On the mushy region arising between two fluids in a porous medium

A. Bonnet Goldman Sachs International

&

R. Monneau Ecole Nationale des Ponts et Chaussées, CERMICS

November 9, 1998

Abstract

We study the mushy region arising between two fluids in a porous medium. We prove that the interior of the mushy region is an epigraph in the horizontal direction. Moreover when the interior of the mushy region is empty, we give a necessary and sufficient condition to claim that the Lebesgue measure of the mushy region is zero.

AMS Classification: 35B50, 35R35.

Keywords: Free boundary problem, mushy region, blow-up, Caffarelli results.

1 Introduction

1.1 The physical problem

We study here the interface between two fluids for a steady flow in a porous medium.

One fluid

Let us recall that the steady flow of one fluid in a porous medium, is characterized by its own pressure $p \ge 0$ (p = 0 outside the fluid), and its velocity which is brought about by the Darcy law:

$$v = -k\nabla\phi$$

Here k is a permeability coefficient which depends on the porous medium and is assumed constant. The potential ϕ is given by $\phi = p + \rho gy$ (ρ is the volumic mass of the fluid, g the gravity, y the vertical axis upward oriented); if the soil is given by $\{y < 0\}$, then ϕ measures the difference of p to the hydrostatic pressure $p_0 = -\rho gy$. The coordinate x will denote the horizontal axis, and we will work in two dimensions $X = (x, y) \in \mathbf{R}^2$. Moreover we assume that the fluid is incompressible:

div
$$v = 0$$

The research of the free surface of this monofluid can be then reduced (see [2]) to the equation

$$\Delta p = -\lambda \partial_y(\chi(p > 0)) \tag{1.1}$$

where $\chi(p) = \begin{cases} 1 \text{ if } p > 0 \\ 0 \text{ if } p = 0 \end{cases}$, $\lambda = \rho g$. We should add some boundary conditions. **Two fluids**

If now we study in a porous medium two unmiscible fluids of density ρ_1 and ρ_2 , we can give a formulation of the problem using the stream function $\psi \in \mathbf{R}$ in place of the potential ϕ , and defined by curl $\psi = \nabla \phi$, where curl $\psi = \begin{pmatrix} -\partial_y \psi \\ \partial_x \psi \end{pmatrix}$. Now a stream line is given by $\{\psi = const\}$. In particular the interface Γ between these two fluids is a stream line and (up to an additive constant) we can normalize ψ such that $\Gamma = \{\psi = 0\}$. Then the problem can be reduced (see [5]) to the equation:

$$\Delta \psi = -\lambda \partial_x (\chi(\psi > 0)) \tag{1.2}$$

where $\chi(\psi) = \begin{cases} 1 \text{ if } \psi > 0 \\ 0 \text{ if } \psi < 0 \end{cases}$, and $\lambda = (\rho_2 - \rho_1)g > 0.$

REMARK 1.1 In particular for a uniform flow $v = v_0 e_x$ with $v_0 \in \mathbf{R}$ and for a horizontal interface $\Gamma = \{y = 0\}$, we get $\psi(x, y) = \frac{v_0}{k}y$. We see that the identification of the regions $\{\psi > 0\}$ and $\{\psi < 0\}$ to each one of these fluids depends on the sign of v_0 .

REMARK 1.2 If ψ_i ; i = 1, 2 is the restriction of ψ on the domain of density ρ_i , we have on the free boundary (and whatever are the relative position of the fluids 1 and 2):

$$\frac{\partial \psi_1}{\partial n} - \frac{\partial \psi_2}{\partial n} + g(\rho_2 - \rho_1) < n, e_x >= 0 \text{ for } n = n_{2 \to 1}$$

$$(1.3)$$

It is equivalent to take $n = -n_{2\to 1}$. When $\rho_2 > \rho_1$, then the fluid 1 is above the fluid 2 in a physical situation. But equations (1.2) and (1.3) continue to have an interpretation when the fluid 2 is above the fluid 1, although it does not correspond to a stable physical situation. In particular if ψ is a solution of (1.2) with $\lambda = (\rho_2 - \rho_1)g > 0$, and if $\psi > 0$ on one side of the free boundary Γ , and $\psi < 0$ on the other side, it can be asked where are the fluid 1 and the fluid 2? The answer is that we do not know. If one region, say $\{\psi > 0\}$ is always above the other region $\{\psi < 0\}$, then it would seem natural to say that the lighter fluid (the fluid 1) is in the region $\{\psi > 0\}$, and in this case the solution of the model (1.2) would describe a physical situation.

But what can be said from a mathematical point of view? Mathematically in one case if we take ψ_1 as the restriction of ψ on the region $\{\psi > 0\}$ and ψ_2 the restriction of ψ on the region $\{\psi < 0\}$, from (1.2) we can deduce the equality (1.3) on the free boundary $\Gamma = \{\psi = 0\}$. In another case it is easy to check that the other function $\phi = -\psi$ is also solution of (1.2), then if we take ϕ_1 as the restriction of ϕ on the region $\{\phi > 0\}$ and ϕ_2 the restriction of ϕ on the region $\{\phi < 0\}$, we deduce the equality (1.3) on the free boundary $\Gamma = \{\phi = 0\}$ with ϕ_i in place of ψ_i . Therefore it can be mathematically seen that we can chose the fluid 1 in $\{\psi > 0\}$ or in $\{\psi < 0\}$, i.e. the mathematical model (1.2) does not show in which region the lighter fluid is.

REMARK 1.3 In particular if (ψ, γ) is a solution of (1.2), then $(\tilde{\psi}, \tilde{\gamma})$ is also a solution with $\tilde{\psi}(x, y) = \psi(x, -y), \tilde{\gamma}(x, y) = \gamma(x, -y)$. It exchanges the relative position of the two fluids relatively to the gravity.

REMARK 1.4 One condition to derive the model (1.2) was that $\{\psi > 0\}$ and $\{\psi < 0\}$ are two connected components. In particular every solution of (1.2) with more than two connected components should be interpretated carefully.

REMARK 1.5 Let us note that we expect that Γ is a curve and then $\mathcal{H}^2(\Gamma) = 0$. In these case it is not necessary to precise the value of $\chi(\psi)$ on Γ . But up to our knowledge there is no general existence result of solutions with $\mathcal{H}^2(\Gamma) = 0$. The only known way to get a solution is to take the limit of solutions u_{ϵ} of the equation (1.2) with a smooth function χ_{ϵ} in place of χ . As $\epsilon \to 0$, $\chi_{\epsilon} \to \chi$ and $\psi_{\epsilon} \to \psi$ where ψ is a weak solution to (1.2). In particular $\Gamma = \{\psi = 0\}$ could be degenerated with $\mathcal{H}^2(\Gamma) > 0$, and $\chi(\psi)|_{\Gamma}$ could take every value between 0 and 1. In this case the values of $\chi(\psi)|_{\Gamma}$ would be important to claim that ψ is a solution of equation (1.2).

1.2 The mathematical formulation

From now on, let us use the notations

$$\begin{cases} u = \psi \\ \gamma = \chi(\psi) \end{cases}$$

Then the weak solutions to (1.2) over an open set $\Omega \subset \mathbf{R}^2$ are given by the following variational formulation: search $(u, \gamma) \in H^1_{loc}(\Omega) \times L^{\infty}(\Omega)$ such that

$$\forall v \in C_0^{\infty}(\Omega), \quad \int_{\Omega} \nabla u \nabla v + \lambda \gamma \partial_x v = 0, \text{ and } \gamma \in H(u)$$
 (1.4)

where

$$H(u) = \begin{cases} \{1\} \text{ if } u > 0\\ [0,1] \text{ if } u = 0\\ \{0\} \text{ if } u < 0 \end{cases}$$
(1.5)

and

$$u = u_0 \text{ on } \partial\Omega \tag{1.6}$$

The existence of a solution (u, γ) to (1.4)-(1.6) is known under certain assumptions on $\partial\Omega$ and on u_0 (see [7], [14]).

Moreover let us recall:

PROPOSITION 1.6 Every solution (u, γ) of (1.4) belongs to $C^{0,1}_{loc}(\Omega) \times L^{\infty}(\Omega)$.

Proof of proposition 1.6

See [5] p 631, [12] p 52-53.

In this paper we are interested in getting information on the free boundary $\Gamma = \{u = 0\}$ and to know whether and when there exists a mushy region with $\mathcal{H}^2(\Gamma) > 0$. The nonexistence of a mushy region is intimely related to the question of the uniqueness of the solutions (u, γ) to (1.4)-(1.6), as it is shown in [7] in the particular case of a strip $\Omega = \mathbf{R} \times (0, 1)$. In particular we study here the properties of Γ without assuming that the function u is monoton as in [5], or satisfies a property at $+\infty$ as in [7]. See also [13], [14]. Here we study the free boundary of the solution in the general case.

1.3 Main results

Let us recall that in the region $\{u = 0\}$, γ can have any value between 0 and 1, which permits us to interprete γ as a coefficient of mixing of the two fluids. It justifies the terminology of mushy region (when $\mathcal{H}^2(\Gamma) > 0$), that is sometimes given to the region $\{u = 0\}$ for the Stephan problem (see [17], [18], [19], [20]).

DEFINITION 1.7 Let $\omega \subset \mathbb{R}^2$ an open set convex in the e_x direction, i.e. $[(x, y), (x', y')] \subset \omega$ while $(x, y), (x', y) \in \omega$. Then we say that a set $A \subset \omega$ is a epigraph on ω in the e_x direction if $[(x, y), (x', y')] \subset A$ while $(x, y) \in A$ and $[(x, y), (x', y')] \subset \omega, x < x'$.

We prove the

THEOREM 1.8 If (u, γ) is a solution of (1.4) on an open set $\Omega \subset \mathbb{R}^2$, then for all open set ω convex in the e_x direction, $\omega \cap \{u = 0\}^0$ is an epigraph on ω in the e_x direction.

REMARK 1.9 Shoshana Kamin has noticed that a similar result is true for the Stephan problem: the mushy region of a one-dimensionnal Stephan problem for $(x,t) \in \mathbf{R} \times \mathbf{R}$ can diseappear in finite time. We find the analogy with the change $(x,t) \to (y, -x)$.

REMARK 1.10 The function γ can be nonmonoton in y on a connected component of $\{u = 0\}^0$ (see the counter-example of section 5).

Moreover we prove

THEOREM 1.11 If (u, γ) is a solution of (1.4) and if $\{u = 0\}^0 = \emptyset$, $\partial \{u > 0\} \setminus \partial \{u < 0\} = \emptyset$, $\partial \{u < 0\} \setminus \partial \{u > 0\} = \emptyset$, then $\mathcal{H}^2(\{u = 0\}) = 0$.

REMARK 1.12 If $\mathcal{H}^2(\Gamma) = 0$ and $\{u = 0\}^0 = \emptyset$ then $\Delta u = -\lambda \partial_x \gamma = 0$ on $\{u \geq 0\}^0 \cup \{u \leq 0\}^0$ and from maximum principle we deduce that $\partial \{u > 0\} \setminus \partial \{u < 0\} = \emptyset$, $\partial \{u < 0\} \setminus \partial \{u > 0\} = \emptyset$.

REMARK 1.13 We do not know if under general conditions there is uniqueness and/or even existence of a solution without a mushy region for problem (1.2)-(1.6).

2 Preliminaries

The following proposition is obvious but usefull:

PROPOSITION 2.1 If (u, γ) is a solution to (1.4), then $(-u, 1 - \gamma)$ is a solution too.

LEMMA 2.2 (linear behaviour lemma, [9], [6]) Let $\Omega_1 \subset \mathbf{R}^n$ (respectively $\Omega_2 \subset \mathbf{R}^n$) such that there exists a ball B with

$$B = B_r(re_n) \text{ and } B \subset \Omega_1$$
(respectively $B = B_r(-re_n)$ and $B \subset (\Omega_2)^c$

Assume that u is a Lipschitz positive hamonic function in Ω_1 (respectively Ω_2) vanishing in $\partial \Omega_1$ (respectively $\partial \Omega_2$) and assume that $\partial \Omega_i \cap B = \{0\}$. Then near zero, u has the asymptotic development

$$u(X) = \alpha x_n + o(|X|) \text{ on } \Omega_i \text{ with } \alpha \ge 0$$

Furthermore $\alpha > 0$ in case Ω_1 , because of Hopf lemma.

PROPOSITION 2.3 If (u, γ) is a solution of (1.4) and if $u(X) = \alpha < X - X_0, \nu >^+ -\beta < X - X_0, \nu >^- +o(|X - X_0|)$ with $\nu \in \mathbf{S}^1$ and $\alpha, \beta \in \mathbf{R}$, then there exists two functions $0 \leq \gamma^0_{\alpha}(y), \gamma^0_{\beta}(y) \leq 1$ with $\gamma^0_{\alpha} \equiv 1$ if $\alpha > 0, \gamma^0_{\alpha} \equiv 0$ if $\alpha < 0, \gamma^0_{\beta} \equiv 0$ if $\beta > 0$, and $\gamma^0_{\beta} \equiv 1$ if $\beta < 0$, such that

$$\alpha - \beta + \lambda < \nu, e_x > (\gamma^0_\alpha(y) - \gamma^0_\beta(y)) = 0$$
(2.1)

PROPOSITION 2.4 If locally $\{u = 0\}^0 = \emptyset$, then u is locally a solution for the free boundary problem (P_G) in the appendix with $G(\beta, \nu, X) = \beta - \lambda < e_x, \nu >$.

Proof of proposition 2.4

From lemma 2.2 and proposition 2.3 we see (even for the particular cases $\alpha = 0$ or $\beta = 0$, because $\{u = 0\}^0 = \emptyset$) that u is a solution to problem (P_G) in the appendix with $G(\beta, \nu, X) = \beta - \lambda < e_x, \nu >$.

The main tool that is used by Caffarelli to prove regularity theorems in [8]-[9], is the monotonicity formula:

THEOREM 2.5 (lemma 5.1 [4]; lemma 18 [8]) Let two continuous functions $u_1, u_2 \ge$

0 such that i) $\Delta u_i \ge 0$ (u_i subharmonic) ii) $u_i(0) = 0$ iii) $u_1u_2 \equiv 0$ Let

$$\phi(r) = \frac{\int_{B_r} |\nabla u_1|^2 \rho d\rho d\sigma \int_{B_r} |\nabla u_2|^2 \rho d\rho d\sigma}{r^4}$$
(2.2)

where (ρ, σ) are the radial and spheric coordinates in \mathbf{R}^n .

Then ϕ is a nondecreasing function of r. Besides ϕ is bounded near r = 0. In particular if the functions u_i are defined on \mathbf{R}^2 , and if $\phi(r) = const > 0$, then there exists $\nu \in \mathbf{S}^1, \alpha_i > 0$, i = 1, 2 such that $u_1(X) = \alpha_1 < X, \nu >^+, u_2(X) = \alpha_2 < X, \nu >^-$.

Proof of proposition 2.3

From the assumption of proposition 2.3, let us consider the blow-up:

$$\begin{cases} u^{\epsilon}(X) = \frac{u(X_0 + \epsilon X)}{\epsilon} \\ \gamma^{\epsilon} = \gamma(X_0 + \epsilon X) \end{cases}$$

Let us recall that $u \in C^{0,1}_{loc}(\Omega)$ and $\gamma \in L^{\infty}(\Omega)$, then by Ascoli theorem up to extraction of some subsequence $(u^{\epsilon}, \gamma^{\epsilon}) \to (u^{0}, \gamma^{0})$ on $C^{0,\alpha}(K) \times L^{\infty}_{weak*}(K)$ for every compact set $K \subset \mathbb{R}^{2}$ and every $\alpha \in (0, 1)$. Then (u^{0}, γ^{0}) satisfies also (1.4) and is a solution on \mathbb{R}^{2} . We have $u^{0}(X) = \alpha < X, \nu >^{+} -\beta < X, \nu >^{-}$ then

$$\int_{\mathbf{R}^2} (\alpha \mathbf{1}_{\{\langle X,\nu\rangle>0\}} + \beta \mathbf{1}_{\{\langle X,\nu\rangle<0\}}) \nu \cdot \nabla v + \lambda \gamma^0 \partial_x v = 0$$
(2.3)

In particular $\partial_x \gamma^0 = 0$ in $\{\langle X, \nu \rangle \neq 0\}$, i.e.

$$\gamma^{0}(x,y) = \begin{cases} \gamma^{0}_{\alpha}(y) \text{ in } \{< X, \nu >> 0\} \\ \gamma^{0}_{\beta}(y) \text{ in } \{< X, \nu >< 0\} \end{cases}$$

case 1: $< \nu, e_x >= 0$

From (2.3) we have $\lambda \partial_x \gamma^0 = -\Delta v = 0$ on $\{y > 0\}$ and $\{y < 0\}$. Then $\gamma^0 = \gamma^0(y)$ on \mathbf{R}^2 . Consequently $\int_{\mathbf{R}^2} \gamma \partial_x v = 0$ and from (2.3) $\alpha = \beta$ and equation (2.1) is verified. **case 2:** $\langle \nu, e_x \rangle \neq 0$

We have
$$X = xe_x + ye_y = x_1e_x + x_{\nu^{\perp}}\nu^{\perp}$$
, where $\nu^{\perp} = \begin{pmatrix} -\nu_y \\ \nu_x \end{pmatrix}$. Then

$$\begin{cases} x = x_1 + x_{\nu^{\perp}} < \nu^{\perp}, e_x > \\ y = x_{\nu^{\perp}} < \nu^{\perp}, e_y > \end{cases} \quad dxdy = dx_1dx_{\nu^{\perp}} < \nu^{\perp}, e_y > \end{cases}$$

$$\begin{cases} x_{\nu^{\perp}} = \frac{y}{\langle \nu^{\perp}, e_y \rangle} \\ x_1 = x - y \frac{\langle \nu^{\perp}, e_x \rangle}{\langle \nu^{\perp}, e_y \rangle} \end{cases} \begin{cases} \partial_x = \partial_{x_1} \\ \partial_y = \frac{1}{\langle \nu^{\perp}, e_y \rangle} \partial_{x_{\nu^{\perp}}} - \frac{\langle \nu^{\perp}, e_x \rangle}{\langle \nu^{\perp}, e_y \rangle} \partial_{x_1} \end{cases}$$

Moreover $\langle \nu^{\perp}, e_x \rangle = - \langle \nu, e_y \rangle$, $\langle \nu^{\perp}, e_y \rangle = \langle \nu, e_x \rangle$, and

$$\nu \cdot \nabla v = \frac{1}{\langle \nu, e_x \rangle} \partial_{x_1} \tilde{v} - \frac{\langle \nu, e_y \rangle}{\langle \nu, e_x \rangle} \partial_{x_{\nu^{\perp}}} \tilde{v} \text{ for } \tilde{v}(x_1, x_{\nu^{\perp}}) = v(x, y)$$

Similarly let $\tilde{\gamma}^0(x_1, x_{\nu^{\perp}}) = \gamma^0(x, y)$. Then from (2.3) we get

$$\int_{\mathbf{R}^2} (\alpha \mathbf{1}_{\{x_1 < \nu, e_x > > 0\}} + \beta \mathbf{1}_{\{x_1 < \nu, e_x > < 0\}}) (\frac{1}{\langle \nu, e_x \rangle} \partial_{x_1} \tilde{v} - \frac{\langle \nu, e_y \rangle}{\langle \nu, e_x \rangle} \partial_{x_{\nu\perp}} \tilde{v}) + \lambda \tilde{\gamma} \partial_{x_1} \tilde{v} = 0$$

Then $(\alpha - \beta)\delta_{\{x_1=0\}} + \lambda < \nu, e_x > \partial_{x_1}\tilde{\gamma}^0 = 0$, therefore $\alpha - \beta + \lambda < \nu, e_x > (\tilde{\gamma}^0_{\alpha}(x_{\nu^{\perp}}) - \tilde{\gamma}^0_{\beta}(x_{\nu^{\perp}}))) = 0$ where $\tilde{\gamma}^0(x_{\nu^{\perp}}) = \begin{cases} \tilde{\gamma}^0_{\alpha}(x_{\nu^{\perp}}) \text{ on } \{x_1 > 0\} \\ \tilde{\gamma}^0_{\beta}(x_{\nu^{\perp}}) \text{ on } \{x_1 < 0\} \end{cases}$, i.e. $\alpha - \beta + \lambda < \nu, e_x > (\gamma^0_{\alpha}(y) - \gamma^0_{\beta}(y)) = 0$, which proves proposition 2.3.

3 ${u = 0}^0$ is an epigraph in the e_x direction

Here we prove the theorem 1.8.

If the result is false, then we work in ω (we can forget Ω).

Step 1

LEMMA 3.1 Let $P = (x_1, y_1) \in \{u = 0\}^0 \cap \omega$ such that $\exists x_1'' > x_1, P'' = (x_1'', y_1) \in (\{u = 0\}^0)^c \cap \omega$. Let I_0 the connected component of $\{u = 0\}^0$ which contains P. Then $\exists x_1' > x_1, y_1', \exists r' > 0$ such that for $I = [y_1' - r', y_1' + r']$, we have $\omega_0 = [x_1, x_1'] \times I \subset \omega$ and $\exists \delta_0 > 0, [x_1, x_1 + \delta_0] \times I \subset I_0, [x_1' - \delta_0, x_1'] \times \subset \{u > 0\}$ (up to a change of sign for u).

Proof of lemma 3.1

We know that $\exists B_r(P) \subset \{u = 0\}^0$ and by definition of P'', $\exists P', d(P'', P') < \frac{r}{2}$ with say (up to a change of sign on u, see proposition 2.1) u(P') > 0. Then $\exists B_{r'}(P') \subset \{u > 0\}$ with $r' < \frac{r}{2}$. We note $P' = (x'_1, y'_1)$ and $\omega_0 = [x_1, x'_1] \times I \subset \omega$ with $I = [y'_1 - r', y'_1 + r']$. We deduce the existence of a $\delta_0 > 0$ as in the lemma, decreasing r' if necessary. This ends the proof of lemma 3.1.

Step 2

LEMMA 3.2 Let $\Gamma_0 = \{\Gamma_0(y) = (f_0(y), y), f_0(y) = \sup\{x, (x, y) \in I_0 \cap \omega_0\}\}$. Then up to a change of sign on u there exists a connected component C_0 of $\{u > 0\} \cap \omega_0, \exists y_+, y_- \in I, y_+ > y_-$ such that $\Gamma_0(y_+), \Gamma_0(y_-) \in \partial I_0 \cap \partial C_0$.

Proof of lemma 3.2

Let \mathcal{C}_{ω_0} the set of all connected components of $(\{u > 0\} \cap \omega_0) \cup (\{u < 0\} \cap \omega_0)$. For each $C \in \mathcal{C}_{\omega_0}$, two cases appear:

i) either C is adherent to at most one point of Γ_0 .

ii) or C is adherent to at least two points of Γ_0 .

But \mathcal{C}_{ω_0} is a set of connected components at most denombrable, and Γ_0 is a set of non denombrable points. Then $\exists C_0 \in \mathcal{C}_{\omega_0}$ which verifies the case ii), and up to a change of sign on u we can assume that $u_{|C_0|} > 0$, and there exist two points $\Gamma_0(y^-), \Gamma_0(y^+) \in \Gamma_0$, with $y^- < y^+$. This ends the proof of lemma 3.2.

Step 3

LEMMA 3.3 Decreasing ω if necessary, we can assume (up to a change of sign on u) that $u \ge 0$ on ω_0 .

Proof of lemma 3.3

Let g_0 a continuous path which links together $\Gamma_0(y_-)$ to $\Gamma_0(y_+)$ in I_0 . Precisely it means that there exists a injective and continuous map \tilde{g}_0 : $[-1,1] \rightarrow \overline{I}_0$ with $Im(\tilde{g}_0) = g_0$, $\tilde{g}_0((-1,1)) \subset I_0$, and $\tilde{g}_0(-1) = \Gamma_0(y_-)$, $\tilde{g}_0(+1) = \Gamma_0(y_+)$.

Let g_+ a continuous path which links together $\Gamma_0(y_-)$ to $\Gamma_0(y_+)$ in C_0 . Then from the maximum principle $u \ge 0$ on the bounded component of boundary $g_0 \cup g_-$. This ends the proof of lemma 3.3.

Step 4: contradiction

Let us take a ball in $\{u > 0\}$ and slide it in direction $-e_x$. Then it touches ∂I_0 at a point X_0 . Then from the linear behaviour lemma 2.2, we get $u(X) = \alpha < X - X_0, \nu >^+ -\beta < X - X_0, \nu >^- +o(|X - X_0|)$ for some $\alpha > 0$ (because of the Hopf lemma) and $\beta \leq 0$ (because $u \geq 0$) and with $\langle \nu, e_x \rangle \geq 0$. Then from proposition 2.3 we get $\beta = \alpha + \lambda < \nu, e_x > (\gamma^0_{\alpha}(y) - \gamma^0_{\beta}(y)) > 0$ because $\gamma^0_{\alpha}(y) \equiv 1$ and $0 \leq \gamma^0_{\beta}(y) \leq 1$. Contradiction.

This ends the proof of the theorem 1.8.

4 Proof of theorem 1.11

4.1 Proof of theorem 1.11

DEFINITION 4.1 We say that $\Gamma(u)$ is ϵ -flat in 0 for $r \leq r_{\epsilon}$ if and only if

$$\forall r \in (0, r_{\epsilon}), \begin{cases} u > 0 \text{ on } \{y \ge \epsilon r\} \cap B_r(0) \\ u < 0 \text{ on } \{y \le -\epsilon r\} \cap B_r(0) \end{cases}$$

We say that $X_0 \in \Gamma(u)$ is a flat point if $\forall \epsilon > 0, \exists r_{\epsilon} > 0$, such that $\Gamma(u)$ is ϵ -flat in X_0 for $r \leq r_{\epsilon}$.

DEFINITION 4.2 Let Γ_{flat} the set of flat points of Γ , and let Γ_{reg} the set of points $X_0 \in \Gamma$ such that Γ is analytic in a neighbourhood of X_0 .

Then we have

PROPOSITION 4.3 If (u, γ) is a solution of (1.4) on ω simply connected, if $\{u = 0\}^0 \cap \omega = \emptyset$ and if $\{u > 0\} \cap \omega$ and $\{u < 0\} \cap \omega$ are connected components such that $(\partial \{u > 0\} \setminus \partial \{u < 0\}) \cap \omega = \emptyset, (\partial \{u < 0\} \setminus \partial \{u > 0\}) \cap \omega = \emptyset$, then if $X_0 \in \Gamma(u) \cap \omega$, such that locally $u(X) = o(|X - X_0|)$, then $X_0 \in \Gamma_{flat} \cap \omega$.

REMARK 4.4 Here the Caffarelli theory [8]-[9] doesn't apply to improve the regularity of Γ because the solution is degenerate near X_0 .

PROPOSITION 4.5 Under the same assumptions of proposition 4.3, if $u(X) \neq o(|X - X_0|)$ then Γ is analytic locally near X_0 , i.e. $X_0 \in \Gamma_{reg} \cap \omega$.

Proof of theorem 1.11

DEFINITION 4.6 Let C^+ (resp. C^-) a connected component of $\{u > 0\} \cap \Omega$ (resp. $\{u < 0\} \cap \Omega$). Let $P_1, P_2 \in \partial C^+ \cap \partial C^-$. Then there exists a continuous path $g^+ = g^+_{P_1,P_2} \subset C^+$ which links together P_1 to P_2 . Precisely it means that there exists a injective continuous map $\tilde{g}^+ : [-1,1] \to \overline{C}^+$ such that $Im(\tilde{g}^+) = g^+, g^+((-1,1)) \subset C^+, g^+(-1) = P_1, g^+(+1) = P_2$. Similarly there exists a continuous path $g^- = g^-_{P_1,P_2} \subset C^-$ which links together P_1 to P_2 . We note $\overline{\omega}(P_1, P_2)$ every bounded closed component with boundary $g^+ \cup g^-$, with g^+, g^- as previously. We use the following lemma (Ω could be not simply connected, that is why we work on some ball $B \subset \Omega$):

LEMMA 4.7 Let a ball $B \subset \Omega$. Let C^+ (resp. C^-) a connected component of $\{u > 0\} \cap B$ (resp. $\{u < 0\} \cap B$). Then $\exists P_1, P_2 \in \partial C^+ \cap \partial C^-$ and $\overline{\omega}(P_1, P_2)$ as in definition 4.6 such that $\partial C^+ \cap \partial C^- \subset \overline{\omega}(P_1, P_2)$.

Then from proposition 4.5 and proposition 4.3 we have with $\omega = Int(\overline{\omega}(P_1, P_2))$:

$$\Gamma_0 := \partial C^+ \cap \partial C^- = \{P_0, P_0'\} \cup (\Gamma_{reg} \cap \omega) \cup (\Gamma_{flat} \cap \omega)$$

Let us consider a compact $K \subset B$. If $\mathcal{H}^2(K \cap \Gamma_0) > 0$, then $\underline{\theta}(X) = \liminf_{r \to 0} \frac{|B_r(X) \cap (K \cap \Gamma_0)|}{|B_r(X)|} = 1$ \mathcal{H}^2 -a.e. $X \in K \cap \Gamma_0$. In particular $\exists X_0 \in \Gamma_0, \underline{\theta}(X_0) = 1$. Then $X_0 \notin \Gamma_{reg}$, and then $X_0 \in \Gamma_{flat}$ which implies (from proposition 4.3) $\underline{\theta}(X_0) \leq \epsilon$ for all $\epsilon > 0$. Contradiction. Then $\mathcal{H}^2(K \cap \Gamma_0) = 0$ for all K, therefore $\mathcal{H}^2(\partial C^+ \cap \partial C^-) = 0$. The number of pair (C^+, C^-) is at most denombrable, therefore by denombrable summability, $\mathcal{H}^2(\{u = 0\} \cap B) = 0$ for every ball $B \subset \Omega$. Consequently $\mathcal{H}^2(\{u = 0\}) = 0$. This ends the proof of theorem 1.11.

Proof of lemma 4.7

It is easy to prove the lemma 4.7, using the connexity of C^+ and C^- , the fact that we work with topology in two dimensions, and the fact that B is simply connected. We proceed as follows. Let $P_0, P_1^0, P_2^0 \in \Gamma_0 = \partial C^+ \cap C^-$. We consider the sets $\mathcal{E}_{P_i^0}$ for i = 1, 2 of points P such that $P_i^0 \in \overline{\omega}(P_0, P)$. Each set $\mathcal{E}_{P_i^0}$ is ordened by the relation $P \leq P'$ if and only if $P \in \overline{\omega}(P_i^0, P')$ for some set $\overline{\omega}(P_i^0, P')$ as in definition 4.6. Let $P_i = \max \mathcal{E}_{P_i^0}; i = 1, 2$. To finish we prove that $\partial C^+ \cap \partial C^- \setminus \overline{\omega}(P_1, P_2) = \emptyset$.

4.2 **Proof of proposition 4.5**

Let us consider a point $X_0 \in \Gamma \cap \omega$ such that $u(X) \neq o(|X - X_0|)$. Then let $X_0 = 0$, $u^{\epsilon}(X) = \frac{u(\epsilon X)}{\epsilon}$. Then there exists a subsequence such that $u^{\epsilon} \to u^0$ and $u^0 \neq 0$. In particular from theorem 2.5 if we set $u_1 = u^+$, $u_2 = u^-$, we get that $\phi_u(r) := \phi(r)$ is nondecreasing. Now $\phi_{u^{\epsilon}}(r) = \phi_u(\epsilon r)$, then $\phi_{u^0}(r) = \phi_u(0)$. **case 1:** $\phi_u(0) > 0$

If $\phi_u(0) > 0$ we conclude that $u^0(X) = \alpha < X, \nu >^+ -\beta < X, \nu >^-$, with $\alpha, \beta > 0, \nu \in \mathbf{S}^1$. Then from proposition 2.4 and from theorem 6.3 i) in the appendix we conclude that Γ is locally $C^{1,\alpha}$ near X_0 , and then from the result of Kinderlehrer-Mirenberg [16], Γ is locally analytic.

case 2: $\phi_u(0) = 0$

In this case $u^0 \ge 0$ or $u^0 \le 0$. Up to a change of sign on u (see proposition 2.1) we can always assume that $u^0 \ge 0$ and $u^0 \not\equiv 0$. In particular from theorem 1.8, $\{u^0 = 0\}^0$ is an epigraph in the e_x direction. Here we prove:

LEMMA 4.8 If $u^0 \neq 0$, $u^0 \geq 0$ and (u^0, γ^0) is a solution of (1.4), then $\{u^0 = 0\}$ is an epigraph in the direction e_x .

Proof of lemma 4.8

Let us assume that u > 0 on $B = B_r(x_0, y_0)$ and $\exists x_1 < x_0, u(x_1, y_0) = 0$. We have $u^0 \ge 0$ and $\Delta u^0 = 0$ in $\{u^0 > 0\}$ and u^0 is (Lipschitz-) continuous. Then u^0 is a subsolution and $\partial_x \gamma^0 = -\frac{1}{\lambda} \Delta u^0 \le 0$. We know that $\gamma^0 \equiv 1$ in B and then $\Delta u^0 = 0$ on the left of B. From the hard maximum principle we deduce that $u^0 > 0$ on the left of B, because $u^0 > 0$ on B. Consequently $u^0(x_0, y_0) > 0$. Contradiction. This proves the lemma 4.8.

LEMMA 4.9 If $u^0 \neq 0$, $u^0 \geq 0$ and (u^0, γ^0) is a solution of (1.4), then $\forall y \in \mathbf{R}, \exists x \in \mathbf{R}, u^0(x, y) > 0$

Proof of lemma 4.9

Let us assume that $\exists y_0 \in \mathbf{R}, \forall x \in \mathbf{R}, u^0(x, y_0) = 0$. Then up to a translation we can assume that $y_0 = 0$. Because $u^0 \not\equiv 0, \exists P \in \{y > 0\} \cup \{y < 0\}, u^0(P) > 0$. **Case 1:** $\exists P^+ \in \{y > 0\}, \exists P^- \in \{y < 0\}, u^0(P^+) > 0, u^0(P^-) > 0$

Then let us consider the blow-in

$$\begin{cases} u^{0,\mu}(X) = \frac{u^0(\mu X)}{\mu} \\ \gamma^{0,\mu}(X) = \gamma^0(\mu X) \end{cases}$$

If we set $u_1 = u^0 \mathbb{1}_{\{y>0\}}, u_2 = u^0 \mathbb{1}_{\{y<0\}}$ we know from theorem 2.5 that $\phi_{u^0}(r) := \phi(r)$ is nondecreasing in r. In particular $\phi_{u^{0,\mu}}(r) = \phi_{u^0}(\mu r) > 0$ for $\mu > 0$ large enough. Then up to extraction of some subsequence $(u^{0,\mu}, \gamma^{0,\mu}) \to (u^{0,\infty}, \gamma^{0,\infty})$ which is a solution of (1.4) on \mathbf{R}^2 , and $\phi_{u^{0,\infty}}(r) = \phi_{u^0}(+\infty) > 0$. Then from theorem 2.5 $u^{0,\infty}(X) = \alpha y^+ - \beta y^- \ge 0$ with $\alpha > 0, \beta < 0$ This is imposible from proposition 2.3. Case 2: $u^0 = 0$ on $\{y > 0\}$ or $\{y < 0\}$ Let us assume that $u^0 = 0$ on $\{y > 0\}$. Let for some $\epsilon_0 > 0$:

$$\begin{bmatrix} \tilde{u}^{0}(x,y) = \begin{cases} u^{0}(x,y+\epsilon_{0}) \text{ if } y \leq 0\\ u^{0}(x,-y+\epsilon_{0}) \text{ if } y \geq 0\\ \gamma^{0}(x,y) = \begin{cases} \gamma^{0}(x,y+\epsilon_{0}) \text{ if } y \leq 0\\ \gamma^{0}(x,-y+\epsilon_{0}) \text{ if } y \geq 0 \end{cases}$$

Then $(\tilde{u}^0, \tilde{\gamma}^0)$ is a solution of (1.4) on \mathbf{R}^2 and we get a contradiction as in case 1. This ends the proof of lemma 4.9.

Now we will use the following result:

PROPOSITION 4.10 $\forall \eta_0 > 0, \exists \epsilon > 0$, such that if (u, γ) is a solution of (1.4) on Ω such that $\partial \{u > 0\} \setminus \partial \{u < 0\} = \emptyset, \partial \{u < 0\} \setminus \partial \{u > 0\} = \emptyset$, and $|u| < \epsilon$ on $R_1 \subset \Omega$, then for $y^+ = \sup\{y, (x, y) \in \partial \{u < 0\} \cap R_1, y^- = \inf\{y, (x, y) \in \partial \{u < 0\} \cap R_1$. we have $\partial \{u < 0\} \cap R_1 \subset (-1, 1) \times ([y^-, y^- + 5\eta_0] \cup [y^+ - 5\eta_0, y^+]).$

We have $0 \in \partial \{u^0 = 0\}$, then from lemma 4.8, $u^0(x,0) = 0$ for $x \ge 0$. Let for $\epsilon \ge 0$, $\lambda \ge 1, t \ge 0$:

$$\begin{cases} u_{t,\lambda}^{\epsilon}(x,y) = \frac{u^{\epsilon}(\lambda x + t,\lambda y)}{\lambda} \\ \gamma_{t,\lambda}^{e}(x,y) = \gamma^{\epsilon}(\lambda x + t,\lambda y) \end{cases}$$

In particular $u_{t,1}^0 \to u_{\infty,1}^0$ uniformly on every compact sets (up to extraction of some subsequence), and $\gamma_{t,1}^0 \to \gamma_{\infty,1}^0$ in L_{weak*}^∞ . Then $(u_{\infty,1}^0, \gamma_{\infty,1}^0)$ is a solution of (1.4), $u_{\infty,1}^0 \ge 0$, and $\forall x \in \mathbf{R}, u_{\infty,1}^0(x,0) = 0$, therefore from lemma 4.9 we have $u_{\infty,1}^0 \equiv 0$. Now we deduce that $|u_{t,\lambda}^{\epsilon_1} - u_{\infty,\lambda}^0| \le \epsilon$ on R_2 if ϵ_1 is small enough and t large enough. Then from proposition 4.10 we deduce that there exist $y^{\pm} = (y_{t,\lambda}^{\epsilon_1})^{\pm}$ such that $|u_{t,\lambda}^{\epsilon_1}| > 0$ on $R_1 \setminus [-1, 1] \times ([y^-, y^- + 5\eta_0] \cup [y^+ - 5\eta_0, y^+])$, and $\gamma_{t,\lambda}^{\epsilon_1} = 0$ where $u_{t,\lambda}^{\epsilon_1} < 0$, $\gamma_{t,\lambda}^{\epsilon_1} = 1$ where $u_{t,\lambda}^{\epsilon_1} > 0$. If we pass to the limit firstly on $\epsilon_1 \to 0$, we deduce that $\gamma_{t,\lambda}^0 = u_{t,\lambda}^0 = 0$ on certain regions of the form $[-1, 1] \times [a, b]$. But $\gamma_{t,\lambda}^0$ is nonincreasing in x, therefore $\forall t' > t, \gamma_{t',\lambda}^0 = u_{t',\lambda}^0 = 0$ on $[-1, 1] \times [a, b]$.

Now if we take λ large enough we deduce that there exist $y^+, y^- \in \mathbf{R} \cup \{-\infty\} \cup \{+\infty\}$ such that at $x = +\infty$, γ^0 is equal to 0 or 1 on each interval $(-\infty, y^-), (y^-, y^+), (y^+, +\infty)$. **Case 1**: $\gamma^0_{\infty,1} = 1$ on (a, 0) or (0, a)

It implies by construction, and because of lemma 4.9 that $u^0 > 0$ on $\mathbf{R} \times (0, a)$. Then we

get a contradiction as in the proof of lemma 4.9 because $u^0(x,0) = 0$ for $x \ge 0$.

Case
$$2:\gamma_{\infty,1}^0 = 0$$
 on $(a,b) \ni 0$

Then there exists a ball $B_r(\Lambda e_x) \subset \{u^0 = 0\}^0$ for some $r, \Lambda > 0$, where $\gamma^0 = 0$. Then we define $v^0(x, y) = \int_x^{\Lambda} u^0(s, y) ds$ which verifies

$$\begin{cases}
v^{0} \geq 0 \\
\Delta v^{0} = \lambda 1_{\{v>0\}} \\
|D^{2}v^{0}|_{L^{\infty}} \leq \max(Lip(u), \lambda) < +\infty
\end{cases}$$
(4.1)

Moreover $(v^0)'_x = -u^0 \leq 0$ and $(v^0)'_x < 0$ in $\{v^0 > 0\}$. Then from a result of Alt [1] (see also lemma 5.2 with $\lambda(x') \equiv \lambda = const$), $\partial\{v^0 > 0\} = \partial\{u^0 > 0\}$ is locally Lipschitz. We made a new blow-up $u^{0,\epsilon}(X) = \frac{u^0(\epsilon X)}{\epsilon} \to u^{00}(X), v^{0,\epsilon}(X) = \frac{v^0(\epsilon X)}{\epsilon^2} \to v^{00}(X)$. From Caffarelli theory [11] we get $v^{00}(x, y) = \frac{(<X, \nu > +)^2}{2}$ or $v^{00}(x, y) = \frac{<X, \nu > 2}{2}$ where $< e_x, \nu > \neq 0$ because Γ is Lipschitz. But $\partial_x v^{00} = -u^{00} \leq 0$, then $u^{00}(X) = < X, \nu > +$ for $< e_x, \nu > < 0$. Once more, from Caffarelli theory [11] we get that $\partial\{u^0 > 0\}$ is analytic near 0. We conclude (see lemma 6.4 and the proof of theorem 6.3 iii) in the appendix) that $\Gamma(u)$ is analytic near X_0 . Let us remark that if $\Gamma(u)$ is analytic then from the Hopf lemma locally $u(X) = \alpha < X - X_0, \nu > + -\beta < X - X_0, \nu > - +o(|X|)$ with $\alpha, \beta > 0$ and then $\phi_u(0) > 0$, which proves that case 2 is impossible (for the two phases problem). This ends the proof of proposition 4.5.

4.3 Flat points: proof of proposition 4.3

REMARK 4.11 Let us remark that $\forall \lambda \in \mathbf{R}$, $u(x, y) = e^{-\lambda x} \sin \lambda y$, $\gamma \in H(u)$ is locally a solution of problem (1.4).

We assume that u(X) = o(|X|) near 0. For $\mu > 0$, let $R_{\mu} = (-\mu, \mu)^2$ of center 0, and $\overline{R}_{\mu} = [-\mu, \mu]^2$. We assume that $|u| < \epsilon$ on R_2 .

LEMMA 4.12 $\forall \eta_0 > 0, \exists \epsilon > 0$, such that if $\exists y_0 \in \mathbf{R}$, $|u| < \epsilon$ on $[-1, 1] \times [y_0 - \eta_0, y_0 + \eta_0]$, $\exists x_0 \in (-1, 1)$, and if there exists a continuous path $g_0 \subset \{u > 0\} \cap [x_0, 1] \times [y_0 - \eta_0, y_0 + \eta_0]$ with $\{P_1 = (x_1, y_0 - \eta_0)\} = g_0 \cap [x_0, 1] \times \{y_0 - \eta_0\}, \{P_2 = (x_2, y_0 + \eta_0)\} = g_0 \cap [x_0, 1] \times \{y_0 + \eta_0\},$ then $\{y = y_0\} \cap R^{g_0} \subset \{u > 0\}$, where $P'_1 = (-1, y_0 - \eta_0), P'_2 = (-1, y_0 + \eta_0)$ and R^{g_0} is the bounded connected component of boundary $[P_1P'_1] \cup [P'_1P'_2] \cup [P'_2P_2] \cup g_0$, i.e. the component of $[-1, 1] \times [y_0 - \eta_0, y_0 + \eta_0]$ at the left of g_0 .

Proof of lemma 4.12

Step 1: Construction of a subsolution

Let $\alpha_0 > 0$ very small. Let $\mathcal{C}(\alpha_0) = \{\rho(\cos\phi, \sin\phi), \rho > 0, \phi \in [-\alpha_0, \alpha_0]\}$, and for $\delta > 0$, $\mathcal{C}_{\delta}(\alpha_0) = \{X, d(X, \mathcal{C}(\alpha_0)) < \delta\}$. For L > 0, let $\mathcal{C}_{\delta}^L(\alpha_0) = \{X \in \mathcal{C}_{\delta}(\alpha_0), x < L\}$. We want to construct a subsolution of the problem 1.4 on $\mathcal{C}_{2\delta}^L(\alpha_0)$. For this, we introduce the function v_1 defined on $\overline{\mathcal{C}_{2\delta}^L(\alpha_0) \setminus \mathcal{C}_{\delta}^L(\alpha_0)}$ by

$$\begin{cases} \Delta v_1 = 0 \text{ on } \mathcal{C}_{2\delta}^L(\alpha_0) \setminus \overline{\mathcal{C}_{\delta}^L(\alpha_0)} \\ v_1 = 0 \text{ on } (\partial \mathcal{C}_{\delta}(\alpha_0)) \cap \{x < L\} \\ v_1 = 1 \text{ on } (\partial \mathcal{C}_{2\delta}(\alpha_0)) \cap \{x < L\} \\ v_1 = \frac{d(x, \mathcal{C}_{\delta}(\alpha_0))}{\delta} \text{ on } \{x = L\} \cap \overline{\mathcal{C}_{2\delta}(\alpha_0)} \setminus \overline{\mathcal{C}_{\delta}(\alpha_0)} \end{cases}$$
(4.2)

And on $\mathcal{C}^L_{\delta}(\alpha_0)$ we define v^1 by

$$\begin{aligned}
\Delta v^1 &= 0 \text{ on } \mathcal{C}^L_{\delta}(\alpha_0) \\
v^1 &= 0 \text{ on } (\partial \mathcal{C}_{\delta}(\alpha_0)) \cap \{x < L\} \\
v^1 &= \cos(\frac{y}{y_L}) \text{ on } \mathcal{C}_{\delta}(\alpha_0) \cap \{x = L\} \\
\text{where } 2y_L &= \text{ lenght of } \mathcal{C}_{\delta}(\alpha_0) \cap \{x = L\}
\end{aligned} \tag{4.3}$$

Then let

$$v_{\epsilon}^{\eta} = \begin{cases} -\epsilon v_1 \text{ on } \overline{\mathcal{C}_{2\delta}^L(\alpha_0) \setminus \mathcal{C}_{\delta}^L(\alpha_0)} \\ \eta v^1 \text{ on } \overline{\mathcal{C}_{\delta}^L(\alpha_0)} \end{cases}$$
(4.4)

Then on the free boundary, $\forall X_0 \in \Gamma(v_{\epsilon}^{\eta}) = (\partial \mathcal{C}_{\delta}(\alpha_0)) \cap \{x < L\}$, we have $u(X) = \alpha < X - X_0, \nu_0 >^+ -\beta < X - X_0, \nu_0 >^- +o(|X - X_0|)$, where ν_0 is the normal to $\Gamma(v_{\epsilon}^{\eta})$ in X_0 . But here $\alpha = \eta \alpha_1, \beta = \epsilon \beta_1, \langle e_x, \nu \rangle \geq \sin \alpha_0 > 0$, and we search to verify the condition of subsolution on the boundary

$$\alpha > \beta - \lambda < e_x, \nu > \tag{4.5}$$

Then we see that $\exists \epsilon = \epsilon(\alpha_0, \delta, L) > 0$ (and $\epsilon \to 0$ as $\alpha_0, \delta_0 \to 0$) such that we obtain for all $\eta \ge 0$ a strict subsolution v_{ϵ}^{η} of problem (P_G) in the appendix with $G(\beta, x, \nu) = \beta - \lambda < e_x, \nu >$. Let us chose δ and α_0 such that $\eta_0 \ge 2\delta + L \sin \alpha_0$ and L = 4.

Step 2

Let $v^t(x,y) = v^{\eta}_{\epsilon}(x+t,y-y_0)$. For t < -2 we have $R^{g_0} \cap supp(v^t) = \emptyset$. Then we apply a sliding method, increasing t continuously. By hypothesis v^t is a subsolution on $supp(v^t) \cap R^{g_0}$ (see figure 1), and v^t can not touch u on $\partial(supp(v^t) \cap R^{g_0}) \subset supp(v^t) \cup g_0$, because

i) $v^t = -\epsilon$ and $u > -\epsilon$ on $\partial(supp(v^t))$.

ii) u > 0 on g_0 and then we can chose $\eta > 0$ such that $u > \eta \ge v^t$ on g_0 .

Then v^t can only touch u on $\Gamma(v^t) = \partial \{v^t > 0\}$. But v^t is a strict subsolution on $\Gamma(v^t)$, consequently it is impossible (see lemma 7 in [8]). Then if we have chosen δ and α_0 small enough we can increase t until $\Gamma(v^t)$ touches $\{x = -2 + \delta\}$, which proves lemma 4.12.

REMARK 4.13 The lemma 4.12 is true too if we change $\{u > 0\}$ by $\{u < 0\}$ (see proposition 2.1).

figure 1

LEMMA 4.14 Let us assume that $|u| < \epsilon$ on R_2 . Then it does not exist three points $P_i = (x_i, y_i) \in \partial \{u < 0\} \cap R_1, i = 1, 2, 3$ such that $-1 \le y_1 < y_1 + 5\eta_0 \le y_2 < y_2 + 5\eta_0 \le y_3 \le 1$.

Then proposition 4.10 is a corollary of lemma 4.14.

Proof of lemma 4.14

Let us assume that there exists three such points. Then there exists $P_{12} = (x_{12}, y_{12}) \in$ $(-1, 1) \times (y_1 + 2\eta_0, y_2 - 2\eta_2)$ such that $u(P_{12}) \neq 0$. By symmetry let us assume that $u(P_{12}) > 0$. Then there exists a continuous path $g_{12} \subset \{u < 0\}$ which links together P_1 to P_2 . It is possible that g_{12} goes outside R_2 , but in every cases $u < \epsilon$ on the bounded component of boundary $[P_1P_2] \cup g_{12}$, because of the maximum principle.

case 1): g_{12} goes on the right of P_{12}

Because g_{12} goes on the right of P_{12} , we can apply the proof of lemma 4.12: let $P'_1 = (-1, y_1), P'_2 = (-1, y_2)$ and $R^{g_{12}}$ the bounded component of boundary $[P_1P'_1] \cup [P'_1P'_2] \cup [P'_2P_2] \cup g_{12}$. Then $P_{12} \in R^{g_{12}}_{\eta_0} = R^{g_{12}} \cap \{y_1 + \eta_0 \leq y \leq y_2 - \eta_0\} \subset \{u < 0\}$. Contradiction. **case 2**): g_{12} goes on the left of P_{12} Let $g_{23} \subset \{u > 0\}$ a continuous path which links together P_{12} to P_3 . **subcase 2**)**a**): g_{23} goes on the left of g_{12} (see figure 2) Let $R^{g_{23}}$ the bounded component of boundary $g_{23} \cup [P_{12}P_3]$. Then as previously we get $P_1 \in R^{g_{23}}_{\eta_0} = R^{g_{23}} \cap \{y \leq y_{12} - \eta_0\} \subset \{u < 0\}$. Contradiction. **subcase 2**)**a**): g_{23} goes on the right of g_{12} (see figure 2) Then $P_2 \in R^{g_{23}}_{\eta_0} = R^{g_{23}} \cap \{y_{12} + \eta_0 \leq y \leq y_3 - \eta_0\} \cap R_1 \subset \{u < 0\}$. Contradiction.

In every case we get a contradiction. Then it proves the lemma 4.14.

figure 2

Proof of proposition 4.3

Up to consider $u^{\epsilon_1}(X) = \frac{u(\epsilon_1 X)}{\epsilon_1}$, $\gamma^{\epsilon_1}(X) = \gamma(\epsilon_1 X)$ with $0 < \epsilon_1 < 1$ in place of (u, γ) , we deduce from proposition 4.10 that we are in one the following cases:

Case C3

We have three parts: |u| > 0 on $(-1, 1) \times (-1, y^{-}), (-1, 1) \times (y^{-} + 5\eta_{0}, y^{+} - 5\eta_{0}), (-1, 1) \times (y^{+}, 1)$, where $-1 < y^{-} < y^{-} + 10\eta_{0} < y^{+} < 1$ and $0 \in [y^{-}, y^{-} + 5\eta_{0}] \cup [y^{+} - 5\eta_{0}, y^{+}]$. Case C2 We have two parts: |u| > 0 on $(-1, 1) \times (-1, -10\eta_0), (-1, 1) \times (10\eta_0, 1).$

And each case has subcases: we see the sign of u on each part from the top to the bottom. For example we note C3 + +- a situation in case C3 where u > 0 on the two parts above and u < 0 on the last part below. We will note more generally C3aab the case C3 + +- or the case C3 - -+.

subcase C3aaa

Let us consider for example the case C3 - --. Then the method of proof of lemma 4.14 applies and gives a contradiction (see figure 3).

figure 3

subcase C3aab or C3abb

Let us consider for example the case C3 - -+. Then the method of proof of lemma 4.14 applies and gives a contradiction (see figure 4).

figure 4

subcase C3aba

Let us consider for example the case C3 + -+. Then with a zoom with some $0 < \epsilon_1 < 1$ we get the case C2ab for $(u^{\epsilon_1}, \gamma^{\epsilon_1})$ (see figure 5).

figure 5

subcase C2ab

Let us consider for example the case C2 + -. Then with a continuous zoom with $0 < \epsilon_1 < 1$ we get the case C2ab for $(u^{\lambda}, \gamma^{\lambda})$ (see figure 6), because the only other cases C3aab or C3abb are impossible. Then the configuration C2ab is "stable" by zoom.

subcase C2aa (see figure 7)

Let us consider for example the case C2 - -. Then with a zoom with $0 < \epsilon_1 < 1$ we can only get cases:

- i) C3aaa: impossible
- ii) C3aba, and then C2ab
- iii) C2aa

Let us assume that we keep the case C2aa for every $0 < \epsilon_1 < 1$. Then for the cones $C^{\pm} = \{X, \pm \frac{\langle X, e_y \rangle}{|X|} > \frac{1}{2}\}$ we have

$$(C^+ \cup C^-) \cap B_r(0) \subset \{u < 0\}$$
(4.6)

if η_0 is small enough. But $0 \in \partial \{u > 0\}$, and if $C_l = \{u > 0\} \cap \{x < 0\} \cap B_r(0) \neq \emptyset$, $C_d = \{u > 0\} \cap \{x > 0\} \cap B_r(0) \neq \emptyset$ for every r > 0 small enough, then there exists a continuous path $g \subset \{u > 0\}$ which connects C_l to C_d . This path can not go near 0 because of (4.6), then g goes round one of the components $(-1, 1) \times (-1, -10\eta_0), (-1, 1) \times (10\eta_0, 1)$ where u < 0. Contradiction. Then we have $C_l = \emptyset$ or $C_d = \emptyset$. Then u < 0 locally on $\{x < 0\}$ or $\{u > 0\}$. Thus the Hopf lemma gives a contradiction to the fact that u(X) = o(|X|).

figure 7

Consequently in every case for $0 < \epsilon_1 < 1$ small enough $(u^{\epsilon_1}, \gamma^{\epsilon_1})$ is in the case C2ab, and it proves the proposition 4.3.

5 Examples

Let us recall an example of a mushy region which is given in [7]. Let $\Omega = \mathbf{R} \times (0, 1)$, $u = f_0$ on $\mathbf{R} \times \{0\}$, and $u = f_1$ on $\mathbf{R} \times \{1\}$, where $f_1(x) = -f_0(x) = a \inf(1, exp(-x))$, for a constant a > 0 to be fixed. Let $g(y) = \frac{1}{y(1-y)}$. Let v on $\{x < g(y)\}$ equal to the harmonic function which vanishes on x = g(y) and takes the values f_0 and f_1 on $\partial\Omega$; and v = 0 on $\{x > g(y)\}$. Let v the exterior unit normal to $\{x > g(y)\}$, and $\gamma_v = \chi_{[\frac{1}{2},1]}(y) + \frac{v_v^+(g(y),y)}{v \cdot e_x}$. On the free boundary one has $v_v^+ = O(e^{-|x|})$ and $e_x \cdot v = O(\frac{1}{x})$ as $x \to +\infty$. Therefore for a small enough $\gamma_v \in [0, 1]$ and (v, γ_v) is a solution.

Remark that when $u \ge 0$, the problem (1.4) reduced to the problem (1.1) with a generalised function $\tilde{\chi}(p) = \gamma(u)$, and u(x, y) = p(y, -x). Recall that if we assume that $\tilde{\chi}(0) = 0$, then it is known (see [1]) that the boundary $\partial(\{p = 0\}^0)$ (i.e. $\partial(\{u = 0\}^0)$) is an analytical graph.

In the general case we have the

PROPOSITION 5.1 If (u, γ) is a slution of (1.4), and locally

$$\begin{cases} u \ge 0, \ \gamma \in C^{0,1} \\ \gamma \le 1 - \delta < 1 \ on \ \{u = 0\}^0 \end{cases}$$
(5.1)

Then locally $\Gamma_0(u) = \partial(\{u=0\}^0)$ is a $C^{1,\alpha}$ graph in direction e_x and $\gamma = \gamma(y)$ on $\{u=0\}^0$.

This proposition can be proved using for the function $v(x, y) = \int_x^a v(x', y) dx'$ the following lemma which is an adapted version of a result of Alt [1].

LEMMA 5.2 For $B_1 \subset \mathbf{R}^n$, if $v \in C^1(B_1), \lambda \in C^{0,1}, 0 \in \Gamma = \partial \{v > 0\}$, and for $x = (x', x_n) \in \mathbf{R}^n$: $\left\{ \begin{array}{l} \Delta v = \lambda(x') > 0 \text{ in } B_1 \cap \{v > 0\} \\ 0 \end{array} \right.$

$$\left\{ \begin{array}{l} \underline{\partial}_{x_n} v \ge 0 \quad in \ B_1 \\ \underline{\partial}_{x_n} v > 0 \quad in \ B_1 \cap \{v > 0\} \end{array} \right.$$

Then Γ is Lipschitz in $B_{\frac{1}{2}}$.

In proposition 5.1, the condition $\delta > 0$ is necessary, because if not, we can construct a counter-example u solution of (1.4) such that $\Gamma_0(u)$ has a cusp.

Counter-example

We use the holomorphic function $F(z) = -\exp(-\sqrt{-\ln(z)})$, with $z = re^{i\theta}$, $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, $r \ge 0$. Then F is a diffeomorphism from $\{x \ge 0\}$ on its range \mathcal{C} which is a cusp because $F(re^{i\theta}) = Re^{i\Theta}$, and a calculus gives $R = e^{-\sqrt{-\ln r}(1+o(\frac{1}{-\ln r}))}$, $\Theta - \pi = \frac{\theta}{2\sqrt{-\ln r}}(1+o(1))$. Now let $u = u_1 \circ F^{-1}$ where $u_1(x + iy) = x^+$. Then $\Delta u = 0$ on \mathcal{C} by composition of holomorphic function. We must verify that u is locally Lipschitz, it means u_{ν}^+ is locally bounded, and construct a function $\gamma^0(y) = \gamma$ in $\{u = 0\}^0$ such that $\Delta u + \lambda \partial_x \gamma = 0$ in a neighbourhood of 0. In particular from proposition 2.3, $\gamma_0(y)$ must verify:

$$0 \le 1 - \gamma_0(y) = -\frac{u_{\nu}^+}{\lambda < e_x, \nu >} \le 1$$

But a calculus gives $0 \leq -\frac{u_{\nu}^{+}}{\lambda \langle e_{x}, \nu \rangle} = \frac{1}{\lambda Re(F'_{z}(z))}$ where $z = re^{i\theta}$ with $\theta = \pm \frac{\pi}{2}$. But $F'_{z}(z) = \frac{X}{2}e^{\frac{1}{X^{2}}-\frac{1}{X}} \to +\infty$ where $X = \frac{1}{\sqrt{-\ln z}} = \frac{1}{\sqrt{-(\ln r \pm i\frac{\pi}{2})}} \to 0$. Moreover $\langle e_{x}, \nu \rangle \to 0$ as $r \to 0$, then $u'_{\nu} \to 0$ as $r \to 0$ and locally u is Lipschitz (and positive harmonic). Then locally it is a solution to (1.4). Remark that here $\gamma_{0} = 1 + \frac{u_{\nu}^{+}}{\lambda e_{x} \cdot \nu} \in C^{\infty}$. Moreover $\Gamma_{0}(u) = \partial(\{u = 0\}^{0}) \in C^{0,\beta}$ for every $\beta \in (0, 1)$.

REMARK 5.3 We do not know if there exists a solution (u, γ) to problem (1.4) on an open set Ω , such that $u \ge 0$ on Ω and $(\partial \{u > 0\}) \cap \Omega \ne \emptyset$. In what follows we give a possible candidate but we do not know if it is a posteriori a solution.

Let $\Omega = (0, +\infty) \times (0, 1)$. We give us a sequence $(\rho_n)_n$ of positive real numbers, such that $0 < \sum_{n=1}^{+\infty} 2^{n-1}\rho_n < 1$. Then we will build a sequence of functions $(u_n)_n$ which converge to a function u_∞ such that $(\partial \{u_\infty > 0\}) \cap \Omega \neq \emptyset$. But we do not know if there exists a function $\gamma_\infty \in L^\infty(\Omega)$ such that $(u_\infty, \gamma_\infty)$ is a solution of problem (1.4) on Ω .

Step 0

Let $y_0 = z_0 = 0$, $y_1 = z_1 = 1$ and $y_{01} = \frac{z_0 + z_1}{2}$. For some $x_{01} > 0$ let $P_{01} = (x_{01}, y_{01})$, and $\Gamma^-(P_{01}, z_0, \mu_1) = \{x \ge x_{01}, y = y_{01} + (z_0 - y_{01})(1 - e^{-\mu_1(x - x_{01})})\}, \Gamma^-(P_{01}, z_1, \mu_1) = \{x \ge x_{01}, y = y_{01} + (z_1 - y_{01})(1 - e^{-\mu_1(x - x_{01})})\}$, and because $y_{01} > z_0$, $y_{01} < z_1$, $G^-(P_{01}, z_0, \mu_1) = \{x \ge x_{01}, y_{01} \ge y \ge y_{01} + (z_0 - y_{01})(1 - e^{-\mu_1(x - x_{01})})\}, G^+(P_{01}, z_1, \mu_1) = \{x \ge x_{01}, y_{01} \le y \ge y_{01} + (z_1 - y_{01})(1 - e^{-\mu_1(x - x_{01})})\}, for <math>\mu_1 = \frac{\pi}{y_1 - y_0}$.

Now we search a function u_0 such that $u_0 = 0$ on $(0, +\infty) \times \{0, 1\}$ and $u_0 = \lambda_0 \cos(\pi(y-y_{01}))$ on $\{0\} \times (0, 1)$ for some $\lambda_0 > 0$. We assume that $u_0 = 0$ on ∂G_0 and u_0 is harmonic on $\Omega \setminus G_0$ for $G_0 = G^-(P_{01}, z_0, \mu_1) \cup G^+(P_{01}, z_1, \mu_1)$.

Step 1

Let $z_{001} = y_{01} - \frac{\rho_1}{2}$, $z_{011} = y_{01} + \frac{\rho_1}{2}$, and $y_{001} = \frac{z_0 + z_{001}}{2}$, $y_{011} = \frac{z_1 + z_{011}}{2}$. Let $P_{001} = \{y = y_{001}\} \cap \Gamma^-(P_{01}, z_0, \mu_1)$, $P_{001} = \{y = y_{011}\} \cap \Gamma^+(P_{01}, z_1, \mu_1)$, and $\mu_2 = \frac{\pi}{y_{011} - y_{001}}$. Now we define

$$u_1 = \begin{cases} u_0 \text{ on } \partial \Omega \\ 0 \text{ on } \partial G_1 \end{cases}$$

and u_1 is harmonic on $\Omega \setminus G_1$ where $G_1 = G^-(P_{001}, z_0, \mu_1) \cup G^+(P_{001}, z_{001}, \mu_2) \cup G^-(P_{011}, z_{011}, \mu_2) \cup G^+(P_{011}, z_1, \mu_1).$

Step 2

Let $x_{0001} = y_{001} - \frac{\rho_2}{2}$, $z_{0011} = y_{001} + \frac{\rho_2}{2}$, $z_{0101} = y_{011} - \frac{\rho_2}{2}$, $z_{0111} = y_{011} + \frac{\rho_2}{2}$, and $y_{0001} = \frac{z_0 + z_{0001}}{2}$, $y_{0011} = \frac{z_{0011} + z_{001}}{2}$, $y_{0101} = \frac{z_{011} + z_{0101}}{2}$, $y_{0111} = \frac{z_{0111} + z_1}{2}$. Let $P_{0001} = \{y = y_{0001}\} \cap \Gamma^-(P_{001}, z_0, \mu_1)$, $P_{0011} = \{y = y_{0011}\} \cap \Gamma^+(P_{001}, z_{001}, \mu_2)$, $P_{0101} = \{y = y_{0101}\} \cap \Gamma^-(P_{011}, z_{011}, \mu_2)$, $P_{0111} = \{y = y_{0111}\} \cap \Gamma^+(P_{011}, z_1, \mu_1)$, and $\mu_3 = \frac{\pi}{y_{0011} - y_{0001}} = \frac{\pi}{y_{0111} - y_{0101}}$. Now we define

$$u_2 = \begin{cases} u_0 \text{ on } \partial\Omega\\ 0 \text{ on } \partial G_2 \end{cases}$$

and u_2 is harmonic on $\Omega \setminus G_2$ where $G_2 = G^-(P_{0001}, z_0, \mu_1) \cup G^+(P_{0001}, z_{0001}, \mu_3) \cup G^-(P_{0011}, z_{0011}, \mu_3) \cup G^+(P_{0101}, z_{0101}, \mu_3) \cup G^-(P_{0111}, z_{0111}, \mu_3) \cup G^+(P_{0111}, z_1, \mu_1).$ Step $n \ge 3$

As previoulsy we build all the functions $u_n, n \ge 3$, and this sequence converges to a function u_{∞} which is positive except on horizontal half lines where $u_{\infty} = 0$. If the sequence $(\rho_n)_n$ converges rapidly to 0, we can see that near a tip P^* of a half line the "free boundary" is locally essentially vertical because the sequence $\mu_n \to +\infty$. In particular if a blow-up is possible we find $\frac{u_{\infty}(P^*+\epsilon X)}{\epsilon} \to \alpha x^-$ for some $\alpha \ge 0$ with $x^- = max(0, -x)$, which is coherent with proposition 2.3.

6 Appendix: extension of Caffarelli results for free boundaries with general function $G(u_{\nu}^{+}, \nu, X)$

DEFINITION 6.1 A function u is a solution of the problem (P_G) on the open set $\Omega \subset \mathbb{R}^n$ if and only if: i) $u \in C^{0,1}_{loc}(\Omega)$ ii) $\Delta u = 0$ in $\Omega^+(u) := \{u > 0\}, \Omega^-(u) := \{u \le 0\}^0$ iii) On $\Gamma(u) := (\partial \Omega^+(u)) \cap \Omega$, we have $u_{\nu}^+ = G(u_{\nu}^-, \nu, X_0)$ in the following weak sense. For every ball $B = B_r(Y_0)$ with $X_0 \in \partial B \cap \Gamma(u)$ and $r = |X_0 - Y_0|$: a) If $B \subset \Omega^+(u)$, let $\nu = \frac{Y_0 - X_0}{r} \in \mathbf{S}^{n-1}$. Then

$$\exists \alpha > 0, \beta \ge 0, u(X) \le \alpha < X - X_0, \nu >^+ -\beta < X - X_0, \nu >^- + o(|X - X_0|)$$

b) If $B \subset \Omega^{-}(u)$, let $\nu = -\frac{Y_0 - X_0}{r} \in \mathbf{S}^{n-1}$. Then

$$\exists \alpha \in \mathbf{R}, \beta \ge 0, u(X) \ge \alpha < X - X_0, \nu >^+ -\beta < X - X_0, \nu >^- + o(|X - X_0|)$$

where in each case $\alpha = G(\beta, \nu, X_0)$.

We assume that G verifies the hypothesis:

HYPOTHESIS 6.2 *i*) $G(\beta, x, \nu) \in \mathbf{R}$

ii) G is strictly increasing in β . iii) $\forall M > 0$, G is a lipschitz continuous function in $(\beta, \nu, X) \in [-M, M] \times \mathbf{S}^{n-1} \times \overline{\Omega}$

Then we have the following two local results:

THEOREM 6.3 *i)*If locally $u(X) = \alpha_0 < X - X_0, \nu_0 >^+ -\beta_0 < X - X_0, \nu_0 >^- +o(|X - X_0|)$ and $\alpha_0, \beta_0 > 0$, then locally $\Gamma(u) \in C^{1,\alpha}$, and for every $X_1 \in \Gamma(u)$ near X_0 , there exist $\nu_1 \in \mathbf{S}^{n-1}$ and $\alpha, \beta \geq const(\alpha_0, \beta_0) > 0$ such that we have locally $u(X) = \alpha < X - X_1, \nu_1 >^+ -\beta < X - X_1, \nu_1 >^- +o(|X - X_1|).$

ii)Let us assume that $\forall \epsilon > 0, \exists r_{\epsilon} > 0, \forall r < r_{\epsilon}, \Omega^{-}(u) \supset B_{r}(X_{0}) \cap \{ < X - X_{0}, \nu_{0} > \leq -\epsilon r \}$. If $u \geq 0$ locally near X_{0} with $u(X) = \alpha_{0} < X - X_{0}, \nu_{0} >^{+} + o(|X - X_{0}|), \alpha_{0} > 0$, then locally $\Gamma \in C^{1,\alpha}$, and for $X_{1} \in \Gamma(u)$ near X_{0} , there exists $\nu_{1} \in \mathbf{S}^{n-1}$ and $\alpha \geq const(\alpha_{0}) > 0, \beta \geq 0$ such that we have locally $u(X) = \alpha < X - X_{1}, \nu_{1} >^{+} -\beta < X - X_{1}, \nu_{1} >^{-} + o(|X - X_{1}|)$. iii) The conclusion of ii) is also true if we change the condition $u \geq 0$ in a neighbourhood of

iii) The conclusion of ii) is also true if we change the condition $u \ge 0$ in a neighbourhood of X_0 by the condition $G(0, \nu_0, X_0) > 0$.

LEMMA 6.4 If u is a solution of the problem (P_G) , with the condition i) of the theorem 6.3 (resp. ii) or iii)), then locally, $\forall \theta_0 \in (0, \frac{\pi}{2}), \exists C_{\theta_0} > 0, \exists \epsilon > 0, \forall \tau \in C^+(\theta_0, \nu_0) \cap \mathbf{S}^{n-1}$ where $C^+(\theta_0, \nu_0) = \{\tau \in \mathbf{R}^n \setminus \{0\}, angle(\tau, \nu_0) \leq \theta_0\}$, we have locally $u(X + \epsilon\tau) - u(X) \geq C_{\theta_0}\epsilon$ (resp. $u(X + \epsilon\tau) - u(X) \geq C_{\theta_0}\epsilon$ locally in $\{u > 0\}$).

Proof of lemma 6.4

It is an easy consequence of lemma 1, lemma 5, lemma 4 of [8], and of an adaptation of the proof of the theorem 2' of [9].

Proof of the theorem 6.3

Cases i) and ii)

Under the conditions i) or ii), the difficulty, is to avoid the values of $G(u_{\nu}^{-}, \nu, X) \leq 0$, with the help of a control on the normal ν of Γ . So we adapt the proof of Caffarelli [9], using the fact that initially for $\mathcal{C}_{M} = B_{1}^{n-1} \times [-M, M] \subset \mathbf{R}^{n}$ where $e_{n} = \nu_{0}, \theta_{0} \sim \frac{\pi}{2}, \alpha_{1} > 0$, there exists $\epsilon_{0} > 0, \epsilon_{0} << 1$, such that

$$\forall \epsilon > \epsilon_0, \quad \left\{ \begin{array}{l} v = \sup_{|Y| < \sin \theta_0} u(X - \epsilon(e_n + Y)) \le u(X) - \epsilon \alpha_0 \cos \theta_0 \text{ in } \{v > 0\} \cap \mathcal{C}_M \\ v = \sup_{|Y| < \sin \theta_0} u(X - \epsilon(e_n + Y)) \le u(X) \text{ in } \mathcal{C}_M \end{array} \right.$$
(6.1)

What is important in the proof, is the condition on the boundary $\partial \{\overline{v_t} > 0\}$. We recall that $\overline{v_t} = v_t + \eta w$ is a subsolution for the free boundary problem, where $v_t(X) = \sup_{Y \in B_{\sigma\phi_t(X)}} u(Y)$, $\eta = C\epsilon^{\frac{1}{4}}$, and $w \ge 0$ is a corrector function to permit to satisfy the boundary condition of subsolution on the free boundary of $\overline{v_t}$:

$$\overline{v_t}(X) \ge \alpha < X - \tilde{X}_1, \tilde{\nu} >^+ -\beta < X - \tilde{X}_1, \tilde{\nu} >^- + o(| < X - \tilde{X}_1, \tilde{\nu} > |)$$
(6.2)

with $\alpha = G(\beta, \tilde{\nu}, \tilde{X}_1).$

1)Firstly, from the lemma 2 [9], v_t is monoton in a cone $\mathcal{C}(\overline{\theta}_0)$, where $\overline{\theta}_0$ is very close to $\frac{\pi}{2}$, if θ_0 is close enough to $\frac{\pi}{2}$ initially. Then the normal $\tilde{\nu}$ to $\partial \{v_t > 0\}$ is very close to e_n . This fact permits us to control the free boundary in a neighbourhood of X_0 . In particular the normal ν in the proof of lemma 4 in [9] is close to e_n because $\tilde{\nu} = \frac{\nu + \sigma \nabla \phi_t}{|\nu + \sigma \nabla \phi_t|}$ and $|\sigma \nabla \phi_t| \leq C \epsilon^{\frac{1}{2}}$.

2) Secondly, we must satisfy the boundary condition 6.2. But here we have changed the condition

 $\exists C > 0, \ \beta^{-C} G(\beta, x, \nu) \text{ is a decreasing function in } \beta$ (6.3)

which was required in the proof of Caffarelli, by the condition iii) of hypothesis 6.2. The boundary condition is satisfied, because the function w constructed in [9] is now nondegenerate because of (6.1). More precisely we can find a ball $B \subset \Omega^+(v_t)$ with B tangent to $\partial \Omega^+(v_t)$ and the diameter of B is of order ϵ . Now $w \geq v$ and at a distance $\frac{CM\epsilon}{2}$ where $v \sim u \geq \epsilon \frac{CM}{2} \alpha_0 \cos \theta_0$ and by Harmack inequality on B, we can construct a barrier subsolution which proves that $\exists C = C(\alpha_1 \cos \theta_0) > 0, \partial_{\tilde{\nu}} w \geq C > 0.$

REMARK 6.5 Remark that this modification of the proof of Caffarelli is suffisant to apply his proof without other knowledge on the sign of G in a neighboorhood of X_0 (a priori G could be negative in some points).

REMARK 6.6 In particular it proves that the results of Caffarelli in [8]-[9] with $\inf_{\nu,X} G(0,\nu,X) > 0$ are true without the conditions (6.3), but only assuming that u is Lipschitz and hypothesis *iii*).

Then independantly on ϵ , $\exists \lambda \in (0, 1)$ such that we obtain (6.1) with ϵ , θ_0 , α_1 , \mathcal{C}_M respectively changed by $\lambda \epsilon$, $\theta_0 - \epsilon^{\frac{1}{4}}$, $\alpha_1 - \epsilon^{\frac{1}{16}}$, $\mathcal{C}_{M(1-C\epsilon^{\frac{1}{8}})}$. Then the proof of Caffarelli applies and proves that Γ is Lipschitz. Moreover the proof of [8] applies with the same modification.

REMARK 6.7 We haven't used the fact that $G(\beta_0, \nu_0, X_0) > 0$. In fact it is a consequence of (6.1) which implies at the limit $\epsilon \to 0^+$,

$$\exists \theta_0^*, \alpha_1^*, \ \forall \tau \in C^+(\theta_0^*), \ (u^+)_{\tau}' \ge C \alpha_1^* \cos \theta_0^* > 0$$

This proves that $\alpha \ge const(\alpha_0) > 0$. Particularly, under condition i) we have $\beta_0 > 0$, then the same raisonning applies in $\{u < 0\}$ which proves that $\beta \ge const(\beta_0) > 0$.

Case iii)

In this case we would like to apply the proof of theorem 2 in [9]. But here is a new difficulty: we do not know a priori if u^+ in nondegenerate, i.e. in a neighbourhood of X_0 , $u^+_{\nu} \ge C > 0$. To prove the iii) we must modify the proof of lemma 6 in [9] as follows. Let us take the new criteria (for some $1 >> \delta_1 > 0$ fixed): $u^-(-\frac{1}{2}e_n) \ge C\epsilon^{1-\delta_1}$ for the alternative a), and $u^-(-\frac{1}{2}e_n) < C\epsilon^{1-\delta_1}$ for the alternative b).

alternative a)

Then in $C_{1-C\epsilon^{\tau_1}}$ for some $\tau_1 > 0$ small enough and for $C_1\epsilon^{\tau_1} < |X_1 - X_2| < C_2\epsilon^{\tau_1}$ we get (see p 72 in [9] for the function v defined page 70) $v(X_2) - v(X_1) \ge \frac{C}{\delta_0} u^- (-\frac{1}{2}e_n)\epsilon^{(\alpha+1)\tau_1} \ge C\epsilon^{1-(\delta_1+(\alpha+1)\tau_1)}$, and because u is Lipschitz and $d(X_3,\Gamma) \le \epsilon$ for every $X_3 \in A$, we get $u^- \leq C\epsilon$ on A and then $v \leq u^- \leq v + C\epsilon$ (as in p 70 in [9]). We conclude that $u(X_2) \geq u(X_1)$ for $X_1 - X_2 \in \Gamma(\theta_1, e_n)$ and u is $C\epsilon^{\tau_1}$ -monoton.

alternative b)

We have $u_{\nu}^{+} \geq G(u_{\nu}^{-}, \nu, X) \sim G(0, \nu_{0}, X_{0}) > 0$ in the points of interest of $\Gamma(u)$ (point of comparison for \overline{v}_{t} , see 1)). In particular for these points we get (from the monotonicity formula) $0 \leq u_{\nu}^{-} \leq C \epsilon^{\frac{1-\delta_{1}}{2}-\mu}$ and then we conclude similarly as in [9] with $\eta \geq C \epsilon^{\frac{1-\delta_{1}}{2}-\mu}$.

References

- Alt H.W., The fluid Flow through porous media. Regularity of the Free surface, Manuscripta math., 21, 255-272 (1977), Springer-Verlag, 1977.
- [2] Alt H.W., The fluid flow through porous media. Regularity of the free surface, Manuscripta Math. 21, 255-272 (1977).
- [3] Alt H.W., Caffarelli L.A., Friedman A., The dam problem with two fluids, Com. in Pure and Appl. Math., Vol XXXVII, 601-645 (1984).
- [4] Alt H.W., Caffarelli L.A., Friedman A., Variational problems with two phases and their free boundaries, Trans. Amer.Math. Soc., Vol. 282, No 2, 1984.
- [5] Alt H.W., van Duijn C.J., A stationary flow of fresh and salt groundwater in a coastal aquifer, Nonlinear Analysis, Theory, Methods and Applications, Vol 14, No 8, pp. 625-656, 1990.
- [6] Berestycki H., Bonnet A., van Duijn C.J., The Regularity of the Free Boundary Between Two Fluids in a Porous Medium, to appear.
- [7] Bonnet A., Kamin S., A stationary flow in a strip, to appear.
- [8] Caffarelli L.A., A Harnack Inequality Approach to the Regularity of Free Boundaries. Part I: Lipschitz Free Boundaries are C^{1,α}, Rev. Math. Iberoamericana, Vol. 3, no 2, 1987.
- [9] Caffarelli L.A., A Harnack Inequality Approach to the Regularity of Free Boundaries. Part II: Flat Free boundaries are Lipschitz, C.P.A.M., Vol 15, 55-78, 1989.

- [10] Caffarelli L.A., A Harnack Inequality Approach to the Regularity of Free Boundaries. Part III: Existence Theory, Compactness, and Dependence on X,Ann. Scu. Norm. Sup. Pisa, Cl Sci (4), 15 (1988), No 4, pp. 583-602 (1989).
- [11] Caffarelli L.A., Compactness method in free boundary problems, C.P.D.E., 5(4), 427-448 (1980).
- [12] Caffarelli L.A., Free Boundary Problems, a Survey, 1986.
- [13] Carrillo J., On the uniqueness of the solution of the evolution dam problem, Nonlinear Anal. TMA, 22 (5), 573-607 (1994).
- [14] Carrillo J., Entropy solutions for nonlinear degenerate problems, to appear.
- [15] Friedman A., Variational Principles and Free Boundary Problems, Interscience, New York, 1982.
- [16] Kinderlehrer D., Nirenberg L., Regularity in free boundary problems, Ann. Sculoa Norm.
 Sup. Pisa, 4, 373-391, (1977).
- [17] Rodrigues J.-F., Yi F., On a two-phase continuous casting Stefan problem with nonlinear flux, Euro. J. of Appl. Math., 1, 259-278 (1990).
- [18] Rodrigues J.-F., Zaltzmann B., On classical solutions of the two-phase steady-state Stefan problem in strips, Nonlinear Anal. TMA, 19(3), 207-208 (1992).
- [19] Rodrigues J.-F., Zaltzmann B., Regular solutions of a Stefan problem in strips, preprint, Universidade de Lisboa, 1994.
- [20] Zaltzmann B., Multidimensional two-phase quasistationary Stefan problem, Manuscripta Math. 78, 287-301 (1993).