
Handling Substitutions Expliitelyin the �{CalulusDaniel HirshkoffF�evrier 1999No 99-163

Handling Substitutions Expliitelyin the �{CalulusDaniel HirshkoffR�esum�eNous reprenons la d�emarhe menant �a l'introdution des �{alulsave substitutions expliites �s et �� pour pr�esenter �s et ��, quise veulent une desription des m�eanismes mis en �uvre dans le �{alul pour la manipulation des noms. Alors que �s fait intervenirdes op�erateurs sur les index de De Bruijn dans la syntaxe des ter-mes, e qui en fait un bon point de d�epart a�n de omprendre lanotation de De Bruijn pour le �{alul, �� est un alul de noms, ter-mes et substitutions. Cela se traduit en partiulier par le fait que lesop�erations faisant intervenir les substitutions sont introduites sous parl'interm�ediaire d'un syst�eme de r�e�eriture. Nous �etablissons une orre-spondane �etroite entre les notions de bisimilarit�e assoi�ees �a es deuxaluls, ainsi qu'ave une troisi�eme notion, qui orrespond aux ter-mes \usuels" en notation de De Bruijn. Le pr�esent travail donne unedesription formelle de l'interation entre les deux op�erateurs liantsdu �{alul, e qui permet de mieux omprendre le omportementde l'op�erateur de restrition, et peut pr�esenter un int�erêt en termesd'impl�ementation (en partiulier dans un assistant �a la preuve).

AbstratWe present two aluli aimed at desribing the mehanism of namemanipulation in the �{alulus. Plaing ourselves in the frameworkof the �s and �� aluli, we de�ne �s and ��. The former alulusinludes operators on De Bruijn indies, and is �rst introdued to givean intuitive desription of the De Bruijn representation of �{alulusterms. The latter is a alulus of expliit substitutions, where thepart orresponding to name manipulation is de�ned as a Term RewriteSystem. We introdue the two orresponding notions of bisimulation,and show that they an be put in orrespondene; in doing this, weestablish a relation with what ould be onsidered \usual" bisimulationon �{alulus terms in De Bruijn notation. These results shed light onthe mehanism of name{passing, whih an be of interest both for theimplementation and the formal treatment (e.g. in a logial framework)of related aluli.

2

IntrodutionCaluli of expliit substitutions originate in Categorial Combinatory Logi,and have been designed for many variants of �{alulus and related for-malisms (e.g. type systems, natural dedution, or higher{order logis).Besides the treatment of (funtional) sequential omputation, suh an ap-proah has also been reently adopted to study the objet{oriented paradigm[KL98, LLL98℄. Our goal in this paper is to provide a similar aount ofonurreny, through the analysis of one of his most popular algebrai mod-els, namely �{alulus. We onentrate on the mehanism of name{passing,whih lies at the heart of the expressiveness of this formalism, and try tounderstand it by desribing its e�et on �{alulus terms. In this attempt,our work di�ers onsiderably from [FMQ96℄, where a alulus of expliitsubstitutions (alled ��) is introdued by fousing rather on the environ-ment of a �{alulus proess during its exeution. We shall return on thispoint later on.In name{passing aluli, the means of ommuniations (typially han-nels, or names) an be used as the objet of the ommuniation; within suhan approah, one an desribe systems whose topology is hanging along theomputation, whih an be soure of great expressiveness. In the �{alulus,the only information being exhanged between proesses is names; this ishowever enough to enode many paradigms of omputer siene, thanks tothe mehanism of name extrusion. Name extrusion an be illustrated on thefollowing example: onsider the �{alulus transitiona(x):P j (�) a:Q ��! (�) (Px:= j Q) :We have here a proess liable to reeive a name x along some hannel a,and then to behave like some proess P : this term is written a(x):P . In thelatter expression, P depends in general on x (in the same way a �{term Mdepends on x in �x:M). In parallel with a(x):P , we �nd a proess willingto send some value (i.e. name) on a, and then to proeed aording to Q.The information that is sent on a is not known to the reeiver before theommuniation: this is represented using the restrition operator �, thatmakes the usage of private to a:Q. We thus see that the �{alulus hastwo binders, namely abstration (embedded in the reeiving proess, andsometimes written �) and restrition (whih, as we shall see, is not diretlyrelated to the notion of substitution). As both proesses synhronise ona, they perform a �{transition, whih has two e�ets: in P , the formalparameter x is instaniated by the value being reeived, namely ; at thesame time, the name is now known by both ators of the synhronisation,1

hene the sope of the restrition on has grown: we observe the extrusionof name .Let us now move to the framework of De Bruijn indies [dB72℄, and seehow these mehanisms are implemented. Reall that we are working withtwo binders, � and � (a(x):P and (�) a:Q should thus roughly look like\a�:P" and \�a0:Q" respetively { notie that we adopt the onventionthat De Bruijn indies start at 0). From the emitter's point of view, noupdate on De Bruijn indies needs to be performed, sine the exeutionenvironment has not been modi�ed; quite remarkably, this holds also forthe reeiver, beause in P all names bound by the abstration on x beomebound by the restrition on , whih means that nothing hanges in theDe Bruijn representation of P . So the situation seems simpler than in �{alulus, where �{redution involves in general some updates in the freenames of the term; we reover anyway suh a phenomenon in the ase ofthe ommuniation of a free name (i.e. a name not bound by restrition),where atual instaniation takes plae. Note however that in the �{alulus,a name is always instaniated with another name, while a whole term anbe provided in the �{alulus. We therefore need to be able to perform twobasi manipulations on names, that is replaement of a name with anothername, and name lifting, to preserve the \meaning" of De Bruijn indiesas we ross a binder. In the �{alulus, we need another extra primitivemanipulation, whih is related to the behaviour of the restrition operator�. Consider indeed the term T = (�b)(�) a:Q; with respet to theemitting proess seen above, we have another private name, b (but onlyprivate name get sent along a). As proess T performs the emission ofprivate name along a, it \sends" the restrition on , while the restritionon b remains above Q. What happens is that the restrition on somehowrosses the restrition on b, whih will result using the De Bruijn notationin exhanging indies 0 and 1 in Q. This phenomenon leads to treat theability of permuting two onseutive indies in a term as a primitive ationin name manipulation.Aording to the onsiderations we just made, we fous on the followingversion of �{alulus: the syntax of proesses is desribed byP = 0 j ab j a(b):P j (P1jP2) j (�x)P ;where a; b range over a basi sort of names. This is a monadi, sum free,�nite, asynhronous alulus. Polyadiity will be treated in Setion 4, whilethe other features are not relevant for our study (in partiular, the abseneof a ontinuation for emitting proesses implies that the examples seen above2

annot be diretly treated in our alulus; this is anyway harmless, as thesame reasoning ould be done within our language). The inative proess,0, is written in bold font to distinguish it from the De Bruijn's index 0. Wepresent below the operational semantis of our alulus. Ations, rangedover with �, an be of three kinds, namely reeptions (written a(b)), emis-sions (written a(b) or ab, depending whether the emitted name is private tothe sender or not), and synhronisations (written �). n(�), fn(�) and bn(�)denote respetively the sets of names, free and bound names of an ation �(bound names are de�ned by saying that b is bound in a(b)). Symmetrialversions of rules parl, omm1 and lose1 are omitted.(inp) a(b):P a()��! Pb:= (out) ab ab�! 0(open) P ab�! P 0(�b)P a(~b)��! P 0 b 6= a (res) P ��! P 0(�x)P ��! (�x)P 0 x =2 n(�)(omm1) P a(b)��! P 0 Q ab�! Q0P jQ ��! P 0jQ0 (parl) P ��! P 0P jQ ��! P 0jQ bn(�) \ fn(P) = ;(lose1) P a(b)��! P 0 Q a(b)��! Q0P jQ ��! (�b) (P 0jQ0) b =2 fn(Q)Following the approah that is followed in the presentation of the �s{alulus[KR95℄, we introdue �s, the alulus of terms written in the De Bruijn no-tation. W.r.t. �s, we add to operators for substitution and name liftingan operator , to embed the permutation of two onseutive indies. In �sand �� the proess of � redution is deomposed into a �{rule and somerules to ompute the propagation of a substitution in the term; likewise, weintrodue here the operational semantis via two relations, written ��!s and s. ��!s orresponds to the �ring of a transition, that an generate one orseveral omputations on names, desribed by s. As usual in the De Bruijnframework, some side onditions in the de�nition of the transition relationan be embedded in the implementation of ��!s, due to the representation ofbound names. This presentation naturally gives rise to a notion of bisimi-larity, written �s, that inorporates both relations. One an then re�ne thedesription of the alulus, by adopting the point of view of the ��{alulus,and de�ne ��. Within suh an approah, we develop a alulus of proessesand substitutions, where the ounterpart of operator , written l, enrihesthe alulus � of ��. A onsequene of this presentation is that the orre-sponding relation � is de�ned as a \plain" Term Rewrite System (without3

ontrol struture). One is then interested in relating both formalisms, andwe shall see that �� an be onsidered as giving a �ner aount on the termsdesribed by �s.As said above, our approah di�ers from [FMQ96℄, where the exeutionof a �{alulus proess (with named variables) is desribed by providingan aount of the evolution of its environment, rather than by fousing onthe updates to be made inside the term, as is the ase here. In a ertainsense, [FMQ96℄ is lose to an implementation of �{alulus terms, in a waythat is reminisent of the abstrat mahine used to exeute PICT programs[Tur95℄, where typially a � is viewed as a new ommand, and where itsexeution results in adding a freshly reated name in the heap of names. Inthe present work, our aim is to fous on the tehnial details that are hiddenin the traditional formal de�nition of �{alulus terms. Suh an approahis in partiular of interest for a theorem prover formalisation of �{alulus,where one may want to stay lose to the \mathematial" de�nition ratherthan design a spei� implementation of proesses. At larger sale, suhan attempt an also be interesting to understand the meaning of a namingoperator like �, that is not spei� to the �{alulus.The plan of the paper is as follows. Setions 1 and 2 introdue the�s{alulus and the ��{alulus respetively, together with the orrespond-ing notions of bisimilarity. Setion 3 is devoted to the omparison of bothformalisms. We establish the orrespondene between the two desriptions(Theorem 3.19), using in partiular an up{to tehnique for bisimulation[San95℄. In Setion 4, we omment on two variants of our approah, namelylate semantis and polyadiity, and disuss on the study of bisimilarity proofsin our setting. We onlude and disuss related work in Setion 5.1 The Monadi �s{alulusWe present here an aount of �{alulus terms in the De Bruijn notation,and try to give an intuition of this implementation; this part of our work islose to [Amb91℄, where a translation from �{alulus terms with names intothe De Bruijn setting is presented. However, our presentation remains loserto the tradition of substitutions aluli (�a la �s), by treating the operatorson names as part of the alulus, and not at meta level. Suh an approahnaturally �ts to the introdution of �� in the next Setion.
4

1.1 SyntaxTerms of the �{alulus are built upon a basi notion of name; in the DeBruijn notation, names (sometimes referred to as hannels) are representedby natural numbers, interpreted as indies. The de�nition of the �s{alulusfollows the approah of the �s alulus [KR95℄; aordingly, the syntatisorts of terms (and of names) inlude operators, that expliitely handle themanipulations to be made on De Bruijn indies.De�nition 1.1 (�s{alulus { syntati sorts) The terms of the �s{al-ulus are de�ned as follows:a = N name values na = a j ops na namesops = hnaii j 'i j i operatorsP = 0 j ab j a�:P j (P1jP2) j �P j ops P proessesLet us omment on the above de�nitions. The notion of name value shallbe useful in the de�nition of the semantis, and orresponds to the sort ofnames where no ourrene of operators is allowed. Let us remark as wellthat we use here a form of overloading, as operators an be applied bothto names and to proesses. We �nd here two operators from �s, namelysubstitution and lifting (written '), while operator is spei� to the �{alulus; we shall desribe and justify the behaviour of these onstrutsbelow. Note that we do not have a preise de�nition of \�{alulus terms inthe De Bruijn notation", and instead diretly work within the �s{alulus;however, we shall more or less retrieve suh a notion in Setion 3, where weshall reason on �s proesses without ourrenes of the operators (i.e. termsthat are in some way \fully evaluated" w.r.t. the alulus of operators).1.2 Early Operational Semantis1.2.1 AtionsWe now turn to the presentation of the behaviour of �s{alulus terms, byde�ning an early operational semantis for proesses. The hoie of an earlyversion of the semantis strongly inuenes our desription of the operationalsemantis, sine in suh a framework one is ompelled to know the shapeof the environment where the ontinuation of a omitting term shall beexeuted. Aordingly, we are led to separate reeptions into bound and freeinput ations, in a way that is symmetrial to what is usually done withoutput ations. We shall see in the next subsetion that a synhronisation5

involving a name whih is private to the sender does not hange the ontextof the ommuniating agents: the sender still \sees" the restrition after thesynhronisation, while from the point of view of the reeiver, an abstrationhas been replaed by a restrition, still yielding the same meaning for the DeBruijn indies. On the ontrary, a ommuniation of a free name involves a\true" substitution, and has to be represented di�erently in our setting.The syntax for ations is as follows (we desribe the reeption and theemission of a restrited name using a somewhat peuliar use of the restritionoperator �):De�nition 1.2 (Ations) Ations, ranged over by �, are de�ned by thefollowing syntax: � = a(b) j a(�) j ab j a(�) j � :bn(�) is the number of bound names of an ation, and is de�ned as follows:bn(�) = 0 for ations of the shape a(b), ab and � , bn(�) = 1 otherwise.Note that operators do not arise in the de�nition of ations: this isrelated to the introdution of name values in De�nition 1.1, and will beexplained below.1.2.2 Representation of the Transition RulesThe behaviour of �s terms is desribed by two relations; the transitionrelation P ��!sP 0 (meaning that proess P is liable to perform ation � andbeome proess P 0) desribes the ommuniating behaviour of terms, and s orresponds to the alulus of operators, as they are introdued in thesyntax. We now omment on the shape of the transition rules as they areimplemented in the De Bruijn notation; these rules are summed up on Figure1. The omputation of operators, as de�ned on Figure 2, shall be justi�edalong the explanations below.The rules for pre�xed proesses are inp, inpb and out; they all involvea premise saying that the omponents of the ation are name values. Thismeans that the pre�xes involved in a transition should be fully evaluated.Suh a ondition is indeed needed for the de�nition of both the operationalsemantis (where we have to math two symmetri ations in order to infer asynhronisation) and the behavioural equivalene (the notion of simulationalso involves a mathing between two ations, namely those performed bythe proesses to be ompared). This requirement is reminisent of the notion6

of weak head normal form for the �{alulus, where the head of the term isompelled to be a variable1.The de�nition of rule out is straightforward. As said above, the reep-tion of a restrited (new) name onsists, from the reeiver point of view, inreplaing a � by a �; this is (partially) embedded in rule inpb, the � beingprovided as rule lose is applied (see below). Rule inp an be seen as a rulefor �{generation, the substitution of b for 0 in the reeiving term being theresult of the transition: it is reminisent of the representation of the �{rulein the �s alulus.Similarly, par and res an be seen as the rules for ' and generationrespetively. They are both written using a form of abuse of notation, inorder to fatorise the presentation; the subsript bn(�) in the ourreneof the operators is interpreted as follows: if bn(�) = 0, then the operatorredues to the identity (i.e. we apply no operator), while bn(�) = 1 impliesthat the operator should be taken as it is, without the subsript. Suh anotation allows us to avoid desribing the various instanes of rules res andpar, for eah kind of ation. In order to desribe the meaning of operators' and , we shall now suppose that bn(�) = 1. Rule par is used to infera transition for a parallel omposition in the ase where one proess is per-forming the ation (here P) and the other one (Q) is wathing. bn(�) = 1means that when the synhronisation will take plae, and extra restritionwill be put between Q and its \environment"; therefore, in order to keepthe same meaning for the indies of free variables in Q, we have to lift allindies by 1: this is ahieved by operator ' (the supersript 0 orrespondsto the depth where the modi�ation is applied in the term { see below).This operator is thus akin to operator ' of the �s alulus; its behaviour isgiven on Figure 2.Similarly, rule res desribes the behaviour of a restrited proess in thease where the topmost restrition is not involved in the transition. Hereagain, we make use of a notation to abbreviate our presentation: "� standsfor an ation where all free names involved in the ation are of the form k+1,k 2 N (this inludes in partiular � ations), the ation � thus representingthe same ation where every k + 1 is replaed by k. Intuitively, whenevera proess P is liable to perform ation "�, then �P an perform the sameation \hidden" by a restrition: we thus have to derease the free variablesof � by one. In P 0, the result of this transition will be that the restrition1Moreover, this analogy an be related to the enodings of the lazy �{alulus intothe �{alulus [Mil92℄, where the strategy in \attaking" �{terms by evaluation of theirtopmost redex is losely mirrored on the way proesses evolve.7

that is arried by the ation (reall that we suppose bn(�) = 1) is on topof the \immobile" restrition, while it was under it before the transition:we therefore need an operator , to exhange indies 0 and 1 in P 0 (theevaluation rules of are given on Figure 2).In the ase where the topmost restrition orresponds to the name thatis emitted (that thus has to be 0), rule open applies (while res does not,for the ation is not of the shape "�): as before, the loation of the emissionevolves from a + 1 into a, while the restrition gets \piked up" by theemission. Symmetrially with respet to the inpb rule, proess P 0 does notneed to be modi�ed, as it already \knows" the restrition that takes part inthe ommuniation.We are left with the rules for synhronisation. Sine we work with anearly semantis, their formulation is easy, beause all the work has beendone before the ommuniation takes plae. omm and lose are straight-forwardly introdued to desribe synhronisation in the ase of free andbound outputs respetively.(inp) a; b valuesa�:P a(b)��! hbi0 P (inp�) a valuea�:P a(�)��! P(out) a; b valuesab ab�! 0 (open) P a+10���! P 0� P a(�)��! P 0(par) P ��! P 0P jQ ��! P 0 j '0bn(�)Q (res) P "��! P 0� P ��! 0bn(�)P 0(omm) P a(b)��! P 0 Q ab�! Q0P jQ ��! P 0jQ0 (lose) P a(�)��! P 0 Q a(�)��! Q0P jQ ��! � (P 0jQ0)Figure 1: �s{alulus Operational Semantis: relation ��!sFigure 1 presents the rules we have just exposed; as said above, rules(inp), (res), and (par) an be seen as generation rules for operators �, and ' respetively. One an remark that a transition involves at most one�{generation and zero or several ' and {generations. Relation s is thesmallest relation satisfying the rules of Figure 2. Eah operator is indexedby an integer representing the depth at whih it is applied, and whih gets8

inremented eah time we ross a binding onstrut (� or �).�{destrution hbii a s 8<: a if a < ib+ i if a = ia� 1 if a > i�{inp transition hbii a�:P s (hbii a)�:(hbii+1 P)�{res transition hbii �P s � (hbii+1P)�{out transition hbiia s hbiia(hbii)�{| transition hbii(P1jP2) s hbiiP1 j hbiiP2�{0 transition hbii0 s 0'{destrution 'i a s � a if a < ia+ 1 if a � i'{inp transition 'i a�:P s ('i a)�:('i+1 P)'{res transition 'i �P s � ('i+1 P)'{out transition 'i ab s 'ia('ib)'{| transition 'i (P1jP2) s 'i P1 j 'i P2'{0 transition 'i 0 s 0 {destrution i a s 8>><>>: a if a < ii+ 1 if a = ii if a = i+ 1a if a > i+ 1 {inp transition i a�:P s (ia)�:(i+1P) {res transition i �P s � (i+1P) {out transition i ab s ia(ib) {| transition i (P1jP2) s iP1 j iP2 {0 transition i0 s 0Figure 2: Monadi �s{alulus operators: relation s1.2.3 Behavioural EquivaleneGiven the de�nition of relations ��!s and s, we de�ne an equivalene on�s terms as follows:De�nition 1.3 (�s) A relation R between terms of the �s{alulus is ans{bisimulation i� whenever PRQ and P � s ��!s � sP 0, there exists Q0 s.t.9

Q � s ��!s � sQ0 and P 0RQ0, and the symmetrial ondition on transitions ofQ. s{bisimilarity, written �s, is the greatest s{bisimulation.Let us omment on this de�nition. An observable transition of a proessorresponds here to the omposition of � s, ��!s, and � s again. One ouldwonder if we an get rid of one of the two � s. The �rst one (before the �transition) is needed to trigger all possible evolvings of P and Q, in orderto respet the branhing struture desribed by the notion of bisimulation:indeed, as no ��!s transition an our under an operator, we do not want tomiss some transitions beause some pre�xes are not \evaluated" in a proess.One solution to get rid of the �rst � s ould thus be to onsider relations onterms where all topmost pre�xes are evaluated (whih would orrespond toa notion of weak head normal form). Alternatively, one may want to avoidthe � s after the � step; this would amount to adopt a poliy in writing ourrelations, so that terms involved in the relation are reahed right after the �transition. We have kept the de�nition above in order to allow any kind ofde�nition for the relations between proesses, by preserving symmetry; theproperties we shall prove in Setion 3 an help giving a preise meaning tothe onsiderations we have just made2.2 The Monadi ��{alulusWe introdue here the ��{alulus, whih is a alulus of names, proessesand substitutions (as opposed to �s, where operators are \integrated" intoa alulus of only proesses and names). �� provides a de�nition of thenames{handling mehanism as a \plain" Term Rewrite System, while ontrolonstruts are used in �s to desribe manipulation of names.2.1 SyntaxThe syntax of ��{alulus terms is given below; we simultaneously de�nenames (ranged over by a; b), proesses (ranged over by P) and substitutions(ranged over by s). Aording to the presentation of ��, integers are notprimitive anymore, and are instead represented using onstants 0 and ":2Note as well that the hoies we examined are reminisent of the various notions ofweak equivalenes or preorders on �{alulus proesses, where �{transitions play the rôleof s moves, i.e. in some way of \unobservable" ations { see below.10

De�nition 2.1 (��{alulus terms)a = 0 j a[s℄ namesP = 0 j ab j a�:P j (P1jP2) j �P j P [s℄ proessess = id j a:s j " j l j s Æ s substitutionsWith respet to the alulus of substitutions of [ACCL91℄, we remarkthat we have an extra onstant, written l, that will represent the operator of �s. As will be seen later on, this onstant an be enoded in �, thealulus of substitutions without l. We deide to keep it for the seek oflarity, and beause it orresponds to a primitive operation in the de�nitionof the operational semantis. We shall use some onventions to allievate thenotation of expliit substitutions:Notations. (i) Substitutions omposition involving " and l will sometimesbe noted without the Æ symbol, e.g. ""l.(ii) The representation of De Bruijn indies is abbreviated using under-lined natural numbers, by writing 1; 2; : : : . More generally, k stands for0[" : : : "| {z }k times℄ (also written 0["k℄).2.2 SemantisThe transition relation assoiated to the terms of the ��{alulus, writ-ten �!�, is diretly adapted from �!s. Values for names orrespond to DeBruijn indies representants (written as underlined integers), and ationsare introdued aordingly, exatly like in �s. �!� is de�ned on Figure 3.The orresponding alulus of substitutions, given by relation �, isde�ned on Figure 4. The rewrite rules an be deomposed into three sets; a�rst set of rules, involving all the substitutions onstrutors exept l, omesfrom the alulus � of [ACCL91℄. Rules 0{l to "{"{l{s deal with onstantl, while the rules at the bottom of the Figure propagate substitutions insideterms.De�nition 2.2 (��) �{bisimulation and �� are de�ned as in De�nition1.3, where ��!� and � replae ��!s and s respetively.3 Properties of �s and ��We now turn to the omparison between �s and ��, and the assoiatednotions of bisimilarity. As will be seen, it turns out that these aluli ba-sially desribe the same behaviours, and di�er only in the granularity of11

(inp) a; b valuesa�:P a(b)��! P [b:id℄ (inp�) a valuea�:P a(�)��! P(out) a; b valuesab ab�! 0 (lose) P a(�)��! P 0 Q a(�)��! Q0P jQ ��! � (P 0jQ0)(par) P ��! P 0P jQ ��! P 0 j "bn(�)Q (res) P "��! P 0� P ��! lbn(�)P 0(omm) P a(b)��! P 0 Q ab�! Q0P jQ ��! P 0jQ0 (open) P "a0��! P 0� P a(�)��! P 0Figure 3: ��{alulus transition relationthe desription (�� being �ner than �s). A third notion of proesses, or-responding to �{alulus terms in De Bruijn notation, will arise along ourstudy.3.1 Conuene Properties of the Substitutions CaluliWe �rst fous on the aluli of substitutions, given by relations s and �; we prove uniqueness of normal forms for relation �, and then de�nea translation from �s to �� that will allow to establish the same result for s.Proposition 3.1 � is strongly normalising.Proof. We exploit the strong normalisation of �, the subpart of ��[ACCL91℄ that handles substitutions, by enoding the alulus of substitu-tions of �� into a l{free alulus, and enoding the resulting alulus ofproesses into ��.We de�ne a funtion U�!�, from �� to ��, on Figure 5; it is deomposedinto three funtions, namely Un�!�, Up�!� and Us�!�, to ompute the imageof respetively a name, a proess, and a substitution (notie that De Bruijn'sindex 0 orresponds to 1 in ��). We easily verify that the de�nition of U�!�is well{typed. Moreover, we have the following property:Lemma 3.2 P �Q implies U�!�(P) +!� U�!�(Q).12

0{id 0[id℄ � 00{ons 0[a:s℄ � a[℄{[℄ a[s℄[t℄ � a[s Æ t℄id{s id Æ s � s"{id " Æ id � ""{ons " Æ (a:s) � sons{Æ (a:s) Æ t � a[t℄:(s Æ t)Æ{Æ (s1 Æ s2) Æ s3 � s1 Æ (s2 Æ s3)0{l 0[l℄ � 11{l 1[l℄ � 00{l{s 0[l Æ s℄ � 1[s℄1{l{s 1[l Æ s℄ � 0[s℄"{"{l " Æ (" Æ l) � " Æ ""{"{l{s " Æ (" Æ (l Æ s)) � " Æ (" Æ s)s{inp (a:�P)[s℄ � a[s℄:�(P [0:s Æ "℄)s{out (ab)s � a[s℄b[s℄s{� (�P)[s℄ � �(P [s℄)s{par (P1jP2)[s℄ � P1[s℄ j P2[s℄s{0 0[s℄ � 0Figure 4: Monadi ��{alulus: alulus of substitutionsWe then proeed by ontradition: if there is an in�nite �{derivationstarting from P , then there exists an in�nite !� derivation starting fromU�!�(P), whih is impossible by [ACCL91℄: this onludes the proof. }Proposition 3.3 � is loally onuent.Proof. By ritial pairs inspetion. }Newmann's lemma guarantees, using Propositions 3.1 and 3.3, the unique-ness of normal forms for �. Let us now turn to s; we exploit the resultswe just proved through a translation from �s into ��. We �rst need somenotation. 13

Un�!�(0) = 1 namesUn�!�(a[s℄) = Un�!�(a)[Us�!�(s)℄Up�!�(0) = 1 proessesUp�!�(a�:P) = (Un�!�(a)�Up�!�(P))Up�!�(ab) = (Un�!�(a)Un�!�(b))Up�!�(P1jP2) = (Up�!�(P1) Up�!�(P2))Up�!�(�P) = �Up�!�(P)Up�!�(P [s℄) = Up�!�(P)[Us�!�(s)℄Us�!�(id) = id substitutionsUs�!�(") = "Us�!�(a:s) = Un�!�(a):Us�!�(s)Us�!�(s1 Æ s2) = Us�!�(s1) Æ Us�!�(s2)Us�!�(l) = [(1["℄):1:""℄Figure 5: Funtion U�!�Abbreviations. We de�ne the following substitutions:idi(s) def= 0:1: : : : :i� 1:s ai def= idi(a["i℄:"i+1)"i def= idi("i+1) li def= idi(l Æ "i)De�nition 3.4 (Translation from �s{alulus to ��{alulus)The translation funtion T from �s to �� is de�ned on Figure 6. Note thatwe adopt an overloaded notation, so that T ats on names, proesses andoperators). Moreover, the translation of names and ations being straight-forward, we shall not mention appliations of T on suh onstruts, andwrite names and ations in the same way in �s and ��.We remark that T is injetive, whih will be useful below. As expeted,T allows us to reet �s{transitions into ��{transitions:Lemma 3.5 (i) P sP 0 implies T (P) + �T (P 0)(ii) P ��!sP 0 i� T (P) ��!�T (P 0).This Lemma indiates that the evolution of a �s{proess an be simu-lated by its translation in ��; note that (ii) basially boils down to saying14

k 2 N;T (k) = k namesT (ops na) = T (na)[T (ops)℄T (0) = 0 proessesT (a�:P) = T (a)�:T (P)T (ab) = T (a)T (b)T (P1jP2) = T (P1) j T (P2)T (�P) = �T (P)T (ops P) = T (P)[T (ops)℄T (�i) = "i operatorsT (i) = liT (haii) = ai:idFigure 6: Funtion Tthat the translation of an evaluated pre�x is itself an evaluated pre�x. Weeasily get strong normalisation for s:Proposition 3.6 s is strongly normalising.Proof. We proeed as in the proof of Proposition 3.1, and exploit thestrong normalisation of � by enoding a s{transition into several (ingeneral) �{transitions, using Lemma 3.5. }We an thus talk about normal forms for s; they are desribed usingthe following Lemma:Lemma 3.7 (Desription of s{normal forms) Every �s{term reduesto a term desribed by the following syntax:a = N; P = 0 j ab j a�:P j (P1jP2) j �P :Clearly, a proess P that obeys this syntax annot be rewritten using s;this also holds for T (P), using �.To establish the onuene of s, we need some results about proessesthat annot evolve using �. 15

Notation. We write P � to mean that there exists P 0 s.t. P �P 0; whenthis does not hold, we write P 6 � (we extend this notation to 6 s). Forany proess P of the ��{alulus, we de�ne P#� as the unique proess P0suh that P � �P0 and P0 6 �. Aordingly, we write P � �P 0#� to denotethe omputation of a normal form for �.Lemma 3.8 (P 6 s) , (T (P) 6 �).Proof. (: by Lemma 3.5.): by Lemma 3.7. }Proposition 3.9 s is loally onuent.Proof. Suppose that we have a �s{proess P and two terms P1 andP2 s.t. P sP1, P sP2. By n�therianity of s, we an ompute a termQ1 s.t. P1 � sQ1 and Q1 6 s, and similarly Q2 from P2. Suppose thenthat we have Q1 6= Q2; by Lemma 3.8 and injetivity of T , we have thatT (Q1) 6 �, T (Q2) 6 �, and T (Q1) 6= T (Q2). But, using Lemma 3.5, we anreonstrut the omputation paths from T (P) to T (Q1) and T (Q2): thisontradits the uniqueness of normal forms for �. We thus have Q1 = Q2,and s is loally onuent. }We thus have uniqueness of normal forms for s; this allows us to in-trodue the notation P#s.Lemma 3.10 T (P#s) = T (P)#�. Reiproally, P 6 � implies 9P0: P =T (P0) ^ P0 6#s.3.2 Relating Behavioural EquivalenesWe now turn to the omparison between �s and ��. For this task, we�rst prove some results that allow us to reason on terms whih annot berewritten using �. Similar properties for s will then make it possible toestablish a lose orrespondene between �s and ��. We �rst introdue anuseful up{to tehnique [San95℄; to do this, we need to show that relations � and ��!� ommute, whih intuitively is guaranteed by the requirementon pre�xes to be evaluated in order to �re a ��!�{transition:Lemma 3.11 Suppose P ��!�Q and P � �P 0; then there exists Q0 s.t. Q � �Q0and Q ��!�Q0.
16

Theorem 3.12 (�{bisimulation up to � proof tehnique) We say thata relation R progresses to a relation S, written R! S, i� whenever P RQand P � � ��!� � �P 0, there exists Q0 s.t. Q � � ��!� � �Q0 and P 0 S Q0, and thesymmetrial ondition on transitions of Q.Given a relation R, we de�ne F�(R) as follows:F�(R) = R [f(P;Q#�): P RQg [f(P#� ; Q): P RQg :Then, for any relation R, R ! F�(R) implies R � ��.Proof. We apply the theory of progressions of relations of [San95℄, andprove that F� is respetful, i.e. that (R � S and R!�S) implies (F�(R) �F�(S) and F�(R)!�F�(S)). This is indeed suÆient to obtain the desiredresult. The �rst property is immediate. For the seond one, supposeR!�S,and take (A;B) 2 F�(R). We only treat the ase (A;B) = (P;Q#�), thease ARB being trivial and the other ase being fully symmetrial.Suppose then Q#� ��!� � �Q0: this is the easy, ase, sine this meansthat Q � �Q#� ��!� � �Q0, and by hypothesis sine P RQ, there exists P 0s.t. P � � ��!� � �P 0 and P 0 S Q0. Then we have indeed P 0 F�(S)Q0.The interesting ase is when P � � ��!� � �P 0. By hypothesis, we anexhibit Q1, Q2 and Q0 s.t. Q � �Q1 ��!�Q2 � �Q0 and P 0 S Q0. By onueneof �, sine Q � �Q1, Q1 � �Q#�; then, sine Q1 � �Q#� and Q1 ��!�Q2, byLemma 3.11, we an exhibit a proess T s.t. Q#� ��!�R and Q2 � �R. Wenow have Q2 � �Q0 and Q2 � �R: still by onuene of �, they both redueby � � into Q0#�. Finally, we have Q#� ��!�R � �Q0#�, and sine P 0 S Q0,P 0 F�(S)Q0#� , whih onludes the proof. Here is a shema to illustrate thereasoning we make:
Q0P
Q0#�
P 0Q1Q Q2RQ#�

��
�

(3.11)|R| |R|
}We an now establish the following property, that is also in some sensea proof tehnique, needed to obtain our �rst main result (Theorem 3.14):17

Proposition 3.13 Suppose we have two ��{proesses Q and Q0 s.t. Q � �Q0;then (P��Q) i� (P��Q0).Proof.): let R be a �{bisimulation s.t. P RQ. We show thatR0 = R[f(P;Q0)g is a �{bisimulation up to �; the only interesting ase isgiven by the pair (P;Q0). Suppose then P � � ��!� � �P 0, then by hypothesisthere exist Q1, Q2 and Q3 s.t. Q � �Q1 ��!�Q2 � �Q3 and P 0RQ3. SineQ � �Q1 and Q � �Q0, by onuene we get Q0 � �Q#� and Q1 � �Q#�. Now,as Q1 ��!�Q2 and Q1 � �Q#�, by Lemma 3.11 we an exhibit R s.t. Q#� ��!�Rand Q2 � �R. We �nally use the onuene of � � to show that, sineQ2 � �R and Q2 � �Q3, R � �Q3#�. We thus have Q0 � �Q#� ��!�R � �Q3#�,and P 0 F�(R0)Q3#� (beause P 0RQ3).P
Q3#�
P 0Q1Q Q2RQ#�

��
�

(3.11)Q0 Q3|R| |R|
The ase where Q0 � � ��!� � �Q00 is muh easier, sine this means thatQ � � ��!� � �Q00, and by hypothesis we an exhibit P 0 s.t. P � � ��!� � �P 0and P 0RQ00, thus P 0F�(R0)Q00.(: we now have a �{bisimulation R s.t. P RQ0. We take R0 = R [f(P;Q)g, and prove that R0 is a �{bisimulation. The proof is as in the aseabove. }Theorem 3.14 P��Q i� P#���Q#�.Proof. Use Proposition 3.13 and the symmetry of ��. }Manipulating proesses of the form P#� suggests another notion of bisim-ulation, relating only suh terms:De�nition 3.15 (��#) A relation R between ��{proesses is a ��#{bisimu-lation i� for all (P;Q) 2 R, P 6 �, Q 6 �, and, whenever P ��!� � �P 0#�,there exists Q0 s.t. Q ��!� � �Q0#� and P 0#�RQ0#�, and the symmetrial on-dition on transitions of Q. ��# is the greatest ��#{bisimulation.18

Lemma 3.16 P#���Q#� i� P#���#Q#�.Proof.): let R be a ��{bisimulation s.t. P RQ. De�ne R0 =f(X#� ; Y#�):X RY g. We obviously have P#�R0Q#�; let us prove that R' isa ��#{bisimulation.Suppose then X#�R0 Y#� andX#� ��!� � �X 0#�; then by hypothesis, thereexists Y 0 s.t. Y ��!� � �Y 0 and X 0RY 0. This shows that Y ��!� � �Y 0#� andX 0R0 Y 0#�. The symmetri ase is treated in an idential fashion.(: R is now a ��#{bisimulation s.t. P#�RQ#�, onsiderR0 = f(X;Y):X RY#� _X#�RY g :To prove that R' is a ��{bisimulation, we onsider a transition X � �X1 ��!�X2 � �X 0; by onuene of �, X1 � �X#�, and hene using Lemma 3.11,we an exhibit T s.t. X#� ��!�T and X2 � �T . We use again the onu-ene of � to show that T � �X 0#�, and we thus have X#� ��!�T � �#X 0#�.Using the hypothesis that R is a ��#{bisimulation, we an exhibit Y 0#�s.t. Y#� ��!� � �Y 0#� and X 0#�RY 0#�. This is enough, beause we haveY � �Y#� ��!� � �Y 0#� , and X 0R0 Y 0#� , sine X 0#�RY 0#� . }Lemma 3.16 is interesting beause��#{bisimulations are in general \muhsmaller" than full ��{bisimulations, as the proof above suggests. Faithfullyfollowing the reasoning above3, we establish orresponding results for �s:Theorem 3.17 (i) P�sQ i� P#s�sQ#s and (ii) P#s�sQ#s i� P#s�s#Q#s.Intuitively, the notions of �s#{ and ��#{bisimulation orrespond tobisimulation on \usual" �{alulus terms in the De Bruijn notation: a tran-sition of suh a term orresponds to a transition in one of these alulifollowed by the full evaluation aording to the orresponding alulus ofsubstitutions. We shall now make suh a orrespondene more preise, byrelating �s# and ��#, using T .Corollary 3.18 (of Lemma 3.5) P#s ��!sP 0 i� T (P#s) ��!�T (P 0).Theorem 3.19 P�sQ i� T (P)��T (Q).Proof. Using Theorems 3.14 and 3.17 and Lemma 3.16, we show thatP#s�s#Q#s i� T (P#s)��#T (Q#s).3In partiular, due to the similar de�nitions of �s and ��, the ounterpart of Lemma3.11 is proved in the same way. 19

): let R be a �s#{bisimulation, we show thatT (R) = f(T (P);T (Q)): P RQgis a ��#{bisimulation. Indeed, whenever we have T (P)T (R)T (Q) andT (P) ��!� � �P 0#�, we an use results 3.18 and 3.10 to show that P ��!s � sP0#�and that T (P0) = P 0. By hypothesis, we an now exhibitQ0 s.t. Q ��!s � sQ0#sand P0RQ0. Using again 3.18 and 3.10, we get that T (Q) ��!s � �T (Q0)#� ,and we have P 0 = T (P0)T (R)T (Q0).(: R being a ��#{bisimulation, we know by Lemma 3.10 that R =T (R0) for some �s relation R0. Consider now (T (P);T (Q)) 2 R, and aproess P 0 s.t. T (P) ��!� � �P 0#� ; we have again P 0#� = T (P0#s) for someP0. As above, this implies P ��!s � sP0#s, and thus by hypothesis there existsQ0 s.t. Q ��!s � sQ0#s and P0#sR0Q0#s, and T (Q) ��!� � �T (Q0)#� , whihonludes the proof beause P 0#� = T (P0#s)RT (Q0#s). }The results we have established (Theorems 3.14, 3.17 and 3.19) providegreat freedom in the strategy for omputing manipulations on names, whihan lead to the design of several equivalent notions of bisimulation. In par-tiular, one ould be interested in avoiding useless omputations, that typi-ally arise in presene of dead ode (e.g. terms of the shape (�a) ax:P) or inonjuntion with the bisimulation up to parallel omposition proof tehnique[San95℄, where it should be possible to disard some terms without omput-ing the substitutions inside them. Indeed, the all{by{need avour imposedby the de�nition of the transition relations suggests a \lazy" omputation ofrelations , that ould perhaps be performed along the omputation of ��!steps in an implementation. Along these lines, the relationship with weak�{aluli of expliit substitutions [CHL96℄ ould be investigated.4 Disussion { VariantsWe briey disuss some topis related to our aluli, belonging to variantsor extensions of the present work.4.1 Late Operational SemantisNot muh work has to be done to adapt our study to late semantis. We anindeed modify the rules for relations ��!s and ��!� so that the substitutionis generated only at synhronisation time. This atually leads to a simpler20

presentation4, beause no substitution takes plae in the inp rule, so thatthere is no need to distinguish between bound and free inputs (note thatname b in an input ation of the shape a(b) is then onsidered to be bound).We only show here those rules that have to be reformulated in this setting,for �s{alulus: (inp) a:�P a(b)��! P(omm) P a(b)��! P 0 Q ab�! Q0P jQ ��! P 0hbi0 j Q0 (lose) P a(0)��! P 0 Q a(�)��! Q0P jQ ��! �(P 0jQ0)4.2 The Polyadi CaseGoing from monadi �{alulus to polyadi [Mil91℄ is not as easy5. Wepresent here a preliminary attempt at extending the de�nition of �s topolyadiity, and leave the omplete development of polyadi �s for futurework.Syntax In the polyadi �{alulus, a single ommuniation an involveseveral names: this means that operator � beomes polyadi, while � remainsmonadi (eah appliation of a restrition being dealt with using rule res oropen). Proesses of the polyadi �s{alulus are desribed by the followingsyntax:a = N name values na = a j ops na names~b = [℄ j a:~b name lists ops = h~biik j 'ik j n;k operatorsP = 0 j a[~b℄ j a�k:P j (P1jP2) j �P j ops P proessesA substitution h~biik shall sometimes be written hb1; : : : ; bniik, and rangedover with �ik.Semantis The syntax of ations has to be modi�ed so that we only have �and bound reeptions and emissions, of the form �k a(~b) and �k a[~b℄, the aseof free ations being reovered for k = 0 (we range over name lists with ~b).4However, no oneptual di�erene arises between both approahes; we preferred anearly presentation to stay as lose as possible to the formalisation of [Hir97℄ { see below.5In partiular, the situation does not resemble the introdution of pairs in the �{alulus, where a partiular shape of terms is added and an take part in a substitution.Here, as terms annot be exhanged in ommuniation, we have to redesign the mehanismof omputation at a deeper level to work with tuples of names instead of names.21

Aordingly, the operators introdued by the transition relation are a littlemore intriate; in partiular, as we apply rule res, the restrition we examinerosses the several (in general) restritions involved in the ation, whihmeans that operator of the �s{alulus now has to perform a irularpermutation on indies 0 to k, where k is the number of bound names inthe ation. (inp) a valuea�n:P �k a(~b)����! h~bi0n�k P (out) a;~b valuesa[~b℄ �0 a[~b℄���! 0(par) P ��! P 0P jQ ��! P 0 j '0b(�)Q (lose) P �k a(~b)����! P 0 Q �k a[~b℄����! Q0P jQ ��! �k (P 0jQ0)(res) P "��! P 0� P ��! b(�);0P 0 (open) P �k"a[~b℄����! P 0� P �k+1a[~b℄�����! P 0 \k 2 ~b "Figure 7: Operational Semantis of Polyadi ��{alulusFigure 7 presents the operational semantis of the alulus (relation ��!s;note that sine we only work with bound inputs and outputs, we get rid ofrules inpb { whih is subsumed by rule inp { and omm). Note that thenotation "� denotes here a more ompliate prediate on ations than inthe monadi ase, as ations may arry several bound names; this holds alsofor the side ondition \k 2 ~b " for rule open, the details of whih we willnot enter here. The alulus of operators orresponding to relation s isde�ned on Figure 8.Bisimulation The real diÆulty in working in a polyadi setting omesat the level of the de�nition of behavioural equivalene. Indeed, due tothe more omplex struture of ations, we fae the question of mathingtwo equivalent bound output ations. In the literature, a ommonly usedabuse of notation allows one to silently permute the names of ~b0 in a boundoutput ation of the form (�~b0) a[~b℄ (where ~b0 � ~b), so that the olletionof names ~b0 atually has a set struture rather than a vetor struture, asthe notation suggests. In a De Bruijn setting, however, suh an operation isnot innouous, as it hanges the representation of the term performing theoutput ation. 22

�{destrution hb1; : : : ; bniik a s 8<: a if n < iba�i+1 + i if i � a < i+ na� k if i+ n � a�{inp transition �ik a�n:P s (�ik a)�n:(�i+nk P)�{res transition �ik �P s � (�i+1k P)�{out transition �ik (a[~b℄) s �ika[�ik~b℄�{| transition �ik(P1jP2) s �ikP1 j �ikP2�{0 transition �ik0 s 0'{destrution 'ik a s � a if a < ia+ k if a � i'{inp transition 'ik a�n:P s ('ik a)�n:('i+nk P)'{res transition 'ik �P s � ('i+1k P)'{out transition 'ik (a[~b℄) s 'ika['ik~b℄'{| transition 'ik (P1jP2) s 'ik P1 j 'ik P2'{0 transition 'ik 0 s 0 {destrution n;k a s 8>><>>: a if a < ka+ 1 if k � a < k + nk if i = k + na if i > k + n {inp transition n;k a�m:P s (n;ka)�m:(n+m;k+mP) {res transition n;k �P s � (n+1;k+1P) {out transition n;k (a[~b℄) s n;ka[n;k~b℄ {| transition n;k (P1jP2) s n;kP1 j n;kP2 {0 transition n;k0 s 0Figure 8: Polyadi �s{alulus operators: relation sAs we introdue bisimulation, we want to ompare the ations performedby two proesses; there are a priori two solutions to takle the problem ofomparing bound output ations (notie that omparing bound input ationsis harmless, sine the disposition of bound names in an input is not imposedby the shape of the term performing the transition):- One an introdue an equivalene relation on ations so that the setstruture of ~b0 is implemented (whih amounts to embed in the systemthe property (�x)(�y)P � (�y)(�x)P). The transition relation is thende�ned using this equivalene, whih an result in the appliation of23

some operators to the proesses oming from a transition. We thereforede�ne a judgment of the form ops ` � = �0 (atually ops will rangeover an extended syntax for operators w.r.t. the one given above { theextension is however straightforward):De�nition 4.1 (Equality on ations) The judgment orrespondingto equality on ations is de�ned by the following rules:id ` � = � op ` �ka[~b℄ = �ka0[~b0℄ i;j Æ op ` �ka[~b℄ = �k(i;ja0)[i;j~b0℄ i; j < kDe�nition 4.2 (Extended Transition Relation) We de�ne tran-sition relation ��!s0 by adding to the rules of Figure 7 the followingtransition rule: P ��!sP 0 op ` � = �0P �0�!s0opP 0 :Bisimulation is the de�ned using relations ��!s0 and s, as in themonadi ase.- Alternatively, one an de�ne a notion of anonial form for bound out-put ations, so that a unique permutation on bound names is hosenfor every ation, and omparison of ations redues to syntati equal-ity. This solution, whih we �nd loser to the De Bruijn approah,involves some quite tedious omputation on De Bruijn indies eahtime rule open is applied, to preserve the property of anoniity forthe inferred ations. It is introdued in [Hir99℄. For lak of spae, wedo not enter the details of the orresponding de�nitions.4.3 Bisimilarity Proofs and Strutural CongrueneWhile in �� and its variants, onuene properties are a entral issue, thereis no real notion of suh a \benhmark" in our setting. This omes fromthe fat that the \transition" part of the semantis (relation ��!) and the\substitutions" part (relation) do not really interfer, whih results in thelose similarity between �s and ��. Suh an interplay would however ariseif we were to perform bisimilarity proofs, whih is beyond the sope of thiswork. In [Hir97℄, some bisimilarity results, inluding the laws of struturalongruene, are mehanially heked using a theorem prover, in a ontext24

that is very lose to (polyadi) �s{alulus. This development involves theproof of some tehnial lemmas relating relations ��! and ; to quote anexample, we establish a property that would be stated as follows in �s:8P; P 0; �; i: ('i P "��!s 'i+bn(�)bn(�) P 0)) (P ��!sP 0) :Considering the large size of the implementation presented in [Hir97℄ (about800 lemmas, 75% of them being purely tehnial), it seems impossible to givea omplete aount of these proofs on paper, in the setting of the �s{ or��{aluli.Let us notie as well that the aforementioned laws of strutural ongru-ene, seen as a onsequene of the de�nition of the operational semantis,ould serve to make preise the relation with a redutional semantis for the�{alulus (that typially leads to a multi{set semantis for proesses, akinto the hemial metaphor [BB92℄).5 ConlusionWe have presented two aluli that provide a desription of the mehanism ofname manipulation in the �{alulus, and shown that they basially desribethe same behaviour, leaving great freedom to the user to design a strategyfor omputation on names.The ��{alulus nearly ontains the mahinery needed in �� (exeptthat we only substitute names for names). It ould be interesting to makethis observation more preise, possibly by adapting our work to the BlueCalulus [Bou97℄, that is a superalulus of both the �{ and the �{alulus.Along the same lines, our treatment of the restrition operator ould beadapted to other aluli ontaining a similar onstrut, e.g. [Ode94℄.As said in Setion 1, the de�nitions of �s and �� are reminisent of weakbisimilarity, where � moves are treated as unobservable in the de�nition ofthe equivalene. It thus seems natural to introdue�s (and ��), by allowingboth s and ��!s transitions to be �red silently. The study of the equivaleneindued by suh a de�nition seems far from being trivial, basially beausewe would lose the \determinism" (strong normalisation and onuene) ofthe unobservable omputations.Aknowledgments We would like to thank Ren�e Lalement for useful dis-ussions about this work. 25

Referenes[ACCL91℄ M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Expliitsubstitutions. Journal of Funtional Programming, 1(4):375{416,1991.[Amb91℄ Simon J. Ambler. A de Bruijn notation for the �-alulus. Teh-nial Report 569, Dept. of Computer Siene, Queen Mary andWest�eld College, London, May 1991.[BB92℄ G. Berry and G. Boudol. The hemial abstrat mahine. TCS,96:217{248, 1992.[Bou97℄ G. Boudol. The pi-alulus in diret style. In Proeedings ofPOPL '97, pages 228{241, 1997.[CHL96℄ P.-L. Curien, T. Hardin, and J.-J. L�evy. Conuene propertiesof weak and strong aluli of expliit substitutions. Journal ofthe ACM, 43(2):362{397, 1996.[dB72℄ N.G. de Bruijn. Lambda Calulus Notation with Nameless Dum-mies: a Tool for Automati Formula Manipulation, with Appli-ation to the Curh-Rosser Theorem. In Indagationes Mathemat-iae, volume 34, pages 381{392. 1972.[FMQ96℄ G. Ferrari, U. Montanari, and P. Quaglia. A �{alulus withExpliit Substitutions. TCS, 168(1):53{103, November 1996.[Hir97℄ D. Hirshko�. A full formalisation of �-alulus theory in theCalulus of Construtions. In Proeedings of TPHOL'97, volume1275, pages 153{169. LNCS, Springer Verlag, 1997.[Hir99℄ D. Hirshko�. Mise en �uvre de preuves de bisimulation. PhDthesis, ENPC, Champs sur Marne, Frane, January 1999. infrenh.[KL98℄ D. Kesner and P.E. Mart��nez L�opez. Expliit Substitutions forObjets and Funtions. In Proeedings of PLILP/ALP '98, num-ber 1490 in LNCS, pages 195{212. Springer Verlag, 1998.[KR95℄ F. Kamareddine and A. R��os. A �{alulus �a la De Bruijn withexpliit substitutions. In Proeedings of PLILP '95, number 982in LNCS, pages 45{62. Springer Verlag, 1995.26

[LLL98℄ F. Lang, P. Lesanne, and L. Liquori. A Framework for De�n-ing Objet{Caluli. Tehnial Report 1998{51, LIP, ENS Lyon,1998.[Mil91℄ R. Milner. The polyadi �-alulus: a tutorial. Tehnial ReportECS-LFCS-91-180, LFCS, Otober 1991. Also in Logi and Alge-bra of Spei�ation, ed. F. L. Bauer, W. Brauer and H. Shwiht-enberg, Springer-Verlag, 1993.[Mil92℄ R. Milner. Funtions as proesses. Journal of MathematialStrutures in Computer Siene, 2(2):119{141, 1992.[Ode94℄ M. Odersky. A Funtional Theory of Loal Names. In Proeedingsof POPL '94, 1994.[San95℄ D. Sangiorgi. On the bisimulation proof method. Revised ver-sion of Tehnial Report ECS{LFCS{94{299, University of Ed-inburgh, 1994. An extended abstrat an be found in Pro. ofMFCS'95, LNCS 969, 1995.[Tur95℄ D. N. Turner. The Polymorphi Pi{alulus: Theory and Imple-mentation. PhD thesis, University of Edimburgh, 1995.

27

