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Superprocesses and nonlinear partial
differential equations

We would like to describe some links between superprocesses and some semi-linear
partial differential equations. Let L be a second order differential operator defined on R?
and 1 a general function from Ry to Ry. We will consider the nonnegative solutions of
the parabolic equation:

ou .
5 = Lu—(u) in [0,00) x R (1)

where f is a bounded nonnegative function defined on R?. We will mostly be interested

with L = %A and (u) = yu?, v > 0. We will also consider the Dirichlet problem

associated with the elliptic equation. Let D be an open set of R?, we want to study the
nonnegative solutions of:

Lu = 1(u) in D

{ (2)

Upop = ¥,

where ¢ is a bounded nonnegative function defined on the boundary 0D. Let me stress that
we are only interested in the NONNEGATIVE solutions of (1) or (2). Those solutions can be
related to the Laplace transform of measure valued Markov processes called superprocesses.

In a first part we will recall some basic results on superprocesses which have already
been introduced by Alison Etheridge and Robert Adler in September.

In a second part, we will present one of the most important tool associated with super-
processes: the so-called exit measures. They are closely related to (2). From there we will
focus on the particular case L = %A and 9(u) = yu?. We will also describe the solutions
of the Dirichlet problem with blow-up condition at the boundary. Then we will look at
the maximal and minimal solutions of (2) with infinite boundary condition.

In a third part we will describe the polar sets for the superprocesses and give a char-
acterization in terms of removable singularities for solutions of (2).

In the last part we will describe the trace of the solutions of Au = u® in a planar
domain and present a representation formula. We will also give some extensions in higher
dimension.

2

1 Superprocesses

1.1 Construction via the semi-group

We consider an homogeneous cadlag Markov process (&;,t > 0) taking values in a polish
space (E,d). (Typically ¢ is a diffusion in R?.) Let (Pt > 0) denote its transition



semi-group and P, the law of ¢ starting at € E. We consider a branching mechanism

1 : Ry — Ry of the form
Y(u) = au + bu’® + / n(dr)e”™™ -1+ ruj,

(0,00)

where a > 0, b > 0 and n is a Radon measure on (0, c0) satisfying f 7"/\7“2) n(dr) < oo
Notice this includes the following cases:

- 1p(u) = bu? (take a = 0,n = 0);

- p(u) = cul™P (take a = 0,b = 0 and n(dr) = /r~28dr) for g € (0,1).
The function ¢ is nonnegative, convex and locally Lipschitz.

Let B4 (F) be the set of bounded nonnegative measurable functions defined on E. We
then consider the following integral equation

ult, ) + B [/ Blult — 5,£))ds | = B f(&) = Pof (x),

where f € B4 (FE). This equation is the mild form of (1), with L replaced by the infinites-
imal generator of £&. Using the method of Picard iteration, we can prove there exists a
unique measurable (jointly in (¢, z) € R, x R?) nonnegative function solution to the above
integral equation. We denote by V;f(z) this solution. Using the Markov property of £, it
is easy to show that (f — V;f,t > 0) forms a nonlinear semi-group of operator on By (E).

Let My(E) be the set of all finite measures on F endowed with the topology of the
weak convergence. Fitzsimmons [11, 12] proved there exists a Markov process ((Xy,t >
0), (P, € M¢(E))) taking values in Mf(E), such that for every f € By(E), t >0,

E, [om¥0N)] = = 1i),

where ( =[f(=z . We called this process the (£, )-superprocess.
Computmg P [Xt = 0] from the Laplace transform, we can see the process X dies out
in finite time if and only if fl )~ldu < oo. We can easily deduce from the Laplace

transform the first moment for X

Ey[(Xe, )] = (1, Pef) ™
In the case 1 (u) = yu? we get for the second moment formula:
t
B 060 = . Pf Pt 2y [ i) B2 | [P seras). )
0

It can also be proved that in this case, the total mass process ((Xz,1),¢ > 0) is a Feller
diffusion, whose Laplace transform is given by

E, [e A1) = o A D)/IH0m 1)1 |



1.2 Construction via the branching particle system

Although we have a direct definition for superprocesses, they can be viewed as limit of
branching particle systems (cf [5]). Let & be a continuous Markov process. Let us assume
for simplicity that 1 (u) = %u2. Let n be an integer which will tend to infinity. We consider
Nén) particles starting at time 0 at points {z},1 < i < Nén)}. Each particle evolves,
independently of the others, according to the law of €. At independent exponential times
of parameter n, each particle dies and give birth to two children with probability 1/2 or to
none with probability 1/2. This is a critical binary branching mechanism. Conditionally on
the fact that each newborn particle starts from the death point of its parent, the particles
evolve independently from the past and from the other particles. The law of their trajectory
is the law of £. They will also die at random independent exponential times (of parameter
n), and the branching occurs again. We repeat again and again this procedure. Since we
have a critical branching mechanism, the particle system dies out in finite time. At time ¢
we have Nt(n) particles located at points {z%,1 < i < Nt(n)}. To study this system we look
at the measure valued process

TR
(m _ 1 ,
=

where §, stands for the Dirac measure at point x. (Notice we consider particles of weight
1/n.) The process (Xt(n),t > 0) is a Markov process taking values in My (F) and starting at
Xén) = % Ei\f:éf) 1) i Let us assume that Xén) converges, as n goes to infinity, to p € My (E)
(for the weak topology). Then the finite dimensional distribution of X (™) converges in law
to the finite dimensional distribution of the (£, %u2)—superpr0cess X starting at p (see also
[2] and [3] for a stronger convergence and general results on superprocesses).

T

2 Exit measure

The exit measures have been introduced by Dynkin [6]. Let D be a given domain in E.
Intuitively the exit measure of D describes, in the particle setting, the repartition of the
particles frozen when they leave the domain D for the first time. There are three ways to
construct the exit measures.

- We can define a semi-group of operator on By (E) indexed not by the time but by the
open sets of F.

- We can consider the historical superprocess, that is the superprocess with underlying
(inhomogeneous) Markov process & = (€5, s € [0,]) and then consider the paths which
just end when they go out of D for the first time.

- In the particular case where t(u) = yu?, we can use the Brownian snake approach
introduced by Le Gall. It will enable us to have some nice proofs and representations for
further results.

2.1 The Brownian snake

We assume from now on that £ is a “nice” continuous Markov process in E (for example the
d-dimensional Brownian motion). Let E denotes the set of all continuous stopped paths



in E. An element w € E is a continuous path w : [0,{] = E, { >0 is called the lifetime of
the path w. We denote by z the trivial path of lifetime 0 such that z(0) = z. The space
(E,d) is a polish space for the distance

dw,w') = [¢ = ¢ Fsupd(w(t A ), w'(tA ().

The Brownian snake W = (W, s > 0) is a strong continuous Markov process with values
in E. We denote by ¢, the lifetime of the path W,. The law of W can be characterized as
follows:
- The lifetime process ¢ = ({5, s > 0) is a Brownian motion reflecting at 0.
- Conditionally on ((s,s > 0), W is an inhomogeneous Markov process. Its transition
kernel is characterized by: for 0 < s < s,

o Wy (t) = Wy(t) for t < mf(s,s’), where m(s, s") = inf,¢[; 1 (-

e Conditionally on Wy (m(s,s')), the path (W (t),m(s,s’) <t < (y) is independent
of W and has the same distribution as & started at time m(s, s") at point Wy (m(s,s')).

We denote by P, the law of W started at time 0 at the trivial path z. Let W, = W ((s)
denotes the end point of the path W,. It can be proved that the function s — W, is a.s.
continuous.

Notice that for s € [¢, s"] the paths (Ws(t),0 < t < (,) coincide for t € [0,m(s', s")].
We will refer later to this property as the snake property.

We also introduce (L}, s > 0) the local time of ¢ at level . Let o = inf {s > 0; L > 1}.
Then the process (LL,t > 0) is a Feller diffusion and its Laplace transform is given by:

E [ef)\Lf, | ¢o = 0] — o MIL+2M]

We can now give a construction of superprocesses via the Brownian snake.

Proposition 1. The process defined under Py by: for t >0, for f € By (E),

g
(%) = [ FOVa
is the (&, 2u?)-superprocess started at 6.
Notice that for all £ > 0, a.s. supp X; = {Ws; s€0,0],(s = t}.

Remark. It is also easy to built the so-called historical process (X, t>0)a Mf(E)—Valued
process: for F' € B, (E),

(X4, F) = /OUF(Ws)dL',;.

2.2 Exit measures for the Brownian snake

For simplicity, let us assume from now on that £ is the d-dimensional Brownian motion. We
are now ready to build the exit measure of a connected open set D C R? for the Brownian
snake.



For w € R?, let 7p(w) = inf {¢ > 0;w(t) & D} with the convention that inf@ = +oo.
Let us assume that for x € D, Py[tp(£) < oo] > 0. For ¢ > 0, we consider the following
measures on R?: for f € B (R?),

1> 1 7 E
(XD, f) = E/o L{rp (W) <Cocrp (Wa)+e f (W) ds —/ f(Wy)dLP

where

S S
LY = 1/ Lirp (W) <Cr<rp (Wy) 3T = 1/ Lio<y, <=}dr,
€Jo €Jo
and 75 = (¢s — 7p(Ws)) . We introduce the functions K; = fos 1{,,>01dr and A; =
inf {s > 0; K; > t}. And we consider the time change process I's = y4,. We have I'g, = 7.
Using the snake property, we can prove that the process (I's, s > 0) is a reflecting Brownian
motion in RT. Furthermore we have

I 1 S 1 K
L = _/ 1{0<w<s}d7" = —/ 1{0<Fr<e}d7“-
€Jo €Jo

Clearly this quantity converges a.s. to the local time of " at level 0 up to time K. This
implies that a.s. the measure dLP* converges to a measure, which we denote by dL?. Since
the local time of T at level 0 increases only when I',, = 0, we deduce that the measure dL?
increases only when (; = 7p(W).

The measure defined by: for f € B, (R?),

(Xo.£)= [ 70V )ar?,
is the exit measure of D. Notice that supp Xp C 9D since W is continuous. We can

compute the Laplace transform of the exit measure.

Theorem 2. Let ¢ be a bounded nonnegative measurable function defined on 0D. Then
we have

E, [efocD,w)] —e @ zeD,

where the function u, defined on D, solves the equation

() + 28, [ " u(ss>2ds] — Ealp(éry)]

Remarks. i) The above integral equation is the mild form of (2) with L = 1A and
(u) = 2u?. The exit measure has been built in the case 1(u) = 2u?, this restriction is
due to the Brownian snake approach. The approach of Dynkin 8] yields the general .

ii) We have been looking at elliptic equation in domain D C R¢, but using the process
(t, &) instead of (&) leads to parabolic equation in domains of R x R?,



2.3 Dirichlet problem in D

Let D be an open subset of R?. A point a € 9D is said to be regular if P, [7p(£) = 0] = 1.
We say that D is regular if all points a € D are regular. Let us recall some well-known
results.

a) If pisabounded measurable function defined on D then the function h(z) = Ez[p(&-,)]
is in C%(D) and Ah = 0 in D. Furthermore if ¢ is continuous at a € dD and if a is
regular, then lim,cp.y—q h(2) = p(a).

b) If p is a bounded measurable function defined in a bounded domain D, then the func-
tion F(z) = E; [[;” p(&)] is in CH(D). Let a € 9D be regular, then we have
limgep.y—sq F'(z) = 0. Furthermore if p is Holder continuous in D, then F' € C?(D)
and $AF = —p in D.

We then deduce from a) and b) that if D is a bounded regular domain and if ¢ is nonnega-
tive continuous defined on dD, then the function u defined in theorem 2 is in C?(D)NC(D)
and solves

Au=4u%? in D
B (4)
Ujpp = P-

We also will need the following comparison principle for elliptic differential equations.

Comparison principle. Let D be a bounded open set of RY. Let L be an elliptic dif-
ferential operator. Let 1) be a nondecreasing function from RT to Rt. Let u, v in C?(D)
such that

Lu—¢(u) > Lv —¢(v) in D,

limsup [u(z) —v(z)] <0 foralla € 9D,

zED;T—a
then u(z) <wv(z) in D.

We deduce from this comparison principle that the solution of (4) is unique.

2.4 Dirichlet problem in D with blows-up boundary condition

We keep the same hypothesis as in (2.2). We define the range of the superprocess as the
closed set R = [J;>qsupp X;. Recall that a.s. supp X; = {Ws; s€[0,0],(s = t}. It is

then clear, using the continuity of the path s — Ws, that a.s. R = {Ws; s €10, U]}. Notice
the range is a compact set. Let us now consider the two functions defined on D:

up(z) = —log P, [Xp = 0]
vp(z) = —logP, [R C D].

For any nonnegative function u defined in theorem 2, with ¢ bounded nonnegative, we
have u < up in D. Since supp Xp C RN ID, we get that up < vp in D. Since s — W

Ws—x‘gn] is

is continuous and o is finite, for every n > 0 the quantity P, [supse[o,g}



positive. It is even independent of z by space translation invariance. Let K be a compact
set. Hence

inf P, B(z, :
nf Py [R C B(z,n)] >0

where B(z,n) is the ball with center  and radius n. Thus we deduce that the function
vp is uniformly bounded on every compact subset of D. We can now give a result on the
maximal and minimal solutions of Au = 4u? with blow-up boundary condition.

Proposition 3.

1. Let D C R? be a bounded reqular open set, then the function up is the minimal
solution of

Au=4u? in D

lim  u(z) = oo.
r€D;x—0D

(5)

2. Let D C R? be an open set, then the function vp is the mazimal nonnegative solution
of Au = 4u? in D. This means that if u € C?(D) is nonnegative and solves Au = 4u?
then u < wvp.

We deduce from this proposition that if D is regular and bounded, then vp blows up
at the boundary.

Before going into the proof, let us prove a nonlinear “mean-value” property. Let D C R%
be an open set. Let v € C?(D) be a solution of Au = 4u? in D. Consider O a regular
bounded open set such that O C D. The function u(z) = —logkE, [e_(XO’”)] defined in
O is a nonnegative solution of (4) in O with ¢ = v. But so is v. We deduce from the
comparison principle that v = v in O, that is

v(z) = —logE, [e*(XO’")] for z€O.

Proof 1. Let D C R? be a regular bounded open set. Consider the following increasing
sequence of functions wu,(x) = —logkE, [e_”(XD’l)]. This sequence converges to up in
D. Recall that the function vp is uniformly bounded on every compact subset K C D.
Since up < vp, we deduce that up is bounded on K. Let O C D be a regular bounded
open set such that O C D. By the non-linear “mean-value” property, we have u,(z) =
—logE, [e_(XO’“")] for z € O. By monotone convergence, we get that the nonlinear “mean-
value” property also holds for up. This implies that up € C?(0) and solves Au = 4u? in
O and thus in D. Since u,(z) converges to n as = goes to 0D, we deduce that up(z) blows
up as z goes to dD. Let v a solution of (5). By the comparison principle, we have v > u,
in D. Thus we get v > up in D. [l

Proof 2. A.s. we have

{Rc D} c{Xp=0}cC{RcCD}. (6)



The last inclusion is non trivial and will be admitted here. We now consider an increasing
sequence of bounded regular domains D,, such that D, C Dpy1 € D and D =, Dn.
According to the inclusions (6), we have for z € D), B
P, [R C D, <P[Xp, =0 <P, [RC Dy] <Py [R C Dpy1].

Thus we have vp,(z) > up,(z) > vp,,,(z) in D,. The sequences (vp,,n > 1) and
(up, ,m > 1) are nonincreasing. They converge to the same limit vp(z) = —logP, [R C D]
which is defined on D (we used the fact that D, T D and that R is compact). By the
nonlinear “mean value” property, we have for every open bounded regular set O such that
O C Dy, Yz € O, ¥n > ng, up, (z) = —log E, [e_(XO’“Dn)]. By dominated convergence,
we get Vo € O, vp(z) = —logE, [e*(XO’”D)]. Since vp is bounded on O, we get that it
solves Au = 4u? in O, and thus in D. It remains to prove that vp is the maximal solution
in D. Let g a nonnegative solution of Au = 4u? in D. The function g is at least bounded
on every D,. By the comparison principle, we get that on D, g < up,. This implies that
g <wvpin D. O

We are now led to two natural questions:
1. On what condition on the open set D do we have the existence of a solution with
blow-up at the boundary?
2. On what condition on D, do we have up = vp?

The first question has been answered in the case Au = 4u? by Dhersin and Le Gall [4]
(see also [18] for a more general setting). A point z € 9D is said to be super-regular if
P.[r = 0] = 1, where 7 = inf {¢ > 0,supp X; N D¢ # 0}. We now define the following
capacities. Let 3 > 0. Let A be a Borel set of R?.

-1

cavs() = [ int [ viasmtamae-n)|

L+ log, 1/ o — yl it =0,
jw —y| 7 if B> 0,

with log, z = (logz) V 0. Then we have the next result which includes the Wiener’s test
for the (¢,2u?)-superprocess.

Theorem 4. Let D C R? be a domain. Let x € OD. Forn > 1 let
Fo(r)={ye D427 " <|z —y[ <27},

where hg(z —y) = {

Then the next three properties are equivalent.

1. The point = 1s super-reqular.

2. Either d <3, ord >4 and
320 capy  (Fy()) = oo.

n>1

8. There ezists a solution of Au = 4u® in D such that limyep.y—y u(y) = 0o.
Furthermore, if every point © € 0D is super regular, then there exists a solution to (5).

The answer to the second question does not seem optimal yet (see [15] and [18]).



3 Polar sets

We still assume L = %A and (u) = 2u?. Let K be a compact set of R?. We say that the
set K is polar if

Ve € R\K, P, RNK #0]=0.

Since the function vge = —logP,[R N K = (] is the maximal solution of Au = 4u? in K¢
We deduce the next three statements are equivalent:

- K is polar.
- VKe = 0.

- There is no non trivial solution u > 0 of Au = 4u? in K¢ (i.e. K is a removable
singularity).

We now give a characterization for polar sets.

Theorem 5. The set K is a polar set (for the super Brownian motion) if and only if
- K=01id<3,

- capy_4(K) =0 ifd > 4.

This theorem is due to Perkins [19] (=) and Dynkin [7] (<) (see also [1]). Those
results have been extended by Dynkin to the general equation Lu = u'*# 8 € (0,1]. We
will only give the proof of (=).

Proof. Let us assume d > 4 and capy_4 K > 0. Then there exists a probability v on
K such that [ f v(dy)hg 4(x — y) is finite. We consider a continuous nonnegative
function f on R? w1th support in B(0, 1), which is radial (i.e. f(y) = f(z) if |y| = |z|)
and such that [ f(y)dy = 1. And we set f.(y) = e %f(y/e) (thus f.(y)dy = &p). Let

z) = [ fo(z — y)v(dy). We consider the occupation measure I'(dz) = [;° dt X;(dz),

and we compute the first two moments of (I', g.). We have for z € K ¢

E, [(T,g.)] = / G(& — y)g: () dy,

where G is the Green function G(z) = ag|z|*7%. Since the right hand side converges to
[ G(z — y)v(dy) which is finite positive, we deduce there exists a constant ¢;, depending
on z, K, ey > 0, such that for every ¢ € (0, gg],

EZ [(Fvge)] >c > 0.

The formula (3) for the second moment gives

E, I‘gE </G$— Y)9:(y dy>+

/de T,z //dydy Gz —y)G(z —4)ge(y)ge ()



The first right hand side term is bounded (use the above remark on E; [(T",g:)]). Now
using the properties of f. and the fact that the function G(y) is super-harmonic on R¢, we
get

[a 6@ ([ar6e-niw-o) (o 66— inw -a)

< /dz G(r,2)G(z — a)G(z — d)
< cohg_y4(a —d').

Thanks to the assumption on v, we deduce there exists a constant c¢3, depending on
z, K,e9 > 0, such that for every e € (0, g¢],

E, [(Fags)2] < cs.

Now, using Cauchy-Schwarz inequality, we get for e € (0, go]

B, ((0g0) >0 2 2ol S g

]Ex [(FagE)2] T
But since the support of f is in B(0,1), we get that
{(Tyg:) >0} C{RNK,. # 0},

where K. = {y € R%;d(y, K) < e}. Letting ¢ goes to 0, we get that P,[R N K # 0] > 0.
Thus K is not polar.

Let d < 3. In fact it is sufficient to consider the case d = 3. Now using the definition
of the capacity, it is easy to check that a segment is not polar in dimension d = 4. Thus
by projection, we deduce that points are not polar in dimension d = 3. U

Remark. The points are polar if and only if d > 4. In the case Au = u'** for 8 € (0, 1]
the points are polar if and only if d > 2(1 + 3) /.

4 Representation theorems

We use the Brownian snake approach. We want to describe all the solutions of Au = 4u?
in D C R, where D is a smooth open set. Let us consider the set of exit points of D:

Ep = {Ws;s <o,7mp(Ws) = Cs} .

Notice that supp Xp C €p a.s.

4.1 The critical case d =2
The next theorem is due to Le Gall [17].

Theorem 6. Let D be a domain of class C? (not necessarily bounded). There is a one-
to-one correspondence between nonnegative solution of Au = 4u? in D and pairs (K,v),
where K is a closed subset of 0D and v is a Radon measure on 0D\K. The correspondence
s characterized as follows:

10



- On one hand, for x € D,
u(e) = ~logEy |Lig,an—nj e~/ YD(y>u(dy>] ,

where (Yp(y),y € OD) is the continuous density of Xp with respect to the Lebesgue
measure on D o(dy).

- On the other hand

K ={z € 0D; limsup d(z,dD)*u(z) > 0},

zeED;x—2

(v, ) =lim u(z +rN;)p(z)o(dz),
™0 Jop\K

where @ is continuous with compact support on 0D\K and N, denotes the inward pointing
vector normal to 0D at z.

The pair (K,v) will be called the trace of the solution w.

Remarks. i) If K =0, D bounded, and v(dy) = ¢(y)o(dy), where the function ¢ is
continuous, then we recover the fact that the function

u(z) = —logE, [e*(XD"")] ,

is the only solution of the Dirichlet problem (4).
ii) If K = 9D, D bounded, then we recover the fact that the function

u(z) = —logP; [Ep N K = 0] = —logP, [R N D° = (]

is the maximal solution of Au = 4u? in D.

4.2 The O-polar sets

The above formula cannot be extended in higher dimension the same way. The density of
the exit measure does not exist if d > 3. Furthermore, there exist compact sets K C 9D
such that

PI[EDF\IK#@] =0.

Such sets are called 0-polar sets (“boundary polar sets”). This means that a.s. no path W
will exit D through K. We can prove the following result (see [14]).

Proposition 7. Let D be a bounded Lipschitz domain. Let K be a compact subset of 0D.
The function

u(z) = —logP, [Ep N K = (]
15 the mazimal nonnegative solution of

Au=4u® in D
limgepigsyu(z) =0 Yy € OD\K.

11



We will now give a characterization of the d-polar sets. The next theorem is due to Le
Gall [16] and has been extended by Dynkin and Kuznetsov |9] in the general case. Recall
the capacity defined in the previous section.

Theorem 8. Let D C R? be an open bounded set, sufficiently smooth (C°). A compact
set K of D 1is O0-polar if and only if

- K#£0ifd<2,
- capy 3(K)=0ifd > 3.

Thus we deduce that (7) has a non trivial nonnegative solution if and only if d < 2 and
K # 0 or d> 3 and capy_3(K) > 0.

4.3 Moderate solutions

We would like to characterize all the nonnegative solutions of Au = 4u? in D, bounded
by harmonic function. Such a solution will be called a moderate solution. For example
assume D is a bounded regular domain, and consider a continuous nonnegative function ¢
defined on 9D. We know that the function u(xz) = —logE, [e*(XD"p)] is the only solution
of (4). And we have seen in section 2.2 that

™D
o)+ 28, | [ uleds| = Buleer )
where 7p = inf {¢t > 0,§; € D}. Now the function h(z) = Ez[p(&;,)] is harmonic in D
and u < h. Furthermore u is the maximal solution of Au = 4u? in D, bounded by h.
Indeed, let v be an other nonnegative solution bounded by h. And assume that u < v < h
in D. By continuity we get vjgp = ¢. Since the nonnegative solution of (4) is unique, we
get that v = w.

We now give a complete description of all the moderate solutions. Let D be a bounded
domain in R?%, d > 2.

Proposition 9. Let u be a moderate solution of Au = 4u® in D. Then there exists a
unique harmonic function h such that for all x € D,

u(z) + 28, [ /0 ” u(gs)%zs] — h(z). (8)

Furthermore the function h is the smallest harmonic function dominating u.

Proof. In order to prove this proposition, we consider an increasing sequence of regular
open set D,, such that D, C Dp41 C D and D = J,,~ Dy Let u be a moderate solution.
Since u solves (4) in D,, with boundary condition ¢ = u, we deduce that for all x € D,,,

u(z) + 28, [ [ u(£s>2ds] — Bafuléry, )] )

Let h denotes the limit of the nondecreasing sequence of functions Eq[u(¢;, )]. (h is defined
in D.) Since u is bounded by an harmonic function let say g, we get for z € D:

h(z) = lim E;[u({ry, )] < lim Eqlg(érp, )] = 9().

n—o0 n—0o0

12



Now by dominated convergence, h is clearly harmonic in D. Letting n goes to infinity in
(9), we get (8). And by construction A is clearly the smallest harmonic function dominating
U. U

The next step is to characterize all the harmonic function h such that there exists a
function w > 0 satisfying (8). Let us assume that D is bounded and sufficiently smooth
(at least C9).

Theorem 10. There exists a one-to-one correspondence between the moderate solutions
of Au = 4u? in D and finite measures on OD that does not charge O-polar sets. The
correspondence s given by

u(z) +2 / G (e, y)uly) dy = /8  Polaeldy)

where Gp and Pp are respectively the Green function on D and the associated Poisson
kernel.

Let A be the set of finite measures on 9D which doesn’t charge d-polar set. We will write
u, for the moderate solution corresponding to the measure v € N.

In fact we have a probabilistic representation of u,. Let D, be an increasing se-
quence of bounded open sets such that D = U,>1D,. Consider the harmonic function
h(z) = [, Pp(z,y)v(dy). We can built a continuous additive functional (A", s > 0) of
the Brownian snake in the following way: for all s > 0,

S
h _ 13 1 Dy,
Al —nlglgo ; h(Ws)dLg™.
We have A" = lim, .., < Xp,,h >. This convergence can be proved by martingale

techniques using the so called special Markov property. The function w, is then defined
by:

uy(z) = —logE, [e*AgO] x € D.

4.4 Trace of solutions in the super critical case

The following results are recent work from Dynkin and Kuznetsov [10] and Kuznetsov [13].
They have been presented by their author in September. I will only present them for the
nonnegative solutions of Au = 4u? in D C R¢, a smooth bounded domain. We first define
the Borel set of singular points of a nonnegative solution w:

SG(u) = {y € 8D;Pf%ya.s. /OT u(&s)ds = oo} ,

where P2, is the law of the h-transform of the Brownian motion started at point z € D

T—Y
with respect to the Poisson kernel Pp(-,y). Intuitively P2 _,y is the law of the Brownian
motion started at x “conditionally” on going out of D at point y. In dimension d = 2, the
set of singular points of the solution with trace (K,v) is SG(u) = K. In higher dimension,

if u is a moderate solution then SG(u) is a d-polar set.

13



Let N be the set of all measures obtained as increasing limits of measures of N'. (Notice
the measures of N/’ are not necessarily o-finite.) A solution w is called o-moderate, if it is
an increasing limit of moderate solutions w,,, . Let u € N’ be the increasing limit of v,.
Since the limit u is independent of the sequence (v,) which converge to u we write u,, for
the limit.

For every Borel set I' C 0D, we put ur(z) = sup{u,(z);v(['°) =0,v € N}. The
function up is o-moderate. We say that ' is finely closed if SG(up) C I'. This define a
finer topology on 0D than the induced topology. We write ur , for the maximal solution
dominated by up + u,,.

The trace of a nonnegative solution w is the pair (', ) defined by I' = SG(u) and p is
a function defined on B(0D) by: for every Borel set B C 9D,

w(B) =sup{v(B);v € N,v(T') =0,u, <u}.

Theorem 11. The trace (I', i) of a nonnegative solution of Au = 4u? in D has the fol-
lowing properties

i) T is finely closed.
ii) p is a o-finite measure, p € N', pu(I') =0 and SG(u,) CT.
Moreover, ur, is the mazimal o-moderate solution dominated by u.

We say that two pairs (I', u) and (I, u’) are equivalent if 4 = p' and TAIY is 9-polar.
Clearly ur ,, = urr s if the two pairs (I', u) and (IV, 4') are equivalent.

Theorem 12. Let (I', ) satisfy i) and i) of the above theorem, then the trace of ur, is
equivalent to (I', ). Furthermore, ur , is the minimal solution with this property and the
only o-moderate one.

There is still an open question: Are the o-moderate solutions the only nonnegative
solutions of Au = 4u? in D? (The answer is yes if the dimension is less or equal to 2 (cf
section 4.1).)
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