
Handling Substitutions Expli
itelyin the �{Cal
ulusDaniel Hirs
hkoffF�evrier 1999No 99-163

Handling Substitutions Expli
itelyin the �{Cal
ulusDaniel Hirs
hkoffR�esum�eNous reprenons la d�emar
he menant �a l'introdu
tion des �{
al
ulsave
 substitutions expli
ites �s et �� pour pr�esenter �s et ��, quise veulent une des
ription des m�e
anismes mis en �uvre dans le �{
al
ul pour la manipulation des noms. Alors que �s fait intervenirdes op�erateurs sur les index de De Bruijn dans la syntaxe des ter-mes,
e qui en fait un bon point de d�epart a�n de
omprendre lanotation de De Bruijn pour le �{
al
ul, �� est un
al
ul de noms, ter-mes et substitutions. Cela se traduit en parti
ulier par le fait que lesop�erations faisant intervenir les substitutions sont introduites sous parl'interm�ediaire d'un syst�eme de r�e�e
riture. Nous �etablissons une
orre-spondan
e �etroite entre les notions de bisimilarit�e asso
i�ees �a
es deux
al
uls, ainsi qu'ave
 une troisi�eme notion, qui
orrespond aux ter-mes \usuels" en notation de De Bruijn. Le pr�esent travail donne unedes
ription formelle de l'intera
tion entre les deux op�erateurs liantsdu �{
al
ul,
e qui permet de mieux
omprendre le
omportementde l'op�erateur de restri
tion, et peut pr�esenter un int�erêt en termesd'impl�ementation (en parti
ulier dans un assistant �a la preuve).

Abstra
tWe present two
al
uli aimed at des
ribing the me
hanism of namemanipulation in the �{
al
ulus. Pla
ing ourselves in the frameworkof the �s and ��
al
uli, we de�ne �s and ��. The former
al
ulusin
ludes operators on De Bruijn indi
es, and is �rst introdu
ed to givean intuitive des
ription of the De Bruijn representation of �{
al
ulusterms. The latter is a
al
ulus of expli
it substitutions, where thepart
orresponding to name manipulation is de�ned as a Term RewriteSystem. We introdu
e the two
orresponding notions of bisimulation,and show that they
an be put in
orresponden
e; in doing this, weestablish a relation with what
ould be
onsidered \usual" bisimulationon �{
al
ulus terms in De Bruijn notation. These results shed light onthe me
hanism of name{passing, whi
h
an be of interest both for theimplementation and the formal treatment (e.g. in a logi
al framework)of related
al
uli.

2

Introdu
tionCal
uli of expli
it substitutions originate in Categori
al Combinatory Logi
,and have been designed for many variants of �{
al
ulus and related for-malisms (e.g. type systems, natural dedu
tion, or higher{order logi
s).Besides the treatment of (fun
tional) sequential
omputation, su
h an ap-proa
h has also been re
ently adopted to study the obje
t{oriented paradigm[KL98, LLL98℄. Our goal in this paper is to provide a similar a

ount of
on
urren
y, through the analysis of one of his most popular algebrai
 mod-els, namely �{
al
ulus. We
on
entrate on the me
hanism of name{passing,whi
h lies at the heart of the expressiveness of this formalism, and try tounderstand it by des
ribing its e�e
t on �{
al
ulus terms. In this attempt,our work di�ers
onsiderably from [FMQ96℄, where a
al
ulus of expli
itsubstitutions (
alled ��) is introdu
ed by fo
using rather on the environ-ment of a �{
al
ulus pro
ess during its exe
ution. We shall return on thispoint later on.In name{passing
al
uli, the means of
ommuni
ations (typi
ally
han-nels, or names)
an be used as the obje
t of the
ommuni
ation; within su
han approa
h, one
an des
ribe systems whose topology is
hanging along the
omputation, whi
h
an be sour
e of great expressiveness. In the �{
al
ulus,the only information being ex
hanged between pro
esses is names; this ishowever enough to en
ode many paradigms of
omputer s
ien
e, thanks tothe me
hanism of name extrusion. Name extrusion
an be illustrated on thefollowing example:
onsider the �{
al
ulus transitiona(x):P j (�
) a
:Q ��! (�
) (Px:=
 j Q) :We have here a pro
ess liable to re
eive a name x along some
hannel a,and then to behave like some pro
ess P : this term is written a(x):P . In thelatter expression, P depends in general on x (in the same way a �{term Mdepends on x in �x:M). In parallel with a(x):P , we �nd a pro
ess willingto send some value (i.e. name)
 on a, and then to pro
eed a

ording to Q.The information that is sent on a is not known to the re
eiver before the
ommuni
ation: this is represented using the restri
tion operator �, thatmakes the usage of
 private to a
:Q. We thus see that the �{
al
ulus hastwo binders, namely abstra
tion (embedded in the re
eiving pro
ess, andsometimes written �) and restri
tion (whi
h, as we shall see, is not dire
tlyrelated to the notion of substitution). As both pro
esses syn
hronise ona, they perform a �{transition, whi
h has two e�e
ts: in P , the formalparameter x is instan
iated by the value being re
eived, namely
; at thesame time, the name
 is now known by both a
tors of the syn
hronisation,1

hen
e the s
ope of the restri
tion on
 has grown: we observe the extrusionof name
.Let us now move to the framework of De Bruijn indi
es [dB72℄, and seehow these me
hanisms are implemented. Re
all that we are working withtwo binders, � and � (a(x):P and (�
) a
:Q should thus roughly look like\a�:P" and \�a0:Q" respe
tively { noti
e that we adopt the
onventionthat De Bruijn indi
es start at 0). From the emitter's point of view, noupdate on De Bruijn indi
es needs to be performed, sin
e the exe
utionenvironment has not been modi�ed; quite remarkably, this holds also forthe re
eiver, be
ause in P all names bound by the abstra
tion on x be
omebound by the restri
tion on
, whi
h means that nothing
hanges in theDe Bruijn representation of P . So the situation seems simpler than in �{
al
ulus, where �{redu
tion involves in general some updates in the freenames of the term; we re
over anyway su
h a phenomenon in the
ase ofthe
ommuni
ation of a free name (i.e. a name not bound by restri
tion),where a
tual instan
iation takes pla
e. Note however that in the �{
al
ulus,a name is always instan
iated with another name, while a whole term
anbe provided in the �{
al
ulus. We therefore need to be able to perform twobasi
 manipulations on names, that is repla
ement of a name with anothername, and name lifting, to preserve the \meaning" of De Bruijn indi
esas we
ross a binder. In the �{
al
ulus, we need another extra primitivemanipulation, whi
h is related to the behaviour of the restri
tion operator�. Consider indeed the term T = (�b)(�
) a
:Q; with respe
t to theemitting pro
ess seen above, we have another private name, b (but onlyprivate name
 get sent along a). As pro
ess T performs the emission ofprivate name
 along a, it \sends" the restri
tion on
, while the restri
tionon b remains above Q. What happens is that the restri
tion on
 somehow
rosses the restri
tion on b, whi
h will result using the De Bruijn notationin ex
hanging indi
es 0 and 1 in Q. This phenomenon leads to treat theability of permuting two
onse
utive indi
es in a term as a primitive a
tionin name manipulation.A

ording to the
onsiderations we just made, we fo
us on the followingversion of �{
al
ulus: the syntax of pro
esses is des
ribed byP = 0 j ab j a(b):P j (P1jP2) j (�x)P ;where a; b range over a basi
 sort of names. This is a monadi
, sum free,�nite, asyn
hronous
al
ulus. Polyadi
ity will be treated in Se
tion 4, whilethe other features are not relevant for our study (in parti
ular, the absen
eof a
ontinuation for emitting pro
esses implies that the examples seen above2

annot be dire
tly treated in our
al
ulus; this is anyway harmless, as thesame reasoning
ould be done within our language). The ina
tive pro
ess,0, is written in bold font to distinguish it from the De Bruijn's index 0. Wepresent below the operational semanti
s of our
al
ulus. A
tions, rangedover with �,
an be of three kinds, namely re
eptions (written a(b)), emis-sions (written a(b) or ab, depending whether the emitted name is private tothe sender or not), and syn
hronisations (written �). n(�), fn(�) and bn(�)denote respe
tively the sets of names, free and bound names of an a
tion �(bound names are de�ned by saying that b is bound in a(b)). Symmetri
alversions of rules parl,
omm1 and
lose1 are omitted.(inp) a(b):P a(
)��! Pb:=
 (out) ab ab�! 0(open) P ab�! P 0(�b)P a(~b)��! P 0 b 6= a (res) P ��! P 0(�x)P ��! (�x)P 0 x =2 n(�)(
omm1) P a(b)��! P 0 Q ab�! Q0P jQ ��! P 0jQ0 (parl) P ��! P 0P jQ ��! P 0jQ bn(�) \ fn(P) = ;(
lose1) P a(b)��! P 0 Q a(b)��! Q0P jQ ��! (�b) (P 0jQ0) b =2 fn(Q)Following the approa
h that is followed in the presentation of the �s{
al
ulus[KR95℄, we introdu
e �s, the
al
ulus of terms written in the De Bruijn no-tation. W.r.t. �s, we add to operators for substitution and name liftingan operator , to embed the permutation of two
onse
utive indi
es. In �sand �� the pro
ess of � redu
tion is de
omposed into a �{rule and somerules to
ompute the propagation of a substitution in the term; likewise, weintrodu
e here the operational semanti
s via two relations, written ��!s and s. ��!s
orresponds to the �ring of a transition, that
an generate one orseveral
omputations on names, des
ribed by s. As usual in the De Bruijnframework, some side
onditions in the de�nition of the transition relation
an be embedded in the implementation of ��!s, due to the representation ofbound names. This presentation naturally gives rise to a notion of bisimi-larity, written �s, that in
orporates both relations. One
an then re�ne thedes
ription of the
al
ulus, by adopting the point of view of the ��{
al
ulus,and de�ne ��. Within su
h an approa
h, we develop a
al
ulus of pro
essesand substitutions, where the
ounterpart of operator , written l, enri
hesthe
al
ulus � of ��. A
onsequen
e of this presentation is that the
orre-sponding relation � is de�ned as a \plain" Term Rewrite System (without3

ontrol stru
ture). One is then interested in relating both formalisms, andwe shall see that ��
an be
onsidered as giving a �ner a

ount on the termsdes
ribed by �s.As said above, our approa
h di�ers from [FMQ96℄, where the exe
utionof a �{
al
ulus pro
ess (with named variables) is des
ribed by providingan a

ount of the evolution of its environment, rather than by fo
using onthe updates to be made inside the term, as is the
ase here. In a
ertainsense, [FMQ96℄ is
lose to an implementation of �{
al
ulus terms, in a waythat is reminis
ent of the abstra
t ma
hine used to exe
ute PICT programs[Tur95℄, where typi
ally a � is viewed as a new
ommand, and where itsexe
ution results in adding a freshly
reated name in the heap of names. Inthe present work, our aim is to fo
us on the te
hni
al details that are hiddenin the traditional formal de�nition of �{
al
ulus terms. Su
h an approa
his in parti
ular of interest for a theorem prover formalisation of �{
al
ulus,where one may want to stay
lose to the \mathemati
al" de�nition ratherthan design a spe
i�
 implementation of pro
esses. At larger s
ale, su
han attempt
an also be interesting to understand the meaning of a namingoperator like �, that is not spe
i�
 to the �{
al
ulus.The plan of the paper is as follows. Se
tions 1 and 2 introdu
e the�s{
al
ulus and the ��{
al
ulus respe
tively, together with the
orrespond-ing notions of bisimilarity. Se
tion 3 is devoted to the
omparison of bothformalisms. We establish the
orresponden
e between the two des
riptions(Theorem 3.19), using in parti
ular an up{to te
hnique for bisimulation[San95℄. In Se
tion 4, we
omment on two variants of our approa
h, namelylate semanti
s and polyadi
ity, and dis
uss on the study of bisimilarity proofsin our setting. We
on
lude and dis
uss related work in Se
tion 5.1 The Monadi
 �s{
al
ulusWe present here an a

ount of �{
al
ulus terms in the De Bruijn notation,and try to give an intuition of this implementation; this part of our work is
lose to [Amb91℄, where a translation from �{
al
ulus terms with names intothe De Bruijn setting is presented. However, our presentation remains
loserto the tradition of substitutions
al
uli (�a la �s), by treating the operatorson names as part of the
al
ulus, and not at meta level. Su
h an approa
hnaturally �ts to the introdu
tion of �� in the next Se
tion.
4

1.1 SyntaxTerms of the �{
al
ulus are built upon a basi
 notion of name; in the DeBruijn notation, names (sometimes referred to as
hannels) are representedby natural numbers, interpreted as indi
es. The de�nition of the �s{
al
ulusfollows the approa
h of the �s
al
ulus [KR95℄; a

ordingly, the synta
ti
sorts of terms (and of names) in
lude operators, that expli
itely handle themanipulations to be made on De Bruijn indi
es.De�nition 1.1 (�s{
al
ulus { synta
ti
 sorts) The terms of the �s{
al-
ulus are de�ned as follows:a = N name values na = a j ops na namesops = hnaii j 'i j i operatorsP = 0 j ab j a�:P j (P1jP2) j �P j ops P pro
essesLet us
omment on the above de�nitions. The notion of name value shallbe useful in the de�nition of the semanti
s, and
orresponds to the sort ofnames where no o

urren
e of operators is allowed. Let us remark as wellthat we use here a form of overloading, as operators
an be applied bothto names and to pro
esses. We �nd here two operators from �s, namelysubstitution and lifting (written '), while operator is spe
i�
 to the �{
al
ulus; we shall des
ribe and justify the behaviour of these
onstru
tsbelow. Note that we do not have a pre
ise de�nition of \�{
al
ulus terms inthe De Bruijn notation", and instead dire
tly work within the �s{
al
ulus;however, we shall more or less retrieve su
h a notion in Se
tion 3, where weshall reason on �s pro
esses without o

urren
es of the operators (i.e. termsthat are in some way \fully evaluated" w.r.t. the
al
ulus of operators).1.2 Early Operational Semanti
s1.2.1 A
tionsWe now turn to the presentation of the behaviour of �s{
al
ulus terms, byde�ning an early operational semanti
s for pro
esses. The
hoi
e of an earlyversion of the semanti
s strongly in
uen
es our des
ription of the operationalsemanti
s, sin
e in su
h a framework one is
ompelled to know the shapeof the environment where the
ontinuation of a
omitting term shall beexe
uted. A

ordingly, we are led to separate re
eptions into bound and freeinput a
tions, in a way that is symmetri
al to what is usually done withoutput a
tions. We shall see in the next subse
tion that a syn
hronisation5

involving a name whi
h is private to the sender does not
hange the
ontextof the
ommuni
ating agents: the sender still \sees" the restri
tion after thesyn
hronisation, while from the point of view of the re
eiver, an abstra
tionhas been repla
ed by a restri
tion, still yielding the same meaning for the DeBruijn indi
es. On the
ontrary, a
ommuni
ation of a free name involves a\true" substitution, and has to be represented di�erently in our setting.The syntax for a
tions is as follows (we des
ribe the re
eption and theemission of a restri
ted name using a somewhat pe
uliar use of the restri
tionoperator �):De�nition 1.2 (A
tions) A
tions, ranged over by �, are de�ned by thefollowing syntax: � = a(b) j a(�) j ab j a(�) j � :bn(�) is the number of bound names of an a
tion, and is de�ned as follows:bn(�) = 0 for a
tions of the shape a(b), ab and � , bn(�) = 1 otherwise.Note that operators do not arise in the de�nition of a
tions: this isrelated to the introdu
tion of name values in De�nition 1.1, and will beexplained below.1.2.2 Representation of the Transition RulesThe behaviour of �s terms is des
ribed by two relations; the transitionrelation P ��!sP 0 (meaning that pro
ess P is liable to perform a
tion � andbe
ome pro
ess P 0) des
ribes the
ommuni
ating behaviour of terms, and s
orresponds to the
al
ulus of operators, as they are introdu
ed in thesyntax. We now
omment on the shape of the transition rules as they areimplemented in the De Bruijn notation; these rules are summed up on Figure1. The
omputation of operators, as de�ned on Figure 2, shall be justi�edalong the explanations below.The rules for pre�xed pro
esses are inp, inpb and out; they all involvea premise saying that the
omponents of the a
tion are name values. Thismeans that the pre�xes involved in a transition should be fully evaluated.Su
h a
ondition is indeed needed for the de�nition of both the operationalsemanti
s (where we have to mat
h two symmetri
 a
tions in order to infer asyn
hronisation) and the behavioural equivalen
e (the notion of simulationalso involves a mat
hing between two a
tions, namely those performed bythe pro
esses to be
ompared). This requirement is reminis
ent of the notion6

of weak head normal form for the �{
al
ulus, where the head of the term is
ompelled to be a variable1.The de�nition of rule out is straightforward. As said above, the re
ep-tion of a restri
ted (new) name
onsists, from the re
eiver point of view, inrepla
ing a � by a �; this is (partially) embedded in rule inpb, the � beingprovided as rule
lose is applied (see below). Rule inp
an be seen as a rulefor �{generation, the substitution of b for 0 in the re
eiving term being theresult of the transition: it is reminis
ent of the representation of the �{rulein the �s
al
ulus.Similarly, par and res
an be seen as the rules for ' and generationrespe
tively. They are both written using a form of abuse of notation, inorder to fa
torise the presentation; the subs
ript bn(�) in the o

urren
eof the operators is interpreted as follows: if bn(�) = 0, then the operatorredu
es to the identity (i.e. we apply no operator), while bn(�) = 1 impliesthat the operator should be taken as it is, without the subs
ript. Su
h anotation allows us to avoid des
ribing the various instan
es of rules res andpar, for ea
h kind of a
tion. In order to des
ribe the meaning of operators' and , we shall now suppose that bn(�) = 1. Rule par is used to infera transition for a parallel
omposition in the
ase where one pro
ess is per-forming the a
tion (here P) and the other one (Q) is wat
hing. bn(�) = 1means that when the syn
hronisation will take pla
e, and extra restri
tionwill be put between Q and its \environment"; therefore, in order to keepthe same meaning for the indi
es of free variables in Q, we have to lift allindi
es by 1: this is a
hieved by operator ' (the supers
ript 0
orrespondsto the depth where the modi�
ation is applied in the term { see below).This operator is thus akin to operator ' of the �s
al
ulus; its behaviour isgiven on Figure 2.Similarly, rule res des
ribes the behaviour of a restri
ted pro
ess in the
ase where the topmost restri
tion is not involved in the transition. Hereagain, we make use of a notation to abbreviate our presentation: "� standsfor an a
tion where all free names involved in the a
tion are of the form k+1,k 2 N (this in
ludes in parti
ular � a
tions), the a
tion � thus representingthe same a
tion where every k + 1 is repla
ed by k. Intuitively, whenevera pro
ess P is liable to perform a
tion "�, then �P
an perform the samea
tion \hidden" by a restri
tion: we thus have to de
rease the free variablesof � by one. In P 0, the result of this transition will be that the restri
tion1Moreover, this analogy
an be related to the en
odings of the lazy �{
al
ulus intothe �{
al
ulus [Mil92℄, where the strategy in \atta
king" �{terms by evaluation of theirtopmost redex is
losely mirrored on the way pro
esses evolve.7

that is
arried by the a
tion (re
all that we suppose bn(�) = 1) is on topof the \immobile" restri
tion, while it was under it before the transition:we therefore need an operator , to ex
hange indi
es 0 and 1 in P 0 (theevaluation rules of are given on Figure 2).In the
ase where the topmost restri
tion
orresponds to the name thatis emitted (that thus has to be 0), rule open applies (while res does not,for the a
tion is not of the shape "�): as before, the lo
ation of the emissionevolves from a + 1 into a, while the restri
tion gets \pi
ked up" by theemission. Symmetri
ally with respe
t to the inpb rule, pro
ess P 0 does notneed to be modi�ed, as it already \knows" the restri
tion that takes part inthe
ommuni
ation.We are left with the rules for syn
hronisation. Sin
e we work with anearly semanti
s, their formulation is easy, be
ause all the work has beendone before the
ommuni
ation takes pla
e.
omm and
lose are straight-forwardly introdu
ed to des
ribe syn
hronisation in the
ase of free andbound outputs respe
tively.(inp) a; b valuesa�:P a(b)��! hbi0 P (inp�) a valuea�:P a(�)��! P(out) a; b valuesab ab�! 0 (open) P a+10���! P 0� P a(�)��! P 0(par) P ��! P 0P jQ ��! P 0 j '0bn(�)Q (res) P "��! P 0� P ��! 0bn(�)P 0(
omm) P a(b)��! P 0 Q ab�! Q0P jQ ��! P 0jQ0 (
lose) P a(�)��! P 0 Q a(�)��! Q0P jQ ��! � (P 0jQ0)Figure 1: �s{
al
ulus Operational Semanti
s: relation ��!sFigure 1 presents the rules we have just exposed; as said above, rules(inp), (res), and (par)
an be seen as generation rules for operators �, and ' respe
tively. One
an remark that a transition involves at most one�{generation and zero or several ' and {generations. Relation s is thesmallest relation satisfying the rules of Figure 2. Ea
h operator is indexedby an integer representing the depth at whi
h it is applied, and whi
h gets8

in
remented ea
h time we
ross a binding
onstru
t (� or �).�{destru
tion hbii a s 8<: a if a < ib+ i if a = ia� 1 if a > i�{inp transition hbii a�:P s (hbii a)�:(hbii+1 P)�{res transition hbii �P s � (hbii+1P)�{out transition hbiia
 s hbiia(hbii
)�{| transition hbii(P1jP2) s hbiiP1 j hbiiP2�{0 transition hbii0 s 0'{destru
tion 'i a s � a if a < ia+ 1 if a � i'{inp transition 'i a�:P s ('i a)�:('i+1 P)'{res transition 'i �P s � ('i+1 P)'{out transition 'i ab s 'ia('ib)'{| transition 'i (P1jP2) s 'i P1 j 'i P2'{0 transition 'i 0 s 0 {destru
tion i a s 8>><>>: a if a < ii+ 1 if a = ii if a = i+ 1a if a > i+ 1 {inp transition i a�:P s (ia)�:(i+1P) {res transition i �P s � (i+1P) {out transition i ab s ia(ib) {| transition i (P1jP2) s iP1 j iP2 {0 transition i0 s 0Figure 2: Monadi
 �s{
al
ulus operators: relation s1.2.3 Behavioural Equivalen
eGiven the de�nition of relations ��!s and s, we de�ne an equivalen
e on�s terms as follows:De�nition 1.3 (�s) A relation R between terms of the �s{
al
ulus is ans{bisimulation i� whenever PRQ and P � s ��!s � sP 0, there exists Q0 s.t.9

Q � s ��!s � sQ0 and P 0RQ0, and the symmetri
al
ondition on transitions ofQ. s{bisimilarity, written �s, is the greatest s{bisimulation.Let us
omment on this de�nition. An observable transition of a pro
ess
orresponds here to the
omposition of � s, ��!s, and � s again. One
ouldwonder if we
an get rid of one of the two � s. The �rst one (before the �transition) is needed to trigger all possible evolvings of P and Q, in orderto respe
t the bran
hing stru
ture des
ribed by the notion of bisimulation:indeed, as no ��!s transition
an o

ur under an operator, we do not want tomiss some transitions be
ause some pre�xes are not \evaluated" in a pro
ess.One solution to get rid of the �rst � s
ould thus be to
onsider relations onterms where all topmost pre�xes are evaluated (whi
h would
orrespond toa notion of weak head normal form). Alternatively, one may want to avoidthe � s after the � step; this would amount to adopt a poli
y in writing ourrelations, so that terms involved in the relation are rea
hed right after the �transition. We have kept the de�nition above in order to allow any kind ofde�nition for the relations between pro
esses, by preserving symmetry; theproperties we shall prove in Se
tion 3
an help giving a pre
ise meaning tothe
onsiderations we have just made2.2 The Monadi
 ��{
al
ulusWe introdu
e here the ��{
al
ulus, whi
h is a
al
ulus of names, pro
essesand substitutions (as opposed to �s, where operators are \integrated" intoa
al
ulus of only pro
esses and names). �� provides a de�nition of thenames{handling me
hanism as a \plain" Term Rewrite System, while
ontrol
onstru
ts are used in �s to des
ribe manipulation of names.2.1 SyntaxThe syntax of ��{
al
ulus terms is given below; we simultaneously de�nenames (ranged over by a; b), pro
esses (ranged over by P) and substitutions(ranged over by s). A

ording to the presentation of ��, integers are notprimitive anymore, and are instead represented using
onstants 0 and ":2Note as well that the
hoi
es we examined are reminis
ent of the various notions ofweak equivalen
es or preorders on �{
al
ulus pro
esses, where �{transitions play the rôleof s moves, i.e. in some way of \unobservable" a
tions { see below.10

De�nition 2.1 (��{
al
ulus terms)a = 0 j a[s℄ namesP = 0 j ab j a�:P j (P1jP2) j �P j P [s℄ pro
essess = id j a:s j " j l j s Æ s substitutionsWith respe
t to the
al
ulus of substitutions of [ACCL91℄, we remarkthat we have an extra
onstant, written l, that will represent the operator of �s. As will be seen later on, this
onstant
an be en
oded in �, the
al
ulus of substitutions without l. We de
ide to keep it for the seek of
larity, and be
ause it
orresponds to a primitive operation in the de�nitionof the operational semanti
s. We shall use some
onventions to allievate thenotation of expli
it substitutions:Notations. (i) Substitutions
omposition involving " and l will sometimesbe noted without the Æ symbol, e.g. ""l.(ii) The representation of De Bruijn indi
es is abbreviated using under-lined natural numbers, by writing 1; 2; : : : . More generally, k stands for0[" : : : "| {z }k times℄ (also written 0["k℄).2.2 Semanti
sThe transition relation asso
iated to the terms of the ��{
al
ulus, writ-ten �!�, is dire
tly adapted from �!s. Values for names
orrespond to DeBruijn indi
es representants (written as underlined integers), and a
tionsare introdu
ed a

ordingly, exa
tly like in �s. �!� is de�ned on Figure 3.The
orresponding
al
ulus of substitutions, given by relation �, isde�ned on Figure 4. The rewrite rules
an be de
omposed into three sets; a�rst set of rules, involving all the substitutions
onstru
tors ex
ept l,
omesfrom the
al
ulus � of [ACCL91℄. Rules 0{l to "{"{l{s deal with
onstantl, while the rules at the bottom of the Figure propagate substitutions insideterms.De�nition 2.2 (��) �{bisimulation and �� are de�ned as in De�nition1.3, where ��!� and � repla
e ��!s and s respe
tively.3 Properties of �s and ��We now turn to the
omparison between �s and ��, and the asso
iatednotions of bisimilarity. As will be seen, it turns out that these
al
uli ba-si
ally des
ribe the same behaviours, and di�er only in the granularity of11

(inp) a; b valuesa�:P a(b)��! P [b:id℄ (inp�) a valuea�:P a(�)��! P(out) a; b valuesab ab�! 0 (
lose) P a(�)��! P 0 Q a(�)��! Q0P jQ ��! � (P 0jQ0)(par) P ��! P 0P jQ ��! P 0 j "bn(�)Q (res) P "��! P 0� P ��! lbn(�)P 0(
omm) P a(b)��! P 0 Q ab�! Q0P jQ ��! P 0jQ0 (open) P "a0��! P 0� P a(�)��! P 0Figure 3: ��{
al
ulus transition relationthe des
ription (�� being �ner than �s). A third notion of pro
esses,
or-responding to �{
al
ulus terms in De Bruijn notation, will arise along ourstudy.3.1 Con
uen
e Properties of the Substitutions Cal
uliWe �rst fo
us on the
al
uli of substitutions, given by relations s and �; we prove uniqueness of normal forms for relation �, and then de�nea translation from �s to �� that will allow to establish the same result for s.Proposition 3.1 � is strongly normalising.Proof. We exploit the strong normalisation of �, the subpart of ��[ACCL91℄ that handles substitutions, by en
oding the
al
ulus of substitu-tions of �� into a l{free
al
ulus, and en
oding the resulting
al
ulus ofpro
esses into ��.We de�ne a fun
tion U�!�, from �� to ��, on Figure 5; it is de
omposedinto three fun
tions, namely Un�!�, Up�!� and Us�!�, to
ompute the imageof respe
tively a name, a pro
ess, and a substitution (noti
e that De Bruijn'sindex 0
orresponds to 1 in ��). We easily verify that the de�nition of U�!�is well{typed. Moreover, we have the following property:Lemma 3.2 P �Q implies U�!�(P) +!� U�!�(Q).12

0{id 0[id℄ � 00{
ons 0[a:s℄ � a[℄{[℄ a[s℄[t℄ � a[s Æ t℄id{s id Æ s � s"{id " Æ id � ""{
ons " Æ (a:s) � s
ons{Æ (a:s) Æ t � a[t℄:(s Æ t)Æ{Æ (s1 Æ s2) Æ s3 � s1 Æ (s2 Æ s3)0{l 0[l℄ � 11{l 1[l℄ � 00{l{s 0[l Æ s℄ � 1[s℄1{l{s 1[l Æ s℄ � 0[s℄"{"{l " Æ (" Æ l) � " Æ ""{"{l{s " Æ (" Æ (l Æ s)) � " Æ (" Æ s)s{inp (a:�P)[s℄ � a[s℄:�(P [0:s Æ "℄)s{out (ab)s � a[s℄b[s℄s{� (�P)[s℄ � �(P [s℄)s{par (P1jP2)[s℄ � P1[s℄ j P2[s℄s{0 0[s℄ � 0Figure 4: Monadi
 ��{
al
ulus:
al
ulus of substitutionsWe then pro
eed by
ontradi
tion: if there is an in�nite �{derivationstarting from P , then there exists an in�nite !� derivation starting fromU�!�(P), whi
h is impossible by [ACCL91℄: this
on
ludes the proof. }Proposition 3.3 � is lo
ally
on
uent.Proof. By
riti
al pairs inspe
tion. }Newmann's lemma guarantees, using Propositions 3.1 and 3.3, the unique-ness of normal forms for �. Let us now turn to s; we exploit the resultswe just proved through a translation from �s into ��. We �rst need somenotation. 13

Un�!�(0) = 1 namesUn�!�(a[s℄) = Un�!�(a)[Us�!�(s)℄Up�!�(0) = 1 pro
essesUp�!�(a�:P) = (Un�!�(a)�Up�!�(P))Up�!�(ab) = (Un�!�(a)Un�!�(b))Up�!�(P1jP2) = (Up�!�(P1) Up�!�(P2))Up�!�(�P) = �Up�!�(P)Up�!�(P [s℄) = Up�!�(P)[Us�!�(s)℄Us�!�(id) = id substitutionsUs�!�(") = "Us�!�(a:s) = Un�!�(a):Us�!�(s)Us�!�(s1 Æ s2) = Us�!�(s1) Æ Us�!�(s2)Us�!�(l) = [(1["℄):1:""℄Figure 5: Fun
tion U�!�Abbreviations. We de�ne the following substitutions:idi(s) def= 0:1: : : : :i� 1:s ai def= idi(a["i℄:"i+1)"i def= idi("i+1) li def= idi(l Æ "i)De�nition 3.4 (Translation from �s{
al
ulus to ��{
al
ulus)The translation fun
tion T from �s to �� is de�ned on Figure 6. Note thatwe adopt an overloaded notation, so that T a
ts on names, pro
esses andoperators). Moreover, the translation of names and a
tions being straight-forward, we shall not mention appli
ations of T on su
h
onstru
ts, andwrite names and a
tions in the same way in �s and ��.We remark that T is inje
tive, whi
h will be useful below. As expe
ted,T allows us to re
e
t �s{transitions into ��{transitions:Lemma 3.5 (i) P sP 0 implies T (P) + �T (P 0)(ii) P ��!sP 0 i� T (P) ��!�T (P 0).This Lemma indi
ates that the evolution of a �s{pro
ess
an be simu-lated by its translation in ��; note that (ii) basi
ally boils down to saying14

k 2 N;T (k) = k namesT (ops na) = T (na)[T (ops)℄T (0) = 0 pro
essesT (a�:P) = T (a)�:T (P)T (ab) = T (a)T (b)T (P1jP2) = T (P1) j T (P2)T (�P) = �T (P)T (ops P) = T (P)[T (ops)℄T (�i) = "i operatorsT (i) = liT (haii) = ai:idFigure 6: Fun
tion Tthat the translation of an evaluated pre�x is itself an evaluated pre�x. Weeasily get strong normalisation for s:Proposition 3.6 s is strongly normalising.Proof. We pro
eed as in the proof of Proposition 3.1, and exploit thestrong normalisation of � by en
oding a s{transition into several (ingeneral) �{transitions, using Lemma 3.5. }We
an thus talk about normal forms for s; they are des
ribed usingthe following Lemma:Lemma 3.7 (Des
ription of s{normal forms) Every �s{term redu
esto a term des
ribed by the following syntax:a = N; P = 0 j ab j a�:P j (P1jP2) j �P :Clearly, a pro
ess P that obeys this syntax
annot be rewritten using s;this also holds for T (P), using �.To establish the
on
uen
e of s, we need some results about pro
essesthat
annot evolve using �. 15

Notation. We write P � to mean that there exists P 0 s.t. P �P 0; whenthis does not hold, we write P 6 � (we extend this notation to 6 s). Forany pro
ess P of the ��{
al
ulus, we de�ne P#� as the unique pro
ess P0su
h that P � �P0 and P0 6 �. A

ordingly, we write P � �P 0#� to denotethe
omputation of a normal form for �.Lemma 3.8 (P 6 s) , (T (P) 6 �).Proof. (: by Lemma 3.5.): by Lemma 3.7. }Proposition 3.9 s is lo
ally
on
uent.Proof. Suppose that we have a �s{pro
ess P and two terms P1 andP2 s.t. P sP1, P sP2. By n�therianity of s, we
an
ompute a termQ1 s.t. P1 � sQ1 and Q1 6 s, and similarly Q2 from P2. Suppose thenthat we have Q1 6= Q2; by Lemma 3.8 and inje
tivity of T , we have thatT (Q1) 6 �, T (Q2) 6 �, and T (Q1) 6= T (Q2). But, using Lemma 3.5, we
anre
onstru
t the
omputation paths from T (P) to T (Q1) and T (Q2): this
ontradi
ts the uniqueness of normal forms for �. We thus have Q1 = Q2,and s is lo
ally
on
uent. }We thus have uniqueness of normal forms for s; this allows us to in-trodu
e the notation P#s.Lemma 3.10 T (P#s) = T (P)#�. Re
ipro
ally, P 6 � implies 9P0: P =T (P0) ^ P0 6#s.3.2 Relating Behavioural Equivalen
esWe now turn to the
omparison between �s and ��. For this task, we�rst prove some results that allow us to reason on terms whi
h
annot berewritten using �. Similar properties for s will then make it possible toestablish a
lose
orresponden
e between �s and ��. We �rst introdu
e anuseful up{to te
hnique [San95℄; to do this, we need to show that relations � and ��!�
ommute, whi
h intuitively is guaranteed by the requirementon pre�xes to be evaluated in order to �re a ��!�{transition:Lemma 3.11 Suppose P ��!�Q and P � �P 0; then there exists Q0 s.t. Q � �Q0and Q ��!�Q0.
16

Theorem 3.12 (�{bisimulation up to � proof te
hnique) We say thata relation R progresses to a relation S, written R! S, i� whenever P RQand P � � ��!� � �P 0, there exists Q0 s.t. Q � � ��!� � �Q0 and P 0 S Q0, and thesymmetri
al
ondition on transitions of Q.Given a relation R, we de�ne F�(R) as follows:F�(R) = R [f(P;Q#�): P RQg [f(P#� ; Q): P RQg :Then, for any relation R, R ! F�(R) implies R � ��.Proof. We apply the theory of progressions of relations of [San95℄, andprove that F� is respe
tful, i.e. that (R � S and R!�S) implies (F�(R) �F�(S) and F�(R)!�F�(S)). This is indeed suÆ
ient to obtain the desiredresult. The �rst property is immediate. For the se
ond one, supposeR!�S,and take (A;B) 2 F�(R). We only treat the
ase (A;B) = (P;Q#�), the
ase ARB being trivial and the other
ase being fully symmetri
al.Suppose then Q#� ��!� � �Q0: this is the easy,
ase, sin
e this meansthat Q � �Q#� ��!� � �Q0, and by hypothesis sin
e P RQ, there exists P 0s.t. P � � ��!� � �P 0 and P 0 S Q0. Then we have indeed P 0 F�(S)Q0.The interesting
ase is when P � � ��!� � �P 0. By hypothesis, we
anexhibit Q1, Q2 and Q0 s.t. Q � �Q1 ��!�Q2 � �Q0 and P 0 S Q0. By
on
uen
eof �, sin
e Q � �Q1, Q1 � �Q#�; then, sin
e Q1 � �Q#� and Q1 ��!�Q2, byLemma 3.11, we
an exhibit a pro
ess T s.t. Q#� ��!�R and Q2 � �R. Wenow have Q2 � �Q0 and Q2 � �R: still by
on
uen
e of �, they both redu
eby � � into Q0#�. Finally, we have Q#� ��!�R � �Q0#�, and sin
e P 0 S Q0,P 0 F�(S)Q0#� , whi
h
on
ludes the proof. Here is a s
hema to illustrate thereasoning we make:
Q0P
Q0#�
P 0Q1Q Q2RQ#�

��
�

(3.11)|R| |R|
}We
an now establish the following property, that is also in some sensea proof te
hnique, needed to obtain our �rst main result (Theorem 3.14):17

Proposition 3.13 Suppose we have two ��{pro
esses Q and Q0 s.t. Q � �Q0;then (P��Q) i� (P��Q0).Proof.): let R be a �{bisimulation s.t. P RQ. We show thatR0 = R[f(P;Q0)g is a �{bisimulation up to �; the only interesting
ase isgiven by the pair (P;Q0). Suppose then P � � ��!� � �P 0, then by hypothesisthere exist Q1, Q2 and Q3 s.t. Q � �Q1 ��!�Q2 � �Q3 and P 0RQ3. Sin
eQ � �Q1 and Q � �Q0, by
on
uen
e we get Q0 � �Q#� and Q1 � �Q#�. Now,as Q1 ��!�Q2 and Q1 � �Q#�, by Lemma 3.11 we
an exhibit R s.t. Q#� ��!�Rand Q2 � �R. We �nally use the
on
uen
e of � � to show that, sin
eQ2 � �R and Q2 � �Q3, R � �Q3#�. We thus have Q0 � �Q#� ��!�R � �Q3#�,and P 0 F�(R0)Q3#� (be
ause P 0RQ3).P
Q3#�
P 0Q1Q Q2RQ#�

��
�

(3.11)Q0 Q3|R| |R|
The
ase where Q0 � � ��!� � �Q00 is mu
h easier, sin
e this means thatQ � � ��!� � �Q00, and by hypothesis we
an exhibit P 0 s.t. P � � ��!� � �P 0and P 0RQ00, thus P 0F�(R0)Q00.(: we now have a �{bisimulation R s.t. P RQ0. We take R0 = R [f(P;Q)g, and prove that R0 is a �{bisimulation. The proof is as in the
aseabove. }Theorem 3.14 P��Q i� P#���Q#�.Proof. Use Proposition 3.13 and the symmetry of ��. }Manipulating pro
esses of the form P#� suggests another notion of bisim-ulation, relating only su
h terms:De�nition 3.15 (��#) A relation R between ��{pro
esses is a ��#{bisimu-lation i� for all (P;Q) 2 R, P 6 �, Q 6 �, and, whenever P ��!� � �P 0#�,there exists Q0 s.t. Q ��!� � �Q0#� and P 0#�RQ0#�, and the symmetri
al
on-dition on transitions of Q. ��# is the greatest ��#{bisimulation.18

Lemma 3.16 P#���Q#� i� P#���#Q#�.Proof.): let R be a ��{bisimulation s.t. P RQ. De�ne R0 =f(X#� ; Y#�):X RY g. We obviously have P#�R0Q#�; let us prove that R' isa ��#{bisimulation.Suppose then X#�R0 Y#� andX#� ��!� � �X 0#�; then by hypothesis, thereexists Y 0 s.t. Y ��!� � �Y 0 and X 0RY 0. This shows that Y ��!� � �Y 0#� andX 0R0 Y 0#�. The symmetri

ase is treated in an identi
al fashion.(: R is now a ��#{bisimulation s.t. P#�RQ#�,
onsiderR0 = f(X;Y):X RY#� _X#�RY g :To prove that R' is a ��{bisimulation, we
onsider a transition X � �X1 ��!�X2 � �X 0; by
on
uen
e of �, X1 � �X#�, and hen
e using Lemma 3.11,we
an exhibit T s.t. X#� ��!�T and X2 � �T . We use again the
on
u-en
e of � to show that T � �X 0#�, and we thus have X#� ��!�T � �#X 0#�.Using the hypothesis that R is a ��#{bisimulation, we
an exhibit Y 0#�s.t. Y#� ��!� � �Y 0#� and X 0#�RY 0#�. This is enough, be
ause we haveY � �Y#� ��!� � �Y 0#� , and X 0R0 Y 0#� , sin
e X 0#�RY 0#� . }Lemma 3.16 is interesting be
ause��#{bisimulations are in general \mu
hsmaller" than full ��{bisimulations, as the proof above suggests. Faithfullyfollowing the reasoning above3, we establish
orresponding results for �s:Theorem 3.17 (i) P�sQ i� P#s�sQ#s and (ii) P#s�sQ#s i� P#s�s#Q#s.Intuitively, the notions of �s#{ and ��#{bisimulation
orrespond tobisimulation on \usual" �{
al
ulus terms in the De Bruijn notation: a tran-sition of su
h a term
orresponds to a transition in one of these
al
ulifollowed by the full evaluation a

ording to the
orresponding
al
ulus ofsubstitutions. We shall now make su
h a
orresponden
e more pre
ise, byrelating �s# and ��#, using T .Corollary 3.18 (of Lemma 3.5) P#s ��!sP 0 i� T (P#s) ��!�T (P 0).Theorem 3.19 P�sQ i� T (P)��T (Q).Proof. Using Theorems 3.14 and 3.17 and Lemma 3.16, we show thatP#s�s#Q#s i� T (P#s)��#T (Q#s).3In parti
ular, due to the similar de�nitions of �s and ��, the
ounterpart of Lemma3.11 is proved in the same way. 19

): let R be a �s#{bisimulation, we show thatT (R) = f(T (P);T (Q)): P RQgis a ��#{bisimulation. Indeed, whenever we have T (P)T (R)T (Q) andT (P) ��!� � �P 0#�, we
an use results 3.18 and 3.10 to show that P ��!s � sP0#�and that T (P0) = P 0. By hypothesis, we
an now exhibitQ0 s.t. Q ��!s � sQ0#sand P0RQ0. Using again 3.18 and 3.10, we get that T (Q) ��!s � �T (Q0)#� ,and we have P 0 = T (P0)T (R)T (Q0).(: R being a ��#{bisimulation, we know by Lemma 3.10 that R =T (R0) for some �s relation R0. Consider now (T (P);T (Q)) 2 R, and apro
ess P 0 s.t. T (P) ��!� � �P 0#� ; we have again P 0#� = T (P0#s) for someP0. As above, this implies P ��!s � sP0#s, and thus by hypothesis there existsQ0 s.t. Q ��!s � sQ0#s and P0#sR0Q0#s, and T (Q) ��!� � �T (Q0)#� , whi
h
on
ludes the proof be
ause P 0#� = T (P0#s)RT (Q0#s). }The results we have established (Theorems 3.14, 3.17 and 3.19) providegreat freedom in the strategy for
omputing manipulations on names, whi
h
an lead to the design of several equivalent notions of bisimulation. In par-ti
ular, one
ould be interested in avoiding useless
omputations, that typi-
ally arise in presen
e of dead
ode (e.g. terms of the shape (�a) ax:P) or in
onjun
tion with the bisimulation up to parallel
omposition proof te
hnique[San95℄, where it should be possible to dis
ard some terms without
omput-ing the substitutions inside them. Indeed, the
all{by{need
avour imposedby the de�nition of the transition relations suggests a \lazy"
omputation ofrelations , that
ould perhaps be performed along the
omputation of ��!steps in an implementation. Along these lines, the relationship with weak�{
al
uli of expli
it substitutions [CHL96℄
ould be investigated.4 Dis
ussion { VariantsWe brie
y dis
uss some topi
s related to our
al
uli, belonging to variantsor extensions of the present work.4.1 Late Operational Semanti
sNot mu
h work has to be done to adapt our study to late semanti
s. We
anindeed modify the rules for relations ��!s and ��!� so that the substitutionis generated only at syn
hronisation time. This a
tually leads to a simpler20

presentation4, be
ause no substitution takes pla
e in the inp rule, so thatthere is no need to distinguish between bound and free inputs (note thatname b in an input a
tion of the shape a(b) is then
onsidered to be bound).We only show here those rules that have to be reformulated in this setting,for �s{
al
ulus: (inp) a:�P a(b)��! P(
omm) P a(b)��! P 0 Q ab�! Q0P jQ ��! P 0hbi0 j Q0 (
lose) P a(0)��! P 0 Q a(�)��! Q0P jQ ��! �(P 0jQ0)4.2 The Polyadi
 CaseGoing from monadi
 �{
al
ulus to polyadi
 [Mil91℄ is not as easy5. Wepresent here a preliminary attempt at extending the de�nition of �s topolyadi
ity, and leave the
omplete development of polyadi
 �s for futurework.Syntax In the polyadi
 �{
al
ulus, a single
ommuni
ation
an involveseveral names: this means that operator � be
omes polyadi
, while � remainsmonadi
 (ea
h appli
ation of a restri
tion being dealt with using rule res oropen). Pro
esses of the polyadi
 �s{
al
ulus are des
ribed by the followingsyntax:a = N name values na = a j ops na names~b = [℄ j a:~b name lists ops = h~biik j 'ik j n;k operatorsP = 0 j a[~b℄ j a�k:P j (P1jP2) j �P j ops P pro
essesA substitution h~biik shall sometimes be written hb1; : : : ; bniik, and rangedover with �ik.Semanti
s The syntax of a
tions has to be modi�ed so that we only have �and bound re
eptions and emissions, of the form �k a(~b) and �k a[~b℄, the
aseof free a
tions being re
overed for k = 0 (we range over name lists with ~b).4However, no
on
eptual di�eren
e arises between both approa
hes; we preferred anearly presentation to stay as
lose as possible to the formalisation of [Hir97℄ { see below.5In parti
ular, the situation does not resemble the introdu
tion of pairs in the �{
al
ulus, where a parti
ular shape of terms is added and
an take part in a substitution.Here, as terms
annot be ex
hanged in
ommuni
ation, we have to redesign the me
hanismof
omputation at a deeper level to work with tuples of names instead of names.21

A

ordingly, the operators introdu
ed by the transition relation are a littlemore intri
ate; in parti
ular, as we apply rule res, the restri
tion we examine
rosses the several (in general) restri
tions involved in the a
tion, whi
hmeans that operator of the �s{
al
ulus now has to perform a
ir
ularpermutation on indi
es 0 to k, where k is the number of bound names inthe a
tion. (inp) a valuea�n:P �k a(~b)����! h~bi0n�k P (out) a;~b valuesa[~b℄ �0 a[~b℄���! 0(par) P ��! P 0P jQ ��! P 0 j '0b(�)Q (
lose) P �k a(~b)����! P 0 Q �k a[~b℄����! Q0P jQ ��! �k (P 0jQ0)(res) P "��! P 0� P ��! b(�);0P 0 (open) P �k"a[~b℄����! P 0� P �k+1a[~b℄�����! P 0 \k 2 ~b "Figure 7: Operational Semanti
s of Polyadi
 ��{
al
ulusFigure 7 presents the operational semanti
s of the
al
ulus (relation ��!s;note that sin
e we only work with bound inputs and outputs, we get rid ofrules inpb { whi
h is subsumed by rule inp { and
omm). Note that thenotation "� denotes here a more
ompli
ate predi
ate on a
tions than inthe monadi

ase, as a
tions may
arry several bound names; this holds alsofor the side
ondition \k 2 ~b " for rule open, the details of whi
h we willnot enter here. The
al
ulus of operators
orresponding to relation s isde�ned on Figure 8.Bisimulation The real diÆ
ulty in working in a polyadi
 setting
omesat the level of the de�nition of behavioural equivalen
e. Indeed, due tothe more
omplex stru
ture of a
tions, we fa
e the question of mat
hingtwo equivalent bound output a
tions. In the literature, a
ommonly usedabuse of notation allows one to silently permute the names of ~b0 in a boundoutput a
tion of the form (�~b0) a[~b℄ (where ~b0 � ~b), so that the
olle
tionof names ~b0 a
tually has a set stru
ture rather than a ve
tor stru
ture, asthe notation suggests. In a De Bruijn setting, however, su
h an operation isnot inno
uous, as it
hanges the representation of the term performing theoutput a
tion. 22

�{destru
tion hb1; : : : ; bniik a s 8<: a if n < iba�i+1 + i if i � a < i+ na� k if i+ n � a�{inp transition �ik a�n:P s (�ik a)�n:(�i+nk P)�{res transition �ik �P s � (�i+1k P)�{out transition �ik (a[~b℄) s �ika[�ik~b℄�{| transition �ik(P1jP2) s �ikP1 j �ikP2�{0 transition �ik0 s 0'{destru
tion 'ik a s � a if a < ia+ k if a � i'{inp transition 'ik a�n:P s ('ik a)�n:('i+nk P)'{res transition 'ik �P s � ('i+1k P)'{out transition 'ik (a[~b℄) s 'ika['ik~b℄'{| transition 'ik (P1jP2) s 'ik P1 j 'ik P2'{0 transition 'ik 0 s 0 {destru
tion n;k a s 8>><>>: a if a < ka+ 1 if k � a < k + nk if i = k + na if i > k + n {inp transition n;k a�m:P s (n;ka)�m:(n+m;k+mP) {res transition n;k �P s � (n+1;k+1P) {out transition n;k (a[~b℄) s n;ka[n;k~b℄ {| transition n;k (P1jP2) s n;kP1 j n;kP2 {0 transition n;k0 s 0Figure 8: Polyadi
 �s{
al
ulus operators: relation sAs we introdu
e bisimulation, we want to
ompare the a
tions performedby two pro
esses; there are a priori two solutions to ta
kle the problem of
omparing bound output a
tions (noti
e that
omparing bound input a
tionsis harmless, sin
e the disposition of bound names in an input is not imposedby the shape of the term performing the transition):- One
an introdu
e an equivalen
e relation on a
tions so that the setstru
ture of ~b0 is implemented (whi
h amounts to embed in the systemthe property (�x)(�y)P � (�y)(�x)P). The transition relation is thende�ned using this equivalen
e, whi
h
an result in the appli
ation of23

some operators to the pro
esses
oming from a transition. We thereforede�ne a judgment of the form ops ` � = �0 (a
tually ops will rangeover an extended syntax for operators w.r.t. the one given above { theextension is however straightforward):De�nition 4.1 (Equality on a
tions) The judgment
orrespondingto equality on a
tions is de�ned by the following rules:id ` � = � op ` �ka[~b℄ = �ka0[~b0℄ i;j Æ op ` �ka[~b℄ = �k(i;ja0)[i;j~b0℄ i; j < kDe�nition 4.2 (Extended Transition Relation) We de�ne tran-sition relation ��!s0 by adding to the rules of Figure 7 the followingtransition rule: P ��!sP 0 op ` � = �0P �0�!s0opP 0 :Bisimulation is the de�ned using relations ��!s0 and s, as in themonadi

ase.- Alternatively, one
an de�ne a notion of
anoni
al form for bound out-put a
tions, so that a unique permutation on bound names is
hosenfor every a
tion, and
omparison of a
tions redu
es to synta
ti
 equal-ity. This solution, whi
h we �nd
loser to the De Bruijn approa
h,involves some quite tedious
omputation on De Bruijn indi
es ea
htime rule open is applied, to preserve the property of
anoni
ity forthe inferred a
tions. It is introdu
ed in [Hir99℄. For la
k of spa
e, wedo not enter the details of the
orresponding de�nitions.4.3 Bisimilarity Proofs and Stru
tural Congruen
eWhile in �� and its variants,
on
uen
e properties are a
entral issue, thereis no real notion of su
h a \ben
hmark" in our setting. This
omes fromthe fa
t that the \transition" part of the semanti
s (relation ��!) and the\substitutions" part (relation) do not really interfer, whi
h results in the
lose similarity between �s and ��. Su
h an interplay would however ariseif we were to perform bisimilarity proofs, whi
h is beyond the s
ope of thiswork. In [Hir97℄, some bisimilarity results, in
luding the laws of stru
tural
ongruen
e, are me
hani
ally
he
ked using a theorem prover, in a
ontext24

that is very
lose to (polyadi
) �s{
al
ulus. This development involves theproof of some te
hni
al lemmas relating relations ��! and ; to quote anexample, we establish a property that would be stated as follows in �s:8P; P 0; �; i: ('i P "��!s 'i+bn(�)bn(�) P 0)) (P ��!sP 0) :Considering the large size of the implementation presented in [Hir97℄ (about800 lemmas, 75% of them being purely te
hni
al), it seems impossible to givea
omplete a

ount of these proofs on paper, in the setting of the �s{ or��{
al
uli.Let us noti
e as well that the aforementioned laws of stru
tural
ongru-en
e, seen as a
onsequen
e of the de�nition of the operational semanti
s,
ould serve to make pre
ise the relation with a redu
tional semanti
s for the�{
al
ulus (that typi
ally leads to a multi{set semanti
s for pro
esses, akinto the
hemi
al metaphor [BB92℄).5 Con
lusionWe have presented two
al
uli that provide a des
ription of the me
hanism ofname manipulation in the �{
al
ulus, and shown that they basi
ally des
ribethe same behaviour, leaving great freedom to the user to design a strategyfor
omputation on names.The ��{
al
ulus nearly
ontains the ma
hinery needed in �� (ex
eptthat we only substitute names for names). It
ould be interesting to makethis observation more pre
ise, possibly by adapting our work to the BlueCal
ulus [Bou97℄, that is a super
al
ulus of both the �{ and the �{
al
ulus.Along the same lines, our treatment of the restri
tion operator
ould beadapted to other
al
uli
ontaining a similar
onstru
t, e.g. [Ode94℄.As said in Se
tion 1, the de�nitions of �s and �� are reminis
ent of weakbisimilarity, where � moves are treated as unobservable in the de�nition ofthe equivalen
e. It thus seems natural to introdu
e�s (and ��), by allowingboth s and ��!s transitions to be �red silently. The study of the equivalen
eindu
ed by su
h a de�nition seems far from being trivial, basi
ally be
ausewe would lose the \determinism" (strong normalisation and
on
uen
e) ofthe unobservable
omputations.A
knowledgments We would like to thank Ren�e Lalement for useful dis-
ussions about this work. 25

Referen
es[ACCL91℄ M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Expli
itsubstitutions. Journal of Fun
tional Programming, 1(4):375{416,1991.[Amb91℄ Simon J. Ambler. A de Bruijn notation for the �-
al
ulus. Te
h-ni
al Report 569, Dept. of Computer S
ien
e, Queen Mary andWest�eld College, London, May 1991.[BB92℄ G. Berry and G. Boudol. The
hemi
al abstra
t ma
hine. TCS,96:217{248, 1992.[Bou97℄ G. Boudol. The pi-
al
ulus in dire
t style. In Pro
eedings ofPOPL '97, pages 228{241, 1997.[CHL96℄ P.-L. Curien, T. Hardin, and J.-J. L�evy. Con
uen
e propertiesof weak and strong
al
uli of expli
it substitutions. Journal ofthe ACM, 43(2):362{397, 1996.[dB72℄ N.G. de Bruijn. Lambda Cal
ulus Notation with Nameless Dum-mies: a Tool for Automati
 Formula Manipulation, with Appli-
ation to the Cur
h-Rosser Theorem. In Indagationes Mathemat-i
ae, volume 34, pages 381{392. 1972.[FMQ96℄ G. Ferrari, U. Montanari, and P. Quaglia. A �{
al
ulus withExpli
it Substitutions. TCS, 168(1):53{103, November 1996.[Hir97℄ D. Hirs
hko�. A full formalisation of �-
al
ulus theory in theCal
ulus of Constru
tions. In Pro
eedings of TPHOL'97, volume1275, pages 153{169. LNCS, Springer Verlag, 1997.[Hir99℄ D. Hirs
hko�. Mise en �uvre de preuves de bisimulation. PhDthesis, ENPC, Champs sur Marne, Fran
e, January 1999. infren
h.[KL98℄ D. Kesner and P.E. Mart��nez L�opez. Expli
it Substitutions forObje
ts and Fun
tions. In Pro
eedings of PLILP/ALP '98, num-ber 1490 in LNCS, pages 195{212. Springer Verlag, 1998.[KR95℄ F. Kamareddine and A. R��os. A �{
al
ulus �a la De Bruijn withexpli
it substitutions. In Pro
eedings of PLILP '95, number 982in LNCS, pages 45{62. Springer Verlag, 1995.26

[LLL98℄ F. Lang, P. Les
anne, and L. Liquori. A Framework for De�n-ing Obje
t{Cal
uli. Te
hni
al Report 1998{51, LIP, ENS Lyon,1998.[Mil91℄ R. Milner. The polyadi
 �-
al
ulus: a tutorial. Te
hni
al ReportECS-LFCS-91-180, LFCS, O
tober 1991. Also in Logi
 and Alge-bra of Spe
i�
ation, ed. F. L. Bauer, W. Brauer and H. S
hwi
ht-enberg, Springer-Verlag, 1993.[Mil92℄ R. Milner. Fun
tions as pro
esses. Journal of Mathemati
alStru
tures in Computer S
ien
e, 2(2):119{141, 1992.[Ode94℄ M. Odersky. A Fun
tional Theory of Lo
al Names. In Pro
eedingsof POPL '94, 1994.[San95℄ D. Sangiorgi. On the bisimulation proof method. Revised ver-sion of Te
hni
al Report ECS{LFCS{94{299, University of Ed-inburgh, 1994. An extended abstra
t
an be found in Pro
. ofMFCS'95, LNCS 969, 1995.[Tur95℄ D. N. Turner. The Polymorphi
 Pi{
al
ulus: Theory and Imple-mentation. PhD thesis, University of Edimburgh, 1995.

27

