
ON THE HOT SPOTSOF A CATALYTIC SUPER-BROWNIAN MOTIONJEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNAbstrat. Consider the atalyti super-Brownian motion X% (reatant) in Rd ; d � 3;whih branhing rates vary randomly in time and spae and in fat are given by an ordinarysuper-Brownian motion % (atalyst). Our main objet of study is the ollision loal timeL = L[%;X%℄ �d[s; x℄� of atalyst and reatant. It determines the ovariane measure in themartingale problem for X% and re�ets the ourene of �hot spots� of reatant whih anbe seen in simulations of X%. In dimension 2, spatial marginal ollision densities exist and,via self-similarity, enter as fator in the long-term random ergodi limit of L (di�usivenessof the 2-dimensional model). 1. IntrodutionThe ordinary super-Brownian motion % = (%t ; t � 0) in Eulidean spae Rd an be obtainedas a limit of branhing partile systems. In this branhing partile system, the partiles evolveaording to independent Brownian motions in Rd , and additionally, with onstant rate  > 0,eah partile splits independently into 2 or 0 partiles with equal probability (this is a ritialbinary branhing mehanism).We now interpret % as a atalyst proess: %t(dx) is the amount of atalyti �partiles� attime t in the volume element dx of Rd . We then let a super-Brownian motion X% = (X%t ; t � 0)evolve in this atalyti random medium %. Intuitively X% desribes reatant �partiles� whihare evolving aording to independent Brownian motions and whih are performing a ritialbinary branhing, but at random time-spae varying rates given by %. In fat, the rate ofbranhing of an intrinsi reatant partile with Brownian pathW is ontrolled by the ollisionloal time L[%;W ℄ of % and W , de�ned as the measureL[%;W ℄(ds) := lim"#0 dsZ %s(dy) p("; y �Ws);where p is the standard heat kernel p(t; x) = [2�t℄�d=2 exp ��jxj2=2t�, (t; x) 2 (0;1) � Rd .Aording to [BEP91℄, this ollision loal time L[%;W ℄ makes sense non-trivially in dimensiond � 3, and vanishes for d � 4 (where the Brownian reatant partiles do not hit the atalyst%). Thus we restrit our attention to d � 3 (sine otherwise X% degenerates to the heat �ow).Date: November 17, 1998; WIAS preprint No. 450.1991 Mathematis Subjet Classi�ation. Primary 60J80; Seondary 60G57, 60K35.Key words and phrases. Catalyti super-Brownian medium, superproess, measure-valued proess, ollisionloal time of atalyst and reatant, two-dimensional proess, atalyti medium.The researh was partially supported by the European TMR program grant ERBFMRXCT 960075 and bythe NSF grant DMS-9701755 at the MSRI. 1



2 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNThe atalyti super-Brownian motion X% was onstruted in [DF97a℄. Let % and X% startat time 0 with Lebesgue measures ` and `r ; respetively. From the papers [DF97a, DF97b,EF98, FK97℄ it is known thatX%T onverges in law as T " 1 to a limitX%1 with full expetation`r (persistene) 1). The approah of [FK97℄ to solve the most di�ult ase, namely onvergenein the ritial dimension d = 2, was to study the loal struture of X% and then to use a self-similarity argument. In fat, they showed that in dimensions d = 2; 3, given the atalyst %;the reatant X% has a density �eld �% :X%t (dx) = �%t (x)dx; t > 0:Moreover, o� the time-spae support of the atalyst % (whih is a Lebesgue zero set), �% anbe hosen as a (time-spae) C1-funtion that solves the heat equation, just as intuitivelyexpeted.Simulations of (%;X%) in dimension d = 2 (see the �gure in [FK97℄) on�rm the heuristipiture one has. Namely, at late times T ,- the reatant X%T is rather uniform outside of the atalyst %T ,- it is absent inside of the lumps of %T (sine a huge rate of branhing auses mainlykilling),- but oasionally also some hot spots of the reatant our in the interfae of %T andX%T ; that is in the boundary region of the atalyti lumps.Aording to [FK97℄, in the two-dimensional ase, the (loal) long-term limit X%1 is infat a random multiple of Lebesgue measure [the fator is given by �%1(0)℄: But so far theinvestigations on the atalyti super-Brownian motion X% do not re�et anything on the hotspots seen in the pitures. Our approah to gain some information about them is to studythe ollision loal time L := L[%;X%℄ of % and X% de�ned as the limit ofL" �d[s; x℄� := ds %s(dx)Z X%s (dy) p("; x � y);(1)as " # 0.Atually there is a further motivation to study this ollision loal time L[%;X%℄. It oursindeed in the desription of the martingale problem for the proess X% (see Corollary 4 below).For martingale problems of atalyti super-Brownian motions, see also [DF94, Del96, Led97℄.Let us present the results. We prove that in all dimensions of non-trivial existene of X%the ollision loal time L of atalyst and reatant makes non-trivially sense (see Theorem3 below). [In dimension 1, it is known that both %s and X%s are absolutely ontinuous (f.[KS88℄ and [DFR91℄, respetively); thus L" and hene L simplify in this ase.℄ This non-trivialexistene of L re�ets the high �utuations of X% in the interfae of atalyst and reatant,seen as hot spots in simulations. Our main result however is that for d = 2 the marginalmeasure of L = L[%;X%℄ onerning the spae variable is absolutely ontinuous (Theorem 5).Note that this is in ontrast, for instane, with the (one-dimensional) single-point atalytimodel of [DF94℄, say XÆ0 ; where, together with the atalyst Æ0 , the spae marginal of theollision loal time L[Æ0;XÆ0 ℄ is onentrated in the single spae point 0, hene is singular (evenatomi). Finally, in dimension 2, using the self-similarity of L[%;X%℄ whih follows from the1) In the three-dimensional ase, for simpli�ation it was assumed in [DF97b℄ that the atalyst proess %is already in its orresponding equilibrium.



HOT SPOTS OF REACTANT 3self-similarity of (%;X%) , we show that T�1L �[0; T ℄� (�)� has a random ergodi limit asT " 1; whih indiates di�usive features in the long-term behavior in d = 2.It remains open whether also in dimension 3 spae-marginal ollision densities exist sineour L2-approah fails in this ase (see Remark 6 below).The outline of the paper is as follows. In Setion 2 we introdue formal de�nitions of theproesses % and X% and state the results. The following two setions are then devoted to theproofs of our two theorems. In an appendix we ollet some results on ordinary and atalytisuper-Brownian motions used in the proofs.2. Statement of results2.1. Notation. The lower index + on a set will always refer to the olletion of all itsnonnegative members. Similarly, f+ is the nonnegative part of f: The supremum norm isdenoted by k � k1 : Let  always refer to a (�nite) onstant whose value may vary from plaeto plae.We denote by B(E) the spae of all real Borel measurable funtions de�ned on a polishspae E. We also denote by B(E) the Borel ���eld of E.For a �xed onstant q > d; introdue the referene funtion �q 2 B(Rd) :�q(x) := �1 + jxj2��q=2 ; x 2 Rd :(2)Set Bq := �f 2 B(Rd ); kf=�qk1 <1	. Let C(Rd ) denote the olletion of all ontinuousfuntions on Rd with ompat support.If � is a Radon measure on Rd , we write (�; f) for R �(dx) f(x) (if the integral makes sense).Let Mq denote the set of all Radon measures � on Rd suh that (�; �q) < 1. This spaeof tempered measures is endowed with the oarsest topology suh that the maps � 7! (�; f)are ontinuous for f 2 C(Rd ) [ f�qg, getting a Polish spae. Sine q > d, Lebesgue measurebelongs to Mq .We onsider the polish spae C := C(R+ ;Mq) of all ontinuous funtions from R+ to Mqequipped with the topology of uniform onvergene on ompata.Let (Pt ; t � 0) denote the semigroup of heat �ow on Rd :Pt[f ℄(x) := Z dy p(t; x� y)f(y); t > 0; f 2 B+(Rd):(3)2.2. Catalyst and reatant proess. We start by introduing the atalyst proess.De�nition 1 (atalyst proess). Let  > 0 and � 2 Mq . There exists a unique probabilitymeasure P� on �C;B(C)�, suh that the oordinate proess % = (%t ; t � 0) on C is a super-Brownian motion with onstant branhing rate  and starting measure �. That is, % is aontinuous time-homogeneous strong Markov proess with the following properties:- P�-almost surely, %0 = �,- for every f 2 Bq+, t � r � 0; we have 2)E � he�(%t ;f) ��� � (%s ; s 2 [0; r℄)i = e�(%r ;w(t�r));(4)2) We use the following onvention: If P is a probability law, then the orresponding letter E refers to therelated expetation symbol.



4 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNwhere w is the unique nonnegative solution on R+ � Rd of the log-Laplae equationw(t; x) +  Z t0 ds Ps[w2(t� s)℄(x) = Pt [f ℄ (x):(5)We write P for P� in the ase � = i`; where i > 0 and ` is the (normalized) Lebesguemeasure on Rd . 3From now on we assume that d � 3, and that % is distributed 3) aording to P: Next wereall the de�nition of the atalyti super-Brownian motion X% in the random medium % (see[DF97a℄ for details).De�nition 2 (atalyti super-Brownian motion). Fix (r; �) 2 R+ � Mq and � > 0. Foronveniene, set C0 := C �[r;1);Mq�. There exists a (measurable) probability kernel % 7!P%r;� from �C;B(C)� to �C0;B(C0)� suh that the oordinate proess X% = (X%t ; t � r) on C0 isa super-Brownian motion in the atalyti medium %. That is, P-a.s. under P%r;� , the proessX% is ontinuous time-inhomogeneous Markov with the following properties:- P%r;�-almost surely, X%r = �,- for every f 2 Bq+, t � s � r; we haveE%r;� he�(X%t ;f) ��� � �X%u ; u 2 [r; s℄�i = e�(X%s ; vt(s));(6) where vt is the unique nonnegative solution on [r;1) � Rd of the atalyti log-Laplaeequation v(s; x) + �Z 1s duZ %u(dy) p(u� s; x� y) v2(u; y) = J(s; x);(7) with J(s) := 1t�s Pt�s[f ℄.Often, we also pass from the quenhed distributions P%r;� to the annealed law E [P%r;�℄ : 32.3. Existene of ollision loal time of atalyst and reatant. For our onstant q > d;we introdue the funtion spae Hq := ST�0HqT , whereHqT := ng 2 B(R+ � Rd ); supp g � [0; T ℄� Rd ; kg=�qk1 <1o ;(8)with kg=�qk1 = sup(s;x)2R+�Rd jg(s; x)j=�q(x); and supp g denoting the support of g.Reall the approximated ollision loal time L" of % and X% introdued already in (1). Weare now ready to state our �rst result, the existene of the ollision loal time L = L[%;X%℄ of% and X%. Reall that d � 3 and (r; �) 2 R+ �Mq :Theorem 3 (ollision loal time). There exists a random variable denoted by L = L[%;X%℄de�ned on �C � C0;B(C � C0)�, taking values in the set of Radon measures on [r;1)�Rd withthe following properties:(i) (tempered measure): For every T � r, we have E �P%r;�(L;1[r;T ℄ �q)� <1.(ii) (existene via onvergene): For every ' 2 H2q,lim"#0 (L" ; ') = (L;'); E [P%r;�℄�a:s:3) In [FK97℄ more generally a lass of so-alled �-di�usive measures � is introdued whih allow that %under P� may serve as the atalyst for X%:



HOT SPOTS OF REACTANT 5(iii) (regularity): For every ' 2 H2q, and E [P%r;�℄-a.s., the proess �(L;1[r;t℄'); t � r� isontinuous and adapted to the �ltration�Ft := �(%) _ � �X%s ; s 2 [r; t℄� ; t � r� :(iv) (moments): For every m � 1, ' 2 H2q, P-a.s.,E%r;� "�Z[r;1)�Rd L �d[s; x℄�'(s; x)�m# = m! mXk=1 1k! Xn1;:::;nk � 1;n1+���+nk =m kYi=1 ��; �ni(r)� ;(9) where the funtions �n ; n � 1; belong to Hq and are reursively de�ned by�n(s; x) := �Z 1s duZ %u(dy) p(u� s; x� y)"n�1Xi=1 �i(u; y)�n�i(u; y)# ; n � 2;(10) with the initial ondition�1(s; x) := Z 1s duZ %u(dy) p(u� s; x� y)'(u; y); (s; x) 2 R+ � Rd :(11)Consequently, in dimensions d � 3; the ollision loal time L = L[%;X%℄ of atalyst and rea-tant exists non-trivially, re�eting in partiular the ourrene of hot spots in the mentioned2-dimensional simulations.The proof of this theorem is postponed to Setion 3.As an appliation, we an now desribe the ovariane measure of the martingale measureassoiated with X%. Let C1;2b denote the set of bounded funtions ' 2 B(R+ � Rd ) suh thatthe partial derivatives �'�s and �2'�xi�xj exist and are ontinuous and bounded. It is easy tohek that under E [P%r;�℄ the proess (M'r;t ; t � r) de�ned byM'r;t := �X%t ; '(t)�� �X%r ; '(r)�� Z tr ds �X%s ; �'�s (s) + 12 �'(s)� ;(12)is an (Ft ; t � r)-martingale [note that Fr = �(%) _ �(Xr)℄. Thanks to the Markov propertyof X% (given %); and the moment formula (A.9) for X% stated in the appendix, we get thatfor '; in C1;2b , P-a.s. for all s � r and t � r,E%r;� [M'r;sM r;t℄ = 2�Z �(dx)Z s^tr duZ %u(dy) p(u� r; x� y)'(u; y) (u; y):(13)The funtional M : ' 7! M' de�ned on C1;2b an be extended to an orthogonal martingalemeasure on Hq. Let hMi denote its ovariane measure. Now we show how hMi an beexpressed in terms of the ollision loal time L = L[%;X%℄. Reall that d � 3 and that(r; �) 2 R+ �Mq :Corollary 4 (ovariane measure). For every ' 2 Hq, E [P%r;�℄-a.s. for every t � r, we havehM'ir;t = 2�Z[r;t℄�Rd L �d[s; y℄�'2(s; y):(14)



6 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNProof. Using the Markov property of X% (given %) and an obvious extension of the seondmoment formula (13), we obtain for ' 2 Hq, P-a.s. for all t � s � r,EE%r;� �(M'r;t)2 �� Fs� = (M'r;s)2 + 2�Z X%s (dx)Z ts duZ %u(dy) p(u� s; x� y)'2(u; y):Sine  Z[r;t℄�Rd L �d[s; y℄�'2(s; y); t � r!is in t non-dereasing and ontinuous, is adapted to (Ft ; t � r) ; and zero for t = r, we getthat  hM'ir;t � 2�Z[r;t℄�Rd L �d[s; y℄�'2(s; y); t � r!is a ontinuous martingale under E [P%r;�℄ with bounded variation starting at time t = r from0. This martingale is then onstant and, in fat, equal to 0, giving the laim (14).2.4. Collision loal time in dimension two. We now state our results for the ollisionloal time in the �ritial� dimension d = 2. For onveniene, we introdue the followingabbreviation for an annealed law:P := E [P0;ir`℄ = E i ` [P0;ir`℄ ; where ir > 0:(That is, we now fous on the situation r = 0 and � = ir`:)Theorem 5 (two-dimensional ollision loal time). Let d = 2.(a) (loal spatial L2 ollision densities): For every t � s � 0 and z 2 R2 ,�Z[s;t℄�Rd L �d[r; y℄� p("; z � y); " > 0�onverges in L2(P) as " # 0 to a random variable denoted by �[s;t℄(z). It has expetationE ��[s;t℄(z)� = iir (t� s);and its �nite variane is non-zero provided that s < t:(b) (spatial absolute ontinuity): For t � s � 0, there exists a measurable version of�[s;t℄ with respet to B(R2 )�Ft ; and P-a.s. the measure L �[s; t℄� (�)� on R2 is absolutelyontinuous and an be represented asL �[s; t℄� dx� = �[s;t℄(x)dx:() (self-similarity): Under P, the laws of the saled ollision loal timesK�2L�K(�)�K1=2(�)�are independent of the saling fator K > 0.(d) (random ergodi limit): The following onvergene inMq holds in law with respetto P : limT"1 T�1L �[0; T ℄ � (�)� = �[0;1℄(0) `(with ` the Lebesgue measure and 0 < Var ��[0;1℄(0)� <1 ):



HOT SPOTS OF REACTANT 7Consequently, in dimension 2, the spatial marginal measures L �[s; t℄� (�)� of the ollisionloal time L[%;X%℄ of atalyst and reatant have non-degenerated densities �[s;t℄(z) (providedthat s < t). Moreover, �[0;1℄(0) enters as random fator of Lebesgue measure in the long-termergodi limit. Reall that this re�ets the di�usive features of the hot spots.Remark 6 (dimension three). The L2(P)-onvergene in part (a) does not hold for d = 3.In fat, in the three-dimensional ase an in�nite term would be involved in our alulations,see the remark following (29) in the proof below. Reall on the other hand that in dimensionone, L[%;X%℄ should be rather �regular�. 3Remark 7 (regularity). It is an open problem whether the spatial ollision density funtions�[s;t℄ have some regularities properties in the spae variable. Note also that the exeptionalset in the P-a.s. statement in (b) depends on [s; t℄: One would also like to know whether thissituation an be improved. 3The statement () follows from the self-similarity of (%;X%) by standard arguments (om-pare with [DF97b, Subsetions 4.1 and 4.2℄). Otherwise the proof of Theorem 5 will beprovided in Setion 4.3. Existene of ollision loal time (proof of Theorem 3)Reall that d � 3: First of all we state the following lemma.Lemma 8 (approximated moment inrements). For every m � 1, r � 0, � 2 Mq, T � 0,� 2 (0; 1=4), P-a.s. there exists a �nite onstant Mm (depending on %) suh that for every' 2 H2qT , t0 � t � 0, 1 � "0 � " > 0,E%r;� �(L" ; '1[t;t0 ℄)2m� � Mm k'=�2qk2m1 h��t� t0��� �1 + log+ �1=jt� t0j��i2m ;(15) E%r;� h�(L" ; ') � (L"0 ; ')�2mi � Mm k'=�2qk2m1 h��"� "0��� �1 + log+ �1=j" � "0j��i2m :(16)Based on this lemma, the proof of Theorem 3 (ii) and (iii) are similar to the proof ofProposition 5.1 based on Lemma 5.2 in [Del96℄ with the obvious hanges and is left to thereader. (iv) is not stated in Proposition 5.1 there, but it is a by-produt of its proof [take thelimit in (32)℄. Eventually, (i) is proved by using the monotone onvergene theorem with themoment formula (9) and (A.2) (in the appendix) with m = 1 and the inequality (A.1).Proof of Lemma 8. Fix � 2 Mq ; � 2 (0; 1=4); and T � r � 0 (otherwise the momentsdisappear). We will verify (15); the proof of (16) is similar and is left to the reader.Note �rst that for �xed " > 0,supx2Rd; y2Rd �q(y) p("; x� y)�q(x) < 1:(17)Let ' 2 H2qT . Sine % is P-a.s. a ontinuous Mq-valued path, it is then lear that the funtions(s; x) 7! R %s(dy) p("; x� y)'(s; y) belong to HqT . Thanks to the remarks at the beginning ofSubsetion A.1, we see that, for �xed t; t0; "; the funtions(s; x) 7! J"(s; x) := Z 1s duZ dz p(u� s; x� z)Z %u(dy) p("; z � y)'(u; y)1[t;t0 ℄(u)(18)



8 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNare well-de�ned and belong to HqT .We will now prove that P-a.s. there exists a �nite onstant  suh that for every ' 2 H2qT ,t0 � t � 0, 1 � " > 0,��J"(s; x)�� � 1[0;T ℄(s)�q(x) k'=�2qk1 h��t� t0��� �1 + log+ �1=jt� t0j��i :(19)Clearly ��J"(s; x)�� = k'=�2qk1 is bounded from above byK1 := 1[0;T ℄(s)Z Ts duZ %u(dy) p(u � s+ "; x� y)�2q(y)1[t;t0 ℄(u):We assume that T � t (otherwise K1 = 0). Introdue the quantityK2 := 1[0;T^t0℄(s)Z T^t0s_t duZ %u(dy) p(u � s _ t; x� y)�2q(y):Thanks to (A.6), we have K2 � 1[0;T ℄(s)C2 jt� t0j� �q(x). NowjK1 �K2j � 1[0;T^t0℄(s)Z T^t0s_t duZ %u(dy) ��p(u� s+ "; x� y)� p(u� s _ t; x� y)���2q(y):Using the inequality ��p(v1; z) � p(v2; z)�� � Z v2v1 dv v�1 p(2v; z);(20)where the onstant  is independent of z 2 Rd and v2 � v1 > 0, we get thatjK1 �K2j � 1[0;T^t0℄(s)Z T^t0s_t duZ %u(dy)�2q(y)Z u�s+"u�s_t dv v�1 p(2v; x � y)= 1[0;T^t0℄(s)Z T^t0�s+"0 dv v�1 Z T^t0^(v+s_t)s_t_(v+s�") duZ %u(dy)�2q(y) p(2v; x � y):In view of (A.5) and (A.1), we may ontinue with� 1[0;T^t0℄(s)�q(x)Z T^t0�s+"0 dv v�1 ��T ^ t0 ^ (v + s _ t)� s _ t _ (v + s� ")��� ;where  is independent of t0; t; "; x. It is easy to hek thatZ T^t0�s+"0 dv v�1 ��T ^ t0 ^ (v + s _ t)� s _ t _ (v + s� ")����  ��t0 � t��� �1 + log+ �1=jt0 � tj�� ;(21)where  is independent of t0; t and ". As a onlusion we obtain (19).Using the estimate (A.6), a straight forward indution shows that all the funtions �n ;n � 1; of the reurrene relation (10) with initial ondition �1 = J" belong to HqT and satisfy���n(s; x)�� � 1[0;T ℄(s)�q(x) k'=�2qkn1 h��t� t0��� �1 + log+ �1=jt� t0j��in :



HOT SPOTS OF REACTANT 9(Note that  is independent of '; t; t0 and ".) Then the laim (15) is a onsequene of (A.9)with f = 0 and g(s; z) := Z %s(dy) p("; z � y)'(s; y)1[t;t0 ℄(s);(22)�nishing the proof.4. Two-dimensional ollision loal time (proof of Theorem 5)We now assume that d = 2:4.1. Loal spatial ollision densities [proof of (a)℄. For the laimed L2-onvergene, itis enough to hek that, for �xed s; t; z,J";"0 := E"Z[s;t℄�R2 L �d[r; y℄� p("; z � y)Z[s;t℄�R2 L �d[r0; y0℄� p("0; z � y0)#(23)onverges in R+ as " and "0 derease to 0.For f 2 L1+(R2 ) with R dx f(x) = 1; and " > 0, z 2 R2 , we setf";z(x) := "�1f �"�1=2(x� z)� :(24)Note that f";z(x)dx onverges weakly to Æz(dx), the Dira mass at z, as " dereases to 0. Wewill prove the following stronger result.Lemma 9. For �xed s; t; z; z0, f; f 0 2 L1+(R2) suh that R dx f(x) = 1 = R dx f 0(x), thewell-de�ned quantityJ";"0(z; z0) := E"Z[s;t℄�R2 L �d[r; y℄� f";z(y)Z[s;t℄�R2 L �d[r0; y0℄� f 0"0;z0(y0)#onverges to a �nite limit independent of f; f 0, as " and "0 derease to 0.Note that we need the onvergene for z = z0 to prove (23) and then (a). Note also thatalthough f and f 0 are not in Bq a priori, we show that J";"0 is well-de�ned.Proof of Lemma 9. By a standard monotone lass argument, we dedue from the quenhedmoment formula (9) for ollision loal time with m = 2, that for g 2 B+ �(R+)2 � (R2)2�,E �ZR+�R2 L �d[r; y℄� ZR+�R2 L �d[r0; y0℄� g(r; r0; y; y0)�= E"2 ir�Z dxZ 10 ds1 Z %s1(dy1) p(s1; y1 � x)Z 1s1 ds2 Z %s2(dy2) p(s2 � s1; y2 � y1)Z 1s1 ds3 Z %s3(dy3) p(s3 � s1; y3 � y1) g(s2; s3; y2; y3)+ i2r Z dx1 Z 10 ds1 Z %s1(dy1) p(s1; y1 � x1)Z dx2 Z 10 ds2 Z %s2(dy2) p(s2; y2 � x2) g(s1; s2; y1; y2)#:



10 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNThus we an write J";"0 = 2 ir�J";"01 + i2rJ";"02 ;(25)where J";"01 (z; z0) := Z t0 ds1 E� Z ts1_sds2 Z ts1_sds3 Z %s1(dy1)Z %s2(dy2)Z %s3(dy3)p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f 0"0;z0(y3)�and J";"02 (z; z0) := E� Z ts ds1 Z ts ds2 Z %s1(dy1)Z %s2(dy2) f";z(y1) f 0"0;z0(y2)�are third and seond moment expressions of the atalyst proess only, respetively. We easilyompute J";"02 thanks to the moment formula (A.2) for ordinary super-Brownian motion (withf = 0 and g properly hosen):J";"02 (z; z0) = 2 i Z dxZ t0 ds3 Z ts3_sds1 Z ts3_sds2 Z dy1 Z dy2 Z dy3p(s3; y3 � x) p(s1 � s3; y1 � y3) p(s2 � s3; y2 � y3) f";z(y1) f 0"0;z0(y2)+ i2 Z dx1 Z dx2 Z ts ds1 Z ts ds2 Z dy1 Z dy2p(s1; y1 � x1) p(s2; y2 � x2) f";z(y1) f 0"0;z0(y2)= 2 i Z dy1 f";z(y1)Z dy2 f 0"0;z0(y2)Z t0 ds3 Z ts3_sds1 Z ts3_sds2 p(s1 + s2 � 2s3; y1 � y2)+ i2 (t� s)2� 2 i Z t0 ds3 Z ts3_sds1 Z ts3_sds2 p(s1 + s2 � 2s3; 0) + i2 (t� s)2 =: K2 <1:As ("; "0) # 0, the quantity J";"02 (z; z0) onverges toJ02 (z; z0) := 2 i Z t0 ds3 Z ts3_sds1 Z ts3_sds2 p(s1 + s2 � 2s3; z � z0) + i2 (t� s)2 � K2:(26)



HOT SPOTS OF REACTANT 11We an also ompute J";"01 using the Markov property of % at time s1 and twie the momentformula (A.2):J";"01 (z; z0) = 2 Z t0 ds1 E� Z ts1ds4 Z ts4_sds2 Z ts4_sds3 Z %s1(dy1)Z %s1(dy5)Z dy4 Z dy2 Z dy3p(s4 � s1; y4 � y5) p(s2 � s4; y2 � y4) p(s3 � s4; y3 � y4)p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f 0"0;z0(y3)�+ Z t0 ds1 E� Z ts1_sds2 Z ts1_sds3 Z %s1(dy1)Z %s1(dy4)Z %s1(dy5)Z dy2 Z dy3p(s2 � s1; y2 � y4) p(s3 � s1; y3 � y5) p(s2 � s1; y2 � y1)p(s3 � s1; y3 � y1) f";z(y2) f 0"0;z0(y3)�:With obvious notation we write J";"01 = 2J";"03 + J";"04 :(27)Using again the moment formula, we getJ";"03 = 2 i J";"05 + i2 J";"06 ;(28)whereJ";"05 (z; z0) := Z t0 ds1 Z s10 ds5 Z ts1ds4 Z ts4_sds2 Z ts4_sds3 Z dy1 Z dy2 Z dy3 Z dy4 Z dy5 Z dy6p(s1 � s5; y1 � y6) p(s1 � s5; y5 � y6) p(s4 � s1; y4 � y5) p(s2 � s4; y2 � y4)p(s3 � s4; y3 � y4) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f"0;z0(y3)and J";"06 (z; z0) := Z t0 ds1 Z ts1ds4 Z ts4_sds2 Z ts4_sds3 Z dy1 Z dy2 Z dy3 Z dy4 Z dy5p(s4 � s1; y4 � y5) p(s2 � s4; y2 � y4) p(s3 � s4; y3 � y4)p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f"0;z0(y3):We now ompute J";"06 : Integrating over dy1; dy5; and dy4 givesJ";"06 (z; z0) = Z t0 ds1 Z ts1ds4 Z ts4_sds2 Z ts4_sds3 Z dy2 Z dy3p(s2 + s3 � 2s4; y2 � y3) p(s2 + s3 � 2s1; y2 � y3) f";z(y2) f"0;z0(y3):The funtionH6(y2; y3) := Z t0 ds1 Z ts1ds4 Z ts4_sds2 Z ts4_sds3 p(s2 + s3 � 2s4; y2 � y3) p(s2 + s3 � 2s1; y2 � y3)is ontinuous in (y2; y3) and bounded from above by H6(y; y) = K6 whih is �nite sine d = 2.Thus J";"06 (z; z0) is uniformly bounded by K6. Using that f";z(y2) f"0;z0(y3)dy2dy3 onverges



12 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNweakly to Æz(dy2)Æz0(dy3), we dedue that J";"06 onverges toJ06 (z; z0) := H6(z; z0) � K6:(29)Note that H6(z; z) = 1 if d = 3, whih implies that J";"0(z; z) doesn't onverge for d = 3,however it is well-de�ned at least for f(x) = f 0(x) = p(1; x).For J";"05 we getJ";"05 (z; z0) = Z t0 ds1 Z s10 ds5 Z ts1ds4 Z ts4_sds2 Z ts4_sds3 Z dy1 Z dy2 Z dy3 Z dy4p(s1 + s4 � 2s5; y1 � y4) p(s2 � s4; y2 � y4) p(s3 � s4; y3 � y4)p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f"0;z0(y3):We seth5(s1; s2; s3; s4; s5; y2; y3):= 10<s5<s1<s4<s2^s3 Z dy1 Z dy4 p(s1+ s4�2s5; y1�y4) p(s2� s4; y2�y4) p(s3� s4; y3�y4)p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1);and H5(y2; y3) := Z ds1 Z ds2 Z ds3 Z ds4 Z ds5 1s<s2;s3<t h5(s1; s2; s3; s4; s5; y2; y3);so that J";"05 (z; z0) = Z dy2 Z dy3 f";z(y2) f"0;z0(y3)H5(y2; y3):Let us now prove that H5 is bounded and ontinuous. Note �rst that p(s1+s4�2s5; y1�y4) �p(s1 + s4 � 2s5; 0). Thus, we easily geth5(s1; s2; s3; s4; s5; y2; y3)� 10<s5<s1<s4<s2^s3 p(s1 + s4 � 2s5; 0) p(s2 + s3 � 2s4; 0) p(s2 + s3 � 2s1; 0):Now it is easy to hek thatH5(y2; y3) = Z ds1 � � � Z ds5 1s<s2;s3<t h5(s1; s2; s3; s4; s5; y2; y3)� Z ts ds2 Z ts ds3 Z s2^s30 ds4 Z s40 ds1 Z s10 ds5p(s1 + s4 � 2s5; 0) p(s2 + s3 � 2s4; 0) p(s2 + s3 � 2s1; 0) = K5 <1:The funtion h5 is ontinuous and bounded in (y2; y3). From dominated onvergene wededue that H5 is ontinuous and bounded. Using that f";z(y2)f 0"0;z0(y3)dy2dy3 onvergesweakly to Æz(dy2)Æz0(dy3), we see that J";"05 tends toJ05 (z; z0) := H5(z; z0) � K5(30)when " and "0 derease to 0. Note that J";"05 (z; z0) is uniformly bounded by K5.



HOT SPOTS OF REACTANT 13Finally, we study J";"04 . Let g 2 B+ �(R2 )3� and g(x1; x2; x3) := P� g(x�(1); x�(2); x�(3)),where the sum is over all the permutations � of f1; 2; 3g. By a standard monotone lassargument we dedue from the moment formula (A.2) for % thatE �Z %v(dy1)Z %v(dy4)Z %v(dy5) g(y1; y4; y5)�= 2 i2 Z v0 ds4 Z vs4 ds5 Z dy1 Z dy4 Z dy5 Z dy6 p(v + s5 � 2s4; y1 � y6)p(v � s5; y4 � y6) p(v � s5; y5 � y6) g(y1; y4; y5)+ i2  Z v0 ds4 Z dy1 Z dy4 Z dy5 p(2v � 2s4; y1 � y4) g(y1; y4; y5)+ 13! i3 Z dy1 Z dy4 Z dy5 g(y1; y4; y5):This implies J";"04 = 2 i2J";"07 + i2 J";"08 + 13! i3 J";"09 ;(31)whereJ";"07 (z; z0) := 2Z t0 ds1 Z ts1_sds2 Z ts1_sds3 Z s10 ds4 Z s1s4 ds5 Z dy1 Z dy4 Z dy5 Z dy2 Z dy3 Z dy6p(s2 � s1; y2 � y4) p(s3 � s1; y3 � y5) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1)f";z(y2) f 0"0;z0(y3)�p(s1 + s5 � 2s4; y1 � y6) p(s1 � s5; y4 � y6) p(s1 � s5; y5 � y6)+ p(s1 + s5 � 2s4; y4 � y6) p(s1 � s5; y1 � y6) p(s1 � s5; y5 � y6)+ p(s1 + s5 � 2s4; y5 � y6) p(s1 � s5; y1 � y6) p(s1 � s5; y4 � y6)�andJ";"08 (z; z0) :=2Z t0 ds1 Z s10 ds4 Z ts1_sds2 Z ts1_sds3 Z dy1 Z dy4 Z dy5 Z dy2 Z dy3 p(s2 � s1; y2 � y4)p(s3 � s1; y3 � y5) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f 0"0;z0(y3)hp(2s1 � 2s4; y1 � y4) + p(2s1 � 2s4; y1 � y5) + p(2s1 � 2s4; y4 � y5)ias well asJ";"09 (z; z0) := 3!Z t0 ds1 Z ts1_sds2 Z ts1_sds3 Z dy1 Z dy4 Z dy5 Z dy2 Z dy3 p(s2 � s1; y2 � y4)p(s3 � s1; y3 � y5) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f 0"0;z0(y3):We are left to study the onvergene of J";"09 ; J";"08 and J";"07 .



14 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNFirst of all, we haveJ";"09 (z; z0) = 3!Z t0 ds1 Z ts1_sds2 Z ts1_sds3 Z dy2 Z dy3 p(s2 + s3 � 2s1; y2 � y3)f";z(y2) f 0"0;z0(y3)� 6Z t0 ds1 Z ts1_sds2 Z ts1_sds3 p(s2 + s3 � 2s1; 0) =: K9 <1:As " and "0 derease to zero, J";"09 onverges toJ09 (z; z0) := 6Z t0 ds1 Z ts1_sds2 Z ts1_sds3 p(s2 + s3 � 2s1; z � z0) � K9:(32)Next, we have J";"08 (z; z0) = Z dy2 Z dy3 f";z(y2) f 0"0;z0(y3)H8(y2; y3);whereH8(y2; y3) = 2Z t0 ds1 Z s10 ds4 Z ts1_sds2 Z ts1_sds3� Z dy1 p(s2 + s1 � 2s4; y1 � y2) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1)+ Z dy1 p(s3 + s1 � 2s4; y3 � y1) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1)+ p(s2 + s3 � 2s1; y2 � y3) p(s2 + s3 � 2s4; y3 � y2)�:Sine p(s2+s1�2s4; y1�y2) � p(s2+s1�2s4; 0) and p(s3+s1�2s4; y3�y1) � p(s3+s1�2s4; 0),we dedue thatH8(y2; y3) � 6Z t0 ds1 Z s10 ds4 Z ts1_sds2 Z ts1_sds3 p(s2 + s1 � 2s4; 0) p(s2 + s3 � 2s1; 0)= K8 <1:Arguments similar to those used for the onvergene of J";"05 show that H8 is ontinuous andbounded. Thus J";"08 (z; z0) is uniformly bounded by K8 and onverges toJ08 (z; z0) := H8(z; z0) � K8:(33)Finally, we have J";"07 (z; z0) = Z dy2 Z dy3 f";z(y2) f 0"0;z0(y3)H7(y2; y3);



HOT SPOTS OF REACTANT 15whereH7(y2; y3) := 2Z t0 ds1 Z ts1_sds2 Z ts1_sds3 Z s10 ds4 Z s1s4 ds5 Z dy1 Z dy6�p(s2 � s5; y2 � y6) p(s3 � s5; y3 � y6) p(s2 � s1; y2 � y1)p(s3 � s1; y3 � y1) p(s1 + s5 � 2s4; y1 � y6)+ p(s2 + s5 � 2s4; y2 � y6) p(s3 � s5; y3 � y6) p(s2 � s1; y2 � y1)p(s3 � s1; y3 � y1) p(s1 � s5; y1 � y6)+ p(s2 � s5; y2 � y6) p(s3 + s5 � 2s4; y3 � y6) p(s2 � s1; y2 � y1)p(s3 � s1; y3 � y1) p(s1 � s5; y1 � y6)�:Chek now that the following upper bound is �nite:K7 := 2Z t0 ds1 Z ts1_sds2 Z ts1_sds3 Z s10 ds4 Z s1s4 ds5hp(s2 + s3 � 2s5; 0) p(s2 + s3 � 2s1; 0) p(s1 + s5 � 2s4; 0)+ p(s2 + s5 � 2s4; 0) p(s1 + s3 � 2s5; 0) p(s2 + s3 � 2s1; 0)+ p(s3 + s5 � 2s4; 0) p(s1 + s2 � 2s5; 0) p(s2 + s3 � 2s1; 0)i:Arguments similar to those used for the onvergene of J";"05 show that H7 is ontinuous andbounded by K7 <1. Thus J";"07 (z; z0) is uniformly bounded by K7 and onverges toJ07 (z; z0) := H7(z; z0) � K7:(34)Altogether, for eah i 2 f1; : : : ; 9g, J";"0i exists, is uniformly bounded and has a �nite limitas ("; "0) # 0. Thus, J";"0(z; z0) is well-de�ned and onverges in R+ as " and "0 derease to0.Completion of the proof of (a). The laimed expetation expression for �[s;t℄(z) easily followsfrom the moment formula (9) for L in the ase m = 1.The seond moment of �[s;t℄(z) is given by the limit J0; say, of J";"(z; z) from Lemma 9 as" # 0: By the formulas (25), (27), (28), and (31),J0 = 2 ir� �2 �2 i J05 + i2 J06 �+�2 i2J07 + i2 J08 + 13! i3 J09��+ i2rJ02 < 1(35)whih, in the ase s < t; is stritly larger than �E[�[s;t℄(z)℄�2, ourring from the J02 -term [see(26)℄. This ompletes the proof of (a).Remark 10 (variane formula). For t � s � 0 and z 2 Rd , from the representation (35)ombined with (30), (29), (34), (33), (32), and (26), as well as the expetation formula in (a),



16 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNwe obtain the following formula for the variane of �[s;t℄(z) :2i ir �i2 �+ ir� Z t0 ds1 Z ts1_sds2 Z ts1_sds3 p(s2 + s3 � 2s1; 0)+ 8 i2 ir �Z t0 ds1 Z ts1ds2 Z ts2_sds3 Z ts2_sds4 p(s3 + s4 � 2s2; 0) p(s3 + s4 � 2s1; 0)+ 8 i2 ir �Z t0 ds1 Z ts1ds2 Z ts2_sds3 Z ts2_sds4 Z dy p(s2 + s3 � 2s1; y) p(s3 � s2; y)p(s4 � s2; y)+ 16 i ir2 �Z t0 ds1 Z ts1ds2 Z ts2ds3 Z ts3_sds4 Z ts3_sds5 Z dy1 Z dy2p(s2 + s3 � 2s1; y1 � y2) p(s4 � s2; y1) p(s4 � s3; y2)p(s5 � s2; y1) p(s5 � s3; y2)+ 16 i ir2 �Z t0 ds1 Z ts1ds2 Z ts2ds3 Z ts3_sds4 Z ts3_sds5 Z dy1 Z dy2p(s2 + s4 � 2s1; y2 � y1) p(s4 � s3; y2) p(s3 � s2; y1)p(s5 � s2; y2 � y1) p(s5 � s3; y2): 34.2. Spatial absolute ontinuity [proof of (b)℄. We �rst prove that,�q(x)Z L �d[r; y℄� 1[s;t℄(r) p("; x� y);(36)onverges in L1(` 
 P) as " dereases to 0, to �q(x)�(x), where for almost every x, P-a.s.� = �. Thanks to the statement (a), it is enough to hek that the funtion(x; ") 7! E �Z L �d[r; y℄� 1[s;t℄(r) p("; x� y)� ;(37)is uniformly bounded on R2 � (0; 1℄. But this is lear sineE �Z L �d[r; y℄� 1[s;t℄(r) p("; x� y)� = E �Z ts dr ir Z dz Z %r(dy) p(r; z � y) p("; x� y)�= iri (t� s):Statement (b) is then a straight forward onsequene of the following riterion with �(dy) =L �[s; t℄; dy� [reall Theorem 3 (i)℄.Proposition 11 (su�ient riterion for absolute ontinuity). Let � 2Mq be a random vari-able de�ned on a probability spae (
;F ;P). We assume that E �(�; �q)� <1 and that�(x; !) 7! �q(x)Z �(dy) p("; x� y); " > 0�(38)



HOT SPOTS OF REACTANT 17onverges in L1(` 
 P) to some �q� as " # 0. Then P-a.s. the measure � is absolutelyontinuous (with respet to the Lebesgue measure) and has the density funtion � :�(dy) = �(y)dy:(39)Proof. Let � be any bounded random variable on (
;F ;P), and f 2 Bq ontinuous. Beauseof the assumed onvergene in L1(`
P), we get thatJ" := Z dx f(x) E �� Z �(dy) p("; x� y)�onverges to R dx f(x) E [� �(x)℄ as " # 0. On the other hand, the funtion(y; ") 7! Z dx f(x) p("; x� y)is bounded by �q(y) [thanks to (A.1)℄, ontinuous and onverges to f as " # 0. By dominatedonvergene, we get that J" onverges to E [� (�; f)℄. Sine � and f are arbitrary, the equalityZ dx f(x) E [� �(x)℄ = E [� (�; f)℄implies that � is P-a.s. absolutely ontinuous with respet to the Lebesgue measure, and that�(dy) = �(y)dy; P-a.s.4.3. Random ergodi limit [proof of (d)℄. Let f 2 L1+(R2 ). Thanks to Lemma 9, we knowthat T�1 R[0;T ℄�R2 L �d[r; y℄� f(y) is well-de�ned and even belongs to L2(P ). By self-similaritythis has the same law as IT = T Z[0;1℄�R2 L �d[r; y℄� f(ypT ):Thanks to Lemma 9 and (a), we see that IT onverges in L2(P ) to �[0;1℄(0) R dx f(x) as T " 1.Thus we dedue that for any f 2 L1+(R2 ), the following onvergene in law holds with respetto P : limT"1 1T Z[0;T ℄�R2 L �d[r; y℄� f(y) = �[0;1℄(0)Z dx f(x):This ends the proof of (d).A. Appendix: Some basi properties of atalyst and reatantA.1. Moment formulas for the atalyst. Let d � 1 and �x � 2 Mq : It is easy to hekthat for every T > 0, there exists a onstant  > 0 suh that for every x 2 Rd and " 2 (0; T ℄,Z dy p("; x� y)�q(y) �  �q(x):(A.1)Therefore we get that if g 2 HqT , then the funtion (r; x) 7! R1r ds Ps�r[g(s)℄(x) is well-de�ned and belongs to HqT . If f 2 Bq, then the funtion (r; x) 7! 1t�r Pt�r[f ℄(x) is alsowell-de�ned and belongs to Hqt .



18 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNIt is well-known that for every t � 0; g 2 Hq, f 2 Bq, and m � 1,E � �h(%t ; f) + Z 10 ds �%s ; g(s)� im� = m! mXk=1 1k! Xn1;:::;nk � 1;n1+���+nk =m kYi=1 ��; �ni(0)� ;(A.2)where the sequene (�n ; n � 1) is de�ned by the reurrene formula�n(r; x) :=  Z 1r dsZ dy p(s� r; x� y)"n�1Xi=1 �i(s; y)�n�i(s; y)# ;(A.3)(r; x) 2 R+ � Rd ; n � 2; with initial ondition�1(r; x) := 1t�r Pt�r[f ℄(x) + Z 1r ds Ps�r[g(s)℄(x); (r; x) 2 R+ � Rd :(A.4)Thanks to the remark at the beginning of this subsetion, we see that the funtions �n ; n � 1;are well-de�ned and belong to Hq.A.2. Regularity properties of the atalyst. We now assume that d � 3. Reall that wewrite P for Pi` : It is lear from the Hölder ontinuity Theorem 3 of [DF97a℄ (p254) that forevery � 2 (0; 1=4), T � 0, P-a.s. there exists a onstant C1 := C(T; %; �) suh that for everyT � t � r � 0, f 2 B+(Rd),Z tr dsZ %s(dz)�q(z)f(z) � C1 jt� rj� Z f(z)dz:(A.5)We have also [f. De�nition 2 b) and Theorem 4 of [DF97a℄, pp 224 and 259, respetively℄ thatfor every T � 0, � 2 (0; 1=4), P-a.s. there exists C2 := C(T; %; �) suh that for every x 2 Rd ,T � t � r � 0, Z tr dsZ %s(dz) p(s� r; x� z)�2q(z) � C2 jt� rj� �q(x):(A.6)A.3. Moment formulas for the reatant. Reall that d � 3. Using the Markov propertyof X% (given %); it is easy to get that P-a.s. for every n � 1, tn � � � � � t1 � 0, andfn ; � � � ; f1 2 Bq+, E%r;� he�Pti�r(X%ti ;fi)i = e�(�;v(r));(A.7)where v is the unique nonnegative solution of the atalyti log-Laplae equation (7) withJ(s) := Pti�s Pti�s [fi℄. Using the ontinuity of X%, it an be shown that P-a.s. for everynonnegative g 2 Hq, E%r;� he� R1r ds (X%s ;g(s))i = e�(�;v(r));(A.8)where v is the unique nonnegative solution of (7) with J(s) := R1s du Pu�s [g(u)℄.We dedue the next result on the moments of the reatant proess X% from Theorem 4,Lemma 4 and Remark 2 of [DF97a℄ (pp 259 and 232, respetively). We have P-a.s. for every
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