On the mushy region arising between two fluids in a porous medium

A. Bonnet
Goldman Sachs International
\&
R. Monneau
Ecole Nationale des Ponts et Chaussées, CERMICS

November 9, 1998

Abstract

We study the mushy region arising between two fluids in a porous medium. We prove that the interior of the mushy region is an epigraph in the horizontal direction. Moreover when the interior of the mushy region is empty, we give a necessary and sufficient condition to claim that the Lebesgue measure of the mushy region is zero.

AMS Classification: 35B50, 35R35.
Keywords: Free boundary problem, mushy region, blow-up, Caffarelli results.

1 Introduction

1.1 The physical problem

We study here the interface between two fluids for a steady flow in a porous medium.

One fluid

Let us recall that the steady flow of one fluid in a porous medium, is characterized by its own pressure $p \geq 0$ ($p=0$ outside the fluid), and its velocity which is brought about by the Darcy law:

$$
v=-k \nabla \phi
$$

Here k is a permeability coefficient which depends on the porous medium and is assumed constant. The potential ϕ is given by $\phi=p+\rho g y$ (ρ is the volumic mass of the fluid, g the gravity, y the vertical axis upward oriented); if the soil is given by $\{y<0\}$, then ϕ measures the difference of p to the hydrostatic pressure $p_{0}=-\rho g y$. The coordinate x will denote the horizontal axis, and we will work in two dimensions $X=(x, y) \in \mathbf{R}^{2}$. Moreover we assume that the fluid is incompressible:

$$
\operatorname{div} v=0
$$

The research of the free surface of this monofluid can be then reduced (see [2]) to the equation

$$
\begin{equation*}
\Delta p=-\lambda \partial_{y}(\chi(p>0)) \tag{1.1}
\end{equation*}
$$

where $\chi(p)=\left\{\begin{array}{l}1 \text { if } p>0 \\ 0 \text { if } p=0\end{array}, \lambda=\rho g\right.$. We should add some boundary conditions.

Two fluids

If now we study in a porous medium two unmiscible fluids of density ρ_{1} and ρ_{2}, we can give a formulation of the problem using the stream function $\psi \in \mathbf{R}$ in place of the potential ϕ, and defined by $\operatorname{curl} \psi=\nabla \phi$, where $\operatorname{curl} \psi=\binom{-\partial_{y} \psi}{\partial_{x} \psi}$. Now a stream line is given by $\{\psi=$ const $\}$. In particular the interface Γ between these two fluids is a stream line and (up to an additive constant) we can normalize ψ such that $\Gamma=\{\psi=0\}$. Then the problem can be reduced (see [5]) to the equation:

$$
\begin{equation*}
\Delta \psi=-\lambda \partial_{x}(\chi(\psi>0)) \tag{1.2}
\end{equation*}
$$

where $\chi(\psi)=\left\{\begin{array}{l}1 \text { if } \psi>0 \\ 0 \text { if } \psi<0\end{array}\right.$, and $\lambda=\left(\rho_{2}-\rho_{1}\right) g>0$.
REMARK 1.1 In particular for a uniform flow $v=v_{0} e_{x}$ with $v_{0} \in \mathbf{R}$ and for a horizontal interface $\Gamma=\{y=0\}$, we get $\psi(x, y)=\frac{v_{0}}{k} y$. We see that the identification of the regions $\{\psi>0\}$ and $\{\psi<0\}$ to each one of these fluids depends on the sign of v_{0}.

REMARK 1.2 If $\psi_{i} ; i=1,2$ is the restriction of ψ on the domain of density ρ_{i}, we have on the free boundary (and whatever are the relative position of the fluids 1 and 2):

$$
\begin{equation*}
\frac{\partial \psi_{1}}{\partial n}-\frac{\partial \psi_{2}}{\partial n}+g\left(\rho_{2}-\rho_{1}\right)<n, e_{x}>=0 \text { for } n=n_{2 \rightarrow 1} \tag{1.3}
\end{equation*}
$$

It is equivalent to take $n=-n_{2 \rightarrow 1}$. When $\rho_{2}>\rho_{1}$, then the fluid 1 is above the fluid 2 in a physical situation. But equations (1.2) and (1.3) continue to have an interpretation when the fluid 2 is above the fluid 1, although it does not correspond to a stable physical situation. In particular if ψ is a solution of (1.2) with $\lambda=\left(\rho_{2}-\rho_{1}\right) g>0$, and if $\psi>0$ on one side of the free boundary Γ, and $\psi<0$ on the other side, it can be asked where are the fluid 1 and the fluid 2? The answer is that we do not know. If one region, say $\{\psi>0\}$ is always above the other region $\{\psi<0\}$, then it would seem natural to say that the lighter fluid (the fluid 1) is in the region $\{\psi>0\}$, and in this case the solution of the model (1.2) would describe a physical situation.
But what can be said from a mathematical point of view? Mathematically in one case if we take ψ_{1} as the restriction of ψ on the region $\{\psi>0\}$ and ψ_{2} the restriction of ψ on the region $\{\psi<0\}$, from (1.2) we can deduce the equality (1.3) on the free boundary $\Gamma=\{\psi=0\}$. In another case it is easy to check that the other function $\phi=-\psi$ is also solution of (1.2), then if we take ϕ_{1} as the restriction of ϕ on the region $\{\phi>0\}$ and ϕ_{2} the restriction of ϕ on the region $\{\phi<0\}$, we deduce the equality (1.3) on the free boundary $\Gamma=\{\phi=0\}$ with ϕ_{i} in place of ψ_{i}. Therefore it can be mathematically seen that we can chose the fluid 1 in $\{\psi>0\}$ or in $\{\psi<0\}$, i.e. the mathematical model (1.2) does not show in which region the lighter fluid is.

REMARK 1.3 In particular if (ψ, γ) is a solution of (1.2), then ($\tilde{\psi}, \tilde{\gamma})$ is also a solution with $\tilde{\psi}(x, y)=\psi(x,-y), \tilde{\gamma}(x, y)=\gamma(x,-y)$. It exchanges the relative position of the two fluids relatively to the gravity.

REMARK 1.4 One condition to derive the model (1.2) was that $\{\psi>0\}$ and $\{\psi<0\}$ are two connected components. In particular every solution of (1.2) with more than two connected components should be interpretated carefully.

REMARK 1.5 Let us note that we expect that Γ is a curve and then $\mathcal{H}^{2}(\Gamma)=0$. In these case it is not necessary to precise the value of $\chi(\psi)$ on Γ. But up to our knowledge there is no general existence result of solutions with $\mathcal{H}^{2}(\Gamma)=0$. The only known way to get a solution is to take the limit of solutions u_{ϵ} of the equation (1.2) with a smooth function χ_{ϵ} in place of χ. As $\epsilon \rightarrow 0, \chi_{\epsilon} \rightarrow \chi$ and $\psi_{\epsilon} \rightarrow \psi$ where ψ is a weak solution to (1.2). In
particular $\Gamma=\{\psi=0\}$ could be degenerated with $\mathcal{H}^{2}(\Gamma)>0$, and $\chi(\psi)_{\mid \Gamma}$ could take every value between 0 and 1 . In this case the values of $\chi(\psi)_{\mid \Gamma}$ would be important to claim that ψ is a solution of equation (1.2).

1.2 The mathematical formulation

From now on, let us use the notations

$$
\left\{\begin{array}{l}
u=\psi \\
\gamma=\chi(\psi)
\end{array}\right.
$$

Then the weak solutions to (1.2) over an open set $\Omega \subset \mathbf{R}^{2}$ are given by the following variational formulation: search $(u, \gamma) \in H_{l o c}^{1}(\Omega) \times L^{\infty}(\Omega)$ such that

$$
\begin{equation*}
\forall v \in C_{0}^{\infty}(\Omega), \quad \int_{\Omega} \nabla u \nabla v+\lambda \gamma \partial_{x} v=0, \text { and } \gamma \in H(u) \tag{1.4}
\end{equation*}
$$

where

$$
H(u)=\left\{\begin{array}{l}
\{1\} \text { if } u>0 \tag{1.5}\\
{[0,1] \text { if } u=0} \\
\{0\} \text { if } u<0
\end{array}\right.
$$

and

$$
\begin{equation*}
u=u_{0} \text { on } \partial \Omega \tag{1.6}
\end{equation*}
$$

The existence of a solution (u, γ) to (1.4)-(1.6) is known under certain assumptions on $\partial \Omega$ and on u_{0} (see [7], [14]).
Moreover let us recall:
PROPOSITION 1.6 Every solution (u, γ) of (1.4) belongs to $C_{\text {loc }}^{0,1}(\Omega) \times L^{\infty}(\Omega)$.

Proof of proposition 1.6

See [5] p 631, [12] p 52-53.

In this paper we are interested in getting information on the free boundary $\Gamma=\{u=$ $0\}$ and to know whether and when there exists a mushy region with $\mathcal{H}^{2}(\Gamma)>0$. The nonexistence of a mushy region is intimely related to the question of the uniqueness of the solutions (u, γ) to (1.4)-(1.6) , as it is shown in [7] in the particular case of a strip $\Omega=\mathbf{R} \times(0,1)$. In particular we study here the properties of Γ without assuming that the function u is monoton as in [5], or satisfies a property at $+\infty$ as in [7]. See also [13], [14]. Here we study the free boundary of the solution in the general case.

1.3 Main results

Let us recall that in the region $\{u=0\}, \gamma$ can have any value between 0 and 1 , which permits us to interprete γ as a coefficient of mixing of the two fluids. It justifies the terminology of mushy region (when $\mathcal{H}^{2}(\Gamma)>0$), that is sometimes given to the region $\{u=0\}$ for the Stephan problem (see [17], [18], [19], [20]).

DEFINITION 1.7 Let $\omega \subset \mathbf{R}^{2}$ an open set convex in the e_{x} direction, i.e. $\left[(x, y),\left(x^{\prime}, y^{\prime}\right)\right] \subset$ ω while $(x, y),\left(x^{\prime}, y\right) \in \omega$. Then we say that a set $A \subset \omega$ is a epigraph on ω in the e_{x} direction if $\left[(x, y),\left(x^{\prime}, y^{\prime}\right)\right] \subset A$ while $(x, y) \in A$ and $\left[(x, y),\left(x^{\prime}, y^{\prime}\right)\right] \subset \omega, x<x^{\prime}$.

We prove the
THEOREM 1.8 If (u, γ) is a solution of (1.4) on an open set $\Omega \subset \mathbf{R}^{2}$, then for all open set ω convex in the e_{x} direction, $\omega \cap\{u=0\}^{0}$ is an epigraph on ω in the e_{x} direction.

REMARK 1.9 Shoshana Kamin has noticed that a similar result is true for the Stephan problem: the mushy region of a one-dimensionnal Stephan problem for $(x, t) \in \mathbf{R} \times \mathbf{R}$ can diseappear in finite time. We find the analogy with the change $(x, t) \rightarrow(y,-x)$.

REMARK 1.10 The function γ can be nonmonoton in y on a connected component of $\{u=0\}^{0}$ (see the counter-example of section 5).

Moreover we prove
THEOREM 1.11 If (u, γ) is a solution of (1.4) and if $\{u=0\}^{0}=\emptyset, \partial\{u>0\} \backslash \partial\{u<$ $0\}=\emptyset, \partial\{u<0\} \backslash \partial\{u>0\}=\emptyset$, then $\mathcal{H}^{2}(\{u=0\})=0$.

REMARK 1.12 If $\mathcal{H}^{2}(\Gamma)=0$ and $\{u=0\}^{0}=\emptyset$ then $\Delta u=-\lambda \partial_{x} \gamma=0$ on $\{u \geq$ $0\}^{0} \cup\{u \leq 0\}^{0}$ and from maximum principle we deduce that $\partial\{u>0\} \backslash \partial\{u<0\}=\emptyset$, $\partial\{u<0\} \backslash \partial\{u>0\}=\emptyset$.

REMARK 1.13 We do not know if under general conditions there is uniqueness and/or even existence of a solution without a mushy region for problem (1.2)-(1.6).

2 Preliminaries

The following proposition is obvious but usefull:
PROPOSITION 2.1 If (u, γ) is a solution to (1.4), then $(-u, 1-\gamma)$ is a solution too.
LEMMA 2.2 (linear behaviour lemma, [9], [6]) Let $\Omega_{1} \subset \mathbf{R}^{n}$ (respectively $\Omega_{2} \subset \mathbf{R}^{n}$) such that there exists a ball B with

$$
\begin{gathered}
B=B_{r}\left(r e_{n}\right) \text { and } B \subset \Omega_{1} \\
\text { (respectively } B=B_{r}\left(-r e_{n}\right) \text { and } B \subset\left(\Omega_{2}\right)^{c}
\end{gathered}
$$

Assume that u is a Lipschitz positive hamonic function in Ω_{1} (respectively Ω_{2}) vanishing in $\partial \Omega_{1}$ (respectively $\partial \Omega_{2}$) and assume that $\partial \Omega_{i} \cap B=\{0\}$. Then near zero, u has the asymtotic development

$$
u(X)=\alpha x_{n}+o(|X|) \text { on } \Omega_{i} \text { with } \alpha \geq 0
$$

Furthermore $\alpha>0$ in case Ω_{1}, because of Hopf lemma.
PROPOSITION 2.3 If (u, γ) is a solution of (1.4) and if $u(X)=\alpha<X-X_{0}, \nu>^{+}$ $-\beta<X-X_{0}, \nu>^{-}+o\left(\left|X-X_{0}\right|\right)$ with $\nu \in \mathbf{S}^{1}$ and $\alpha, \beta \in \mathbf{R}$, then there exists two functions $0 \leq \gamma_{\alpha}^{0}(y), \gamma_{\beta}^{0}(y) \leq 1$ with $\gamma_{\alpha}^{0} \equiv 1$ if $\alpha>0, \gamma_{\alpha}^{0} \equiv 0$ if $\alpha<0, \gamma_{\beta}^{0} \equiv 0$ if $\beta>0$, and $\gamma_{\beta}^{0} \equiv 1$ if $\beta<0$, such that

$$
\begin{equation*}
\alpha-\beta+\lambda<\nu, e_{x}>\left(\gamma_{\alpha}^{0}(y)-\gamma_{\beta}^{0}(y)\right)=0 \tag{2.1}
\end{equation*}
$$

PROPOSITION 2.4 If locally $\{u=0\}^{0}=\emptyset$, then u is locally a solution for the free boundary problem $\left(P_{G}\right)$ in the appendix with $\left.G(\beta, \nu, X)=\beta-\lambda<e_{x}, \nu\right\rangle$.

Proof of proposition 2.4

From lemma 2.2 and proposition 2.3 we see (even for the particular cases $\alpha=0$ or $\beta=0$, because $\left.\{u=0\}^{0}=\emptyset\right)$ that u is a solution to problem $\left(P_{G}\right)$ in the appendix with $G(\beta, \nu, X)=$ $\beta-\lambda\left\langle e_{x}, \nu\right\rangle$.

The main tool that is used by Caffarelli to prove regularity theorems in [8]-[9], is the monotonicity formula:

THEOREM 2.5 (lemma 5.1 [4]; lemma 18 [8]) Let two continuous functions $u_{1}, u_{2} \geq$ 0 such that
i) $\Delta u_{i} \geq 0$ (u_{i} subharmonic)
ii) $u_{i}(0)=0$
iii) $u_{1} u_{2} \equiv 0$

Let

$$
\begin{equation*}
\phi(r)=\frac{\int_{B_{r}}\left|\nabla u_{1}\right|^{2} \rho d \rho d \sigma \int_{B_{r}}\left|\nabla u_{2}\right|^{2} \rho d \rho d \sigma}{r^{4}} \tag{2.2}
\end{equation*}
$$

where (ρ, σ) are the radial and spheric coordinates in \mathbf{R}^{n}.
Then ϕ is a nondecreasing function of r. Besides ϕ is bounded near $r=0$. In particular if the functions u_{i} are defined on \mathbf{R}^{2}, and if $\phi(r)=$ const >0, then there exists $\nu \in \mathbf{S}^{1}, \alpha_{i}>$ $0, i=1,2$ such that $u_{1}(X)=\alpha_{1}\langle X, \nu\rangle^{+}, u_{2}(X)=\alpha_{2}\langle X, \nu\rangle^{-}$.

Proof of proposition 2.3

From the assumption of proposition 2.3, let us consider the blow-up:

$$
\left\{\begin{array}{l}
u^{\epsilon}(X)=\frac{u\left(X_{0}+\epsilon X\right)}{\epsilon} \\
\gamma^{\epsilon}=\gamma\left(X_{0}+\epsilon X\right)
\end{array}\right.
$$

Let us recall that $u \in C_{l o c}^{0,1}(\Omega)$ and $\gamma \in L^{\infty}(\Omega)$, then by Ascoli theorem up to extraction of some subsequence $\left(u^{\epsilon}, \gamma^{\epsilon}\right) \rightarrow\left(u^{0}, \gamma^{0}\right)$ on $C^{0, \alpha}(K) \times L_{\text {weak* }}^{\infty}(K)$ for every compact set $K \subset \mathbf{R}^{2}$ and every $\alpha \in(0,1)$. Then $\left(u^{0}, \gamma^{0}\right)$ satisfies also (1.4) and is a solution on \mathbf{R}^{2}. We have $u^{0}(X)=\alpha<X, \nu>^{+}-\beta<X, \nu>^{-}$then

$$
\begin{equation*}
\int_{\mathbf{R}^{2}}\left(\alpha 1_{\{<X, \nu \gg 0\}}+\beta 1_{\{<X, \nu><0\}}\right) \nu \cdot \nabla v+\lambda \gamma^{0} \partial_{x} v=0 \tag{2.3}
\end{equation*}
$$

In particular $\partial_{x} \gamma^{0}=0$ in $\{\langle X, \nu\rangle \neq 0\}$, i.e.

$$
\gamma^{0}(x, y)=\left\{\begin{array}{l}
\gamma_{\alpha}^{0}(y) \text { in }\{<X, \nu \gg 0\} \\
\gamma_{\beta}^{0}(y) \text { in }\{<X, \nu><0\}
\end{array}\right.
$$

case 1: $\left\langle\nu, e_{x}\right\rangle=0$
From (2.3) we have $\lambda \partial_{x} \gamma^{0}=-\Delta v=0$ on $\{y>0\}$ and $\{y<0\}$. Then $\gamma^{0}=\gamma^{0}(y)$ on \mathbf{R}^{2}. Consequently $\int_{\mathbf{R}^{2}} \gamma \partial_{x} v=0$ and from (2.3) $\alpha=\beta$ and equation (2.1) is verified.
case 2: $<\nu, e_{x}>\neq 0$
We have $X=x e_{x}+y e_{y}=x_{1} e_{x}+x_{\nu^{\perp}} \nu^{\perp}$, where $\nu^{\perp}=\binom{-\nu_{y}}{\nu_{x}}$. Then

$$
\left\{\begin{array}{l}
x=x_{1}+x_{\nu^{\perp}}<\nu^{\perp}, e_{x}> \\
y=x_{\nu^{\perp}}<\nu^{\perp}, e_{y}>
\end{array} \quad d x d y=d x_{1} d x_{\nu^{\perp}}<\nu^{\perp}, e_{y}>\right.
$$

$$
\left\{\begin{array} { l }
{ x _ { \nu ^ { \perp } } = \frac { y } { \langle \nu ^ { \perp } , e _ { y } \rangle } } \\
{ x _ { 1 } = x - y \frac { \nu ^ { \perp } \perp e _ { x } \rangle } { \langle \nu ^ { \perp } , e _ { y } \rangle } }
\end{array} \quad \left\{\begin{array}{l}
\partial_{x}=\partial_{x_{1}} \\
\partial_{y}=\frac{1}{\left\langle\nu^{\perp}, e_{y}\right\rangle} \partial_{x_{\nu} \perp}-\frac{\left\langle\nu^{\perp}, e_{x}\right\rangle}{\left\langle\nu^{\perp}, e_{y}\right\rangle} \partial_{x_{1}}
\end{array}\right.\right.
$$

Moreover $<\nu^{\perp}, e_{x}>=-<\nu, e_{y}>,<\nu^{\perp}, e_{y}>=<\nu, e_{x}>$, and

$$
\nu \cdot \nabla v=\frac{1}{\left\langle\nu, e_{x}\right\rangle} \partial_{x_{1}} \tilde{v}-\frac{\left\langle\nu, e_{y}\right\rangle}{\left\langle\nu, e_{x}\right\rangle} \partial_{x_{\nu^{\perp}}} \tilde{v} \text { for } \tilde{v}\left(x_{1}, x_{\nu^{\perp}}\right)=v(x, y)
$$

Similarly let $\tilde{\gamma}^{0}\left(x_{1}, x_{\nu^{\perp}}\right)=\gamma^{0}(x, y)$. Then from (2.3) we get

$$
\int_{\mathbf{R}^{2}}\left(\alpha 1_{\left\{x_{1}<\nu, e_{x} \gg 0\right\}}+\beta 1_{\left\{x_{1}<\nu, e_{x}><0\right\}}\right)\left(\frac{1}{\left\langle\nu, e_{x}>\right.} \partial_{x_{1}} \tilde{v}-\frac{<\nu, e_{y}>}{\left\langle\nu, e_{x}>\right.} \partial_{x_{\nu} \perp} \tilde{v}\right)+\lambda \tilde{\gamma} \partial_{x_{1}} \tilde{v}=0
$$

Then $(\alpha-\beta) \delta_{\left\{x_{1}=0\right\}}+\lambda<\nu, e_{x}>\partial_{x_{1}} \tilde{\gamma}^{0}=0$, therefore $\alpha-\beta+\lambda<\nu, e_{x}>\left(\tilde{\gamma}_{\alpha}^{0}\left(x_{\nu \perp}\right)-\right.$ $\left.\tilde{\gamma}_{\beta}^{0}\left(x_{\nu^{\perp}}\right)\right)=0$ where $\tilde{\gamma}^{0}\left(x_{\nu^{\perp}}\right)=\left\{\begin{array}{c}\tilde{\gamma}_{\alpha}^{0}\left(x_{\nu^{\perp}}\right) \text { on }\left\{x_{1}>0\right\} \\ \tilde{\gamma}_{\beta}^{0}\left(x_{\nu^{\perp}}\right) \text { on }\left\{x_{1}<0\right\}\end{array}\right.$, i.e. $\alpha-\beta+\lambda<\nu, e_{x}>\left(\gamma_{\alpha}^{0}(y)-\right.$ $\left.\gamma_{\beta}^{0}(y)\right)=0$, which proves proposition 2.3.

$3 \quad\{u=0\}^{0}$ is an epigraph in the e_{x} direction

Here we prove the theorem 1.8.
If the result is false, then we work in ω (we can forget Ω).

Step 1

LEMMA 3.1 Let $P=\left(x_{1}, y_{1}\right) \in\{u=0\}^{0} \cap \omega$ such that $\exists x_{1}^{\prime \prime}>x_{1}, P^{\prime \prime}=\left(x_{1}^{\prime \prime}, y_{1}\right) \in$ $\left(\{u=0\}^{0}\right)^{c} \cap \omega$. Let I_{0} the connected component of $\{u=0\}^{0}$ which contains P. Then $\exists x_{1}^{\prime}>x_{1}, y_{1}^{\prime}, \exists r^{\prime}>0$ such that for $I=\left[y_{1}^{\prime}-r^{\prime}, y_{1}^{\prime}+r^{\prime}\right]$, we have $\omega_{0}=\left[x_{1}, x_{1}^{\prime}\right] \times I \subset \omega$ and $\exists \delta_{0}>0,\left[x_{1}, x_{1}+\delta_{0}\right] \times I \subset I_{0},\left[x_{1}^{\prime}-\delta_{0}, x_{1}^{\prime}\right] \times \subset\{u>0\}$ (up to a change of sign for u).

Proof of lemma 3.1

We know that $\exists B_{r}(P) \subset\{u=0\}^{0}$ and by definition of $P^{\prime \prime}, \exists P^{\prime}, d\left(P^{\prime \prime}, P^{\prime}\right)<\frac{r}{2}$ with say (up to a change of sign on u, see proposition 2.1) $u\left(P^{\prime}\right)>0$. Then $\exists B_{r^{\prime}}\left(P^{\prime}\right) \subset \subset\{u>0\}$ with $r^{\prime}<\frac{r}{2}$. We note $P^{\prime}=\left(x_{1}^{\prime}, y_{1}^{\prime}\right)$ and $\omega_{0}=\left[x_{1}, x_{1}^{\prime}\right] \times I \subset \omega$ with $I=\left[y_{1}^{\prime}-r^{\prime}, y_{1}^{\prime}+r^{\prime}\right]$. We deduce the existence of a $\delta_{0}>0$ as in the lemma, decreasing r^{\prime} if necessary. This ends the proof of lemma 3.1.

Step 2

LEMMA 3.2 Let $\Gamma_{0}=\left\{\Gamma_{0}(y)=\left(f_{0}(y), y\right), f_{0}(y)=\sup \left\{x,(x, y) \in I_{0} \cap \omega_{0}\right\}\right\}$. Then up to a change of sign on u there exists a connected component C_{0} of $\{u>0\} \cap \omega_{0}, \exists y_{+}, y_{-} \in$ $I, y_{+}>y_{-}$such that $\Gamma_{0}\left(y_{+}\right), \Gamma_{0}\left(y_{-}\right) \in \partial I_{0} \cap \partial C_{0}$.

Proof of lemma 3.2

Let $\mathcal{C}_{\omega_{0}}$ the set of all connected components of $\left(\{u>0\} \cap \omega_{0}\right) \cup\left(\{u<0\} \cap \omega_{0}\right)$. For each $C \in \mathcal{C}_{\omega_{0}}$, two cases appear:
i) either C is adherent to at most one point of Γ_{0}.
ii) or C is adherent to at least two points of Γ_{0}.

But $\mathcal{C}_{\omega_{0}}$ is a set of connected components at most denombrable, and Γ_{0} is a set of non denombrable points. Then $\exists C_{0} \in \mathcal{C}_{\omega_{0}}$ which verifies the case ii), and up to a change of sign on u we can assume that $u_{\mid C_{0}}>0$, and there exist two points $\Gamma_{0}\left(y^{-}\right), \Gamma_{0}\left(y^{+}\right) \in \Gamma_{0}$, with $y^{-}<y^{+}$. This ends the proof of lemma 3.2.

Step 3

LEMMA 3.3 Decreasing ω if necessary, we can assume (up to a change of sign on u) that $u \geq 0$ on ω_{0}.

Proof of lemma 3.3

Let g_{0} a continuous path which links together $\Gamma_{0}\left(y_{-}\right)$to $\Gamma_{0}\left(y_{+}\right)$in I_{0}. Precisely it means that there exists a injective and continuous map $\tilde{g}_{0}:[-1,1] \rightarrow \bar{I}_{0}$ with $\operatorname{Im}\left(\tilde{g}_{0}\right)=g_{0}$, $\tilde{g}_{0}((-1,1)) \subset I_{0}$, and $\tilde{g}_{0}(-1)=\Gamma_{0}\left(y_{-}\right), \tilde{g}_{0}(+1)=\Gamma_{0}\left(y_{+}\right)$.
Let g_{+}a continuous path which links together $\Gamma_{0}\left(y_{-}\right)$to $\Gamma_{0}\left(y_{+}\right)$in C_{0}. Then from the maximum principle $u \geq 0$ on the bounded component of boundary $g_{0} \cup g_{-}$. This ends the proof of lemma 3.3.

Step 4: contradiction

Let us take a ball in $\{u>0\}$ and slide it in direction $-e_{x}$. Then it touches ∂I_{0} at a point X_{0}. Then from the linear behaviour lemma 2.2, we get $u(X)=\alpha<X-X_{0}, \nu>^{+}-\beta<$ $X-X_{0}, \nu>^{-}+o\left(\left|X-X_{0}\right|\right)$ for some $\alpha>0$ (because of the Hopf lemma) and $\beta \leq 0$ (because $u \geq 0$) and with $<\nu, e_{x}>\geq 0$. Then from proposition 2.3 we get $\beta=\alpha+\lambda<$ $\nu, e_{x}>\left(\gamma_{\alpha}^{0}(y)-\gamma_{\beta}^{0}(y)\right)>0$ because $\gamma_{\alpha}^{0}(y) \equiv 1$ and $0 \leq \gamma_{\beta}^{0}(y) \leq 1$. Contradiction.
This ends the proof of the theorem 1.8.

4 Proof of theorem 1.11

4.1 Proof of theorem 1.11

DEFINITION 4.1 We say that $\Gamma(u)$ is ϵ-flat in 0 for $r \leq r_{\epsilon}$ if and only if

$$
\forall r \in\left(0, r_{\epsilon}\right),\left\{\begin{array}{l}
u>0 \text { on }\{y \geq \epsilon r\} \cap B_{r}(0) \\
u<0 \text { on }\{y \leq-\epsilon r\} \cap B_{r}(0)
\end{array}\right.
$$

We say that $X_{0} \in \Gamma(u)$ is a flat point if $\forall \epsilon>0, \exists r_{\epsilon}>0$, such that $\Gamma(u)$ is ϵ-flat in X_{0} for $r \leq r_{\epsilon}$.

DEFINITION 4.2 Let $\Gamma_{\text {flat }}$ the set of flat points of Γ, and let $\Gamma_{\text {reg }}$ the set of points $X_{0} \in \Gamma$ such that Γ is analytic in a neighbourhood of X_{0}.

Then we have

PROPOSITION 4.3 If (u, γ) is a solution of (1.4) on ω simply connected, if $\{u=0\}^{0} \cap$ $\omega=\emptyset$ and if $\{u>0\} \cap \omega$ and $\{u<0\} \cap \omega$ are connected components such that $(\partial\{u>$ $0\} \backslash \partial\{u<0\}) \cap \omega=\emptyset,(\partial\{u<0\} \backslash \partial\{u>0\}) \cap \omega=\emptyset$, then if $X_{0} \in \Gamma(u) \cap \omega$, such that locally $u(X)=o\left(\left|X-X_{0}\right|\right)$, then $X_{0} \in \Gamma_{\text {flat }} \cap \omega$.

REMARK 4.4 Here the Caffarelli theory [8]-[9] doesn't apply to improve the regularity of Γ because the solution is degenerate near X_{0}.

PROPOSITION 4.5 Under the same assumptions of proposition 4.3, if $u(X) \neq o(\mid X-$ $\left.X_{0} \mid\right)$ then Γ is analytic locally near X_{0}, i.e. $X_{0} \in \Gamma_{\text {reg }} \cap \omega$.

Proof of theorem 1.11

DEFINITION 4.6 Let C^{+}(resp. C^{-}) a connected component of $\{u>0\} \cap \Omega$ (resp. $\{u<0\} \cap \Omega)$. Let $P_{1}, P_{2} \in \partial C^{+} \cap \partial C^{-}$. Then there exists a continuous path $g^{+}=g_{P_{1}, P_{2}}^{+} \subset C^{+}$ which links together P_{1} to P_{2}. Precisely it means that there exists a injective continuous map $\tilde{g}^{+}:[-1,1] \rightarrow \bar{C}^{+}$such that $\operatorname{Im}\left(\tilde{g}^{+}\right)=g^{+}, g^{+}((-1,1)) \subset C^{+}, g^{+}(-1)=P_{1}, g^{+}(+1)=P_{2}$. Similarly there exists a continuous path $g^{-}=g_{P_{1}, P_{2}}^{-} \subset C^{-}$which links together P_{1} to P_{2}. We note $\bar{\omega}\left(P_{1}, P_{2}\right)$ every bounded closed component with boundary $g^{+} \cup g^{-}$, with g^{+}, g^{-}as previously.

We use the following lemma (Ω could be not simply connected, that is why we work on some ball $B \subset \Omega$):

LEMMA 4.7 Let a ball $B \subset \Omega$. Let C^{+}(resp. C^{-}) a connected component of $\{u>0\} \cap B$ (resp. $\{u<0\} \cap B$). Then $\exists P_{1}, P_{2} \in \partial C^{+} \cap \partial C^{-}$and $\bar{\omega}\left(P_{1}, P_{2}\right)$ as in definition 4.6 such that $\partial C^{+} \cap \partial C^{-} \subset \bar{\omega}\left(P_{1}, P_{2}\right)$.

Then from proposition 4.5 and proposition 4.3 we have with $\omega=\operatorname{Int}\left(\bar{\omega}\left(P_{1}, P_{2}\right)\right)$:

$$
\Gamma_{0}:=\partial C^{+} \cap \partial C^{-}=\left\{P_{0}, P_{0}^{\prime}\right\} \cup\left(\Gamma_{\text {reg }} \cap \omega\right) \cup\left(\Gamma_{\text {flat }} \cap \omega\right)
$$

Let us consider a compact $K \subset \subset B$. If $\mathcal{H}^{2}\left(K \cap \Gamma_{0}\right)>0$, then $\underline{\theta}(X)=\liminf _{r \rightarrow 0} \frac{\left|B_{r}(X) \cap\left(K \cap \Gamma_{0}\right)\right|}{\left|B_{r}(X)\right|}=$ $1 \mathcal{H}^{2}$-a.e. $X \in K \cap \Gamma_{0}$. In particular $\exists X_{0} \in \Gamma_{0}, \underline{\theta}\left(X_{0}\right)=1$. Then $X_{0} \notin \Gamma_{r e g}$, and then $X_{0} \in \Gamma_{\text {flat }}$ which implies (from proposition 4.3) $\underline{\theta}\left(X_{0}\right) \leq \epsilon$ for all $\epsilon>0$. Contradiction. Then $\mathcal{H}^{2}\left(K \cap \Gamma_{0}\right)=0$ for all K, therefore $\mathcal{H}^{2}\left(\partial C^{+} \cap \partial C^{-}\right)=0$. The number of pair $\left(C^{+}, C^{-}\right)$is at most denombrable, therefore by denombrable summability, $\mathcal{H}^{2}(\{u=0\} \cap B)=0$ for every ball $B \subset \Omega$. Consequently $\mathcal{H}^{2}(\{u=0\})=0$. This ends the proof of theorem 1.11.

Proof of lemma 4.7

It is easy to prove the lemma 4.7, using the connexity of C^{+}and C^{-}, the fact that we work with topology in two dimensions, and the fact that B is simply connected. We proceed as follows. Let $P_{0}, P_{1}^{0}, P_{2}^{0} \in \Gamma_{0}=\partial C^{+} \cap C^{-}$. We consider the sets $\mathcal{E}_{P_{i}^{0}}$ for $i=1,2$ of points P such that $P_{i}^{0} \in \bar{\omega}\left(P_{0}, P\right)$. Each set $\mathcal{E}_{P_{i}^{0}}$ is ordened by the relation $P \leq P^{\prime}$ if and only if $P \in \bar{\omega}\left(P_{i}^{0}, P^{\prime}\right)$ for some set $\bar{\omega}\left(P_{i}^{0}, P^{\prime}\right)$ as in definition 4.6. Let $P_{i}=\max \mathcal{E}_{P_{i}^{0}} ; i=1,2$. To finish we prove that $\partial C^{+} \cap \partial C^{-} \backslash \bar{\omega}\left(P_{1}, P_{2}\right)=\emptyset$.

4.2 Proof of proposition 4.5

Let us consider a point $X_{0} \in \Gamma \cap \omega$ such that $u(X) \neq o\left(\left|X-X_{0}\right|\right)$. Then let $X_{0}=0$, $u^{\epsilon}(X)=\frac{u(\epsilon X)}{\epsilon}$. Then there exists a subsequence such that $u^{\epsilon} \rightarrow u^{0}$ and $u^{0} \not \equiv 0$. In particular from theorem 2.5 if we set $u_{1}=u^{+}, u_{2}=u^{-}$, we get that $\phi_{u}(r):=\phi(r)$ is nondecreasing. Now $\phi_{u^{\epsilon}}(r)=\phi_{u}(\epsilon r)$, then $\phi_{u^{0}}(r)=\phi_{u}(0)$.
case 1: $\phi_{u}(0)>0$
If $\phi_{u}(0)>0$ we conclude that $u^{0}(X)=\alpha<X, \nu>^{+}-\beta<X, \nu>^{-}$, with $\alpha, \beta>0, \nu \in \mathbf{S}^{1}$. Then from proposition 2.4 and from theorem 6.3 i) in the appendix we conclude that Γ is
locally $C^{1, \alpha}$ near X_{0}, and then from the result of Kinderlehrer-Mirenberg [16], Γ is locally analytic.
case 2: $\phi_{u}(0)=0$
In this case $u^{0} \geq 0$ or $u^{0} \leq 0$. Up to a change of sign on u (see proposition 2.1) we can always assume that $u^{0} \geq 0$ and $u^{0} \not \equiv 0$. In particular from theorem $1.8,\left\{u^{0}=0\right\}^{0}$ is an epigraph in the e_{x} direction. Here we prove:

LEMMA 4.8 If $u^{0} \not \equiv 0, u^{0} \geq 0$ and $\left(u^{0}, \gamma^{0}\right)$ is a solution of (1.4), then $\left\{u^{0}=0\right\}$ is an epigraph in the direction e_{x}.

Proof of lemma 4.8

Let us assume that $u>0$ on $B=B_{r}\left(x_{0}, y_{0}\right)$ and $\exists x_{1}<x_{0}, u\left(x_{1}, y_{0}\right)=0$. We have $u^{0} \geq 0$ and $\Delta u^{0}=0$ in $\left\{u^{0}>0\right\}$ and u^{0} is (Lipschitz-) continuous. Then u^{0} is a subsolution and $\partial_{x} \gamma^{0}=-\frac{1}{\lambda} \Delta u^{0} \leq 0$. We know that $\gamma^{0} \equiv 1$ in B and then $\Delta u^{0}=0$ on the left of B. From the hard maximum principle we deduce that $u^{0}>0$ on the left of B, because $u^{0}>0$ on B. Consequently $u^{0}\left(x_{0}, y_{0}\right)>0$. Contradiction. This proves the lemma 4.8.

LEMMA 4.9 If $u^{0} \not \equiv 0, u^{0} \geq 0$ and $\left(u^{0}, \gamma^{0}\right)$ is a solution of (1.4), then $\forall y \in \mathbf{R}, \exists x \in$ $\mathbf{R}, u^{0}(x, y)>0$

Proof of lemma 4.9

Let us assume that $\exists y_{0} \in \mathbf{R}, \forall x \in \mathbf{R}, u^{0}\left(x, y_{0}\right)=0$. Then up to a translation we can assume that $y_{0}=0$. Because $u^{0} \not \equiv 0, \exists P \in\{y>0\} \cup\{y<0\}, u^{0}(P)>0$.
Case 1: $\exists P^{+} \in\{y>0\}, \exists P^{-} \in\{y<0\}, u^{0}\left(P^{+}\right)>0, u^{0}\left(P^{-}\right)>0$
Then let us consider the blow-in

$$
\left\{\begin{array}{l}
u^{0, \mu}(X)=\frac{u^{0}(\mu X)}{\mu} \\
\gamma^{0, \mu}(X)=\gamma^{0}(\mu X)
\end{array}\right.
$$

If we set $u_{1}=u^{0} 1_{\{y>0\}}, u_{2}=u^{0} 1_{\{y<0\}}$ we know from theorem 2.5 that $\phi_{u^{0}}(r):=\phi(r)$ is nondecreasing in r. In particular $\phi_{u^{0, \mu}}(r)=\phi_{u^{0}}(\mu r)>0$ for $\mu>0$ large enough. Then up to extraction of some subsequence $\left(u^{0, \mu}, \gamma^{0, \mu}\right) \rightarrow\left(u^{0, \infty}, \gamma^{0, \infty}\right)$ which is a solution of (1.4) on \mathbf{R}^{2}, and $\phi_{u^{0, \infty}}(r)=\phi_{u^{0}}(+\infty)>0$. Then from theorem $2.5 u^{0, \infty}(X)=\alpha y^{+}-\beta y^{-} \geq 0$ with $\alpha>0, \beta<0$ This is imposible from proposition 2.3.

Case 2: $u^{0}=0$ on $\{y>0\}$ or $\{y<0\}$
Let us assume that $u^{0}=0$ on $\{y>0\}$. Let for some $\epsilon_{0}>0$:

Then $\left(\tilde{u}^{0}, \tilde{\gamma}^{0}\right)$ is a solution of (1.4) on \mathbf{R}^{2} and we get a contradiction as in case 1 . This ends the proof of lemma 4.9.

Now we will use the following result:
PROPOSITION $4.10 \forall \eta_{0}>0, \exists \epsilon>0$, such that if (u, γ) is a solution of (1.4) on Ω such that $\partial\{u>0\} \backslash \partial\{u<0\}=\emptyset, \partial\{u<0\} \backslash \partial\{u>0\}=\emptyset$, and $|u|<\epsilon$ on $R_{1} \subset \Omega$, then for $y^{+}=\sup \left\{y,(x, y) \in \partial\{u<0\} \cap R_{1}, y^{-}=\inf \left\{y,(x, y) \in \partial\{u<0\} \cap R_{1}\right.\right.$. we have $\partial\{u<0\} \cap R_{1} \subset(-1,1) \times\left(\left[y^{-}, y^{-}+5 \eta_{0}\right] \cup\left[y^{+}-5 \eta_{0}, y^{+}\right]\right)$.

We have $0 \in \partial\left\{u^{0}=0\right\}$, then from lemma 4.8, $u^{0}(x, 0)=0$ for $x \geq 0$. Let for $\epsilon \geq 0$, $\lambda \geq 1, t \geq 0:$

$$
\left\{\begin{array}{l}
u_{t, \lambda}^{\epsilon}(x, y)=\frac{u^{\epsilon}(\lambda x+t, \lambda y)}{\lambda} \\
\gamma_{t, \lambda}^{e}(x, y)=\gamma^{\epsilon}(\lambda x+t, \lambda y)
\end{array}\right.
$$

In particular $u_{t, 1}^{0} \rightarrow u_{\infty, 1}^{0}$ uniformly on every compact sets (up to extraction of some subsequence), and $\gamma_{t, 1}^{0} \rightarrow \gamma_{\infty, 1}^{0}$ in $L_{w e a k *}^{\infty}$. Then $\left(u_{\infty, 1}^{0}, \gamma_{\infty, 1}^{0}\right)$ is a solution of (1.4), $u_{\infty, 1}^{0} \geq 0$, and $\forall x \in \mathbf{R}, u_{\infty, 1}^{0}(x, 0)=0$, therefore from lemma 4.9 we have $u_{\infty, 1}^{0} \equiv 0$. Now we deduce that $\left|u_{t, \lambda}^{\epsilon_{1}}-u_{\infty, \lambda}^{0}\right| \leq \epsilon$ on R_{2} if ϵ_{1} is small enough and t large enough. Then from proposition 4.10 we deduce that there exist $y^{ \pm}=\left(y_{t, \lambda}^{\epsilon_{1}}\right)^{ \pm}$such that $\left|u_{t, \lambda}^{\epsilon_{1}}\right|>0$ on $R_{1} \backslash[-1,1] \times\left(\left[y^{-}, y^{-}+5 \eta_{0}\right] \cup\left[y^{+}-5 \eta_{0}, y^{+}\right]\right)$, and $\gamma_{t, \lambda}^{\epsilon_{1}}=0$ where $u_{t, \lambda}^{\epsilon_{1}}<0, \gamma_{t, \lambda}^{\epsilon_{1}}=1$ where $u_{t, \lambda}^{\epsilon_{1}}>0$. If we pass to the limit firstly on $\epsilon_{1} \rightarrow 0$, we deduce that $\gamma_{t, \lambda}^{0}=u_{t, \lambda}^{0}=0$ on certain regions of the form $[-1,1] \times[a, b]$. But $\gamma_{t, \lambda}^{0}$ is nonincreasing in x, therefore $\forall t^{\prime}>t, \gamma_{t^{\prime}, \lambda}^{0}=u_{t^{\prime}, \lambda}^{0}=0$ on $[-1,1] \times[a, b]$.
Now if we take λ large enough we deduce that there exist $y^{+}, y^{-} \in \mathbf{R} \cup\{-\infty\} \cup\{+\infty\}$ such that at $x=+\infty, \gamma^{0}$ is equal to 0 or 1 on each interval $\left(-\infty, y^{-}\right),\left(y^{-}, y^{+}\right),\left(y^{+},+\infty\right)$.
Case 1: $\gamma_{\infty, 1}^{0}=1$ on $(a, 0)$ or $(0, a)$
It implies by construction, and because of lemma 4.9 that $u^{0}>0$ on $\mathbf{R} \times(0, a)$. Then we
get a contradiction as in the proof of lemma 4.9 because $u^{0}(x, 0)=0$ for $x \geq 0$.
Case 2: $\gamma_{\infty, 1}^{0}=0$ on $(a, b) \ni 0$
Then there exists a ball $B_{r}\left(\Lambda e_{x}\right) \subset\left\{u^{0}=0\right\}^{0}$ for some $r, \Lambda>0$, where $\gamma^{0}=0$. Then we define $v^{0}(x, y)=\int_{x}^{\Lambda} u^{0}(s, y) d s$ which verifies

$$
\left\{\begin{array}{l}
v^{0} \geq 0 \tag{4.1}\\
\Delta v^{0}=\lambda 1_{\{v>0\}} \\
\left|D^{2} v^{0}\right|_{L^{\infty}} \leq \max (\operatorname{Lip}(u), \lambda)<+\infty
\end{array}\right.
$$

Moreover $\left(v^{0}\right)_{x}^{\prime}=-u^{0} \leq 0$ and $\left(v^{0}\right)_{x}^{\prime}<0$ in $\left\{v^{0}>0\right\}$. Then from a result of Alt [1] (see also lemma 5.2 with $\lambda\left(x^{\prime}\right) \equiv \lambda=$ const $), \partial\left\{v^{0}>0\right\}=\partial\left\{u^{0}>0\right\}$ is locally Lipschitz. We made a new blow-up $u^{0, \epsilon}(X)=\frac{u^{0}(\epsilon X)}{\epsilon} \rightarrow u^{00}(X), v^{0, \epsilon}(X)=\frac{v^{0}(\epsilon X)}{\epsilon^{2}} \rightarrow v^{00}(X)$. From Caffarelli theory [11] we get $v^{00}(x, y)=\frac{\left(\langle X, \nu\rangle^{+}\right)^{2}}{2}$ or $v^{00}(x, y)=\frac{\langle X, \nu\rangle^{2}}{2}$ where $<e_{x}, \nu>\neq 0$ because Γ is Lipschitz. But $\partial_{x} v^{00}=-u^{00} \leq 0$, then $u^{00}(X)=<X, \nu>^{+}$for $<e_{x}, \nu><0$. Once more, from Caffarelli theory [11] we get that $\partial\left\{u^{0}>0\right\}$ is analytic near 0 . We conclude (see lemma 6.4 and the proof of theorem 6.3 iii$)$ in the appendix) that $\Gamma(u)$ is analytic near X_{0}. Let us remark that if $\Gamma(u)$ is analytic then from the Hopf lemma locally $u(X)=\alpha<$ $X-X_{0}, \nu>^{+}-\beta<X-X_{0}, \nu>^{-}+o(|X|)$ with $\alpha, \beta>0$ and then $\phi_{u}(0)>0$, which proves that case 2 is impossible (for the two phases problem). This ends the proof of proposition 4.5.

4.3 Flat points: proof of proposition 4.3

REMARK 4.11 Let us remark that $\forall \lambda \in \mathbf{R}, u(x, y)=e^{-\lambda x} \sin \lambda y, \gamma \in H(u)$ is locally a solution of problem (1.4).

We assume that $u(X)=o(|X|)$ near 0 .
For $\mu>0$, let $R_{\mu}=(-\mu, \mu)^{2}$ of center 0 , and $\bar{R}_{\mu}=[-\mu, \mu]^{2}$. We assume that $|u|<\epsilon$ on R_{2}.
LEMMA 4.12 $\forall \eta_{0}>0, \exists \epsilon>0$, such that if $\exists y_{0} \in \mathbf{R},|u|<\epsilon$ on $[-1,1] \times\left[y_{0}-\eta_{0}, y_{0}+\eta_{0}\right]$, $\exists x_{0} \in(-1,1)$, and if there exists a continuous path $g_{0} \subset\{u>0\} \cap\left[x_{0}, 1\right] \times\left[y_{0}-\eta_{0}, y_{0}+\eta_{0}\right]$ with $\left\{P_{1}=\left(x_{1}, y_{0}-\eta_{0}\right)\right\}=g_{0} \cap\left[x_{0}, 1\right] \times\left\{y_{0}-\eta_{0}\right\},\left\{P_{2}=\left(x_{2}, y_{0}+\eta_{0}\right)\right\}=g_{0} \cap\left[x_{0}, 1\right] \times\left\{y_{0}+\eta_{0}\right\}$, then $\left\{y=y_{0}\right\} \cap R^{g_{0}} \subset\{u>0\}$, where $P_{1}^{\prime}=\left(-1, y_{0}-\eta_{0}\right), P_{2}^{\prime}=\left(-1, y_{0}+\eta_{0}\right)$ and $R^{g_{0}}$ is the bounded connected component of boundary $\left[P_{1} P_{1}^{\prime}\right] \cup\left[P_{1}^{\prime} P_{2}^{\prime}\right] \cup\left[P_{2}^{\prime} P_{2}\right] \cup g_{0}$, i.e. the component of $[-1,1] \times\left[y_{0}-\eta_{0}, y_{0}+\eta_{0}\right]$ at the left of g_{0}.

Proof of lemma 4.12

Step 1: Construction of a subsolution

Let $\alpha_{0}>0$ very small. Let $\mathcal{C}\left(\alpha_{0}\right)=\left\{\rho(\cos \phi, \sin \phi), \rho>0, \phi \in\left[-\alpha_{0}, \alpha_{0}\right]\right\}$, and for $\delta>0$, $\mathcal{C}_{\delta}\left(\alpha_{0}\right)=\left\{X, d\left(X, \mathcal{C}\left(\alpha_{0}\right)\right)<\delta\right\}$. For $L>0$, let $\mathcal{C}_{\delta}^{L}\left(\alpha_{0}\right)=\left\{X \in \mathcal{C}_{\delta}\left(\alpha_{0}\right), x<L\right\}$. We want to construct a subsolution of the problem 1.4 on $\mathcal{C}_{2 \delta}^{L}\left(\alpha_{0}\right)$. For this, we introduce the function v_{1} defined on $\overline{\mathcal{C}_{2 \delta}^{L}\left(\alpha_{0}\right) \backslash \mathcal{C}_{\delta}^{L}\left(\alpha_{0}\right)}$ by

$$
\left\{\begin{array}{l}
\Delta v_{1}=0 \text { on } \mathcal{C}_{2 \delta}^{L}\left(\alpha_{0}\right) \backslash \overline{\mathcal{C}_{\delta}^{L}\left(\alpha_{0}\right)} \tag{4.2}\\
v_{1}=0 \text { on }\left(\partial \mathcal{C}_{\delta}\left(\alpha_{0}\right)\right) \cap\{x<L\} \\
v_{1}=1 \text { on }\left(\partial \mathcal{C}_{2 \delta}\left(\alpha_{0}\right)\right) \cap\{x<L\} \\
v_{1}=\frac{d\left(x, \mathcal{C}_{\delta}\left(\alpha_{0}\right)\right)}{\delta} \text { on }\{x=L\} \cap \overline{\mathcal{C}_{2 \delta}\left(\alpha_{0}\right) \backslash \mathcal{C}_{\delta}\left(\alpha_{0}\right)}
\end{array}\right.
$$

And on $\mathcal{C}_{\delta}^{L}\left(\alpha_{0}\right)$ we define v^{1} by

$$
\left\{\begin{array}{l}
\Delta v^{1}=0 \text { on } \mathcal{C}_{\delta}^{L}\left(\alpha_{0}\right) \tag{4.3}\\
v^{1}=0 \text { on }\left(\partial \mathcal{C}_{\delta}\left(\alpha_{0}\right)\right) \cap\{x<L\} \\
v^{1}=\cos \left(\frac{y}{y_{L}}\right) \text { on } \mathcal{C}_{\delta}\left(\alpha_{0}\right) \cap\{x=L\} \\
\text { where } 2 y_{L}=\text { lenght of } \mathcal{C}_{\delta}\left(\alpha_{0}\right) \cap\{x=L\}
\end{array}\right.
$$

Then let

$$
v_{\epsilon}^{\eta}=\left\{\begin{array}{l}
-\epsilon v_{1} \text { on } \overline{\mathcal{C}_{2 \delta}^{L}\left(\alpha_{0}\right) \backslash \mathcal{C}_{\delta}^{L}\left(\alpha_{0}\right)} \tag{4.4}\\
\eta v^{1} \text { on } \overline{\mathcal{C}_{\delta}^{L}\left(\alpha_{0}\right)}
\end{array}\right.
$$

Then on the free boundary, $\forall X_{0} \in \Gamma\left(v_{\epsilon}^{\eta}\right)=\left(\partial \mathcal{C}_{\delta}\left(\alpha_{0}\right)\right) \cap\{x<L\}$, we have $u(X)=\alpha<$ $X-X_{0}, \nu_{0}>^{+}-\beta<X-X_{0}, \nu_{0}>^{-}+o\left(\left|X-X_{0}\right|\right)$, where ν_{0} is the normal to $\Gamma\left(v_{\epsilon}^{\eta}\right)$ in X_{0}. But here $\alpha=\eta \alpha_{1}, \beta=\epsilon \beta_{1},\left\langle e_{x}, \nu>\geq \sin \alpha_{0}>0\right.$, and we search to verify the condition of subsolution on the boundary

$$
\begin{equation*}
\alpha>\beta-\lambda<e_{x}, \nu> \tag{4.5}
\end{equation*}
$$

Then we see that $\exists \epsilon=\epsilon\left(\alpha_{0}, \delta, L\right)>0$ (and $\epsilon \rightarrow 0$ as $\left.\alpha_{0}, \delta_{0} \rightarrow 0\right)$ such that we obtain for all $\eta \geq 0$ a strict subsolution v_{ϵ}^{η} of problem $\left(P_{G}\right)$ in the appendix with $G(\beta, x, \nu)=\beta-\lambda<$ $e_{x}, \nu>$. Let us chose δ and α_{0} such that $\eta_{0} \geq 2 \delta+L \sin \alpha_{0}$ and $L=4$.

Step 2

Let $v^{t}(x, y)=v_{\epsilon}^{\eta}\left(x+t, y-y_{0}\right)$. For $t<-2$ we have $R^{g_{0}} \cap \operatorname{supp}\left(v^{t}\right)=\emptyset$. Then we apply a sliding method, increasing t continuously. By hypothesis v^{t} is a subsolution on $\operatorname{supp}\left(v^{t}\right) \cap R^{g_{0}}$ (see figure 1), and v^{t} can not touch u on $\partial\left(\operatorname{supp}\left(v^{t}\right) \cap R^{g_{0}}\right) \subset \operatorname{supp}\left(v^{t}\right) \cup g_{0}$, because
i) $v^{t}=-\epsilon$ and $u>-\epsilon$ on $\partial\left(\operatorname{supp}\left(v^{t}\right)\right)$.
ii) $u>0$ on g_{0} and then we can chose $\eta>0$ such that $u>\eta \geq v^{t}$ on g_{0}.

Then v^{t} can only touch u on $\Gamma\left(v^{t}\right)=\partial\left\{v^{t}>0\right\}$. But v^{t} is a strict subsolution on $\Gamma\left(v^{t}\right)$, consequently it is impossible (see lemma 7 in [8]). Then if we have chosen δ and α_{0} small enough we can increase t until $\Gamma\left(v^{t}\right)$ touches $\{x=-2+\delta\}$, which proves lemma 4.12.

REMARK 4.13 The lemma 4.12 is true too if we change $\{u>0\}$ by $\{u<0\}$ (see proposition 2.1).
figure 1

LEMMA 4.14 Let us assume that $|u|<\epsilon$ on R_{2}. Then it does not exist three points $P_{i}=$ $\left(x_{i}, y_{i}\right) \in \partial\{u<0\} \cap R_{1}, i=1,2,3$ such that $-1 \leq y_{1}<y_{1}+5 \eta_{0} \leq y_{2}<y_{2}+5 \eta_{0} \leq y_{3} \leq 1$.

Then proposition 4.10 is a corollary of lemma 4.14 .

Proof of lemma 4.14

Let us assume that there exists three such points. Then there exists $P_{12}=\left(x_{12}, y_{12}\right) \in$ $(-1,1) \times\left(y_{1}+2 \eta_{0}, y_{2}-2 \eta_{2}\right)$ such that $u\left(P_{12}\right) \neq 0$. By symmetry let us assume that $u\left(P_{12}\right)>0$. Then there exists a continuous path $g_{12} \subset\{u<0\}$ which links together P_{1} to P_{2}. It is possible that g_{12} goes outside R_{2}, but in every cases $u<\epsilon$ on the bounded
component of boundary [$\left.P_{1} P_{2}\right] \cup g_{12}$, because of the maximum principle.
case 1): g_{12} goes on the right of P_{12}
Because g_{12} goes on the right of P_{12}, we can apply the proof of lemma 4.12: let $P_{1}^{\prime}=$ $\left(-1, y_{1}\right), P_{2}^{\prime}=\left(-1, y_{2}\right)$ and $R^{g_{12}}$ the bounded component of boundary [$\left.P_{1} P_{1}^{\prime}\right] \cup\left[P_{1}^{\prime} P_{2}^{\prime}\right] \cup$ $\left[P_{2}^{\prime} P_{2}\right] \cup g_{12}$. Then $P_{12} \in R_{\eta_{0}}^{g_{12}}=R^{g_{12}} \cap\left\{y_{1}+\eta_{0} \leq y \leq y_{2}-\eta_{0}\right\} \subset\{u<0\}$. Contradiction. case 2): g_{12} goes on the left of P_{12}
Let $g_{23} \subset\{u>0\}$ a continuous path which links together P_{12} to P_{3}.
subcase 2)a): g_{23} goes on the left of g_{12} (see figure 2)
Let $R^{g_{23}}$ the bounded component of boundary $g_{23} \cup\left[P_{12} P_{3}\right]$. Then as previously we get $P_{1} \in R_{\eta_{0}}^{g_{23}}=R^{g_{23}} \cap\left\{y \leq y_{12}-\eta_{0}\right\} \subset\{u<0\}$. Contradiction.
subcase 2)a): g_{23} goes on the right of g_{12} (see figure 2)
Then $P_{2} \in R_{\eta_{0}}^{g_{23}}=R^{g_{23}} \cap\left\{y_{12}+\eta_{0} \leq y \leq y_{3}-\eta_{0}\right\} \cap R_{1} \subset\{u<0\}$. Contradiction.
In every case we get a contradiction. Then it proves the lemma 4.14.
figure 2

Proof of proposition 4.3

Up to consider $u^{\epsilon_{1}}(X)=\frac{u\left(\epsilon_{1} X\right)}{\epsilon_{1}}, \gamma^{\epsilon_{1}}(X)=\gamma\left(\epsilon_{1} X\right)$ with $0<\epsilon_{1}<1$ in place of (u, γ), we deduce from proposition 4.10 that we are in one the following cases:

Case C3

We have three parts: $|u|>0$ on $(-1,1) \times\left(-1, y^{-}\right),(-1,1) \times\left(y^{-}+5 \eta_{0}, y^{+}-5 \eta_{0}\right),(-1,1) \times$ $\left(y^{+}, 1\right)$, where $-1<y^{-}<y^{-}+10 \eta_{0}<y^{+}<1$ and $0 \in\left[y^{-}, y^{-}+5 \eta_{0}\right] \cup\left[y^{+}-5 \eta_{0}, y^{+}\right]$.

Case C2

We have two parts: $|u|>0$ on $(-1,1) \times\left(-1,-10 \eta_{0}\right),(-1,1) \times\left(10 \eta_{0}, 1\right)$.
And each case has subcases: we see the sign of u on each part from the top to the bottom. For example we note $C 3++-$ a situation in case C3 where $u>0$ on the two parts above and $u<0$ on the last part below. We will note more generally $C 3 a a b$ the case $C 3++-$ or the case $C 3--+$.

subcase C3aaa

Let us consider for example the case $C 3---$. Then the method of proof of lemma 4.14 applies and gives a contradiction (see figure 3).
figure 3

subcase C3aab or C3abb

Let us consider for example the case $C 3--+$. Then the method of proof of lemma 4.14 applies and gives a contradiction (see figure 4).
figure 4

subcase C3aba

Let us consider for example the case $C 3+-+$. Then with a zoom with some $0<\epsilon_{1}<1$ we get the case C2ab for $\left(u^{\epsilon_{1}}, \gamma^{\epsilon_{1}}\right)$ (see figure 5).
figure 5

subcase C2ab

Let us consider for example the case $C 2+-$. Then with a continuous zoom with $0<\epsilon_{1}<1$ we get the case C2ab for $\left(u^{\lambda}, \gamma^{\lambda}\right)$ (see figure 6), because the only other cases C3aab or C3abb are impossible. Then the configuartion C2ab is "stable" by zoom.
figure 6
subcase C2aa (see figure 7)
Let us consider for example the case $C 2--$. Then with a zoom with $0<\epsilon_{1}<1$ we can only get cases:
i) C3aaa: impossible
ii) C3aba, and then C2ab
iii) C2aa

Let us assume that we keep the case C2aa for every $0<\epsilon_{1}<1$. Then for the cones $C^{ \pm}=\left\{X, \pm \frac{\left\langle X, e_{y}\right\rangle}{|X|}>\frac{1}{2}\right\}$ we have

$$
\begin{equation*}
\left(C^{+} \cup C^{-}\right) \cap B_{r}(0) \subset\{u<0\} \tag{4.6}
\end{equation*}
$$

if η_{0} is small enough. But $0 \in \partial\{u>0\}$, and if $C_{l}=\{u>0\} \cap\{x<0\} \cap B_{r}(0) \neq \emptyset$, $C_{d}=\{u>0\} \cap\{x>0\} \cap B_{r}(0) \neq \emptyset$ for every $r>0$ small enough, then there exists a continuous path $g \subset\{u>0\}$ which connects C_{l} to C_{d}. This path can not go near 0 because of (4.6), then g goes round one of the components $(-1,1) \times\left(-1,-10 \eta_{0}\right),(-1,1) \times\left(10 \eta_{0}, 1\right)$ where $u<0$. Contradiction. Then we have $C_{l}=\emptyset$ or $C_{d}=\emptyset$. Then $u<0$ locally on $\{x<0\}$ or $\{u>0\}$. Thus the Hopf lemma gives a contradiction to the fact that $u(X)=o(|X|)$.
figure 7
Consequenlty in every case for $0<\epsilon_{1}<1$ small enough $\left(u^{\epsilon_{1}}, \gamma^{\epsilon_{1}}\right)$ is in the case C2ab, and it proves the proposition 4.3.

5 Examples

Let us recall an example of a mushy region which is given in [7]. Let $\Omega=\mathbf{R} \times(0,1), u=f_{0}$ on $\mathbf{R} \times\{0\}$, and $u=f_{1}$ on $\mathbf{R} \times\{1\}$, where $f_{1}(x)=-f_{0}(x)=a \inf (1, \exp (-x))$, for a constant $a>0$ to be fixed. Let $g(y)=\frac{1}{y(1-y)}$. Let v on $\{x<g(y)\}$ equal to the harmonic function which vanishes on $x=g(y)$ and takes the values f_{0} and f_{1} on $\partial \Omega$; and $v=0$ on $\{x>g(y)\}$. Let ν the exterior unit normal to $\{x>g(y)\}$, and $\gamma_{v}=\chi_{\left[\frac{1}{2}, 1\right]}(y)+\frac{v_{\nu}^{+}(g(y), y)}{\nu \cdot e_{x}}$. On the free boundary one has $v_{\nu}^{+}=O\left(e^{-|x|}\right)$ and $e_{x} \cdot \nu=O\left(\frac{1}{x}\right)$ as $x \rightarrow+\infty$. Therefore for a small enough $\gamma_{v} \in[0,1]$ and $\left(v, \gamma_{v}\right)$ is a solution.

Remark that when $u \geq 0$, the problem (1.4) reduced to the problem (1.1) with a generalised function $\tilde{\chi}(p)=\gamma(u)$, and $u(x, y)=p(y,-x)$. Recall that if we assume that $\tilde{\chi}(0)=0$, then it is known (see [1]) that the boundary $\partial\left(\{p=0\}^{0}\right)$ (i.e. $\partial\left(\{u=0\}^{0}\right)$) is an analytical graph.
In the general case we have the
PROPOSITION 5.1 If (u, γ) is a slution of (1.4), and locally

$$
\left\{\begin{array}{l}
u \geq 0, \gamma \in C^{0,1} \tag{5.1}\\
\gamma \leq 1-\delta<1 \text { on }\{u=0\}^{0}
\end{array}\right.
$$

Then locally $\Gamma_{0}(u)=\partial\left(\{u=0\}^{0}\right)$ is a $C^{1, \alpha}$ graph in direction e_{x} and $\gamma=\gamma(y)$ on $\{u=0\}^{0}$.
This proposition can be proved using for the function $v(x, y)=\int_{x}^{a} v\left(x^{\prime}, y\right) d x^{\prime}$ the following lemma which is an adapted version of a result of Alt [1].

LEMMA 5.2 For $B_{1} \subset \mathbf{R}^{n}$, if $v \in C^{1}\left(B_{1}\right), \lambda \in C^{0,1}, 0 \in \Gamma=\partial\{v>0\}$, and for $x=$ $\left(x^{\prime}, x_{n}\right) \in \mathbf{R}^{n}$:

$$
\left\{\begin{array}{l}
\Delta v=\lambda\left(x^{\prime}\right)>0 \text { in } B_{1} \cap\{v>0\} \\
\partial_{x_{n}} v \geq 0 \text { in } B_{1} \\
\partial_{x_{n}} v>0 \text { in } B_{1} \cap\{v>0\}
\end{array}\right.
$$

Then Γ is Lipschitz in $B_{\frac{1}{2}}$.
In proposition 5.1, the condition $\delta>0$ is necessary, because if not, we can construct a counter-example u solution of (1.4) such that $\Gamma_{0}(u)$ has a cusp.

Counter-example

We use the holomorphic function $F(z)=-\exp (-\sqrt{-\ln (z)})$, with $z=r e^{i \theta}, \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], r \geq$ 0 . Then F is a diffeomorphism from $\{x \geq 0\}$ on its range \mathcal{C} which is a cusp because $F\left(r e^{i \theta}\right)=R e^{i \Theta}$, and a calculus gives $R=e^{-\sqrt{-\ln r}\left(1+o\left(\frac{1}{-\ln r}\right)\right)}, \Theta-\pi=\frac{\theta}{2 \sqrt{-\ln r}}(1+o(1))$. Now let $u=u_{1} \circ F^{-1}$ where $u_{1}(x+i y)=x^{+}$. Then $\Delta u=0$ on \mathcal{C} by composition of holomorphic function. We must verify that u is locally Lipschitz, it means u_{ν}^{+}is locally bounded, and construct a function $\gamma^{0}(y)=\gamma$ in $\{u=0\}^{0}$ such that $\Delta u+\lambda \partial_{x} \gamma=0$ in a neighbourhood of 0 . In particular from proposition 2.3, $\gamma_{0}(y)$ must verify:

$$
0 \leq 1-\gamma_{0}(y)=-\frac{u_{\nu}^{+}}{\lambda<e_{x}, \nu>} \leq 1
$$

But a calculus gives $0 \leq-\frac{u_{\nu}^{+}}{\lambda\left\langle e_{x}, \nu>\right.}=\frac{1}{\lambda \operatorname{Re}\left(F_{z}^{\prime}(z)\right)}$ where $z=r e^{i \theta}$ with $\theta= \pm \frac{\pi}{2}$. But $F_{z}^{\prime}(z)=$ $\frac{X}{2} e^{\frac{1}{X^{2}}-\frac{1}{X}} \rightarrow+\infty$ where $X=\frac{1}{\sqrt{-\ln z}}=\frac{1}{\sqrt{-\left(\ln r \pm i \frac{\pi}{2}\right)}} \rightarrow 0$. Moreover $<e_{x}, \nu>\rightarrow 0$ as $r \rightarrow 0$, then $u_{\nu}^{\prime} \rightarrow 0$ as $r \rightarrow 0$ and locally u is Lipschitz (and positive harmonic). Then locally it is a solution to (1.4). Remark that here $\gamma_{0}=1+\frac{u_{\nu}^{+}}{\lambda e_{x} \cdot \nu} \in C^{\infty}$. Moreover $\Gamma_{0}(u)=\partial\left(\{u=0\}^{0}\right) \in$ $C^{0, \beta}$ for every $\beta \in(0,1)$.

REMARK 5.3 We do not know if there exists a solution (u, γ) to problem (1.4) on an open set Ω, such that $u \geq 0$ on Ω and $(\partial\{u>0\}) \cap \Omega \neq \emptyset$. In what follows we give a possible candidate but we do not know if it is a posteriori a solution.
Let $\Omega=(0,+\infty) \times(0,1)$. We give us a sequence $\left(\rho_{n}\right)_{n}$ of positive real numbers, such that $0<\sum_{n=1}^{+\infty} 2^{n-1} \rho_{n}<1$. Then we will build a sequence of functions $\left(u_{n}\right)_{n}$ which converge to a function u_{∞} such that $\left(\partial\left\{u_{\infty}>0\right\}\right) \cap \Omega \neq \emptyset$. But we do not know if there exists a function $\gamma_{\infty} \in L^{\infty}(\Omega)$ such that $\left(u_{\infty}, \gamma_{\infty}\right)$ is a solution of problem (1.4) on Ω.

Step 0

Let $y_{0}=z_{0}=0, y_{1}=z_{1}=1$ and $y_{01}=\frac{z_{0}+z_{1}}{2}$. For some $x_{01}>0$ let $P_{01}=\left(x_{01}, y_{01}\right)$, and $\Gamma^{-}\left(P_{01}, z_{0}, \mu_{1}\right)=\left\{x \geq x_{01}, y=y_{01}+\left(z_{0}-y_{01}\right)\left(1-e^{-\mu_{1}\left(x-x_{01}\right)}\right)\right\}, \Gamma^{-}\left(P_{01}, z_{1}, \mu_{1}\right)=\{x \geq$ $\left.x_{01}, y=y_{01}+\left(z_{1}-y_{01}\right)\left(1-e^{-\mu_{1}\left(x-x_{01}\right)}\right)\right\}$, and because $y_{01}>z_{0}, y_{01}<z_{1}, G^{-}\left(P_{01}, z_{0}, \mu_{1}\right)=$ $\left\{x \geq x_{01}, y_{01} \geq y \geq y_{01}+\left(z_{0}-y_{01}\right)\left(1-e^{-\mu_{1}\left(x-x_{01}\right)}\right)\right\}, G^{+}\left(P_{01}, z_{1}, \mu_{1}\right)=\left\{x \geq x_{01}, y_{01} \leq y \leq\right.$ $\left.y_{01}+\left(z_{1}-y_{01}\right)\left(1-e^{-\mu_{1}\left(x-x_{01}\right)}\right)\right\}$, for $\mu_{1}=\frac{\pi}{y_{1}-y_{0}}$.
Now we search a function u_{0} such that $u_{0}=0$ on $(0,+\infty) \times\{0,1\}$ and $u_{0}=\lambda_{0} \cos \left(\pi\left(y-y_{01}\right)\right)$ on $\{0\} \times(0,1)$ for some $\lambda_{0}>0$. We assume that $u_{0}=0$ on ∂G_{0} and u_{0} is harmonic on $\Omega \backslash G_{0}$ for $G_{0}=G^{-}\left(P_{01}, z_{0}, \mu_{1}\right) \cup G^{+}\left(P_{01}, z_{1}, \mu_{1}\right)$.

Step 1

Let $z_{001}=y_{01}-\frac{\rho_{1}}{2}, z_{011}=y_{01}+\frac{\rho_{1}}{2}$, and $y_{001}=\frac{z_{0}+z_{001}}{2}, y_{011}=\frac{z_{1}+z_{011}}{2}$. Let $P_{001}=\{y=$ $\left.y_{001}\right\} \cap \Gamma^{-}\left(P_{01}, z_{0}, \mu_{1}\right), P_{001}=\left\{y=y_{011}\right\} \cap \Gamma^{+}\left(P_{01}, z_{1}, \mu_{1}\right)$, and $\mu_{2}=\frac{\pi}{y_{011}-y_{001}}$. Now we define

$$
u_{1}=\left\{\begin{array}{l}
u_{0} \text { on } \partial \Omega \\
0 \text { on } \partial G_{1}
\end{array}\right.
$$

and u_{1} is harmonic on $\Omega \backslash G_{1}$ where $G_{1}=G^{-}\left(P_{001}, z_{0}, \mu_{1}\right) \cup G^{+}\left(P_{001}, z_{001}, \mu_{2}\right) \cup G^{-}\left(P_{011}, z_{011}, \mu_{2}\right) \cup$ $G^{+}\left(P_{011}, z_{1}, \mu_{1}\right)$.

Step 2

Let $x_{0001}=y_{001}-\frac{\rho_{2}}{2}, z_{0011}=y_{001}+\frac{\rho_{2}}{2}, z_{0101}=y_{011}-\frac{\rho_{2}}{2}, z_{0111}=y_{011}+\frac{\rho_{2}}{2}$, and $y_{0001}=\frac{z_{0}+z_{0001}}{2}$, $y_{0011}=\frac{z_{0011}+z_{001}}{2}, y_{0101}=\frac{z_{011}+z_{0101}}{2}, y_{0111}=\frac{z_{0111}+z_{1}}{2}$. Let $P_{0001}=\left\{y=y_{0001}\right\} \cap \Gamma^{-}\left(P_{001}, z_{0}, \mu_{1}\right)$, $P_{0011}=\left\{y=y_{0011}\right\} \cap \Gamma^{+}\left(P_{001}, z_{001}, \mu_{2}\right), P_{0101}=\left\{y=y_{0101}\right\} \cap \Gamma^{-}\left(P_{011}, z_{011}, \mu_{2}\right), P_{0111}=\{y=$ $\left.y_{0111}\right\} \cap \Gamma^{+}\left(P_{011}, z_{1}, \mu_{1}\right)$, and $\mu_{3}=\frac{\pi}{y_{0011-y_{0001}}=\frac{\pi}{y_{0111-y_{0101}}} \text {. Now we define }{ }^{2} \text {. }{ }^{2} \text {. }}$

$$
u_{2}=\left\{\begin{array}{l}
u_{0} \text { on } \partial \Omega \\
0 \text { on } \partial G_{2}
\end{array}\right.
$$

and u_{2} is harmonic on $\Omega \backslash G_{2}$ where $G_{2}=G^{-}\left(P_{0001}, z_{0}, \mu_{1}\right) \cup G^{+}\left(P_{0001}, z_{0001}, \mu_{3}\right) \cup G^{-}\left(P_{0011}, z_{0011}, \mu_{3}\right) \cup$ $G^{+}\left(P_{0011}, z_{001}, \mu_{2}\right) \cup G^{-}\left(P_{0101}, z_{011}, \mu_{2}\right) \cup G^{+}\left(P_{0101}, z_{0101}, \mu_{3}\right) \cup G^{-}\left(P_{0111}, z_{0111}, \mu_{3}\right) \cup G^{+}\left(P_{0111}, z_{1}, \mu_{1}\right)$. Step $n \geq 3$
As previoulsy we build all the functions $u_{n}, n \geq 3$, and this sequence converges to a function u_{∞} which is positive except on horizontal half lines where $u_{\infty}=0$. If the sequence $\left(\rho_{n}\right)_{n}$ converges rapidly to 0 , we can see that near a tip P^{*} of a half line the "free boundary" is locally essentially vertical because the sequence $\mu_{n} \rightarrow+\infty$. In particular if a blow-up is possible we find $\frac{u_{\infty}\left(P^{*}+\epsilon X\right)}{\epsilon} \rightarrow \alpha x^{-}$for some $\alpha \geq 0$ with $x^{-}=\max (0,-x)$, which is coherent with proposition 2.3.

6 Appendix: extension of Caffarelli results for free boundaries with general function $G\left(u_{\nu}^{+}, \nu, X\right)$

DEFINITION 6.1 A function u is a solution of the problem $\left(P_{G}\right)$ on the open set $\Omega \subset \mathbf{R}^{n}$ if and only if:
i) $u \in C_{l o c}^{0,1}(\Omega)$
ii) $\Delta u=0$ in $\Omega^{+}(u):=\{u>0\}, \Omega^{-}(u):=\{u \leq 0\}^{0}$
iii) On $\Gamma(u):=\left(\partial \Omega^{+}(u)\right) \cap \Omega$, we have $u_{\nu}^{+}=G\left(u_{\nu}^{-}, \nu, X_{0}\right)$ in the following weak sense.

For every ball $B=B_{r}\left(Y_{0}\right)$ with $X_{0} \in \partial B \cap \Gamma(u)$ and $r=\left|X_{0}-Y_{0}\right|$:
a) If $B \subset \Omega^{+}(u)$, let $\nu=\frac{Y_{0}-X_{0}}{r} \in \mathbf{S}^{n-1}$. Then

$$
\exists \alpha>0, \beta \geq 0, u(X) \leq \alpha<X-X_{0}, \nu>^{+}-\beta<X-X_{0}, \nu>^{-}+o\left(\left|X-X_{0}\right|\right)
$$

b)If $B \subset \Omega^{-}(u)$, let $\nu=-\frac{Y_{0}-X_{0}}{r} \in \mathbf{S}^{n-1}$. Then

$$
\exists \alpha \in \mathbf{R}, \beta \geq 0, u(X) \geq \alpha<X-X_{0}, \nu>^{+}-\beta<X-X_{0}, \nu>^{-}+o\left(\left|X-X_{0}\right|\right)
$$

where in each case $\alpha=G\left(\beta, \nu, X_{0}\right)$.
We assume that G verifies the hypothesis:
HYPOTHESIS 6.2 i) $G(\beta, x, \nu) \in \mathbf{R}$
ii) G is strictly increasing in β.
iii) $\forall M>0, G$ is a lipschitz continuous function in $(\beta, \nu, X) \in[-M, M] \times \mathbf{S}^{n-1} \times \bar{\Omega}$

Then we have the following two local results:
THEOREM 6.3 i)If locally $u(X)=\alpha_{0}<X-X_{0}, \nu_{0}>^{+}-\beta_{0}<X-X_{0}, \nu_{0}>^{-}+o(\mid X-$ $\left.X_{0} \mid\right)$ and $\alpha_{0}, \beta_{0}>0$, then locally $\Gamma(u) \in C^{1, \alpha}$, and for every $X_{1} \in \Gamma(u)$ near X_{0}, there exist $\nu_{1} \in \mathbf{S}^{n-1}$ and $\alpha, \beta \geq \operatorname{const}\left(\alpha_{0}, \beta_{0}\right)>0$ such that we have locally $u(X)=\alpha<X-X_{1}, \nu_{1}>^{+}$ $-\beta<X-X_{1}, \nu_{1}>^{-}+o\left(\left|X-X_{1}\right|\right)$.
ii)Let us assume that $\forall \epsilon>0, \exists r_{\epsilon}>0, \forall r<r_{\epsilon}, \Omega^{-}(u) \supset B_{r}\left(X_{0}\right) \cap\left\{<X-X_{0}, \nu_{0}>\leq-\epsilon r\right\}$. If $u \geq 0$ locally near X_{0} with $u(X)=\alpha_{0}<X-X_{0}, \nu_{0}>^{+}+o\left(\left|X-X_{0}\right|\right), \alpha_{0}>0$, then locally $\Gamma \in C^{1, \alpha}$, and for $X_{1} \in \Gamma(u)$ near X_{0}, there exists $\nu_{1} \in \mathbf{S}^{n-1}$ and $\alpha \geq \operatorname{const}\left(\alpha_{0}\right)>0, \beta \geq 0$ such that we have locally $u(X)=\alpha<X-X_{1}, \nu_{1}>^{+}-\beta<X-X_{1}, \nu_{1}>^{-}+o\left(\left|X-X_{1}\right|\right)$. iii)The conclusion of ii) is also true if we change the condition $u \geq 0$ in a neighbourhood of X_{0} by the condition $G\left(0, \nu_{0}, X_{0}\right)>0$.

LEMMA 6.4 If u is a solution of the problem $\left(P_{G}\right)$, with the condition i) of the theorem 6.3 (resp. ii) or iii)), then locally, $\forall \theta_{0} \in\left(0, \frac{\pi}{2}\right), \exists C_{\theta_{0}}>0, \exists \epsilon>0, \forall \tau \in C^{+}\left(\theta_{0}, \nu_{0}\right) \cap \mathbf{S}^{n-1}$ where $C^{+}\left(\theta_{0}, \nu_{0}\right)=\left\{\tau \in \mathbf{R}^{n} \backslash\{0\}\right.$, angle $\left.\left(\tau, \nu_{0}\right) \leq \theta_{0}\right\}$, we have locally $u(X+\epsilon \tau)-u(X) \geq C_{\theta_{0}} \epsilon$ (resp. $u(X+\epsilon \tau)-u(X) \geq C_{\theta_{0}} \epsilon$ locally in $\{u>0\}$).

Proof of lemma 6.4

It is an easy consequence of lemma 1 , lemma 5 , lemma 4 of [8], and of an adaptation of the proof of the theorem 2' of [9].

Proof of the theorem 6.3

Cases i) and ii)

Under the conditions i) or ii), the difficulty, is to avoid the values of $G\left(u_{\nu}^{-}, \nu, X\right) \leq 0$, with the help of a control on the normal ν of Γ. So we adapt the proof of Caffarelli [9], using the fact that initially for $\mathcal{C}_{M}=B_{1}^{n-1} \times[-M, M] \subset \mathbf{R}^{n}$ where $e_{n}=\nu_{0}, \theta_{0} \sim \frac{\pi}{2}, \alpha_{1}>0$, there exists $\epsilon_{0}>0, \epsilon_{0} \ll 1$, such that

$$
\forall \epsilon>\epsilon_{0},\left\{\begin{array}{l}
v=\sup _{|Y|<\sin \theta_{0}} u\left(X-\epsilon\left(e_{n}+Y\right)\right) \leq u(X)-\epsilon \alpha_{0} \cos \theta_{0} \text { in }\{v>0\} \cap \mathcal{C}_{M} \tag{6.1}\\
v=\sup _{|Y|<\sin \theta_{0}} u\left(X-\epsilon\left(e_{n}+Y\right)\right) \leq u(X) \text { in } \mathcal{C}_{M}
\end{array}\right.
$$

What is important in the proof, is the condition on the boundary $\partial\left\{\overline{v_{t}}>0\right\}$. We recall that $\overline{v_{t}}=v_{t}+\eta w$ is a subsolution for the free boundary problem, where $v_{t}(X)=$ $\sup _{Y \in B_{\sigma \phi_{t}(X)}} u(Y), \eta=C \epsilon^{\frac{1}{4}}$, and $w \geq 0$ is a corrector function to permit to satisfy the boundary condition of subsolution on the free boundary of $\overline{v_{t}}$:

$$
\begin{equation*}
\overline{v_{t}}(X) \geq \alpha<X-\tilde{X}_{1}, \tilde{\nu}>^{+}-\beta<X-\tilde{X}_{1}, \tilde{\nu}>^{-}+o\left(\left|<X-\tilde{X}_{1}, \tilde{\nu}>\right|\right) \tag{6.2}
\end{equation*}
$$

with $\alpha=G\left(\beta, \tilde{\nu}, \tilde{X}_{1}\right)$.
1)Firstly, from the lemma 2 [9], v_{t} is monoton in a cone $\mathcal{C}\left(\bar{\theta}_{0}\right)$, where $\bar{\theta}_{0}$ is very close to $\frac{\pi}{2}$, if θ_{0} is close enough to $\frac{\pi}{2}$ initially. Then the normal $\tilde{\nu}$ to $\partial\left\{v_{t}>0\right\}$ is very close to e_{n}. This fact permits us to control the free boundary in a neighbourhood of X_{0}. In particular the normal ν in the proof of lemma 4 in [9] is close to e_{n} because $\tilde{\nu}=\frac{\nu+\sigma \nabla \phi_{t}}{\left|\nu+\sigma \nabla \phi_{t}\right|}$ and $\left|\sigma \nabla \phi_{t}\right| \leq C \epsilon^{\frac{1}{2}}$.
2) Secondly, we must satisfy the boundary condition 6.2. But here we have changed the condition

$$
\begin{equation*}
\exists C>0, \beta^{-C} G(\beta, x, \nu) \text { is a decreasing function in } \beta \tag{6.3}
\end{equation*}
$$

which was required in the proof of Caffarelli, by the condition iii) of hypothesis 6.2. The boundary condition is satisfied, because the function w constructed in [9] is now nondegenerate because of (6.1). More precisely we can find a ball $B \subset \Omega^{+}\left(v_{t}\right)$ with B tangent to $\partial \Omega^{+}\left(v_{t}\right)$ and the diameter of B is of order ϵ. Now $w \geq v$ and at a distance $\frac{C M \epsilon}{2}$ where
$v \sim u \geq \epsilon \frac{C M}{2} \alpha_{0} \cos \theta_{0}$ and by Harmack inequality on B, we can construct a barrier subsolution which proves that $\exists C=C\left(\alpha_{1} \cos \theta_{0}\right)>0, \partial_{\tilde{\nu}} w \geq C>0$.

REMARK 6.5 Remark that this modification of the proof of Caffarelli is suffisant to apply his proof without other knowledge on the sign of G in a neighboorhood of X_{0} (a priori G could be negative in some points).

REMARK 6.6 In particular it proves that the results of Caffarelli in [8]-[9] with $\inf _{\nu, X} G(0, \nu, X)>$ 0 are true without the conditions (6.3), but only assuming that u is Lipschitz and hypothesis iii).

Then independantly on $\epsilon, \exists \lambda \in(0,1)$ such that we obtain (6.1) with $\epsilon, \theta_{0}, \alpha_{1}, \mathcal{C}_{M}$ respectively changed by $\lambda \epsilon, \theta_{0}-\epsilon^{\frac{1}{4}}, \alpha_{1}-\epsilon^{\frac{1}{16}}, \mathcal{C}_{M\left(1-C \epsilon^{\frac{1}{8}}\right.}$. Then the proof of Caffarelli applies and proves that Γ is Lipschitz. Moreover the proof of [8] applies with the same modification.

REMARK 6.7 We haven't used the fact that $G\left(\beta_{0}, \nu_{0}, X_{0}\right)>0$. In fact it is a consequence of (6.1) which implies at the limit $\epsilon \rightarrow 0^{+}$,

$$
\exists \theta_{0}^{*}, \alpha_{1}^{*}, \forall \tau \in C^{+}\left(\theta_{0}^{*}\right),\left(u^{+}\right)_{\tau}^{\prime} \geq C \alpha_{1}^{*} \cos \theta_{0}^{*}>0
$$

This proves that $\alpha \geq \operatorname{const}\left(\alpha_{0}\right)>0$. Particularly, under condition i) we have $\beta_{0}>0$, then the same raisonning applies in $\{u<0\}$ which proves that $\beta \geq \operatorname{const}\left(\beta_{0}\right)>0$.

Case iii)

In this case we would like to apply the proof of theorem 2 in [9]. But here is a new difficulty: we do not know a priori if u^{+}in nondegenerate, i.e. in a neighbourhood of $X_{0}, u_{\nu}^{+} \geq C>0$. To prove the iii) we must modify the proof of lemma 6 in [9] as follows. Let us take the new criteria (for some $1 \gg \delta_{1}>0$ fixed): $u^{-}\left(-\frac{1}{2} e_{n}\right) \geq C \epsilon^{1-\delta_{1}}$ for the alternative a), and $u^{-}\left(-\frac{1}{2} e_{n}\right)<C \epsilon^{1-\delta_{1}}$ for the alternative b$)$.

alternative a)

Then in $C_{1-C \epsilon} \epsilon^{\tau_{1}}$ for some $\tau_{1}>0$ small enough and for $C_{1} \epsilon^{\tau_{1}}<\left|X_{1}-X_{2}\right|<C_{2} \epsilon^{\tau_{1}}$ we get (see p 72 in [9] for the function v defined page 70) $v\left(X_{2}\right)-v\left(X_{1}\right) \geq \frac{C}{\delta_{0}} u^{-}\left(-\frac{1}{2} e_{n}\right) \epsilon^{(\alpha+1) \tau_{1}} \geq$ $C \epsilon^{1-\left(\delta_{1}+(\alpha+1) \tau_{1}\right)}$, and because u is Lipschitz and $d\left(X_{3}, \Gamma\right) \leq \epsilon$ for every $X_{3} \in A$, we get
$u^{-} \leq C \epsilon$ on A and then $v \leq u^{-} \leq v+C \epsilon$ (as in p 70 in [9]). We conclude that $u\left(X_{2}\right) \geq u\left(X_{1}\right)$ for $X_{1}-X_{2} \in \Gamma\left(\theta_{1}, e_{n}\right)$ and u is $C \epsilon^{\tau_{1}}$-monoton.
alternative \mathbf{b})
We have $u_{\nu}^{+} \geq G\left(u_{\nu}^{-}, \nu, X\right) \sim G\left(0, \nu_{0}, X_{0}\right)>0$ in the points of interest of $\Gamma(u)$ (point of comparison for \bar{v}_{t}, see 1)). In particular for these points we get (from the monotonicity formula) $0 \leq u_{\nu}^{-} \leq C \epsilon^{\frac{1-\delta_{1}}{2}-\mu}$ and then we conclude similarly as in [9] with $\eta \geq C \epsilon^{\frac{1-\delta_{1}}{2}-\mu}$.

References

[1] Alt H.W., The fluid Flow through porous media. Regularity of the Free surface, Manuscripta math., 21, 255-272 (1977), Springer-Verlag, 1977.
[2] Alt H.W., The fluid flow through porous media. Regularity of the free surface, Manuscripta Math. 21, 255-272 (1977).
[3] Alt H.W., Caffarelli L.A., Friedman A., The dam problem with two fluids, Com. in Pure and Appl. Math., Vol XXXVII, 601-645 (1984).
[4] Alt H.W., Caffarelli L.A., Friedman A., Variational problems with two phases and their free boundaries, Trans. Amer.Math. Soc., Vol. 282, No 2, 1984.
[5] Alt H.W., van Duijn C.J., A stationary flow of fresh and salt groundwater in a coastal aquifer, Nonlinear Analysis, Theory, Methods and Applications, Vol 14, No 8, pp. 625656, 1990.
[6] Berestycki H., Bonnet A., van Duijn C.J., The Regularity of the Free Boundary Between Two Fluids in a Porous Medium, to appear.
[7] Bonnet A., Kamin S., A stationary flow in a strip, to appear.
[8] Caffarelli L.A., A Harnack Inequality Approach to the Regularity of Free Boundaries. Part I: Lipschitz Free Boundaries are $C^{1, \alpha}$, Rev. Math. Iberoamericana, Vol. 3, no 2, 1987.
[9] Caffarelli L.A., A Harnack Inequality Approach to the Regularity of Free Boundaries. Part II: Flat Free boundaries are Lipschitz, C.P.A.M., Vol 15, 55-78, 1989.
[10] Caffarelli L.A., A Harnack Inequality Approach to the Regularity of Free Boundaries. Part III: Existence Theory, Compactness, and Dependence on X,Ann. Scu. Norm. Sup. Pisa, Cl Sci (4), 15 (1988), No 4, pp. 583-602 (1989).
[11] Caffarelli L.A., Compactness method in free boundary problems, C.P.D.E., 5(4), 427-448 (1980).
[12] Caffarelli L.A., Free Boundary Problems, a Survey, 1986.
[13] Carrillo J., On the uniqueness of the solution of the evolution dam problem, Nonlinear Anal. TMA, 22 (5), 573-607 (1994).
[14] Carrillo J., Entropy solutions for nonlinear degenerate problems, to appear.
[15] Friedman A., Variational Principles and Free Boundary Problems, Interscience, New York, 1982.
[16] Kinderlehrer D., Nirenberg L., Regularity in free boundary problems, Ann. Sculoa Norm. Sup. Pisa, 4, 373-391, (1977).
[17] Rodrigues J.-F., Yi F., On a two-phase continuous casting Stefan problem with nonlinear flux, Euro. J. of Appl. Math., 1, 259-278 (1990).
[18] Rodrigues J.-F., Zaltzmann B., On classical solutions of the two-phase steady-state Stefan problem in strips, Nonlinear Anal. TMA, 19(3), 207-208 (1992).
[19] Rodrigues J.-F., Zaltzmann B., Regular solutions of a Stefan problem in strips, preprint, Universidade de Lisboa, 1994.
[20] Zaltzmann B., Multidimensional two-phase quasistationary Stefan problem, Manuscripta Math. 78, 287-301 (1993).

