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1 Introduction.The new interest for dynamic tra�c network simulation models due to the deploymentof intelligent transport systems has resulted in recent years in the apparition of varioustypes of models. New generations of microscopic models have thus been developed, such asIntegration [VA 94] or Paramics [CD 96], which are explicitly devoted to repesentingwide area networks. However, constraints due to the microscopic nature of these modelsmake them di�cult to calibrate and use for wide areas. This is the reason for whicha renewed interest in macroscopic models is also observed, resulting in the developmentof models such as Dynasmart [JMH 94] or the Cell Transmission model proposed byDaganzo [DA 94], Metacor [EHP 94], Strada [LB 97], or the extensions of Contram[HRRS 92].To deal with urban area networks, and particularly to make possible studies concerningvarious transport modes, these models need to take into account public transport. Thishas been carried out for years in microscopic models [CGHT 77], but does not constitutea classical approach in dynamic macroscopic models.The purpose of this paper is to describe a possible way to integrate buses into a �rstorder macroscopic �ow model, in order to describe the interactions between the bus andthe �ow around it.The contents of the paper are the following. After a short bibliographical review, we in-troduce the model of the bus as a moving capacity restriction and procede by analysing thepropagation of a single moving singularity whithin the framework of the LWR (Lighthill-Whitham-Richards) model [LW 55], [RI 56]. We concentrate on the generalization of theconcepts of local tra�c supply and demand as introduced in [LE 96], and correlativelythe solution to the generalized Riemann problem, which constitutes the key to the calcu-lation of analytical solutions. As an application, we then develop a theory of interactionsbetween a bus and its surrounding tra�c �ow, using the simplifying hypothesis that thebus can be modelled as a point, i.e. that its dimensions can be neglected. Finally, weaddress the problem of analyzing numerically the interaction of a moving bus with thesurrounding tra�c �ow, whose dynamics are assumed to be discretized according to theGodunov scheme ([LE 96]), as in the model [DA 94] or in the Stradamodel [BLL 95-96],[BLLM 96], [LB 97]. The di�culties involved are described, some ideas aiming to solvethem are then exposed, and some tentative numerical results for simple cases are pre-sented.2 Modelling buses: general considerations.There are two series of reasons why buses must be speci�cally taken into account in atra�c model:1. their behaviour is di�erent from other vehicles,2. they are subject to speci�c actions (priority at tra�c signals...).The progression of buses through a road network presents several speci�c features:� their routes are speci�c (bus lines),� their kinematic characteristics (speed, acceleration...) are di�erent,� they stop at particular locations inside the links of the network (bus stops),2



� in most cases, buses are isolated vehicles; it is only at particular places that busescan be considered as a continuous �ow.Since buses share the same road links as other vehicles and have di�erent characteristics,the interactions between both types of vehicles may be complex.In a microscopic model, the buses particular features may be taken into account withfew di�culties, as has been done long ago [CGHT 77], Netsim [WL 74]: the car-followinglaw has to be adapted to the bus characteristics (minimum headway, acceleration, freespeed...), the overtaking model, if any, has also to be adapted, bus stops have to be intro-duced. However, this is mainly an engineering problem with few theoretical implications.In macroscopic models, the question is much more complex as the bus is an heteroge-neous object in the �ow. Some models used in programs computing tra�c signals settingssuch as Bus-transyt [PW 77], which can be considered macroscopic, do take buses intoaccount, but in a very simple way: in the Transyt model, buses are considered as aseparate continuous �ow, with a speci�c computation of travel times along the networklink taking account of their speci�c speeds, their stops and particular dispersion features.A 'shared stopline' facility is introduced to maintain some kind of FIFO discipline in thequeue at the end of each link. On the other hand, there is no consideration of the e�ectof buses over tra�c �ow conditions. The Contram model [LTB 78] represents buses ina very similar way.In the present work, we attempt to modelize the dynamics of buses, especially theirinteraction with the surrounding tra�c �ow, whithin the framework provided by a �rstorder macroscopic tra�c �ow model of the LWR type. The rationale behind this approachis the following. As noted above, the bus, owing to its size and to the special proper-ties of its kinematics, does not partake of the general �ow of tra�c. On the contrary,it a�ects the general tra�c �ow adversely, and should be considered, from the point ofview of regular drivers, as a moving capacity restriction. This is the very simple modelof the interaction between bus and general tra�c which we shall develop in the sequel.Therefore, as far as the inclusion of buses into macroscopic models goes, it makes sense toconsider a �rst order macroscopic tra�c model for the general tra�c, since such models,in contrast to second order models, accomodate capacity restrictions in a straightforwardand even intrinsic manner. The only di�culties here result from the fact that the ca-pacity restriction associated to the bus is moving, and that its movement may or maynot be restricted by the movement of the general tra�c, depending on the nature of theinteraction between the bus and the surrounding tra�c.3 Moving capacity restrictions in the LWR model.In this section we set notations, recall the main elements of the LWR (Lighthill-Whitham-Richards) [LW 55], [RI 56] model and the concepts of local tra�c supply and demand,introduce more precisely the concept of the bus as a moving capacity restriction, anddevelop the technical tools for the analysis of the e�ects on tra�c �ow of moving capacityrestriction.3.1 The LWR model and some of its extensions.The basic variables of the LWR model [LW 55], [RI 56] are K(x; t), the density at pointx and at time t, Q(x; t), the �ow at point x and at time t and V (x; t), the space-timeaverage speed at point x and at time t, de�ned by the relationship Q = KV . The basic3



equations of the model are:@K@t + @Q@x = 0 (conservation of vehicles),(1) Q = KV (de�nition equation of V ),(2) V = Ve(K; x) (equilibrium speed-density relationship).(3)Of course these equations can be rewriten as@K@t + @@xQe(K; x) = 0(4)with Qe(K; x) def= KVe(K; x) the equilibrium �ow-density relationship. Typically, theequilibrium �ow-density has the aspect illustrated by Figure 1.The dependency of Qe on x re�ects the fact that the fundamental physical parametersof the model, i.e. the maximum �ow and density Qmax and Kmax, the critical density Kcritand the maximum speed Vmax, depend generally on the position x, as the characteristicsof the infrastructure change with the position. Let us recall that, following [LE 96] wede�ne the equilibrium tra�c demand and supply functions as the greatest possible out�owrespectively in�ow at a given point x, as a function of the local density �; these functionsare de�ned by:���������������
� the equilibrium tra�c demand function�e(�; x) def= � Qe(�; x�) if � � Kcrit(x�) (undercritical �ow)Qmax(x�) if � � Kcrit(x�) (overcritical �ow)� the equilibrium tra�c supply function�e(�; x) def= � Qmax(x+) if � � Kcrit(x+) (undercritical �ow)Qe(�; x+) if � � Kcrit(x+) (overcritical �ow) .(5)

The symbols x� and x+ imply as usual that the left and right limits are taken at pointx for the quantities that contain these symbols among their arguments. The functionscan be prolonged in a consistent fashion to the case � > Kmax(x�) with � = + or �: see[LE 97]. The corresponding equilibrium demand and supply functions are illustrated byFigures 2 and 3. For a piecewise continuous solution of the LWR model, it is then possibleto de�ne the local tra�c demand and supply as:������ �(x; t) def= �e(K(x�; t); x)�(x; t) def= �e(K(x+; t); x) .(6)Further, for any piecewise continuous solution of the LWR model,Q(x; t) = Min [ local upstream demand ; local downstream supply ]= Min [ �(x; t) ; �(x; t) ] .(7)This is of course the calculation rule of the entropy solution of the LWR model (see[GR 91]); its application ensures existence, unicity and continuous dependence on initialconditions of the solutions of this model. The above de�nitions and relations (5), (6), and(7) accomodate easily spatial discontinuities of Qe, can be naturally generalized to yield4



the Godunov discretization scheme for the LWR model, and allow generalization of theLWR model to networks.If the equilibrium relationship Qe admits a spatial discontinuity, the calculation rulesthat apply at, and in the vicinity of, the discontinuity are the following ([LE 96]):- conservation of the �ow at the discontinuity,- the characteristics carry a constant �ow value, and the state of the tra�c (over- orundersaturated) varies smoothly along a characteristic,- in case of multiple solutions to (4), the �ow should be maximised, i.e. (7) should applyat the discontinuity, yielding the proper boundary condition for both upstream anddownstream tra�c.These rules guarantee existence and unicity for the solutions of (4).3.2 The bus model: basic ideas.Let us now address the problem of modelling a bus in interaction with the surroundingtra�c �ow. The trajectory will be de�ned by the position of one point of the bus in time,say y(t). The extremities of the bus (front and back) are f(t) and b(t), with of course:_y(t) = _f(t) = _b(t) 8t .We assume that at point x, the maximum density Kmax(x) (one of the parameters of Qe)is reduced by a �xed amount Kbus whenever a bus is present at that point; of course,Kbus represents the width of track occupied by the bus (� 0:2 vh/m). Hence, for all x in[b(t); f(t)], the residual maximum density (i.e. storage capacity) for the regular tra�c isK�max(x) def= Kmax(x)�Kbus 8x 2 [b(t); f(t)] .(8)If say the track has 4 lanes and the bus occupies one lane, it follows thatK�max(x)=Kmax(x) =3=4. The Figure 4 illustrates this idea.We assume then, following the analysis of incidents whithin the framework of the LWRmodel carried out in [BLLM 96] and [MO 97], that the maximum density constraint (8)a�ects the equilibrium �ow-density relationship by a�ecting its fundamental parametersbut respecting its functional form. We assume further that the desired speed of tra�c re-mains unchanged. It follows that the equilibrium �ow-density relationship Q�e in presenceof a bus is given by: Q�e (�; x) def= �Qe(�=�; x) ,(9)with �(x) def= K�max(x)=Kmax(x) .Actually, it would be straightforward to modelize the e�ect of a desired speed constraint,say V �max(x), in case empirical evidence pointed in that direction. Indeed the resultingequilibrium �ow-density relationship would be:Q�e (�; x) def= � Qe(�=�; x) ,(10)with 
(x) def= V �max(x)=Vmax(x)5



and �(x) def= �(x)
(x) .The parameters �, �, 
 = �=� are called incidents severity level coe�cients in [BLLM 96]and [MO 97]. The following relationships result for the physical parameters:K�max = �KmaxQ�max = � QmaxV �max = 
 VmaxK�crit = �KcritV �crit = 
 Vcrit .As far as the trajectory of the bus is concerned, it will be approximated by assuming that_y = 0 (bus-stops) or that _y is equal to the desired bus-speed Vb (if the bus enjoys speciallanes) or is the minimum of the desired bus-speed Vb and the local tra�c speed, i.e.:_y = Min [Vb ; V (x; t) ] .(11)4 Analysis of a moving singularity.4.1 IntroductionThe basic problem we address in this section is simple. As we have just seen, the equilib-rium �ow-density relationship changes at the extremities of the bus, i.e. at points b(t) andf(t). Hence in order to calculate the interaction of the bus with the surrounding tra�c,we must �rst determine the calculation rules for the local tra�c dynamics in the vicinityof each of the extremities of the bus. In order to achieve this, the necessary step is toconsider a single moving singularity and the associated inhomogeneous Riemann problem.The notations for this problem are the following:- z(t) the singularity,- the superscripts u and d, refering to quantities upstream and downstream of the singu-larity,- Que (�; x) and Qde(�; x) the equilibrium �ow-density relationships upstream and down-stream of the singularity,- Ku and Kd the density upstream and downstream of the singularity, these densitiesare assumed to be uniform. See Figure 5 for an illustration of the data of theinhomogeneous Riemann problem.Typically,� _z(t) = _y(t) 8t,� if z(t) = b(t), Que = Qe and Qde = Q�e ,� if z(t) = f(t), Que = Q�e and Qde = Qe.Considering that the rules for the solution of the Riemann problem are well-known if thesingularity is static, the natural way to solve the moving singularity problem is to solveit in a frame moving at the speed of the singularity, i.e. _y(t).6



4.2 The moving frame.The moving frame is de�ned by the change of variables:� � = x� y(t)� = t(12)which implies, for the partial derivation operators:8><>: @@x = @@�@@t = @@� � _y(�) @@� .(13)Let us denote: q(�; �) def= Q(�; �)� _y(�)K(�; �)(14)the relative �ow (it is the �ow that passes the bus), and let us de�ne:qe(�; �; �) def= Qe(K; � + y(�))� _y(�)�(15)the relative equilibrium �ow-density relationship. The relative �ow is related to the densityby: q(�; �) = qe(K(�; �); �; �) .It follows from (13) that the conservation of vehicles (1) applies in the moving frameunder the form: @K@� + @q@� = 0(16)and the fundamental equation (4) is equivalent to:@K@� + @@� qe(K; �; �) = 0 .(17)This equation (17) means that the tra�c �ow in the moving frame is described by aconservation equation associated with the �ux function qe given by (15), and illustratedby Figure 6. It must nevertheless be noted that the similarity between the equationsof tra�c in the moving and the �xed frame cannot be pushed to far. Indeed, in themoving frame, negative (relative) �ows are acceptable, and the equilibrium �ow-densityrelationship qe is not concave.Important values are:� qmax(�; �) def= Max� qe(�; �; �) the maximum relative �ow, a value depending both onposition � (by virtue of the dependence of Qe on x) and on time � (by virtue of thedependence of the bus speed on time),� kcrit(�; �) def= Arg�Max qe(�; �; �) the value of density for which the maximum relative�ow is obtained, depending on both position � and time � , for the same reasons asqmax.One of the main reasons it is actually necessary to consider the moving frame is that ingeneral: qmax 6= Qmax � _yKcrit ,kcrit 6= Kcrit .(18)Density values such that K � kcrit will be called relatively under-critical, density valuessuch that K � kcrit will be called relatively over-critical.7



4.3 Shock-waves and Characteristics.Shock-waves and characteristics are the same in the moving and the �xed frame.Let us consider shock-waves �rst, and let us consider a discontinuity in �ow [Q] anddensity [K] moving in the �xed frame (x; t) at speedv = [Q]=[K] .In the moving frame (�; �), the corresponding discontinuity will carry jump values [q] inrelative �ow and [K] in densities, at (relative) speed� def= v � _y .By de�nition (14), it follows that [q] = [Q]� _y[K]and consequently also that � = [q]=[K] .As a consequence, since z(t) is �xed in the moving frame, any discontinuity in density andrelative �ow resulting from the di�erence between the equilibrium relationships upstreamand downstream of this point satis�es to[q]z(t) = 0 ,since in that case � = 0. Hence, the relative �ow is conserved at z(t).In the same spirit, characteristics in the �xed frame carry an invariant which is the�ow Q when the equilibrium �ow-density relationship Qe depends on both the density Kand the position x. For instance, a characteristic carrying �ow value Q and originatingat point (x; t) would be given by the following equation:����������� dxdt = @Qe@K (K(x; t); x) 8t � 0Qe(K(x(t); t); x(t)) = Q 8t � 0x(t) = xwith the additional condition that the state of tra�c (under- or over-critical) should varycontinuously, in order for the density on the characteristic to be uniquely determined bythe �ow value Q. It follows from equations (12), (14), (15), that the same characteristiclines in the moving frame carry the same invariant Q = q + _yK. Hence, in the movingframe, the characteristic originating at point (�; �), carrying the invariant Q would begiven by the following equation:����������� d�d� = @qe@K (K(�; �); �; �) 8� � 0qe(K(�(�); �); �; �) = Q� _y(�)K(�(�); �) 8� � 0�(�) = �with the additional condition that the relative state of tra�c (relative under- or over-critical) should vary continuously, in order for the density on the characteristic to be8



uniquely determined by the invariant value Q. It should be noted, an this is anotherpeculiarity of the tra�c equations in the moving frame, that the invariant transmittedby characteristics, i.e. Q = q + _yK, is not the same as the quantity conserved at thesingularity, i.e. q.If the dependence of Qe on x is piecewise constant, and the bus speed _y constant,characteristic lines in both the �xed and the moving frame are piecewise straight lines,a fact which we shall use for analytical calculations. Another salient fact is that, sinceqe is not a concave function of density, one might have to consider in some special casesacceleration shock-waves between states of tra�c situated in the non-concave region, asshown in [LE 97] and following rules explained in section II.6 of [GR 91].4.4 Supply and demand in the moving frame.These quantities are de�ned as usual as the the greatest possible in�ow and out�ow at anygiven point. In the present case, it is necessary to consider relative in�ows and out�ows.The relative supply and demand at a given point say z are easiest calculated by solvinga Riemann problem at that point. For relatively undercritical density Ku upstream ofz, the greatest possible relative out�ow at z is necessarily qe(Ku), since otherwise therewould be an initial shockwave originating from z with positive speed if the out�ow weregreater, implying a contradiction. If we consider the relative supply at point z associatedto relatively overcritical densityKd dowstream of z, we can show that the greatest possiblein�ow, for similar reasons, is necessarily qe(Kd) (if the in�ow were greater, there wouldbe an initial shockwave originating from z with negative speed, implying a contradiction).Since relative supply and demand cannot by de�nition exceed qmax, we de�ne, by analogywith (5), the equilibrium demand and supply functions in the moving frame, �e and �e,as functions of the density �, the position � and the time � :���������������
� the equilibrium tra�c demand function (in the moving frame)�e(�; �; �) def= � qe(�; ��; �) if � � kcrit(��; �) (undercritical �ow)qmax(��; �) if � � kcrit(��; �) (overcritical �ow)� the equilibrium tra�c supply function (in the moving frame)�e(�; �; �) def= � qmax(�+; �) if � � kcrit(�+; �) (undercritical �ow)qe(�; �+; �) if � � kcrit(�+; �) (overcritical �ow) .(19)

Thes functions are illustrated by Figure 7. In the above formulas, the symbols - and +imply the usual limits, and under- and over-critical should be understood as relative. Itmust be emphasized that � �e 6= �e � _y��e 6= �e � _y�To check the formulas (19), it su�ces to check that the above values of relative demandand supply, which constitute upper bounds of relative out�ow and in�ow can be attained.Hence it su�ces to consider two special Riemann problems, one with initial conditionsKu = �, Kd = 0, yielding a �ow at the origin q0 = �e(�), and one with initial conditionsKu = kcrit, Kd = �, yielding a �ow at the origin q0 = �e(�). These results are checked onFigures 8,9 and 10,11, representing characteristics charts in the moving frame. The busspeed _y is supposed constant and qe homogeneous, which enables analytical calculationbut does not impair the generality of the result. The rules applied for the calculation arethe same as those applying in a �xed frame to a �xed singularity (recalled at the end ofsubsection 3.1), but for the modi�cations required by the moving frame setting:9



- conservation of the relative �ow at the discontinuity,- the characteristics carry a constant �ow value in the �xed frame (or the above-mentionnedinvariant in the moving frame), and the state of the tra�c (over- or undersaturated)varies smoothly along a characteristic,- in case of multiple solutions to (17), the relative �ow should be maximised, yielding theproper boundary condition for both upstream and downstream tra�c.As a consequence, it is then natural to de�ne the relative local tra�c demand �(�; �)and supply �(�; �) as: ������ �(�; �) def= �e(K(��; �); �; �)�(�; �) def= �e(K(�+; �); �; �) .(20)4.5 The generalized Riemann Problem.By analogy with (7), we shall now show that for any piecewise continuous solution of theLWR model, the following result applies in the moving frame:q(�; �) = Min [ local upstream demand ; local downstream supply ]= Min [ �(�; �) ; �(�; �) ] .(21)This result generalizes to the moving frame the classical method of construction of theentropy solutions of the LWR model. It is self-evident anywhere except at discontinuitiesof qe. To check (21) at such a discontinuity, it su�ces to consider a Riemann problemwith piecewise homogeneous data que = Que � _y�, qde = Qde � _y� (qe constant upstream anddownstream of the singularity z, �xed in the moving frame and taken as the origin) andinitial data Ku, Kd. Calling q0 the �ow at the origin, it su�ces to check that it is possibleto construct a solution to the Riemann problem satisfyingq0 = Min[�e(Ku; u); �e(Kd; d)]with �e(:; u) and �e(:; d) the upstream demand and downstream supply functions in themoving frame associated to que and qde by (19). The construction method is straightforward:the above �ow value of q0 is imposed as a boundary condition at the origin z, and theRiemann problem is solved separately upstream and downstream of the singularity. Letus denote: �u def= �e(Ku; u)the upstream demand, and �d def= �e(Kd; d)the dowstream supply. Two sets of boundary conditions result, set 1 when q0 = �u � �d,including (BC1u) for the upstream solution and (BC1d) for the downstream solution, andset 2 when q0 = �d � �u, including (BC2u) for the upstream solution and (BC2d) for thedownstream solution. The description of the boundary conditions and their associatedsolution is the following:(BC1u) : q0 = �u, K(z�) = Arg��kcrit[�e(�; u) = q0]. The corresponding solutions, de-pending on the values of Ku, are described on Figure 12.10



(BC1d) : q0 = �u, K(z+) = Arg��kcrit[�e(�; d) = q0]. The corresponding solutions, de-pending on the values of Ku, are described on Figure 13.(BC2u) : q0 = �d, K(z�) = Arg��kcrit[�e(�; u) = q0]. The corresponding solutions, de-pending on the values of Ku, are described on Figure 14.(BC2d) : q0 = �d, K(z+) = Arg��kcrit[�e(�; d) = q0]. The corresponding solutions, de-pending on the values of Ku, are described on Figure 15.To obtain the relevant solutions of the generalized Riemann problem, any solution associ-ated to (BC1u) must be combined with any solution associated to (BC1d), and any solutionassociated to (BC2u) must be combined with any solution associated to (BC2d).5 Dynamics of a bus: the approximation of the bus asa point.5.1 Principle of the analysis.Macroscopic models are only adequate at some relevant physical scale, if only by virtueof the fact that the basic macroscopic variables, �ow, density and speed, only make sensewhen de�ned as (local) averages. Hence, making allowance to the fact that the size of abus is actually of the order of magnitude of the lower admissible values for the length scaleof macroscopic models, it is only natural to try to modelize the bus-tra�c �ow interactionby neglecting the size of the bus, i.e. considering the bus as a point. This is what we shalldo now.We must give a rigorous content to the idea of neglecting the size of the bus. Itis simple, for homogeneous conditions upstream and dowstream of the bus: solutionsbetween the extremities b(t) and f(t) tend to a stationnary state, and if the dimensionsof the bus can be neglected, then transitory solutions between the extremities b(t) andf(t) can be ignored, and only homogeneous solutions are relevant. Henceforth, we shalldenote by:� K�(t) the density along the bus, i.e. between points b(t) and f(t),� Q�(t) the �ow along the bus,� q�(t) = Q�(t)� _y(t)K�(t) the relative �ow along the bus.In the general case, the same approximation applies, since locally, at an adequate spaceand time scale, conditions upstream and dowstream of the bus can be considered homo-geneous. Indeed, neglecting the size of the bus allows us to look for solutions that arelocally scale invariant.5.2 Analytical solutions.Let us consider then the case of a single bus, with initial conditions Ku upstream and Kddownstream. Since we look only for scale invariant solutions, we must also assume thebus speed constant, and we shall determine by the same token the initial condition K�for the tra�c along the bus (which should really be the limit of the transitory solution),11



and the relative �ow along the bus, q� (see Figure 16). Both K� and q� are constant.The relative demand upstream of the bus is called �u and given by:�u def= �e(Ku; u)whereas the relative downstream supply �d�d def= �e(Kd; d) .Finally, the maximum relative �ow along the bus will be denoted q�max as usual. It followsfrom the calculation rules given in the preceding section that:q� = Minh q�max; �u; �d ] .To determine K� as well as the rest of the solution, it is necessary to consider 3 cases andto apply again the calculation rules developed in the preceding section. The three caseswill simply be described, and the corresponding solution described by its characteristicschart in the moving frame.Case 1 : q�max � Minh �u; �d ]. Then: K� = k�crit (let us recall that k�crit is the criticaldensity in the moving frame (Figure 17)).Case 2 : �u �Minh q�max; �d ]. Then:K� = Arg��k�crit[��e (�) = q�] .An example of solution is depicted on Figure 18.Case 3 : �d � Minh q�max; �u ]. Then:K� = Arg��k�crit[��e (�) = q�] .An example of solution is depicted on Figure 18.Not all possible cases have been depicted for the upstream and downstream tra�c, sinceshock-waves or rarefaction waves might both be possible in several instances. Nevertheless,the density immediately upstream and downstream of the bus results in all cases easilyfrom the �ow value (q�) and the tra�c state (over- or under-critical) in the moving frame.Remarks.1. It should be noted that the bus, when considered as a point, has an e�ect on thesurrounding tra�c only in case 1. Otherwise, the �ow being the same whetherthe bus is present or not, and the tra�c state upstream and downstream beingindependent of the presence of the bus, the tra�c �ow is una�ected by the bus.The limit of this remark is of course set by what has been neglected in the aboveanalysis: the transitories and the bus size.
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2. If we consider the general case (non homogeneous and non constant data, f(t) =b(t) = y(t)) it follows that:q�(t) = Minh q�max(t); �(y(t); t); �(y(t); t) ](22)with, following (20): ������ �(y(t); t) def= �e(K(y(t)�; t); 0; t)�(y(t); t) def= �e(K(y(t)+; t); 0; t) .Formula (22), considering that the relative �ow is continuous in the vicinity of thebus, results in a boundary condition for the tra�c �ow upstream and downstreamof the bus.3. If the speed of the bus varies in time, it may be convenient to consider the �xedframe. The construction of analytical solutions is easy, since horizontal lines of thefundamental diagram in the moving frame (qe, q�e as functions of S) become linesof slope _y of the fundamental diagram in the �xed frame (Qe, Q�e as functions ofS).The reader is refered to Figure 17bis for an illustration.6 Discretization of the model.Except for a few straightforward con�gurations, of which the preceding section gives someexamples, and for which analytical solutions may be determined, simulation is necessary toimplement the model. This makes necessary a time and space discretization of the model.The basis of the discretization schemes studied here is the Strada model [BLL 95-96],[BLLM 96], [LB 97].6.1 The STRADA modelStrada is a discretized �rst-order macroscopic model based on the Godunov scheme, asexplained in [LE 96] (see also [GR 91], [DA 95], [LE 84]). It belongs to the same familyof models as Dynasmart [JMH 94] or the model proposed by Daganzo [DA 94]. Otherfeatures of the model include a complete modelling of intersections and the possibility toimplement dynamic assignments procedures. STRADA also uses a particular �ow/densitydiagram including two segments of parabola (Figure 1).In order to study the integration of buses in the model, a simpli�ed version has beenused :� A single link with constant geometric characteristics and no intersection is consid-ered� A unique bus is introducedHowever, the discretization scheme has to be designed in a way such as to allow forgeometric discontinuities such as changes in the number of lanes.Basically, the Strada link model is based on the discretization equation (4).Let us consider two successive discretization cells i and i + 1, with a length �x and atime step �t: 13



Cell i Cell i +1

Ki Ki +1

Q i +1Q iQ i -1

The discretization of the conservation equation is straightforward (the Godunov schemeis conservative): Ki(t+ �t) = Ki(t) + �t�x (Qi�1(t)�Qi(t))(23)The discretization of the �ow/density relationship is based on the Godunov scheme. Itresults in the de�nition of demand at the exit of each cell and supply at the entrance :� The demand �i(Ki) willing to exit cell i is equal to the equilibrium �ow Qe(Ki) ifKi is subcritical, and equal to the maximum �ow otherwise.� The supply �i(Ki) associated to cell i is equal to the maximum �ow if Ki is sub-critical and to the equilibrium �ow Qe(Ki) otherwise.These de�nitions are straightforward generalizations of formulas (5) and (6) and can be�gured out as depicted on Figure 19). The �ow exiting cell i, Qi(t), is computed asQi(t) = Min [�i(Ki(t));�i+1(Ki+1(t))]which generalizes (7). It can be shown ([LE 96]) that this last expression yields exactlythe Godunov �ux.It can be noticed, as it will be used further on, that this discretization scheme consistsof computing at each time step the exact solution of an approximated problem (thisis the principle of the Godunov scheme). The approximation lies in considering theconcentration as piece-wise constant in space (see Figure 20). Starting from this situationand examining the evolution of �ows at the cells limits, it can be seen that a shock wavewill start from the limit between cells i and i + 1 when Ki < Ki+1, moving forward orbackward, and that a fan-like characteristic scheme will be observed when Ki > Ki+1 (inthe homogeneous case). In all cases, the �ow at the i! i+1 limit will be constant duringtime �t, provided the following constraint is respected :�x � Vmax�twhere Vmax is the maximum speed (CFL (Courant-Friedrichs-Lewy) type condition).The value of the �ow is the one given by the supply/demand computation. One of theinteresting features of this discretization scheme is that it is well suited to the descriptionof space or time discontinuities such as road characteristics variations or tra�c incidents[MO 97]. This is due to the fact that the computations of demand and supply can be madeusing di�erent �ow/density relationships. On the other hand, discontinuities consideredtill now were �xed ones. The problem raised by the bus model is the presence of adiscontinuity that is moving relatively to otherwise �xed geometry and discretization.
14



6.2 Discretization of the bus model6.2.1 Moving discretizationIt has been demonstrated previously that the supply/demand scheme was still valid inthe moving coordinates attached to the bus. The most natural idea the is to realise amoving discretization, with cells moving at the same speed as the bus. The bus itself isthen a particular limit between two cells, which restrains the �ow between these two cells,as depicted on Figure 21The �ow and concentration computations can the be made, in the moving framecoordinates, exactly as they are made for the basic model in the �xed frame. There isa di�erence in the de�nition of the demand and supply, which must be de�ned in themoving referential, in a fashion similar to formulas (19), as depicted on Figure 22 andalso Figures 6, 7.The constraints on the discretization parameters which guarantee that the �ow be-tween two cells is constant during �t (CFL constraints) are also slightly di�erent:�x � (Vmax � Vb)�tand�x � (Q0(Kmax)� Vb) �twith Vb def= _y.For the cell limit corresponding to the bus location, the computation is similar exceptthat an additional constraint applies on the �ow in the moving coordinates.Unfortunately, this discretization scheme can only be used to describe the �ow arounda single bus on a link with no singularity, i.e. a homogeneous link. If there is for instancea change in the number of lanes, this discontinuity will be considered as moving in themoving coordinates and the discretization scheme does not hold any longer. The realproblem is to combine a discretization scheme with a discontinuity moving in its coor-dinates . From this viewpoint, it seems preferable to come back to a discretization into�xed cells, and to try to describe the e�ects of a moving singularity.6.2.2 A moving singularity in a �xed discretizationThe basic �xed discretization scheme is composed of cells having a length �x consistentwith the time step �t :� It must respect the constraint �x�t � Vmax� if �x is too high, the model will present a high degree of numerical viscosity, whichleads to undesirable e�ects such as unrealistically high speeds or in�nite travel-times.Actually, it is reasonable to consider that the only correct value is�x�t = VmaxThe di�culty to represent the progression of a bus in such a scheme is that the busspeed is not necessarily consistent with the scheme. Since the bus is a singularity intra�c, the concentrations in front of it and behind it have to be considered separately, i.eit is necessary to consider two separate sub-cells in the cell where the bus is located, asdepicted on Figure 23. 15



This leads to creating two cells whose length do not respect the discretization con-straints : the assumption that the �ow at the cell frontiers is constant during �t does nothold anymore, as there may be interactions between the entrance and the exit of the samecell. The solution to that problem could be to consider explicitly these interactions andto make a comprehensive computation of �ows, but this leads to consider a high numberof cases and would result in too high computational e�ort. On the other hand, since themodel itself is not devoted to reproduce in detail the tra�c �ow around the bus sinceits resolution is simply �x � �t, it must be possible to represent these interaction in asimpli�ed way, without obtaining too important undesirable e�ects. Research is going onin that direction.In order to produce some numerical examples, an oversimpli�ed discretization proce-dure has been used : It consists of considering the concentration in the cell where thebus is located as a whole, without making any distinction between the back and front ofthe bus. This concentration is used to determine wether the bus causes a perturbation inthe tra�c �ow, i.e if the concentration is included in the interval ]K1; K2[, as depicted onFigure 24(see remark 2 of subsection 5.2).If there is no perturbation, the �ows are computed as usual. If there is one, constraintscorresponding to the maximum �ow around the bus are applied to the exit demand andto the entrance supply.This scheme presents little interest by itself, as it is correct only in very speci�csituations in which the bus spends an integer number of time slices in each cell and doesstop only at the cells limits, but is mentionned for the sake of giving some numericalresults on a simple case. The case presented above represents a bus riding at a constantspeed along a uniform uncongested link, then stopping inside the link, then starting againat its original speed. In a simple case like this, following the calculation rules derived insubsection 5.2, it is possible to draw the complete evolution of the characteristics schemeand to compute analytically the trajectory of shockwaves, as depicted on Figure 25.The �ows computed by simulation of the discretized model lead to a very similarshape, as depicted on Figure 26. It can be seen both on the characteristics plot and onthe simulation results that the resulting perturbations are rather complex but correctlyrepresented by the simulation.7 Conclusion.The model presented here is only the beginning of the research. The main result is thefeasability of introducing isolated vehicles in a macroscopic model in a way consistentwith the model itself. Research is still going on to improve the discretization scheme,particularly to take account of discontinuities inside the links (changes in the number oflanes...). It is also clear that such a model needs to be validated by �eld measurements,to guarantee that the predicted e�ects of the presence of bus over tra�c �ow conditionsare actually observed in practice.A possible direction for future research could also be to adapt such a type of modelto the description of lorries in motorway tra�c. This raises the additional problem ofdealing with the interactions of the vehicles themselves.
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Equilibrium �ow, demand and supply functions
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Figure 4: equilibrium �ow-density relationship in the vicinity of a bus
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Figure 6: equilibrium �ow-density relationship in the moving frame
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Figure 7: equilibrium demand and supply relationships in the moving frame
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Figure 8: Relative demand 1
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Figure 10: Relative supply 1
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Figure 12: Riemann problem, BCu1
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Figure 13: Riemann problem, BCd1
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Figure 14: Riemann problem, BCu2
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Figure 15: Riemann problem, BCd2
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Figure 16: Riemann problem for the bus
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Figure 17: Perturbation resulting from the presence of a busMoving frame
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Figure 17bis: Perturbation resulting from the presence of a busFixed frame
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Figure 18: Bus exerting no e�ect on tra�c �ow
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Figures: The Godunov scheme and its application to busesFigure 19:
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The moving discretizationFigure 21:
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The �xed discretizationFigure 23:
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Figures 25,26: Analytical versus numerical calculations
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