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ABSTRACT:

The aim of this paper is to provide a simple model of the interaction between buses
and the surrounding traffic flow. The traffic flow is assumed to be described by a first
order macroscopic model of the LWR type. As a consequence of their kinematics, which
in a large measure can be considered to be independent of the flow of other vehicles,
buses should be considered as a moving capacity restriction from other drivers point of
view. This simple interaction model is analysed, mainly by considering the moving frame
associated to the bus in order to derive analytical computation rules for the derivation
of the effects of the buses present in the traffic flow. After deriving traffic equations in
the moving frame associated to a bus, the usual basic concepts of first order models are
generalized to the moving frame, including those of relative traffic supply and demand.
The solution to the classical Riemann problem in the moving frame yields then a simple
model for bus-traffic interaction, assuming that the dimension of the bus can be neglected.
Finally, some tentative results concerning the inclusion of buses into discretized first order
traffic flow models are given, under the asumption that the discretization results from
Godunov’s scheme.
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1 Introduction.

The new interest for dynamic traffic network simulation models due to the deployment
of intelligent transport systems has resulted in recent years in the apparition of various
types of models. New generations of microscopic models have thus been developed, such as
INTEGRATION [VA 94| or PARAMICS [CD 96|, which are explicitly devoted to repesenting
wide area networks. However, constraints due to the microscopic nature of these models
make them difficult to calibrate and use for wide areas. This is the reason for which
a renewed interest in macroscopic models is also observed, resulting in the development
of models such as DYNASMART [JMH 94] or the Cell Transmission model proposed by
Daganzo [DA 94|, METACOR |[EHP 94|, STRADA [LB 97|, or the extensions of CONTRAM
[HRRS 92].

To deal with urban area networks, and particularly to make possible studies concerning
various transport modes, these models need to take into account public transport. This
has been carried out for years in microscopic models [CGHT 77|, but does not constitute
a classical approach in dynamic macroscopic models.

The purpose of this paper is to describe a possible way to integrate buses into a first
order macroscopic flow model, in order to describe the interactions between the bus and
the flow around it.

The contents of the paper are the following. After a short bibliographical review, we in-
troduce the model of the bus as a moving capacity restriction and procede by analysing the
propagation of a single moving singularity whithin the framework of the LWR (Lighthill-
Whitham-Richards) model [LW 55], [RI 56]. We concentrate on the generalization of the
concepts of local traffic supply and demand as introduced in [LE 96|, and correlatively
the solution to the generalized Riemann problem, which constitutes the key to the calcu-
lation of analytical solutions. As an application, we then develop a theory of interactions
between a bus and its surrounding traffic flow, using the simplifying hypothesis that the
bus can be modelled as a point, i.e. that its dimensions can be neglected. Finally, we
address the problem of analyzing numerically the interaction of a moving bus with the
surrounding traffic flow, whose dynamics are assumed to be discretized according to the
Godunov scheme (|[LE 96]), as in the model [DA 94] or in the STRADA model [BLL 95-96],
[BLLM 96|, |[LB 97|. The difficulties involved are described, some ideas aiming to solve
them are then exposed, and some tentative numerical results for simple cases are pre-
sented.

2 Modelling buses: general considerations.

There are two series of reasons why buses must be specifically taken into account in a
traffic model:

1. their behaviour is different from other vehicles,
2. they are subject to specific actions (priority at traffic signals...).
The progression of buses through a road network presents several specific features:
e their routes are specific (bus lines),
e their kinematic characteristics (speed, acceleration...) are different,

e they stop at particular locations inside the links of the network (bus stops),
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e in most cases, buses are isolated vehicles; it is only at particular places that buses
can be considered as a continuous flow.

Since buses share the same road links as other vehicles and have different characteristics,
the interactions between both types of vehicles may be complex.

In a microscopic model, the buses particular features may be taken into account with
few difficulties, as has been done long ago [CGHT 77|, NETSIM |[WL 74|: the car-following
law has to be adapted to the bus characteristics (minimum headway, acceleration, free
speed...), the overtaking model, if any, has also to be adapted, bus stops have to be intro-
duced. However, this is mainly an engineering problem with few theoretical implications.

In macroscopic models, the question is much more complex as the bus is an heteroge-
neous object in the flow. Some models used in programs computing traffic signals settings
such as BUS-TRANSYT [PW 77|, which can be considered macroscopic, do take buses into
account, but in a very simple way: in the TRANSYT model, buses are considered as a
separate continuous flow, with a specific computation of travel times along the network
link taking account of their specific speeds, their stops and particular dispersion features.
A ’shared stopline’ facility is introduced to maintain some kind of FIFO discipline in the
queue at the end of each link. On the other hand, there is no consideration of the effect
of buses over traffic flow conditions. The CONTRAM model [LTB 78| represents buses in
a very similar way.

In the present work, we attempt to modelize the dynamics of buses, especially their
interaction with the surrounding traffic flow, whithin the framework provided by a first
order macroscopic traffic flow model of the LWR type. The rationale behind this approach
is the following. As noted above, the bus, owing to its size and to the special proper-
ties of its kinematics, does not partake of the general flow of traffic. On the contrary,
it affects the general traffic flow adversely, and should be considered, from the point of
view of regular drivers, as a moving capacity restriction. This is the very simple model
of the interaction between bus and general traffic which we shall develop in the sequel.
Therefore, as far as the inclusion of buses into macroscopic models goes, it makes sense to
consider a first order macroscopic traffic model for the general traffic, since such models,
in contrast to second order models, accomodate capacity restrictions in a straightforward
and even intrinsic manner. The only difficulties here result from the fact that the ca-
pacity restriction associated to the bus is moving, and that its movement may or may
not be restricted by the movement of the general traffic, depending on the nature of the
interaction between the bus and the surrounding traffic.

3 Moving capacity restrictions in the LWR model.

In this section we set notations, recall the main elements of the LWR (Lighthill-Whitham-
Richards) [LW 55], [RI 56] model and the concepts of local traffic supply and demand,
introduce more precisely the concept of the bus as a moving capacity restriction, and
develop the technical tools for the analysis of the effects on traffic flow of moving capacity
restriction.

3.1 The LWR model and some of its extensions.

The basic variables of the LWR model [LW 55|, [RI 56] are K(z,t), the density at point
x and at time ¢, Q(z,t), the flow at point x and at time ¢ and V'(z,t), the space-time
average speed at point x and at time ¢, defined by the relationship ) = KV. The basic



equations of the model are:

K
(1) aa—t + g—f =0 (conservation of vehicles),
(2) Q@ = KV (definition equation of V'),
(3) V =V.(K,z) (equilibrium speed-density relationship).

Of course these equations can be rewriten as

0K

0
E + %Qe(K,l‘) =0

(4)

with Q.(K, ) aeJ KV,(K,x) the equilibrium flow-density relationship. Typically, the
equilibrium flow-density has the aspect illustrated by Figure 1.

The dependency of Q. on x reflects the fact that the fundamental physical parameters
of the model, i.e. the maximum flow and density @, and K,,q., the critical density K.
and the maximum speed V.., depend generally on the position x, as the characteristics
of the infrastructure change with the position. Let us recall that, following [LE 96] we
define the equilibrium traffic demand and supply functions as the greatest possible outflow
respectively inflow at a given point z, as a function of the local density x; these functions
are defined by:

— the equilibrium traffic demand function
N def [ Qe(k,z—) if Kk < Kgu(r—) (undercritical flow)
e\l T) = Qmaz(z—) if k> Kgu(z—) (overcritical flow)

— the equilibrium traffic supply function
So(hz) Qmaz(z+) if k£ < Kei(z+) (undercritical flow)
e\ t) = Qe(k,x+) if k> Kegi(z+) (overcritical flow)

The symbols x— and z+ imply as usual that the left and right limits are taken at point
x for the quantities that contain these symbols among their arguments. The functions
can be prolonged in a consistent fashion to the case k > K4, (2%) with x = + or —: see
[LE 97]. The corresponding equilibrium demand and supply functions are illustrated by
Figures 2 and 3. For a piecewise continuous solution of the LWR, model, it is then possible
to define the local traffic demand and supply as:

Alz, ) Y ALK (-, 1),2)
def

Q -
(z,t) = I (K(z+,t),)

Further, for any piecewise continuous solution of the LWR model,

Q(z,t) = Min]| local upstream demand , local downstream supply |

(7) ,
= Min[A(xz,t), X(z,t)]

This is of course the calculation rule of the entropy solution of the LWR model (see
|GR 91]); its application ensures existence, unicity and continuous dependence on initial
conditions of the solutions of this model. The above definitions and relations (5), (6), and
(7) accomodate easily spatial discontinuities of ()., can be naturally generalized to yield
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the Godunov discretization scheme for the LWR model, and allow generalization of the
LWR model to networks.

If the equilibrium relationship @, admits a spatial discontinuity, the calculation rules
that apply at, and in the vicinity of, the discontinuity are the following (|LE 96]):

- conservation of the flow at the discontinuity,

- the characteristics carry a constant flow value, and the state of the traffic (over- or
undersaturated) varies smoothly along a characteristic,

- in case of multiple solutions to (4), the flow should be maximised, i.e. (7) should apply
at the discontinuity, yielding the proper boundary condition for both upstream and
downstream traffic.

These rules guarantee existence and unicity for the solutions of (4).

3.2 The bus model: basic ideas.

Let us now address the problem of modelling a bus in interaction with the surrounding
traffic flow. The trajectory will be defined by the position of one point of the bus in time,
say y(t). The extremities of the bus (front and back) are f(¢) and b(t), with of course:

g(t) = f(t) = b(t) vt

We assume that at point z, the maximum density K., () (one of the parameters of (),)
is reduced by a fixed amount Kj,, whenever a bus is present at that point; of course,
Kpys represents the width of track occupied by the bus (& 0.2 vh/m). Hence, for all z in
[b(t), f(t)], the residual maximum density (i.e. storage capacity) for the regular traffic is

(8) K@) Koo (@) = Kis Vo € [b(0), £ (1)
If say the track has 4 lanes and the bus occupies one lane, it follows that K2 (2)/K e () =
3/4. The Figure 4 illustrates this idea.

We assume then, following the analysis of incidents whithin the framework of the LWR
model carried out in [BLLM 96| and [MO 97|, that the maximum density constraint (8)
affects the equilibrium flow-density relationship by affecting its fundamental parameters
but respecting its functional form. We assume further that the desired speed of traffic re-
mains unchanged. It follows that the equilibrium flow-density relationship Q7 in presence
of a bus is given by:

9) Q(r,7) Y aQu(r/a,z) |
with ;
() Y KE oo (2)) Koaa (@)

Actually, it would be straightforward to modelize the effect of a desired speed constraint,
say V2 (), in case empirical evidence pointed in that direction. Indeed the resulting

equilibrium flow-density relationship would be:

def

(10) Qf(m,x) = [Q.(k/a, )
with .
(@) Vo (2) ) Vinas ()

max
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and wef

plae) = alz)y(z)
The parameters «, 3, v = 3/« are called incidents severity level coefficients in [BLLM 96|
and [MO 97]. The following relationships result for the physical parameters:

K r/[rgumr = K
Qe = B Qumaa
Vrgaa: = 7 Vi
Koy = Ko
‘/;Eit = 7 Verit

As far as the trajectory of the bus is concerned, it will be approximated by assuming that
y = 0 (bus-stops) or that g is equal to the desired bus-speed V}, (if the bus enjoys special
lanes) or is the minimum of the desired bus-speed V}, and the local traffic speed, i.e.:

(11) y=Min[Vy, V(x,t)]

4 Analysis of a moving singularity.

4.1 Introduction

The basic problem we address in this section is simple. As we have just seen, the equilib-
rium flow-density relationship changes at the extremities of the bus, i.e. at points b(¢) and
f(t). Hence in order to calculate the interaction of the bus with the surrounding traffic,
we must first determine the calculation rules for the local traffic dynamics in the vicinity
of each of the extremities of the bus. In order to achieve this, the necessary step is to
consider a single moving singularity and the associated inhomogeneous Riemann problem.
The notations for this problem are the following:

z(t) the singularity,

the superscripts u and d, refering to quantities upstream and downstream of the singu-
larity,

Q"“(k, ) and Q%(k,z) the equilibrium flow-density relationships upstream and down-
stream of the singularity,

K" and K? the density upstream and downstream of the singularity, these densities
are assumed to be uniform. See Figure 5 for an illustration of the data of the
inhomogeneous Riemann problem.

Typically,
e Z(t)=1y(t) Vi,
o if 2(t) = b(t), Q¥ = Q. and Q¥ = Q7,
o if 2(t) = f(t), Q¢ = Q7 and Qf = Q..

Considering that the rules for the solution of the Riemann problem are well-known if the
singularity is static, the natural way to solve the moving singularity problem is to solve
it in a frame moving at the speed of the singularity, i.e. y(t).
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4.2 The moving frame.

The moving frame is defined by the change of variables:

T =t

which implies, for the partial derivation operators:

9 _ B
oz o€

(13)
2 & _ ()0
a — ar y(T)a_g

Let us denote: def

(14) Q(gaT) = Q(f,T) - y(T)K(f,T)

the relative flow (it is the flow that passes the bus), and let us define:

de .
(15) ae(, & m) Qe £ +y(n) — i(r)m

the relative equilibrium flow-density relationship. The relative flow is related to the density

by:
q(&,7) = qe(K(§,7),&,7)
It follows from (13) that the conservation of vehicles (1) applies in the moving frame
under the form:
OK dq

16 - =0
(16) or o€
and the fundamental equation (4) is equivalent to:

0K 0
17 I LK, ET) =0
(17) (K )

This equation (17) means that the traffic flow in the moving frame is described by a
conservation equation associated with the flux function ¢, given by (15), and illustrated
by Figure 6. It must nevertheless be noted that the similarity between the equations
of traffic in the moving and the fixed frame cannot be pushed to far. Indeed, in the
moving frame, negative (relative) flows are acceptable, and the equilibrium flow-density
relationship ¢, is not concave.

Important values are:

® Gaz(&,7) def Maz,; q.(k, &, T) the mazimum relative flow, a value depending both on
position & (by virtue of the dependence of ), on ) and on time 7 (by virtue of the
dependence of the bus speed on time),

o kei(&,7) = Arg_Mazq.(k, &, 7) the value of density for which the maximum relative
flow is obtained, depending on both position £ and time 7, for the same reasons as

Qmaaz-
One of the main reasons it is actually necessary to consider the moving frame is that in
general:

Gmazx 7£ Qmaz - chrit )

18
( ) kcrit 7£ Kcrit
Density values such that K < k..; will be called relatively under-critical, density values
such that K > k..;; will be called relatively over-critical.
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4.3 Shock-waves and Characteristics.

Shock-waves and characteristics are the same in the moving and the fixed frame.
Let us consider shock-waves first, and let us consider a discontinuity in flow [Q)] and
density [K] moving in the fixed frame (x,t) at speed

v =[Q]/[K]

In the moving frame (&, 7), the corresponding discontinuity will carry jump values [g] in
relative flow and [K] in densities, at (relative) speed

v def v—19
By definition (14), it follows that
4] = [Q] — y[K]
and consequently also that
v =[q]/[K]

As a consequence, since z(t) is fixed in the moving frame, any discontinuity in density and
relative flow resulting from the difference between the equilibrium relationships upstream
and downstream of this point satisfies to

[q):p =0

since in that case v = 0. Hence, the relative flow is conserved at z(t).

In the same spirit, characteristics in the fixed frame carry an invariant which is the
flow Q when the equilibrium flow-density relationship (). depends on both the density K
and the position x. For instance, a characteristic carrying flow value () and originating
at point (z,t) would be given by the following equation:

do — 99 (K (g,t), ) Vt>0

QG(K(.Z‘(t),t),Ji(t)) = Q Vit >0
x(t) =z

with the additional condition that the state of traffic (under- or over-critical) should vary
continuously, in order for the density on the characteristic to be uniquely determined by
the flow value Q). It follows from equations (12), (14), (15), that the same characteristic
lines in the moving frame carry the same invariant () = ¢ + 7K. Hence, in the moving
frame, the characteristic originating at point (£, 1), carrying the invariant ) would be
given by the following equation: B o

g€ — aqe(K(f,T),ﬁ,T) V>0

dr 0K

(K (&(7),7),&,7) = Q — y(T)K(§(7),7) V7 =20

with the additional condition that the relative state of traffic (relative under- or over-
critical) should vary continuously, in order for the density on the characteristic to be
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uniquely determined by the invariant value (). It should be noted, an this is another
peculiarity of the traffic equations in the moving frame, that the invariant transmitted
by characteristics, i.e. @@ = ¢ + yK, is not the same as the quantity conserved at the
singularity, i.e. q.

If the dependence of (). on x is piecewise constant, and the bus speed ¢ constant,
characteristic lines in both the fixed and the moving frame are piecewise straight lines,
a fact which we shall use for analytical calculations. Another salient fact is that, since
ge is not a concave function of density, one might have to consider in some special cases
acceleration shock-waves between states of traffic situated in the non-concave region, as
shown in |[LE 97| and following rules explained in section I1.6 of [GR 91|.

4.4 Supply and demand in the moving frame.

These quantities are defined as usual as the the greatest possible inflow and outflow at any
given point. In the present case, it is necessary to consider relative inflows and outflows.
The relative supply and demand at a given point say z are easiest calculated by solving
a Riemann problem at that point. For relatively undercritical density K* upstream of
z, the greatest possible relative outflow at z is necessarily g.(K"), since otherwise there
would be an initial shockwave originating from z with positive speed if the outflow were
greater, implying a contradiction. If we consider the relative supply at point z associated
to relatively overcritical density K dowstream of z, we can show that the greatest possible
inflow, for similar reasons, is necessarily ¢.(K?) (if the inflow were greater, there would
be an initial shockwave originating from z with negative speed, implying a contradiction).
Since relative supply and demand cannot by definition exceed ¢y,q,, Wwe define, by analogy
with (5), the equilibrium demand and supply functions in the moving frame, J, and o,
as functions of the density &, the position £ and the time 7:

— the equilibrium traffic demand function (in the moving frame)
5.0k, €,7) def | qe(k,&—,7) if K <kei(6—,7) (undercritical flow)
e\ e ) = Gmaz(E—,7) If K> keu(E—,7) (overcritical flow)

— the equilibrium traffic supply function (in the moving frame)
(,6,7) % { ma (€+,7) if K <keu(é+,7) (undercritical flow)
Oelfr &, 7)) = Ge(k,§+,7) if K > keu(E+,7)  (overcritical flow)

Thes functions are illustrated by Figure 7. In the above formulas, the symbols - and +
imply the usual limits, and under- and over-critical should be understood as relative. It
must be emphasized that

[ 68 7£ Ae - :g'/fﬂ

Oc # Xe — UK

To check the formulas (19), it suffices to check that the above values of relative demand
and supply, which constitute upper bounds of relative outflow and inflow can be attained.
Hence it suffices to consider two special Riemann problems, one with initial conditions
K* =k, K¢ =0, yielding a flow at the origin ¢y = d.(k), and one with initial conditions
K* = ke, K% = k, yielding a flow at the origin gy = 0,(x). These results are checked on
Figures 8,9 and 10,11, representing characteristics charts in the moving frame. The bus
speed y is supposed constant and ¢. homogeneous, which enables analytical calculation
but does not impair the generality of the result. The rules applied for the calculation are
the same as those applying in a fixed frame to a fixed singularity (recalled at the end of
subsection 3.1), but for the modifications required by the moving frame setting:
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- conservation of the relative flow at the discontinuity,

- the characteristics carry a constant flow value in the fixed frame (or the above-mentionned
invariant in the moving frame), and the state of the traffic (over- or undersaturated)
varies smoothly along a characteristic,

- in case of multiple solutions to (17), the relative flow should be maximised, yielding the
proper boundary condition for both upstream and downstream traffic.

As a consequence, it is then natural to define the relative local traffic demand §(§, 7)
and supply o (&, 7) as:

(20) 0(6,7) = O (K(§—,7),8,7)

4.5 The generalized Riemann Problem.

By analogy with (7), we shall now show that for any piecewise continuous solution of the
LWR model, the following result applies in the moving frame:

q(§,7) = Min]| local upstream demand , local downstream supply |

= Min[d§(& 1), 0(&,T)]

This result generalizes to the moving frame the classical method of construction of the
entropy solutions of the LWR model. It is self-evident anywhere except at discontinuities
of ge. To check (21) at such a discontinuity, it suffices to consider a Riemann problem
with piecewise homogeneous data ¢¥ = Q% — 9k, ¢¢ = Q% — yk (q. constant upstream and
downstream of the singularity z, fixed in the moving frame and taken as the origin) and
initial data K%, K¢ Calling g, the flow at the origin, it suffices to check that it is possible
to construct a solution to the Riemann problem satisfying

(21)

qo = Min[d. (K", u), ae(Kd, d)]

with d.(.,u) and o,(.,d) the upstream demand and downstream supply functions in the
moving frame associated to ¢* and ¢¢ by (19). The construction method is straightforward:
the above flow value of ¢y is imposed as a boundary condition at the origin z, and the
Riemann problem is solved separately upstream and downstream of the singularity. Let
us denote:

54 X 5, (KM, )

the upstream demand, and

the dowstream supply. Two sets of boundary conditions result, set 1 when ¢y = 6* < o4,
including (BC}) for the upstream solution and (BC}) for the downstream solution, and
set 2 when ¢y = 0¢ < §%, including (BC?) for the upstream solution and (BC3) for the
downstream solution. The description of the boundary conditions and their associated
solution is the following:

(BC)) : qo = ¢*, K(2—) = Arg,,[0c(k,u) = qo]. The corresponding solutions, de-
pending on the values of K, are described on Figure 12.
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(BCy) : qo = 6", K(2+) = Arg<y,, ,[0c(r,d) = qo]. The corresponding solutions, de-
pending on the values of K", are described on Figure 13.

(BCZ) : qo = 0%, K(2—) = Arg,>p,.[0e(k,u) = qo]. The corresponding solutions, de-
pending on the values of K“, are described on Figure 14.

(BCY) : qo = 0% K(z+) = Arg,sy.,[0e(k,d) = qo]. The corresponding solutions, de-
pending on the values of K", are described on Figure 15.

To obtain the relevant solutions of the generalized Riemann problem, any solution associ-
ated to (BC!) must be combined with any solution associated to (BC}), and any solution
associated to (BC?) must be combined with any solution associated to (BC3).

5 Dynamics of a bus: the approximation of the bus as
a point.

5.1 Principle of the analysis.

Macroscopic models are only adequate at some relevant physical scale, if only by virtue
of the fact that the basic macroscopic variables, flow, density and speed, only make sense
when defined as (local) averages. Hence, making allowance to the fact that the size of a
bus is actually of the order of magnitude of the lower admissible values for the length scale
of macroscopic models, it is only natural to try to modelize the bus-traffic flow interaction
by neglecting the size of the bus, i.e. considering the bus as a point. This is what we shall
do now.

We must give a rigorous content to the idea of neglecting the size of the bus. It
is simple, for homogeneous conditions upstream and dowstream of the bus: solutions
between the extremities b(¢) and f(¢) tend to a stationnary state, and if the dimensions
of the bus can be neglected, then transitory solutions between the extremities b(¢) and
f(t) can be ignored, and only homogeneous solutions are relevant. Henceforth, we shall
denote by:

e K”(t) the density along the bus, i.e. between points b(t) and f(t),
e (°(t) the flow along the bus,
e ¢°(t) = Q%(t) — y(t)KP(t) the relative flow along the bus.

In the general case, the same approximation applies, since locally, at an adequate space
and time scale, conditions upstream and dowstream of the bus can be considered homo-
geneous. Indeed, neglecting the size of the bus allows us to look for solutions that are
locally scale invariant.

5.2 Analytical solutions.

Let us consider then the case of a single bus, with initial conditions K* upstream and K¢
downstream. Since we look only for scale invariant solutions, we must also assume the
bus speed constant, and we shall determine by the same token the initial condition K7
for the traffic along the bus (which should really be the limit of the transitory solution),
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and the relative flow along the bus, ¢° (see Figure 16). Both K” and ¢’ are constant.
The relative demand upstream of the bus is called * and given by:

5u 5, (K, )
whereas the relative downstream supply o
ot oo (K%, d)

Finally, the maximum relative flow along the bus will be denoted ¢° . as usual. It follows
from the calculation rules given in the preceding section that:

¢ = Min[qgaw, 5“,ad]

To determine K? as well as the rest of the solution, it is necessary to consider 3 cases and
to apply again the calculation rules developed in the preceding section. The three cases
will simply be described, and the corresponding solution described by its characteristics
chart in the moving frame.

Casel: ¢°,, < Min[é“,ad]. Then: K? = kP, (let us recall that k° ., is the critical

density in the moving frame (Figure 17)).

Case 2 : §* < Min[qﬁww,ad]. Then:

K’ = Arg, 45 [60(k) = ")

crit

An example of solution is depicted on Figure 18.

Case 3 : 0? < Min[qﬁww,éu]. Then:

K? = Arg, 45 [02(k) = ¢

crit
An example of solution is depicted on Figure 18.

Not all possible cases have been depicted for the upstream and downstream traffic, since
shock-waves or rarefaction waves might both be possible in several instances. Nevertheless,
the density immediately upstream and downstream of the bus results in all cases easily
from the flow value (¢”) and the traffic state (over- or under-critical) in the moving frame.

Remarks.

1. It should be noted that the bus, when considered as a point, has an effect on the
surrounding traffic only in case 1. Otherwise, the flow being the same whether
the bus is present or not, and the traffic state upstream and downstream being
independent of the presence of the bus, the traffic low is unaffected by the bus.
The limit of this remark is of course set by what has been neglected in the above
analysis: the transitories and the bus size.
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2. If we consider the general case (non homogeneous and non constant data, f(t) =
b(t) = y(t)) it follows that:

(22) ¢°(8) = Min| s (1), 8(y(2), £), 0 (y(2), )]

with, following (20):

S(y(6),t) S (K (y(t)—,1),0,t)

o(y(t),t) Y o (K(y(t)+,1),0,1)

Formula (22), considering that the relative flow is continuous in the vicinity of the
bus, results in a boundary condition for the traffic flow upstream and downstream
of the bus.

3. If the speed of the bus varies in time, it may be convenient to consider the fixed
frame. The construction of analytical solutions is easy, since horizontal lines of the
fundamental diagram in the moving frame (g, ¢° as functions of S) become lines
of slope ¢ of the fundamental diagram in the fixed frame (Q., Q7 as functions of
S).The reader is refered to Figure 17bis for an illustration.

6 Discretization of the model.

Except for a few straightforward configurations, of which the preceding section gives some
examples, and for which analytical solutions may be determined, simulation is necessary to
implement the model. This makes necessary a time and space discretization of the model.
The basis of the discretization schemes studied here is the STRADA model [BLL 95-96],
[BLLM 96|, [LB 97|.

6.1 The STRADA model

STRADA is a discretized first-order macroscopic model based on the Godunov scheme, as
explained in [LE 96] (see also [GR 91], [DA 95|, [LE 84]). It belongs to the same family
of models as DYNASMART [JMH 94| or the model proposed by Daganzo [DA 94|. Other
features of the model include a complete modelling of intersections and the possibility to
implement dynamic assignments procedures. STRADA also uses a particular flow /density
diagram including two segments of parabola (Figure 1).

In order to study the integration of buses in the model, a simplified version has been
used :

e A single link with constant geometric characteristics and no intersection is consid-
ered

e A unique bus is introduced

However, the discretization scheme has to be designed in a way such as to allow for
geometric discontinuities such as changes in the number of lanes.

Basically, the STRADA link model is based on the discretization equation (4).

Let us consider two successive discretization cells ¢ and ¢ + 1, with a length dz and a
time step 0t:
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Qi-1 Qi Qi+l

N Ki Ki+1 N

Cell i Celli+1

The discretization of the conservation equation is straightforward (the Godunov scheme
is conservative):

(23) Kt + 61) = Ki(f) + 20 (Qea(8) — @ilt)

The discretization of the flow/density relationship is based on the Godunov scheme. It
results in the definition of demand at the exit of each cell and supply at the entrance :

e The demand A;(K;) willing to exit cell 7 is equal to the equilibrium flow Q.(K;) if
K; is subcritical, and equal to the maximum flow otherwise.

e The supply X;(K;) associated to cell i is equal to the maximum flow if K; is sub-
critical and to the equilibrium flow Q. (K;) otherwise.

These definitions are straightforward generalizations of formulas (5) and (6) and can be
figured out as depicted on Figure 19). The flow exiting cell 7, Q;(¢), is computed as

Qi(t) = Min [A;(Ki(t)), Lip1 (Kt (2))]

which generalizes (7). It can be shown ([LE 96|) that this last expression yields exactly
the Godunov flux.

It can be noticed, as it will be used further on, that this discretization scheme consists
of computing at each time step the exact solution of an approximated problem (this
is the principle of the Godunov scheme). The approximation lies in considering the
concentration as piece-wise constant in space (see Figure 20). Starting from this situation
and examining the evolution of flows at the cells limits, it can be seen that a shock wave
will start from the limit between cells ¢ and 7 + 1 when K; < K;,;, moving forward or
backward, and that a fan-like characteristic scheme will be observed when K; > K, (in
the homogeneous case). In all cases, the flow at the i — 7+ 1 limit will be constant during
time dt, provided the following constraint is respected :

0 > Va0t

where V4, is the maximum speed (CFL (Courant-Friedrichs-Lewy) type condition).
The value of the flow is the one given by the supply/demand computation. One of the
interesting features of this discretization scheme is that it is well suited to the description
of space or time discontinuities such as road characteristics variations or traffic incidents
[MO 97|. This is due to the fact that the computations of demand and supply can be made
using different flow/density relationships. On the other hand, discontinuities considered
till now were fixed ones. The problem raised by the bus model is the presence of a
discontinuity that is moving relatively to otherwise fixed geometry and discretization.
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6.2 Discretization of the bus model
6.2.1 Moving discretization

It has been demonstrated previously that the supply/demand scheme was still valid in
the moving coordinates attached to the bus. The most natural idea the is to realise a
moving discretization, with cells moving at the same speed as the bus. The bus itself is
then a particular limit between two cells, which restrains the flow between these two cells,
as depicted on Figure 21

The flow and concentration computations can the be made, in the moving frame
coordinates, exactly as they are made for the basic model in the fixed frame. There is
a difference in the definition of the demand and supply, which must be defined in the
moving referential, in a fashion similar to formulas (19), as depicted on Figure 22 and
also Figures 6, 7.

The constraints on the discretization parameters which guarantee that the flow be-
tween two cells is constant during 6t (CFL constraints) are also slightly different:

0 > (Vipae — Vi)t
and
61‘ Z (Q,(Kmaa;) - %) 6t

. def .

with V, = .

For the cell limit corresponding to the bus location, the computation is similar except
that an additional constraint applies on the flow in the moving coordinates.

Unfortunately, this discretization scheme can only be used to describe the flow around
a single bus on a link with no singularity, i.e. a homogeneous link. If there is for instance
a change in the number of lanes, this discontinuity will be considered as moving in the
moving coordinates and the discretization scheme does not hold any longer. The real
problem is to combine a discretization scheme with a discontinuity moving in its coor-
dinates . From this viewpoint, it seems preferable to come back to a discretization into
fixed cells, and to try to describe the effects of a moving singularity.

6.2.2 A moving singularity in a fixed discretization

The basic fixed discretization scheme is composed of cells having a length dx consistent
with the time step 0t :

e [t must respect the constraint % > Vinae

e if dx is too high, the model will present a high degree of numerical viscosity, which
leads to undesirable effects such as unrealistically high speeds or infinite travel-times.

Actually, it is reasonable to consider that the only correct value is

oz
ot

The difficulty to represent the progression of a bus in such a scheme is that the bus
speed is not necessarily consistent with the scheme. Since the bus is a singularity in
traffic, the concentrations in front of it and behind it have to be considered separately, i.e
it is necessary to consider two separate sub-cells in the cell where the bus is located, as
depicted on Figure 23.

- Vmaaz
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This leads to creating two cells whose length do not respect the discretization con-
straints : the assumption that the flow at the cell frontiers is constant during 6t does not
hold anymore, as there may be interactions between the entrance and the exit of the same
cell. The solution to that problem could be to consider explicitly these interactions and
to make a comprehensive computation of flows, but this leads to consider a high number
of cases and would result in too high computational effort. On the other hand, since the
model itself is not devoted to reproduce in detail the traffic flow around the bus since
its resolution is simply dx x dt, it must be possible to represent these interaction in a
simplified way, without obtaining too important undesirable effects. Research is going on
in that direction.

In order to produce some numerical examples, an oversimplified discretization proce-
dure has been used : It consists of considering the concentration in the cell where the
bus is located as a whole, without making any distinction between the back and front of
the bus. This concentration is used to determine wether the bus causes a perturbation in
the traffic flow, i.e if the concentration is included in the interval | K, K;[, as depicted on
Figure 24(see remark 2 of subsection 5.2).

If there is no perturbation, the flows are computed as usual. If there is one, constraints
corresponding to the maximum flow around the bus are applied to the exit demand and
to the entrance supply.

This scheme presents little interest by itself, as it is correct only in very specific
situations in which the bus spends an integer number of time slices in each cell and does
stop only at the cells limits, but is mentionned for the sake of giving some numerical
results on a simple case. The case presented above represents a bus riding at a constant
speed along a uniform uncongested link, then stopping inside the link, then starting again
at its original speed. In a simple case like this, following the calculation rules derived in
subsection 5.2, it is possible to draw the complete evolution of the characteristics scheme
and to compute analytically the trajectory of shockwaves, as depicted on Figure 25.

The flows computed by simulation of the discretized model lead to a very similar
shape, as depicted on Figure 26. It can be seen both on the characteristics plot and on
the simulation results that the resulting perturbations are rather complex but correctly
represented by the simulation.

7 Conclusion.

The model presented here is only the beginning of the research. The main result is the
feasability of introducing isolated vehicles in a macroscopic model in a way consistent
with the model itself. Research is still going on to improve the discretization scheme,
particularly to take account of discontinuities inside the links (changes in the number of
lanes...). It is also clear that such a model needs to be validated by field measurements,
to guarantee that the predicted effects of the presence of bus over traffic flow conditions
are actually observed in practice.

A possible direction for future research could also be to adapt such a type of model
to the description of lorries in motorway traffic. This raises the additional problem of
dealing with the interactions of the vehicles themselves.
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Equilibrium flow, demand and supply functions

Q
Quax |- ‘ Figure 1
Kcrit Kmax K

Ae

Qmax ”””
Figure 2
Kcrit Kmax K

Z e
Qurax Figure 3

Kcrit Kmax K

19



Figure 4: equilibrium flow-density relationship in the vicinity of a bus
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Figure 6: equilibrium flow-density relationship in the moving frame
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Figure 7: equilibrium demand and supply relationships in the moving frame
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Figure 8: Relative demand 1
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Figure 10: Relative supply 1
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Figure 12: Riemann problem, BCY
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Figure 14: Riemann problem, BCj
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Figure 17: Perturbation resulting from the presence of a bus
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Figure 18: Bus exerting no effect on traffic flow
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Figures: The Godunov scheme and its application to buses
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The moving discretization
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The fixed discretization
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