Handling Substitutions Explicitely
in the m—Calculus

DANIEL HIRSCHKOFF
Février 1999

N? 99-163

Handling Substitutions Explicitely
in the m—Calculus

DANIEL HIRSCHKOFF

Résumé

Nous reprenons la démarche menant a I'introduction des A—calculs
avec substitutions explicites As et Ao pour présenter ws et wo, qui
se veulent une description des mécanismes mis en ceuvre dans le m—
calcul pour la manipulation des noms. Alors que ws fait intervenir
des opérateurs sur les index de De Bruijn dans la syntaxe des ter-
mes, ce qui en fait un bon point de départ afin de comprendre la
notation de De Bruijn pour le m—calcul, mo est un calcul de noms, ter-
mes et substitutions. Cela se traduit en particulier par le fait que les
opérations faisant intervenir les substitutions sont introduites sous par
PI'intermédiaire d’un systéme de réécriture. Nous établissons une corre-
spondance étroite entre les notions de bisimilarité associées & ces deux
calculs, ainsi qu’avec une troisiéme notion, qui correspond aux ter-
mes “usuels” en notation de De Bruijn. Le présent travail donne une
description formelle de l'interaction entre les deux opérateurs liants
du m—calcul, ce qui permet de mieux comprendre le comportement
de lopérateur de restriction, et peut présenter un intérét en termes
d’implémentation (en particulier dans un assistant a la preuve).

Abstract

We present two calculi aimed at describing the mechanism of name
manipulation in the m—calculus. Placing ourselves in the framework
of the A\s and Ao calculi, we define ws and wo. The former calculus
includes operators on De Bruijn indices, and is first introduced to give
an intuitive description of the De Bruijn representation of mw—calculus
terms. The latter is a calculus of explicit substitutions, where the
part corresponding to name manipulation is defined as a Term Rewrite
System. We introduce the two corresponding notions of bisimulation,
and show that they can be put in correspondence; in doing this, we
establish a relation with what could be considered “usual” bisimulation
on m—calculus terms in De Bruijn notation. These results shed light on
the mechanism of name—passing, which can be of interest both for the
implementation and the formal treatment (e.g. in a logical framework)
of related calculi.

Introduction

Calculi of explicit substitutions originate in Categorical Combinatory Logic,
and have been designed for many variants of A-calculus and related for-
malisms (e.g. type systems, natural deduction, or higher-order logics).
Besides the treatment of (functional) sequential computation, such an ap-
proach has also been recently adopted to study the object—oriented paradigm
[KL98, LLL98]. Our goal in this paper is to provide a similar account of
concurrency, through the analysis of one of his most popular algebraic mod-
els, namely m—calculus. We concentrate on the mechanism of name—passing,
which lies at the heart of the expressiveness of this formalism, and try to
understand it by describing its effect on m—calculus terms. In this attempt,
our work differs considerably from [FMQ96], where a calculus of explicit
substitutions (called 7€) is introduced by focusing rather on the environ-
ment of a m—calculus process during its execution. We shall return on this
point later on.

In name-passing calculi, the means of communications (typically chan-
nels, or names) can be used as the object of the communication; within such
an approach, one can describe systems whose topology is changing along the
computation, which can be source of great expressiveness. In the m—calculus,
the only information being exchanged between processes is names; this is
however enough to encode many paradigms of computer science, thanks to
the mechanism of name extrusion. Name extrusion can be illustrated on the
following example: consider the m—calculus transition

a(@).P | (v0)@e.Q 5 (ve) (Pree | Q).

We have here a process liable to receive a name = along some channel a,
and then to behave like some process P: this term is written a(x).P. In the
latter expression, P depends in general on z (in the same way a A\-term M
depends on z in Az. M). In parallel with a(z).P, we find a process willing
to send some value (i.e. name) ¢ on a, and then to proceed according to Q.
The information that is sent on « is not known to the receiver before the
communication: this is represented using the restriction operator v, that
makes the usage of ¢ private to ac.(). We thus see that the m—calculus has
two binders, namely abstraction (embedded in the receiving process, and
sometimes written \) and restriction (which, as we shall see, is not directly
related to the notion of substitution). As both processes synchronise on
a, they perform a 7—transition, which has two effects: in P, the formal
parameter z is instanciated by the value being received, namely c; at the
same time, the name c¢ is now known by both actors of the synchronisation,

hence the scope of the restriction on ¢ has grown: we observe the extrusion
of name c.

Let us now move to the framework of De Bruijn indices [dB72], and see
how these mechanisms are implemented. Recall that we are working with
two binders, A and v (a(z).P and (vc)ac.QQ should thus roughly look like
“aA.P” and “va0.Q)” respectively — notice that we adopt the convention
that De Bruijn indices start at 0). From the emitter’s point of view, no
update on De Bruijn indices needs to be performed, since the execution
environment has not been modified; quite remarkably, this holds also for
the receiver, because in P all names bound by the abstraction on x become
bound by the restriction on ¢, which means that nothing changes in the
De Bruijn representation of P. So the situation seems simpler than in A—
calculus, where f-reduction involves in general some updates in the free
names of the term; we recover anyway such a phenomenon in the case of
the communication of a free name (i.e. a name not bound by restriction),
where actual instanciation takes place. Note however that in the m—calculus,
a name is always instanciated with another name, while a whole term can
be provided in the A—calculus. We therefore need to be able to perform two
basic manipulations on names, that is replacement of a name with another
name, and name lifting, to preserve the “meaning” of De Bruijn indices
as we cross a binder. In the m—calculus, we need another extra primitive
manipulation, which is related to the behaviour of the restriction operator
v. Consider indeed the term 7' = (vb)(rc)ac.Q; with respect to the
emitting process seen above, we have another private name, b (but only
private name ¢ get sent along a). As process T' performs the emission of
private name c along a, it “sends” the restriction on ¢, while the restriction
on b remains above (). What happens is that the restriction on ¢ somehow
crosses the restriction on b, which will result using the De Bruijn notation
in exchanging indices 0 and 1 in). This phenomenon leads to treat the
ability of permuting two consecutive indices in a term as a primitive action
in name manipulation.

According to the considerations we just made, we focus on the following
version of m—calculus: the syntax of processes is described by

P = 0|ab|a®).P| (PP, | (va) P,

where a,b range over a basic sort of names. This is a monadic, sum free,
finite, asynchronous calculus. Polyadicity will be treated in Section 4, while
the other features are not relevant for our study (in particular, the absence
of a continuation for emitting processes implies that the examples seen above

cannot be directly treated in our calculus; this is anyway harmless, as the
same reasoning could be done within our language). The inactive process,
0, is written in bold font to distinguish it from the De Bruijn’s index 0. We
present below the operational semantics of our calculus. Actions, ranged
over with u, can be of three kinds, namely receptions (written a(b)), emis-
sions (written @(b) or @b, depending whether the emitted name is private to
the sender or not), and synchronisations (written 7). n(u), fn(x) and bn(u)
denote respectively the sets of names, free and bound names of an action
(bound names are defined by saying that b is bound in @(b)). Symmetrical
versions of rules PAR;, COMM; and CLOSE; are omitted.

e) ab).P “% P, (our)ab B0
ab
_P=P £aq

H /
= E L — o ¢ ()
(vb) P — P’

(opEN) (vz) P 5 (vz) P'

(RES)

a(b) ab_ B
P— P Q35Q PP fm(P) =
(M) 0 5 P o) o PlQ 5 P n NPy =0
(CLOSE;) r P Q Q b ¢ n(Q)

P|Q = (vb) (P'|Q)

Following the approach that is followed in the presentation of the As—calculus
[KR95], we introduce 7s, the calculus of terms written in the De Bruijn no-
tation. W.r.t. As, we add to operators for substitution and name lifting
an operator 1, to embed the permutation of two consecutive indices. In As
and Ao the process of 3 reduction is decomposed into a f-rule and some
rules to compute the propagation of a substitution in the term; likewise, we
introduce here the operational semantics via two relations, written ﬁ>s and
g, 54 corresponds to the firing of a transition, that can generate one or
several computations on names, described by ~~;. As usual in the De Bruijn
framework, some side conditions in the definition of the transition relation
can be embedded in the implementation of ﬁ>s, due to the representation of
bound names. This presentation naturally gives rise to a notion of bisimi-
larity, written ~, that incorporates both relations. One can then refine the
description of the calculus, by adopting the point of view of the Ao—calculus,
and define wo. Within such an approach, we develop a calculus of processes
and substitutions, where the counterpart of operator 1, written J, enriches
the calculus o of A\o. A consequence of this presentation is that the corre-
sponding relation ~», is defined as a “plain” Term Rewrite System (without

control structure). One is then interested in relating both formalisms, and
we shall see that mo can be considered as giving a finer account on the terms
described by 7s.

As said above, our approach differs from [FMQ96], where the execution
of a m—calculus process (with named variables) is described by providing
an account of the evolution of its environment, rather than by focusing on
the updates to be made inside the term, as is the case here. In a certain
sense, [FMQ96] is close to an implementation of m—calculus terms, in a way
that is reminiscent of the abstract machine used to execute PICT programs
[Tur95], where typically a v is viewed as a new command, and where its
execution results in adding a freshly created name in the heap of names. In
the present work, our aim is to focus on the technical details that are hidden
in the traditional formal definition of w—calculus terms. Such an approach
is in particular of interest for a theorem prover formalisation of m—calculus,
where one may want to stay close to the “mathematical” definition rather
than design a specific implementation of processes. At larger scale, such
an attempt can also be interesting to understand the meaning of a naming
operator like v, that is not specific to the m—calculus.

The plan of the paper is as follows. Sections 1 and 2 introduce the
mws—calculus and the mo—calculus respectively, together with the correspond-
ing notions of bisimilarity. Section 3 is devoted to the comparison of both
formalisms. We establish the correspondence between the two descriptions
(Theorem 3.19), using in particular an up—to technique for bisimulation
[San95]. In Section 4, we comment on two variants of our approach, namely
late semantics and polyadicity, and discuss on the study of bisimilarity proofs
in our setting. We conclude and discuss related work in Section 5.

1 The Monadic ws—calculus

We present here an account of m—calculus terms in the De Bruijn notation,
and try to give an intuition of this implementation; this part of our work is
close to [Amb91], where a translation from 7—calculus terms with names into
the De Bruijn setting is presented. However, our presentation remains closer
to the tradition of substitutions calculi (& la As), by treating the operators
on names as part of the calculus, and not at meta level. Such an approach
naturally fits to the introduction of wo in the next Section.

1.1 Syntax

Terms of the m—calculus are built upon a basic notion of name; in the De
Bruijn notation, names (sometimes referred to as channels) are represented
by natural numbers, interpreted as indices. The definition of the ws—calculus
follows the approach of the As calculus [KR95]; accordingly, the syntactic
sorts of terms (and of names) include operators, that explicitely handle the
manipulations to be made on De Bruijn indices.

Definition 1.1 (ws—calculus — syntactic sorts) The terms of the ws—cal-
culus are defined as follows:

a = N name values na = a | op;na names
op, = (na)’ | ©' | 4" operators
P =10]ab|a\P | (P|P) | vP | op, P processes

Let us comment on the above definitions. The notion of name value shall
be useful in the definition of the semantics, and corresponds to the sort of
names where no occurrence of operators is allowed. Let us remark as well
that we use here a form of overloading, as operators can be applied both
to names and to processes. We find here two operators from As, namely
substitution and lifting (written ¢), while operator v is specific to the 7
calculus; we shall describe and justify the behaviour of these constructs
below. Note that we do not have a precise definition of “w—calculus terms in
the De Bruijn notation”, and instead directly work within the ms—calculus;
however, we shall more or less retrieve such a notion in Section 3, where we
shall reason on 7s processes without occurrences of the operators (i.e. terms
that are in some way “fully evaluated” w.r.t. the calculus of operators).

1.2 Early Operational Semantics
1.2.1 Actions

We now turn to the presentation of the behaviour of ws—calculus terms, by
defining an early operational semantics for processes. The choice of an early
version of the semantics strongly influences our description of the operational
semantics, since in such a framework one is compelled to know the shape
of the environment where the continuation of a comitting term shall be
executed. Accordingly, we are led to separate receptions into bound and free
input actions, in a way that is symmetrical to what is usually done with
output actions. We shall see in the next subsection that a synchronisation

involving a name which is private to the sender does not change the context
of the communicating agents: the sender still “sees” the restriction after the
synchronisation, while from the point of view of the receiver, an abstraction
has been replaced by a restriction, still yielding the same meaning for the De
Bruijn indices. On the contrary, a communication of a free name involves a
“true” substitution, and has to be represented differently in our setting.

The syntax for actions is as follows (we describe the reception and the
emission of a restricted name using a somewhat peculiar use of the restriction
operator v):

Definition 1.2 (Actions) Actions, ranged over by u, are defined by the
following syntax:

wo= a(®) | a(v) | |aw) | .

bn(u) is the number of bound names of an action, and is defined as follows:
bu(u) = 0 for actions of the shape a(b), ab and 7, bu(u) = 1 otherwise.

Note that operators do not arise in the definition of actions: this is
related to the introduction of name values in Definition 1.1, and will be
explained below.

1.2.2 Representation of the Transition Rules

The behaviour of 7s terms is described by two relations; the transition
relation P, P’ (meaning that process P is liable to perform action p and
become process P’) describes the communicating behaviour of terms, and
~¢ corresponds to the calculus of operators, as they are introduced in the
syntax. We now comment on the shape of the transition rules as they are
implemented in the De Bruijn notation; these rules are summed up on Figure
1. The computation of operators, as defined on Figure 2, shall be justified
along the explanations below.

The rules for prefixed processes are INP, INP, and OUT; they all involve
a premise saying that the components of the action are name values. This
means that the prefixes involved in a transition should be fully evaluated.
Such a condition is indeed needed for the definition of both the operational
semantics (where we have to match two symmetric actions in order to infer a
synchronisation) and the behavioural equivalence (the notion of simulation
also involves a matching between two actions, namely those performed by
the processes to be compared). This requirement is reminiscent of the notion

of weak head normal form for the A—calculus, where the head of the term is
compelled to be a variable!.

The definition of rule OUT is straightforward. As said above, the recep-
tion of a restricted (new) name consists, from the receiver point of view, in
replacing a A by a v; this is (partially) embedded in rule INP,, the v being
provided as rule CLOSE is applied (see below). Rule INP can be seen as a rule
for o—generation, the substitution of b for 0 in the receiving term being the
result of the transition: it is reminiscent of the representation of the f—rule
in the As calculus.

Similarly, PAR and RES can be seen as the rules for ¢ and ¢ generation
respectively. They are both written using a form of abuse of notation, in
order to factorise the presentation; the subscript bn(u) in the occurrence
of the operators is interpreted as follows: if bn(u) = 0, then the operator
reduces to the identity (i.e. we apply no operator), while bn(y) = 1 implies
that the operator should be taken as it is, without the subscript. Such a
notation allows us to avoid describing the various instances of rules RES and
PAR, for each kind of action. In order to describe the meaning of operators
¢ and v, we shall now suppose that bn(u) = 1. Rule PAR is used to infer
a transition for a parallel composition in the case where one process is per-
forming the action (here P) and the other one (@) is watching. bn(u) =1
means that when the synchronisation will take place, and extra restriction
will be put between @) and its “environment”; therefore, in order to keep
the same meaning for the indices of free variables in (), we have to lift all
indices by 1: this is achieved by operator ¢ (the superscript 0 corresponds
to the depth where the modification is applied in the term — see below).
This operator is thus akin to operator ¢ of the As calculus; its behaviour is
given on Figure 2.

Similarly, rule RES describes the behaviour of a restricted process in the
case where the topmost restriction is not involved in the transition. Here
again, we make use of a notation to abbreviate our presentation: Tu stands
for an action where all free names involved in the action are of the form k+1,
k € N (this includes in particular 7 actions), the action p thus representing
the same action where every k + 1 is replaced by k. Intuitively, whenever
a process P is liable to perform action tp, then vP can perform the same
action “hidden” by a restriction: we thus have to decrease the free variables
of u by one. In P’, the result of this transition will be that the restriction

!Moreover, this analogy can be related to the encodings of the lazy A-calculus into
the m—calculus [Mil92], where the strategy in “attacking” A—terms by evaluation of their
topmost redex is closely mirrored on the way processes evolve.

that is carried by the action (recall that we suppose bun(u) = 1) is on top
of the “immobile” restriction, while it was under it before the transition:
we therefore need an operator v, to exchange indices 0 and 1 in P’ (the
evaluation rules of ¢ are given on Figure 2).

In the case where the topmost restriction corresponds to the name that
is emitted (that thus has to be 0), rule OPEN applies (while RES does not,
for the action is not of the shape Tu): as before, the location of the emission
evolves from a + 1 into a, while the restriction gets “picked up” by the
emission. Symmetrically with respect to the INP, rule, process P’ does not
need to be modified, as it already “knows” the restriction that takes part in
the communication.

We are left with the rules for synchronisation. Since we work with an
early semantics, their formulation is easy, because all the work has been
done before the communication takes place. COMM and CLOSE are straight-
forwardly introduced to describe synchronisation in the case of free and
bound outputs respectively.

(NP) a, b values (INP,) a value
arP O o p axp 2 p

(out) % (OPEN) #IO)PI

ab —> 0 vp 2 p!
(PAR) P 5 P (RES) id ﬂ* P!

PbIQ P Pl @
P a() Pl Q a_b> QI
P|lQ - P'|Q

v P ﬁ) 'l/)gn(“)Pl

P a‘(y) Pl Q a(V) Ql

PlQ = v (PQ)

(coMMm) (CLOSE)

Figure 1: mws—calculus Operational Semantics: relation L

Figure 1 presents the rules we have just exposed; as said above, rules
(INP), (RES), and (PAR) can be seen as generation rules for operators o, 1
and ¢ respectively. One can remark that a transition involves at most one
o—generation and zero or several ¢ and 1p—generations. Relation ~-; is the
smallest relation satisfying the rules of Figure 2. Each operator is indexed
by an integer representing the depth at which it is applied, and which gets

incremented each time we cross a binding construct (A or v).

a if a<i
s b+1i if a=1
a—1 1f a>1

$

o—destruction (bY a

o—inp transition (Y aX.P ~ ((bY a)X\.((b)T! P)
o-res transition (Y vP ~ v ({b)TIP)
o—out transition (b¥ac ~5 (bYa((b)c)
o~ transition (bY(Py|Py) ~s (BYP | (bY Py
0—0 transition (Y0 ~, 0

. . i 'Lf a <1
p—destruction pla ~g { at+1 if a>i
(—inp transition P alP ~g (O a)\. (o P)
@-res transition OG'UP g v (o P)
p—out transition O'ab ~, pla(p'h)
@ transition ' (Pi|Py) ~s @' P | @' Py
-0 transition 00 ~ 0

a if a<i

1p—destruction Pra g i+l if a=1

i if a=i+1
a if a>i+1

t—inp transition Prar.P o~y (Pra)X. (P P)
1p-res transition LB SN (WHP)
p—out transition Pab s Pia(yih)

¢p—— transition ' (P|Py) ~ P | PPy
1—0 transition PO~ 0

Figure 2: Monadic ms—calculus operators: relation ~-

1.2.3 Behavioural Equivalence

Given the definition of relations %, and ~¢, we define an equivalence on
s terms as follows:

Definition 1.3 (~;) A relation R between terms of the ws—calculus is an
s-bisimulation iff whenever PRQ and P~5425,~5,P', there emists Q' s.t.

Q~55~5,Q" and P'RQ', and the symmetrical condition on transitions of
Q. s-bisimilarity, written ~g, is the greatest s—bisimulation.

Let us comment on this definition. An observable transition of a process
corresponds here to the composition of S s ﬁ>s, and ~5, again. One could
wonder if we can get rid of one of the two ~>,. The first one (before the p
transition) is needed to trigger all possible evolvings of P and @, in order
to respect the branching structure described by the notion of bisimulation:
indeed, as no ﬁ>s transition can occur under an operator, we do not want to
miss some transitions because some prefixes are not “evaluated” in a process.
One solution to get rid of the first ~>, could thus be to consider relations on
terms where all topmost prefixes are evaluated (which would correspond to
a notion of weak head normal form). Alternatively, one may want to avoid
the ~5 after the 1 step; this would amount to adopt a policy in writing our
relations, so that terms involved in the relation are reached right after the y
transition. We have kept the definition above in order to allow any kind of
definition for the relations between processes, by preserving symmetry; the
properties we shall prove in Section 3 can help giving a precise meaning to
the considerations we have just made?.

2 The Monadic wo—calculus

We introduce here the mo—calculus, which is a calculus of names, processes
and substitutions (as opposed to ms, where operators are “integrated” into
a calculus of only processes and names). mo provides a definition of the
names—handling mechanism as a “plain” Term Rewrite System, while control
constructs are used in ws to describe manipulation of names.

2.1 Syntax

The syntax of wo—calculus terms is given below; we simultaneously define
names (ranged over by a,b), processes (ranged over by P) and substitutions
(ranged over by s). According to the presentation of Ao, integers are not
primitive anymore, and are instead represented using constants 0 and 1:

ZNote as well that the choices we examined are reminiscent of the various notions of
weak equivalences or preorders on w—calculus processes, where 7—transitions play the role
of ~», moves, i.e. in some way of “unobservable” actions — see below.

10

Definition 2.1 (mro—calculus terms)

a = 0]als] names
P = 0]ab|aAP | (P|P) | vP | Pls] processes
s = id|as|t|L]sos substitutions

With respect to the calculus of substitutions of [ACCL91], we remark
that we have an extra constant, written {, that will represent the operator
1 of ms. As will be seen later on, this constant can be encoded in o, the
calculus of substitutions without §. We decide to keep it for the seek of
clarity, and because it corresponds to a primitive operation in the definition
of the operational semantics. We shall use some conventions to allievate the
notation of explicit substitutions:

Notations. (i) Substitutions composition involving 1 and J will sometimes
be noted without the o symbol, e.g. 117.

(73) The representation of De Bruijn indices is abbreviated using under-
lined natural numbers, by writing 1,2,.... More generally, k stands for
0[1...1] (also written O[t¥]).

——

k times

2.2 Semantics

The transition relation associated to the terms of the mo—calculus, writ-
ten —,, is directly adapted from —. Values for names correspond to De
Bruijn indices representants (written as underlined integers), and actions
are introduced accordingly, exactly like in ws. —, is defined on Figure 3.

The corresponding calculus of substitutions, given by relation ~v,, is
defined on Figure 4. The rewrite rules can be decomposed into three sets; a
first set of rules, involving all the substitutions constructors except J, comes
from the calculus o of [ACCL91]. Rules 0-J to t1-J-s deal with constant
1, while the rules at the bottom of the Figure propagate substitutions inside
terms.

Definition 2.2 (~,) o-bisimulation and ~, are defined as in Definition

1.3, where L and ~, replace Lo and ~g respectively.

3 Properties of s and 7o

We now turn to the comparison between 7s and mo, and the associated
notions of bisimilarity. As will be seen, it turns out that these calculi ba-
sically describe the same behaviours, and differ only in the granularity of

11

(INP) a, b values (INP,) a value
ar.P Y plp.id] arp Y p
a(v) av)
(ouT) % (cLose) L P Q — Q
ab 20 PlQ = v (P|Q)
(PAR) PP (rs) P Tu, pr
PIQ 5 P tbrmQ v P L el p’
a(b) / ab ’ TLLU
(comm) r PT Q,_,> Q (OPEN) L—=1r"
PIQ 5 P'|Q p) o

Figure 3: mo—calculus transition relation

the description (mo being finer than ms). A third notion of processes, cor-
responding to w—calculus terms in De Bruijn notation, will arise along our
study.

3.1 Confluence Properties of the Substitutions Calculi

We first focus on the calculi of substitutions, given by relations ~~; and
~4; we prove uniqueness of normal forms for relation ~-,, and then define
a translation from 7s to wo that will allow to establish the same result for

M—)s_

Proposition 3.1 ~~, is strongly normalising.

Proof. We exploit the strong normalisation of o, the subpart of Ao
[ACCLY1] that handles substitutions, by encoding the calculus of substitu-
tions of wo into a J—free calculus, and encoding the resulting calculus of
processes into \o.

We define a function U, _,), from mo to Ao, on Figure 5; it is decomposed
into three functions, namely U _, , L{ﬁﬁ/\ and U7 _,,, to compute the image
of respectively a name, a process, and a substitution (notice that De Bruijn’s
index 0 corresponds to 1 in Ao). We easily verify that the definition of U,

is well-typed. Moreover, we have the following property:

Lemma 3.2 P~,Q implies U, \(P) =&, Ur 2 (Q).

12

0-id 0fid] ~o O
0—cons Ola.s] ~, a

(-] als][t] ~o alsot]
1d—s idos ~, S
T-id Toid ~g 1
1-cons to(a.s) ~y s
cons—o (a.s)ot ~~, aft].(sot)
0—o0 (s1089)083 ~y s10(s20s53)
0-1 O] ~o 1

1-7 1] ~os 0
0-3-s OFos] ~o Ls]

1-3-s 1[Jos] ~y O[]
44 to(fol) =o fof
445 to(to(fos) =y toltos)
s—inp (@.AP)[s] ~o a[s].A(P[0.s01])
s—out (@b)s ~5 a[s]b[s]
WP)s] o v(Pls)
s—par (PL[P2)[s] ~o Prils] | Pofs]
s—0 O[s] ~, O

Figure 4: Monadic mo—calculus: calculus of substitutions

We then proceed by contradiction: if there is an infinite ~,—derivation
starting from P, then there exists an infinite —, derivation starting from
Ur—x(P), which is impossible by [ACCL91]: this concludes the proof. <

Proposition 3.3 ~-, is locally confluent.

Proof. By critical pairs inspection. O

Newmann’s lemma guarantees, using Propositions 3.1 and 3.3, the unique-
ness of normal forms for ~,. Let us now turn to ~»4; we exploit the results
we just proved through a translation from ms into mo. We first need some
notation.

13

7?_»\(0) =1 names
U;:%)\(a[s]) = u;rl%)\(a)[7‘?%/\(5)]
uv_(0) =1 processes
Ug%)\(a)\.P) = (u;rlﬁ/\(a) Auga/\(P))
Uy \@b) = (Ug_\(a)Up (b))
Up \(PLIP) = (Up_,\(P1) Uz, \(P))
Z/{f:ﬁ/\(yp) = Au’]I:*)A(P)
Up \(Pls]) = Uy \(P)Uy_,5 ()]
Foalid) = id substitutions
7sr—>)\(T) =1
u?i*)/\(a"s) = ;L%)\(a)'u;a/\(s)
uw—w\(sl °53) = 7sr—>)\(31) °© 7sr—>/\(32)
U @) = [A[])-1.11]

Figure 5: Function U, _,

Abbreviations. We define the following substitutions:

def def

id'(s) 0.L...i—1s d id (a[11]. 171
TO= () T idigor)

))

def

Definition 3.4 (Translation from ns—calculus to mo—calculus)

The translation function T from ws to wo is defined on Figure 6. Note that
we adopt an overloaded notation, so that T acts on names, processes and
operators). Moreover, the translation of names and actions being straight-
forward, we shall not mention applications of T on such constructs, and
write names and actions in the same way in ©s and wo.

We remark that 7 is injective, which will be useful below. As expected,
T allows us to reflect ws—transitions into wo—transitions:

Lemma 3.5 (i) P~,P' implies T(P)~5,T(P')
(it) PP iff T(P)L,T(P).

This Lemma indicates that the evolution of a ms—process can be simu-
lated by its translation in 7o; note that (i4) basically boils down to saying

14

EeN,T(k) = k names
T(opsna) = T(na)[T(opy)]
T7(0) = 0 processes
T(aX.P) = T(a)AT(P)
T@b) = T(a)T(b)
T(Pi|P) = T(P)|T(P)
TwP) = vT(P)
T(op,P) = T(P)[T(op,)]
T(¢') = I operators
Tw) = 1
T(a)) = da'id

Figure 6: Function 7

that the translation of an evaluated prefix is itself an evaluated prefix. We
easily get strong normalisation for ~:

Proposition 3.6 ~~; is strongly normalising.

Proof. We proceed as in the proof of Proposition 3.1, and exploit the
strong normalisation of ~, by encoding a ~-—transition into several (in
general) ~»,—transitions, using Lemma 3.5. &

We can thus talk about normal forms for ~~,; they are described using
the following Lemma:

Lemma 3.7 (Description of ~»s—normal forms) FEvery ws—term reduces
to a term described by the following syntaz:

a =N, P=0|ab|a)\P | (P|P) | vP.

Clearly, a process P that obeys this syntax cannot be rewritten using ~g;
this also holds for T (P), using ~,.

To establish the confluence of ~~,, we need some results about processes
that cannot evolve using ~v,.

15

Notation. We write P~, to mean that there exists P’ s.t. P~,P’; when
this does not hold, we write P /-, (we extend this notation to ;). For
any process P of the wo—calculus, we define P|, as the unique process Py
such that P<s, Py and P, /. Accordingly, we write P~*~>UP’¢U to denote
the computation of a normal form for o.

Lemma 3.8 (P #5) < (T(P) ~5).

Proof. <=: by Lemma 3.5. =: by Lemma 3.7. &

Proposition 3.9 ~-, is locally confluent.

Proof. Suppose that we have a ws—process P and two terms P; and
Py s.t. P~4P), P~¢P,. By neetherianity of ~¢, we can compute a term
Q1 s.t. Pi~,Q1 and Q1 jf~,, and similarly Qo from P,. Suppose then
that we have Q1 # Q2; by Lemma 3.8 and injectivity of T, we have that
T(Q1) 0, T(Q2) 0, and T(Q1) # T(Q2). But, using Lemma 3.5, we can
reconstruct the computation paths from T (P) to T(Q1) and T(Q2): this
contradicts the uniqueness of normal forms for ~,. We thus have Q1 = ()2,
and ~4 is locally confluent. &

We thus have uniqueness of normal forms for ~»; this allows us to in-
troduce the notation P|,.

Lemma 3.10 7(Pls) = T(P)e. Reciprocally, P f~, implies AP,. P =
T(PO) N Py ls.

3.2 Relating Behavioural Equivalences

We now turn to the comparison between ~; and ~,. For this task, we
first prove some results that allow us to reason on terms which cannot be
rewritten using ~»,. Similar properties for ~», will then make it possible to
establish a close correspondence between ~; and ~,. We first introduce an
useful up—to technique [San95]; to do this, we need to show that relations
e and S, commute, which intuitively is guaranteed by the requirement
on prefixes to be evaluated in order to fire a L, —transition:

Lemma 3.11 Suppose P5,Q and P%+,P'; then there exists Q' s.t. Q5Q’
M, /
and Q—,Q'.

16

Theorem 3.12 (0—bisimulation up to o proof technique) We say that
a relation R progresses to a relation S, written R — S, iff whenever PR Q)
and P55, 0% o P! there ezists Q' s.t. Q% g5 ¢Q" and P' S Q', and the
symmetrical condition on transitions of Q.

Given a relation R, we define F,(R) as follows:

Fe(R) = RUA(P Q). PRQ} U {(Pls, Q). PRQ}.
Then, for any relation R, R — F»(R) implies R C ~.

Proof. We apply the theory of progressions of relations of [San95], and
prove that F, is respectful, i.e. that (R C S and R—,S) implies (F,(R) C
F+(S) and F5(R)—=+F+(S)). This is indeed sufficient to obtain the desired
result. The first property is immediate. For the second one, suppose R— .S,
and take (A,B) € F5(R). We only treat the case (A,B) = (P,Qls), the
case AR B being trivial and the other case being fully symmetrical.

Suppose then Qigin,i»gQ’ : this is the easy, case, since this means
that Q<% ,Qly—s~,Q', and by hypothesis since PR, there exists P’
s.t. Py, P and P'S Q'. Then we have indeed P' F,(S) Q'

The interesting case is when PSS P By hypothesis, we can
exhibit Q1, Q2 and Q' s.t. Q%;Q15Q2°,Q' and P' S Q'. By confluence
of ~, since Q“*"')(TQD Ql“*"')(fQia; then, since QILUQ\LO' and Qlﬁ)aQ% by
Lemma 3.11, we can exhibit a process T s.t. Qigﬁ)gR and Qa»,R. We
now have Qa+,Q' and Qa4 R: still by confluence of ~,, they both reduce
by “s, into Q'l,. Finally, we have Qly—,R*,Q'l,, and since P'SQ',
P' F,(S) Q's, which concludes the proof. Here is a schema to illustrate the
reasoning we make:

P K P’
R R
f i -
Q= Q1 Q2= Q

G

Qo R

|

Qo

¢

We can now establish the following property, that is also in some sense
a proof technique, needed to obtain our first main result (Theorem 3.14):

17

Proposition 3.13 Suppose we have two wo—processes Q and Q' s.t. Q<+, Q';

then (P~,Q) iff (P~,Q'").

Proof. =-: let R be a o-bisimulation s.t. PR(Q. We show that
R' = RU{(P,Q")} is a o—bisimulation up to o; the only interesting case is
given by the pair (P,Q'). Suppose then P<»,%s,%,P', then by hypothesis
there exist Q1, Q2 and Q3 s.t. Q% eQ1-55Q2%,Qs and P' R Q3. Since
Q%45Q1 and Q~,Q', by confluence we get Q'~»;Qls and Q15Qls. Now,
as Q1 ﬁn,Qg and Q1~>;Qly, by Lemma 3.11 we can exhibit R s.t. Qigﬁn,R
and Qa»yR. We finally use the confluence of <+, to show that, since

Q2o R and Q2°,Q3, R*,Qsl,. We thus have Q'+, Qly>, R, Q3ls,
and P' F5(R') Qsl» (because P' R Q3).

P r P!
R R
R , R
Q= Q1 Q2= Q3
§ § (311) §
Q- Qly - R Qslo

The case where Q'<5,-,%,Q" is much easier, since this means that
Q05 %,Q", and by hypothesis we can exhibit P' s.t. Ps,L5 %, P!
and P'R Q" thus P' F,(R') Q"

<: we now have a o-bisimulation R s.t. PRQ'. We take R' = R U
{(P,Q)}, and prove that R' is a o—bisimulation. The proof is as in the case
above. &

Theorem 3.14 P~,Q iff Plo~sQlo.

Proof. Use Proposition 3.13 and the symmetry of ~. O

Manipulating processes of the form P|, suggests another notion of bisim-
ulation, relating only such terms:

Definition 3.15 (~,) A relation R between mo—processes is a ~q| ~bisimu-
lation iff for all (P,Q) € R, P 44, Q %4, and, whenever PL, %, P!,

there ezists Q' s.t. QL ,%,Q'Ly and P'ly RQ'Ly, and the symmetrical con-
dition on transitions of Q. ~, | 1is the greatest ~,| —bisimulation.

18

Lemma 3.16 Pl,~;Qls iff P‘I/U'NO'J,Q‘LO"

Proof. =: let R be a ~,bisimulation s.t. PRQ. Define Rl =
{(Xs,Y]s). X RY}. We obviously have Ply R' Qls; let us prove that R’ is
a ~q| ~bisimulation.

Suppose then X|, R' Y|, and X|, ﬁh,«*/»gX 'l +; then by hypothesis, there
exists Y' s.t. Y5, %,Y" and X' RY'. This shows that Yig@UY’ig and
X'R'Y'l,. The symmetric case is treated in an identical fashion.

<: R is now a ~, | —bisimulation s.t. Pl, R Ql,, consider

R = {(X,Y).XRY|, VX, RY}.

To prove that R’ is a ~,—bisimulation, we consider a transition X S5 Xy ﬁn,
Xy, X'; by confluence of ~4, X1++5Xls, and hence using Lemma 3.11,
we can exhibit T s.t. XLGﬁMT and X2~*~>UT. We use again the conflu-
ence of ~, to show that T~+,X'|,, and we thus have Xigﬁn,T«*/»UiX’LU.
Using the hypothesis that R is a ~, —bisimulation, we can exhibit Y|,
s.t. YieD,%,Y'l, and X'\, RY'l,. This is enough, because we have
Y, YooY Ly, and X' R'Y\,, since X'lo RY). &
Lemma 3.16 is interesting because ~, —bisimulations are in general “much
smaller” than full ~,-bisimulations, as the proof above suggests. Faithfully
following the reasoning above?®, we establish corresponding results for ~:

Theorem 3.17 (i) Pr,Q iff Plo~oQle and (ii) Plor~sQly iff Plorvs, Qle.

Intuitively, the notions of ~; — and ~; —bisimulation correspond to
bisimulation on “usual” m—calculus terms in the De Bruijn notation: a tran-
sition of such a term corresponds to a transition in one of these calculi
followed by the full evaluation according to the corresponding calculus of
substitutions. We shall now make such a correspondence more precise, by
relating ~| and ~, |, using 7.

Corollary 3.18 (of Lemma 3.5) Pl,55 P iff T(Pls) 5. T(P').
Theorem 3.19 P~,Q iff T(P)~,T(Q).

Proof. Using Theorems 3.14 and 3.17 and Lemma 3.16, we show that
Pis”siQ\Ls iff T(P\Ls)waiT(Q\Ls)-

3In particular, due to the similar definitions of ~, and ~,, the counterpart of Lemma
3.11 is proved in the same way.

19

=: let R be a ~, —bisimulation, we show that
T(R) = {(T(P), T(Q))-PRQ}

is a ~,-bisimulation. Indeed, whenever we have T(P)T(R)T(Q) and
T(P)ﬁmi»gP’LU, we can use results 3.18 and 3.10 to show that P55, Pyl
and that T (Py) = P'. By hypothesis, we can now exhibit Qg s.t. QL5 5~5 Q0 s
and Py R Qo. Using again 3.18 and 3.10, we get that T(Q)-% 5% T(Qo)lo,
and we have P' = T (Py) T(R) T (Qo)-

<: R being a ~, —bisimulation, we know by Lemma 3.10 that R =
T (Ro) for some 7s relation Ry. Consider now (T (P),T(Q)) € R, and a
process P' s.t. T(P)%,%,P'l,; we have again P'l, = T(Pyl,) for some
Py. As above, this implies Pﬁ>s~*~> sPols, and thus by hypothesis there exists
Qo s.t. Qﬁ)s"i’sQ(}Ls and Pyls Ro Qols, and T(Q)ﬁ)U“*”"UT(QO)LU; which
concludes the proof because P, = T (Pyls) R T (Qols)- O

The results we have established (Theorems 3.14, 3.17 and 3.19) provide
great freedom in the strategy for computing manipulations on names, which
can lead to the design of several equivalent notions of bisimulation. In par-
ticular, one could be interested in avoiding useless computations, that typi-
cally arise in presence of dead code (e.g. terms of the shape (va)az.P) or in
conjunction with the bisimulation up to parallel composition proof technique
[San95], where it should be possible to discard some terms without comput-
ing the substitutions inside them. Indeed, the call-by—need flavour imposed
by the definition of the transition relations suggests a “lazy” computation of
relations ~, that could perhaps be performed along the computation of LN
steps in an implementation. Along these lines, the relationship with weak
A—calculi of explicit substitutions [CHL96] could be investigated.

4 Discussion — Variants

We briefly discuss some topics related to our calculi, belonging to variants
or extensions of the present work.
4.1 Late Operational Semantics

Not much work has to be done to adapt our study to late semantics. We can
indeed modify the rules for relations ﬁ>s and ﬁn, so that the substitution
is generated only at synchronisation time. This actually leads to a simpler

20

presentation?, because no substitution takes place in the INP rule, so that
there is no need to distinguish between bound and free inputs (note that
name b in an input action of the shape a(b) is then considered to be bound).
We only show here those rules that have to be reformulated in this setting,
for ms—calculus:

(INP) a.AP 0, p

ad) ab
L P Q=Q (CLOSE)

PlQ = P'(0)" | Q'

P a(0) P Q a(v)

P|Q = v(P'|Q)

QI

(coMMm)

4.2 The Polyadic Case

Going from monadic 7—calculus to polyadic [Mil91] is not as easy®. We
present here a preliminary attempt at extending the definition of s to
polyadicity, and leave the complete development of polyadic ws for future
work.

Syntax In the polyadic m—calculus, a single communication can involve
several names: this means that operator A\ becomes polyadic, while v remains
monadic (each application of a restriction being dealt with using rule RES or
OPEN). Processes of the polyadic ws—calculus are described by the following
syntax:

a = N name values mna = a|opsna names

Sl
|

[1|ab namelists op, = (5)}C | @% | Yk operators
P =0 |ab| | aX*.P | (P|P,) | vP | op, P processes
A substitution (l_)')fC shall sometimes be written (by, ..., by,)%, and ranged
over with a,ic.

Semantics The syntax of actions has to be modified so that we only have 7
and bound receptions and emissions, of the form v* a(b) and v* @[b], the case
of free actions being recovered for k£ = 0 (we range over name lists with b).

‘However, no conceptual difference arises between both approaches; we preferred an
early presentation to stay as close as possible to the formalisation of [Hir97] — see below.

In particular, the situation does not resemble the introduction of pairs in the A
calculus, where a particular shape of terms is added and can take part in a substitution.
Here, as terms cannot be exchanged in communication, we have to redesign the mechanism
of computation at a deeper level to work with tuples of names instead of names.

21

Accordingly, the operators introduced by the transition relation are a little
more intricate; in particular, as we apply rule RES, the restriction we examine
crosses the several (in general) restrictions involved in the action, which
means that operator ¢ of the ws—calculus now has to perform a circular
permutation on indices 0 to k, where k is the number of bound names in
the action.

(INP) a value (ouT) %
axt.p L0 o p ap) 4 o
[T vEab) ., vhalb]
(PAR) PP (cLose) L » P Q A
PIQ 5P|),)Q PIQ = v* (P'Q)
Vk a l_;
(RES) Puﬂ) r' - (oPEN) I %ﬁpl “keb”
v P S 0P yp L2 pr

Figure 7: Operational Semantics of Polyadic wo—calculus

Figure 7 presents the operational semantics of the calculus (relation LN s
note that since we only work with bound inputs and outputs, we get rid of
rules INP, — which is subsumed by rule INP — and comMM). Note that the
notation Ty denotes here a more complicate predicate on actions than in
the monadic case, as actions may carry several bound names; this holds also
for the side condition “k € b” for rule OPEN, the details of which we will
not enter here. The calculus of operators corresponding to relation ~v is
defined on Figure 8.

Bisimulation The real difficulty in working in a polyadic setting comes
at the level of the definition of behavioural equivalence. Indeed, due to
the more complex structure of actions, we face the question of matching
two equivalent bound output actions. In the literature, a commonly used
abuse of notation allows one to silently permute the names of Y in a bound
output action of the form (v¥)@[b] (where ¥ C b), so that the collection
of names b actually has a set structure rather than a vector structure, as
the notation suggests. In a De Bruijn setting, however, such an operation is
not innocuous, as it changes the representation of the term performing the
output action.

22

a if n<i
o—destruction (b, ... ,bn)}'c a ~g bo—it1+1 if 1<a<i+n
a—Fk if 1+n<a
o—inp transition ot A P~y (o} a)A”.(a,ij” pP)
o-res transition oL UP ey v (afij)
o—out transition ol @[b]) ~s a,ica[a}'gg]
o—— transition 0. (PL|P2) ~ss opP1 | 0} Ps
0—0 transition 0,0 ~s 0
p—destruction <,0}'C a ~g { Z+ 1 z; Z ; 72'
—inp transition L a\". P~ (oL a))\”.(tpfj” P)
p-res transition PLuP o~ v (goﬁjl P)
p—out transition oL @[b]) ~s go}'ga[go}'cl_)']
(—— transition o (P11 Py) ~s ¢ Pr| @) P
-0 transition 0,0 ~; 0
a if a<k
. a+1 if kE<a<k+n
1p—destruction Yok ~ 3 ij i kdn
a if t>k+n
¢—inp transition Y g AN P~ (¢n,ka)km'(¢n+m,k+mp)
1)-res transition Y vP ~s V(Pni1 g1 P)
-out transition P @) s Y kalthib]
z/)fi transition 1/’n,k (P1|P2) s z/)n,kPI | z/)n,kPZ
1)—0 transition Y0 ~5 0

Figure 8: Polyadic ws—calculus operators: relation ~-

As we introduce bisimulation, we want to compare the actions performed
by two processes; there are a priori two solutions to tackle the problem of
comparing bound output actions (notice that comparing bound input actions
is harmless, since the disposition of bound names in an input is not imposed
by the shape of the term performing the transition):

- One can introduce an equivalence relation on actions so that the set
structure of b’ is implemented (which amounts to embed in the system
the property (vz)(vy) P ~ (vy)(vx) P). The transition relation is then
defined using this equivalence, which can result in the application of

23

some operators to the processes coming from a transition. We therefore
define a judgment of the form op, F u = ' (actually op, will range
over an extended syntax for operators w.r.t. the one given above — the
extension is however straightforward):

Definition 4.1 (Equality on actions) The judgment corresponding
to equality on actions is defined by the following rules:

db-p=np = —— ,j <k
Definition 4.2 (Extended Transition Relation) We define tran-

sition relation 5 by adding to the rules of Figure 7 the following
transition rule:

PE. P op+ p=pu
Pi)sfopP'

Bisimulation is the defined using relations £ and ~,, as in the
monadic case.

- Alternatively, one can define a notion of canonical form for bound out-
put actions, so that a unique permutation on bound names is chosen
for every action, and comparison of actions reduces to syntactic equal-
ity. This solution, which we find closer to the De Bruijn approach,
involves some quite tedious computation on De Bruijn indices each
time rule OPEN is applied, to preserve the property of canonicity for
the inferred actions. It is introduced in [Hir99]. For lack of space, we
do not enter the details of the corresponding definitions.

4.3 Bisimilarity Proofs and Structural Congruence

While in Ao and its variants, confluence properties are a central issue, there
is no real notion of such a “benchmark” in our setting. This comes from
the fact that the “transition” part of the semantics (relation ﬁ)) and the
“substitutions” part (relation ~~) do not really interfer, which results in the
close similarity between ~; and ~,. Such an interplay would however arise
if we were to perform bisimilarity proofs, which is beyond the scope of this
work. In [Hir97], some bisimilarity results, including the laws of structural
congruence, are mechanically checked using a theorem prover, in a context

24

that is very close to (polyadic) ms—calculus. This development involves the
proof of some technical lemmas relating relations £ and ~; to quote an
example, we establish a property that would be stated as follows in 7s:

VPP i (¢ P %, Cone P = (PP,
Considering the large size of the implementation presented in [Hir97] (about
800 lemmas, 75% of them being purely technical), it seems impossible to give
a complete account of these proofs on paper, in the setting of the ms— or
wo—calculi.

Let us notice as well that the aforementioned laws of structural congru-
ence, seen as a consequence of the definition of the operational semantics,
could serve to make precise the relation with a reductional semantics for the
m—calculus (that typically leads to a multi-set semantics for processes, akin
to the chemical metaphor [BB92]).

5 Conclusion

We have presented two calculi that provide a description of the mechanism of
name manipulation in the m—calculus, and shown that they basically describe
the same behaviour, leaving great freedom to the user to design a strategy
for computation on names.

The mo—calculus nearly contains the machinery needed in Ao (except
that we only substitute names for names). It could be interesting to make
this observation more precise, possibly by adapting our work to the Blue
Calculus [Bou97], that is a supercalculus of both the A— and the m—calculus.
Along the same lines, our treatment of the restriction operator could be
adapted to other calculi containing a similar construct, e.g. [Ode94].

As said in Section 1, the definitions of ~4 and ~, are reminiscent of weak
bisimilarity, where 7 moves are treated as unobservable in the definition of
the equivalence. It thus seems natural to introduce =, (and =), by allowing
both ~+, and <, transitions to be fired silently. The study of the equivalence
induced by such a definition seems far from being trivial, basically because
we would lose the “determinism” (strong normalisation and confluence) of
the unobservable computations.

Acknowledgments We would like to thank René Lalement for useful dis-
cussions about this work.

25

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit

[Amb91]

[BBY2]

[Bou97]

[CHLY6]

[dB72]

[FMQY6]

[Hir97]

[Hir99]

[KL98]

[KRY5]

substitutions. Journal of Functional Programming, 1(4):375-416,
1991.

Simon J. Ambler. A de Bruijn notation for the m-calculus. Tech-
nical Report 569, Dept. of Computer Science, Queen Mary and
Westfield College, London, May 1991.

G. Berry and G. Boudol. The chemical abstract machine. T'CS,
96:217-248, 1992.

G. Boudol. The pi-calculus in direct style. In Proceedings of
POPL 97, pages 228-241, 1997.

P.-L. Curien, T. Hardin, and J.-J. Lévy. Confluence properties
of weak and strong calculi of explicit substitutions. Journal of
the ACM, 43(2):362-397, 1996.

N.G. de Bruijn. Lambda Calculus Notation with Nameless Dum-
mies: a Tool for Automatic Formula Manipulation, with Appli-
cation to the Curch-Rosser Theorem. In Indagationes Mathemat-
1cae, volume 34, pages 381-392. 1972.

G. Ferrari, U. Montanari, and P. Quaglia. A w—calculus with
Explicit Substitutions. 7TCS, 168(1):53-103, November 1996.

D. Hirschkoff. A full formalisation of w-calculus theory in the
Calculus of Constructions. In Proceedings of TPHOL’97, volume
1275, pages 153-169. LNCS, Springer Verlag, 1997.

D. Hirschkoff. Mise en ccuvre de preuves de bisimulation. PhD
thesis, ENPC, Champs sur Marne, France, January 1999. in
french.

D. Kesner and P.E. Martinez Lépez. Explicit Substitutions for
Objects and Functions. In Proceedings of PLILP/ALP ’98, num-
ber 1490 in LNCS, pages 195-212. Springer Verlag, 1998.

F. Kamareddine and A. Rios. A A—calculus a la De Bruijn with
explicit substitutions. In Proceedings of PLILP ’95, number 982
in LNCS, pages 45—-62. Springer Verlag, 1995.

26

[LLL9S]

[Mil91]

[Mil92]

[Ode94]

[San95]

[Tur95]

F. Lang, P. Lescanne, and L. Liquori. A Framework for Defin-
ing Object—Calculi. Technical Report 1998-51, LIP, ENS Lyon,
1998.

R. Milner. The polyadic w-calculus: a tutorial. Technical Report
ECS-LFCS-91-180, LFCS, October 1991. Also in Logic and Alge-
bra of Specification, ed. F. L. Bauer, W. Brauer and H. Schwicht-
enberg, Springer-Verlag, 1993.

R. Milner. Functions as processes. Journal of Mathematical
Structures in Computer Science, 2(2):119-141, 1992.

M. Odersky. A Functional Theory of Local Names. In Proceedings
of POPL 94, 1994.

D. Sangiorgi. On the bisimulation proof method. Revised ver-
sion of Technical Report ECS-LFCS-94-299, University of Ed-
inburgh, 1994. An extended abstract can be found in Proc. of
MFCS’95, LNCS 969, 1995.

D. N. Turner. The Polymorphic Pi—calculus: Theory and Imple-
mentation. PhD thesis, University of Edimburgh, 1995.

27

