path g C {u > 0} which connects C; to Cy. This path can not go near 0 because
of (4.6), then g goes round one of the components (—1,1) x (=1, —10mn), (—1,1) x (10n, 1)
where u < 0. Contradiction. Then we have C; = () or Cy = (). Then u < 0 locally on {z < 0}
or {u > 0}. Thus the Hopf lemma gives a contradiction to the fact that u(X) = o(|X|).

figure 7
Consequenlty in every case for 0 < ¢; < 1 small enough (u,~) is in the case C2ab,

and it proves the proposition 4.3.
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5 Examples

Let us recall an example of a mushy region which is given in [7]. Let @ = R x (0,1), u = fy
on Rx {0}, and u = f; on Rx {1}, where f(z) = —fo(x) = ainf(1, exp(—x)), for a constant

a > 0 to be fixed. Let g(y) = Let v on {z < ¢g(y)} equal to the harmonic function

1
y(l-y)-
which vanishes on x = ¢g(y) and takes the values fy and f; on 0€2; and v =0 on {z > g(y)}.
Let v the exterior unit normal to {z > g(y)}, and v, = xp1 () + % On the free

boundary one has v;” = O(e~”) and e, -v = O(%) as & — +oo. Therefore for a small enough

Yo € [0,1] and (v, 7,) is a solution.

Remark that when u > 0, the problem (1.4) reduced to the problem (1.1) with a gener-
alised function x(p) = v(u), and u(z,y) = p(y, —x). Recall that if we assume that x(0) =0,
then it is known (see [1]) that the boundary d({p = 0}°) (i.e. d({u = 0}°)) is an analytical
graph.

In the general case we have the

PROPOSITION 5.1 If (u,) is a slution of (1.4), and locally

> 0,1
{u_O,vEC’ (5.1)

¥<1-0<1on{u=0}°
Then locally Ty(u) = d({u = 0}°) is a C* graph in direction e, and v = v(y) on {u = 0}°.

This proposition can be proved using for the function v(z,y) = [ v(a’,y)dz’ the following

lemma which is an adapted version of a result of Alt [1].

LEMMA 5.2 For By C R", ifv € CY(B)),A € C*', 0 € ' = 3{v > 0}, and for x =

(2, z,) € R":
Av = Aa") >0 in Byn{v >0}
0z, v >0 in By
O, v >0 in ByN{v > 0}

Then I' is Lipschitz in B%.

In proposition 5.1, the condition > 0 is necessary, because if not, we can construct a
counter-example u solution of (1.4) such that I'g(u) has a cusp.

Counter-example
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We use the holomorphic function F(z) = —exp(—y/—In(z)), with z = re?,0 € [-Z,%],r >
0. Then F is a diffcomorphism from {z > 0} on its range C which is a cusp because

F(re®) = Re®®, and a calculus gives R = eV~ "70+(=) @ 7 = L __(1+40(1)). Now

2v/—Inr

let u = uy o F~! where uy(z + iy) = 2. Then Au = 0 on C by composition of holomorphic
function. We must verify that u is locally Lipschitz, it means u} is locally bounded, and
construct a function 7°(y) = v in {u = 0}° such that Au + A3,y = 0 in a neighbourhood of

0. In particular from proposition 2.3, v(y) must verify:

0<1 ty 1

<1-— = v <

- 70() A<ezv>"

But a calculus gives 0 < _A<Ziu> = )\Re(}ITZ’(z)) where z = re? with § = +Z. But F(z) =

X 1

11
Sex?™X = 400 where X = L

1 —
V_Taz  \/~(urki3) — 0. Moreover < e;,v >— 0 asr — 0,

then u], — 0 as 7 — 0 and locally u is Lipschitz (and positive harmonic). Then locally it is a
solution to (1.4). Remark that here 7 =1+ uwl_ ¢ 0. Moreover Lo(u) = 0({u=0}°) €

Aeg v
C%? for every 3 € (0,1).

REMARK 5.3 We do not know if there exists a solution (u,7y) to problem (1.4) on an
open set Q, such that u >0 on Q and (0{u > 0})NQ # 0. In what follows we give a possible
candidate but we do not know if it is a posteriori a solution.

Let Q = (0,400) x (0,1). We give us a sequence (pn)n of positive real numbers, such that
0< >N 2" 1 p, < 1. Then we will build a sequence of functions (uy), which converge to a
function uy such that (0{us > 0}) NQ # 0. But we do not know if there exists a function
Yoo € L®(Q2) such that (Ueo, Voo) @S a solution of problem (1.4) on .

Step O

Let yo = 20 =0, y1 = 21 = 1 and yo1 = ZO;“. For some x¢g; > 0 let Pyy = (xo1,Y01), and

I (Por, 20, 1) = {& > 201,y = yo1 + (20 — yor) (1 — e @20 T~ (Pyy, 29, 1) = {2 >
To1, Y = Yo1 + (21 — yor) (1 — e M@=} " and because yo1 > 20, Yo < 21, G~ (Por, 20, p11) =
{2 > 201,901 >y > yor + (20 — yo1) (1 — e @20} GH( Py, 21, 1) = {x > 201,901 <y <

you + (21 — you) (1 — e =20} for py = I

Now we search a function uy such that ug = 0 on (0, +00) x {0, 1} and ug = Ao cos(m(y —yo1))
on {0} x (0,1) for some X\g > 0. We assume that ug = 0 on 0Gy and ugy is harmonic on

O\Gy for Gy = G~ (Por, 20, p1) U GT(Por, 21, 1)
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Step 1

Zo+2001

s Your = BEL Let Py = {y =
Now we define

— 1 — 1 —
Let zp01 = yo1 — &, 211 = Yo1r + 5, and yoor =

Yoo1 } NI~ (Por, 20, 1), Poor = {y = you1 } NI (Pou, ZI;MI); and jy =

Yyoi1— y001

w = { ug on OS2
0 on 0G,
and uy s harmonic on Q\Gy where G1 = G~ (Pyo1, 20, 111)IG T (Poo1, 2001, t2) IG ™ (Pot1, zo11, fi2)U
G+(P011, 21, /h)-
Step 2
Let xgpo1 = y001—%; Zoo11 = Yoor + 5 55 20101 = Yo11 —%; 20111 = y011+ , and Yooor = %;
Yoo11 = Zoou‘gﬂ; Yoi01 = ZOIH‘%; Yoi11 = w Let Pooor = {¥ = Yooor } NI~ (Poor, 2o, 1),

Poo11 = {y = y0011}ﬂF+(P001, 2001, M2); Poror = {y = y0101}ﬂF7(P011, 2011, M2); Py = {y =

y0111} n F+(P011’Z1’M1)’ and Hs = y0011iy0001 - y0111iy0101' Now we deﬁne
ug on OS2
U9 =
0 on 0G5

and uy is harmonic on Q\Go where Gy = G~ (Pooot, 20, 1) UG ™ (Pooot, 20001, 143)IG ™ (Poo11, Zoo11, f3)U
G (Poor1, Zoo1, p2) UG~ (Poor, 2011, t2) UG (Poror, Zo1o1, 113)UG ™ (Potn1, Zo111, t3) UG (Po11y, 21, fi1).
Step n >3

As previoulsy we build all the functions u,,n > 3, and this sequence converges to a function

Uso which is positive except on horizontal half lines where u., = 0. If the sequence (pn)n
converges rapidly to 0, we can see that near a tip P* of a half line the “free boundary” is
locally essentially vertical because the sequence p, — +00. In particular if a blow-up is pos-

d uoo(P*-i-EX)

sible we fin — az~ for some a > 0 with = = max(0, —z), which is coherent

with proposition 2.35.

6 Appendix: extension of Caffarelli results for free
boundaries with general function G(u/, v, X)

DEFINITION 6.1 A function u is a solution of the problem (Pg) on the open set 2 C R"
of and only if:
Z) u e Cloc (Q)
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i) Au =0 in QF(u) ;== {u>0},Q (u) :={u < 0}°

i4i) On I'(u) := (027 (u)) N Q, we have u} = G(u, ,v, Xy) in the following weak sense.
For every ball B = B, (Yy) with Xo € 0BNT'(u) and r = | Xy — Yp:

a) If B C Q" (u), let v = Yo=%0 € S*~1. Then

Ja>0,8>0,u(X)<a< X —Xpv>" —<X - Xp,v> +o(|X — Xy))
b)If B C Q (u), let v = —X=%0 € S*"1. Then

JoeR,>0,u(X)>a< X —Xo,v>" <X — X, v > +0(|X — Xo)
where in each case a = G(f3,v, Xp).

We assume that G verifies the hypothesis:

HYPOTHESIS 6.2 i) G(f,z,v) € R
i) G is strictly increasing in 3.

i) YM > 0, G is a lipschitz continuous function in (3,v,X) € [-M, M] x St x Q
Then we have the following two local results:

THEOREM 6.3 i)If locally u(X) = ap < X — X, 19 > =3y < X — Xo, 19 >~ +o(|X —
Xo|) and g, By > 0, then locally T'(u) € CY, and for every X; € T'(u) near Xy, there exist
vy € " and a, B > const(ay, By) > 0 such that we have locally u(X) = a < X — X1,y >
-8 <X =X, > +o(|X — Xq]).

ii)Let us assume that Ve > 0,3r, > 0,Yr < r., Q™ (u) D B.(Xo) N {< X — Xy, vy >< —er}.
If u > 0 locally near Xy with u(X) = ap < X — Xo, v > +0(|X — Xy|), ag > 0, then locally
[ € CY, and for X, € T'(u) near Xy, there exists vy € S"~! and a > const(ag) > 0,3 >0
such that we have locally u(X) =a < X — X1,1n >7 = < X — X1,11 >~ +o(|X — Xj)).
iii) The conclusion of ii) is also true if we change the condition u > 0 in a neighbourhood of

Xy by the condition G(0, vy, Xo) > 0.

LEMMA 6.4 Ifu is a solution of the problem (Pg), with the condition i) of the theorem 6.3
(resp. ii) or iii)), then locally, Y0y € (0,%), 3Cy, > 0, Je >0, V7 € C*(by, 1) NS where
Ct (0o, 9) = {7 € R"\{0}, angle (1,1p) < Oy}, we have locally u(X + er) — u(X) > Cy,e
(resp. w(X +er) —u(X) > Cy,€ locally in {u > 0} ).
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Proof of lemma 6.4
It is an easy consequence of lemma 1, lemma 5, lemma 4 of [8], and of an adaptation of the

proof of the theorem 2’ of [9].

Proof of the theorem 6.3
Cases i) and ii)
Under the conditions i) or ii) , the difficulty, is to avoid the values of G(u,, ,v, X) < 0, with
the help of a control on the normal v of I. So we adapt the proof of Caffarelli [9], using the
fact that initially for Cpy = B! x [-M, M] C R" where e, = v, ) ~ 5, ay > 0, there
exists €y > 0, €9 << 1, such that

Ve > ¢, { U = SUP|y|<sin o U’(X - (61)

U = SUD\y | <sin g, u(X —

What is important in the proof, is the condition on the boundary o{w; > 0}. We
recall that 7y = v, + nw is a subsolution for the free boundary problem, where v,(X) =
SUDyep, , ) uw(Y), n = C’e%, and w > 0 is a corrector function to permit to satisfy the

boundary condition of subsolution on the free boundary of 7;:
TX)>a< X X, 0> <X X, 0> +o(| <X —X,0>]) (6.2)

with a = G(8, 7, X1).
1)Firstly, from the lemma 2 [9], v, is monoton in a cone C(6y), where 8 is very close to Z, if
0y is close enough to 7 initially. Then the normal 7 to d{v; > 0} is very close to e,. This fact

permits us to control the free boundary in a neighbourhood of X;. In particular the normal

v in the proof of lemma 4 in [9] is close to e, because U = ﬁiggia and |0V ¢y| < Cez.
2) Secondly, we must satisfy the boundary condition 6.2. But here we have changed the
condition

3C >0, 7YG(B,,v) is a decreasing function in j3 (6.3)

which was required in the proof of Caffarelli, by the condition iii) of hypothesis 6.2. The
boundary condition is satisfied, because the function w constructed in [9] is now nondegen-

erate because of (6.1). More precisely we can find a ball B C Q" (v;) with B tangent to

CMe

5 where

0" (v;) and the diameter of B is of order e. Now w > v and at a distance
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v~y > GCTMCYO cos 6y and by Harmack inequality on B, we can construct a barrier subsolu-

tion which proves that 3C' = C'(ay cosfy) > 0, 0w > C > 0.

REMARK 6.5 Remark that this modification of the proof of Caffarelli is suffisant to apply
his proof without other knowledge on the sign of G in a neighboorhood of Xy (a priori G

could be negative in some points).

REMARK 6.6 In particular it proves that the results of Caffarelli in [8]-[9] with inf, x G(0,v, X) >
0 are true without the conditions (6.3), but only assuming that u is Lipschitz and hypothesis

ii).

Then independantly on €, I\ € (0, 1) such that we obtain (6.1) with €, 8y, oy, Cys respectively

changed by Ae, 0y — e%, o — el_ls,C . Then the proof of Caffarelli applies and proves

1
M(1-CeB)
that ' is Lipschitz. Moreover the proof of [8] applies with the same modification.

REMARK 6.7 We haven't used the fact that Gy, vy, Xo) > 0. In fact it is a consequence
of (6.1) which implies at the limit e — 07,

3605, o, Y7 € CT(05), (ut). > Cajcosby >0

This proves that o > const(cy) > 0. Particularly, under condition i) we have [y > 0, then

the same raisonning applies in {u < 0} which proves that § > const(3y) > 0.

Case iii)

In this case we would like to apply the proof of theorem 2 in [9]. But here is a new difficulty:
we do not know a priori if vt in nondegenerate, i.e. in a neighbourhood of Xy, u} > C' > 0.
To prove the iii) we must modify the proof of lemma 6 in [9] as follows. Let us take the
new criteria (for some 1 >> 0; > 0 fixed): u (—3e,) > Ce** for the alternative a), and
u=(—3€,) < Ce'~% for the alternative b).

alternative a)

Then in Cy_cgen for some 71 > 0 small enough and for Cie™ < | X7 — Xy| < Coe™ we get
(see p 72 in [9] for the function v defined page 70) v(X3) — v(X;) > %u*(—%en)e(a“)“ >

Cel=0i+@+D)m) " and because u is Lipschitz and d(X3,I') < e for every X3 € A, we get
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u~ < Ceon Aand thenv <u~ <wv+Ce (asin p 70 in [9]). We conclude that u(X3) > u(X;)
for X7 — X5 € I'(61, e,) and u is Ce™-monoton.

alternative b)

We have u} > G(u,,v,X) ~ G(0,19,Xo) > 0 in the points of interest of I'(u) (point of

comparison for 7y, see 1)). In particular for these points we get (from the monotonicity

formula) 0 < u, < Ce

-4 and then we conclude similarly as in [9] with > Cestn,
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