
ON THE HOT SPOTSOF A CATALYTIC SUPER-BROWNIAN MOTIONJEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNAbstra
t. Consider the 
atalyti
 super-Brownian motion X% (rea
tant) in Rd ; d � 3;whi
h bran
hing rates vary randomly in time and spa
e and in fa
t are given by an ordinarysuper-Brownian motion % (
atalyst). Our main obje
t of study is the 
ollision lo
al timeL = L[%;X%℄ �d[s; x℄� of 
atalyst and rea
tant. It determines the 
ovarian
e measure in themartingale problem for X% and re�e
ts the o

uren
e of �hot spots� of rea
tant whi
h 
anbe seen in simulations of X%. In dimension 2, spatial marginal 
ollision densities exist and,via self-similarity, enter as fa
tor in the long-term random ergodi
 limit of L (di�usivenessof the 2-dimensional model). 1. Introdu
tionThe ordinary super-Brownian motion % = (%t ; t � 0) in Eu
lidean spa
e Rd 
an be obtainedas a limit of bran
hing parti
le systems. In this bran
hing parti
le system, the parti
les evolvea

ording to independent Brownian motions in Rd , and additionally, with 
onstant rate 
 > 0,ea
h parti
le splits independently into 2 or 0 parti
les with equal probability (this is a 
riti
albinary bran
hing me
hanism).We now interpret % as a 
atalyst pro
ess: %t(dx) is the amount of 
atalyti
 �parti
les� attime t in the volume element dx of Rd . We then let a super-Brownian motion X% = (X%t ; t � 0)evolve in this 
atalyti
 random medium %. Intuitively X% des
ribes rea
tant �parti
les� whi
hare evolving a

ording to independent Brownian motions and whi
h are performing a 
riti
albinary bran
hing, but at random time-spa
e varying rates given by %. In fa
t, the rate ofbran
hing of an intrinsi
 rea
tant parti
le with Brownian pathW is 
ontrolled by the 
ollisionlo
al time L[%;W ℄ of % and W , de�ned as the measureL[%;W ℄(ds) := lim"#0 dsZ %s(dy) p("; y �Ws);where p is the standard heat kernel p(t; x) = [2�t℄�d=2 exp ��jxj2=2t�, (t; x) 2 (0;1) � Rd .A

ording to [BEP91℄, this 
ollision lo
al time L[%;W ℄ makes sense non-trivially in dimensiond � 3, and vanishes for d � 4 (where the Brownian rea
tant parti
les do not hit the 
atalyst%). Thus we restri
t our attention to d � 3 (sin
e otherwise X% degenerates to the heat �ow).Date: November 17, 1998; WIAS preprint No. 450.1991 Mathemati
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2 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNThe 
atalyti
 super-Brownian motion X% was 
onstru
ted in [DF97a℄. Let % and X% startat time 0 with Lebesgue measures `
 and `r ; respe
tively. From the papers [DF97a, DF97b,EF98, FK97℄ it is known thatX%T 
onverges in law as T " 1 to a limitX%1 with full expe
tation`r (persisten
e) 1). The approa
h of [FK97℄ to solve the most di�
ult 
ase, namely 
onvergen
ein the 
riti
al dimension d = 2, was to study the lo
al stru
ture of X% and then to use a self-similarity argument. In fa
t, they showed that in dimensions d = 2; 3, given the 
atalyst %;the rea
tant X% has a density �eld �% :X%t (dx) = �%t (x)dx; t > 0:Moreover, o� the time-spa
e support of the 
atalyst % (whi
h is a Lebesgue zero set), �% 
anbe 
hosen as a (time-spa
e) C1-fun
tion that solves the heat equation, just as intuitivelyexpe
ted.Simulations of (%;X%) in dimension d = 2 (see the �gure in [FK97℄) 
on�rm the heuristi
pi
ture one has. Namely, at late times T ,- the rea
tant X%T is rather uniform outside of the 
atalyst %T ,- it is absent inside of the 
lumps of %T (sin
e a huge rate of bran
hing 
auses mainlykilling),- but o

asionally also some hot spots of the rea
tant o

ur in the interfa
e of %T andX%T ; that is in the boundary region of the 
atalyti
 
lumps.A

ording to [FK97℄, in the two-dimensional 
ase, the (lo
al) long-term limit X%1 is infa
t a random multiple of Lebesgue measure [the fa
tor is given by �%1(0)℄: But so far theinvestigations on the 
atalyti
 super-Brownian motion X% do not re�e
t anything on the hotspots seen in the pi
tures. Our approa
h to gain some information about them is to studythe 
ollision lo
al time L := L[%;X%℄ of % and X% de�ned as the limit ofL" �d[s; x℄� := ds %s(dx)Z X%s (dy) p("; x � y);(1)as " # 0.A
tually there is a further motivation to study this 
ollision lo
al time L[%;X%℄. It o

ursindeed in the des
ription of the martingale problem for the pro
ess X% (see Corollary 4 below).For martingale problems of 
atalyti
 super-Brownian motions, see also [DF94, Del96, Led97℄.Let us present the results. We prove that in all dimensions of non-trivial existen
e of X%the 
ollision lo
al time L of 
atalyst and rea
tant makes non-trivially sense (see Theorem3 below). [In dimension 1, it is known that both %s and X%s are absolutely 
ontinuous (
f.[KS88℄ and [DFR91℄, respe
tively); thus L" and hen
e L simplify in this 
ase.℄ This non-trivialexisten
e of L re�e
ts the high �u
tuations of X% in the interfa
e of 
atalyst and rea
tant,seen as hot spots in simulations. Our main result however is that for d = 2 the marginalmeasure of L = L[%;X%℄ 
on
erning the spa
e variable is absolutely 
ontinuous (Theorem 5).Note that this is in 
ontrast, for instan
e, with the (one-dimensional) single-point 
atalyti
model of [DF94℄, say XÆ0 ; where, together with the 
atalyst Æ0 , the spa
e marginal of the
ollision lo
al time L[Æ0;XÆ0 ℄ is 
on
entrated in the single spa
e point 0, hen
e is singular (evenatomi
). Finally, in dimension 2, using the self-similarity of L[%;X%℄ whi
h follows from the1) In the three-dimensional 
ase, for simpli�
ation it was assumed in [DF97b℄ that the 
atalyst pro
ess %is already in its 
orresponding equilibrium.



HOT SPOTS OF REACTANT 3self-similarity of (%;X%) , we show that T�1L �[0; T ℄� (�)� has a random ergodi
 limit asT " 1; whi
h indi
ates di�usive features in the long-term behavior in d = 2.It remains open whether also in dimension 3 spa
e-marginal 
ollision densities exist sin
eour L2-approa
h fails in this 
ase (see Remark 6 below).The outline of the paper is as follows. In Se
tion 2 we introdu
e formal de�nitions of thepro
esses % and X% and state the results. The following two se
tions are then devoted to theproofs of our two theorems. In an appendix we 
olle
t some results on ordinary and 
atalyti
super-Brownian motions used in the proofs.2. Statement of results2.1. Notation. The lower index + on a set will always refer to the 
olle
tion of all itsnonnegative members. Similarly, f+ is the nonnegative part of f: The supremum norm isdenoted by k � k1 : Let 
 always refer to a (�nite) 
onstant whose value may vary from pla
eto pla
e.We denote by B(E) the spa
e of all real Borel measurable fun
tions de�ned on a polishspa
e E. We also denote by B(E) the Borel ���eld of E.For a �xed 
onstant q > d; introdu
e the referen
e fun
tion �q 2 B(Rd) :�q(x) := �1 + jxj2��q=2 ; x 2 Rd :(2)Set Bq := �f 2 B(Rd ); kf=�qk1 <1	. Let C
(Rd ) denote the 
olle
tion of all 
ontinuousfun
tions on Rd with 
ompa
t support.If � is a Radon measure on Rd , we write (�; f) for R �(dx) f(x) (if the integral makes sense).Let Mq denote the set of all Radon measures � on Rd su
h that (�; �q) < 1. This spa
eof tempered measures is endowed with the 
oarsest topology su
h that the maps � 7! (�; f)are 
ontinuous for f 2 C
(Rd ) [ f�qg, getting a Polish spa
e. Sin
e q > d, Lebesgue measurebelongs to Mq .We 
onsider the polish spa
e C := C(R+ ;Mq) of all 
ontinuous fun
tions from R+ to Mqequipped with the topology of uniform 
onvergen
e on 
ompa
ta.Let (Pt ; t � 0) denote the semigroup of heat �ow on Rd :Pt[f ℄(x) := Z dy p(t; x� y)f(y); t > 0; f 2 B+(Rd):(3)2.2. Catalyst and rea
tant pro
ess. We start by introdu
ing the 
atalyst pro
ess.De�nition 1 (
atalyst pro
ess). Let 
 > 0 and � 2 Mq . There exists a unique probabilitymeasure P� on �C;B(C)�, su
h that the 
oordinate pro
ess % = (%t ; t � 0) on C is a super-Brownian motion with 
onstant bran
hing rate 
 and starting measure �. That is, % is a
ontinuous time-homogeneous strong Markov pro
ess with the following properties:- P�-almost surely, %0 = �,- for every f 2 Bq+, t � r � 0; we have 2)E � he�(%t ;f) ��� � (%s ; s 2 [0; r℄)i = e�(%r ;w(t�r));(4)2) We use the following 
onvention: If P is a probability law, then the 
orresponding letter E refers to therelated expe
tation symbol.



4 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNwhere w is the unique nonnegative solution on R+ � Rd of the log-Lapla
e equationw(t; x) + 
 Z t0 ds Ps[w2(t� s)℄(x) = Pt [f ℄ (x):(5)We write P for P� in the 
ase � = i
`; where i
 > 0 and ` is the (normalized) Lebesguemeasure on Rd . 3From now on we assume that d � 3, and that % is distributed 3) a

ording to P: Next were
all the de�nition of the 
atalyti
 super-Brownian motion X% in the random medium % (see[DF97a℄ for details).De�nition 2 (
atalyti
 super-Brownian motion). Fix (r; �) 2 R+ � Mq and � > 0. For
onvenien
e, set C0 := C �[r;1);Mq�. There exists a (measurable) probability kernel % 7!P%r;� from �C;B(C)� to �C0;B(C0)� su
h that the 
oordinate pro
ess X% = (X%t ; t � r) on C0 isa super-Brownian motion in the 
atalyti
 medium %. That is, P-a.s. under P%r;� , the pro
essX% is 
ontinuous time-inhomogeneous Markov with the following properties:- P%r;�-almost surely, X%r = �,- for every f 2 Bq+, t � s � r; we haveE%r;� he�(X%t ;f) ��� � �X%u ; u 2 [r; s℄�i = e�(X%s ; vt(s));(6) where vt is the unique nonnegative solution on [r;1) � Rd of the 
atalyti
 log-Lapla
eequation v(s; x) + �Z 1s duZ %u(dy) p(u� s; x� y) v2(u; y) = J(s; x);(7) with J(s) := 1t�s Pt�s[f ℄.Often, we also pass from the quen
hed distributions P%r;� to the annealed law E [P%r;�℄ : 32.3. Existen
e of 
ollision lo
al time of 
atalyst and rea
tant. For our 
onstant q > d;we introdu
e the fun
tion spa
e Hq := ST�0HqT , whereHqT := ng 2 B(R+ � Rd ); supp g � [0; T ℄� Rd ; kg=�qk1 <1o ;(8)with kg=�qk1 = sup(s;x)2R+�Rd jg(s; x)j=�q(x); and supp g denoting the support of g.Re
all the approximated 
ollision lo
al time L" of % and X% introdu
ed already in (1). Weare now ready to state our �rst result, the existen
e of the 
ollision lo
al time L = L[%;X%℄ of% and X%. Re
all that d � 3 and (r; �) 2 R+ �Mq :Theorem 3 (
ollision lo
al time). There exists a random variable denoted by L = L[%;X%℄de�ned on �C � C0;B(C � C0)�, taking values in the set of Radon measures on [r;1)�Rd withthe following properties:(i) (tempered measure): For every T � r, we have E �P%r;�(L;1[r;T ℄ �q)� <1.(ii) (existen
e via 
onvergen
e): For every ' 2 H2q,lim"#0 (L" ; ') = (L;'); E [P%r;�℄�a:s:3) In [FK97℄ more generally a 
lass of so-
alled �-di�usive measures � is introdu
ed whi
h allow that %under P� may serve as the 
atalyst for X%:



HOT SPOTS OF REACTANT 5(iii) (regularity): For every ' 2 H2q, and E [P%r;�℄-a.s., the pro
ess �(L;1[r;t℄'); t � r� is
ontinuous and adapted to the �ltration�Ft := �(%) _ � �X%s ; s 2 [r; t℄� ; t � r� :(iv) (moments): For every m � 1, ' 2 H2q, P-a.s.,E%r;� "�Z[r;1)�Rd L �d[s; x℄�'(s; x)�m# = m! mXk=1 1k! Xn1;:::;nk � 1;n1+���+nk =m kYi=1 ��; �ni(r)� ;(9) where the fun
tions �n ; n � 1; belong to Hq and are re
ursively de�ned by�n(s; x) := �Z 1s duZ %u(dy) p(u� s; x� y)"n�1Xi=1 �i(u; y)�n�i(u; y)# ; n � 2;(10) with the initial 
ondition�1(s; x) := Z 1s duZ %u(dy) p(u� s; x� y)'(u; y); (s; x) 2 R+ � Rd :(11)Consequently, in dimensions d � 3; the 
ollision lo
al time L = L[%;X%℄ of 
atalyst and rea
-tant exists non-trivially, re�e
ting in parti
ular the o

urren
e of hot spots in the mentioned2-dimensional simulations.The proof of this theorem is postponed to Se
tion 3.As an appli
ation, we 
an now des
ribe the 
ovarian
e measure of the martingale measureasso
iated with X%. Let C1;2b denote the set of bounded fun
tions ' 2 B(R+ � Rd ) su
h thatthe partial derivatives �'�s and �2'�xi�xj exist and are 
ontinuous and bounded. It is easy to
he
k that under E [P%r;�℄ the pro
ess (M'r;t ; t � r) de�ned byM'r;t := �X%t ; '(t)�� �X%r ; '(r)�� Z tr ds �X%s ; �'�s (s) + 12 �'(s)� ;(12)is an (Ft ; t � r)-martingale [note that Fr = �(%) _ �(Xr)℄. Thanks to the Markov propertyof X% (given %); and the moment formula (A.9) for X% stated in the appendix, we get thatfor '; in C1;2b , P-a.s. for all s � r and t � r,E%r;� [M'r;sM r;t℄ = 2�Z �(dx)Z s^tr duZ %u(dy) p(u� r; x� y)'(u; y) (u; y):(13)The fun
tional M : ' 7! M' de�ned on C1;2b 
an be extended to an orthogonal martingalemeasure on Hq. Let hMi denote its 
ovarian
e measure. Now we show how hMi 
an beexpressed in terms of the 
ollision lo
al time L = L[%;X%℄. Re
all that d � 3 and that(r; �) 2 R+ �Mq :Corollary 4 (
ovarian
e measure). For every ' 2 Hq, E [P%r;�℄-a.s. for every t � r, we havehM'ir;t = 2�Z[r;t℄�Rd L �d[s; y℄�'2(s; y):(14)



6 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNProof. Using the Markov property of X% (given %) and an obvious extension of the se
ondmoment formula (13), we obtain for ' 2 Hq, P-a.s. for all t � s � r,EE%r;� �(M'r;t)2 �� Fs� = (M'r;s)2 + 2�Z X%s (dx)Z ts duZ %u(dy) p(u� s; x� y)'2(u; y):Sin
e  Z[r;t℄�Rd L �d[s; y℄�'2(s; y); t � r!is in t non-de
reasing and 
ontinuous, is adapted to (Ft ; t � r) ; and zero for t = r, we getthat  hM'ir;t � 2�Z[r;t℄�Rd L �d[s; y℄�'2(s; y); t � r!is a 
ontinuous martingale under E [P%r;�℄ with bounded variation starting at time t = r from0. This martingale is then 
onstant and, in fa
t, equal to 0, giving the 
laim (14).2.4. Collision lo
al time in dimension two. We now state our results for the 
ollisionlo
al time in the �
riti
al� dimension d = 2. For 
onvenien
e, we introdu
e the followingabbreviation for an annealed law:P := E [P0;ir`℄ = E i
 ` [P0;ir`℄ ; where ir > 0:(That is, we now fo
us on the situation r = 0 and � = ir`:)Theorem 5 (two-dimensional 
ollision lo
al time). Let d = 2.(a) (lo
al spatial L2 
ollision densities): For every t � s � 0 and z 2 R2 ,�Z[s;t℄�Rd L �d[r; y℄� p("; z � y); " > 0�
onverges in L2(P) as " # 0 to a random variable denoted by �[s;t℄(z). It has expe
tationE ��[s;t℄(z)� = i
ir (t� s);and its �nite varian
e is non-zero provided that s < t:(b) (spatial absolute 
ontinuity): For t � s � 0, there exists a measurable version of�[s;t℄ with respe
t to B(R2 )�Ft ; and P-a.s. the measure L �[s; t℄� (�)� on R2 is absolutely
ontinuous and 
an be represented asL �[s; t℄� dx� = �[s;t℄(x)dx:(
) (self-similarity): Under P, the laws of the s
aled 
ollision lo
al timesK�2L�K(�)�K1=2(�)�are independent of the s
aling fa
tor K > 0.(d) (random ergodi
 limit): The following 
onvergen
e inMq holds in law with respe
tto P : limT"1 T�1L �[0; T ℄ � (�)� = �[0;1℄(0) `(with ` the Lebesgue measure and 0 < Var ��[0;1℄(0)� <1 ):



HOT SPOTS OF REACTANT 7Consequently, in dimension 2, the spatial marginal measures L �[s; t℄� (�)� of the 
ollisionlo
al time L[%;X%℄ of 
atalyst and rea
tant have non-degenerated densities �[s;t℄(z) (providedthat s < t). Moreover, �[0;1℄(0) enters as random fa
tor of Lebesgue measure in the long-termergodi
 limit. Re
all that this re�e
ts the di�usive features of the hot spots.Remark 6 (dimension three). The L2(P)-
onvergen
e in part (a) does not hold for d = 3.In fa
t, in the three-dimensional 
ase an in�nite term would be involved in our 
al
ulations,see the remark following (29) in the proof below. Re
all on the other hand that in dimensionone, L[%;X%℄ should be rather �regular�. 3Remark 7 (regularity). It is an open problem whether the spatial 
ollision density fun
tions�[s;t℄ have some regularities properties in the spa
e variable. Note also that the ex
eptionalset in the P-a.s. statement in (b) depends on [s; t℄: One would also like to know whether thissituation 
an be improved. 3The statement (
) follows from the self-similarity of (%;X%) by standard arguments (
om-pare with [DF97b, Subse
tions 4.1 and 4.2℄). Otherwise the proof of Theorem 5 will beprovided in Se
tion 4.3. Existen
e of 
ollision lo
al time (proof of Theorem 3)Re
all that d � 3: First of all we state the following lemma.Lemma 8 (approximated moment in
rements). For every m � 1, r � 0, � 2 Mq, T � 0,� 2 (0; 1=4), P-a.s. there exists a �nite 
onstant Mm (depending on %) su
h that for every' 2 H2qT , t0 � t � 0, 1 � "0 � " > 0,E%r;� �(L" ; '1[t;t0 ℄)2m� � Mm k'=�2qk2m1 h��t� t0��� �1 + log+ �1=jt� t0j��i2m ;(15) E%r;� h�(L" ; ') � (L"0 ; ')�2mi � Mm k'=�2qk2m1 h��"� "0��� �1 + log+ �1=j" � "0j��i2m :(16)Based on this lemma, the proof of Theorem 3 (ii) and (iii) are similar to the proof ofProposition 5.1 based on Lemma 5.2 in [Del96℄ with the obvious 
hanges and is left to thereader. (iv) is not stated in Proposition 5.1 there, but it is a by-produ
t of its proof [take thelimit in (32)℄. Eventually, (i) is proved by using the monotone 
onvergen
e theorem with themoment formula (9) and (A.2) (in the appendix) with m = 1 and the inequality (A.1).Proof of Lemma 8. Fix � 2 Mq ; � 2 (0; 1=4); and T � r � 0 (otherwise the momentsdisappear). We will verify (15); the proof of (16) is similar and is left to the reader.Note �rst that for �xed " > 0,supx2Rd; y2Rd �q(y) p("; x� y)�q(x) < 1:(17)Let ' 2 H2qT . Sin
e % is P-a.s. a 
ontinuous Mq-valued path, it is then 
lear that the fun
tions(s; x) 7! R %s(dy) p("; x� y)'(s; y) belong to HqT . Thanks to the remarks at the beginning ofSubse
tion A.1, we see that, for �xed t; t0; "; the fun
tions(s; x) 7! J"(s; x) := Z 1s duZ dz p(u� s; x� z)Z %u(dy) p("; z � y)'(u; y)1[t;t0 ℄(u)(18)



8 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNare well-de�ned and belong to HqT .We will now prove that P-a.s. there exists a �nite 
onstant 
 su
h that for every ' 2 H2qT ,t0 � t � 0, 1 � " > 0,��J"(s; x)�� � 
1[0;T ℄(s)�q(x) k'=�2qk1 h��t� t0��� �1 + log+ �1=jt� t0j��i :(19)Clearly ��J"(s; x)�� = k'=�2qk1 is bounded from above byK1 := 1[0;T ℄(s)Z Ts duZ %u(dy) p(u � s+ "; x� y)�2q(y)1[t;t0 ℄(u):We assume that T � t (otherwise K1 = 0). Introdu
e the quantityK2 := 1[0;T^t0℄(s)Z T^t0s_t duZ %u(dy) p(u � s _ t; x� y)�2q(y):Thanks to (A.6), we have K2 � 1[0;T ℄(s)C2 jt� t0j� �q(x). NowjK1 �K2j � 1[0;T^t0℄(s)Z T^t0s_t duZ %u(dy) ��p(u� s+ "; x� y)� p(u� s _ t; x� y)���2q(y):Using the inequality ��p(v1; z) � p(v2; z)�� � 
Z v2v1 dv v�1 p(2v; z);(20)where the 
onstant 
 is independent of z 2 Rd and v2 � v1 > 0, we get thatjK1 �K2j � 
1[0;T^t0℄(s)Z T^t0s_t duZ %u(dy)�2q(y)Z u�s+"u�s_t dv v�1 p(2v; x � y)= 
1[0;T^t0℄(s)Z T^t0�s+"0 dv v�1 Z T^t0^(v+s_t)s_t_(v+s�") duZ %u(dy)�2q(y) p(2v; x � y):In view of (A.5) and (A.1), we may 
ontinue with� 
1[0;T^t0℄(s)�q(x)Z T^t0�s+"0 dv v�1 ��T ^ t0 ^ (v + s _ t)� s _ t _ (v + s� ")��� ;where 
 is independent of t0; t; "; x. It is easy to 
he
k thatZ T^t0�s+"0 dv v�1 ��T ^ t0 ^ (v + s _ t)� s _ t _ (v + s� ")���� 
 ��t0 � t��� �1 + log+ �1=jt0 � tj�� ;(21)where 
 is independent of t0; t and ". As a 
on
lusion we obtain (19).Using the estimate (A.6), a straight forward indu
tion shows that all the fun
tions �n ;n � 1; of the re
urren
e relation (10) with initial 
ondition �1 = J" belong to HqT and satisfy���n(s; x)�� � 
1[0;T ℄(s)�q(x) k'=�2qkn1 h��t� t0��� �1 + log+ �1=jt� t0j��in :



HOT SPOTS OF REACTANT 9(Note that 
 is independent of '; t; t0 and ".) Then the 
laim (15) is a 
onsequen
e of (A.9)with f = 0 and g(s; z) := Z %s(dy) p("; z � y)'(s; y)1[t;t0 ℄(s);(22)�nishing the proof.4. Two-dimensional 
ollision lo
al time (proof of Theorem 5)We now assume that d = 2:4.1. Lo
al spatial 
ollision densities [proof of (a)℄. For the 
laimed L2-
onvergen
e, itis enough to 
he
k that, for �xed s; t; z,J";"0 := E"Z[s;t℄�R2 L �d[r; y℄� p("; z � y)Z[s;t℄�R2 L �d[r0; y0℄� p("0; z � y0)#(23)
onverges in R+ as " and "0 de
rease to 0.For f 2 L1+(R2 ) with R dx f(x) = 1; and " > 0, z 2 R2 , we setf";z(x) := "�1f �"�1=2(x� z)� :(24)Note that f";z(x)dx 
onverges weakly to Æz(dx), the Dira
 mass at z, as " de
reases to 0. Wewill prove the following stronger result.Lemma 9. For �xed s; t; z; z0, f; f 0 2 L1+(R2) su
h that R dx f(x) = 1 = R dx f 0(x), thewell-de�ned quantityJ";"0(z; z0) := E"Z[s;t℄�R2 L �d[r; y℄� f";z(y)Z[s;t℄�R2 L �d[r0; y0℄� f 0"0;z0(y0)#
onverges to a �nite limit independent of f; f 0, as " and "0 de
rease to 0.Note that we need the 
onvergen
e for z = z0 to prove (23) and then (a). Note also thatalthough f and f 0 are not in Bq a priori, we show that J";"0 is well-de�ned.Proof of Lemma 9. By a standard monotone 
lass argument, we dedu
e from the quen
hedmoment formula (9) for 
ollision lo
al time with m = 2, that for g 2 B+ �(R+)2 � (R2)2�,E �ZR+�R2 L �d[r; y℄� ZR+�R2 L �d[r0; y0℄� g(r; r0; y; y0)�= E"2 ir�Z dxZ 10 ds1 Z %s1(dy1) p(s1; y1 � x)Z 1s1 ds2 Z %s2(dy2) p(s2 � s1; y2 � y1)Z 1s1 ds3 Z %s3(dy3) p(s3 � s1; y3 � y1) g(s2; s3; y2; y3)+ i2r Z dx1 Z 10 ds1 Z %s1(dy1) p(s1; y1 � x1)Z dx2 Z 10 ds2 Z %s2(dy2) p(s2; y2 � x2) g(s1; s2; y1; y2)#:



10 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNThus we 
an write J";"0 = 2 ir�J";"01 + i2rJ";"02 ;(25)where J";"01 (z; z0) := Z t0 ds1 E� Z ts1_sds2 Z ts1_sds3 Z %s1(dy1)Z %s2(dy2)Z %s3(dy3)p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f 0"0;z0(y3)�and J";"02 (z; z0) := E� Z ts ds1 Z ts ds2 Z %s1(dy1)Z %s2(dy2) f";z(y1) f 0"0;z0(y2)�are third and se
ond moment expressions of the 
atalyst pro
ess only, respe
tively. We easily
ompute J";"02 thanks to the moment formula (A.2) for ordinary super-Brownian motion (withf = 0 and g properly 
hosen):J";"02 (z; z0) = 2
 i
 Z dxZ t0 ds3 Z ts3_sds1 Z ts3_sds2 Z dy1 Z dy2 Z dy3p(s3; y3 � x) p(s1 � s3; y1 � y3) p(s2 � s3; y2 � y3) f";z(y1) f 0"0;z0(y2)+ i2
 Z dx1 Z dx2 Z ts ds1 Z ts ds2 Z dy1 Z dy2p(s1; y1 � x1) p(s2; y2 � x2) f";z(y1) f 0"0;z0(y2)= 2
 i
 Z dy1 f";z(y1)Z dy2 f 0"0;z0(y2)Z t0 ds3 Z ts3_sds1 Z ts3_sds2 p(s1 + s2 � 2s3; y1 � y2)+ i2
 (t� s)2� 2
 i
 Z t0 ds3 Z ts3_sds1 Z ts3_sds2 p(s1 + s2 � 2s3; 0) + i2
 (t� s)2 =: K2 <1:As ("; "0) # 0, the quantity J";"02 (z; z0) 
onverges toJ02 (z; z0) := 2
 i
 Z t0 ds3 Z ts3_sds1 Z ts3_sds2 p(s1 + s2 � 2s3; z � z0) + i2
 (t� s)2 � K2:(26)



HOT SPOTS OF REACTANT 11We 
an also 
ompute J";"01 using the Markov property of % at time s1 and twi
e the momentformula (A.2):J";"01 (z; z0) = 2
 Z t0 ds1 E� Z ts1ds4 Z ts4_sds2 Z ts4_sds3 Z %s1(dy1)Z %s1(dy5)Z dy4 Z dy2 Z dy3p(s4 � s1; y4 � y5) p(s2 � s4; y2 � y4) p(s3 � s4; y3 � y4)p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f 0"0;z0(y3)�+ Z t0 ds1 E� Z ts1_sds2 Z ts1_sds3 Z %s1(dy1)Z %s1(dy4)Z %s1(dy5)Z dy2 Z dy3p(s2 � s1; y2 � y4) p(s3 � s1; y3 � y5) p(s2 � s1; y2 � y1)p(s3 � s1; y3 � y1) f";z(y2) f 0"0;z0(y3)�:With obvious notation we write J";"01 = 2
J";"03 + J";"04 :(27)Using again the moment formula, we getJ";"03 = 2
 i
 J";"05 + i2
 J";"06 ;(28)whereJ";"05 (z; z0) := Z t0 ds1 Z s10 ds5 Z ts1ds4 Z ts4_sds2 Z ts4_sds3 Z dy1 Z dy2 Z dy3 Z dy4 Z dy5 Z dy6p(s1 � s5; y1 � y6) p(s1 � s5; y5 � y6) p(s4 � s1; y4 � y5) p(s2 � s4; y2 � y4)p(s3 � s4; y3 � y4) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f"0;z0(y3)and J";"06 (z; z0) := Z t0 ds1 Z ts1ds4 Z ts4_sds2 Z ts4_sds3 Z dy1 Z dy2 Z dy3 Z dy4 Z dy5p(s4 � s1; y4 � y5) p(s2 � s4; y2 � y4) p(s3 � s4; y3 � y4)p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f"0;z0(y3):We now 
ompute J";"06 : Integrating over dy1; dy5; and dy4 givesJ";"06 (z; z0) = Z t0 ds1 Z ts1ds4 Z ts4_sds2 Z ts4_sds3 Z dy2 Z dy3p(s2 + s3 � 2s4; y2 � y3) p(s2 + s3 � 2s1; y2 � y3) f";z(y2) f"0;z0(y3):The fun
tionH6(y2; y3) := Z t0 ds1 Z ts1ds4 Z ts4_sds2 Z ts4_sds3 p(s2 + s3 � 2s4; y2 � y3) p(s2 + s3 � 2s1; y2 � y3)is 
ontinuous in (y2; y3) and bounded from above by H6(y; y) = K6 whi
h is �nite sin
e d = 2.Thus J";"06 (z; z0) is uniformly bounded by K6. Using that f";z(y2) f"0;z0(y3)dy2dy3 
onverges



12 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNweakly to Æz(dy2)Æz0(dy3), we dedu
e that J";"06 
onverges toJ06 (z; z0) := H6(z; z0) � K6:(29)Note that H6(z; z) = 1 if d = 3, whi
h implies that J";"0(z; z) doesn't 
onverge for d = 3,however it is well-de�ned at least for f(x) = f 0(x) = p(1; x).For J";"05 we getJ";"05 (z; z0) = Z t0 ds1 Z s10 ds5 Z ts1ds4 Z ts4_sds2 Z ts4_sds3 Z dy1 Z dy2 Z dy3 Z dy4p(s1 + s4 � 2s5; y1 � y4) p(s2 � s4; y2 � y4) p(s3 � s4; y3 � y4)p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f"0;z0(y3):We seth5(s1; s2; s3; s4; s5; y2; y3):= 10<s5<s1<s4<s2^s3 Z dy1 Z dy4 p(s1+ s4�2s5; y1�y4) p(s2� s4; y2�y4) p(s3� s4; y3�y4)p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1);and H5(y2; y3) := Z ds1 Z ds2 Z ds3 Z ds4 Z ds5 1s<s2;s3<t h5(s1; s2; s3; s4; s5; y2; y3);so that J";"05 (z; z0) = Z dy2 Z dy3 f";z(y2) f"0;z0(y3)H5(y2; y3):Let us now prove that H5 is bounded and 
ontinuous. Note �rst that p(s1+s4�2s5; y1�y4) �p(s1 + s4 � 2s5; 0). Thus, we easily geth5(s1; s2; s3; s4; s5; y2; y3)� 10<s5<s1<s4<s2^s3 p(s1 + s4 � 2s5; 0) p(s2 + s3 � 2s4; 0) p(s2 + s3 � 2s1; 0):Now it is easy to 
he
k thatH5(y2; y3) = Z ds1 � � � Z ds5 1s<s2;s3<t h5(s1; s2; s3; s4; s5; y2; y3)� Z ts ds2 Z ts ds3 Z s2^s30 ds4 Z s40 ds1 Z s10 ds5p(s1 + s4 � 2s5; 0) p(s2 + s3 � 2s4; 0) p(s2 + s3 � 2s1; 0) = K5 <1:The fun
tion h5 is 
ontinuous and bounded in (y2; y3). From dominated 
onvergen
e wededu
e that H5 is 
ontinuous and bounded. Using that f";z(y2)f 0"0;z0(y3)dy2dy3 
onvergesweakly to Æz(dy2)Æz0(dy3), we see that J";"05 tends toJ05 (z; z0) := H5(z; z0) � K5(30)when " and "0 de
rease to 0. Note that J";"05 (z; z0) is uniformly bounded by K5.



HOT SPOTS OF REACTANT 13Finally, we study J";"04 . Let g 2 B+ �(R2 )3� and g(x1; x2; x3) := P� g(x�(1); x�(2); x�(3)),where the sum is over all the permutations � of f1; 2; 3g. By a standard monotone 
lassargument we dedu
e from the moment formula (A.2) for % thatE �Z %v(dy1)Z %v(dy4)Z %v(dy5) g(y1; y4; y5)�= 2 i

2 Z v0 ds4 Z vs4 ds5 Z dy1 Z dy4 Z dy5 Z dy6 p(v + s5 � 2s4; y1 � y6)p(v � s5; y4 � y6) p(v � s5; y5 � y6) g(y1; y4; y5)+ i2
 
 Z v0 ds4 Z dy1 Z dy4 Z dy5 p(2v � 2s4; y1 � y4) g(y1; y4; y5)+ 13! i3
 Z dy1 Z dy4 Z dy5 g(y1; y4; y5):This implies J";"04 = 2 i

2J";"07 + i2
 
J";"08 + 13! i3
 J";"09 ;(31)whereJ";"07 (z; z0) := 2Z t0 ds1 Z ts1_sds2 Z ts1_sds3 Z s10 ds4 Z s1s4 ds5 Z dy1 Z dy4 Z dy5 Z dy2 Z dy3 Z dy6p(s2 � s1; y2 � y4) p(s3 � s1; y3 � y5) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1)f";z(y2) f 0"0;z0(y3)�p(s1 + s5 � 2s4; y1 � y6) p(s1 � s5; y4 � y6) p(s1 � s5; y5 � y6)+ p(s1 + s5 � 2s4; y4 � y6) p(s1 � s5; y1 � y6) p(s1 � s5; y5 � y6)+ p(s1 + s5 � 2s4; y5 � y6) p(s1 � s5; y1 � y6) p(s1 � s5; y4 � y6)�andJ";"08 (z; z0) :=2Z t0 ds1 Z s10 ds4 Z ts1_sds2 Z ts1_sds3 Z dy1 Z dy4 Z dy5 Z dy2 Z dy3 p(s2 � s1; y2 � y4)p(s3 � s1; y3 � y5) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f 0"0;z0(y3)hp(2s1 � 2s4; y1 � y4) + p(2s1 � 2s4; y1 � y5) + p(2s1 � 2s4; y4 � y5)ias well asJ";"09 (z; z0) := 3!Z t0 ds1 Z ts1_sds2 Z ts1_sds3 Z dy1 Z dy4 Z dy5 Z dy2 Z dy3 p(s2 � s1; y2 � y4)p(s3 � s1; y3 � y5) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1) f";z(y2) f 0"0;z0(y3):We are left to study the 
onvergen
e of J";"09 ; J";"08 and J";"07 .



14 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNFirst of all, we haveJ";"09 (z; z0) = 3!Z t0 ds1 Z ts1_sds2 Z ts1_sds3 Z dy2 Z dy3 p(s2 + s3 � 2s1; y2 � y3)f";z(y2) f 0"0;z0(y3)� 6Z t0 ds1 Z ts1_sds2 Z ts1_sds3 p(s2 + s3 � 2s1; 0) =: K9 <1:As " and "0 de
rease to zero, J";"09 
onverges toJ09 (z; z0) := 6Z t0 ds1 Z ts1_sds2 Z ts1_sds3 p(s2 + s3 � 2s1; z � z0) � K9:(32)Next, we have J";"08 (z; z0) = Z dy2 Z dy3 f";z(y2) f 0"0;z0(y3)H8(y2; y3);whereH8(y2; y3) = 2Z t0 ds1 Z s10 ds4 Z ts1_sds2 Z ts1_sds3� Z dy1 p(s2 + s1 � 2s4; y1 � y2) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1)+ Z dy1 p(s3 + s1 � 2s4; y3 � y1) p(s2 � s1; y2 � y1) p(s3 � s1; y3 � y1)+ p(s2 + s3 � 2s1; y2 � y3) p(s2 + s3 � 2s4; y3 � y2)�:Sin
e p(s2+s1�2s4; y1�y2) � p(s2+s1�2s4; 0) and p(s3+s1�2s4; y3�y1) � p(s3+s1�2s4; 0),we dedu
e thatH8(y2; y3) � 6Z t0 ds1 Z s10 ds4 Z ts1_sds2 Z ts1_sds3 p(s2 + s1 � 2s4; 0) p(s2 + s3 � 2s1; 0)= K8 <1:Arguments similar to those used for the 
onvergen
e of J";"05 show that H8 is 
ontinuous andbounded. Thus J";"08 (z; z0) is uniformly bounded by K8 and 
onverges toJ08 (z; z0) := H8(z; z0) � K8:(33)Finally, we have J";"07 (z; z0) = Z dy2 Z dy3 f";z(y2) f 0"0;z0(y3)H7(y2; y3);



HOT SPOTS OF REACTANT 15whereH7(y2; y3) := 2Z t0 ds1 Z ts1_sds2 Z ts1_sds3 Z s10 ds4 Z s1s4 ds5 Z dy1 Z dy6�p(s2 � s5; y2 � y6) p(s3 � s5; y3 � y6) p(s2 � s1; y2 � y1)p(s3 � s1; y3 � y1) p(s1 + s5 � 2s4; y1 � y6)+ p(s2 + s5 � 2s4; y2 � y6) p(s3 � s5; y3 � y6) p(s2 � s1; y2 � y1)p(s3 � s1; y3 � y1) p(s1 � s5; y1 � y6)+ p(s2 � s5; y2 � y6) p(s3 + s5 � 2s4; y3 � y6) p(s2 � s1; y2 � y1)p(s3 � s1; y3 � y1) p(s1 � s5; y1 � y6)�:Che
k now that the following upper bound is �nite:K7 := 2Z t0 ds1 Z ts1_sds2 Z ts1_sds3 Z s10 ds4 Z s1s4 ds5hp(s2 + s3 � 2s5; 0) p(s2 + s3 � 2s1; 0) p(s1 + s5 � 2s4; 0)+ p(s2 + s5 � 2s4; 0) p(s1 + s3 � 2s5; 0) p(s2 + s3 � 2s1; 0)+ p(s3 + s5 � 2s4; 0) p(s1 + s2 � 2s5; 0) p(s2 + s3 � 2s1; 0)i:Arguments similar to those used for the 
onvergen
e of J";"05 show that H7 is 
ontinuous andbounded by K7 <1. Thus J";"07 (z; z0) is uniformly bounded by K7 and 
onverges toJ07 (z; z0) := H7(z; z0) � K7:(34)Altogether, for ea
h i 2 f1; : : : ; 9g, J";"0i exists, is uniformly bounded and has a �nite limitas ("; "0) # 0. Thus, J";"0(z; z0) is well-de�ned and 
onverges in R+ as " and "0 de
rease to0.Completion of the proof of (a). The 
laimed expe
tation expression for �[s;t℄(z) easily followsfrom the moment formula (9) for L in the 
ase m = 1.The se
ond moment of �[s;t℄(z) is given by the limit J0; say, of J";"(z; z) from Lemma 9 as" # 0: By the formulas (25), (27), (28), and (31),J0 = 2 ir� �2
 �2
 i
 J05 + i2
 J06 �+�2 i

2J07 + i2
 
J08 + 13! i3
 J09��+ i2rJ02 < 1(35)whi
h, in the 
ase s < t; is stri
tly larger than �E[�[s;t℄(z)℄�2, o

urring from the J02 -term [see(26)℄. This 
ompletes the proof of (a).Remark 10 (varian
e formula). For t � s � 0 and z 2 Rd , from the representation (35)
ombined with (30), (29), (34), (33), (32), and (26), as well as the expe
tation formula in (a),



16 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNwe obtain the following formula for the varian
e of �[s;t℄(z) :2i
 ir �i2
 �+ ir
� Z t0 ds1 Z ts1_sds2 Z ts1_sds3 p(s2 + s3 � 2s1; 0)+ 8 i2
 ir
 �Z t0 ds1 Z ts1ds2 Z ts2_sds3 Z ts2_sds4 p(s3 + s4 � 2s2; 0) p(s3 + s4 � 2s1; 0)+ 8 i2
 ir
 �Z t0 ds1 Z ts1ds2 Z ts2_sds3 Z ts2_sds4 Z dy p(s2 + s3 � 2s1; y) p(s3 � s2; y)p(s4 � s2; y)+ 16 i
 ir
2 �Z t0 ds1 Z ts1ds2 Z ts2ds3 Z ts3_sds4 Z ts3_sds5 Z dy1 Z dy2p(s2 + s3 � 2s1; y1 � y2) p(s4 � s2; y1) p(s4 � s3; y2)p(s5 � s2; y1) p(s5 � s3; y2)+ 16 i
 ir
2 �Z t0 ds1 Z ts1ds2 Z ts2ds3 Z ts3_sds4 Z ts3_sds5 Z dy1 Z dy2p(s2 + s4 � 2s1; y2 � y1) p(s4 � s3; y2) p(s3 � s2; y1)p(s5 � s2; y2 � y1) p(s5 � s3; y2): 34.2. Spatial absolute 
ontinuity [proof of (b)℄. We �rst prove that,�q(x)Z L �d[r; y℄� 1[s;t℄(r) p("; x� y);(36)
onverges in L1(` 
 P) as " de
reases to 0, to �q(x)�(x), where for almost every x, P-a.s.� = �. Thanks to the statement (a), it is enough to 
he
k that the fun
tion(x; ") 7! E �Z L �d[r; y℄� 1[s;t℄(r) p("; x� y)� ;(37)is uniformly bounded on R2 � (0; 1℄. But this is 
lear sin
eE �Z L �d[r; y℄� 1[s;t℄(r) p("; x� y)� = E �Z ts dr ir Z dz Z %r(dy) p(r; z � y) p("; x� y)�= iri
 (t� s):Statement (b) is then a straight forward 
onsequen
e of the following 
riterion with �(dy) =L �[s; t℄; dy� [re
all Theorem 3 (i)℄.Proposition 11 (su�
ient 
riterion for absolute 
ontinuity). Let � 2Mq be a random vari-able de�ned on a probability spa
e (
;F ;P). We assume that E �(�; �q)� <1 and that�(x; !) 7! �q(x)Z �(dy) p("; x� y); " > 0�(38)
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onverges in L1(` 
 P) to some �q� as " # 0. Then P-a.s. the measure � is absolutely
ontinuous (with respe
t to the Lebesgue measure) and has the density fun
tion � :�(dy) = �(y)dy:(39)Proof. Let � be any bounded random variable on (
;F ;P), and f 2 Bq 
ontinuous. Be
auseof the assumed 
onvergen
e in L1(`
P), we get thatJ" := Z dx f(x) E �� Z �(dy) p("; x� y)�
onverges to R dx f(x) E [� �(x)℄ as " # 0. On the other hand, the fun
tion(y; ") 7! Z dx f(x) p("; x� y)is bounded by �q(y) [thanks to (A.1)℄, 
ontinuous and 
onverges to f as " # 0. By dominated
onvergen
e, we get that J" 
onverges to E [� (�; f)℄. Sin
e � and f are arbitrary, the equalityZ dx f(x) E [� �(x)℄ = E [� (�; f)℄implies that � is P-a.s. absolutely 
ontinuous with respe
t to the Lebesgue measure, and that�(dy) = �(y)dy; P-a.s.4.3. Random ergodi
 limit [proof of (d)℄. Let f 2 L1+(R2 ). Thanks to Lemma 9, we knowthat T�1 R[0;T ℄�R2 L �d[r; y℄� f(y) is well-de�ned and even belongs to L2(P ). By self-similaritythis has the same law as IT = T Z[0;1℄�R2 L �d[r; y℄� f(ypT ):Thanks to Lemma 9 and (a), we see that IT 
onverges in L2(P ) to �[0;1℄(0) R dx f(x) as T " 1.Thus we dedu
e that for any f 2 L1+(R2 ), the following 
onvergen
e in law holds with respe
tto P : limT"1 1T Z[0;T ℄�R2 L �d[r; y℄� f(y) = �[0;1℄(0)Z dx f(x):This ends the proof of (d).A. Appendix: Some basi
 properties of 
atalyst and rea
tantA.1. Moment formulas for the 
atalyst. Let d � 1 and �x � 2 Mq : It is easy to 
he
kthat for every T > 0, there exists a 
onstant 
 > 0 su
h that for every x 2 Rd and " 2 (0; T ℄,Z dy p("; x� y)�q(y) � 
 �q(x):(A.1)Therefore we get that if g 2 HqT , then the fun
tion (r; x) 7! R1r ds Ps�r[g(s)℄(x) is well-de�ned and belongs to HqT . If f 2 Bq, then the fun
tion (r; x) 7! 1t�r Pt�r[f ℄(x) is alsowell-de�ned and belongs to Hqt .



18 JEAN-FRANÇOIS DELMAS AND KLAUS FLEISCHMANNIt is well-known that for every t � 0; g 2 Hq, f 2 Bq, and m � 1,E � �h(%t ; f) + Z 10 ds �%s ; g(s)� im� = m! mXk=1 1k! Xn1;:::;nk � 1;n1+���+nk =m kYi=1 ��; �ni(0)� ;(A.2)where the sequen
e (�n ; n � 1) is de�ned by the re
urren
e formula�n(r; x) := 
 Z 1r dsZ dy p(s� r; x� y)"n�1Xi=1 �i(s; y)�n�i(s; y)# ;(A.3)(r; x) 2 R+ � Rd ; n � 2; with initial 
ondition�1(r; x) := 1t�r Pt�r[f ℄(x) + Z 1r ds Ps�r[g(s)℄(x); (r; x) 2 R+ � Rd :(A.4)Thanks to the remark at the beginning of this subse
tion, we see that the fun
tions �n ; n � 1;are well-de�ned and belong to Hq.A.2. Regularity properties of the 
atalyst. We now assume that d � 3. Re
all that wewrite P for Pi
` : It is 
lear from the Hölder 
ontinuity Theorem 3 of [DF97a℄ (p254) that forevery � 2 (0; 1=4), T � 0, P-a.s. there exists a 
onstant C1 := C(T; %; �) su
h that for everyT � t � r � 0, f 2 B+(Rd),Z tr dsZ %s(dz)�q(z)f(z) � C1 jt� rj� Z f(z)dz:(A.5)We have also [
f. De�nition 2 b) and Theorem 4 of [DF97a℄, pp 224 and 259, respe
tively℄ thatfor every T � 0, � 2 (0; 1=4), P-a.s. there exists C2 := C(T; %; �) su
h that for every x 2 Rd ,T � t � r � 0, Z tr dsZ %s(dz) p(s� r; x� z)�2q(z) � C2 jt� rj� �q(x):(A.6)A.3. Moment formulas for the rea
tant. Re
all that d � 3. Using the Markov propertyof X% (given %); it is easy to get that P-a.s. for every n � 1, tn � � � � � t1 � 0, andfn ; � � � ; f1 2 Bq+, E%r;� he�Pti�r(X%ti ;fi)i = e�(�;v(r));(A.7)where v is the unique nonnegative solution of the 
atalyti
 log-Lapla
e equation (7) withJ(s) := Pti�s Pti�s [fi℄. Using the 
ontinuity of X%, it 
an be shown that P-a.s. for everynonnegative g 2 Hq, E%r;� he� R1r ds (X%s ;g(s))i = e�(�;v(r));(A.8)where v is the unique nonnegative solution of (7) with J(s) := R1s du Pu�s [g(u)℄.We dedu
e the next result on the moments of the rea
tant pro
ess X% from Theorem 4,Lemma 4 and Remark 2 of [DF97a℄ (pp 259 and 232, respe
tively). We have P-a.s. for every



HOT SPOTS OF REACTANT 19t � 0; g 2 Hq, f 2 Bq, and m � 1,E%r;� �h(X%t ; f) + Z 1r ds �X%s ; g(s)� im� = m! mXk=1 1k! Xn1;:::;nk � 1;n1+���+nk =m kYi=1(�; �ni(r));(A.9)where (�n ; n � 1) is de�ned by the re
urren
e formula (10) with initial 
ondition�1(s; x) := 1t�s Pt�s[f ℄(x) + Z 1s du Pu�s[g(u)℄(x) (s; x) 2 R+ � Rd :(A.10)Sin
e �1 2 Hq, inequality (A.6) implies that all the fun
tions �n belong to Hq.Referen
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