
On the mushy region arising between two 
uids in aporous mediumA. BonnetGoldman Sachs International&R. MonneauEcole Nationale des Ponts et Chauss�ees, CERMICSNovember 9, 1998AbstractWe study the mushy region arising between two 
uids in a porous medium. Weprove that the interior of the mushy region is an epigraph in the horizontal direction.Moreover when the interior of the mushy region is empty, we give a necessary andsu�cient condition to claim that the Lebesgue measure of the mushy region is zero.AMS Classi�cation: 35B50, 35R35.Keywords: Free boundary problem, mushy region, blow-up, Ca�arelli results.1 Introduction1.1 The physical problemWe study here the interface between two 
uids for a steady 
ow in a porous medium.One 
uidLet us recall that the steady 
ow of one 
uid in a porous medium, is characterized by itsown pressure p � 0 (p = 0 outside the 
uid), and its velocity which is brought about by theDarcy law: v = �kr�1



Here k is a permeability coe�cient which depends on the porous medium and is assumedconstant. The potential � is given by � = p+ �gy (� is the volumic mass of the 
uid, g thegravity, y the vertical axis upward oriented); if the soil is given by fy < 0g, then � measuresthe di�erence of p to the hydrostatic pressure p0 = ��gy. The coordinate x will denote thehorizontal axis, and we will work in two dimensions X = (x; y) 2 R2. Moreover we assumethat the 
uid is incompressible: div v = 0The research of the free surface of this mono
uid can be then reduced (see [2]) to the equation�p = ��@y(�(p > 0)) (1.1)where �(p) = ( 1 if p > 00 if p = 0 , � = �g. We should add some boundary conditions.Two 
uidsIf now we study in a porous medium two unmiscible 
uids of density �1 and �2, we can givea formulation of the problem using the stream function  2 R in place of the potential �,and de�ned by curl  = r�, where curl  =  �@y @x !. Now a stream line is given byf = constg. In particular the interface � between these two 
uids is a stream line and (upto an additive constant) we can normalize  such that � = f = 0g. Then the problem canbe reduced (see [5]) to the equation:� = ��@x(�( > 0)) (1.2)where �( ) = ( 1 if  > 00 if  < 0 , and � = (�2 � �1)g > 0.REMARK 1.1 In particular for a uniform 
ow v = v0ex with v0 2 R and for a horizontalinterface � = fy = 0g, we get  (x; y) = v0k y. We see that the identi�cation of the regionsf > 0g and f < 0g to each one of these 
uids depends on the sign of v0.REMARK 1.2 If  i; i = 1; 2 is the restriction of  on the domain of density �i, we haveon the free boundary (and whatever are the relative position of the 
uids 1 and 2):@ 1@n � @ 2@n + g(�2 � �1) < n; ex >= 0 for n = n2!1 (1.3)2



It is equivalent to take n = �n2!1. When �2 > �1, then the 
uid 1 is above the 
uid 2 ina physical situation. But equations (1.2) and (1.3) continue to have an interpretation whenthe 
uid 2 is above the 
uid 1, although it does not correspond to a stable physical situation.In particular if  is a solution of (1.2) with � = (�2 � �1)g > 0, and if  > 0 on one side ofthe free boundary �, and  < 0 on the other side, it can be asked where are the 
uid 1 andthe 
uid 2? The answer is that we do not know. If one region, say f > 0g is always abovethe other region f < 0g, then it would seem natural to say that the lighter 
uid (the 
uid1) is in the region f > 0g, and in this case the solution of the model (1.2) would describea physical situation.But what can be said from a mathematical point of view? Mathematically in one case if wetake  1 as the restriction of  on the region f > 0g and  2 the restriction of  on the regionf < 0g, from (1.2) we can deduce the equality (1.3) on the free boundary � = f = 0g.In another case it is easy to check that the other function � = � is also solution of (1.2),then if we take �1 as the restriction of � on the region f� > 0g and �2 the restriction of �on the region f� < 0g, we deduce the equality (1.3) on the free boundary � = f� = 0g with�i in place of  i. Therefore it can be mathematically seen that we can chose the 
uid 1 inf > 0g or in f < 0g, i.e. the mathematical model (1.2) does not show in which region thelighter 
uid is.REMARK 1.3 In particular if ( ; 
) is a solution of (1.2), then ( ~ ; ~
) is also a solutionwith ~ (x; y) =  (x;�y); ~
(x; y) = 
(x;�y). It exchanges the relative position of the two
uids relatively to the gravity.REMARK 1.4 One condition to derive the model (1.2) was that f > 0g and f < 0gare two connected components. In particular every solution of (1.2) with more than twoconnected components should be interpretated carefully.REMARK 1.5 Let us note that we expect that � is a curve and then H2(�) = 0. In thesecase it is not necessary to precise the value of �( ) on �. But up to our knowledge thereis no general existence result of solutions with H2(�) = 0. The only known way to get asolution is to take the limit of solutions u� of the equation (1.2) with a smooth function ��in place of �. As � ! 0, �� ! � and  � !  where  is a weak solution to (1.2). In3



particular � = f = 0g could be degenerated with H2(�) > 0, and �( )j� could take everyvalue between 0 and 1. In this case the values of �( )j� would be important to claim that  is a solution of equation (1.2).1.2 The mathematical formulationFrom now on, let us use the notations ( u =  
 = �( )Then the weak solutions to (1.2) over an open set 
 � R2 are given by the followingvariational formulation: search (u; 
) 2 H1loc(
)� L1(
) such that8v 2 C10 (
); Z
rurv + �
@xv = 0; and 
 2 H(u) (1.4)where H(u) = 8><>: f1g if u > 0[0; 1] if u = 0f0g if u < 0 (1.5)and u = u0 on @
 (1.6)The existence of a solution (u; 
) to (1.4)-(1.6) is known under certain assumptions on@
 and on u0 (see [7], [14]).Moreover let us recall:PROPOSITION 1.6 Every solution (u; 
) of (1.4) belongs to C0;1loc (
)� L1(
).Proof of proposition 1.6See [5] p 631, [12] p 52-53.In this paper we are interested in getting information on the free boundary � = fu =0g and to know whether and when there exists a mushy region with H2(�) > 0. Thenonexistence of a mushy region is intimely related to the question of the uniqueness ofthe solutions (u; 
) to (1.4)-(1.6) , as it is shown in [7] in the particular case of a strip
 = R � (0; 1). In particular we study here the properties of � without assuming that thefunction u is monoton as in [5], or satis�es a property at +1 as in [7]. See also [13], [14].Here we study the free boundary of the solution in the general case.4



1.3 Main resultsLet us recall that in the region fu = 0g, 
 can have any value between 0 and 1, which permitsus to interprete 
 as a coe�cient of mixing of the two 
uids. It justi�es the terminologyof mushy region (when H2(�) > 0), that is sometimes given to the region fu = 0g for theStephan problem (see [17], [18], [19], [20]).DEFINITION 1.7 Let ! � R2 an open set convex in the ex direction, i.e. [(x; y); (x0; y0)] �! while (x; y); (x0; y) 2 !. Then we say that a set A � ! is a epigraph on ! in the ex directionif [(x; y); (x0; y0)] � A while (x; y) 2 A and [(x; y); (x0; y0)] � !, x < x0.We prove theTHEOREM 1.8 If (u; 
) is a solution of (1.4) on an open set 
 � R2, then for all openset ! convex in the ex direction, ! \ fu = 0g0 is an epigraph on ! in the ex direction.REMARK 1.9 Shoshana Kamin has noticed that a similar result is true for the Stephanproblem: the mushy region of a one-dimensionnal Stephan problem for (x; t) 2 R �R candiseappear in �nite time. We �nd the analogy with the change (x; t)! (y;�x).REMARK 1.10 The function 
 can be nonmonoton in y on a connected component offu = 0g0 (see the counter-example of section 5).Moreover we proveTHEOREM 1.11 If (u; 
) is a solution of (1.4) and if fu = 0g0 = ;, @fu > 0gn@fu <0g = ;, @fu < 0gn@fu > 0g = ;, then H2(fu = 0g) = 0.REMARK 1.12 If H2(�) = 0 and fu = 0g0 = ; then �u = ��@x
 = 0 on fu �0g0 [ fu � 0g0 and from maximum principle we deduce that @fu > 0gn@fu < 0g = ;,@fu < 0gn@fu > 0g = ;.REMARK 1.13 We do not know if under general conditions there is uniqueness and/oreven existence of a solution without a mushy region for problem (1.2)-(1.6).5



2 PreliminariesThe following proposition is obvious but usefull:PROPOSITION 2.1 If (u; 
) is a solution to (1.4), then (�u; 1� 
) is a solution too.LEMMA 2.2 (linear behaviour lemma, [9], [6]) Let 
1 � Rn (respectively 
2 � Rn) suchthat there exists a ball B with B = Br(ren) and B � 
1( respectively B = Br(�ren) and B � (
2)cAssume that u is a Lipschitz positive hamonic function in 
1 (respectively 
2) vanishing in@
1 (respectively @
2) and assume that @
i\B = f0g. Then near zero, u has the asymtoticdevelopment u(X) = �xn + o(jXj) on 
i with � � 0Furthermore � > 0 in case 
1, because of Hopf lemma.PROPOSITION 2.3 If (u; 
) is a solution of (1.4) and if u(X) = � < X � X0; � >+�� < X�X0; � >� +o(jX�X0j) with � 2 S1 and �; � 2 R, then there exists two functions0 � 
0�(y); 
0�(y) � 1 with 
0� � 1 if � > 0, 
0� � 0 if � < 0, 
0� � 0 if � > 0, and 
0� � 1 if� < 0, such that �� � + � < �; ex > (
0�(y)� 
0�(y)) = 0 (2.1)PROPOSITION 2.4 If locally fu = 0g0 = ;, then u is locally a solution for the freeboundary problem (PG) in the appendix with G(�; �;X) = � � � < ex; � >.Proof of proposition 2.4From lemma 2.2 and proposition 2.3 we see (even for the particular cases � = 0 or � = 0, be-cause fu = 0g0 = ;) that u is a solution to problem (PG) in the appendix with G(�; �;X) =� � � < ex; � >.The main tool that is used by Ca�arelli to prove regularity theorems in [8]-[9], is themonotonicity formula: 6



THEOREM 2.5 (lemma 5.1 [4]; lemma 18 [8]) Let two continuous functions u1; u2 �0 such thati) �ui � 0 (ui subharmonic)ii) ui(0) = 0iii) u1u2 � 0Let �(r) = RBr jru1j2�d�d� RBr jru2j2�d�d�r4 (2.2)where (�; �) are the radial and spheric coordinates in Rn.Then � is a nondecreasing function of r. Besides � is bounded near r = 0. In particular ifthe functions ui are de�ned on R2, and if �(r) = const > 0, then there exists � 2 S1; �i >0; i = 1; 2 such that u1(X) = �1 < X; � >+, u2(X) = �2 < X; � >�.Proof of proposition 2.3From the assumption of proposition 2.3, let us consider the blow-up:( u�(X) = u(X0+�X)�
� = 
(X0 + �X)Let us recall that u 2 C0;1loc (
) and 
 2 L1(
), then by Ascoli theorem up to extraction ofsome subsequence (u�; 
�)! (u0; 
0) on C0;�(K)�L1weak�(K) for every compact set K � R2and every � 2 (0; 1). Then (u0; 
0) satis�es also (1.4) and is a solution on R2. We haveu0(X) = � < X; � >+ �� < X; � >� thenZR2(�1f<X;�>>0g + �1f<X;�><0g)� � rv + �
0@xv = 0 (2.3)In particular @x
0 = 0 in f< X; � >6= 0g, i.e.
0(x; y) = ( 
0�(y) in f< X; � >> 0g
0�(y) in f< X; � >< 0gcase 1: < �; ex >= 0From (2.3) we have �@x
0 = ��v = 0 on fy > 0g and fy < 0g. Then 
0 = 
0(y) on R2.Consequently RR2 
@xv = 0 and from (2.3) � = � and equation (2.1) is veri�ed.case 2: < �; ex >6= 0We have X = xex + yey = x1ex + x�?�?, where �? =  ��y�x !. Then( x = x1 + x�? < �?; ex >y = x�? < �?; ey > dxdy = dx1dx�? < �?; ey >7



8<: x�? = y<�?;ey>x1 = x� y<�?;ex><�?;ey> ( @x = @x1@y = 1<�?;ey>@x�? � <�?;ex><�?;ey>@x1Moreover < �?; ex >= � < �; ey >, < �?; ey >=< �; ex >, and� � rv = 1< �; ex >@x1~v � < �; ey >< �; ex >@x�? ~v for ~v(x1; x�?) = v(x; y)Similarly let ~
0(x1; x�?) = 
0(x; y). Then from (2.3) we getZR2(�1fx1<�;ex>>0g + �1fx1<�;ex><0g)( 1< �; ex >@x1~v � < �; ey >< �; ex >@x�? ~v) + �~
@x1~v = 0Then (� � �)�fx1=0g + � < �; ex > @x1~
0 = 0, therefore � � � + � < �; ex > (~
0�(x�?) �~
0�(x�?)) = 0 where ~
0(x�?) = ( ~
0�(x�?) on fx1 > 0g~
0�(x�?) on fx1 < 0g , i.e. � � � + � < �; ex > (
0�(y) �
0�(y)) = 0, which proves proposition 2.3.3 fu = 0g0 is an epigraph in the ex directionHere we prove the theorem 1.8.If the result is false, then we work in ! (we can forget 
).Step 1LEMMA 3.1 Let P = (x1; y1) 2 fu = 0g0 \ ! such that 9x001 > x1, P 00 = (x001; y1) 2(fu = 0g0)c \ !. Let I0 the connected component of fu = 0g0 which contains P . Then9x01 > x1; y01; 9r0 > 0 such that for I = [y01 � r0; y01 + r0], we have !0 = [x1; x01] � I � ! and9�0 > 0, [x1; x1 + �0]� I � I0, [x01 � �0; x01]� � fu > 0g (up to a change of sign for u).Proof of lemma 3.1We know that 9Br(P ) � fu = 0g0 and by de�nition of P 00, 9P 0; d(P 00; P 0) < r2 with say (upto a change of sign on u, see proposition 2.1) u(P 0) > 0. Then 9Br0(P 0) �� fu > 0g withr0 < r2 . We note P 0 = (x01; y01) and !0 = [x1; x01]� I � ! with I = [y01� r0; y01+ r0]. We deducethe existence of a �0 > 0 as in the lemma, decreasing r0 if necessary. This ends the proof oflemma 3.1.Step 2 8



LEMMA 3.2 Let �0 = f�0(y) = (f0(y); y); f0(y) = supfx; (x; y) 2 I0 \ !0gg. Then upto a change of sign on u there exists a connected component C0 of fu > 0g \ !0, 9y+; y� 2I; y+ > y� such that �0(y+);�0(y�) 2 @I0 \ @C0.Proof of lemma 3.2Let C!0 the set of all connected components of (fu > 0g \ !0) [ (fu < 0g \ !0). For eachC 2 C!0 , two cases appear:i) either C is adherent to at most one point of �0.ii) or C is adherent to at least two points of �0.But C!0 is a set of connected components at most denombrable, and �0 is a set of nondenombrable points. Then 9C0 2 C!0 which veri�es the case ii), and up to a change of signon u we can assume that ujC0 > 0, and there exist two points �0(y�);�0(y+) 2 �0, withy� < y+. This ends the proof of lemma 3.2.Step 3LEMMA 3.3 Decreasing ! if necessary, we can assume (up to a change of sign on u) thatu � 0 on !0.Proof of lemma 3.3Let g0 a continuous path which links together �0(y�) to �0(y+) in I0. Precisely it meansthat there exists a injective and continuous map ~g0 : [�1; 1] ! I0 with Im(~g0) = g0,~g0((�1; 1)) � I0, and ~g0(�1) = �0(y�), ~g0(+1) = �0(y+).Let g+ a continuous path which links together �0(y�) to �0(y+) in C0. Then from the max-imum principle u � 0 on the bounded component of boundary g0 [ g�. This ends the proofof lemma 3.3.Step 4: contradictionLet us take a ball in fu > 0g and slide it in direction �ex. Then it touches @I0 at a pointX0. Then from the linear behaviour lemma 2.2, we get u(X) = � < X � X0; � >+ �� <X � X0; � >� +o(jX � X0j) for some � > 0 (because of the Hopf lemma) and � � 0(because u � 0) and with < �; ex >� 0. Then from proposition 2.3 we get � = � + � <�; ex > (
0�(y)� 
0�(y)) > 0 because 
0�(y) � 1 and 0 � 
0�(y) � 1. Contradiction.This ends the proof of the theorem 1.8. 9



4 Proof of theorem 1.114.1 Proof of theorem 1.11DEFINITION 4.1 We say that �(u) is �-
at in 0 for r � r� if and only if8r 2 (0; r�);( u > 0 on fy � �rg \ Br(0)u < 0 on fy � ��rg \Br(0)We say that X0 2 �(u) is a 
at point if 8� > 0; 9r� > 0, such that �(u) is �-
at in X0 forr � r�.DEFINITION 4.2 Let �flat the set of 
at points of �, and let �reg the set of points X0 2 �such that � is analytic in a neighbourhood of X0.Then we havePROPOSITION 4.3 If (u; 
) is a solution of (1.4) on ! simply connected, if fu = 0g0 \! = ; and if fu > 0g \ ! and fu < 0g \ ! are connected components such that (@fu >0gn@fu < 0g)\! = ;,(@fu < 0gn@fu > 0g)\! = ;, then if X0 2 �(u)\!, such that locallyu(X) = o(jX �X0j), then X0 2 �flat \ !.REMARK 4.4 Here the Ca�arelli theory [8]-[9] doesn't apply to improve the regularity of� because the solution is degenerate near X0.PROPOSITION 4.5 Under the same assumptions of proposition 4.3, if u(X) 6= o(jX �X0j) then � is analytic locally near X0, i.e. X0 2 �reg \ !.Proof of theorem 1.11DEFINITION 4.6 Let C+ (resp. C�) a connected component of fu > 0g \ 
 (resp.fu < 0g\
). Let P1; P2 2 @C+\@C�. Then there exists a continuous path g+ = g+P1;P2 � C+which links together P1 to P2. Precisely it means that there exists a injective continuous map~g+ : [�1; 1] ! C+ such that Im(~g+) = g+, g+((�1; 1)) � C+, g+(�1) = P1, g+(+1) = P2.Similarly there exists a continuous path g� = g�P1;P2 � C� which links together P1 to P2.We note !(P1; P2) every bounded closed component with boundary g+ [ g�, with g+; g� aspreviously. 10



We use the following lemma (
 could be not simply connected, that is why we work on someball B � 
):LEMMA 4.7 Let a ball B � 
. Let C+ (resp. C�) a connected component of fu > 0g\B(resp. fu < 0g \ B). Then 9P1; P2 2 @C+ \ @C� and !(P1; P2) as in de�nition 4.6 suchthat @C+ \ @C� � !(P1; P2).Then from proposition 4.5 and proposition 4.3 we have with ! = Int(!(P1; P2)):�0 := @C+ \ @C� = fP0; P 00g [ (�reg \ !) [ (�flat \ !)Let us consider a compactK �� B. IfH2(K\�0) > 0, then �(X) = lim infr!0 jBr(X)\(K\�0)jjBr(X)j =1 H2-a.e. X 2 K \ �0. In particular 9X0 2 �0; �(X0) = 1. Then X0 62 �reg, and thenX0 2 �flat which implies (from proposition 4.3) �(X0) � � for all � > 0. Contradiction. ThenH2(K \�0) = 0 for all K, therefore H2(@C+\@C�) = 0. The number of pair (C+; C�) is atmost denombrable, therefore by denombrable summability, H2(fu = 0g \ B) = 0 for everyball B � 
. Consequently H2(fu = 0g) = 0. This ends the proof of theorem 1.11.Proof of lemma 4.7It is easy to prove the lemma 4.7, using the connexity of C+ and C�, the fact that we workwith topology in two dimensions, and the fact that B is simply connected. We proceed asfollows. Let P0; P 01 ; P 02 2 �0 = @C+ \ C�. We consider the sets EP 0i for i = 1; 2 of pointsP such that P 0i 2 !(P0; P ). Each set EP 0i is ordened by the relation P � P 0 if and only ifP 2 !(P 0i ; P 0) for some set !(P 0i ; P 0) as in de�nition 4.6. Let Pi = max EP 0i ; i = 1; 2. To�nish we prove that @C+ \ @C�n!(P1; P2) = ;.4.2 Proof of proposition 4.5Let us consider a point X0 2 � \ ! such that u(X) 6= o(jX � X0j). Then let X0 = 0,u�(X) = u(�X)� . Then there exists a subsequence such that u� ! u0 and u0 6� 0. In particularfrom theorem 2.5 if we set u1 = u+, u2 = u�, we get that �u(r) := �(r) is nondecreasing.Now �u�(r) = �u(�r), then �u0(r) = �u(0).case 1: �u(0) > 0If �u(0) > 0 we conclude that u0(X) = � < X; � >+ �� < X; � >�, with �; � > 0; � 2 S1.Then from proposition 2.4 and from theorem 6.3 i) in the appendix we conclude that � is11



locally C1;� near X0, and then from the result of Kinderlehrer-Mirenberg [16], � is locallyanalytic.case 2: �u(0) = 0In this case u0 � 0 or u0 � 0. Up to a change of sign on u (see proposition 2.1) we canalways assume that u0 � 0 and u0 6� 0. In particular from theorem 1.8, fu0 = 0g0 is anepigraph in the ex direction. Here we prove:LEMMA 4.8 If u0 6� 0, u0 � 0 and (u0; 
0) is a solution of (1.4), then fu0 = 0g is anepigraph in the direction ex.Proof of lemma 4.8Let us assume that u > 0 on B = Br(x0; y0) and 9x1 < x0; u(x1; y0) = 0. We have u0 � 0and �u0 = 0 in fu0 > 0g and u0 is (Lipschitz-) continuous. Then u0 is a subsolution and@x
0 = � 1��u0 � 0. We know that 
0 � 1 in B and then �u0 = 0 on the left of B. Fromthe hard maximum principle we deduce that u0 > 0 on the left of B, because u0 > 0 on B.Consequently u0(x0; y0) > 0. Contradiction. This proves the lemma 4.8.LEMMA 4.9 If u0 6� 0, u0 � 0 and (u0; 
0) is a solution of (1.4), then 8y 2 R; 9x 2R; u0(x; y) > 0Proof of lemma 4.9Let us assume that 9y0 2 R; 8x 2 R; u0(x; y0) = 0. Then up to a translation we can assumethat y0 = 0. Because u0 6� 0, 9P 2 fy > 0g [ fy < 0g, u0(P ) > 0.Case 1: 9P+ 2 fy > 0g; 9P� 2 fy < 0g; u0(P+) > 0; u0(P�) > 0Then let us consider the blow-in ( u0;�(X) = u0(�X)�
0;�(X) = 
0(�X)If we set u1 = u01fy>0g; u2 = u01fy<0g we know from theorem 2.5 that �u0(r) := �(r) isnondecreasing in r. In particular �u0;�(r) = �u0(�r) > 0 for � > 0 large enough. Then upto extraction of some subsequence (u0;�; 
0;�) ! (u0;1; 
0;1) which is a solution of (1.4) onR2, and �u0;1(r) = �u0(+1) > 0. Then from theorem 2.5 u0;1(X) = �y+ � �y� � 0 with� > 0; � < 0 This is imposible from proposition 2.3.12



Case 2: u0 = 0 on fy > 0g or fy < 0gLet us assume that u0 = 0 on fy > 0g. Let for some �0 > 0:8>>>><>>>>: ~u0(x; y) = ( u0(x; y + �0) if y � 0u0(x;�y + �0) if y � 0~
0(x; y) = ( 
0(x; y + �0) if y � 0
0(x;�y + �0) if y � 0Then (~u0; ~
0) is a solution of (1.4) on R2 and we get a contradiction as in case 1.This ends the proof of lemma 4.9.Now we will use the following result:PROPOSITION 4.10 8�0 > 0; 9� > 0, such that if (u; 
) is a solution of (1.4) on 
 suchthat @fu > 0gn@fu < 0g = ;,@fu < 0gn@fu > 0g = ;, and juj < � on R1 � 
, thenfor y+ = supfy; (x; y) 2 @fu < 0g \ R1, y� = inffy; (x; y) 2 @fu < 0g \ R1. we have@fu < 0g \ R1 � (�1; 1)� ([y�; y� + 5�0] [ [y+ � 5�0; y+]).We have 0 2 @fu0 = 0g, then from lemma 4.8, u0(x; 0) = 0 for x � 0. Let for � � 0,� � 1, t � 0: ( u�t;�(x; y) = u�(�x+t;�y)�
et;�(x; y) = 
�(�x + t; �y)In particular u0t;1 ! u01;1 uniformly on every compact sets (up to extraction of some sub-sequence), and 
0t;1 ! 
01;1 in L1weak�. Then (u01;1; 
01;1) is a solution of (1.4), u01;1 � 0,and 8x 2 R; u01;1(x; 0) = 0, therefore from lemma 4.9 we have u01;1 � 0. Now wededuce that ju�1t;� � u01;�j � � on R2 if �1 is small enough and t large enough. Thenfrom proposition 4.10 we deduce that there exist y� = (y�1t;�)� such that ju�1t;�j > 0 onR1n[�1; 1] � ([y�; y� + 5�0] [ [y+ � 5�0; y+]), and 
�1t;� = 0 where u�1t;� < 0, 
�1t;� = 1 whereu�1t;� > 0. If we pass to the limit �rstly on �1 ! 0, we deduce that 
0t;� = u0t;� = 0on certain regions of the form [�1; 1] � [a; b]. But 
0t;� is nonincreasing in x, therefore8t0 > t; 
0t0;� = u0t0;� = 0 on [�1; 1]� [a; b].Now if we take � large enough we deduce that there exist y+; y� 2 R[f�1g[f+1g suchthat at x = +1, 
0 is equal to 0 or 1 on each interval (�1; y�); (y�; y+); (y+;+1).Case 1:
01;1 = 1 on (a; 0) or (0; a)It implies by construction, and because of lemma 4.9 that u0 > 0 on R � (0; a). Then we13



get a contradiction as in the proof of lemma 4.9 because u0(x; 0) = 0 for x � 0.Case 2:
01;1 = 0 on (a; b) 3 0Then there exists a ball Br(�ex) � fu0 = 0g0 for some r;� > 0, where 
0 = 0. Then wede�ne v0(x; y) = R �x u0(s; y)ds which veri�es8><>: v0 � 0�v0 = �1fv>0gjD2v0jL1 � max(Lip(u); �) < +1 (4.1)Moreover (v0)0x = �u0 � 0 and (v0)0x < 0 in fv0 > 0g. Then from a result of Alt [1] (seealso lemma 5.2 with �(x0) � � = const), @fv0 > 0g = @fu0 > 0g is locally Lipschitz. Wemade a new blow-up u0;�(X) = u0(�X)� ! u00(X), v0;�(X) = v0(�X)�2 ! v00(X). From Ca�arellitheory [11] we get v00(x; y) = (<X;�>+)22 or v00(x; y) = <X;�>22 where < ex; � >6= 0 because� is Lipschitz. But @xv00 = �u00 � 0, then u00(X) =< X; � >+ for < ex; � >< 0. Oncemore, from Ca�arelli theory [11] we get that @fu0 > 0g is analytic near 0. We conclude (seelemma 6.4 and the proof of theorem 6.3 iii) in the appendix) that �(u) is analytic near X0.Let us remark that if �(u) is analytic then from the Hopf lemma locally u(X) = � <X �X0; � >+ �� < X �X0; � >� +o(jXj) with �; � > 0 and then �u(0) > 0, which provesthat case 2 is impossible (for the two phases problem). This ends the proof of proposition 4.5.4.3 Flat points: proof of proposition 4.3REMARK 4.11 Let us remark that 8� 2 R, u(x; y) = e��x sin�y; 
 2 H(u) is locally asolution of problem (1.4).We assume that u(X) = o(jXj) near 0.For � > 0, let R� = (��; �)2 of center 0, and R� = [��; �]2. We assume that juj < � on R2.LEMMA 4.12 8�0 > 0; 9� > 0, such that if 9y0 2 R, juj < � on [�1; 1]� [y0� �0; y0+ �0],9x0 2 (�1; 1), and if there exists a continuous path g0 � fu > 0g \ [x0; 1]� [y0 � �0; y0 + �0]with fP1 = (x1; y0��0)g = g0\[x0; 1]�fy0��0g, fP2 = (x2; y0+�0)g = g0\[x0; 1]�fy0+�0g,then fy = y0g \ Rg0 � fu > 0g, where P 01 = (�1; y0 � �0); P 02 = (�1; y0 + �0) and Rg0 is thebounded connected component of boundary [P1P 01] [ [P 01P 02] [ [P 02P2] [ g0, i.e. the componentof [�1; 1]� [y0 � �0; y0 + �0] at the left of g0.14



Proof of lemma 4.12Step 1: Construction of a subsolutionLet �0 > 0 very small. Let C(�0) = f�(cos�; sin�); � > 0; � 2 [��0; �0]g, and for � > 0,C�(�0) = fX; d(X; C(�0)) < �g. For L > 0, let CL� (�0) = fX 2 C�(�0); x < Lg. We want toconstruct a subsolution of the problem 1.4 on CL2�(�0). For this, we introduce the functionv1 de�ned on CL2�(�0)nCL� (�0) by8>>>><>>>>: �v1 = 0 on CL2�(�0)nCL� (�0)v1 = 0 on (@C�(�0)) \ fx < Lgv1 = 1 on (@C2�(�0)) \ fx < Lgv1 = d(x;C�(�0))� on fx = Lg \ C2�(�0)nC�(�0) (4.2)And on CL� (�0) we de�ne v1 by8>>>><>>>>: �v1 = 0 on CL� (�0)v1 = 0 on (@C�(�0)) \ fx < Lgv1 = cos( yyL ) on C�(�0) \ fx = Lgwhere 2yL = lenght of C�(�0) \ fx = Lg (4.3)Then let v�� = ( ��v1 on CL2�(�0)nCL� (�0)�v1 on CL� (�0) (4.4)Then on the free boundary, 8X0 2 �(v�� ) = (@C�(�0)) \ fx < Lg, we have u(X) = � <X �X0; �0 >+ �� < X �X0; �0 >� +o(jX �X0j), where �0 is the normal to �(v�� ) in X0.But here � = ��1, � = ��1, < ex; � >� sin�0 > 0, and we search to verify the condition ofsubsolution on the boundary � > � � � < ex; � > (4.5)Then we see that 9� = �(�0; �; L) > 0 (and � ! 0 as �0; �0 ! 0) such that we obtain for all� � 0 a strict subsolution v�� of problem (PG) in the appendix with G(�; x; �) = � � � <ex; � >. Let us chose � and �0 such that �0 � 2� + L sin�0 and L = 4.Step 2Let vt(x; y) = v�� (x + t; y � y0). For t < �2 we have Rg0 \ supp(vt) = ;. Then we apply asliding method, increasing t continuously. By hypothesis vt is a subsolution on supp(vt)\Rg0(see �gure 1), and vt can not touch u on @(supp(vt) \ Rg0) � supp(vt) [ g0, because15



i) vt = �� and u > �� on @(supp(vt)).ii) u > 0 on g0 and then we can chose � > 0 such that u > � � vt on g0.Then vt can only touch u on �(vt) = @fvt > 0g. But vt is a strict subsolution on �(vt),consequently it is impossible (see lemma 7 in [8]). Then if we have chosen � and �0 smallenough we can increase t until �(vt) touches fx = �2 + �g, which proves lemma 4.12.REMARK 4.13 The lemma 4.12 is true too if we change fu > 0g by fu < 0g (see propo-sition 2.1).

�gure 1LEMMA 4.14 Let us assume that juj < � on R2. Then it does not exist three points Pi =(xi; yi) 2 @fu < 0g \R1; i = 1; 2; 3 such that �1 � y1 < y1 + 5�0 � y2 < y2 + 5�0 � y3 � 1.Then proposition 4.10 is a corollary of lemma 4.14.Proof of lemma 4.14Let us assume that there exists three such points. Then there exists P12 = (x12; y12) 2(�1; 1) � (y1 + 2�0; y2 � 2�2) such that u(P12) 6= 0. By symmetry let us assume thatu(P12) > 0. Then there exists a continuous path g12 � fu < 0g which links together P1to P2. It is possible that g12 goes outside R2, but in every cases u < � on the bounded16



component of boundary [P1P2] [ g12, because of the maximum principle.case 1):g12 goes on the right of P12Because g12 goes on the right of P12, we can apply the proof of lemma 4.12: let P 01 =(�1; y1); P 02 = (�1; y2) and Rg12 the bounded component of boundary [P1P 01] [ [P 01P 02] [[P 02P2] [ g12. Then P12 2 Rg12�0 = Rg12 \ fy1 + �0 � y � y2 � �0g � fu < 0g. Contradiction.case 2):g12 goes on the left of P12Let g23 � fu > 0g a continuous path which links together P12 to P3.subcase 2)a):g23 goes on the left of g12 (see �gure 2)Let Rg23 the bounded component of boundary g23 [ [P12P3]. Then as previously we getP1 2 Rg23�0 = Rg23 \ fy � y12 � �0g � fu < 0g. Contradiction.subcase 2)a):g23 goes on the right of g12 (see �gure 2)Then P2 2 Rg23�0 = Rg23 \ fy12 + �0 � y � y3 � �0g \ R1 � fu < 0g. Contradiction.In every case we get a contradiction. Then it proves the lemma 4.14.

�gure 2Proof of proposition 4.3Up to consider u�1(X) = u(�1X)�1 ; 
�1(X) = 
(�1X) with 0 < �1 < 1 in place of (u; 
), wededuce from proposition 4.10 that we are in one the following cases:Case C3We have three parts: juj > 0 on (�1; 1)� (�1; y�); (�1; 1)� (y� + 5�0; y+ � 5�0); (�1; 1)�(y+; 1), where �1 < y� < y� + 10�0 < y+ < 1 and 0 2 [y�; y� + 5�0] [ [y+ � 5�0; y+].Case C2 17



We have two parts: juj > 0 on (�1; 1)� (�1;�10�0); (�1; 1)� (10�0; 1).And each case has subcases: we see the sign of u on each part from the top to the bottom.For example we note C3 + +� a situation in case C3 where u > 0 on the two parts aboveand u < 0 on the last part below. We will note more generally C3aab the case C3 + +� orthe case C3��+.subcase C3aaaLet us consider for example the case C3 � ��. Then the method of proof of lemma 4.14applies and gives a contradiction (see �gure 3).

�gure 3subcase C3aab or C3abbLet us consider for example the case C3 � �+. Then the method of proof of lemma 4.14applies and gives a contradiction (see �gure 4).

18



�gure 4subcase C3abaLet us consider for example the case C3 +�+. Then with a zoom with some 0 < �1 < 1 weget the case C2ab for (u�1; 
�1) (see �gure 5).

�gure 5subcase C2abLet us consider for example the case C2+�. Then with a continuous zoom with 0 < �1 < 1we get the case C2ab for (u�; 
�) (see �gure 6), because the only other cases C3aab or C3abbare impossible. Then the con�guartion C2ab is \stable" by zoom.

�gure 619



subcase C2aa (see �gure 7)Let us consider for example the case C2 � �. Then with a zoom with 0 < �1 < 1 we canonly get cases:i) C3aaa: impossibleii) C3aba, and then C2abiii) C2aaLet us assume that we keep the case C2aa for every 0 < �1 < 1. Then for the conesC� = fX;�<X;ey>jXj > 12g we have(C+ [ C�) \Br(0) � fu < 0g (4.6)if �0 is small enough. But 0 2 @fu > 0g, and if Cl = fu > 0g \ fx < 0g \ Br(0) 6= ;,Cd = fu > 0g \ fx > 0g \ Br(0) 6= ; for every r > 0 small enough, then there exists acontinuous path g � fu > 0g which connects Cl to Cd. This path can not go near 0 becauseof (4.6), then g goes round one of the components (�1; 1)� (�1;�10�0); (�1; 1)� (10�0; 1)where u < 0. Contradiction. Then we have Cl = ; or Cd = ;. Then u < 0 locally on fx < 0gor fu > 0g. Thus the Hopf lemma gives a contradiction to the fact that u(X) = o(jXj).

�gure 7Consequenlty in every case for 0 < �1 < 1 small enough (u�1; 
�1) is in the case C2ab,and it proves the proposition 4.3.
20



5 ExamplesLet us recall an example of a mushy region which is given in [7]. Let 
 = R� (0; 1), u = f0on R�f0g, and u = f1 on R�f1g, where f1(x) = �f0(x) = a inf(1; exp(�x)), for a constanta > 0 to be �xed. Let g(y) = 1y(1�y) . Let v on fx < g(y)g equal to the harmonic functionwhich vanishes on x = g(y) and takes the values f0 and f1 on @
; and v = 0 on fx > g(y)g.Let � the exterior unit normal to fx > g(y)g, and 
v = �[ 12 ;1](y) + v+� (g(y);y)��ex . On the freeboundary one has v+� = O(e�jxj) and ex �� = O( 1x) as x! +1. Therefore for a small enough
v 2 [0; 1] and (v; 
v) is a solution.Remark that when u � 0, the problem (1.4) reduced to the problem (1.1) with a gener-alised function ~�(p) = 
(u), and u(x; y) = p(y;�x). Recall that if we assume that ~�(0) = 0,then it is known (see [1]) that the boundary @(fp = 0g0) (i.e. @(fu = 0g0)) is an analyticalgraph.In the general case we have thePROPOSITION 5.1 If (u; 
) is a slution of (1.4), and locally( u � 0; 
 2 C0;1
 � 1� � < 1 on fu = 0g0 (5.1)Then locally �0(u) = @(fu = 0g0) is a C1;� graph in direction ex and 
 = 
(y) on fu = 0g0.This proposition can be proved using for the function v(x; y) = R ax v(x0; y)dx0 the followinglemma which is an adapted version of a result of Alt [1].LEMMA 5.2 For B1 � Rn, if v 2 C1(B1),� 2 C0;1, 0 2 � = @fv > 0g, and for x =(x0; xn) 2 Rn: 8><>: �v = �(x0) > 0 in B1 \ fv > 0g@xnv � 0 in B1@xnv > 0 in B1 \ fv > 0gThen � is Lipschitz in B 12 .In proposition 5.1, the condition � > 0 is necessary, because if not, we can construct acounter-example u solution of (1.4) such that �0(u) has a cusp.Counter-example 21



We use the holomorphic function F (z) = � exp(�q� ln(z)), with z = rei�; � 2 [��2 ; �2 ]; r �0. Then F is a di�eomorphism from fx � 0g on its range C which is a cusp becauseF (rei�) = Rei�, and a calculus gives R = e�p� ln r(1+o( 1� ln r )); ��� = �2p� ln r(1+ o(1)). Nowlet u = u1 � F�1 where u1(x + iy) = x+. Then �u = 0 on C by composition of holomorphicfunction. We must verify that u is locally Lipschitz, it means u+� is locally bounded, andconstruct a function 
0(y) = 
 in fu = 0g0 such that �u+ �@x
 = 0 in a neighbourhood of0. In particular from proposition 2.3, 
0(y) must verify:0 � 1� 
0(y) = � u+�� < ex; � > � 1But a calculus gives 0 � � u+��<ex;�> = 1�Re(F 0z(z)) where z = rei� with � = ��2 . But F 0z(z) =X2 e 1X2� 1X ! +1 where X = 1p� ln z = 1p�(ln r�i�2 ) ! 0. Moreover < ex; � >! 0 as r ! 0,then u0� ! 0 as r ! 0 and locally u is Lipschitz (and positive harmonic). Then locally it is asolution to (1.4). Remark that here 
0 = 1 + u+��ex�� 2 C1. Moreover �0(u) = @(fu = 0g0) 2C0;� for every � 2 (0; 1).REMARK 5.3 We do not know if there exists a solution (u; 
) to problem (1.4) on anopen set 
, such that u � 0 on 
 and (@fu > 0g)\
 6= ;. In what follows we give a possiblecandidate but we do not know if it is a posteriori a solution.Let 
 = (0;+1) � (0; 1). We give us a sequence (�n)n of positive real numbers, such that0 < P+1n=1 2n�1�n < 1. Then we will build a sequence of functions (un)n which converge to afunction u1 such that (@fu1 > 0g) \ 
 6= ;. But we do not know if there exists a function
1 2 L1(
) such that (u1; 
1) is a solution of problem (1.4) on 
.Step 0Let y0 = z0 = 0, y1 = z1 = 1 and y01 = z0+z12 . For some x01 > 0 let P01 = (x01; y01), and��(P01; z0; �1) = fx � x01; y = y01 + (z0 � y01)(1 � e��1(x�x01))g, ��(P01; z1; �1) = fx �x01; y = y01 + (z1 � y01)(1� e��1(x�x01))g, and because y01 > z0, y01 < z1, G�(P01; z0; �1) =fx � x01; y01 � y � y01 + (z0 � y01)(1� e��1(x�x01))g, G+(P01; z1; �1) = fx � x01; y01 � y �y01 + (z1 � y01)(1� e��1(x�x01))g, for �1 = �y1�y0 .Now we search a function u0 such that u0 = 0 on (0;+1)�f0; 1g and u0 = �0 cos(�(y�y01))on f0g � (0; 1) for some �0 > 0. We assume that u0 = 0 on @G0 and u0 is harmonic on
nG0 for G0 = G�(P01; z0; �1) [G+(P01; z1; �1).22



Step 1Let z001 = y01 � �12 , z011 = y01 + �12 , and y001 = z0+z0012 , y011 = z1+z0112 . Let P001 = fy =y001g\��(P01; z0; �1), P001 = fy = y011g\�+(P01; z1; �1), and �2 = �y011�y001 . Now we de�neu1 = ( u0 on @
0 on @G1and u1 is harmonic on 
nG1 where G1 = G�(P001; z0; �1)[G+(P001; z001; �2)[G�(P011; z011; �2)[G+(P011; z1; �1).Step 2Let x0001 = y001� �22 , z0011 = y001+ �22 , z0101 = y011� �22 , z0111 = y011+ �22 , and y0001 = z0+z00012 ,y0011 = z0011+z0012 , y0101 = z011+z01012 , y0111 = z0111+z12 . Let P0001 = fy = y0001g\��(P001; z0; �1),P0011 = fy = y0011g\�+(P001; z001; �2), P0101 = fy = y0101g\��(P011; z011; �2), P0111 = fy =y0111g \ �+(P011; z1; �1), and �3 = �y0011�y0001 = �y0111�y0101 . Now we de�neu2 = ( u0 on @
0 on @G2and u2 is harmonic on 
nG2 where G2 = G�(P0001; z0; �1)[G+(P0001; z0001; �3)[G�(P0011; z0011; �3)[G+(P0011; z001; �2)[G�(P0101; z011; �2)[G+(P0101; z0101; �3)[G�(P0111; z0111; �3)[G+(P0111; z1; �1).Step n � 3As previoulsy we build all the functions un; n � 3, and this sequence converges to a functionu1 which is positive except on horizontal half lines where u1 = 0. If the sequence (�n)nconverges rapidly to 0, we can see that near a tip P � of a half line the \free boundary" islocally essentially vertical because the sequence �n ! +1. In particular if a blow-up is pos-sible we �nd u1(P �+�X)� ! �x� for some � � 0 with x� = max(0;�x), which is coherentwith proposition 2.3.6 Appendix: extension of Ca�arelli results for freeboundaries with general function G(u+� ; �;X)DEFINITION 6.1 A function u is a solution of the problem (PG) on the open set 
 � Rnif and only if:i) u 2 C0;1loc (
) 23



ii) �u = 0 in 
+(u) := fu > 0g;
�(u) := fu � 0g0iii) On �(u) := (@
+(u)) \ 
, we have u+� = G(u�� ; �; X0) in the following weak sense.For every ball B = Br(Y0) with X0 2 @B \ �(u) and r = jX0 � Y0j:a) If B � 
+(u), let � = Y0�X0r 2 Sn�1. Then9� > 0; � � 0; u(X) � � < X �X0; � >+ �� < X �X0; � >� +o(jX �X0j)b)If B � 
�(u), let � = �Y0�X0r 2 Sn�1. Then9� 2 R; � � 0; u(X) � � < X �X0; � >+ �� < X �X0; � >� +o(jX �X0j)where in each case � = G(�; �;X0).We assume that G veri�es the hypothesis:HYPOTHESIS 6.2 i) G(�; x; �) 2 Rii) G is strictly increasing in �.iii) 8M > 0, G is a lipschitz continuous function in (�; �;X) 2 [�M;M ]� Sn�1 � 
Then we have the following two local results:THEOREM 6.3 i)If locally u(X) = �0 < X �X0; �0 >+ ��0 < X �X0; �0 >� +o(jX �X0j) and �0; �0 > 0, then locally �(u) 2 C1;�, and for every X1 2 �(u) near X0, there exist�1 2 Sn�1 and �; � � const(�0; �0) > 0 such that we have locally u(X) = � < X�X1; �1 >+�� < X �X1; �1 >� +o(jX �X1j).ii)Let us assume that 8� > 0; 9r� > 0; 8r < r�;
�(u) � Br(X0) \ f< X � X0; �0 >� ��rg.If u � 0 locally near X0 with u(X) = �0 < X�X0; �0 >+ +o(jX�X0j), �0 > 0, then locally� 2 C1;�, and for X1 2 �(u) near X0, there exists �1 2 Sn�1 and � � const(�0) > 0; � � 0such that we have locally u(X) = � < X �X1; �1 >+ �� < X �X1; �1 >� +o(jX �X1j).iii)The conclusion of ii) is also true if we change the condition u � 0 in a neighbourhood ofX0 by the condition G(0; �0; X0) > 0.LEMMA 6.4 If u is a solution of the problem (PG), with the condition i) of the theorem 6.3(resp. ii) or iii)), then locally, 8�0 2 (0; �2 ); 9C�0 > 0; 9� > 0; 8� 2 C+(�0; �0)\Sn�1 whereC+(�0; �0) = f� 2 Rnnf0g; angle (�; �0) � �0g, we have locally u(X + ��) � u(X) � C�0�(resp. u(X + ��)� u(X) � C�0� locally in fu > 0g).24



Proof of lemma 6.4It is an easy consequence of lemma 1, lemma 5, lemma 4 of [8], and of an adaptation of theproof of the theorem 2' of [9].Proof of the theorem 6.3Cases i) and ii)Under the conditions i) or ii) , the di�culty, is to avoid the values of G(u�� ; �; X) � 0, withthe help of a control on the normal � of �. So we adapt the proof of Ca�arelli [9], using thefact that initially for CM = Bn�11 � [�M;M ] � Rn where en = �0, �0 � �2 , �1 > 0, thereexists �0 > 0; �0 << 1, such that8� > �0; ( v = supjY j<sin �0 u(X � �(en + Y )) � u(X)� ��0 cos �0 in fv > 0g \ CMv = supjY j<sin �0 u(X � �(en + Y )) � u(X) in CM (6.1)What is important in the proof, is the condition on the boundary @fvt > 0g. Werecall that vt = vt + �w is a subsolution for the free boundary problem, where vt(X) =supY 2B��t(X) u(Y ), � = C� 14 , and w � 0 is a corrector function to permit to satisfy theboundary condition of subsolution on the free boundary of vt:vt(X) � � < X � ~X1; ~� >+ �� < X � ~X1; ~� >� +o(j < X � ~X1; ~� > j) (6.2)with � = G(�; ~�; ~X1).1)Firstly, from the lemma 2 [9], vt is monoton in a cone C(�0), where �0 is very close to �2 , if�0 is close enough to �2 initially. Then the normal ~� to @fvt > 0g is very close to en. This factpermits us to control the free boundary in a neighbourhood of X0. In particular the normal� in the proof of lemma 4 in [9] is close to en because ~� = �+�r�tj�+�r�tj and j�r�tj � C� 12 .2) Secondly, we must satisfy the boundary condition 6.2. But here we have changed thecondition 9C > 0; ��CG(�; x; �) is a decreasing function in � (6.3)which was required in the proof of Ca�arelli, by the condition iii) of hypothesis 6.2. Theboundary condition is satis�ed, because the function w constructed in [9] is now nondegen-erate because of (6.1). More precisely we can �nd a ball B � 
+(vt) with B tangent to@
+(vt) and the diameter of B is of order �. Now w � v and at a distance CM�2 where25



v � u � �CM2 �0 cos �0 and by Harmack inequality on B, we can construct a barrier subsolu-tion which proves that 9C = C(�1 cos �0) > 0; @~�w � C > 0.REMARK 6.5 Remark that this modi�cation of the proof of Ca�arelli is su�sant to applyhis proof without other knowledge on the sign of G in a neighboorhood of X0 (a priori Gcould be negative in some points).REMARK 6.6 In particular it proves that the results of Ca�arelli in [8]-[9] with inf�;X G(0; �; X) >0 are true without the conditions (6.3), but only assuming that u is Lipschitz and hypothesisiii).Then independantly on �, 9� 2 (0; 1) such that we obtain (6.1) with �; �0; �1; CM respectivelychanged by ��; �0 � � 14 ; �1 � � 116 ; CM(1�C� 18 ). Then the proof of Ca�arelli applies and provesthat � is Lipschitz. Moreover the proof of [8] applies with the same modi�cation.REMARK 6.7 We haven't used the fact that G(�0; �0; X0) > 0. In fact it is a consequenceof (6.1) which implies at the limit �! 0+,9��0; ��1; 8� 2 C+(��0); (u+)0� � C��1 cos ��0 > 0This proves that � � const(�0) > 0. Particularly, under condition i) we have �0 > 0, thenthe same raisonning applies in fu < 0g which proves that � � const(�0) > 0.Case iii)In this case we would like to apply the proof of theorem 2 in [9]. But here is a new di�culty:we do not know a priori if u+ in nondegenerate, i.e. in a neighbourhood of X0, u+� � C > 0.To prove the iii) we must modify the proof of lemma 6 in [9] as follows. Let us take thenew criteria (for some 1 >> �1 > 0 �xed): u�(�12en) � C�1��1 for the alternative a), andu�(�12en) < C�1��1 for the alternative b).alternative a)Then in C1�C��1 for some �1 > 0 small enough and for C1��1 < jX1 � X2j < C2��1 we get(see p 72 in [9] for the function v de�ned page 70) v(X2) � v(X1) � C�0u�(�12en)�(�+1)�1 �C�1�(�1+(�+1)�1), and because u is Lipschitz and d(X3;�) � � for every X3 2 A, we get26



u� � C� on A and then v � u� � v+C� (as in p 70 in [9]). We conclude that u(X2) � u(X1)for X1 �X2 2 �(�1; en) and u is C��1 -monoton.alternative b)We have u+� � G(u�� ; �; X) � G(0; �0; X0) > 0 in the points of interest of �(u) (point ofcomparison for vt, see 1)). In particular for these points we get (from the monotonicityformula) 0 � u�� � C� 1��12 �� and then we conclude similarly as in [9] with � � C� 1��12 ��.References[1] Alt H.W., The 
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