
M.S.R.I. October 13-17 1997.Superprocesses and nonlinear partialdi�erential equationsWe would like to describe some links between superprocesses and some semi-linearpartial di�erential equations. Let L be a second order di�erential operator de�ned on Rdand  a general function from R+ to R+ . We will consider the nonnegative solutions ofthe parabolic equation: 8<:@u@t = Lu�  (u) in [0;1)� Rdu(0; �) = f(�); (1)where f is a bounded nonnegative function de�ned on Rd . We will mostly be interestedwith L = 12� and  (u) = u2,  > 0. We will also consider the Dirichlet problemassociated with the elliptic equation. Let D be an open set of Rd , we want to study thenonnegative solutions of: (Lu =  (u) in Duj@D = '; (2)where ' is a bounded nonnegative function de�ned on the boundary @D. Let me stress thatwe are only interested in the nonnegative solutions of (1) or (2). Those solutions can berelated to the Laplace transform of measure valued Markov processes called superprocesses.In a �rst part we will recall some basic results on superprocesses which have alreadybeen introduced by Alison Etheridge and Robert Adler in September.In a second part, we will present one of the most important tool associated with super-processes: the so-called exit measures. They are closely related to (2). From there we willfocus on the particular case L = 12� and  (u) = u2. We will also describe the solutionsof the Dirichlet problem with blow-up condition at the boundary. Then we will look atthe maximal and minimal solutions of (2) with in�nite boundary condition.In a third part we will describe the polar sets for the superprocesses and give a char-acterization in terms of removable singularities for solutions of (2).In the last part we will describe the trace of the solutions of �u = u2 in a planardomain and present a representation formula. We will also give some extensions in higherdimension.1 Superprocesses1.1 Construction via the semi-groupWe consider an homogeneous càdlàg Markov process (�t; t � 0) taking values in a polishspace (E; d). (Typically � is a di�usion in Rd .) Let (Pt; t � 0) denote its transition1



semi-group and Px the law of � starting at x 2 E. We consider a branching mechanism : R+ ! R+ of the form (u) = au+ bu2 + Z(0;1) n(dr)[e�ru�1 + ru];where a � 0, b � 0 and n is a Radon measure on (0;1) satisfying R(0;1)(r^r2) n(dr) <1.Notice this includes the following cases:-  (u) = bu2 (take a = 0; n = 0);-  (u) = cu1+� (take a = 0; b = 0 and n(dr) = c0r�2��dr) for � 2 (0; 1).The function  is nonnegative, convex and locally Lipschitz.Let B+(E) be the set of bounded nonnegative measurable functions de�ned on E. Wethen consider the following integral equationu(t; x) + Ex �Z t0  (u(t� s; �s))ds� = Exf(�t) = Ptf(x);where f 2 B+(E). This equation is the mild form of (1), with L replaced by the in�nites-imal generator of �. Using the method of Picard iteration, we can prove there exists aunique measurable (jointly in (t; x) 2 R+ �Rd ) nonnegative function solution to the aboveintegral equation. We denote by Vtf(x) this solution. Using the Markov property of �, itis easy to show that (f ! Vtf; t � 0) forms a nonlinear semi-group of operator on B+(E).Let Mf (E) be the set of all �nite measures on E endowed with the topology of theweak convergence. Fitzsimmons [11, 12] proved there exists a Markov process ((Xt; t �0); (P�; � 2Mf (E))) taking values in Mf (E), such that for every f 2 B+(E), t � 0,E� he�(Xt;f)i = e�(�;Vtf);where (�; f) = R f(x)�(dx). We called this process the (�;  )-superprocess.Computing P�[Xt = 0] from the Laplace transform, we can see the process X dies outin �nite time if and only if R11  (u)�1du < 1. We can easily deduce from the Laplacetransform the �rst moment for X:E� [(Xt; f)] = (�; Ptf) e�at :In the case  (u) = u2 we get for the second moment formula:E� [(Xt; f)2] = (�; Ptf)2 + 2 Z �(dx) Ex �Z t0 Pt�sf(�s)2ds� : (3)It can also be proved that in this case, the total mass process ((Xt;1); t � 0) is a Fellerdi�usion, whose Laplace transform is given byE� [e��(Xt;1)] = e��(�;1)=[1+�(�;1)t] :
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1.2 Construction via the branching particle systemAlthough we have a direct de�nition for superprocesses, they can be viewed as limit ofbranching particle systems (cf [5]). Let � be a continuous Markov process. Let us assumefor simplicity that  (u) = 12u2. Let n be an integer which will tend to in�nity. We considerN (n)0 particles starting at time 0 at points fxi0; 1 � i � N (n)0 g. Each particle evolves,independently of the others, according to the law of �. At independent exponential timesof parameter n, each particle dies and give birth to two children with probability 1=2 or tonone with probability 1=2. This is a critical binary branching mechanism. Conditionally onthe fact that each newborn particle starts from the death point of its parent, the particlesevolve independently from the past and from the other particles. The law of their trajectoryis the law of �. They will also die at random independent exponential times (of parametern), and the branching occurs again. We repeat again and again this procedure. Since wehave a critical branching mechanism, the particle system dies out in �nite time. At time twe have N (n)t particles located at points fxit; 1 � i � N (n)t g. To study this system we lookat the measure valued process X(n)t = 1n N(n)tXi=1 �xit ;where �x stands for the Dirac measure at point x. (Notice we consider particles of weight1=n.) The process (X(n)t ; t � 0) is a Markov process taking values inMf (E) and starting atX(n)0 = 1nPN(n)0i=1 �xi0 . Let us assume thatX(n)0 converges, as n goes to in�nity, to � 2Mf (E)(for the weak topology). Then the �nite dimensional distribution of X(n) converges in lawto the �nite dimensional distribution of the (�; 12u2)-superprocess X starting at � (see also[2] and [3] for a stronger convergence and general results on superprocesses).2 Exit measureThe exit measures have been introduced by Dynkin [6]. Let D be a given domain in E.Intuitively the exit measure of D describes, in the particle setting, the repartition of theparticles frozen when they leave the domain D for the �rst time. There are three ways toconstruct the exit measures.- We can de�ne a semi-group of operator on B+(E) indexed not by the time but by theopen sets of E.- We can consider the historical superprocess, that is the superprocess with underlying(inhomogeneous) Markov process ~�t = (�s; s 2 [0; t]) and then consider the paths whichjust end when they go out of D for the �rst time.- In the particular case where  (u) = u2, we can use the Brownian snake approachintroduced by Le Gall. It will enable us to have some nice proofs and representations forfurther results.2.1 The Brownian snakeWe assume from now on that � is a �nice� continuous Markov process in E (for example thed-dimensional Brownian motion). Let ~E denotes the set of all continuous stopped paths3



in E. An element w 2 ~E is a continuous path w : [0; �]! E, � � 0 is called the lifetime ofthe path w. We denote by x the trivial path of lifetime 0 such that x(0) = x. The space( ~E; ~d) is a polish space for the distance~d(w;w0) = ��� � � 0��+supt�0 d(w(t ^ �); w0(t ^ � 0)):The Brownian snake W = (Ws; s � 0) is a strong continuous Markov process with valuesin ~E. We denote by �s the lifetime of the path Ws. The law of W can be characterized asfollows:- The lifetime process � = (�s; s � 0) is a Brownian motion re�ecting at 0.- Conditionally on (�s; s � 0), W is an inhomogeneous Markov process. Its transitionkernel is characterized by: for 0 � s < s0,� Ws0(t) =Ws(t) for t � m(s; s0), where m(s; s0) = infr2[s;s0] �r.� Conditionally on Ws0(m(s; s0)), the path (Ws0(t);m(s; s0) � t � �s0) is independentof Ws and has the same distribution as � started at time m(s; s0) at point Ws0(m(s; s0)).We denote by Px the law ofW started at time 0 at the trivial path x. Let Ŵs =Ws(�s)denotes the end point of the path Ws. It can be proved that the function s 7! Ŵs is a.s.continuous.Notice that for s 2 [s0; s00] the paths (Ws(t); 0 � t � �s) coincide for t 2 [0;m(s0; s00)].We will refer later to this property as the snake property.We also introduce (Lrs; s � 0) the local time of � at level r. Let � = inf �s � 0;L0s > 1	.Then the process (Lt�; t � 0) is a Feller di�usion and its Laplace transform is given by:E he��Lt� j �0 = 0i = e��=[1+2�t] :We can now give a construction of superprocesses via the Brownian snake.Proposition 1. The process de�ned under Px by: for t � 0, for f 2 B+(E),(Xt; f) = Z �0 f(Ŵs)dLts;is the (�; 2u2)-superprocess started at �x.Notice that for all t � 0, a.s. supp Xt = nŴs; s 2 [0; �]; �s = to.Remark. It is also easy to built the so-called historical process ( ~Xt; t � 0) aMf ( ~E)-valuedprocess: for F 2 B+( ~E), ( ~Xt; F ) = Z �0 F (Ws)dLts:2.2 Exit measures for the Brownian snakeFor simplicity, let us assume from now on that � is the d-dimensional Brownian motion. Weare now ready to build the exit measure of a connected open set D � Rd for the Browniansnake. 4



For w 2 ~Rd , let �D(w) = inf ft � 0;w(t) 62 Dg with the convention that inf ; = +1.Let us assume that for x 2 D, Px[�D(�) < 1] > 0. For " > 0, we consider the followingmeasures on Rd : for f 2 B+(Rd ),(X"D; f) = 1" Z �0 1f�D(Ws)<�s<�D(Ws)+"gf(Ŵs)ds = Z �0 f(Ŵs)dLD;"s ;where LD;"s = 1" Z s0 1f�D(Wr)<�r<�D(Wr)+"gdr = 1" Z s0 1f0<r<"gdr;and s = (�s � �D(Ws))+. We introduce the functions Ks = R s0 1fr>0gdr and At =inf fs � 0;Ks > tg. And we consider the time change process �s = As . We have �Ks = s.Using the snake property, we can prove that the process (�s; s � 0) is a re�ecting Brownianmotion in R+ . Furthermore we haveLD;"s = 1" Z s0 1f0<r<"gdr = 1" Z Ks0 1f0<�r<"gdr:Clearly this quantity converges a.s. to the local time of � at level 0 up to time Ks. Thisimplies that a.s. the measure dLD;"s converges to a measure, which we denote by dLDs . Sincethe local time of � at level 0 increases only when �r = 0, we deduce that the measure dLDsincreases only when �s = �D(Ws).The measure de�ned by: for f 2 B+(Rd ),(XD; f) = Z �0 f(Ŵs)dLDs ;is the exit measure of D. Notice that supp XD � @D since Ŵs is continuous. We cancompute the Laplace transform of the exit measure.Theorem 2. Let ' be a bounded nonnegative measurable function de�ned on @D. Thenwe have Ex he�(XD ;')i = e�u(x); x 2 D;where the function u, de�ned on D, solves the equationu(x) + 2Ex �Z �D0 u(�s)2ds� = Ex['(��D )]:Remarks. i) The above integral equation is the mild form of (2) with L = 12� and (u) = 2u2. The exit measure has been built in the case  (u) = 2u2, this restriction isdue to the Brownian snake approach. The approach of Dynkin [8] yields the general  .ii) We have been looking at elliptic equation in domain D � Rd , but using the process(t; �t) instead of (�t) leads to parabolic equation in domains of R+ � Rd .
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2.3 Dirichlet problem in DLet D be an open subset of Rd . A point a 2 @D is said to be regular if Pa [�D(�) = 0] = 1.We say that D is regular if all points a 2 @D are regular. Let us recall some well-knownresults.a) If ' is a bounded measurable function de�ned on @D then the function h(x) = Ex['(��D)]is in C2(D) and �h = 0 in D. Furthermore if ' is continuous at a 2 @D and if a isregular, then limx2D;x!a h(x) = '(a).b) If � is a bounded measurable function de�ned in a bounded domain D, then the func-tion F (x) = Ex �R �D0 �(�s)� is in C1(D). Let a 2 @D be regular, then we havelimx2D;x!a F (x) = 0. Furthermore if � is Hölder continuous in D, then F 2 C2(D)and 12�F = �� in D.We then deduce from a) and b) that if D is a bounded regular domain and if ' is nonnega-tive continuous de�ned on @D, then the function u de�ned in theorem 2 is in C2(D)\C(D)and solves (�u = 4u2 in Duj@D = ': (4)We also will need the following comparison principle for elliptic di�erential equations.Comparison principle. Let D be a bounded open set of Rd . Let L be an elliptic dif-ferential operator. Let  be a nondecreasing function from R+ to R+ . Let u, v in C2(D)such that Lu�  (u) � Lv �  (v) in D;lim supx2D;x!a[u(x)� v(x)] � 0 for all a 2 @D;then u(x) � v(x) in D.We deduce from this comparison principle that the solution of (4) is unique.2.4 Dirichlet problem in D with blows-up boundary conditionWe keep the same hypothesis as in (2.2). We de�ne the range of the superprocess as theclosed set R = St�0 supp Xt. Recall that a.s. supp Xt = nŴs; s 2 [0; �]; �s = to. It isthen clear, using the continuity of the path s 7! Ŵs, that a.s. R = nŴs; s 2 [0; �]o. Noticethe range is a compact set. Let us now consider the two functions de�ned on D:uD(x) = � log Px [XD = 0]vD(x) = � log Px [R � D] :For any nonnegative function u de�ned in theorem 2, with ' bounded nonnegative, wehave u � uD in D. Since supp XD � R \ @D, we get that uD � vD in D. Since s 7! Ŵsis continuous and � is �nite, for every � > 0 the quantity Px hsups2[0;�] ���Ŵs � x��� � �i is6



positive. It is even independent of x by space translation invariance. Let K be a compactset. Hence infx2K Px [R � B(x; �)] > 0;where B(x; �) is the ball with center x and radius �. Thus we deduce that the functionvD is uniformly bounded on every compact subset of D. We can now give a result on themaximal and minimal solutions of �u = 4u2 with blow-up boundary condition.Proposition 3.1. Let D � Rd be a bounded regular open set, then the function uD is the minimalsolution of 8<:�u = 4u2 in Dlimx2D;x!@Du(x) =1: (5)2. Let D � Rd be an open set, then the function vD is the maximal nonnegative solutionof �u = 4u2 in D. This means that if u 2 C2(D) is nonnegative and solves �u = 4u2then u � vD.We deduce from this proposition that if D is regular and bounded, then vD blows upat the boundary.Before going into the proof, let us prove a nonlinear �mean-value� property. Let D � Rdbe an open set. Let v 2 C2(D) be a solution of �u = 4u2 in D. Consider O a regularbounded open set such that O � D. The function u(x) = � log Ex �e�(XO ;v)� de�ned inO is a nonnegative solution of (4) in O with ' = v. But so is v. We deduce from thecomparison principle that u = v in O, that isv(x) = � log Ex he�(XO ;v)i for x 2 O:Proof 1. Let D � Rd be a regular bounded open set. Consider the following increasingsequence of functions un(x) = � log Ex �e�n(XD;1)�. This sequence converges to uD inD. Recall that the function vD is uniformly bounded on every compact subset K � D.Since uD � vD, we deduce that uD is bounded on K. Let O � D be a regular boundedopen set such that O � D. By the non-linear �mean-value� property, we have un(x) =� log Ex �e�(XO;un)� for x 2 O. By monotone convergence, we get that the nonlinear �mean-value� property also holds for uD. This implies that uD 2 C2(O) and solves �u = 4u2 inO and thus in D. Since un(x) converges to n as x goes to @D, we deduce that uD(x) blowsup as x goes to @D. Let v a solution of (5). By the comparison principle, we have v � unin D. Thus we get v � uD in D. �Proof 2. A.s. we have fR � Dg � fXD = 0g � �R � �D	 : (6)7



The last inclusion is non trivial and will be admitted here. We now consider an increasingsequence of bounded regular domains Dn such that �Dn � Dn+1 � D and D = Sn�1Dn.According to the inclusions (6), we have for x 2 DnPx [R � Dn] � P [XDn = 0] � Px �R � �Dn� � Px [R � Dn+1] :Thus we have vDn(x) � uDn(x) � vDn+1(x) in Dn. The sequences (vDn ; n � 1) and(uDn ; n � 1) are nonincreasing. They converge to the same limit vD(x) = � logPx [R � D]which is de�ned on D (we used the fact that Dn+1 " D and that R is compact). By thenonlinear �mean value� property, we have for every open bounded regular set O such that�O � Dn0 , 8x 2 O, 8n � n0, uDn(x) = � log Ex �e�(XO;uDn)�. By dominated convergence,we get 8x 2 O, vD(x) = � log Ex �e�(XO;vD)�. Since vD is bounded on �O, we get that itsolves �u = 4u2 in O, and thus in D. It remains to prove that vD is the maximal solutionin D. Let g a nonnegative solution of �u = 4u2 in D. The function g is at least boundedon every Dn. By the comparison principle, we get that on Dn, g � uDn . This implies thatg � vD in D. �We are now led to two natural questions:1. On what condition on the open set D do we have the existence of a solution withblow-up at the boundary?2. On what condition on D, do we have uD = vD?The �rst question has been answered in the case �u = 4u2 by Dhersin and Le Gall [4](see also [18] for a more general setting). A point x 2 @D is said to be super-regular ifPx[� = 0] = 1, where � = inf ft > 0; supp Xt \Dc 6= ;g. We now de�ne the followingcapacities. Let � � 0. Let A be a Borel set of Rd .cap�(A) = � inf�(A)=1 ZZ �(dx)�(dy)h�(x� y)��1 ;where h�(x� y) = (1 + log+[1= jx� yj] if � = 0;jx� yj�� if � > 0;with log+ x = (log x) _ 0. Then we have the next result which includes the Wiener's testfor the (�; 2u2)-superprocess.Theorem 4. Let D � Rd be a domain. Let x 2 @D. For n � 1 letFn(x) = �y 2 Dc; 2�n � jx� yj < 2�n+1	 :Then the next three properties are equivalent.1. The point x is super-regular.2. Either d � 3, or d � 4 andXn�1 2n(d�2) capd�4 (Fn(x)) =1:3. There exists a solution of �u = 4u2 in D such that limy2D;y!x u(y) =1.Furthermore, if every point x 2 @D is super regular, then there exists a solution to (5).The answer to the second question does not seem optimal yet (see [15] and [18]).8



3 Polar setsWe still assume L = 12� and  (u) = 2u2. Let K be a compact set of Rd . We say that theset K is polar if 8x 2 RdnK; Px[R \K 6= ;] = 0:Since the function vKc = � log Px[R\K = ;] is the maximal solution of �u = 4u2 in Kc.We deduce the next three statements are equivalent:- K is polar.- vKc = 0.- There is no non trivial solution u � 0 of �u = 4u2 in Kc (i.e. K is a removablesingularity).We now give a characterization for polar sets.Theorem 5. The set K is a polar set (for the super Brownian motion) if and only if- K = ; if d � 3,- capd�4(K) = 0 if d � 4.This theorem is due to Perkins [19] ()) and Dynkin [7] (() (see also [1]). Thoseresults have been extended by Dynkin to the general equation Lu = u1+�, � 2 (0; 1]. Wewill only give the proof of ()).Proof. Let us assume d � 4 and capd�4K > 0. Then there exists a probability � onK such that RR �(dx)�(dy)hd�4(x � y) is �nite. We consider a continuous nonnegativefunction f on Rd with support in B(0; 1), which is radial (i.e. f(y) = f(x) if jyj = jxj)and such that R f(y)dy = 1. And we set f"(y) = "�df(y=") (thus f"(y)dy ) �0). Letg"(x) = R f"(x � y)�(dy). We consider the occupation measure �(dx) = R10 dt Xt(dx),and we compute the �rst two moments of (�; g"). We have for x 2 Kc:Ex [(�; g")] = Z G(x� y)g"(y)dy;where G is the Green function G(x) = �d jxj2�d. Since the right hand side converges toR G(x � y)�(dy) which is �nite positive, we deduce there exists a constant c1, dependingon x;K; "0 > 0, such that for every " 2 (0; "0],Ex [(�; g")] � c1 > 0:The formula (3) for the second moment givesEx �(�; g")2� = �Z G(x� y)g"(y)dy�2 +4Z dz G(x; z)ZZ dydy0 G(z � y)G(z � y0)g"(y)g"(y0):9



The �rst right hand side term is bounded (use the above remark on Ex [(�; g")]). Nowusing the properties of f" and the fact that the function G(y) is super-harmonic on Rd , wegetZ dz G(x; z)�Z dy G(z � y)f"(y � a)��Z dy0 G(z � y0)f"(y0 � a0)�� Z dz G(x; z)G(z � a)G(z � a0)� c2hd�4(a� a0):Thanks to the assumption on �, we deduce there exists a constant c3, depending onx;K; "0 > 0, such that for every " 2 (0; "0],Ex �(�; g")2� � c3:Now, using Cauchy-Schwarz inequality, we get for " 2 (0; "0]Px [(�; g") > 0] � Ex [(�; g")]2Ex [(�; g")2] � c21c3 > 0:But since the support of f is in B(0; 1), we get thatf(�; g") > 0g � fR \K" 6= ;g ;where K" = �y 2 Rd ; d(y;K) � "	. Letting " goes to 0, we get that Px[R \K 6= ;] > 0.Thus K is not polar.Let d � 3. In fact it is su�cient to consider the case d = 3. Now using the de�nitionof the capacity, it is easy to check that a segment is not polar in dimension d = 4. Thusby projection, we deduce that points are not polar in dimension d = 3. �Remark. The points are polar if and only if d � 4. In the case �u = u1+� for � 2 (0; 1]the points are polar if and only if d � 2(1 + �)=�.4 Representation theoremsWe use the Brownian snake approach. We want to describe all the solutions of �u = 4u2in D � Rd , where D is a smooth open set. Let us consider the set of exit points of D:ED = nŴs; s � �; �D(Ws) = �so :Notice that supp XD � ED a.s.4.1 The critical case d = 2The next theorem is due to Le Gall [17].Theorem 6. Let D be a domain of class C2 (not necessarily bounded). There is a one-to-one correspondence between nonnegative solution of �u = 4u2 in D and pairs (K; �),where K is a closed subset of @D and � is a Radon measure on @DnK. The correspondenceis characterized as follows: 10



- On one hand, for x 2 D,u(x) = � log Ex h1fED\K=;g e� R YD(y)�(dy)i ;where (YD(y); y 2 @D) is the continuous density of XD with respect to the Lebesguemeasure on @D �(dy).- On the other hand K =fz 2 @D; lim supx2D;x!z d(x; @D)2u(x) > 0g;(�; ') = limr#0 Z@DnK u(z + rNz)'(z)�(dz);where ' is continuous with compact support on @DnK and Nz denotes the inward pointingvector normal to @D at z.The pair (K; �) will be called the trace of the solution u.Remarks. i) If K = ;, D bounded, and �(dy) = '(y)�(dy), where the function ' iscontinuous, then we recover the fact that the functionu(x) = � log Ex he�(XD;')i ;is the only solution of the Dirichlet problem (4).ii) If K = @D, D bounded, then we recover the fact that the functionu(x) = � log Px [ED \K = ;] = � log Px [R\Dc = ;]is the maximal solution of �u = 4u2 in D.4.2 The @-polar setsThe above formula cannot be extended in higher dimension the same way. The density ofthe exit measure does not exist if d � 3. Furthermore, there exist compact sets K � @Dsuch that Px[ED \K 6= ;] = 0:Such sets are called @-polar sets (�boundary polar sets�). This means that a.s. no path Wswill exit D through K. We can prove the following result (see [14]).Proposition 7. Let D be a bounded Lipschitz domain. Let K be a compact subset of @D.The function u(x) = � log Px [ED \K = ;]is the maximal nonnegative solution of(�u = 4u2 in Dlimx2D;x!y u(x) = 0 8y 2 @DnK: (7)11



We will now give a characterization of the @-polar sets. The next theorem is due to LeGall [16] and has been extended by Dynkin and Kuznetsov [9] in the general case. Recallthe capacity de�ned in the previous section.Theorem 8. Let D � Rd be an open bounded set, su�ciently smooth (C5). A compactset K of @D is @-polar if and only if- K 6= ; if d � 2,- capd�3(K) = 0 if d � 3.Thus we deduce that (7) has a non trivial nonnegative solution if and only if d � 2 andK 6= ; or d � 3 and capd�3(K) > 0.4.3 Moderate solutionsWe would like to characterize all the nonnegative solutions of �u = 4u2 in D, boundedby harmonic function. Such a solution will be called a moderate solution. For exampleassume D is a bounded regular domain, and consider a continuous nonnegative function 'de�ned on @D. We know that the function u(x) = � log Ex �e�(XD ;')� is the only solutionof (4). And we have seen in section 2.2 thatu(x) + 2Ex �Z �D0 u(�s)2ds� = Ex['(��D )];where �D = inf ft > 0; �t 2 Dcg. Now the function h(x) = Ex['(��D)] is harmonic in Dand u � h. Furthermore u is the maximal solution of �u = 4u2 in D, bounded by h.Indeed, let v be an other nonnegative solution bounded by h. And assume that u � v � hin D. By continuity we get vj@D = '. Since the nonnegative solution of (4) is unique, weget that v = u.We now give a complete description of all the moderate solutions. Let D be a boundeddomain in Rd , d � 2.Proposition 9. Let u be a moderate solution of �u = 4u2 in D. Then there exists aunique harmonic function h such that for all x 2 D,u(x) + 2Ex �Z �D0 u(�s)2ds� = h(x): (8)Furthermore the function h is the smallest harmonic function dominating u.Proof. In order to prove this proposition, we consider an increasing sequence of regularopen set Dn such that �Dn � Dn+1 � D and D = Sn�1Dn. Let u be a moderate solution.Since u solves (4) in Dn with boundary condition ' = u, we deduce that for all x 2 Dn,u(x) + 2Ex �Z �Dn0 u(�s)2ds� = Ex[u(��Dn )]: (9)Let h denotes the limit of the nondecreasing sequence of functions Ex[u(��Dn )]. (h is de�nedin D.) Since u is bounded by an harmonic function let say g, we get for x 2 D:h(x) = limn!1Ex[u(��Dn )] � limn!1Ex[g(��Dn )] = g(x):12



Now by dominated convergence, h is clearly harmonic in D. Letting n goes to in�nity in(9), we get (8). And by construction h is clearly the smallest harmonic function dominatingu. �The next step is to characterize all the harmonic function h such that there exists afunction u � 0 satisfying (8). Let us assume that D is bounded and su�ciently smooth(at least C5).Theorem 10. There exists a one-to-one correspondence between the moderate solutionsof �u = 4u2 in D and �nite measures on @D that does not charge @-polar sets. Thecorrespondence is given byu(x) + 2Z GD(x; y)u(y)2dy = Z@D PD(x; y)�(dy);where GD and PD are respectively the Green function on D and the associated Poissonkernel.Let N be the set of �nite measures on @D which doesn't charge @-polar set. We will writeu� for the moderate solution corresponding to the measure � 2 N .In fact we have a probabilistic representation of u� . Let Dn be an increasing se-quence of bounded open sets such that D = [n�1Dn. Consider the harmonic functionh(x) = R@D PD(x; y)�(dy). We can built a continuous additive functional (Ahs ; s � 0) ofthe Brownian snake in the following way: for all s � 0,Ahs = limn!1Z s0 h(Ŵs)dLDns :We have Ah1 = limn!1 < XDn ; h >. This convergence can be proved by martingaletechniques using the so called special Markov property. The function u� is then de�nedby: u�(x) = � log Ex he�Ah1i x 2 D:4.4 Trace of solutions in the super critical caseThe following results are recent work from Dynkin and Kuznetsov [10] and Kuznetsov [13].They have been presented by their author in September. I will only present them for thenonnegative solutions of �u = 4u2 in D � Rd , a smooth bounded domain. We �rst de�nethe Borel set of singular points of a nonnegative solution u:SG(u) = �y 2 @D; PDx!ya:s:Z �0 u(�s)ds =1� ;where PDx!y is the law of the h-transform of the Brownian motion started at point x 2 Dwith respect to the Poisson kernel PD(�; y). Intuitively PDx!y is the law of the Brownianmotion started at x �conditionally� on going out of D at point y. In dimension d = 2, theset of singular points of the solution with trace (K; �) is SG(u) = K. In higher dimension,if u is a moderate solution then SG(u) is a @-polar set.13



Let N 0 be the set of all measures obtained as increasing limits of measures ofN . (Noticethe measures of N 0 are not necessarily �-�nite.) A solution u is called �-moderate, if it isan increasing limit of moderate solutions u�n . Let � 2 N 0 be the increasing limit of �n.Since the limit u is independent of the sequence (�n) which converge to � we write u� forthe limit.For every Borel set � � @D, we put u�(x) = sup fu�(x); �(�c) = 0; � 2 Ng. Thefunction u� is �-moderate. We say that � is �nely closed if SG(u�) � �. This de�ne a�ner topology on @D than the induced topology. We write u�;� for the maximal solutiondominated by u� + u�.The trace of a nonnegative solution u is the pair (�; �) de�ned by � = SG(u) and � isa function de�ned on B(@D) by: for every Borel set B � @D,�(B) = sup f�(B); � 2 N ; �(�) = 0; u� � ug :Theorem 11. The trace (�; �) of a nonnegative solution of �u = 4u2 in D has the fol-lowing propertiesi) � is �nely closed.ii) � is a �-�nite measure, � 2 N 0, �(�) = 0 and SG(u�) � �.Moreover, u�;� is the maximal �-moderate solution dominated by u.We say that two pairs (�; �) and (�0; �0) are equivalent if � = �0 and �4�0 is @-polar.Clearly u�;� = u�0;�0 if the two pairs (�; �) and (�0; �0) are equivalent.Theorem 12. Let (�; �) satisfy i) and ii) of the above theorem, then the trace of u�;� isequivalent to (�; �). Furthermore, u�;� is the minimal solution with this property and theonly �-moderate one.There is still an open question: Are the �-moderate solutions the only nonnegativesolutions of �u = 4u2 in D? (The answer is yes if the dimension is less or equal to 2 (cfsection 4.1).)References[1] P. BARAS and M. PIERRE. Singularités éliminables pour les équations semi-linéaires.Ann. Inst. Four., 34:185�206, 1984.[2] D. A. DAWSON. Measure-valued markov processes. In École d'été de probabilité deSaint Flour 1991, volume 1541 of Lect. Notes Math., pages 1�260. Springer Verlag,Berlin, 1993.[3] D. A. DAWSON and E. PERKINS. Historical processes. Memoirs of the Amer. Math.Soc., 93(454), 1991.[4] J.-S. DHERSIN and J.-F. LE GALL. Wiener's test for super-Brownian motion andthe Brownian snake. Probab. Th. Rel. Fields, 108(1):103�129, 1997.14
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