
Thomas-Fermi type theories for polymers andsolid �lmsX. Blan & C. Le BrisCERMICS, Eole Nationale des Ponts et Chaussées,6 & 8, avenue Blaise Pasal, Cité Desartes,Champs sur Marne, 77455 Marne-La-Vallée CedexApril 2, 1999AbstratWe de�ne a Thomas-Fermi-von Weizsäker model for polymers andsolid �lms through a thermodynami limit proess. Our argumentmakes use of standard tehniques for ellipti PDEs, suh as maximumpriniples or supersolution methods. In the ourse of our work, weestablish some existene and uniqueness results for a system of non-linear PDE.
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1 INTRODUCTION 21 IntrodutionIn [5℄, I. Catto, P.L. Lions and one of us have studied the problem of ther-modynami limit for a three-dimensional rystal in the Thomas-Fermi-vonWeizsäker (TFW in short) setting. Given a �nite set of nulei representedby a set of points � � R3, eah one of harge +1, the TFW model assoiatesto this set an eletroni density, denoted by ��, whih minimizes the so-alledTFW energy, that is :E�(�) = ZR3 jrp�j2 + ZR3 �5=3 �Xk2� ZR3 �(x)jx� kjdx+12 ZR3 ZR3 �(x)�(y)jx� yj dxdy: (1.1)In other words, the density �� is a solution to the following minimizationproblem :I� = inf�E�(�) + 12 Xk 6=j2� 1jk � jj ; � � 0; p� 2 H1(R3); ZR3 � = j�j�;(1.2)where j�j denotes the ardinal of the set �. The ase of smeared nulei anbe also onsidered ; that is when the measure de�ning the nulei in (1.1) isreplaed by a smooth measure m, having ompat support and total massone. In this latter ase, (1.1) and (1.2) beome :Em� (�) = ZR3 jrp�j2 + ZR3 �5=3 � ZR3(m� ? 1jxj)�+ 12 ZR3 ZR3 �(x)�(y)jx� yj dxdy;where m� =Pk2�m(� � k), and ? is the onvolution produt over R3,Im� = inf�Em� (�) + 12 ZR3 ZR3 m�(x)m�(y)jx� yj dxdy;� � 0; p� 2 H1(R3); ZR3 � = j�j�: (1.3)It is well-known that the problem (1.2) (respetively (1.3)) has a uniqueminimizer (see for instane [2℄, [10℄ or [12℄), basially beause the energyfuntional E� is onvex with respet to �.



1 INTRODUCTION 3The thermodynami limit problem is the following : letting � be a subsetof a periodi lattie, determine the behaviour of I� and �� as � progressively�lls in the entire lattie.In order to takle this problem mathematially, we introdue the notionof Van Hove sequenes :Let � = (�h)h2N be a sequene of subsets of Zn, having ardinal j�j. �is a Van Hove sequene of Zn if it satis�es the following :(An) For any �nite subset A of Zn, there exists h0 2 N suh that for allh � h0, A � �h.(Bn) Denoting by � the unit ube entered at the origin, by �(�) the set[k2�(� + k), by �a the set fx 2 Rn = d(x; ��(�)) < ag, where d is theEulidean distane in Rn, and by j�ahj the Lebesgue measure (in Rn)of the set �ah, we have, for all a > 0, the Van Hove ondition, that is :limh!1 j�ahjj�hj = 0 (1.4)The thermodynami limit problem studied in [5℄ onsists then in answer-ing the following questions, for any Van Hove sequene � of Z3 :(L1) Does the energy per ell I�j�j onverge as j�j goes to in�nity ?(L2) Does the density �� onverge to a limit �1 as j�j goes to in�nity ?(L3) Does the limit �1 have the same periodiity as that of the lattie ?In this artile, we study questions (L1), (L2), (L3) in two ases that donot satisfy onditions (A3) and (B3) :(a) The �rst ase is the thermodynami limit of a linei moleule, that is� = f(0; 0)g��3 will be a subset of f(0; 0)g�Z, suh that �3 is a VanHove sequene of Z1,(b) The seond ase is the same problem onerning a solid �lm : � =�2 � f0g is a subset of Z2 � f0g, and the sequene �2 is a Van Hovesequene of Z2.1.1 Linei moleulesIn this ase, to whih Setion 2 is devoted, we are going to answer a�rma-tively the questions (L1), (L2), and (L3). More preisely, we introdue thefollowing notation :(i) we denote by �0 = R2�℄ � 12 ; 12 ℄ the periodi ell of the problem, andby �(�) the set [k2��0 + k.
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Figure 1: The set � in the ase of polymers (on the left) and solid �lms (onthe right)(ii) For any funtional spae S, Sper(�0) denotes the set of elements ofSlo(R3) \ S(�0) that are periodi with periodi ell �0.We introdue the following variational problem :Iper = inf�Eper(�); � � 0; p� 2 Xper; Z�0 � = 1�; (1.5)where Xper is a subspae of H1per(�0) to be made preise later on (see for-mula 2.14), and Eper is de�ned by :Eper(�) = Z�0 jrp�j2 + Z�0 �5=3 � Z�0 G�+ 12 Z�0 Z�0 �(x)�(y)G(x� y)dxdy:(1.6)The potential G, whih is not to be onfused with the potential G ap-pearing in [5℄ (it is its 1-D analogue), is the periodi potential modeling theCoulombian interation in the periodi lattie f(0; 0)g � Z. (In the smearednulei ase, the only neessary hange is to take G ?�0 m instead of G inthe third term of the energy.) From the onlusions of [11℄, it is natural tointrodue :G(x) = �2 log jx0j+Xk2Z� 1jx� ke3j � Z 12� 12 dyjx� (y + k)e3j�; (1.7)where we denote by x0 the vetor (x1; x2), and by (e1; e2; e3) the anonialbasis of R3. It is easy to hek that G is periodi, with periodi ell �0, andthat it satis�es : ��G = 4�Xk2Z Æke3 :The onstant M is de�ned by follows :



1 INTRODUCTION 5� In the point nulei ase, M = limx!0�G(x)� 1jxj�.� In the smeared nulei ase, M = R�0 R�0 m(x)m(y)�G(x� y)� 1jx�yj�.The main result of Setion 2 is the following theorem :Theorem 1.1 Let � be a Van Hove sequene in the third dimension, in thesense made preise above, and �� the minimizing density of the TFW energy.Then we have :(i) lim�!1 I�j�j = Iper + M2 :(ii) The density �� onverges to �per uniformly on any subset of the formR2 �K, K being a ompat subset of R.The strategy of the proof is as follows : we �rst write down I�'s Euler-Lagrange equation, that is : (setting �� = u2� and m� =Pk2�m(� � k), mbeing either Æ0 in the point nulei ase, or a smooth funtion in the smearednulei ase) ��u� + 53u7=3� � �(m� � u2�) ? 1jxj�u� = ���u�;where �� denotes the Lagrange multiplier assoiated to the mass onstraintin I�. Hene, denoting by �� the funtion (m� � u2�) ? 1jxj � ��, we get asolution of the system :8<: ��u� + 53u7=3� � u��� = 0;���� = 4�(m� � u2�);u� � 0: (1.8)As in [5℄, we then establish bounds on u� and ��, so that we an passloally to the limit in the above system. Next, we show the following unique-ness result :Theorem 1.2 Let � 6� 0 be a non-negative measure with ompat supportwith respet to (x1; x2). Assume that � is periodi with periodi ell �0, andthat �(�0) = 1. Then the following system8<: ��u + 53u7=3 � u� = 0;��� = 4�(�� u2);u � 0 (1.9)has a unique solution (u; �) 2 �L2unif \ L7=3lo (R3)�� L1unif(R3). In addition,this solution satis�es the following properties :



1 INTRODUCTION 6(i) u 2 L1(R3), and u(x) � C1+(x21+x22)3=4 , C > 0 being a onstant indepen-dent of x.(ii) � 2 Lpunif(R3) for all p < 3, and there exists a onstant �per suh that� = G ?�0 (�� u2)� �per.(iii) R�0 u2 = 1.The spae Lpunif(R3) is ff 2 Lplo(R3) = supx2R3 kfkLp(B1+x) <1g.One this result is established, applying it to the ase � =Pk2Z3 m(�+k),we may therefore identify the limit of u� as the unique solution of this system.Conerning the proof of Theorem 1.2, the strategy onsists in showingthat any solution of system (1.9) is periodi, with periodi ell �0, henethat � = u2 is a ritial point of Iper, with nulei de�ned by m = � on �0,and next showing that this problem is stritly onvex, so that � is neessarilyits unique minimizer. In order to show that Iper is onvex, we introdue thebilinear form DG de�ned by :DG(f; g) = Z�0 Z�0 f(x)g(y)G(x� y)dxdy = Z�0(f ?�0 G)g;and we rewrite Eper as :Eper(�) = Z�0 jrp�j2 + Z�0 �5=3 + 12DG(m� �;m� �)� 12DG(m;m):Of ourse, this is possible only in the smeared nulei ase, or equivalentlyif m is smooth. If it is not, we introdue the harateristi funtion of theunite ube, denoted by 1Q, and write :Eper(�) = Z�0 jrp�j2 + Z�0 �5=3 + 12DG(1Q � �; 1Q � �)� 12DG(1Q; 1Q)+ Z�0�(1Q �m) ?�0 G��:In both ases, the point is that, by studying losely the potential G, we �ndthat DG is positive on a set that inludes m� � and 1Q� � as far as p� liesin Xper and � has total mass one over �0. So DG is a onvex funtional onthat set. Hene Iper beomes a onvex problem.Those results answer questions (L2) and (L3). Next, we use them as in[5℄ to show the onvergene of the energy, answering question (L1).All these results give a TFW model for any moleule whih nulei areperiodially ditributed with respet to x3, and ontained in a ylinder havingvertial axis. This is the ase for many polymers, and for DNA moleules.



1 INTRODUCTION 71.2 Solid �lmsThe seond part of our work onerns problem (b).As above, we denote by �0 the periodi ell of the problem, whih is now℄� 12 ; 12 ℄2�R, and by �(�) the set [k2��0+k. The notation H1per(�0) followsas in the one-dimensional ase.Here again, we introdue a periodi potential, that we still denote by G,though it is neither the same as in [5℄ nor as in (1.7) :G(x) = �2�jx3j+ Xk2Z2�f0g� 1jx� kj � ZK�f0g dyjx� y � kj�; (1.10)where K is the unit square ofR2, namely ℄� 12 ; 12 [2. We notie that G satis�esthe equation ��G = 4� Xk2Z2�f0g Æk:The energy Eper is de�ned by (1.6), and the problem Iper by (1.5). Wealso de�ne the onstant M exatly in the same way as in the polymers ase.We do not have here a onvergene result as that of the preeding setion,although we suspet it to hold. In fat, to be able to show a onvergenetheorem as Theorem 1.1, we need the additional assumption that � is sym-metri with respet to x1 and x2. However, it is only a tehnial hypothesis,and the onvergene result that is stated in Theorem 1.3 below is likely tobe true for any Van Hove sequene.Theorem 1.3 Let � be a Van Hove sequene in the �rst two diretions.Assume that � is symmetri with respet to x1 and x2. (In the smearednulei ase, m is also supposed to be symmetri.) Then, we have :(i) limj�j!1 I�j�j = Iper + M2 .(ii) �� uniformly onverges to �per on any set of the form K �R, K beinga ompat subset of R2.As in the preeding setion, we start by proving the seond assertion ofTheorem 1.3, the �rst one being a onsequene of it. For this purpose, weuse exatly the same strategy as above, showing �rst that the Euler-Lagrangepasses to the limit, and then that suh a solution is a ritial point of Iper.The same positiveness property holds onerningDG, and so the proof arriesthrough. The only di�erene is that, for tehnial reasons, we are not able toshow a uniqueness result similar to that of Theorem 1.2 : suh a result wouldhold only (so far as we know) to a solution oming from the thermodynamilimit proess for a sequene of symmetri domains.



2 POLYMERS 8Remark 1.1 In all the results we have stated above, we have used the Cou-lombian interation potential, that is V (x) = 1jxj : Another hoie is possible,namely the Yukawa potential : V (x) = e�ajxjjxj ; (1.11)where a > 0.Then (1.1) and (1.8) beome :E�(�) = ZR3 jrp�j2 + ZR3 �5=3 �Xk2� ZR3 �V (� � k)+12 ZR3(� ? V )�: (1.12)8<: ��u� + 53u7=3� � u��� = 0;���� + a2�� = 4�(m� � u2�);u� � 0: (1.13)In this ase, we have stronger results that are brie�y exposed (withoutproofs) in Setion 4, together with uniqueness results for some related semi-linear PDEs.2 PolymersWe study here the thermodynami limit problem in one dimension, that isto say the limit of a line growing to in�nity. More preisely, we onsidera sequene � = f(0; 0)g � �3 � f(0; 0)g � Z, suh that �3 is a Van Hovesequene of Z. We reall that �0 is the periodi ell of the problem, i.e�0 = R2�℄� 12 ; 12 ℄, and �(�) = Sk2� �0 + k. Putting x = (x1; x2; x3) a pointin R3, we denote by r = r(x) the quantity px21 + x22. For all �, we denoteby :E�(�) = ZR3 jrp�j2 + ZR3 �5=3 � ZR3(m� ? 1jxj)�+ 12 ZR3(� ? 1jxj)� (2.1)the Thomas-Fermi-von Weizsäker energy. Here m� =Pk2� Æk. In the aseof smeared nulei, Æk will be replaed by m(� � k), where m is the measurede�ning the shape of a nuleus. In this ase, m will be onsidered to be inD(R3), suh that its support lies in �0. We will denote by I� the minimizationproblem :I� = inffE�(�) + Xk 6=j2� 1jk � jj ; � � 0; p� 2 H1(R3); ZR3 � = j�jg: (2.2)



2 POLYMERS 9We will denote by �� the solution of the problem I�.We also reall the Euler-Lagrange equation of problem (2.2) :��u� + 53u7=3� � ��u� = 0; (2.3)where u� = p�� and �� = (m� � u2�) ? 1jxj � ��, �� 2 R being the Lagrangemultiplier assoiated to the onstraint in (2.2). Hene �� satis�es���� = 4�(m� � u2�): (2.4)Let us begin with some a priori estimates.2.1 A priori estimates2.1.1 Energy boundsFirst of all, we establish some bounds on �� and ��. For this purpose, wefollow exatly the proof of [5℄, Chapter 3, Setion 3.2, whih arries throughhere sine it does not depend on the sequene �, and we get :Theorem 2.1 (Catto, Le Bris, Lions, [5℄) There exist various positiveonstants C suh that, for any sequene � � Z3, we have :(i) jI�j � Cj�j,(ii) RR3 jru�j2 � Cj�j,(iii) k��kLp � Cj�j1=p for all p � 53 ,(iv) 0 � RR3 ���� � Cj�j,(v) 0 < �� � C,(vi) jPk 6=j2� 1jk�jj � RR3 ��(m� ? 1jxj)j � Cj�j.In the ase of smeared nulei, we also have :(vii) D(m� � ��; m� � ��) � Cj�j, i.e RR3 jr��j2 � Cj�j.2.1.2 L1 boundsNext, we may obtain L1 bounds, still exatly as in [5℄, Setion 3.2. Hereagain, the proof does not depend on the sequene �, so we have :Theorem 2.2 (Catto, Le Bris, Lions, [5℄) There exist positive onstantsC independent of � suh that, for all � � Z3, we have :(i) k��kL1(R3) � C.



2 POLYMERS 10(ii) In the smeared nulei ase, k��kL1(R3) � C.In the point nulei ase, we have :(ii') k��kL1(Q(�)) � C, where Q(�) = [k2�Q+ k, Q being the unit ube ofR3 and :(iii') k��kLpunif (R3) � C, for all 1 � p < 3.The norm k � kLpunif (R3) is de�ned by supx2R3 k � kLp(x+B1).Remark 2.1 Let us point out that the proof of Theorem 2.2 is based only onthe Euler equations (2.3)-(2.4), and the fat that the measure m is positive,bounded, and has ompat support. Hene it holds for any suh solutions,and in partiular if m� is replaed by m1 = Pk2Zm(� � ke3), or by any�0-periodi measure with ompat support in the diretion (x1; x2). This willbe useful in the proof of the uniqueness Theorem 2.4 below.2.1.3 Asymptoti estimatesAs the set of nulei remains on�ned in a subset of R3 whih is bounded withrespet to r, we expet the above uniform bounds not to be optimal. Morepreisely, we expet, at least onerning the density ��, a deay as r goes toin�nity. For this purpose, we use Solovej's method [15℄ (see also [1℄).Let eR be the ground state of the Laplaian with homogeneous Dirih-let boundary onditions on the ball BR of radius R entered at the origin,normalized by the ondition keRkL2 = 1, and prolonged by 0 outside BR.That is, eR(x) = sin(�jxj=R)jxjp2�R on BR. Then we have kreRkL2 = �=R. We setgR = e2R.Lemma 2.1 (Benguria, Lieb, [1℄) Let 
 be any open subset of R3. Ifu� 2 H10 (
) is positive and satis�es (2.3) with �� 2 L2(
)+L1(
) satisfying(2.4), then for all x 2 
 suh that d(x; �
) > R, we have :gR ? �� � gR ? u4=3� + �2R�2: (2.5)And if BR + x does not ontain any nulei, i.e m� = 0 in BR + x, we have :��(x) � gR ? ��(x): (2.6)Proof : For the sake of onsisteny, we reprodue here the proof of thislemma. Sine u� is positive, and u� satis�es (2.3), it is the ground state ofthe operator H = ��+ u4=3� � �� with Dirihlet ondition on 
. Hene, forall w 2 H10 (
), we have :Z
 jrwj2 + Z
(u4=3� � ��)w2 � 0: (2.7)



2 POLYMERS 11We now apply this inequality to w = eR(x � �), and we get (2.5), providedd(x; �
) > R. Let us now show (2.6) : if �� satis�es (2.4) and BR + xontains no nulei, �� is subharmoni on BR + x, hene applying the mean-value inequality (see for instane [8℄), we get :gR?��(x) = Z R0 �ZSr ��(x�y)dy�gR(r)dr � Z R0 4�r2��(x)gR(r)dr = ��(x)beause gR is of total mass one. �Now we turn to the estimate at in�nity :Theorem 2.3 For any solution (u�; ��) of the system (2.3)-(2.4) satisfyingu� � 0, we have : �� � C1 + r2 ; 8r � 1;0 � u� � C1 + r3=2 ;where C denotes various positive onstants independent of the measure m�.Furthermore, in the smeared nulei ase, i.e when m in (2.4) is supposedto be smooth, the �rst inequality holds everywhere.Remark 2.2 The �rst estimate is not e�ient for � �xed : �� = (m� �u2�) ? 1jxj � �� is negative at in�nity, sine �� is positive (see [15℄). However,the point is that this estimate does not depend on the measure m�, hene isindependent of the sequene �, as far as it satis�es the hypotheses we haverequired at the beginning of this setion.Proof :We apply lemma 2.1, with 
 = R3, and get :gR ? �� � gR ? u4=3� + �2R2 ;for all R > 0. We de�ne ~� = gR ?��� �2R2 , and get, using Jensen's inequality :~� � gR ? u4=3� � (gR ? u2�)2=3:Now, onvoluting (2.4) on both sides, we get :��(gR ? ��) = 4�(m� ? gR � u2� ? gR);that is, ��~� + (~�)3=2+ � 4�(m� ? gR):



2 POLYMERS 12Now, we may assume, without loss of generality, that the support of m�lies in fr � 1g. So we have m� ? gR = 0 on CR+1 = fr � R + 1g, hene��~�+ (~�)3=2+ � 0 on that set.We are going now to use a omparison argument on ~�, in the spirit of [3℄.For that purpose, we �x an R0 > R + 1 and introdue the funtionU = a(r2 �R2)2 + bR04(R02 � jxj2)4 ;where a and b are positive onstants to be determined later on. In partiular,we need U to be a supersolution of the di�erential inequality satis�ed by ~�,that is, ��U + U3=2+ � 0. One easily omputes :��U = �8a R2 + 2r2(r2 � R2)4 � 8bR04 3R02 + 7jxj2(R02 � jxj2)6 : (2.8)Using the inequality (�+ �)3=2 � �3=2 + �3=2, whih is valid for all �; � > 0,one �nds :��U + U3=2 � a(pa� 8R2+2r2r2�R2 )(r2 �R2)3 + bR04(pbR02 � 24R02 � 56jxj2)(R02 � jxj2)6 : (2.9)We want this quantity to be positive on CR+1 \ BR0 , whih is true as soonas a � (16 + 24R22R+1)2 and b � 802. We also need that U � ~� on �CR+1 \BR0 ,i.e a(2R+1)2 � k~�kL1. The latter quantity exists beause �� 2 L1unif and gRis smooth. So we an hoose a large enough to ensure all those properties,together with a � R2,  being a universal onstant.We then have : ��(~�� U) + (~�)3=2+ � U3=2 � 0:Hene, using Kato's inequality :��(~�� U)+ � �sgn+(~�� U)((~�)3=2+ � U3=2) � 0:We use now the maximum priniple to onlude that on the set CR+1 \BR0 ,~� � R2(r2 � R2)2 + bR04(R02 � jxj2)4 :This holds for any R0 > R + 1, with  and b being universal onstants. So,by letting R0 go to in�nity, we �nd :~� � R2(r2 � R2)2



2 POLYMERS 13on CR+1.Furthermore, from Lemma 2.1, we know that on this set, (2.6) holds.Therefore, we �nally get : �� � CR2(r2 � R2)2 + �2R2 :This inequality holds whenever R > 0 and r � R + 1. So if r is �xed andlarger than 2, we may hoose R = r=2, and we �nd8r � 2; �� � Cr2 :Pointing out that �� 2 L1(fr > 1g, we infer that8r � 1; �� � C1 + r2 :And in the smeared nulei ase, we know that �� 2 L1, so this inequalityholds on R3.We now turn to the seond assertion, namely the estimate on u�. Forthis purpose, we use the above inequality and (2.3), and write :��u� + 53u7=3� � Cu�r2 ; 8r � 1:Now, there exists a onstant  suh that for all a; b � 0; ab � 13a7=3 + b7=4.So we have, on the set fr � 1g :��u� + 43u7=3� � Cr7=2 :We are now going to use the same omparison argument as above, introduingthe funtion V = ar3=2 + bR03=2(R02�jxj2)3=2 . Computing ��V , and using (here again)that (� + �)7=3 � �7=3 + �7=3; we �nd that��V + 43V 7=3 � ar7=2 (4a4=33 � 94) + bR03=2(R02 � jxj2)7=2 (43b4=3R02 � 9R02 � 6jxj2):Thus, hoosing a4=3 > 2716 and b4=3 > 454 , we have :��V + 43V 7=3 � ��u� + 43u7=3� :So by the same argument as above, we onlude that u� � V on the setfr � 1g. Sine u� 2 L1(R3), this onludes the proof. �



2 POLYMERS 142.1.4 CompatnessThe next step onsists in proving the ompatness of the sequene ��, i.e thefat that no eletrons esape at in�nity. Mathematially, this will be statedas : 1j�j Z�(�) �� �! 1 as �!1: (2.10)We start with the smeared nulei ase, and next generalize the result tothe point nulei ase :Proposition 2.1 In the smeared nulei ase, (2.10) holds.Proof : The key-point of the proof is, as in [5℄, that we have, for all h 2H1(R3),j ZR3(m� � ��)hj � 1(2�)3D(m� � ��; m� � ��)1=2krhkL2(R3): (2.11)(We reall that D(f; g) = RR3 RR3 f(x)g(y)jx�yj dxdy.) This inequality holdsbeause m� � �� 2 L6=5(R3) � H�1(R3) : it is exatly the Cauhy-Shwarzinequality in H�1 �H1, through the Fourier transform.Now, we know from Theorem 2.3, that D(m� � ��; m� � ��) � Cj�j.Next, we hoose h = h� : we put h�(x) = f�(r)g�(x3), where :� f�(r) = 1 � ( rR)� if r � R, 0 otherwise, with 1 > � > 0, and R =R(�) > 0 being hosen below.� g� 2 D(R), g� = 1 on the set fx 2 R=d(x;�3) < 12g, 0 on the setfx 2 R=d(x;�3) > 1g, 0 � g� � 1 and jg0�j � 4.(We reall that � = f(0; 0)g � �3, and that j�h3 j = ft 2 R; d(t; �([k2�3 [k �1=2; k + 1=2℄)) < hg.)For suh an h�, we ompute :ZR3 jrh�j2 = ZR2�[0;1[g0�(x3)2f�(r)22�rdrdx3 + ZR2�[0;1[g�(x3)2f 0�(r)22�rdrdx3� Cj�13j Z R0 (1� ( rR)�)2rdr + Cj�j Z R0 �2 r2��1R2� dr� C(R2j�13j+ �j�j):We now hoose R = � j�jj�13j�1=4, so that we have R �! 1 as j�j ! 1, to-gether with Rj�13j1=2 � j�j1=2. Thus, we �nd that krh�kL2(R3) � C(p�j�j+o(pj�j)), hene 1j�j j ZR3(m� � ��)h�j � Cp�+ o(1):



2 POLYMERS 15Now, beause h� � 1, RR3 m�h� � j�j. On the other hand,ZR3 m�h� � j�j � ZR3 m�( rR)�:And RR3 m�( rR)� � Cj�j=R�, so we have :1j�j ZR3 m�h� �! 1:Furthermore,ZR3 ��h� = Z�(�)\fr<Rg �� � Z�(�)\fr<Rg ��( rR)� + Z�(�) ��h�= Z�(�) �� +O(j�13j)� Z�(�)\fr<Rg ��( rR)� � Z�(�)\fr>Rg ��;beause R�(�) h��� � Cj�13j R R0 rdr1+r3 � Cj�13j, aording to Theorem 2.3.Conerning the remaining terms of the right-hand side of the above equal-ity, we have :0 � Z�(�)\fr>Rg �� � Cj�j Zr>R drr2 � C j�jR � j�j;and : 0 � Z�(�)\fr<Rg ��( rR)� � C j�jR� Z 10 r�+11 + r3dr � C j�jR� � j�j;beause 3� �� 1 > 1.Colleting all those onvergene results, we get :j1� 1j�j Z�(�) ��j � Cp� + o(1):Letting j�j �! 1, this implies thatlim sup�!1 j1� 1j�j Z�(�) ��j � Cp�:Here C does not depend on � > 0, so letting �! 0, we �nd (2.10). �Let us now turn to the point nulei ase. The only di�erene betweenthis ase and the preeding one is that D(m�� ��; m� � ��) does not exist.So we are going to replae m� by 1Q(�), Q(�) denoting Sk2�Q+k, where Qis the unit ube in R3. 1Q(�) lies in L1 \L1(R3) and have ompat support,so that the existene of 1j�jD(1Q(�) � ��; 1Q(�) � ��) is ensured. The point isthen to prove that this quantity is bounded independently of �, so that thesmeared nulei ase proof will apply. Sine this is only a tehnial adaptationof [5℄, Setion 3.3.4, we skip this proof.Proposition 2.2 In the point nulei ase, (2.10) holds.



2 POLYMERS 162.2 Uniqueness for the system of PDE-Identi�ation ofthe limitNow that we have bounds on the sequene ��, we may pass loally to thelimit (up to a subsequene) in the system (2.3)-(2.4). Denoting by �1 = u21and �1 the orresponding limits, we get a solution to the system :� ��u1 + 53u7=31 � u1�1 = 0;���1 = 4�(m1 � u21); (2.12)where the measure m1 is either equal to Pk2Z Æke3 in the point nulei ase,or to Pk2Zm(� � ke3) in the smeared nulei ase. In both ases, m1 isperiodi and its periodi ell is �0.The aim of this setion is to show a uniqueness result on the system, soas to identify the limit (u1; �1) as the solution of the system (2.12). The�rst step will be the periodiity of the solution. Next, when the solution isshown to be periodi, we will ompare it with the solution of the periodivariational problem :Iper = inffEper(�); � � 0;p� 2 Xper; Z�0 � = 1g; (2.13)Xper being de�ned by :Xper = fu 2 H1per(�0); �log(2 + jxj)�1=2u 2 L2(�0)g; (2.14)The energy Eper is de�ned by :Eper(�) = R�0 jrp�j2 + Z�0 �5=3 � Z�0(G ?�0 m)� (2.15)+ Z�0 Z�0 G(x� y)�(x)�(y)dxdy:(We denote by f ?�0 g the onvolution produt over �0 for periodi funtions,that is, f ?�0 g(x) = R�0 f(x� y)g(y)dy.)The potential G is the periodi potential de�ned by (1.7).We �rst study this periodi potential.2.2.1 The potential GWe reall that in this setion,G(x) = �2 log(r) +Xk2Z� 1jx� ke3j � Z 12� 12 dyjx� (y + k)e3j�:



2 POLYMERS 17Lemma 2.2 We have :(o) G is smooth on R3 n Ze3.(i) G(x) = 1jxj + C +O(jxj) as x! 0.(ii) G(x) = �2 log(r) +O(1r) as r !1, uniformly with respet to x3.Proof :First of all, we prove that the sum de�ning G does exist on R3 nfr = 0g :indeed, denoting by f(x) the quantity 1jxj�R 12� 12 dtjx�te3j , we have, for jxj �! 1,and r 6= 0 : f(x) = 1jxj � Z 12� 12 dtpjxj2 � 2tx3 + t2= 1jxj � 1jxj Z 12� 12 dtq1� 2tx3jxj2 + t2jxj2= 1jxj � 1jxj Z 12� 12 (1 + tx3jxj2 +O( 1jxj2 ))dt= O( 1jxj3 ); (2.16)so this shows that Pk2Z f(x + ke3) is normally onvergent on any ompatsubset of R3 n fr = 0g. This proves our laim, and that G is smooth on thisset, and periodi with periodi ell �0.We now turn to the proof of (i) : we isolate the interesting terms, andwrite G as :G(x) = �2 log(r) + 1jxj � Z 12� 12 dtjx� te3j (2.17)+ Xk2Z�� 1jx� ke3j � Z 12� 12 dtjx� (t+ k)e3j�:Now, we ompute, with x �! 0, x 6= 0 :Z 12� 12 dtjx� te3j = Argsh( 12 � x3r ) + Argsh( 12 + x3r )= log�x3 + 12 +qr2 + (x3 + 12)2x3 � 12 +qr2 + (x3 � 12)2�= log� x3 + 12 +qr2 + (x3 + 12)2x3 � 12 + 12(1� 2x3 + 2jxj2 � 2x23 +O(jxj3))�;



2 POLYMERS 18beauserr2 + (x3 � 12)2 = 12p1� 4x3 + 4jxj2= 12(1� 2x3 + 2jxj2 � 18(4x3)2) +O(jxj3):Hene Z 12� 12 dtjx� te3j = log� 1 +O(jxj)r2 +O(jxj3)�= �2 log(r) +O(jxj):So we may writeG(x) = 1jxj + Xk2Z�� 1jx� ke3j � Z 12� 12 dtjx� (t + k)e3j�+O(jxj)as jxj �! 0:Now, all the terms of the remaining sum are learly de�ned on �0, sousing the estimate (2.16) on f , we onlude that this series de�nes a smoothfuntion on �0. With the periodiity of G, this shows (o) and (i), withC =Pk2Z�� 1jkj � R 12� 12 dtjk+tj�.We now turn to the proof of (ii), whih results only in showing that :Xk2Z���� 1jx� ke3j � Z 12� 12 dtjx� (k + t)e3j���� � Cr (2.18)as r �!1, uniformly with respet to x3:Considering the funtion f de�ned above, this expression may be writtenas : Pk2Z f(x� ke3). So, as we know thatjf(x)j � Cjxj3 ;we have : jXk2Z f(x� ke3)j �Xk2Z 1r3 + jkj3 ;for r su�iently large. Now, we haveXk2Z 1r3 + jkj3 � 1r3 + Xk2Z� 1r3=2jkj3=2 � Cr3=2 :



2 POLYMERS 19This proves (2.18). �Now that we know the behaviour of G, we turn to a positiveness propertyfor DG. We reall that :DG(f; g) = Z�0 Z�0 f(x)g(y)G(x� y)dxdy: (2.19)Sine DG appears in the expression of the energy and is a bilinear form,its positiveness (in the sense of bilinear forms) will ensure its onvexity, henethe onvexity of the energy.In the following Proposition, we assume that Supp(m) � fr < 1g, sinethis may be done without loss of generalityProposition 2.3 The bilinear form DG is positive on the set Yper = ff 2L1per(�0)=pjf j 2 H1per(�0 \ fr > 1g); R�0 f = 0 and log(2 + jxj)f 2 L1(�0)g.Where the spae H1per(�0 \ fr > 1g) is de�ned as the set of funtions lyingin H1lo(fr > 1g) \H1(�0 \ fr > 1g) that are periodi with respet to x3, ofperiod 1.Proof :We de�ne on Sper(�0), that is, the set of funtions that are C1 on R3,periodi with periodi ell �0, and deaying faster than any power of r asr !1, the Fourier transform f 7�! bf as :bf(�; n) = Z�0 f(x)e�i2�(x0��+x3n)dx; (2.20)where x = (x0; x3), x0; � 2 R2, and n 2 Z. It is easy to hek out that thisFourier transform has the isometry-property of the lassial Fourier trans-form, that is : Z�0 f(x)g(x)dx =Xn2Z ZR2 bf(�; n)bg(�; n)d�: (2.21)Hene it may be prolonged to S 0per(�0). We also have :8f 2 S 0per(�0); d�jf(�; n) = i2��j bf(�; n); j = 1; 2:And 8f 2 S 0per(�0) and g 2 Sper(�0);\f ?�0 g = bfbg:So, sine we know that ��G = 4�Æ0 on �0, we dedue :4�2(j�j2 + n2) bG(�; n) = 4�:



2 POLYMERS 20Hene when n 6= 0, bG(�; n) = 1�(j�j2+n2) . Now for n = 0, bG beomesthe lassial Fourier transform of log jx0j on R2. Indeed, we have, puttingG0(x) = G(x) + 2 log(r), Z 12� 12 G0(x)dx3 = 0: (2.22)Beause omputing �� R 12� 12 G0(x)dx3, with x 2 �0, one �nds :�� Z 12� 12 G0(x)dx3 = Z 12� 12 ��(G0(x))dx3= 4� Z 12� 12 �Æ0 � Ær=0�dx3= 4�(Ær=0 � Ær=0) = 0:So the left-hand side of (2.22) is the expression of a harmoni funtion, whihlies in L1 beause of Lemma 2.2, hene is a onstant. But, still beause ofLemma 2.2, G0 goes to 0 as r goes to in�nity, so (2.22) holds.The lassial Fourier transform of log jxj on R2 is equal to vp( 1jxj2 ) + aÆ0,with a > 0, and where vp( 1jxj2 ) is de�ned as follows (see [14℄) :< vp( 1jxj2 ); ' >= lim"!0+�Zjxj>" '(x)jxj2 dx+ log "" Zjxj="'�: (2.23)(In fat, vp( 1jxj2 ) = div( log jxjjxj2 x) in D0(R2):)So we have : bG(�; 0) = vp( 1j�j2 ) + aÆ0:Now, we ompute, for all f 2 Yper :DG(f; f) = Z�0(G ?�0 f)f= Xn2Z ZR2\G ?�0 f(�; n) bf(�; n)d�= Xn2Z� ZR2 ( bf(�; n))24�2(j�j2 + n2)d�+ < vp( 1j�j2 ); ( bf(�; 0))2 >;sine bf(0) = R�0 f = 0. So Proposition 2.3 will be proved if we show thatwhen f 2 Yper, < vp( 1j�j2 ); ( bf(�; 0))2 >� 0.



2 POLYMERS 21From the fat that f 2 Yper, we have :j bf(�; 0)j = ����Z�0(e�2i�x0� � 1)f(x)dx����� Z�0\fr> 1pj�j gje�2i�x0� � 1jjf(x)jdx+ Z�0\fr< 1pj�j gje�2i�x0� � 1jjf(x)jdx� 2log(2 + 1pj�j) Z�0\fr> 1pj�j g log(2 + r)jf(x)jdx+ Z�0\fr< 1pj�jg jx0jj�jjf(x)jdx� 4��log j�j�� Z�0 log(2 + jxj)jf(x)jdx+pj�jZ�0 jf(x)jdx� C��log j�j�� (2.24)as j�j �! 0.Hene, (2.24) implies that bf(�;0)j�j 2 L2lo(�0), and that log "" Rj�j=" bf(�; 0)2vanishes as " ! 0. Sine bf(�; 0) 2 L2(R2), we onlude from (2.23) that wehave : < vp( 1j�j2 ); ( bf(�; 0))2 >= Z�0 bf(�; 0)2j�j2 d� � 0:This onludes the proof. �Remark 2.3 Let us point out that the important property of f is that itsintegral vanishes. For example, if f = Æke1 + Æ�ke1 on �0, f being periodiwith periodi ell �0, one may ompute that, for k > 0 large enough, we haveDG(f; f) � � log k < 0. And we may even onvolute f with a regularizingkernel, so as to get a C1 funtion g, having ompat support, and suh thatDG(g; g) < 0.We now turn to our main result : the uniqueness of the solution of thesystem (2.12), whih will be stated more preisely in Theorem 2.4 below. Weonsider a positive measure � with ompat support, periodi with periodiell �0, suh that � 6� 0, and the system :8<: ��u + 53u7=3 � u� = 0;��� = 4�(�� u2);u � 0; (2.25)and intend to prove a uniqueness result for this system.



2 POLYMERS 22We write � =Xk2Zm(� � ke3);with m having its support in �0. With no loss of generality, we may assumethat Supp m � fr < 1g, and that m(�0) = 1. We �rst need some a prioriestimates on the solution of the system. It is the aim of the following setion.2.2.2 A priori boundsProposition 2.4 Let (u; �) be a solution of (2.25), with u 2 L1(R3) and� 2 L1unif(R3). Then for any R > 0, there exists a onstant � > 0 suh thatinfr<R u � �.Proof : First of all, we remark that, by ellipti regularity, the fat that� 2 L1unif implies that u 2 W 2;1unif , hene belongs to H1unif(R3). So � 2H3unif(fr > 1g) � L1(fr > 1g, and u lies in L1 \ C0;�(fr > 1g) for some� > 0. Moreover, the fat that � 2 L1unif(R3) and �� is a uniformly loallybounded measure, we dedue that � 2 Lp(R3), for all p < 3.We argue by ontradition, and suppose that the above property is false,i.e that there exists R > 0 suh that :infr<R u = 0: (2.26)This means in partiular that there exists a sequene (xn)n�0 suh thatr(xn) � R and u(xn) �! 0 as n ! 1. So, denoting by un and �n thefuntions u(�+ xn) and �(�+ xn) respetively, we have thatun(0) �! 0 as n!1: (2.27)Now, we may write xn = kn + x0n, with kn 2 Ze3 and x0n 2 �0. Siner(xn) = r(x0n) � R, we may extrat a subsequene so as to have x0n �! x0,for some x0 2 �0, satisfying r(x0) � R.But from (2.25), (2.27) and Harnak's inequality (see for instane [8℄), wededue that un �! 0 uniformly on any ompat subset of R3. Consideringthe bounds on u and �, we may pass loally to the limit, up to a subsequene,in (2.25). We then get � 2 L1unif a solution to :��� = 4��(�+ x0): (2.28)Hene, denoting by  the funtion �(� � x0), we have  2 L1unif , satisfying :�� = 4��: (2.29)



2 POLYMERS 23With no loss of generality, we may assume that r(x0) = 0, so that �� has its support in fr < 1g.We are now going to use a saling argument to show that the fat that is a solution to (2.29) is in ontradition with its belonging to L1unif . The�rst thing is that  is harmoni on the set fr > 1g, hene ontinuous on thisset, and thus belongs to L1(fr > 1g).Let �0 2 C1(R), suh that �0 = 1 on [�1; 1℄, �0 = 0 on [�2; 2℄, andj�000 j � 4. Let � 2℄0; 1[ and �R : R2 �! R be the solution of ��� = 0 onf1 < jxj < R�g with boundary onditions � = 1 on f1 = jxjg, � = 0 onfjxj = R�g. Namely, we have�R(x) = 1� log jxj� logRon the set f1 < jxj < R�g. We prolong it by 1 on f1 > jxjg, 0 on fjxj > R�g.We set �R(x) = �R(x0)�0(x3R ), for all x 2 R3.And we ompute :< �� ; �R > = 4� < �; �R >= Xk2Z < m(�+ ke3); �R >= Xk2Z;jkj�2RZ�0 �0(x3 � kR )m(x)dx� Xk2Z;jkj�RZ�0 m:So we onlude that : < �� ; �R >� 2R: (2.30)On the other hand, we have, denoting by 
R the set fr < R�; jx3j < 2Rgand by !R the set fr < 1; jx3j < Rg,ZR3 �� �R = Z
R �� �R= Z
Rn!R r r�R= � Z
Rn!R  ��R � Zr=R�;jx3j<2R  ��R�r + Zr=1;jx3j<2R  ��R�r :



2 POLYMERS 24We know that ��R = 1R2 �R(r)�000 (x3R ) on the set 
R n !R, so we have :����Z
Rn!R  ��R���� = 1R2 ����Z
Rn!R  �R(r)�000(x3R )����� 4R2 ����Z
R  ����� CR2 j
Rj = CR2��1 � R;beause  2 L1unif and � < 1.Next, we ompute that ��R�r = � �0(x3R )�r logR ;so we also have, using the fat that  belongs to L1(fr > 1g) and is smoothon this set : ����Zr=R�;jx3j<2R  ��R�r ���� � CR�+1�R� logR = CRlogR � R: (2.31)And : ����Zr=1;jx3j<2R  ��R�r ���� � CRlogR � R: (2.32)So we onlude that ��< �� ; �R >��� R;reahing a ontradition with (2.30). This onludes the proof. �We now have a lower bound on u, and intend to get upper bounds :Proposition 2.5 Let (u; �) be a solution of (2.25), satisfying u 2 L1 and� 2 L1unif . Then we have :(i) � � C1+r2 8r > 1; and(ii) u � C1+r3=2 :Proof : The proof follows exatly the same pattern as that of Theorem 2.3.Indeed, this proof only uses the fat that the measure m� has its support infr < 1g and that the funtions u�; �� are solutions of the system (2.3)-(2.4).So the whole proof arries through to this ase. �



2 POLYMERS 252.2.3 Periodiity of the solutionsWe are now going to show that the solutions of the system (2.25) are nees-sarily periodi.For this purpose, we denote, for any funtion f de�ned on R3,�f(x) = f(x+ e3): (2.33)We then have, if (u; �) is a solution to (2.25),��(��� �) = 4�(u2 � �u2): (2.34)Hene, from ellipti regularity, (��� �) 2 C0 \ L1(R3):Proposition 2.6 Let (u; �) 2 L1(R3) � L1unif (R3) be a solution of (2.25).Then ��� � = u2 ? ( 1jxj � � 1jxj):And j��� �j � C1 + r ;for some onstant C independent of x3.Proof : The �rst thing is to hek out if this onvolution produt exists :Sine we have u2 � C1 + r3and j 1jxj � � 1jxj j � j2x3 + 1jjxjjx+ e3j(jxj+ jx+ e3j)� 1jxj(jxj+ jx+ e3j) + 1jx+ e3j(jxj+ jx+ e3j) ;this is easy to hek. Moreover, we have :����u2 ? (� 1jxj � 1jxj)���� � ZR3 11 + r(y)3 dyjx� y + e3j(jx� yj+ jx� y + e3j)+ ZR3 11 + r(y)3 dyjx� yj(jx� yj+ jx� y + e3j)� 2 ZR3 11 + r(y)3 dyjx� yj(jx� yj+ jx� y + e3j) :We split this integral into two others, and write, with r(x) > 2 :



2 POLYMERS 26ZR3 11 + r(y)3 dyjx� yj(jx� yj+ jx� y + e3j)= Zjx�yj<2 11 + r(y)3 dyjx� yj(jx� yj+ jx� y + e3j)+ Zjx�yj>2 11 + r(y)3 dyjx� yj(jx� yj+ jx� y + e3j) :So that we have, denoting by A(x) and B(x) respetively the terms of thissum, A(x) � C1 + r(x)3 ; (2.35)beause Zjx�yj<2 dyjx� yjjx� y + e3j = Zjyj<2 dyjyjjy + e3j � C;and beause the fat that jx � yj < 2 together with r(x) > 2 imply that11+r(y)3 � C1+r(x)3 , where C does not depend on x.Conerning B, we have, for an R < r(x) = jx0j that will be hosen lateron : B(x) � ZR3 C1 + r(y)3 dy1 + jx� yj2� ZR2 C1 + jy0j3�ZR dy31 + jx0 � y0j2 + jx3 � y3j2�dy0� ZR2 11 + jy0j3 Cjx0 � y0jdy0 = ZR2 C(1 + jx0 � y0j3) dy0jy0j� Zjy0j<R C(1 + jx0 � y0j3) dy0jy0j + Zjy0j>R C(1 + jx0 � y0j3) dy0jy0j� Zjy0j<R dy0jy0j 11 + (jx0j � R)3 + 1R Zjy0j>R dy01 + jx0 � y0j3� CR1 + (jx0j � R)3 + CR ;where C is a onstant independent of x. Finally, we hoose R = jx0j2 , so as tohave : B(x) � Cr(x) : (2.36)



2 POLYMERS 27Now, olleting (2.35) and (2.36), we get :��u2 ? (� 1jxj � 1jxj)�� � Cr : (2.37)Finally, sine u2 ? (� 1jxj � 1jxj) is ontinuous, (2.37) implies :��u2 ? (� 1jxj � 1jxj)�� � C1 + r : (2.38)So there only remains to prove that this expression is indeed equal to ����.In order to do so, we ompute its Laplaian, and �nd :��(u2 ? (� 1jxj � 1jxj)) = u2 ? (��(� 1jxj � 1jxj)) = u2 ? (Æe3 � Æ0) = �u2 � u2:So the funtion ��� �� u2 ? (� 1jxj � 1jxj) is harmoni. But sine, from (2.38),it lies in L1(R3), it must be a onstant. Hene��� � = u2 ? (� 1jxj � 1jxj) + a: (2.39)Now, onsidering (2.38), we know that for some R large enough,ju2 ? (� 1jxj � 1jxj)j < jaj2on the set fr > Rg. So we havea� jaj2 � ��� � � a+ jaj2on this set, whih implies that, for all n 2 N, we have :j�n�� �j � n jaj2on fr > Rg. So 2k�kL1unif � ZB1+2Re1 j�n�� �j � n jaj2 jB1j:This is valid for all n 2 N, so we reah a ontradition with the fat that� 2 L1unif , unless a = 0. This onludes the proof. �Next we turn to a uniqueness result that will ensure the periodiity of u,hene of �.



2 POLYMERS 28Lemma 2.3 Let (u; �) and (v;  ) be two solutions of system (2.25), bothlying in L1 � L1unif , suh that j� �  j � C1+r for some onstant C. Thenu = v and � =  .Proof : The proof follows exatly the same pattern as the uniqueness The-orem of [5℄, Setion 5.3 : we are going to ollet all the former results, andthen use a saling argument on u and �.First of all, we know from Proposition 2.4 that there exists a positivefuntion �, independent of x3, suh that :u; v � �: (2.40)Next, denoting by w the funtion u � v, we get, substrating the twosystems : ��w + u7=3 � v7=3 � (�u�  v) = 0: (2.41)and : ��(��  ) = v2 � u2: (2.42)Hene, for any � 2 D(R3), we have :ZR3 rwr(w�2) + ZR3(u7=3 � v7=3)w�2 � ZR3(�u�  v)w�2 = 0: (2.43)The �rst term of this sum may be rewritten as :ZR3 rwr(w�2) = ZR3 jr(w�)j2 � ZR3 w2jr�j2: (2.44)Now, from (2.40), we dedue that there exists a positive funtion �(r) suhthat : (u7=3 � v7=3)(u� v) � 12(u4=3 + v4=3)(u� v)2 + �(u� v)2:That is, (u7=3 � v7=3)w � 12(u4=3 + v4=3)w2 + �w2: (2.45)On the other hand, we write :�u�  v = 12(�+  )w + 12(��  )(u+ v): (2.46)



2 POLYMERS 29We denote by L the operator ��+ 12(u4=3+ v4=3)� 12(�+ ), and deduefrom (2.43), (2.45) and (2.46) that :< L(w�); w� > + ZR3 �w2�2 � 12 ZR3(��  )(u2 � v2)�2 + ZR3 w2jr�j2:(2.47)We laim that the operator L (with homogeneous Dirihlet boundaryonditions on a bounded set) is positive. Indeed, we may write it asL = 12�(��+ u4=3 � �) + (��+ v7=3 �  )� = 12(L1 + L2);and the only thing to prove is that L1 and L2 are positive. This omes fromthe �rst equation of (2.25) : denoting by �1 the �rst eigenvalue of L1 on 
,and by f1 the assoiated eigenvetor, satisfying f1 > 0 on 
, we have :Z
��f1u+ Z
 u4=3f1u� Z
 �f1u = Z
 �1f1u:Integrating by parts and using the �rst equation of (2.25), we �nd :� Z�
 u�f1�n + Z�
 f1 �u�n = �1 Z
 f1u:Sine the seond term of the left-hand side is 0, and beause of Hopf's Lemma,whih shows that �f1�n < 0 on �
, we infer that �1 > 0, hene that L1 ispositive. L2 may be dealt with exatly in the same way, so our laim isproved.So the equation (2.47) implies :ZR3 �w2�2 � 12 ZR3(��  )(u2 � v2)�2 + ZR3 w2jr�j2: (2.48)We now go bak to (2.42), and use it to rewrite the �rst term of (2.48)'sright-hand side as :12 ZR3(��  )�(��  )�2 = �12 ZR3 jr(��  )�j2 + 12 ZR3(��  )2jr�j2:So the inequality (2.48) beomes :ZR3 �w2�2 + ZR3 jr((��  )�)j2 � ZR3 w2jr�j2 + 12 ZR3(��  )2jr�j2:(2.49)Sine this holds for any � 2 D(R3), we may apply it to a sequene �nonverging to �(x) = 1(1 + x23)�=2(1 + r2)�=2 :



2 POLYMERS 30With � > 12 , � > 0 and � + � < 1. We then get (2.49) for this hoie of �.Now, for this funtion �, it is lear, from the hypotheses on � and �, and fromProposition 2.5, (ii) that we have RR3 w2�2 <1 and RR3(��  )2�2 <1.We are now going to use a saling argument on the inequality (2.49). Wede�ne �" as : �"(x) = �("x): (2.50)We then ompute :jr�"j2 = ����� "2x0(1 + "2r2)(�2+1)(1 + x23)�2 ����2 + ����� "2x3(1 + "2r2)�2 (1 + "2x23)(�2+1) ����2= �2 "4r2(1 + "2r2)(�+2)(1 + x23)� + �2 "4x23(1 + "2r2)�(1 + "2x23)(�+2)� �2 "2(1 + "2r2)�(1 + "2x23)� + �2 "2(1 + "2r2)�(1 + "2x23)�� C"2�2��2�(1 + x23)�(1 + r2)� = C"2�2��2��2: (2.51)Now we onsider inequality (2.49) together with (2.51), and �nd :ZR3 �w2�2" � C"2�2��2�:Fixing R > 0, we also have :ZR3 �w2�2" � infBR �1 + "2R2 ZBR w2 � infBR � ZBR w2:Letting " go to 0, and using the fat that � + � < 1, we dedue thatZBR w2 = 0;hene w = 0. Now, sine u; v > 0, we also onlude, from the �rst equationof (2.25), that � =  . �This Lemma, together with Proposition 2.4, Proposition 2.5 and propo-sition 2.6, allows us to assert that any solution of (2.25) is periodi, withperiodi ell �0. Now, we are going to omplete the proof of our uniquenesstheorem.2.2.4 Uniqueness for the systemWe intend to prove the following theorem :



2 POLYMERS 31Theorem 2.4 Let � be a periodi positive measure, with periodi ell �0 =R2�℄� 12 ; 12 ℄ suh that :(a) Supp � � fr < 1g.(b) �(�0) = 1.Then the system (2.25), that is :8<: ��u + 53u7=3 � u� = 0;��� = 4�(�� u2);u � 0: (2.52)has a unique solution (u; �) in �L2unif \ L7=3lo (R3)� � L1unif (R3). Moreover,this solution is periodi with respet to x3, of period 1, and we have :(i) u 2 L1(R3), and there exists a onstant C > 0 and a positive funtion� depending only on r, suh that 0 < � � u � C1+r3=2 ; and(ii) there exists a onstant � suh that � = G ?�0 (�� u2) + � ; and(iii) R�0 u2 = 1.Remark 2.4 Of ourse, in properties (a)-(b), the number 1 may be replaedby any positive real. That is, those assumptions ould be replaed by :(a') � has ompat support with respet to (x1; x2).(b') � 6= 0.And in this ase, the onlusion (iii) would beome :(iii') R�0 u2 = �(�0).Remark 2.5 In the three-dimensional ase, that is if � is a Van Hove se-quene of Z3, this uniqueness result holds provided � satis�es weaker ondi-tion of the kind (H1)� (H2) of Theorem 4.1. Here we are not able to adaptour proof to those kind of �'s. The periodiity is a neessary ondition of ourproof. However, in the Yukawa ase, suh a result holds (see Setion 4).Proof : We give here two tehnial results that we will need in the ourseof the proof, their proof being postponed until the end of the present one :Lemma 2.4 Let  2 L2unif(R2) \ H3=2lo (BR0) for some R0 > 0, and denoteby  R the funtion  � 12�R Rjxj=R  . Assume that (�� ) R is bounded inL1(BR0) independently of R. Then r 2 L2(BR0).



2 POLYMERS 32Lemma 2.5 Let v 2 Zper = fg 2 S 0(�0); R�0 log(2+ jxj)jgj <1; R�0 g = 0g,suh that v 2 L1lo(�0 \ fr > 1g) and jvj � C1+r3 on fr > 1g. Then G ?�0 v 2L1unif(�0).The proof of the existene is a straight-forward adaptation of the ther-modynami limit proess, using the measure m instead of a smooth funtionor Æ0. One heks easily that the point nulei ase proofs generalizes toany bounded measure with ompat support. And the assoiated variationalproblem I� has been studied in [10℄.We refer the reader to [5℄, Setion 5.3.2 for the belonging of u to L1. Theproof also gives the information that � 2 Lpunif(R3) \ L1(fr > 1g), for all1 � p < 3. This omes from ellipti regularity results.Now, we know that whenever u 2 L1(R3) and � 2 L1unif(R3) satisfy(2.25), Lemma 2.3 and Propositions 2.4, 2.5 and 2.6 show that u and � areperiodi, with periodi ell �0, and that (i) holds.Now that the periodiity of u and � is ensured, we introdue the varia-tional problem (2.13), that is :Iper = inffEper(�); p� 2 Xper; Z�0 � = 1g:Where Eper is de�ned by (2.15), i.eEper(�) = R�0 jrp�j2 + Z�0 �5=3 � Z�0(G ?�0 �)�+ 12 Z�0 Z�0 �(x)�(y)G(x� y)dxdy:Here G is the periodi potential de�ned in (1.7), andXper is the funtionalspae : Xper = fv 2 H1per(�0); �log(2 + jxj)�1=2v 2 L2(�0)g:The �rst observation is that u 2 Xper. Indeed, we already know from(i),the seond equation of (2.25) and the fat that � 2 L1unif , that :k ��ukLp(B1+x) = k � u7=3 + �ukLp(B1+x) � C1 + r(x)3=2 :(We reall that r(x) = jx0j = px21 + x22.) The same inequality holds for uinstead of �u, so by standard ellipti regularity results, and taking p largeenough, we dedue that jruj � C1 + r3=2 : (2.53)



2 POLYMERS 33Hene u 2 H1(�0). Sine u is periodi, this shows thatu 2 Xper:The next step is to show that u is a ritial point of the problem Iper. Sowe write the Euler-Lagrange equation of this problem :��u + 53u7=3 � (G ?�0 (�� u2))u = �u; (2.54)for some � 2 R. The point is then to show that� = G ?�0 (�� u2) + d; (2.55)with d 2 R. We set :  = Z 1=2�1=2 �(x)dx3;and f = Z 1=2�1=2(�� u2)dx3:Those funtions are de�ned on R2, and sine we have �� = R 1=2�1=2��� =R 1=2�1=2 � � u2, from the periodiity of �, the �rst Laplaian being a two-dimensional one, and the seond one a three-dimensional one, we have :�� = fon R2.We want here to apply Lemma 2.4 with R0 = 1. For that purpose, weonly need to show that k(�� ) RkL1(B1) is bounded independently of R.So, denoting by Q the unit ube of R3, we write :ZB1 jf Rj = Xk2(Z2)� Z(Q+k)\B1 jf Rj� Xk2(Z2)� kfkL1(Q+k)k RkL1unif (B1)� C Xk2(Z2)� k RkL1unif (B1)1 + jkj3� Ck kL1unif (B1) + C supR>1����Rjxj=R  2�R ����� Ck�kL1unif (fr>1g) + Ck�kL1(fr>1g):



2 POLYMERS 34So we may apply Lemma 2.4 to  , deduing that r 2 L2(R2). Knowingthis, we are going now to prove that :Z�0 u2 = 1: (2.56)This will follow from : Z�0 ��� = 0:And, sine this last property may be written as :ZR2 �� = 0; (2.57)we fous on this last equation. Let �R be a ut-o� funtion, in the followingsense : �R(x) = �( jxjR ); with :� � 2 D(R), 0 � � � 1, j� 0j � 2.� �(t) = 1 8t 2 [�1; 1℄.� �(t) = 0 8t 2 [�2; 2℄.We have, for all R > 1 :ZR2 �� �R = ZR2 r r�R:����ZR2 �� �R���� � �ZR<r<2R jr j2�1=2�ZR<r<2R jr�Rj2�1=2:And, sine jr�Rj2 = 1R2 ����� 0� jxjR �����2 � CR2 ;we onlude that ����ZR2 �� �R���� � C�Zr>R jr j2�1=2:The right-hand side of this inequality vanishes as R goes to in�nity, siner 2 L2(B1). Hene we get (2.57), that is (2.56), or (iii).Now, we are going to prove (2.55). In order to do so, we ompute theLaplaian of ��G ?�0 (�� u2), and �nd, from the equality��G =Xk2Z Æke3



2 POLYMERS 35that ��G ?�0 (�� u2) is harmoni. On the other hand, we set v = �� u2,hene we have R�0 v = 0, v 2 S 0per(�0) and v is smooth on fr > 1g, satisfyingjvj � C1+r3 . Hene, applying Lemma 2.5, we dedue thatG ?�0 (�� u2) 2 L1unif : (2.58)Now, sine a harmoni funtion belonging to L1unif is neessarily a onstant,we onlude that (2.55) holds.Thus, we know that u 2 Xper, that u2 has total mass one on �0, and thatit satis�es the Euler-Lagrange equation of Iper. Sine this problem is onvex,beause the quadrati form DG is positive, hene onvex with respet to �,we onlude that u must be a solution of Iper. Hene u is unique, and so is�. �We now give proofs of the two lemmas that we have stated at the begin-ning of our proof :Proof of Lemma 2.4 : This result seems to be a standard one, but sinewe have found no proof in the literature, we provide one for the onvenieneof the reader.We �rst notie that  R 2 L2unif (R2), sine  2 L2unif(R2).We �x an R > R0. Let �R be a ut-o� funtion, that is, �R 2 D(R2),suh that �R(x) = 1 on BR n B2R0 and 0 on BR+1 [ BR0 , 0 � �R � 1, andkr�RkL1 � 1 + 2R0 .We have : ����ZR2 �� R R�2R���� � C (2.59)����ZR2 r Rr(�2R R)���� � C:This implies : ZR2 jr( R�R)j2 � C + ZR2  2Rjr�Rj2� C + CR; (2.60)



2 POLYMERS 36We also have :ZR2 jr( R�R)j2 � ZR2 jr Rj2�2R + 2 ZR2  Rr R�Rr�R� ZR2 jr Rj2�2R�2�ZR2 jr Rj2�2R�1=2�ZR2 jr�Rj2 2R�1=2� ZR2 jr Rj2�2R � 2CpR�ZR2 jr Rj2�2R�1=2� 12 ZR2 jr Rj2�2R � CR:This, together with (2.60), shows thatZBRnB2R0 jr j2 = ZBRnB2R0 jr Rj2 � ZR2 jr Rj2�2R � CR; (2.61)for some onstant C independent of R. We also have, integrating by partsover BR nB2R0 ,ZBRnB2R0 (�� R) R = ZBRnB2R0 jr Rj2 � Zjxj=R  R� R�r + Zjxj=2R0  R� R�r :(2.62)And from Poinaré inequality, we know that :�Zjxj=R  R2�1=2 � 1R�Zjxj=R����� R�� ����2�1=2: (2.63)This, together with (2.62) and (2.59), gives :ZBRnB2R0 jr j2 � C0 � R�Zjxj=R����� R�r ����2�1=2 1R�Zjxj=R����� R�� ����2�1=2� R2 Zjxj=R jr Rj2 = R2 Zjxj=R jr j2;C0 being a onstant bounding ����Rjxj=2R0  R � �r + RBRnB2R0 (�� R) R����.So, letting g be the funtiong(R) = ZBRnB2R0 jr j2 � C0;



2 POLYMERS 37we get the di�erential inequality :g(R) � R2 g0(R):Hene ddR� 1R2g(R)� = 1R3 (Rg0(R)� 2g(R)) � 0:So, integrating from R1 > R0 to R, we get, for all R > R1,g(R) � g(R1)R21 R2:If there exists at least one R1 suh that g(R1) > 0, we reah a ontraditionwith (2.61). Hene g � 0, that isZBRnB2R0 jr j2 � C0:Whih implies that r 2 L2(BR0). �Proof of Lemma 2.5 : We already know that G ?�0 v lies in L1lo(�0), sothe only thing to hek out is that it is bounded as r !1.We now write :G ?�0 v = Z�0 v(y)(G(x� y) + 2 log(r(x� y)))dy� Z�0 2v(y)(log(r(x� y))� log(r(x)))dy:We �rst onsider the �rst term of this expression : from Lemma 2.2, weknow that jG(x) + 2 log(r)j � Cr ;for x 2 2�0. Hene :����Z�0 v(y)(G(x� y) + 2 log(r(x� y)))dy���� � C Z�0 jv(y)jr(x� y)dy� C Z�0\fr(x�y)>1g jv(y)jdy+C Z�0\fr(x�y)<1g jv(y)jr(x� y)dy� C + C Zjy3j< 12 ;r(y)<1 dyr(y)� C: (2.64)



2 POLYMERS 38Now we rewrite the seond term as :Z�0 2jv(y)jj log(r(x� y))� log(r(x))jdy � C Z�0 jv(y)j����log���� x0jx0j � y0jx0j��������dy(2.65)� C Z�0\fjy0j<Rgjv(y)j����log���� x0jx0j � y0jx0j��������dy + C Z�0\fjy0j>Rgjv(y)j����log���� x0jx0j � y0jx0j��������dy:(2.66)Where R = R(x) satis�es R� jx0j. So we may write, for jy0j < R :����log���� x0jx0j � y0jx0j�������� = 12 ����log�1� 2x0y0jx0j2 + jy0j2jx0j2����� = O( Rjx0j):Whih implies :Z�0\fjy0j<Rg jv(y)j����log���� x0jx0j � y0jx0j ��������dy � CRjx0j Z�0\fjy0j<Rg jv(y)jdy� CRjx0j Z 1R rdrr3 � Cjx0j :Conerning the remaining term of (2.66), we integrate �rst over the set�0 \ fjy0j > Rg \ fjx0 � y0j > 1g = DR;then over the set �0 \ fjy0j > Rg \ fjx0 � y0j < 1g = ER:On the �rst one, we have :j log���� x0jx0j � y0jx0j����j � C log�1 + jy0jjx0j�: (2.67)The seond one is a ompat subset of R3, so, as log jx0j 2 L1lo(R3), we maybound the integral of jv(y)j����log���� x0jx0j � y0jx0j�������� over ER by CR3 .



2 POLYMERS 39And oming bak to (2.67), we write :Z�0\fjy0j>Rg jv(y)j����log���� x0jx0j � y0jx0j��������dy � ZDR jv(y)j����log�1 + jy0jjx0j�����dy + CR3� C Z 1R j log(1 + rjx0j)jr2 dr + CR3� Cjx0j Z 1R=jx0j j log(1 + t)jt2 dt+ CR3� Cjx0j� jx0j log(1 + Rjx0j)R �+ Cjx0j Z 1R=jx0j dtt(1 + t) + CR3� Cjx0j + CR + CR3 : (2.68)All this is bounded as jx0j �! 1, so this ends the proof. �Remark 2.6 Looking losely at inequality (2.68), we notie that the boundmay be Cjx0j� , for any � < 1. (Just take R = jx0j�.) On the other hand, thesame kind of omputation ould be done in (2.64), by developing 1jx0�y0j asjx0j �! 1. One would �nd the same kind of inequality, namely C in (2.64)would be replaed by Cjx0j� . So we may in fat assert that � = �0 + d, withd 2 R and �0 2 L1unif , satisfyingj�0j � Cjx0j� ; 8� < 1:We may also notie that, in the ourse of our proof, we have found asolution to the problem Iper, and hene ensured that this problem is well-posed :Remark 2.7 As a orollary of Theorem 2.4, one may state the result thatthe periodi problem Iper is well-posed. Of ourse, this result ould be provedwithout using the above theorem, by using standard variational methods, butit is not our point here.2.2.5 Convergene and identi�ation of the limitNow that we have a uniqueness result for the system (2.25), we are able toshow the onvergene of the sequene �� :Proposition 2.7 The sequene u� onverges to uper in H1(�0).



2 POLYMERS 40Proof : The proof only onsists in olleting the preeding results, as pointedout above. �Atually, as in [5℄, we establish in Theorem 2.5 below a muh strongeronvergene result. In order to do so, we introdue what we will in thisontext all interior domains :De�nition 2.1 Let � � f(0; 0)g � Z be a Van Hove sequene in the thirddiretion. �0 will be said to be a sequene of interior domains, denoted by�0 �� �, if it satis�es the following properties :(i) �0 � �.(ii) For any �nite subset A of Ze3, there exists an h0 2 N suh that 8h �h0; A � �0h.(iii) j�0jj�j �! 1 as �!1.(iv) d(�0; ��(�)) �!1 as �!1.Theorem 2.5 For any sequene �0 �� � and any R > 0, we have :ku� � uperkL1(�(�0));�! 0 (2.69)k�� � �perkL1(�(�0)\fr<Rg) �! 0; (2.70)as � �!1: (We reall that �per = G ?�0 (m� u2per)� �per )Proof : We follow step by step, here again, the proof of [5℄. We only providea proof of (2.69), the proof of (2.70) following exatly the same pattern. Weargue by ontradition, and suppose that (2.69) does not hold. This impliesthat there exists, extrating a subsequene if neessary, a sequene x� in�(�0), suh that : ju�(x�)� uper(x�)j > "2 ; (2.71)for some " > 0. On the other hand, we have :ju�(x�)� uper(x�)j � C1 + r(x�)3=2 :Hene r(x�) is neessarily bounded. Now we write x� = y� + k�e3, withy� 2 �0 and k� 2 Z. Sine the sequene r(x�) is bounded, so is y�. We thenmay assume that this sequene is onvergent, and that the limit y lies in �0.We then have, using (2.71), and taking j�j large enough,ju�(x�)� uper(y)j > "4 : (2.72)



2 POLYMERS 41We denote by u� the funtion u�(�+x�), and by �� the funtion ��(�+x�).One may then rewrite (2.3)-(2.4) as :� ��u� + 53u7=3� � u��� = 0;���� = 4�(m�(�+ x�)� u2�): (2.73)The bounds on u� and �� hold for u� and ��, so we may pass loally to thelimit in the system (2.73) above, and denoting by u and � the orrespondinglimits, we have : � ��u+ 53u7=3 � �u = 0;��� = 4�(m1(�+ y)� u2); (2.74)beause m�(� + x�) �! m1(� + y) in D0(R3) as � ! 1. Indeed, we have,for any ' 2 D(R3), K being its support :< m�(�+ x�); ' > = Xk2� < m(�+ x� + k); ' >= Xk2�\(�0�K�x�) < m;'(� � x� � k) > :Using De�nition 2.1-(iv), we have that the set � \ (�0 � K � x�) beomesZe3\(�0�K�x�) when � is large enough, beause in this ase, �0�K�x�omes to be inluded in �. Hene,< m�(�+ x�); ' > = Xk2Ze3 < m;'(� � x� � k) >= < m1; '(� � y�) >�!< m1(�+ y); ' > :Now, from Theorem 2.4, we know that (2.74) implies thatu = uper(�+ y):Hene u� �! uper(�+ y)in L2lo(R3). On the other hand, from the bounds we have on ru� (seeformula (2.53)), we dedue that the above onvergene is point-wise, reahinga ontradition with (2.72).Now, onerning (2.70), the only hange is the fat that we do not needto show that y� is bounded, all the other steps of the proof arrying through.�



3 SOLID FILMS 422.2.6 Convergene of the energyWe are now going to answer the only question of the problem of thermo-dynami limit that we have left aside so far, namely the onvergene of theenergy per unit volume.Theorem 2.6 For any Van Hove sequene, we have :I�j�j �! Iper + M2as �!1.Proof : Here again, our proof is an adaptation of [5℄'s, using the ompatnessresult (2.10), and the deay we have obtained on ru in (2.53), that is :jru�j � C1 + r3=2 :The strategy of proof is to study one by one the terms of the energy, and tosplit the integrals over R3 into integrals over �(�0), �(�) n �(�0) and �(�),for some �0 �� �, the �rst being dealt with using the onvergene result ofTheorem 2.5, the seond using the bounds we have on uper and u�, and thethird one using the ompatness result (2.10). We refer the reader to [5℄ formore details. �3 Solid �lmsThis setion is devoted to the thermodynami limit problem in two dimen-sion, that is to say, the problem of the thermodynami limit onerning solid�lms. Throughout this setion, � = �2 � f0g � Z2 � f0g will denote aVan Hove sequene in the �rst two dimensions, i.e suh that �2 is a VanHove sequene of Z2. �0 will denote the periodi ell of the problem, thatis, ℄ � 12 ; 12 ℄2 � R, and �(�) = Sk2� �0 + k. For suh a �, we de�ne as inthe preeding setion the energy E�(�) and the minimizing problem I� byformulas (2.1) and (2.2).The unique minimizer �� = u2� satis�es here again :��u� + 53u7=3� � ��u� = 0; (3.1)where �� = (m� � u2�) ? 1jxj � �� satis�es :���� = 4�(m� � u2�): (3.2)Following exatly the steps of Setion 2, we start with some a prioriestimates.



3 SOLID FILMS 433.1 A priori estimates3.1.1 Energy bounds and L1 boundsWe have exatly the same results as in Setion 2, namely Theorems 2.1 and2.2. Here again, as in Setion 2, we notie that the proof of theorem 2.2is only based on equations (3.1)-(3.2), and on the fat that the measurem� is non-negative, bounded and has ompat support with respet to x3.Hene it will hold for any suh solutions, and in partiular if we replae m�by m1 = Pk2Zm(� � ke3), or by any �0-periodi measure having ompatsupport with respet to x3.3.1.2 Asymptoti estimatesAs in Setion 2, we now derive bounds at in�nity, that is estimates of thedeay of u� as jx3j �! 1, whih are uniform with respet to �. As inSetion 2, we use Lemma 2.1 to prove the following estimates :Theorem 3.1 For any solution (u�; ��) of the system (3.1)-(3.2) satisfyingu� � 0, we have : �� � C1 + jx3j2 ; 8 jx3j � 1;0 � u� � C1 + jx3j3=2 ;where C denotes various positive onstants independent of the measure m�.Furthermore, in the smeared nulei ase, i.e when m in (3.2) is supposedto be smooth, the �rst inequality holds everywhere.Proof : The proof is only a opy of that of Theorem 2.3. We only point outthe neessary hanges in that proof : the funtion gR is unhanged, and so is~�. In all the inequalities and de�nition of sets, r beomes jx3j. Hene CR+1is now the set fjx3j > R + 1g, and U is the funtion :U = a(jx3j2 � R2)2 + bR04(R02 � jx3j2)4 :Computations follow exatly the same pattern, and we �nd in U the desiredsupersolution, the only hange being the onstants a(2R+1)2 and b. The wholeproof arries through, and we �nally get the desired onlusion. �3.1.3 CompatnessWe now study the ompatness of the sequene ��, namely we are going toshow that :



3 SOLID FILMS 44Proposition 3.1 For any sequene � � Z2 � 0, being a Van Hove sequenein the �rst two dimensions, we have :1j�j Z�(�) �� �! 1 as �!1: (3.3)Proof : Here again, we provide only a smeared nulei ase proof, referringto [5℄ for the generalization to the point nulei ase. We start exatly as inProposition 2.1, writing that for all h 2 H1(R2), we have :j ZR3(m� � ��)hj � 1(2�)3D(m� � ��; m� � ��)1=2krhkL2(R3): (3.4)We then hoose h = h� : we set h�(x) = f�(x3)g�(x1; x2), with :� f�(t) = 1 � jtjR if jtj < R, 0 otherwise, where R = R(�) will be hosenlater on.� g� 2 D(R2), 0 � g� � 1, g� = 1 on the set fx 2 R2=d(x;�2) < 1p2g, 0on the set fx 2 R2=d(x;�2) > 1g, and satisfying jrg�j � 4.(We reall that � = �2�f0g, that �12 = ft 2 R2; d(t;[k2�2(k+℄� 12 ; 12 ℄2)) <1g, and that the Van-Hove hypotheses imply j�12j � j�j.)We have, for suh an h� :ZR3 jrh�j2 = ZR3 f 0�(x3)2g�(x0)2dx0dx3 + ZR3 f�(x3)2jrg�j2(x0)dx0dx3� Cj�j Z R0 dtR2 + Cj�12j Z R0 (1� tR)2dt� C j�jR + CRj�12j:We now hoose R = � j�jj�12j�1=2, so that we have j�jR � j�j, and Rj�12j � j�j.Hene, we have : krh�kL2(R3) = o(j�j): (3.5)Thus, sine we already know from Theorem 2.1 (vii) that D(m� � ��; m� ���) � Cj�j, (3.5) implies :1j�j ZR3(m� � ��)h� �! 0 (3.6)



3 SOLID FILMS 45as �!1.On the other hand, sine h� � 1, we have RR3 m�h� � j�j. We also have :ZR3 m�h� � j�j � ZR3 m� jx3jR ;and 0 � RR3 m� jx3jR � j�jR , hene we infer that :1j�j ZR3 m�h� �! 1: (3.7)Next, we ompute :ZR3 ��h� = Z�(�) �� � Z�(�)\fjx3j<Rg�� jx3jR + Z�(�) ��h�� Z�(�)\fjx3j>Rg��: (3.8)Conerning the seond term of the right-hand side, we write :����Z�(�)\fjx3j<Rg �� jx3jR ���� � C j�jR Z R0 tdt1 + t3 � C j�jR � j�j:We then deal with the third term as follows :����Z�(�) ��h����� � C j�12jR Z R0 tdt1 + t3 � C j�12jR � j�j:Turning to the fourth one, we have :Z�(�)\fjx3 j>Rg�� � Cj�j Z 1R tdt1 + t3 � C j�jR � j�j:Hene (3.8) implies : 1j�j ZR3 ��h� = 1j�j Z�(�) �� + o(1): (3.9)Thus, olleting (3.6), (3.7) and (3.9), we onlude that (3.3) holds. �3.2 Identi�ation of the limitFollowing the steps of Setion 2, and we are now able to pass loally to thelimit in the system (3.1)-(3.2), getting solutions u1 and �1 of the system :



3 SOLID FILMS 46� ��u1 + 53u7=31 � u1�1 = 0;���1 = 4�(m1 � u21): (3.10)m1 being the measurePk2Z2 m(��k), and in partiular a periodi measure.We suspet a uniqueness result similar to that of Setion 2 to be true in thisase, but we did not manage to prove it. However, we are going to prove aonvergene result for the sequene ��.We �rst need some preliminary results on the periodi potential G.3.2.1 The potential GIn this setion, we denote by G the funtionG(x) = �2�jx3j+ Xk2Z2� 1jx� kj � ZK dyjx� y � kj�:Where K denotes the unit square of R2, that is, K =℄� 12 ; 12 [2.First of all, we hek out that this sum learly de�nes G :Proposition 3.2 The sum de�ning G is onvergent over the set R3 n (Z2�f0g), and normally onvergent on any ompat subset of this set.Proof : Here again, we develop the integrand as jxj �! 1 :f(x) = 1jxj � ZK dyjx� yj= 1jxj � ZK dypjxj2 � 2xy + jyj2= 1jxj � 1jxj ZK dyq1� 2 xyjxj2 + jyj2jxj2= 1jxj � 1jxj ZK�1 + xyjxj2 +O( 1jxj2 )�dy= 1jxj � 1jxj +O( 1jxj3 ):And this onludes our proof, sine Pk2Z2 11+jkj3 does onverge. �We now prove the analogue of Lemma 2.2 :Lemma 3.1 We have :(i) G(x) = 1jxj + C + o(1) as jxj �! 0.



3 SOLID FILMS 47(ii) G(x) = �2�jx3j + O( 1jx3j� ) as jx3j �! 1, for any � < 1, uniformlywith respet to x0 = (x1; x2).Proof : We rewrite G as :G(x) = �2�jx3j+ 1jxj � ZK dyjx� yj + Xk2(Z2)�� 1jx� kj � ZK dyjx� y � kj�:(3.11)From the omputation of the preeding proposition's proof, we know thatthe remaining sum onverges normally on a neighborhood of 0. Hene itis ontinuous on that neighborhood. On the other hand, x 7! RK dyjx�yj isontinuous on R3, and this onludes the proof of (i).We now turn to (ii). We intend to show that :Xk2(Z2)����� 1jx� kj � ZK dyjx� k � yj���� � Cjx3j� : (3.12)Considering the funtion f de�ned above, we know that jf(x)j � Cjxj3 . Sowe may write :Xk2(Z2)� jf(x� k)j � Xk2(Z2)� Cjx� kj3 � Xk2(Z2)� Cjkj3 + jx3j3 :We now use Young's inequality, �nding that for all � < 1, we have :jkj3 + jtj3 � Cjkj3��jtj�:So we infer that : Xk2(Z2)� jf(x� k)j � Cjx3j� Xk2(Z2)� Cjkj3�� :Sine � < 1 implies 3� � > 2, we onlude that (3.12) holds. �Let us now establish a positiveness property on the operator DG (Wereall that it is de�ned by DG(f; g) = R�0 R�0 f(x)g(y)G(x � y)dxdy =R�0(G?�0f)g). We assume here that the support ofm is ontained in fr < 1g.(This implies no loss of generality).Proposition 3.3 The bilinear form DG is positive on the set Yper = ff 2L1per(�0)=pjf j 2 H1per(�0\fjx3j > 1g); R�0 f = 0; and (1+jxj)f 2 L1(�0)g.Where the spae H1per(�0 \ fjx3j > 1g) is de�ned by the set of all funtionsbelonging to H1lo(fjx3j > 1g) \ H1(�0 \ fjx3j > 1g) that are periodi ofperiodi ell �0.



3 SOLID FILMS 48Proof : We introdue, as in Setion 2, the Fourier transform on �0, de�nedby : bf(n; �) = Z�0 f(x)e�i2�(x3�+nx0)dx; (3.13)where � 2 R, n 2 Z2 and x = (x0; x3). By a straightforward omputation,one �nds that for this Fourier transform, Pareval's and Planherel's formulashold, so that we may prolong it to S 0per(�0). We also have :8f 2 S 0per(�0); d�3f(n; �) = i2�� bf(n; �): (3.14)And 8f 2 S 0per(�0); 8g 2 Sper(�0);\f ?�0 g = bfbg:So, sine ��G = 4�Æ0 on �0, we dedue :4�2(�2 + jnj2) bG(n; �) = 4�:Thus, when n 6= 0, we have bG(n; �) = 1�(jnj2+�2) . Conerning the ase n = 0,we notie that bG(0; �) is exatly equal to the lassial Fourier transform of�2�jx3j over R. Indeed, putting G0(x) = G(x) + 2�jx3j, we notie thatRK G0(x)dx0 is a harmoni funtion, whih goes to zero as jx3j �! 1, fromLemma 3.1. So it is neessarily 0.Furthermore, the Fourier transform of �2�jx3j is shown to be 4�vp( 1�2 )+aÆ0 in [14℄, where vp( 1�2 ) is de�ned by :< vp( 1�2 ); ' > = lim"!0+�Zj�j>" '(�)�2 d� � 1"�'(") + '(�")�+(log ")�'0(")� '0(�")��: (3.15)In fat, vp( 1x2 ) = �(log jxj)00 in D0(R). Now let f 2 Yper. We have :DG(f; f) = Z�0(G ?�0 f)f= Xk2Z2 ZR\G ?�0 f(k; �) bf(k; �)d�= Xk2(Z2)� ZR ( bf(k; �))24�2(jkj2 + �2)d� + 4� < vp( 1�2 ); ( bf(0; �))2 > :So the only thing to show is that < vp( 1�2 ); ( bf(0; �))2 >� 0. We notie thatthe belonging of f to Yper implies that j bf(0; �)j � Cj�j as � ! 0, so that( bf(0;�))2�2 2 L1(R), and (3.15) implies that



3 SOLID FILMS 49< vp( 1�2 ); ( bf(0; �))2 >= ZR ( bf(0; �))2�2 d� � 0:This onludes the proof. �3.2.2 Periodiity of the limitWe will say from now on that a funtion u is symmetri with respet to x1if it satis�es the equality :u(x1; x2; x3) = u(�x1; x2; x3): (3.16)And the sequene � will be said to be symmetri if 1�(�) is.For all funtion f , we denote by �1f the funtion :�1f(x) = f(x + e1): (3.17)Proposition 3.4 Assume that � is symmetri with respet to x1, in additionto the hypotheses we have required so far. In the smeared nulei ase, m isalso required to be symmetri. Let (u; �) be the limit of (u�; ��). Thenu 2 L1(R3), � 2 L1unif (R3), and we have :j�1�� �j � C1 + jx3j : (3.18)Proof : The belonging of (u; �) to L1(R3)�L1unif (R3) omes diretly fromthe bounds of Theorem 2.2. Moreover, we have :��(�1�� �) = 4�(u2 � �1u2):Hene (�1���) 2 W 2;punif(R3) for all p > 1, and in partiular it lies in L1(R3),so the bound (3.18) need only to be shown on the set fjx3j > 2g. Hereafter,we assume that jx3j > 2.Now we are going to show this estimate for (u�; ��), uniformly withrespet to �, and hene dedue it for (u; �).From the uniqueness of u�, we know that v� = m� � u2� is symmetriwith respet to x1. Hene we have :ZBR v�(y) y1jyjkdy = 0; (3.19)for all k < 4 and R > 0.We split the expression of  � = �1�� � �� into two terms :
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 �(x) = Zjx�yj<R v�(y)� 1jx� y + e1j � 1jx� yj � y1jyj3�dy+ Zjx�yj>R v�(y)� 1jx� y + e1j � 1jx� yj � y1jyj3�dy;where R = jx3j2 . We all a(x) the �rst term, b(x) the seond one. We notiethat Zjx�yj<2 jv�(y)j���� 1jx� y + e1j � 1jx� yj � y1jyj3 ����dy � Cjx3j3 ;beause 1jx�y+e1j� 1jx�yj+ y1jyj3 lies in L1(B2+x) and is bounded independentlyof x in this spae. So we may as well restrit ourselves to integrals overjx � yj > 2, whih is equivalent to replaing jx � yj by 1 + jx � yj in theintegrals. The same remark holds onerning terms of the form 1jyj , whihwill be replaed by 11+jyj .On the other hand, we may bound j 1jx+e1j � 1jxj j by Cjx1jjxj3 on fjxj > 2g,for a universal onstant C. Hene we have, x0 and y0 denoting the variables(x1; x2) and (y1; y2) respetively :ja(x)j � Zjx�yj<R C1 + jy3j3 ���� 1jx� y + e1j � 1jx� yj � y1jyj3 ����dy� Zjx�yj<R C1 + jy3j3 jx1 � y1j1 + jx� yj3dy+ Zjx�yj<R C1 + jy3j3 jy1j1 + jyj3dy� C(jx3j �R)3R Zjy0j<R dy01 + jy0j2+ CR(jx3j �R)3 Zjx0�y0j<R dy01 + jy0j2� CR logR(jx3j �R)3 + CR3(jx3j � R)3 1(jxj � R)2� Cjx3j : (3.20)Conerning b(x), we split it again into two terms, writing :b(x) = Zjx�yj>R;jyj<R0 v�(y)� 1jx� y + e1j � 1jx� yj � y1jyj3�dy+ Zjx�yj>R;jyj>R0 v�(y)� 1jx� y + e1j � 1jx� yj � y1jyj3�dy;



3 SOLID FILMS 51where R0 = jxj�, for some � < 1.We all respetively (x) and d(x) those two terms. In order to bound(x), we write, for jyj < R0 � jxj :1jx� y + e1j � 1jx� yj = �x1jxj3 + 32�1� 2x1jxj4 �+ 2y1 � 1jxj2 +O(R03jxj3 ): (3.21)This implies : ���� 1jx� y + e1j � 1jx� yj���� � CR0jxj2 + CR03jxj3 :On the other hand, we notie that (3.19) allows us to onvert the termontaining y1jyj3 into � Zjx�yj<R;jyj<R0 v�(y) y1jyj3dy;and we have already bounded suh a term when dealing with a(x). So wehave : j(x)j � Zjyj<R0 11 + jy3j3 CR0jxj2 dy + Zjyj<R0 11 + jy3j3 CR03jxj3 dy� CR0jxj2 Zjy0j<R0 dy0 + CR03jxj3 Zjy0j<R0 dy0� C(R03jxj2 + R05jxj3 )� Cjxj2�3� + Cjxj3�5� : (3.22)We now turn to d(x). Knowing that we have���� 1jx� y + e1j � 1jx� yj + x1 � y1jx� yj3 ���� � C2 + jx� yj3on the set fjx� yj > R; jyj > R0g, we infer that :jd(x)j � Zjx�yj>R;jyj>R0 C(1 + jy3j3)(2 + jx� yj3)dy+ Zjx�yj>R;jyj>R0 C1 + jy3j3 jx1jjx� yj3dy+ Zjx�yj>R;jyj>R0 C1 + jy3j3 ���� y1jx� yj3 � y1jyj3 ����dy: (3.23)



3 SOLID FILMS 52Here we point out that bounding the seond term, whih we denote by d1(x),will be su�ient to bound the �rst one. In order to bound d1(x), we use theinequality jx� yj � ��jxj � jyj��, and write :jd1(x)j � jx1j Zjx�yj>R;jyj>R0 Cdy(1 + jy3j3)(1 + ��jxj � jyj��3)� jxjjxj3 Zj xjxj�zj> Rjxj ;jzj>R0jxj Cdz(1 + jz3j3)(1 + ��1� jzj��3)� Cjxj2 ; (3.24)where we have set y = jxjz.We now bound the third term of (3.23), whih we all d2(x). In order todo so, we write :���� y1jx� yj3 � y1jyj3 ���� � jy1j���� jx� yj4 � jyj4jx� yj3jyj3(jx� yj+ jyj)����� ��jx� yj2 � jyj2��(jx� yj2 + jyj2)jyj2jx� yj3(jx� yj+ jyj)� C j2xy � jxj2j(jx� yj+ jyj)jyj2jx� yj3� C jxj(jyj+ jx� yj)2jyj2jx� yj3� Cjxj� 1jx� yj3 + 1jyj2jx� yj�:Hene we see that d2(x) may be bounded by the sum of two terms, the �rstone being equivalent to d1(x), and the seond one, whih we all d3(x), beingdealt with as follows :jd3(x)j � Zjx�yj>R;jyj>R0 C1 + jy3j3 jxj1 + jyj2jx� yjdy� jxjjxj3 Zj xjxj�zj> Rjxj ;jzj>R0jxj C1 + jz3j3 dz1 + jzj2��1� jzj��� Cjxj2 : (3.25)Hene, olleting (3.23), (3.24) and (3.25), we �nd thatjd(x)j � Cjxj2 : (3.26)



3 SOLID FILMS 53Thus, gathering (3.26) and (3.22), we �nd thatjb(x)j � Cjxj2�3� + Cjxj3�5� + Cjxj2 :Choosing now an � suh that � � 13 and � � 25 , we �nd thatjb(x)j � Cjxj : (3.27)There only remains to ollet (3.20) and (3.27) to onlude that (3.18)holds for ��. Now, sine this bound is uniform with respet to �, � inheritsit. �We now need a lower bound on u, whih is the aim of the followingproposition :Proposition 3.5 Let (u; �) be a solution of (3.10), suh that u 2 L1(R3),u � 0, and � 2 L1unif(R3). Then for any R > 0, there exists a onstant � > 0suh that inf jx3j<R u � �.Proof : We follow exatly the steps of Proposition 2.4, and arguing byontradition, build  2 L1unif (R3) solution to :�� = 4��(�+ x0): (3.28)This is exatly where the proof di�ers : we are going to use here again asaling argument, but the saling funtion needs to be hosen di�erently.Let �0 2 C1(R), suh that �0 = 1 on [�1; 1℄, �0 = 0 on [�2; 2℄, j�000 j � 4,and 0 � �0 � 1. Let �R : R �! R be de�ned by follows :- �R = 1 on [-1,1℄.- �R(t) = 1 + 1�jtjR�1 if 1 < jtj < R.- �R = 0 on [�R;R℄.We denote by �R the funtion �R(x) = �R(x3)�0( rR). And we ompute :< �� ; �R > = 4� < m1; �R >= 4�Xk2Z2 < m(�+ k); �0( rR) >� 4� Xk2Z2;jkj�2R < m(�+ k); �0( rR) >� CR2: (3.29)



3 SOLID FILMS 54On the other hand, we have, denoting by 
R the set fr < 2R; jx3j < Rg andby !R the set fr < R; jx3j < 1g :< �� ; �R > = Z
Rn!R r r�R= Z
Rn!R  (���R) + Zjx3j=R;r<2R  ��R�n + Zjx3j=1;r<R  ��R�n :Sine ���R = ��R(x3)��0( rR) = �R(x3)( 1rR�00( rR) � 1R2 �000 ( rR)), the �rstterm may be dealt with as follows :����Z
Rn!R  (���R)���� � 1R2 Z
R j j+ Z
Rn!R j (x)jrR dx� CR3R2 + CR�Z
Rn!R j j2�1=2�Z 2RR Rdrr �1=2� CR + CR3=2R (R log 2)1=2 � R2: (3.30)Conerning the remaining terms, we have :����Zjx3j=R;r<2R  ��R�x3 ���� � Zjx3j=R;r<2R j jCR � CR2R � R2: (3.31)And : ����Zjx3j=1;r<R  ��R�x3 ���� � Zjx3j=1;r<R j jCR � CR2R � R2: (3.32)Hene, olleting (3.29), (3.30), (3.31) and (3.32), we infer that (3.28) isin ontradition with the belonging of  to L1unif . �We now state a uniqueness lemma that will allow us to onlude that uand � are periodi.Lemma 3.2 Let (u; �) and (v;  ) be solutions to the system (3.10), satisfyingthe following :(i) u; v 2 L1(R3), and �;  2 L1unif(R3).(ii) There exists a funtion U 2 L2(R) suh that j�� j+ ju� vj � U(x3).Then u = v and � =  .



3 SOLID FILMS 55Proof : The �rsts steps of the proof are exatly those of Lemma 2.3. Wethereby skip it, and start with equation (2.49), that is :ZR3 �w2�2 � ZR3 w2jr�j2 + 12 ZR3(��  )2jr�j2; (3.33)where � is a positive funtion depending only on x3, w = u� v, and � is anysmooth funtion with ompat support.We apply inequality (3.33) to a sequene �n onverging to � de�ned byfollows :� �(x) = 1� r�R� on the set fr < Rg.� �(x) = 0 elsewhere.where R > 0 and � > 0. Hene (3.33) is valid for this hoie of �. For suha �, we ompute that jr�j2 = �2 r2��2R2� :So we have : ZR3 �w2�2 � 32 ZR3 �2 r2��2R2� U(x3)2� 32kUkL2(R) Z R0 �2 r2��1R2� 2�dr� 32kUkL2(R)��: (3.34)We let now R go to in�nity, deduing, from the monotone onvergene the-orem, that we have : ZR3 �w2 � 32��kUkL2(R):Sine this holds for any � > 0, we let now � go to zero, and �nd that :ZR3 �w2 = 0:This implies that w = 0, sine � is positive, hene that � =  . �3.2.3 Convergene and identi�ation of the limitWe reall the periodi variational problem Iper :Iper = inffEper(�); p� 2 Xper; Z�0 � = 1g; (3.35)



3 SOLID FILMS 56where Eper and Xper are de�ned as follows :Xper = fv 2 H1per(�0); (1 + jxj) 12 v 2 L2(�0)g:Eper(�) = R�0 jrp�j2 + Z�0 �5=3 � Z�0(G ?�0 m1)�+ 12 Z�0 Z�0 �(x)�(y)G(x� y)dxdy:We are now able to state the following theorem :Theorem 3.2 Let � = �2 � f0g be a Van Hove sequene in the �rst twodiretions, that is, �2 is supposed to be a Van Hove sequene of Z2. Assumein addition that � is symmetri both with respet to x1 and with respet to x2(in the smeared nulei ase, we also assume that the measure m is symmetriwith respet to x1 and x2). Denote by �� = u2� the solution of I�. Then u�onverges to uper in H1(�0), �per = u2per being the minimizer of the periodiproblem Iper. Moreover, we have the following estimates :(i) uper(x) � C1+jx3j3=2 for some onstant C > 0.(ii) There exists a positive funtion � depending only on x3 suh that wehave : � � uper.Proof : We know that (u�; ��) is bounded in H1(�0) � Lpunif (R3), for allp < 3. Hene we may pass loally to the limit in the system (3.1)-(3.2).Denoting by (u; �) 2 H1(�0)� Lpunif (R3) the orresponding limit, we �nd asolution to the system (3.10), that is :� ��u + 53u7=3 � u� = 0;��� = 4�(m1 � u2):From the a priori bounds shown in Theorem 3.1, whih shows in parti-ular that u � C1+jx3j3=2 , and from Proposition 3.4, we know that, applyingLemma 3.2, we �nd : �1� = �:On the other hand, all the symmetries being also satis�ed with respet tox2, we dedue, denoting by �2� the funtion �(�+ e2),�2� = �:This implies that �, hene u, are periodi with periodi ell �0.



3 SOLID FILMS 57From the estimate of Theorem 3.1, we also dedue that u 2 Xper. We arenow going to prove that Z�0 u2 = 1: (3.36)In order to do so, we introdue the funtions : (x3) = Z[� 12 ; 12 ℄2 �(x)dx1dx2:and f(x3) = Z[� 12 ; 12 ℄2 4�(m1(x)� u(x)2)dx3:Those funtions satisfy the di�erential equation� 00 = f;sine R[� 12 ; 12 ℄2��2��x21 + �2��x22 �dx1dx2 = 0 from the periodiity of �.Furthermore, � 2 L1(fjx3j > 1g), hene  2 L1([�1; 1℄), so from theestimates on u, we dedue that  00 2 L1([�1; 1℄):On the other hand,  0(t)�  0(1) = R t1 f , for all t > 1. Hene we infer that 0 2 L1([1;1)):Those two properties, together with the equalityZ t1   00 =  (t) 0(t)�  (1) 0(1)� Z t1  02;show that  0 2 L2([1;1)):Repeating the same argument for t < �1, replaing 1 by �1, we onludethat  0 2 L2([�1; 1℄):But  0 has a limit at in�nity, namely  0(1) + R11 f , so this limit must be 0.The same results holds onerning its limit at �1, so that we have :ZR  00 = lim1  0 � lim�1  0 = 0:This implies R�0 ��� = 0, hene (3.36).



3 SOLID FILMS 58The next step is to show that� = G ?�0 (m1 � u2) + d; (3.37)for some d 2 R. Notiing that ��G?�0 (m1�u2) is harmoni over R3, andperiodi with periodi ell �0, we onlude that it is su�ient to show thatG ?�0 (m1 � u2) 2 L1unif(�0). And from Lemma 2.2, we know that�G(x)� 1jxj + 2�jx3j� 2 L1(�0):So we only need to prove that1jxj ?�0 (m1 � u2) 2 L1unif (�0) (3.38)and jx3j ?�0 (m1 � u2) 2 L1unif(�0): (3.39)(3.38) has been shown in the ourse of Lemma 2.5, so we only provide a proofof (3.39) :Sine we already know that the onvolution produt arising in (3.39) liesin L1lo(�0), we only need to bound it as jx3j ! 1. (3.36) implies that wehave :Z�0(m1 � u2)(y)jx3 � y3jdy = Z�0(m1 � u2)(y)(jx3 � y3j � jx3j)dy:Letting R =pjx3j, we have, for jy3j < R, and jx3j ! 1,jx3 � y3j � jx3j = �y3 +O( R2jx3j) = �y3 +O(1):Hene we may write :��jx3j ?�0 (m1 � u2)�� � Z�0\fjy3j>Rg jm1 � u2j(y)��jx3 � y3j � jx3j��dy+ Z�0\fjy3j<Rg jm1 � u2j(y)(jy3j+ C)dy� Z�0\fjy3j>Rg jm1 � u2j(y)jy3 � x3 + x3jdy+ Z�0\fjy3j<RgCjm1 � u2j(y)(1 + jy3j)dy:Those two terms are bounded beause u 2 Xper, so this onludes the proofof (3.39), hene of (3.37).



3 SOLID FILMS 59Now, this implies that u2 is a solution of the Euler-Lagrange equation ofthe problem Iper, namely :��p� + 53�7=6 � �G ?�0 (m1 � �) + �per�p� = 0:(�per is the Lagrange multiplier assoiated with the onstraint in Iper.)On the other hand, the problem Iper is onvex beause DG is, sine itis bilinear and positive, on the set of the test-funtions of Iper. So u is thesolution of Iper, whih is unique. Thus, the onvergene does not only ourfor a subsequene of u�, but for the whole sequene. �3.2.4 Convergene of the energyThis paragraph is the exat analog of the orresponding one in Setion 2.We start with the de�nition of interior domains, whih is exatly the sameas in Setion 2.De�nition 3.1 Let � � Z2 � f0g be a Van Hove sequene in the �rst twodiretions. �0 will be said to be a sequene of interior domains, denoted by�0 �� �, if it satis�es the following properties :(i) �0 � �.(ii) For any �nite subset A of Z2, there exists an h0 2 N suh that 8h �h0; A � �0h.(iii) j�0jj�j �! 1 as �!1.(iv) d(�0; ��(�)) �!1 as �!1.For now on, we assume that the sequene � satis�es the hypotheses ofTheorem 3.2, that is, in addition to the Van Hove hypotheses, � is supposedto be symmetri with respet to x1 and x2, and so is m.Next, we state the following theorem :Theorem 3.3 For any sequene �0 �� � and any R > 0, we have :ku� � uperkL1(�(�0)) �! 0; (3.40)k�� � �perkL1(�(�0)\fjx3j<Rg) �! 0; (3.41)as � �!1: (We reall that �per = G ?�0 (m� u2per)� �per )



4 THE YUKAWA CASE 60Proof : The proof starts exatly as that of Theorem 2.5, exept that The-orem 2.4 is not available here. Hene, we slightly modify the proof in thefollowing way : u� will not be u�(�+ x�), but :u� = u�(�+ (x�)3e3):Hene, the same onvergene argument hold, exept that we notie thatm� =m�(�+(x�)3e3) de�nes a Van Hove sequene, sine x� 2 �(�0), and that it issymmetri with respet to both x1 and x2. Hene the proof arries through,replaing the use of Theorem 2.4 by that of Theorem 3.2, or (equivalently)by the fat that Iper has a unique solution. �We end up by stating the energy onvergene Theorem for solid �lms :Theorem 3.4 For any Van Hove sequene, symmetri with respet to x1and x2, we have : I�j�j �! Iper + M2as �!1.Proof : Here again, the proof is not di�erent from that of Theorem 2.6, theonly thing to hek being that we have :jru�j � C1 + jx3j3=2 :And this easy to prove from ellipti regularity, together with the bounds wehave on u� and ��. �4 The Yukawa aseWe give here without proof some results that an be obtained on the Yukawaase.Replaing the Coulombian interation potential 1jxj by the Yukawa poten-tial de�ned in (1.11), we get :8<: ��u� + 53u7=3� � u��� = 0;���� + a2�� = 4�(m� � u2�);u� � 0: (4.1)The limit system (1.9) being modi�ed in an analogous way. Next, we notiethat in this system, we have added a oerive term in the seond equation.This fundamental di�erene allows us to show stronger uniqueness results,as the following one :



4 THE YUKAWA CASE 61Theorem 4.1 Let � be a nonnegative measure, having its support in the setfjx3j < 1g, and satisfying the following :(H1) supx2R2�f0g �(B1 + x) < +1.(H2) limR!1 infx2R2�f0g �(BR+x)R = +1.Then the system 8<: ��u+ 53u7=3 � �u = 0;���+ a2� = 4�(�� u2);u � 0: (4.2)has a unique solution (u; �) in the setf(u; �) 2 L7=3lo \ L2unif (R3)� L1unif (R3); 8h > 0; inffjx3j<hgu > 0g:Furthermore, this solution belongs to W 2;punif (R3) � Lpunif (R3) for all p < 3,and there exists a onstant C suh that u � C1+jx3j3=2 .A similar theorem is also valid in the one-dimensional ase. This impliesthat we have onvergene results in both ases (namely solid �lms and poly-mers), at least for the density, provided the �nite problem I� with Yukawapotential has a unique solution ��. This is the ase for instane (see [5℄) if ais small enough.On the other hand, the use of the Yukawa potential destroys the om-patness of the sequene �� (in the sense of (2.10) and (3.3)). In fat, thispotential is too weak at in�nity to prevent some of the eletrons from esap-ing at in�nity. Thus, the periodi variational problems Iper, in addition tothe potential hange, will bear a di�erent mass onstraint.Alternatively, in the spirit of the results displayed in [5℄, Chapter 4, wehave :Theorem 4.2 (Here �0 denotes ℄� 12 ; 12 ℄2 �R, and r the ylindrial radiuspx21 + x22.) Let p > 1, � a �0-periodi potential lying in Lqlo(R3) for someq > 3p2p�2 , suh that �+ � Cjx3j2 as jx3j ! 1. Assume that there exists R > 0suh that the �rst eigenvalue of the operator ��� � with periodi boundaryonditions with respet to (x1; x2) and homogeneous Dirihlet onditions withrespet to x3 on �0 \ fjx3j < Rg is negative. Then the equation��u+ up � �u = 0 (4.3)has a unique nonnegative non trivial solution in the setfu 2 H1lo(R3) = 8x 2 R3; u 2 H1(�0 + x)g:
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