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artes,Champs sur Marne, 77455 Marne-La-Vallée CedexApril 2, 1999Abstra
tWe de�ne a Thomas-Fermi-von Weizsä
ker model for polymers andsolid �lms through a thermodynami
 limit pro
ess. Our argumentmakes use of standard te
hniques for ellipti
 PDEs, su
h as maximumprin
iples or supersolution methods. In the 
ourse of our work, weestablish some existen
e and uniqueness results for a system of non-linear PDE.
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1 INTRODUCTION 21 Introdu
tionIn [5℄, I. Catto, P.L. Lions and one of us have studied the problem of ther-modynami
 limit for a three-dimensional 
rystal in the Thomas-Fermi-vonWeizsä
ker (TFW in short) setting. Given a �nite set of nu
lei representedby a set of points � � R3, ea
h one of 
harge +1, the TFW model asso
iatesto this set an ele
troni
 density, denoted by ��, whi
h minimizes the so-
alledTFW energy, that is :E�(�) = ZR3 jrp�j2 + ZR3 �5=3 �Xk2� ZR3 �(x)jx� kjdx+12 ZR3 ZR3 �(x)�(y)jx� yj dxdy: (1.1)In other words, the density �� is a solution to the following minimizationproblem :I� = inf�E�(�) + 12 Xk 6=j2� 1jk � jj ; � � 0; p� 2 H1(R3); ZR3 � = j�j�;(1.2)where j�j denotes the 
ardinal of the set �. The 
ase of smeared nu
lei 
anbe also 
onsidered ; that is when the measure de�ning the nu
lei in (1.1) isrepla
ed by a smooth measure m, having 
ompa
t support and total massone. In this latter 
ase, (1.1) and (1.2) be
ome :Em� (�) = ZR3 jrp�j2 + ZR3 �5=3 � ZR3(m� ? 1jxj)�+ 12 ZR3 ZR3 �(x)�(y)jx� yj dxdy;where m� =Pk2�m(� � k), and ? is the 
onvolution produ
t over R3,Im� = inf�Em� (�) + 12 ZR3 ZR3 m�(x)m�(y)jx� yj dxdy;� � 0; p� 2 H1(R3); ZR3 � = j�j�: (1.3)It is well-known that the problem (1.2) (respe
tively (1.3)) has a uniqueminimizer (see for instan
e [2℄, [10℄ or [12℄), basi
ally be
ause the energyfun
tional E� is 
onvex with respe
t to �.



1 INTRODUCTION 3The thermodynami
 limit problem is the following : letting � be a subsetof a periodi
 latti
e, determine the behaviour of I� and �� as � progressively�lls in the entire latti
e.In order to ta
kle this problem mathemati
ally, we introdu
e the notionof Van Hove sequen
es :Let � = (�h)h2N be a sequen
e of subsets of Zn, having 
ardinal j�j. �is a Van Hove sequen
e of Zn if it satis�es the following :(An) For any �nite subset A of Zn, there exists h0 2 N su
h that for allh � h0, A � �h.(Bn) Denoting by � the unit 
ube 
entered at the origin, by �(�) the set[k2�(� + k), by �a the set fx 2 Rn = d(x; ��(�)) < ag, where d is theEu
lidean distan
e in Rn, and by j�ahj the Lebesgue measure (in Rn)of the set �ah, we have, for all a > 0, the Van Hove 
ondition, that is :limh!1 j�ahjj�hj = 0 (1.4)The thermodynami
 limit problem studied in [5℄ 
onsists then in answer-ing the following questions, for any Van Hove sequen
e � of Z3 :(L1) Does the energy per 
ell I�j�j 
onverge as j�j goes to in�nity ?(L2) Does the density �� 
onverge to a limit �1 as j�j goes to in�nity ?(L3) Does the limit �1 have the same periodi
ity as that of the latti
e ?In this arti
le, we study questions (L1), (L2), (L3) in two 
ases that donot satisfy 
onditions (A3) and (B3) :(a) The �rst 
ase is the thermodynami
 limit of a linei
 mole
ule, that is� = f(0; 0)g��3 will be a subset of f(0; 0)g�Z, su
h that �3 is a VanHove sequen
e of Z1,(b) The se
ond 
ase is the same problem 
on
erning a solid �lm : � =�2 � f0g is a subset of Z2 � f0g, and the sequen
e �2 is a Van Hovesequen
e of Z2.1.1 Linei
 mole
ulesIn this 
ase, to whi
h Se
tion 2 is devoted, we are going to answer a�rma-tively the questions (L1), (L2), and (L3). More pre
isely, we introdu
e thefollowing notation :(i) we denote by �0 = R2�℄ � 12 ; 12 ℄ the periodi
 
ell of the problem, andby �(�) the set [k2��0 + k.
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Figure 1: The set � in the 
ase of polymers (on the left) and solid �lms (onthe right)(ii) For any fun
tional spa
e S, Sper(�0) denotes the set of elements ofSlo
(R3) \ S(�0) that are periodi
 with periodi
 
ell �0.We introdu
e the following variational problem :Iper = inf�Eper(�); � � 0; p� 2 Xper; Z�0 � = 1�; (1.5)where Xper is a subspa
e of H1per(�0) to be made pre
ise later on (see for-mula 2.14), and Eper is de�ned by :Eper(�) = Z�0 jrp�j2 + Z�0 �5=3 � Z�0 G�+ 12 Z�0 Z�0 �(x)�(y)G(x� y)dxdy:(1.6)The potential G, whi
h is not to be 
onfused with the potential G ap-pearing in [5℄ (it is its 1-D analogue), is the periodi
 potential modeling theCoulombian intera
tion in the periodi
 latti
e f(0; 0)g � Z. (In the smearednu
lei 
ase, the only ne
essary 
hange is to take G ?�0 m instead of G inthe third term of the energy.) From the 
on
lusions of [11℄, it is natural tointrodu
e :G(x) = �2 log jx0j+Xk2Z� 1jx� ke3j � Z 12� 12 dyjx� (y + k)e3j�; (1.7)where we denote by x0 the ve
tor (x1; x2), and by (e1; e2; e3) the 
anoni
albasis of R3. It is easy to 
he
k that G is periodi
, with periodi
 
ell �0, andthat it satis�es : ��G = 4�Xk2Z Æke3 :The 
onstant M is de�ned by follows :



1 INTRODUCTION 5� In the point nu
lei 
ase, M = limx!0�G(x)� 1jxj�.� In the smeared nu
lei 
ase, M = R�0 R�0 m(x)m(y)�G(x� y)� 1jx�yj�.The main result of Se
tion 2 is the following theorem :Theorem 1.1 Let � be a Van Hove sequen
e in the third dimension, in thesense made pre
ise above, and �� the minimizing density of the TFW energy.Then we have :(i) lim�!1 I�j�j = Iper + M2 :(ii) The density �� 
onverges to �per uniformly on any subset of the formR2 �K, K being a 
ompa
t subset of R.The strategy of the proof is as follows : we �rst write down I�'s Euler-Lagrange equation, that is : (setting �� = u2� and m� =Pk2�m(� � k), mbeing either Æ0 in the point nu
lei 
ase, or a smooth fun
tion in the smearednu
lei 
ase) ��u� + 53u7=3� � �(m� � u2�) ? 1jxj�u� = ���u�;where �� denotes the Lagrange multiplier asso
iated to the mass 
onstraintin I�. Hen
e, denoting by �� the fun
tion (m� � u2�) ? 1jxj � ��, we get asolution of the system :8<: ��u� + 53u7=3� � u��� = 0;���� = 4�(m� � u2�);u� � 0: (1.8)As in [5℄, we then establish bounds on u� and ��, so that we 
an passlo
ally to the limit in the above system. Next, we show the following unique-ness result :Theorem 1.2 Let � 6� 0 be a non-negative measure with 
ompa
t supportwith respe
t to (x1; x2). Assume that � is periodi
 with periodi
 
ell �0, andthat �(�0) = 1. Then the following system8<: ��u + 53u7=3 � u� = 0;��� = 4�(�� u2);u � 0 (1.9)has a unique solution (u; �) 2 �L2unif \ L7=3lo
 (R3)�� L1unif(R3). In addition,this solution satis�es the following properties :



1 INTRODUCTION 6(i) u 2 L1(R3), and u(x) � C1+(x21+x22)3=4 , C > 0 being a 
onstant indepen-dent of x.(ii) � 2 Lpunif(R3) for all p < 3, and there exists a 
onstant �per su
h that� = G ?�0 (�� u2)� �per.(iii) R�0 u2 = 1.The spa
e Lpunif(R3) is ff 2 Lplo
(R3) = supx2R3 kfkLp(B1+x) <1g.On
e this result is established, applying it to the 
ase � =Pk2Z3 m(�+k),we may therefore identify the limit of u� as the unique solution of this system.Con
erning the proof of Theorem 1.2, the strategy 
onsists in showingthat any solution of system (1.9) is periodi
, with periodi
 
ell �0, hen
ethat � = u2 is a 
riti
al point of Iper, with nu
lei de�ned by m = � on �0,and next showing that this problem is stri
tly 
onvex, so that � is ne
essarilyits unique minimizer. In order to show that Iper is 
onvex, we introdu
e thebilinear form DG de�ned by :DG(f; g) = Z�0 Z�0 f(x)g(y)G(x� y)dxdy = Z�0(f ?�0 G)g;and we rewrite Eper as :Eper(�) = Z�0 jrp�j2 + Z�0 �5=3 + 12DG(m� �;m� �)� 12DG(m;m):Of 
ourse, this is possible only in the smeared nu
lei 
ase, or equivalentlyif m is smooth. If it is not, we introdu
e the 
hara
teristi
 fun
tion of theunite 
ube, denoted by 1Q, and write :Eper(�) = Z�0 jrp�j2 + Z�0 �5=3 + 12DG(1Q � �; 1Q � �)� 12DG(1Q; 1Q)+ Z�0�(1Q �m) ?�0 G��:In both 
ases, the point is that, by studying 
losely the potential G, we �ndthat DG is positive on a set that in
ludes m� � and 1Q� � as far as p� liesin Xper and � has total mass one over �0. So DG is a 
onvex fun
tional onthat set. Hen
e Iper be
omes a 
onvex problem.Those results answer questions (L2) and (L3). Next, we use them as in[5℄ to show the 
onvergen
e of the energy, answering question (L1).All these results give a TFW model for any mole
ule whi
h nu
lei areperiodi
ally ditributed with respe
t to x3, and 
ontained in a 
ylinder havingverti
al axis. This is the 
ase for many polymers, and for DNA mole
ules.



1 INTRODUCTION 71.2 Solid �lmsThe se
ond part of our work 
on
erns problem (b).As above, we denote by �0 the periodi
 
ell of the problem, whi
h is now℄� 12 ; 12 ℄2�R, and by �(�) the set [k2��0+k. The notation H1per(�0) followsas in the one-dimensional 
ase.Here again, we introdu
e a periodi
 potential, that we still denote by G,though it is neither the same as in [5℄ nor as in (1.7) :G(x) = �2�jx3j+ Xk2Z2�f0g� 1jx� kj � ZK�f0g dyjx� y � kj�; (1.10)where K is the unit square ofR2, namely ℄� 12 ; 12 [2. We noti
e that G satis�esthe equation ��G = 4� Xk2Z2�f0g Æk:The energy Eper is de�ned by (1.6), and the problem Iper by (1.5). Wealso de�ne the 
onstant M exa
tly in the same way as in the polymers 
ase.We do not have here a 
onvergen
e result as that of the pre
eding se
tion,although we suspe
t it to hold. In fa
t, to be able to show a 
onvergen
etheorem as Theorem 1.1, we need the additional assumption that � is sym-metri
 with respe
t to x1 and x2. However, it is only a te
hni
al hypothesis,and the 
onvergen
e result that is stated in Theorem 1.3 below is likely tobe true for any Van Hove sequen
e.Theorem 1.3 Let � be a Van Hove sequen
e in the �rst two dire
tions.Assume that � is symmetri
 with respe
t to x1 and x2. (In the smearednu
lei 
ase, m is also supposed to be symmetri
.) Then, we have :(i) limj�j!1 I�j�j = Iper + M2 .(ii) �� uniformly 
onverges to �per on any set of the form K �R, K beinga 
ompa
t subset of R2.As in the pre
eding se
tion, we start by proving the se
ond assertion ofTheorem 1.3, the �rst one being a 
onsequen
e of it. For this purpose, weuse exa
tly the same strategy as above, showing �rst that the Euler-Lagrangepasses to the limit, and then that su
h a solution is a 
riti
al point of Iper.The same positiveness property holds 
on
erningDG, and so the proof 
arriesthrough. The only di�eren
e is that, for te
hni
al reasons, we are not able toshow a uniqueness result similar to that of Theorem 1.2 : su
h a result wouldhold only (so far as we know) to a solution 
oming from the thermodynami
limit pro
ess for a sequen
e of symmetri
 domains.



2 POLYMERS 8Remark 1.1 In all the results we have stated above, we have used the Cou-lombian intera
tion potential, that is V (x) = 1jxj : Another 
hoi
e is possible,namely the Yukawa potential : V (x) = e�ajxjjxj ; (1.11)where a > 0.Then (1.1) and (1.8) be
ome :E�(�) = ZR3 jrp�j2 + ZR3 �5=3 �Xk2� ZR3 �V (� � k)+12 ZR3(� ? V )�: (1.12)8<: ��u� + 53u7=3� � u��� = 0;���� + a2�� = 4�(m� � u2�);u� � 0: (1.13)In this 
ase, we have stronger results that are brie�y exposed (withoutproofs) in Se
tion 4, together with uniqueness results for some related semi-linear PDEs.2 PolymersWe study here the thermodynami
 limit problem in one dimension, that isto say the limit of a line growing to in�nity. More pre
isely, we 
onsidera sequen
e � = f(0; 0)g � �3 � f(0; 0)g � Z, su
h that �3 is a Van Hovesequen
e of Z. We re
all that �0 is the periodi
 
ell of the problem, i.e�0 = R2�℄� 12 ; 12 ℄, and �(�) = Sk2� �0 + k. Putting x = (x1; x2; x3) a pointin R3, we denote by r = r(x) the quantity px21 + x22. For all �, we denoteby :E�(�) = ZR3 jrp�j2 + ZR3 �5=3 � ZR3(m� ? 1jxj)�+ 12 ZR3(� ? 1jxj)� (2.1)the Thomas-Fermi-von Weizsä
ker energy. Here m� =Pk2� Æk. In the 
aseof smeared nu
lei, Æk will be repla
ed by m(� � k), where m is the measurede�ning the shape of a nu
leus. In this 
ase, m will be 
onsidered to be inD(R3), su
h that its support lies in �0. We will denote by I� the minimizationproblem :I� = inffE�(�) + Xk 6=j2� 1jk � jj ; � � 0; p� 2 H1(R3); ZR3 � = j�jg: (2.2)



2 POLYMERS 9We will denote by �� the solution of the problem I�.We also re
all the Euler-Lagrange equation of problem (2.2) :��u� + 53u7=3� � ��u� = 0; (2.3)where u� = p�� and �� = (m� � u2�) ? 1jxj � ��, �� 2 R being the Lagrangemultiplier asso
iated to the 
onstraint in (2.2). Hen
e �� satis�es���� = 4�(m� � u2�): (2.4)Let us begin with some a priori estimates.2.1 A priori estimates2.1.1 Energy boundsFirst of all, we establish some bounds on �� and ��. For this purpose, wefollow exa
tly the proof of [5℄, Chapter 3, Se
tion 3.2, whi
h 
arries throughhere sin
e it does not depend on the sequen
e �, and we get :Theorem 2.1 (Catto, Le Bris, Lions, [5℄) There exist various positive
onstants C su
h that, for any sequen
e � � Z3, we have :(i) jI�j � Cj�j,(ii) RR3 jru�j2 � Cj�j,(iii) k��kLp � Cj�j1=p for all p � 53 ,(iv) 0 � RR3 ���� � Cj�j,(v) 0 < �� � C,(vi) jPk 6=j2� 1jk�jj � RR3 ��(m� ? 1jxj)j � Cj�j.In the 
ase of smeared nu
lei, we also have :(vii) D(m� � ��; m� � ��) � Cj�j, i.e RR3 jr��j2 � Cj�j.2.1.2 L1 boundsNext, we may obtain L1 bounds, still exa
tly as in [5℄, Se
tion 3.2. Hereagain, the proof does not depend on the sequen
e �, so we have :Theorem 2.2 (Catto, Le Bris, Lions, [5℄) There exist positive 
onstantsC independent of � su
h that, for all � � Z3, we have :(i) k��kL1(R3) � C.



2 POLYMERS 10(ii) In the smeared nu
lei 
ase, k��kL1(R3) � C.In the point nu
lei 
ase, we have :(ii') k��kL1(Q(�)
) � C, where Q(�) = [k2�Q+ k, Q being the unit 
ube ofR3 and :(iii') k��kLpunif (R3) � C, for all 1 � p < 3.The norm k � kLpunif (R3) is de�ned by supx2R3 k � kLp(x+B1).Remark 2.1 Let us point out that the proof of Theorem 2.2 is based only onthe Euler equations (2.3)-(2.4), and the fa
t that the measure m is positive,bounded, and has 
ompa
t support. Hen
e it holds for any su
h solutions,and in parti
ular if m� is repla
ed by m1 = Pk2Zm(� � ke3), or by any�0-periodi
 measure with 
ompa
t support in the dire
tion (x1; x2). This willbe useful in the proof of the uniqueness Theorem 2.4 below.2.1.3 Asymptoti
 estimatesAs the set of nu
lei remains 
on�ned in a subset of R3 whi
h is bounded withrespe
t to r, we expe
t the above uniform bounds not to be optimal. Morepre
isely, we expe
t, at least 
on
erning the density ��, a de
ay as r goes toin�nity. For this purpose, we use Solovej's method [15℄ (see also [1℄).Let eR be the ground state of the Lapla
ian with homogeneous Diri
h-let boundary 
onditions on the ball BR of radius R 
entered at the origin,normalized by the 
ondition keRkL2 = 1, and prolonged by 0 outside BR.That is, eR(x) = sin(�jxj=R)jxjp2�R on BR. Then we have kreRkL2 = �=R. We setgR = e2R.Lemma 2.1 (Benguria, Lieb, [1℄) Let 
 be any open subset of R3. Ifu� 2 H10 (
) is positive and satis�es (2.3) with �� 2 L2(
)+L1(
) satisfying(2.4), then for all x 2 
 su
h that d(x; �
) > R, we have :gR ? �� � gR ? u4=3� + �2R�2: (2.5)And if BR + x does not 
ontain any nu
lei, i.e m� = 0 in BR + x, we have :��(x) � gR ? ��(x): (2.6)Proof : For the sake of 
onsisten
y, we reprodu
e here the proof of thislemma. Sin
e u� is positive, and u� satis�es (2.3), it is the ground state ofthe operator H = ��+ u4=3� � �� with Diri
hlet 
ondition on 
. Hen
e, forall w 2 H10 (
), we have :Z
 jrwj2 + Z
(u4=3� � ��)w2 � 0: (2.7)



2 POLYMERS 11We now apply this inequality to w = eR(x � �), and we get (2.5), providedd(x; �
) > R. Let us now show (2.6) : if �� satis�es (2.4) and BR + x
ontains no nu
lei, �� is subharmoni
 on BR + x, hen
e applying the mean-value inequality (see for instan
e [8℄), we get :gR?��(x) = Z R0 �ZSr ��(x�y)dy�gR(r)dr � Z R0 4�r2��(x)gR(r)dr = ��(x)be
ause gR is of total mass one. �Now we turn to the estimate at in�nity :Theorem 2.3 For any solution (u�; ��) of the system (2.3)-(2.4) satisfyingu� � 0, we have : �� � C1 + r2 ; 8r � 1;0 � u� � C1 + r3=2 ;where C denotes various positive 
onstants independent of the measure m�.Furthermore, in the smeared nu
lei 
ase, i.e when m in (2.4) is supposedto be smooth, the �rst inequality holds everywhere.Remark 2.2 The �rst estimate is not e�
ient for � �xed : �� = (m� �u2�) ? 1jxj � �� is negative at in�nity, sin
e �� is positive (see [15℄). However,the point is that this estimate does not depend on the measure m�, hen
e isindependent of the sequen
e �, as far as it satis�es the hypotheses we haverequired at the beginning of this se
tion.Proof :We apply lemma 2.1, with 
 = R3, and get :gR ? �� � gR ? u4=3� + �2R2 ;for all R > 0. We de�ne ~� = gR ?��� �2R2 , and get, using Jensen's inequality :~� � gR ? u4=3� � (gR ? u2�)2=3:Now, 
onvoluting (2.4) on both sides, we get :��(gR ? ��) = 4�(m� ? gR � u2� ? gR);that is, ��~� + (~�)3=2+ � 4�(m� ? gR):



2 POLYMERS 12Now, we may assume, without loss of generality, that the support of m�lies in fr � 1g. So we have m� ? gR = 0 on CR+1 = fr � R + 1g, hen
e��~�+ (~�)3=2+ � 0 on that set.We are going now to use a 
omparison argument on ~�, in the spirit of [3℄.For that purpose, we �x an R0 > R + 1 and introdu
e the fun
tionU = a(r2 �R2)2 + bR04(R02 � jxj2)4 ;where a and b are positive 
onstants to be determined later on. In parti
ular,we need U to be a supersolution of the di�erential inequality satis�ed by ~�,that is, ��U + U3=2+ � 0. One easily 
omputes :��U = �8a R2 + 2r2(r2 � R2)4 � 8bR04 3R02 + 7jxj2(R02 � jxj2)6 : (2.8)Using the inequality (�+ �)3=2 � �3=2 + �3=2, whi
h is valid for all �; � > 0,one �nds :��U + U3=2 � a(pa� 8R2+2r2r2�R2 )(r2 �R2)3 + bR04(pbR02 � 24R02 � 56jxj2)(R02 � jxj2)6 : (2.9)We want this quantity to be positive on CR+1 \ BR0 , whi
h is true as soonas a � (16 + 24R22R+1)2 and b � 802. We also need that U � ~� on �CR+1 \BR0 ,i.e a(2R+1)2 � k~�kL1. The latter quantity exists be
ause �� 2 L1unif and gRis smooth. So we 
an 
hoose a large enough to ensure all those properties,together with a � 
R2, 
 being a universal 
onstant.We then have : ��(~�� U) + (~�)3=2+ � U3=2 � 0:Hen
e, using Kato's inequality :��(~�� U)+ � �sgn+(~�� U)((~�)3=2+ � U3=2) � 0:We use now the maximum prin
iple to 
on
lude that on the set CR+1 \BR0 ,~� � 
R2(r2 � R2)2 + bR04(R02 � jxj2)4 :This holds for any R0 > R + 1, with 
 and b being universal 
onstants. So,by letting R0 go to in�nity, we �nd :~� � 
R2(r2 � R2)2



2 POLYMERS 13on CR+1.Furthermore, from Lemma 2.1, we know that on this set, (2.6) holds.Therefore, we �nally get : �� � CR2(r2 � R2)2 + �2R2 :This inequality holds whenever R > 0 and r � R + 1. So if r is �xed andlarger than 2, we may 
hoose R = r=2, and we �nd8r � 2; �� � Cr2 :Pointing out that �� 2 L1(fr > 1g, we infer that8r � 1; �� � C1 + r2 :And in the smeared nu
lei 
ase, we know that �� 2 L1, so this inequalityholds on R3.We now turn to the se
ond assertion, namely the estimate on u�. Forthis purpose, we use the above inequality and (2.3), and write :��u� + 53u7=3� � Cu�r2 ; 8r � 1:Now, there exists a 
onstant 
 su
h that for all a; b � 0; ab � 13a7=3 + 
b7=4.So we have, on the set fr � 1g :��u� + 43u7=3� � Cr7=2 :We are now going to use the same 
omparison argument as above, introdu
ingthe fun
tion V = ar3=2 + bR03=2(R02�jxj2)3=2 . Computing ��V , and using (here again)that (� + �)7=3 � �7=3 + �7=3; we �nd that��V + 43V 7=3 � ar7=2 (4a4=33 � 94) + bR03=2(R02 � jxj2)7=2 (43b4=3R02 � 9R02 � 6jxj2):Thus, 
hoosing a4=3 > 2716 and b4=3 > 454 , we have :��V + 43V 7=3 � ��u� + 43u7=3� :So by the same argument as above, we 
on
lude that u� � V on the setfr � 1g. Sin
e u� 2 L1(R3), this 
on
ludes the proof. �



2 POLYMERS 142.1.4 Compa
tnessThe next step 
onsists in proving the 
ompa
tness of the sequen
e ��, i.e thefa
t that no ele
trons es
ape at in�nity. Mathemati
ally, this will be statedas : 1j�j Z�(�) �� �! 1 as �!1: (2.10)We start with the smeared nu
lei 
ase, and next generalize the result tothe point nu
lei 
ase :Proposition 2.1 In the smeared nu
lei 
ase, (2.10) holds.Proof : The key-point of the proof is, as in [5℄, that we have, for all h 2H1(R3),j ZR3(m� � ��)hj � 1(2�)3D(m� � ��; m� � ��)1=2krhkL2(R3): (2.11)(We re
all that D(f; g) = RR3 RR3 f(x)g(y)jx�yj dxdy.) This inequality holdsbe
ause m� � �� 2 L6=5(R3) � H�1(R3) : it is exa
tly the Cau
hy-S
hwarzinequality in H�1 �H1, through the Fourier transform.Now, we know from Theorem 2.3, that D(m� � ��; m� � ��) � Cj�j.Next, we 
hoose h = h� : we put h�(x) = f�(r)g�(x3), where :� f�(r) = 1 � ( rR)� if r � R, 0 otherwise, with 1 > � > 0, and R =R(�) > 0 being 
hosen below.� g� 2 D(R), g� = 1 on the set fx 2 R=d(x;�3) < 12g, 0 on the setfx 2 R=d(x;�3) > 1g, 0 � g� � 1 and jg0�j � 4.(We re
all that � = f(0; 0)g � �3, and that j�h3 j = ft 2 R; d(t; �([k2�3 [k �1=2; k + 1=2℄)) < hg.)For su
h an h�, we 
ompute :ZR3 jrh�j2 = ZR2�[0;1[g0�(x3)2f�(r)22�rdrdx3 + ZR2�[0;1[g�(x3)2f 0�(r)22�rdrdx3� Cj�13j Z R0 (1� ( rR)�)2rdr + Cj�j Z R0 �2 r2��1R2� dr� C(R2j�13j+ �j�j):We now 
hoose R = � j�jj�13j�1=4, so that we have R �! 1 as j�j ! 1, to-gether with Rj�13j1=2 � j�j1=2. Thus, we �nd that krh�kL2(R3) � C(p�j�j+o(pj�j)), hen
e 1j�j j ZR3(m� � ��)h�j � Cp�+ o(1):



2 POLYMERS 15Now, be
ause h� � 1, RR3 m�h� � j�j. On the other hand,ZR3 m�h� � j�j � ZR3 m�( rR)�:And RR3 m�( rR)� � Cj�j=R�, so we have :1j�j ZR3 m�h� �! 1:Furthermore,ZR3 ��h� = Z�(�)\fr<Rg �� � Z�(�)\fr<Rg ��( rR)� + Z�(�)
 ��h�= Z�(�) �� +O(j�13j)� Z�(�)\fr<Rg ��( rR)� � Z�(�)\fr>Rg ��;be
ause R�(�)
 h��� � Cj�13j R R0 rdr1+r3 � Cj�13j, a

ording to Theorem 2.3.Con
erning the remaining terms of the right-hand side of the above equal-ity, we have :0 � Z�(�)\fr>Rg �� � Cj�j Zr>R drr2 � C j�jR � j�j;and : 0 � Z�(�)\fr<Rg ��( rR)� � C j�jR� Z 10 r�+11 + r3dr � C j�jR� � j�j;be
ause 3� �� 1 > 1.Colle
ting all those 
onvergen
e results, we get :j1� 1j�j Z�(�) ��j � Cp� + o(1):Letting j�j �! 1, this implies thatlim sup�!1 j1� 1j�j Z�(�) ��j � Cp�:Here C does not depend on � > 0, so letting �! 0, we �nd (2.10). �Let us now turn to the point nu
lei 
ase. The only di�eren
e betweenthis 
ase and the pre
eding one is that D(m�� ��; m� � ��) does not exist.So we are going to repla
e m� by 1Q(�), Q(�) denoting Sk2�Q+k, where Qis the unit 
ube in R3. 1Q(�) lies in L1 \L1(R3) and have 
ompa
t support,so that the existen
e of 1j�jD(1Q(�) � ��; 1Q(�) � ��) is ensured. The point isthen to prove that this quantity is bounded independently of �, so that thesmeared nu
lei 
ase proof will apply. Sin
e this is only a te
hni
al adaptationof [5℄, Se
tion 3.3.4, we skip this proof.Proposition 2.2 In the point nu
lei 
ase, (2.10) holds.



2 POLYMERS 162.2 Uniqueness for the system of PDE-Identi�
ation ofthe limitNow that we have bounds on the sequen
e ��, we may pass lo
ally to thelimit (up to a subsequen
e) in the system (2.3)-(2.4). Denoting by �1 = u21and �1 the 
orresponding limits, we get a solution to the system :� ��u1 + 53u7=31 � u1�1 = 0;���1 = 4�(m1 � u21); (2.12)where the measure m1 is either equal to Pk2Z Æke3 in the point nu
lei 
ase,or to Pk2Zm(� � ke3) in the smeared nu
lei 
ase. In both 
ases, m1 isperiodi
 and its periodi
 
ell is �0.The aim of this se
tion is to show a uniqueness result on the system, soas to identify the limit (u1; �1) as the solution of the system (2.12). The�rst step will be the periodi
ity of the solution. Next, when the solution isshown to be periodi
, we will 
ompare it with the solution of the periodi
variational problem :Iper = inffEper(�); � � 0;p� 2 Xper; Z�0 � = 1g; (2.13)Xper being de�ned by :Xper = fu 2 H1per(�0); �log(2 + jxj)�1=2u 2 L2(�0)g; (2.14)The energy Eper is de�ned by :Eper(�) = R�0 jrp�j2 + Z�0 �5=3 � Z�0(G ?�0 m)� (2.15)+ Z�0 Z�0 G(x� y)�(x)�(y)dxdy:(We denote by f ?�0 g the 
onvolution produ
t over �0 for periodi
 fun
tions,that is, f ?�0 g(x) = R�0 f(x� y)g(y)dy.)The potential G is the periodi
 potential de�ned by (1.7).We �rst study this periodi
 potential.2.2.1 The potential GWe re
all that in this se
tion,G(x) = �2 log(r) +Xk2Z� 1jx� ke3j � Z 12� 12 dyjx� (y + k)e3j�:



2 POLYMERS 17Lemma 2.2 We have :(o) G is smooth on R3 n Ze3.(i) G(x) = 1jxj + C +O(jxj) as x! 0.(ii) G(x) = �2 log(r) +O(1r) as r !1, uniformly with respe
t to x3.Proof :First of all, we prove that the sum de�ning G does exist on R3 nfr = 0g :indeed, denoting by f(x) the quantity 1jxj�R 12� 12 dtjx�te3j , we have, for jxj �! 1,and r 6= 0 : f(x) = 1jxj � Z 12� 12 dtpjxj2 � 2tx3 + t2= 1jxj � 1jxj Z 12� 12 dtq1� 2tx3jxj2 + t2jxj2= 1jxj � 1jxj Z 12� 12 (1 + tx3jxj2 +O( 1jxj2 ))dt= O( 1jxj3 ); (2.16)so this shows that Pk2Z f(x + ke3) is normally 
onvergent on any 
ompa
tsubset of R3 n fr = 0g. This proves our 
laim, and that G is smooth on thisset, and periodi
 with periodi
 
ell �0.We now turn to the proof of (i) : we isolate the interesting terms, andwrite G as :G(x) = �2 log(r) + 1jxj � Z 12� 12 dtjx� te3j (2.17)+ Xk2Z�� 1jx� ke3j � Z 12� 12 dtjx� (t+ k)e3j�:Now, we 
ompute, with x �! 0, x 6= 0 :Z 12� 12 dtjx� te3j = Argsh( 12 � x3r ) + Argsh( 12 + x3r )= log�x3 + 12 +qr2 + (x3 + 12)2x3 � 12 +qr2 + (x3 � 12)2�= log� x3 + 12 +qr2 + (x3 + 12)2x3 � 12 + 12(1� 2x3 + 2jxj2 � 2x23 +O(jxj3))�;



2 POLYMERS 18be
auserr2 + (x3 � 12)2 = 12p1� 4x3 + 4jxj2= 12(1� 2x3 + 2jxj2 � 18(4x3)2) +O(jxj3):Hen
e Z 12� 12 dtjx� te3j = log� 1 +O(jxj)r2 +O(jxj3)�= �2 log(r) +O(jxj):So we may writeG(x) = 1jxj + Xk2Z�� 1jx� ke3j � Z 12� 12 dtjx� (t + k)e3j�+O(jxj)as jxj �! 0:Now, all the terms of the remaining sum are 
learly de�ned on �0, sousing the estimate (2.16) on f , we 
on
lude that this series de�nes a smoothfun
tion on �0. With the periodi
ity of G, this shows (o) and (i), withC =Pk2Z�� 1jkj � R 12� 12 dtjk+tj�.We now turn to the proof of (ii), whi
h results only in showing that :Xk2Z���� 1jx� ke3j � Z 12� 12 dtjx� (k + t)e3j���� � Cr (2.18)as r �!1, uniformly with respe
t to x3:Considering the fun
tion f de�ned above, this expression may be writtenas : Pk2Z f(x� ke3). So, as we know thatjf(x)j � Cjxj3 ;we have : jXk2Z f(x� ke3)j �Xk2Z 1r3 + jkj3 ;for r su�
iently large. Now, we haveXk2Z 1r3 + jkj3 � 1r3 + Xk2Z� 1r3=2jkj3=2 � Cr3=2 :



2 POLYMERS 19This proves (2.18). �Now that we know the behaviour of G, we turn to a positiveness propertyfor DG. We re
all that :DG(f; g) = Z�0 Z�0 f(x)g(y)G(x� y)dxdy: (2.19)Sin
e DG appears in the expression of the energy and is a bilinear form,its positiveness (in the sense of bilinear forms) will ensure its 
onvexity, hen
ethe 
onvexity of the energy.In the following Proposition, we assume that Supp(m) � fr < 1g, sin
ethis may be done without loss of generalityProposition 2.3 The bilinear form DG is positive on the set Yper = ff 2L1per(�0)=pjf j 2 H1per(�0 \ fr > 1g); R�0 f = 0 and log(2 + jxj)f 2 L1(�0)g.Where the spa
e H1per(�0 \ fr > 1g) is de�ned as the set of fun
tions lyingin H1lo
(fr > 1g) \H1(�0 \ fr > 1g) that are periodi
 with respe
t to x3, ofperiod 1.Proof :We de�ne on Sper(�0), that is, the set of fun
tions that are C1 on R3,periodi
 with periodi
 
ell �0, and de
aying faster than any power of r asr !1, the Fourier transform f 7�! bf as :bf(�; n) = Z�0 f(x)e�i2�(x0��+x3n)dx; (2.20)where x = (x0; x3), x0; � 2 R2, and n 2 Z. It is easy to 
he
k out that thisFourier transform has the isometry-property of the 
lassi
al Fourier trans-form, that is : Z�0 f(x)g(x)dx =Xn2Z ZR2 bf(�; n)bg(�; n)d�: (2.21)Hen
e it may be prolonged to S 0per(�0). We also have :8f 2 S 0per(�0); d�jf(�; n) = i2��j bf(�; n); j = 1; 2:And 8f 2 S 0per(�0) and g 2 Sper(�0);\f ?�0 g = bfbg:So, sin
e we know that ��G = 4�Æ0 on �0, we dedu
e :4�2(j�j2 + n2) bG(�; n) = 4�:



2 POLYMERS 20Hen
e when n 6= 0, bG(�; n) = 1�(j�j2+n2) . Now for n = 0, bG be
omesthe 
lassi
al Fourier transform of log jx0j on R2. Indeed, we have, puttingG0(x) = G(x) + 2 log(r), Z 12� 12 G0(x)dx3 = 0: (2.22)Be
ause 
omputing �� R 12� 12 G0(x)dx3, with x 2 �0, one �nds :�� Z 12� 12 G0(x)dx3 = Z 12� 12 ��(G0(x))dx3= 4� Z 12� 12 �Æ0 � Ær=0�dx3= 4�(Ær=0 � Ær=0) = 0:So the left-hand side of (2.22) is the expression of a harmoni
 fun
tion, whi
hlies in L1 be
ause of Lemma 2.2, hen
e is a 
onstant. But, still be
ause ofLemma 2.2, G0 goes to 0 as r goes to in�nity, so (2.22) holds.The 
lassi
al Fourier transform of log jxj on R2 is equal to vp( 1jxj2 ) + aÆ0,with a > 0, and where vp( 1jxj2 ) is de�ned as follows (see [14℄) :< vp( 1jxj2 ); ' >= lim"!0+�Zjxj>" '(x)jxj2 dx+ log "" Zjxj="'�: (2.23)(In fa
t, vp( 1jxj2 ) = div( log jxjjxj2 x) in D0(R2):)So we have : bG(�; 0) = vp( 1j�j2 ) + aÆ0:Now, we 
ompute, for all f 2 Yper :DG(f; f) = Z�0(G ?�0 f)f= Xn2Z ZR2\G ?�0 f(�; n) bf(�; n)d�= Xn2Z� ZR2 ( bf(�; n))24�2(j�j2 + n2)d�+ < vp( 1j�j2 ); ( bf(�; 0))2 >;sin
e bf(0) = R�0 f = 0. So Proposition 2.3 will be proved if we show thatwhen f 2 Yper, < vp( 1j�j2 ); ( bf(�; 0))2 >� 0.



2 POLYMERS 21From the fa
t that f 2 Yper, we have :j bf(�; 0)j = ����Z�0(e�2i�x0� � 1)f(x)dx����� Z�0\fr> 1pj�j gje�2i�x0� � 1jjf(x)jdx+ Z�0\fr< 1pj�j gje�2i�x0� � 1jjf(x)jdx� 2log(2 + 1pj�j) Z�0\fr> 1pj�j g log(2 + r)jf(x)jdx+ Z�0\fr< 1pj�jg jx0jj�jjf(x)jdx� 4��log j�j�� Z�0 log(2 + jxj)jf(x)jdx+pj�jZ�0 jf(x)jdx� C��log j�j�� (2.24)as j�j �! 0.Hen
e, (2.24) implies that bf(�;0)j�j 2 L2lo
(�0), and that log "" Rj�j=" bf(�; 0)2vanishes as " ! 0. Sin
e bf(�; 0) 2 L2(R2), we 
on
lude from (2.23) that wehave : < vp( 1j�j2 ); ( bf(�; 0))2 >= Z�0 bf(�; 0)2j�j2 d� � 0:This 
on
ludes the proof. �Remark 2.3 Let us point out that the important property of f is that itsintegral vanishes. For example, if f = Æke1 + Æ�ke1 on �0, f being periodi
with periodi
 
ell �0, one may 
ompute that, for k > 0 large enough, we haveDG(f; f) � � log k < 0. And we may even 
onvolute f with a regularizingkernel, so as to get a C1 fun
tion g, having 
ompa
t support, and su
h thatDG(g; g) < 0.We now turn to our main result : the uniqueness of the solution of thesystem (2.12), whi
h will be stated more pre
isely in Theorem 2.4 below. We
onsider a positive measure � with 
ompa
t support, periodi
 with periodi

ell �0, su
h that � 6� 0, and the system :8<: ��u + 53u7=3 � u� = 0;��� = 4�(�� u2);u � 0; (2.25)and intend to prove a uniqueness result for this system.



2 POLYMERS 22We write � =Xk2Zm(� � ke3);with m having its support in �0. With no loss of generality, we may assumethat Supp m � fr < 1g, and that m(�0) = 1. We �rst need some a prioriestimates on the solution of the system. It is the aim of the following se
tion.2.2.2 A priori boundsProposition 2.4 Let (u; �) be a solution of (2.25), with u 2 L1(R3) and� 2 L1unif(R3). Then for any R > 0, there exists a 
onstant � > 0 su
h thatinfr<R u � �.Proof : First of all, we remark that, by ellipti
 regularity, the fa
t that� 2 L1unif implies that u 2 W 2;1unif , hen
e belongs to H1unif(R3). So � 2H3unif(fr > 1g) � L1(fr > 1g, and u lies in L1 \ C0;�(fr > 1g) for some� > 0. Moreover, the fa
t that � 2 L1unif(R3) and �� is a uniformly lo
allybounded measure, we dedu
e that � 2 Lp(R3), for all p < 3.We argue by 
ontradi
tion, and suppose that the above property is false,i.e that there exists R > 0 su
h that :infr<R u = 0: (2.26)This means in parti
ular that there exists a sequen
e (xn)n�0 su
h thatr(xn) � R and u(xn) �! 0 as n ! 1. So, denoting by un and �n thefun
tions u(�+ xn) and �(�+ xn) respe
tively, we have thatun(0) �! 0 as n!1: (2.27)Now, we may write xn = kn + x0n, with kn 2 Ze3 and x0n 2 �0. Sin
er(xn) = r(x0n) � R, we may extra
t a subsequen
e so as to have x0n �! x0,for some x0 2 �0, satisfying r(x0) � R.But from (2.25), (2.27) and Harna
k's inequality (see for instan
e [8℄), wededu
e that un �! 0 uniformly on any 
ompa
t subset of R3. Consideringthe bounds on u and �, we may pass lo
ally to the limit, up to a subsequen
e,in (2.25). We then get � 2 L1unif a solution to :��� = 4��(�+ x0): (2.28)Hen
e, denoting by  the fun
tion �(� � x0), we have  2 L1unif , satisfying :�� = 4��: (2.29)



2 POLYMERS 23With no loss of generality, we may assume that r(x0) = 0, so that �� has its support in fr < 1g.We are now going to use a s
aling argument to show that the fa
t that is a solution to (2.29) is in 
ontradi
tion with its belonging to L1unif . The�rst thing is that  is harmoni
 on the set fr > 1g, hen
e 
ontinuous on thisset, and thus belongs to L1(fr > 1g).Let �0 2 C1(R), su
h that �0 = 1 on [�1; 1℄, �0 = 0 on [�2; 2℄
, andj�000 j � 4. Let � 2℄0; 1[ and �R : R2 �! R be the solution of ��� = 0 onf1 < jxj < R�g with boundary 
onditions � = 1 on f1 = jxjg, � = 0 onfjxj = R�g. Namely, we have�R(x) = 1� log jxj� logRon the set f1 < jxj < R�g. We prolong it by 1 on f1 > jxjg, 0 on fjxj > R�g.We set �R(x) = �R(x0)�0(x3R ), for all x 2 R3.And we 
ompute :< �� ; �R > = 4� < �; �R >= Xk2Z < m(�+ ke3); �R >= Xk2Z;jkj�2RZ�0 �0(x3 � kR )m(x)dx� Xk2Z;jkj�RZ�0 m:So we 
on
lude that : < �� ; �R >� 2R: (2.30)On the other hand, we have, denoting by 
R the set fr < R�; jx3j < 2Rgand by !R the set fr < 1; jx3j < Rg,ZR3 �� �R = Z
R �� �R= Z
Rn!R r r�R= � Z
Rn!R  ��R � Zr=R�;jx3j<2R  ��R�r + Zr=1;jx3j<2R  ��R�r :



2 POLYMERS 24We know that ��R = 1R2 �R(r)�000 (x3R ) on the set 
R n !R, so we have :����Z
Rn!R  ��R���� = 1R2 ����Z
Rn!R  �R(r)�000(x3R )����� 4R2 ����Z
R  ����� CR2 j
Rj = CR2��1 � R;be
ause  2 L1unif and � < 1.Next, we 
ompute that ��R�r = � �0(x3R )�r logR ;so we also have, using the fa
t that  belongs to L1(fr > 1g) and is smoothon this set : ����Zr=R�;jx3j<2R  ��R�r ���� � CR�+1�R� logR = CRlogR � R: (2.31)And : ����Zr=1;jx3j<2R  ��R�r ���� � CRlogR � R: (2.32)So we 
on
lude that ��< �� ; �R >��� R;rea
hing a 
ontradi
tion with (2.30). This 
on
ludes the proof. �We now have a lower bound on u, and intend to get upper bounds :Proposition 2.5 Let (u; �) be a solution of (2.25), satisfying u 2 L1 and� 2 L1unif . Then we have :(i) � � C1+r2 8r > 1; and(ii) u � C1+r3=2 :Proof : The proof follows exa
tly the same pattern as that of Theorem 2.3.Indeed, this proof only uses the fa
t that the measure m� has its support infr < 1g and that the fun
tions u�; �� are solutions of the system (2.3)-(2.4).So the whole proof 
arries through to this 
ase. �



2 POLYMERS 252.2.3 Periodi
ity of the solutionsWe are now going to show that the solutions of the system (2.25) are ne
es-sarily periodi
.For this purpose, we denote, for any fun
tion f de�ned on R3,�f(x) = f(x+ e3): (2.33)We then have, if (u; �) is a solution to (2.25),��(��� �) = 4�(u2 � �u2): (2.34)Hen
e, from ellipti
 regularity, (��� �) 2 C0 \ L1(R3):Proposition 2.6 Let (u; �) 2 L1(R3) � L1unif (R3) be a solution of (2.25).Then ��� � = u2 ? ( 1jxj � � 1jxj):And j��� �j � C1 + r ;for some 
onstant C independent of x3.Proof : The �rst thing is to 
he
k out if this 
onvolution produ
t exists :Sin
e we have u2 � C1 + r3and j 1jxj � � 1jxj j � j2x3 + 1jjxjjx+ e3j(jxj+ jx+ e3j)� 1jxj(jxj+ jx+ e3j) + 1jx+ e3j(jxj+ jx+ e3j) ;this is easy to 
he
k. Moreover, we have :����u2 ? (� 1jxj � 1jxj)���� � ZR3 11 + r(y)3 dyjx� y + e3j(jx� yj+ jx� y + e3j)+ ZR3 11 + r(y)3 dyjx� yj(jx� yj+ jx� y + e3j)� 2 ZR3 11 + r(y)3 dyjx� yj(jx� yj+ jx� y + e3j) :We split this integral into two others, and write, with r(x) > 2 :



2 POLYMERS 26ZR3 11 + r(y)3 dyjx� yj(jx� yj+ jx� y + e3j)= Zjx�yj<2 11 + r(y)3 dyjx� yj(jx� yj+ jx� y + e3j)+ Zjx�yj>2 11 + r(y)3 dyjx� yj(jx� yj+ jx� y + e3j) :So that we have, denoting by A(x) and B(x) respe
tively the terms of thissum, A(x) � C1 + r(x)3 ; (2.35)be
ause Zjx�yj<2 dyjx� yjjx� y + e3j = Zjyj<2 dyjyjjy + e3j � C;and be
ause the fa
t that jx � yj < 2 together with r(x) > 2 imply that11+r(y)3 � C1+r(x)3 , where C does not depend on x.Con
erning B, we have, for an R < r(x) = jx0j that will be 
hosen lateron : B(x) � ZR3 C1 + r(y)3 dy1 + jx� yj2� ZR2 C1 + jy0j3�ZR dy31 + jx0 � y0j2 + jx3 � y3j2�dy0� ZR2 11 + jy0j3 Cjx0 � y0jdy0 = ZR2 C(1 + jx0 � y0j3) dy0jy0j� Zjy0j<R C(1 + jx0 � y0j3) dy0jy0j + Zjy0j>R C(1 + jx0 � y0j3) dy0jy0j� Zjy0j<R dy0jy0j 11 + (jx0j � R)3 + 1R Zjy0j>R dy01 + jx0 � y0j3� CR1 + (jx0j � R)3 + CR ;where C is a 
onstant independent of x. Finally, we 
hoose R = jx0j2 , so as tohave : B(x) � Cr(x) : (2.36)



2 POLYMERS 27Now, 
olle
ting (2.35) and (2.36), we get :��u2 ? (� 1jxj � 1jxj)�� � Cr : (2.37)Finally, sin
e u2 ? (� 1jxj � 1jxj) is 
ontinuous, (2.37) implies :��u2 ? (� 1jxj � 1jxj)�� � C1 + r : (2.38)So there only remains to prove that this expression is indeed equal to ����.In order to do so, we 
ompute its Lapla
ian, and �nd :��(u2 ? (� 1jxj � 1jxj)) = u2 ? (��(� 1jxj � 1jxj)) = u2 ? (Æe3 � Æ0) = �u2 � u2:So the fun
tion ��� �� u2 ? (� 1jxj � 1jxj) is harmoni
. But sin
e, from (2.38),it lies in L1(R3), it must be a 
onstant. Hen
e��� � = u2 ? (� 1jxj � 1jxj) + a: (2.39)Now, 
onsidering (2.38), we know that for some R large enough,ju2 ? (� 1jxj � 1jxj)j < jaj2on the set fr > Rg. So we havea� jaj2 � ��� � � a+ jaj2on this set, whi
h implies that, for all n 2 N, we have :j�n�� �j � n jaj2on fr > Rg. So 2k�kL1unif � ZB1+2Re1 j�n�� �j � n jaj2 jB1j:This is valid for all n 2 N, so we rea
h a 
ontradi
tion with the fa
t that� 2 L1unif , unless a = 0. This 
on
ludes the proof. �Next we turn to a uniqueness result that will ensure the periodi
ity of u,hen
e of �.



2 POLYMERS 28Lemma 2.3 Let (u; �) and (v;  ) be two solutions of system (2.25), bothlying in L1 � L1unif , su
h that j� �  j � C1+r for some 
onstant C. Thenu = v and � =  .Proof : The proof follows exa
tly the same pattern as the uniqueness The-orem of [5℄, Se
tion 5.3 : we are going to 
olle
t all the former results, andthen use a s
aling argument on u and �.First of all, we know from Proposition 2.4 that there exists a positivefun
tion �, independent of x3, su
h that :u; v � �: (2.40)Next, denoting by w the fun
tion u � v, we get, substra
ting the twosystems : ��w + u7=3 � v7=3 � (�u�  v) = 0: (2.41)and : ��(��  ) = v2 � u2: (2.42)Hen
e, for any � 2 D(R3), we have :ZR3 rwr(w�2) + ZR3(u7=3 � v7=3)w�2 � ZR3(�u�  v)w�2 = 0: (2.43)The �rst term of this sum may be rewritten as :ZR3 rwr(w�2) = ZR3 jr(w�)j2 � ZR3 w2jr�j2: (2.44)Now, from (2.40), we dedu
e that there exists a positive fun
tion �(r) su
hthat : (u7=3 � v7=3)(u� v) � 12(u4=3 + v4=3)(u� v)2 + �(u� v)2:That is, (u7=3 � v7=3)w � 12(u4=3 + v4=3)w2 + �w2: (2.45)On the other hand, we write :�u�  v = 12(�+  )w + 12(��  )(u+ v): (2.46)



2 POLYMERS 29We denote by L the operator ��+ 12(u4=3+ v4=3)� 12(�+ ), and dedu
efrom (2.43), (2.45) and (2.46) that :< L(w�); w� > + ZR3 �w2�2 � 12 ZR3(��  )(u2 � v2)�2 + ZR3 w2jr�j2:(2.47)We 
laim that the operator L (with homogeneous Diri
hlet boundary
onditions on a bounded set) is positive. Indeed, we may write it asL = 12�(��+ u4=3 � �) + (��+ v7=3 �  )� = 12(L1 + L2);and the only thing to prove is that L1 and L2 are positive. This 
omes fromthe �rst equation of (2.25) : denoting by �1 the �rst eigenvalue of L1 on 
,and by f1 the asso
iated eigenve
tor, satisfying f1 > 0 on 
, we have :Z
��f1u+ Z
 u4=3f1u� Z
 �f1u = Z
 �1f1u:Integrating by parts and using the �rst equation of (2.25), we �nd :� Z�
 u�f1�n + Z�
 f1 �u�n = �1 Z
 f1u:Sin
e the se
ond term of the left-hand side is 0, and be
ause of Hopf's Lemma,whi
h shows that �f1�n < 0 on �
, we infer that �1 > 0, hen
e that L1 ispositive. L2 may be dealt with exa
tly in the same way, so our 
laim isproved.So the equation (2.47) implies :ZR3 �w2�2 � 12 ZR3(��  )(u2 � v2)�2 + ZR3 w2jr�j2: (2.48)We now go ba
k to (2.42), and use it to rewrite the �rst term of (2.48)'sright-hand side as :12 ZR3(��  )�(��  )�2 = �12 ZR3 jr(��  )�j2 + 12 ZR3(��  )2jr�j2:So the inequality (2.48) be
omes :ZR3 �w2�2 + ZR3 jr((��  )�)j2 � ZR3 w2jr�j2 + 12 ZR3(��  )2jr�j2:(2.49)Sin
e this holds for any � 2 D(R3), we may apply it to a sequen
e �n
onverging to �(x) = 1(1 + x23)�=2(1 + r2)�=2 :



2 POLYMERS 30With � > 12 , � > 0 and � + � < 1. We then get (2.49) for this 
hoi
e of �.Now, for this fun
tion �, it is 
lear, from the hypotheses on � and �, and fromProposition 2.5, (ii) that we have RR3 w2�2 <1 and RR3(��  )2�2 <1.We are now going to use a s
aling argument on the inequality (2.49). Wede�ne �" as : �"(x) = �("x): (2.50)We then 
ompute :jr�"j2 = ����� "2x0(1 + "2r2)(�2+1)(1 + x23)�2 ����2 + ����� "2x3(1 + "2r2)�2 (1 + "2x23)(�2+1) ����2= �2 "4r2(1 + "2r2)(�+2)(1 + x23)� + �2 "4x23(1 + "2r2)�(1 + "2x23)(�+2)� �2 "2(1 + "2r2)�(1 + "2x23)� + �2 "2(1 + "2r2)�(1 + "2x23)�� C"2�2��2�(1 + x23)�(1 + r2)� = C"2�2��2��2: (2.51)Now we 
onsider inequality (2.49) together with (2.51), and �nd :ZR3 �w2�2" � C"2�2��2�:Fixing R > 0, we also have :ZR3 �w2�2" � infBR �1 + "2R2 ZBR w2 � infBR � ZBR w2:Letting " go to 0, and using the fa
t that � + � < 1, we dedu
e thatZBR w2 = 0;hen
e w = 0. Now, sin
e u; v > 0, we also 
on
lude, from the �rst equationof (2.25), that � =  . �This Lemma, together with Proposition 2.4, Proposition 2.5 and propo-sition 2.6, allows us to assert that any solution of (2.25) is periodi
, withperiodi
 
ell �0. Now, we are going to 
omplete the proof of our uniquenesstheorem.2.2.4 Uniqueness for the systemWe intend to prove the following theorem :



2 POLYMERS 31Theorem 2.4 Let � be a periodi
 positive measure, with periodi
 
ell �0 =R2�℄� 12 ; 12 ℄ su
h that :(a) Supp � � fr < 1g.(b) �(�0) = 1.Then the system (2.25), that is :8<: ��u + 53u7=3 � u� = 0;��� = 4�(�� u2);u � 0: (2.52)has a unique solution (u; �) in �L2unif \ L7=3lo
 (R3)� � L1unif (R3). Moreover,this solution is periodi
 with respe
t to x3, of period 1, and we have :(i) u 2 L1(R3), and there exists a 
onstant C > 0 and a positive fun
tion� depending only on r, su
h that 0 < � � u � C1+r3=2 ; and(ii) there exists a 
onstant � su
h that � = G ?�0 (�� u2) + � ; and(iii) R�0 u2 = 1.Remark 2.4 Of 
ourse, in properties (a)-(b), the number 1 may be repla
edby any positive real. That is, those assumptions 
ould be repla
ed by :(a') � has 
ompa
t support with respe
t to (x1; x2).(b') � 6= 0.And in this 
ase, the 
on
lusion (iii) would be
ome :(iii') R�0 u2 = �(�0).Remark 2.5 In the three-dimensional 
ase, that is if � is a Van Hove se-quen
e of Z3, this uniqueness result holds provided � satis�es weaker 
ondi-tion of the kind (H1)� (H2) of Theorem 4.1. Here we are not able to adaptour proof to those kind of �'s. The periodi
ity is a ne
essary 
ondition of ourproof. However, in the Yukawa 
ase, su
h a result holds (see Se
tion 4).Proof : We give here two te
hni
al results that we will need in the 
ourseof the proof, their proof being postponed until the end of the present one :Lemma 2.4 Let  2 L2unif(R2) \ H3=2lo
 (B
R0) for some R0 > 0, and denoteby  R the fun
tion  � 12�R Rjxj=R  . Assume that (�� ) R is bounded inL1(B
R0) independently of R. Then r 2 L2(B
R0).



2 POLYMERS 32Lemma 2.5 Let v 2 Zper = fg 2 S 0(�0); R�0 log(2+ jxj)jgj <1; R�0 g = 0g,su
h that v 2 L1lo
(�0 \ fr > 1g) and jvj � C1+r3 on fr > 1g. Then G ?�0 v 2L1unif(�0).The proof of the existen
e is a straight-forward adaptation of the ther-modynami
 limit pro
ess, using the measure m instead of a smooth fun
tionor Æ0. One 
he
ks easily that the point nu
lei 
ase proofs generalizes toany bounded measure with 
ompa
t support. And the asso
iated variationalproblem I� has been studied in [10℄.We refer the reader to [5℄, Se
tion 5.3.2 for the belonging of u to L1. Theproof also gives the information that � 2 Lpunif(R3) \ L1(fr > 1g), for all1 � p < 3. This 
omes from ellipti
 regularity results.Now, we know that whenever u 2 L1(R3) and � 2 L1unif(R3) satisfy(2.25), Lemma 2.3 and Propositions 2.4, 2.5 and 2.6 show that u and � areperiodi
, with periodi
 
ell �0, and that (i) holds.Now that the periodi
ity of u and � is ensured, we introdu
e the varia-tional problem (2.13), that is :Iper = inffEper(�); p� 2 Xper; Z�0 � = 1g:Where Eper is de�ned by (2.15), i.eEper(�) = R�0 jrp�j2 + Z�0 �5=3 � Z�0(G ?�0 �)�+ 12 Z�0 Z�0 �(x)�(y)G(x� y)dxdy:Here G is the periodi
 potential de�ned in (1.7), andXper is the fun
tionalspa
e : Xper = fv 2 H1per(�0); �log(2 + jxj)�1=2v 2 L2(�0)g:The �rst observation is that u 2 Xper. Indeed, we already know from(i),the se
ond equation of (2.25) and the fa
t that � 2 L1unif , that :k ��ukLp(B1+x) = k � u7=3 + �ukLp(B1+x) � C1 + r(x)3=2 :(We re
all that r(x) = jx0j = px21 + x22.) The same inequality holds for uinstead of �u, so by standard ellipti
 regularity results, and taking p largeenough, we dedu
e that jruj � C1 + r3=2 : (2.53)
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e u 2 H1(�0). Sin
e u is periodi
, this shows thatu 2 Xper:The next step is to show that u is a 
riti
al point of the problem Iper. Sowe write the Euler-Lagrange equation of this problem :��u + 53u7=3 � (G ?�0 (�� u2))u = �u; (2.54)for some � 2 R. The point is then to show that� = G ?�0 (�� u2) + d; (2.55)with d 2 R. We set :  = Z 1=2�1=2 �(x)dx3;and f = Z 1=2�1=2(�� u2)dx3:Those fun
tions are de�ned on R2, and sin
e we have �� = R 1=2�1=2��� =R 1=2�1=2 � � u2, from the periodi
ity of �, the �rst Lapla
ian being a two-dimensional one, and the se
ond one a three-dimensional one, we have :�� = fon R2.We want here to apply Lemma 2.4 with R0 = 1. For that purpose, weonly need to show that k(�� ) RkL1(B
1) is bounded independently of R.So, denoting by Q the unit 
ube of R3, we write :ZB
1 jf Rj = Xk2(Z2)� Z(Q+k)\B
1 jf Rj� Xk2(Z2)� kfkL1(Q+k)k RkL1unif (B
1)� C Xk2(Z2)� k RkL1unif (B
1)1 + jkj3� Ck kL1unif (B
1) + C supR>1����Rjxj=R  2�R ����� Ck�kL1unif (fr>1g) + Ck�kL1(fr>1g):



2 POLYMERS 34So we may apply Lemma 2.4 to  , dedu
ing that r 2 L2(R2). Knowingthis, we are going now to prove that :Z�0 u2 = 1: (2.56)This will follow from : Z�0 ��� = 0:And, sin
e this last property may be written as :ZR2 �� = 0; (2.57)we fo
us on this last equation. Let �R be a 
ut-o� fun
tion, in the followingsense : �R(x) = �( jxjR ); with :� � 2 D(R), 0 � � � 1, j� 0j � 2.� �(t) = 1 8t 2 [�1; 1℄.� �(t) = 0 8t 2 [�2; 2℄
.We have, for all R > 1 :ZR2 �� �R = ZR2 r r�R:����ZR2 �� �R���� � �ZR<r<2R jr j2�1=2�ZR<r<2R jr�Rj2�1=2:And, sin
e jr�Rj2 = 1R2 ����� 0� jxjR �����2 � CR2 ;we 
on
lude that ����ZR2 �� �R���� � C�Zr>R jr j2�1=2:The right-hand side of this inequality vanishes as R goes to in�nity, sin
er 2 L2(B
1). Hen
e we get (2.57), that is (2.56), or (iii).Now, we are going to prove (2.55). In order to do so, we 
ompute theLapla
ian of ��G ?�0 (�� u2), and �nd, from the equality��G =Xk2Z Æke3



2 POLYMERS 35that ��G ?�0 (�� u2) is harmoni
. On the other hand, we set v = �� u2,hen
e we have R�0 v = 0, v 2 S 0per(�0) and v is smooth on fr > 1g, satisfyingjvj � C1+r3 . Hen
e, applying Lemma 2.5, we dedu
e thatG ?�0 (�� u2) 2 L1unif : (2.58)Now, sin
e a harmoni
 fun
tion belonging to L1unif is ne
essarily a 
onstant,we 
on
lude that (2.55) holds.Thus, we know that u 2 Xper, that u2 has total mass one on �0, and thatit satis�es the Euler-Lagrange equation of Iper. Sin
e this problem is 
onvex,be
ause the quadrati
 form DG is positive, hen
e 
onvex with respe
t to �,we 
on
lude that u must be a solution of Iper. Hen
e u is unique, and so is�. �We now give proofs of the two lemmas that we have stated at the begin-ning of our proof :Proof of Lemma 2.4 : This result seems to be a standard one, but sin
ewe have found no proof in the literature, we provide one for the 
onvenien
eof the reader.We �rst noti
e that  R 2 L2unif (R2), sin
e  2 L2unif(R2).We �x an R > R0. Let �R be a 
ut-o� fun
tion, that is, �R 2 D(R2),su
h that �R(x) = 1 on BR n B2R0 and 0 on B
R+1 [ BR0 , 0 � �R � 1, andkr�RkL1 � 1 + 2R0 .We have : ����ZR2 �� R R�2R���� � C (2.59)����ZR2 r Rr(�2R R)���� � C:This implies : ZR2 jr( R�R)j2 � C + ZR2  2Rjr�Rj2� C + CR; (2.60)



2 POLYMERS 36We also have :ZR2 jr( R�R)j2 � ZR2 jr Rj2�2R + 2 ZR2  Rr R�Rr�R� ZR2 jr Rj2�2R�2�ZR2 jr Rj2�2R�1=2�ZR2 jr�Rj2 2R�1=2� ZR2 jr Rj2�2R � 2CpR�ZR2 jr Rj2�2R�1=2� 12 ZR2 jr Rj2�2R � CR:This, together with (2.60), shows thatZBRnB2R0 jr j2 = ZBRnB2R0 jr Rj2 � ZR2 jr Rj2�2R � CR; (2.61)for some 
onstant C independent of R. We also have, integrating by partsover BR nB2R0 ,ZBRnB2R0 (�� R) R = ZBRnB2R0 jr Rj2 � Zjxj=R  R� R�r + Zjxj=2R0  R� R�r :(2.62)And from Poin
aré inequality, we know that :�Zjxj=R  R2�1=2 � 1R�Zjxj=R����� R�� ����2�1=2: (2.63)This, together with (2.62) and (2.59), gives :ZBRnB2R0 jr j2 � C0 � R�Zjxj=R����� R�r ����2�1=2 1R�Zjxj=R����� R�� ����2�1=2� R2 Zjxj=R jr Rj2 = R2 Zjxj=R jr j2;C0 being a 
onstant bounding ����Rjxj=2R0  R � �r + RBRnB2R0 (�� R) R����.So, letting g be the fun
tiong(R) = ZBRnB2R0 jr j2 � C0;



2 POLYMERS 37we get the di�erential inequality :g(R) � R2 g0(R):Hen
e ddR� 1R2g(R)� = 1R3 (Rg0(R)� 2g(R)) � 0:So, integrating from R1 > R0 to R, we get, for all R > R1,g(R) � g(R1)R21 R2:If there exists at least one R1 su
h that g(R1) > 0, we rea
h a 
ontradi
tionwith (2.61). Hen
e g � 0, that isZBRnB2R0 jr j2 � C0:Whi
h implies that r 2 L2(B
R0). �Proof of Lemma 2.5 : We already know that G ?�0 v lies in L1lo
(�0), sothe only thing to 
he
k out is that it is bounded as r !1.We now write :G ?�0 v = Z�0 v(y)(G(x� y) + 2 log(r(x� y)))dy� Z�0 2v(y)(log(r(x� y))� log(r(x)))dy:We �rst 
onsider the �rst term of this expression : from Lemma 2.2, weknow that jG(x) + 2 log(r)j � Cr ;for x 2 2�0. Hen
e :����Z�0 v(y)(G(x� y) + 2 log(r(x� y)))dy���� � C Z�0 jv(y)jr(x� y)dy� C Z�0\fr(x�y)>1g jv(y)jdy+C Z�0\fr(x�y)<1g jv(y)jr(x� y)dy� C + C Zjy3j< 12 ;r(y)<1 dyr(y)� C: (2.64)



2 POLYMERS 38Now we rewrite the se
ond term as :Z�0 2jv(y)jj log(r(x� y))� log(r(x))jdy � C Z�0 jv(y)j����log���� x0jx0j � y0jx0j��������dy(2.65)� C Z�0\fjy0j<Rgjv(y)j����log���� x0jx0j � y0jx0j��������dy + C Z�0\fjy0j>Rgjv(y)j����log���� x0jx0j � y0jx0j��������dy:(2.66)Where R = R(x) satis�es R� jx0j. So we may write, for jy0j < R :����log���� x0jx0j � y0jx0j�������� = 12 ����log�1� 2x0y0jx0j2 + jy0j2jx0j2����� = O( Rjx0j):Whi
h implies :Z�0\fjy0j<Rg jv(y)j����log���� x0jx0j � y0jx0j ��������dy � CRjx0j Z�0\fjy0j<Rg jv(y)jdy� CRjx0j Z 1R rdrr3 � Cjx0j :Con
erning the remaining term of (2.66), we integrate �rst over the set�0 \ fjy0j > Rg \ fjx0 � y0j > 1g = DR;then over the set �0 \ fjy0j > Rg \ fjx0 � y0j < 1g = ER:On the �rst one, we have :j log���� x0jx0j � y0jx0j����j � C log�1 + jy0jjx0j�: (2.67)The se
ond one is a 
ompa
t subset of R3, so, as log jx0j 2 L1lo
(R3), we maybound the integral of jv(y)j����log���� x0jx0j � y0jx0j�������� over ER by CR3 .



2 POLYMERS 39And 
oming ba
k to (2.67), we write :Z�0\fjy0j>Rg jv(y)j����log���� x0jx0j � y0jx0j��������dy � ZDR jv(y)j����log�1 + jy0jjx0j�����dy + CR3� C Z 1R j log(1 + rjx0j)jr2 dr + CR3� Cjx0j Z 1R=jx0j j log(1 + t)jt2 dt+ CR3� Cjx0j� jx0j log(1 + Rjx0j)R �+ Cjx0j Z 1R=jx0j dtt(1 + t) + CR3� Cjx0j + CR + CR3 : (2.68)All this is bounded as jx0j �! 1, so this ends the proof. �Remark 2.6 Looking 
losely at inequality (2.68), we noti
e that the boundmay be Cjx0j� , for any � < 1. (Just take R = jx0j�.) On the other hand, thesame kind of 
omputation 
ould be done in (2.64), by developing 1jx0�y0j asjx0j �! 1. One would �nd the same kind of inequality, namely C in (2.64)would be repla
ed by Cjx0j� . So we may in fa
t assert that � = �0 + d, withd 2 R and �0 2 L1unif , satisfyingj�0j � Cjx0j� ; 8� < 1:We may also noti
e that, in the 
ourse of our proof, we have found asolution to the problem Iper, and hen
e ensured that this problem is well-posed :Remark 2.7 As a 
orollary of Theorem 2.4, one may state the result thatthe periodi
 problem Iper is well-posed. Of 
ourse, this result 
ould be provedwithout using the above theorem, by using standard variational methods, butit is not our point here.2.2.5 Convergen
e and identi�
ation of the limitNow that we have a uniqueness result for the system (2.25), we are able toshow the 
onvergen
e of the sequen
e �� :Proposition 2.7 The sequen
e u� 
onverges to uper in H1(�0).



2 POLYMERS 40Proof : The proof only 
onsists in 
olle
ting the pre
eding results, as pointedout above. �A
tually, as in [5℄, we establish in Theorem 2.5 below a mu
h stronger
onvergen
e result. In order to do so, we introdu
e what we will in this
ontext 
all interior domains :De�nition 2.1 Let � � f(0; 0)g � Z be a Van Hove sequen
e in the thirddire
tion. �0 will be said to be a sequen
e of interior domains, denoted by�0 �� �, if it satis�es the following properties :(i) �0 � �.(ii) For any �nite subset A of Ze3, there exists an h0 2 N su
h that 8h �h0; A � �0h.(iii) j�0jj�j �! 1 as �!1.(iv) d(�0; ��(�)) �!1 as �!1.Theorem 2.5 For any sequen
e �0 �� � and any R > 0, we have :ku� � uperkL1(�(�0));�! 0 (2.69)k�� � �perkL1(�(�0)\fr<Rg) �! 0; (2.70)as � �!1: (We re
all that �per = G ?�0 (m� u2per)� �per )Proof : We follow step by step, here again, the proof of [5℄. We only providea proof of (2.69), the proof of (2.70) following exa
tly the same pattern. Weargue by 
ontradi
tion, and suppose that (2.69) does not hold. This impliesthat there exists, extra
ting a subsequen
e if ne
essary, a sequen
e x� in�(�0), su
h that : ju�(x�)� uper(x�)j > "2 ; (2.71)for some " > 0. On the other hand, we have :ju�(x�)� uper(x�)j � C1 + r(x�)3=2 :Hen
e r(x�) is ne
essarily bounded. Now we write x� = y� + k�e3, withy� 2 �0 and k� 2 Z. Sin
e the sequen
e r(x�) is bounded, so is y�. We thenmay assume that this sequen
e is 
onvergent, and that the limit y lies in �0.We then have, using (2.71), and taking j�j large enough,ju�(x�)� uper(y)j > "4 : (2.72)



2 POLYMERS 41We denote by u� the fun
tion u�(�+x�), and by �� the fun
tion ��(�+x�).One may then rewrite (2.3)-(2.4) as :� ��u� + 53u7=3� � u��� = 0;���� = 4�(m�(�+ x�)� u2�): (2.73)The bounds on u� and �� hold for u� and ��, so we may pass lo
ally to thelimit in the system (2.73) above, and denoting by u and � the 
orrespondinglimits, we have : � ��u+ 53u7=3 � �u = 0;��� = 4�(m1(�+ y)� u2); (2.74)be
ause m�(� + x�) �! m1(� + y) in D0(R3) as � ! 1. Indeed, we have,for any ' 2 D(R3), K being its support :< m�(�+ x�); ' > = Xk2� < m(�+ x� + k); ' >= Xk2�\(�0�K�x�) < m;'(� � x� � k) > :Using De�nition 2.1-(iv), we have that the set � \ (�0 � K � x�) be
omesZe3\(�0�K�x�) when � is large enough, be
ause in this 
ase, �0�K�x�
omes to be in
luded in �. Hen
e,< m�(�+ x�); ' > = Xk2Ze3 < m;'(� � x� � k) >= < m1; '(� � y�) >�!< m1(�+ y); ' > :Now, from Theorem 2.4, we know that (2.74) implies thatu = uper(�+ y):Hen
e u� �! uper(�+ y)in L2lo
(R3). On the other hand, from the bounds we have on ru� (seeformula (2.53)), we dedu
e that the above 
onvergen
e is point-wise, rea
hinga 
ontradi
tion with (2.72).Now, 
on
erning (2.70), the only 
hange is the fa
t that we do not needto show that y� is bounded, all the other steps of the proof 
arrying through.�
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e of the energyWe are now going to answer the only question of the problem of thermo-dynami
 limit that we have left aside so far, namely the 
onvergen
e of theenergy per unit volume.Theorem 2.6 For any Van Hove sequen
e, we have :I�j�j �! Iper + M2as �!1.Proof : Here again, our proof is an adaptation of [5℄'s, using the 
ompa
tnessresult (2.10), and the de
ay we have obtained on ru in (2.53), that is :jru�j � C1 + r3=2 :The strategy of proof is to study one by one the terms of the energy, and tosplit the integrals over R3 into integrals over �(�0), �(�) n �(�0) and �(�)
,for some �0 �� �, the �rst being dealt with using the 
onvergen
e result ofTheorem 2.5, the se
ond using the bounds we have on uper and u�, and thethird one using the 
ompa
tness result (2.10). We refer the reader to [5℄ formore details. �3 Solid �lmsThis se
tion is devoted to the thermodynami
 limit problem in two dimen-sion, that is to say, the problem of the thermodynami
 limit 
on
erning solid�lms. Throughout this se
tion, � = �2 � f0g � Z2 � f0g will denote aVan Hove sequen
e in the �rst two dimensions, i.e su
h that �2 is a VanHove sequen
e of Z2. �0 will denote the periodi
 
ell of the problem, thatis, ℄ � 12 ; 12 ℄2 � R, and �(�) = Sk2� �0 + k. For su
h a �, we de�ne as inthe pre
eding se
tion the energy E�(�) and the minimizing problem I� byformulas (2.1) and (2.2).The unique minimizer �� = u2� satis�es here again :��u� + 53u7=3� � ��u� = 0; (3.1)where �� = (m� � u2�) ? 1jxj � �� satis�es :���� = 4�(m� � u2�): (3.2)Following exa
tly the steps of Se
tion 2, we start with some a prioriestimates.



3 SOLID FILMS 433.1 A priori estimates3.1.1 Energy bounds and L1 boundsWe have exa
tly the same results as in Se
tion 2, namely Theorems 2.1 and2.2. Here again, as in Se
tion 2, we noti
e that the proof of theorem 2.2is only based on equations (3.1)-(3.2), and on the fa
t that the measurem� is non-negative, bounded and has 
ompa
t support with respe
t to x3.Hen
e it will hold for any su
h solutions, and in parti
ular if we repla
e m�by m1 = Pk2Zm(� � ke3), or by any �0-periodi
 measure having 
ompa
tsupport with respe
t to x3.3.1.2 Asymptoti
 estimatesAs in Se
tion 2, we now derive bounds at in�nity, that is estimates of thede
ay of u� as jx3j �! 1, whi
h are uniform with respe
t to �. As inSe
tion 2, we use Lemma 2.1 to prove the following estimates :Theorem 3.1 For any solution (u�; ��) of the system (3.1)-(3.2) satisfyingu� � 0, we have : �� � C1 + jx3j2 ; 8 jx3j � 1;0 � u� � C1 + jx3j3=2 ;where C denotes various positive 
onstants independent of the measure m�.Furthermore, in the smeared nu
lei 
ase, i.e when m in (3.2) is supposedto be smooth, the �rst inequality holds everywhere.Proof : The proof is only a 
opy of that of Theorem 2.3. We only point outthe ne
essary 
hanges in that proof : the fun
tion gR is un
hanged, and so is~�. In all the inequalities and de�nition of sets, r be
omes jx3j. Hen
e CR+1is now the set fjx3j > R + 1g, and U is the fun
tion :U = a(jx3j2 � R2)2 + bR04(R02 � jx3j2)4 :Computations follow exa
tly the same pattern, and we �nd in U the desiredsupersolution, the only 
hange being the 
onstants a(2R+1)2 and b. The wholeproof 
arries through, and we �nally get the desired 
on
lusion. �3.1.3 Compa
tnessWe now study the 
ompa
tness of the sequen
e ��, namely we are going toshow that :



3 SOLID FILMS 44Proposition 3.1 For any sequen
e � � Z2 � 0, being a Van Hove sequen
ein the �rst two dimensions, we have :1j�j Z�(�) �� �! 1 as �!1: (3.3)Proof : Here again, we provide only a smeared nu
lei 
ase proof, referringto [5℄ for the generalization to the point nu
lei 
ase. We start exa
tly as inProposition 2.1, writing that for all h 2 H1(R2), we have :j ZR3(m� � ��)hj � 1(2�)3D(m� � ��; m� � ��)1=2krhkL2(R3): (3.4)We then 
hoose h = h� : we set h�(x) = f�(x3)g�(x1; x2), with :� f�(t) = 1 � jtjR if jtj < R, 0 otherwise, where R = R(�) will be 
hosenlater on.� g� 2 D(R2), 0 � g� � 1, g� = 1 on the set fx 2 R2=d(x;�2) < 1p2g, 0on the set fx 2 R2=d(x;�2) > 1g, and satisfying jrg�j � 4.(We re
all that � = �2�f0g, that �12 = ft 2 R2; d(t;[k2�2(k+℄� 12 ; 12 ℄2)) <1g, and that the Van-Hove hypotheses imply j�12j � j�j.)We have, for su
h an h� :ZR3 jrh�j2 = ZR3 f 0�(x3)2g�(x0)2dx0dx3 + ZR3 f�(x3)2jrg�j2(x0)dx0dx3� Cj�j Z R0 dtR2 + Cj�12j Z R0 (1� tR)2dt� C j�jR + CRj�12j:We now 
hoose R = � j�jj�12j�1=2, so that we have j�jR � j�j, and Rj�12j � j�j.Hen
e, we have : krh�kL2(R3) = o(j�j): (3.5)Thus, sin
e we already know from Theorem 2.1 (vii) that D(m� � ��; m� ���) � Cj�j, (3.5) implies :1j�j ZR3(m� � ��)h� �! 0 (3.6)



3 SOLID FILMS 45as �!1.On the other hand, sin
e h� � 1, we have RR3 m�h� � j�j. We also have :ZR3 m�h� � j�j � ZR3 m� jx3jR ;and 0 � RR3 m� jx3jR � j�jR , hen
e we infer that :1j�j ZR3 m�h� �! 1: (3.7)Next, we 
ompute :ZR3 ��h� = Z�(�) �� � Z�(�)\fjx3j<Rg�� jx3jR + Z�(�)
 ��h�� Z�(�)\fjx3j>Rg��: (3.8)Con
erning the se
ond term of the right-hand side, we write :����Z�(�)\fjx3j<Rg �� jx3jR ���� � C j�jR Z R0 tdt1 + t3 � C j�jR � j�j:We then deal with the third term as follows :����Z�(�)
 ��h����� � C j�12jR Z R0 tdt1 + t3 � C j�12jR � j�j:Turning to the fourth one, we have :Z�(�)\fjx3 j>Rg�� � Cj�j Z 1R tdt1 + t3 � C j�jR � j�j:Hen
e (3.8) implies : 1j�j ZR3 ��h� = 1j�j Z�(�) �� + o(1): (3.9)Thus, 
olle
ting (3.6), (3.7) and (3.9), we 
on
lude that (3.3) holds. �3.2 Identi�
ation of the limitFollowing the steps of Se
tion 2, and we are now able to pass lo
ally to thelimit in the system (3.1)-(3.2), getting solutions u1 and �1 of the system :



3 SOLID FILMS 46� ��u1 + 53u7=31 � u1�1 = 0;���1 = 4�(m1 � u21): (3.10)m1 being the measurePk2Z2 m(��k), and in parti
ular a periodi
 measure.We suspe
t a uniqueness result similar to that of Se
tion 2 to be true in this
ase, but we did not manage to prove it. However, we are going to prove a
onvergen
e result for the sequen
e ��.We �rst need some preliminary results on the periodi
 potential G.3.2.1 The potential GIn this se
tion, we denote by G the fun
tionG(x) = �2�jx3j+ Xk2Z2� 1jx� kj � ZK dyjx� y � kj�:Where K denotes the unit square of R2, that is, K =℄� 12 ; 12 [2.First of all, we 
he
k out that this sum 
learly de�nes G :Proposition 3.2 The sum de�ning G is 
onvergent over the set R3 n (Z2�f0g), and normally 
onvergent on any 
ompa
t subset of this set.Proof : Here again, we develop the integrand as jxj �! 1 :f(x) = 1jxj � ZK dyjx� yj= 1jxj � ZK dypjxj2 � 2xy + jyj2= 1jxj � 1jxj ZK dyq1� 2 xyjxj2 + jyj2jxj2= 1jxj � 1jxj ZK�1 + xyjxj2 +O( 1jxj2 )�dy= 1jxj � 1jxj +O( 1jxj3 ):And this 
on
ludes our proof, sin
e Pk2Z2 11+jkj3 does 
onverge. �We now prove the analogue of Lemma 2.2 :Lemma 3.1 We have :(i) G(x) = 1jxj + C + o(1) as jxj �! 0.



3 SOLID FILMS 47(ii) G(x) = �2�jx3j + O( 1jx3j� ) as jx3j �! 1, for any � < 1, uniformlywith respe
t to x0 = (x1; x2).Proof : We rewrite G as :G(x) = �2�jx3j+ 1jxj � ZK dyjx� yj + Xk2(Z2)�� 1jx� kj � ZK dyjx� y � kj�:(3.11)From the 
omputation of the pre
eding proposition's proof, we know thatthe remaining sum 
onverges normally on a neighborhood of 0. Hen
e itis 
ontinuous on that neighborhood. On the other hand, x 7! RK dyjx�yj is
ontinuous on R3, and this 
on
ludes the proof of (i).We now turn to (ii). We intend to show that :Xk2(Z2)����� 1jx� kj � ZK dyjx� k � yj���� � Cjx3j� : (3.12)Considering the fun
tion f de�ned above, we know that jf(x)j � Cjxj3 . Sowe may write :Xk2(Z2)� jf(x� k)j � Xk2(Z2)� Cjx� kj3 � Xk2(Z2)� Cjkj3 + jx3j3 :We now use Young's inequality, �nding that for all � < 1, we have :jkj3 + jtj3 � Cjkj3��jtj�:So we infer that : Xk2(Z2)� jf(x� k)j � Cjx3j� Xk2(Z2)� Cjkj3�� :Sin
e � < 1 implies 3� � > 2, we 
on
lude that (3.12) holds. �Let us now establish a positiveness property on the operator DG (Were
all that it is de�ned by DG(f; g) = R�0 R�0 f(x)g(y)G(x � y)dxdy =R�0(G?�0f)g). We assume here that the support ofm is 
ontained in fr < 1g.(This implies no loss of generality).Proposition 3.3 The bilinear form DG is positive on the set Yper = ff 2L1per(�0)=pjf j 2 H1per(�0\fjx3j > 1g); R�0 f = 0; and (1+jxj)f 2 L1(�0)g.Where the spa
e H1per(�0 \ fjx3j > 1g) is de�ned by the set of all fun
tionsbelonging to H1lo
(fjx3j > 1g) \ H1(�0 \ fjx3j > 1g) that are periodi
 ofperiodi
 
ell �0.



3 SOLID FILMS 48Proof : We introdu
e, as in Se
tion 2, the Fourier transform on �0, de�nedby : bf(n; �) = Z�0 f(x)e�i2�(x3�+nx0)dx; (3.13)where � 2 R, n 2 Z2 and x = (x0; x3). By a straightforward 
omputation,one �nds that for this Fourier transform, Par
eval's and Plan
herel's formulashold, so that we may prolong it to S 0per(�0). We also have :8f 2 S 0per(�0); d�3f(n; �) = i2�� bf(n; �): (3.14)And 8f 2 S 0per(�0); 8g 2 Sper(�0);\f ?�0 g = bfbg:So, sin
e ��G = 4�Æ0 on �0, we dedu
e :4�2(�2 + jnj2) bG(n; �) = 4�:Thus, when n 6= 0, we have bG(n; �) = 1�(jnj2+�2) . Con
erning the 
ase n = 0,we noti
e that bG(0; �) is exa
tly equal to the 
lassi
al Fourier transform of�2�jx3j over R. Indeed, putting G0(x) = G(x) + 2�jx3j, we noti
e thatRK G0(x)dx0 is a harmoni
 fun
tion, whi
h goes to zero as jx3j �! 1, fromLemma 3.1. So it is ne
essarily 0.Furthermore, the Fourier transform of �2�jx3j is shown to be 4�vp( 1�2 )+aÆ0 in [14℄, where vp( 1�2 ) is de�ned by :< vp( 1�2 ); ' > = lim"!0+�Zj�j>" '(�)�2 d� � 1"�'(") + '(�")�+(log ")�'0(")� '0(�")��: (3.15)In fa
t, vp( 1x2 ) = �(log jxj)00 in D0(R). Now let f 2 Yper. We have :DG(f; f) = Z�0(G ?�0 f)f= Xk2Z2 ZR\G ?�0 f(k; �) bf(k; �)d�= Xk2(Z2)� ZR ( bf(k; �))24�2(jkj2 + �2)d� + 4� < vp( 1�2 ); ( bf(0; �))2 > :So the only thing to show is that < vp( 1�2 ); ( bf(0; �))2 >� 0. We noti
e thatthe belonging of f to Yper implies that j bf(0; �)j � Cj�j as � ! 0, so that( bf(0;�))2�2 2 L1(R), and (3.15) implies that



3 SOLID FILMS 49< vp( 1�2 ); ( bf(0; �))2 >= ZR ( bf(0; �))2�2 d� � 0:This 
on
ludes the proof. �3.2.2 Periodi
ity of the limitWe will say from now on that a fun
tion u is symmetri
 with respe
t to x1if it satis�es the equality :u(x1; x2; x3) = u(�x1; x2; x3): (3.16)And the sequen
e � will be said to be symmetri
 if 1�(�) is.For all fun
tion f , we denote by �1f the fun
tion :�1f(x) = f(x + e1): (3.17)Proposition 3.4 Assume that � is symmetri
 with respe
t to x1, in additionto the hypotheses we have required so far. In the smeared nu
lei 
ase, m isalso required to be symmetri
. Let (u; �) be the limit of (u�; ��). Thenu 2 L1(R3), � 2 L1unif (R3), and we have :j�1�� �j � C1 + jx3j : (3.18)Proof : The belonging of (u; �) to L1(R3)�L1unif (R3) 
omes dire
tly fromthe bounds of Theorem 2.2. Moreover, we have :��(�1�� �) = 4�(u2 � �1u2):Hen
e (�1���) 2 W 2;punif(R3) for all p > 1, and in parti
ular it lies in L1(R3),so the bound (3.18) need only to be shown on the set fjx3j > 2g. Hereafter,we assume that jx3j > 2.Now we are going to show this estimate for (u�; ��), uniformly withrespe
t to �, and hen
e dedu
e it for (u; �).From the uniqueness of u�, we know that v� = m� � u2� is symmetri
with respe
t to x1. Hen
e we have :ZBR v�(y) y1jyjkdy = 0; (3.19)for all k < 4 and R > 0.We split the expression of  � = �1�� � �� into two terms :
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 �(x) = Zjx�yj<R v�(y)� 1jx� y + e1j � 1jx� yj � y1jyj3�dy+ Zjx�yj>R v�(y)� 1jx� y + e1j � 1jx� yj � y1jyj3�dy;where R = jx3j2 . We 
all a(x) the �rst term, b(x) the se
ond one. We noti
ethat Zjx�yj<2 jv�(y)j���� 1jx� y + e1j � 1jx� yj � y1jyj3 ����dy � Cjx3j3 ;be
ause 1jx�y+e1j� 1jx�yj+ y1jyj3 lies in L1(B2+x) and is bounded independentlyof x in this spa
e. So we may as well restri
t ourselves to integrals overjx � yj > 2, whi
h is equivalent to repla
ing jx � yj by 1 + jx � yj in theintegrals. The same remark holds 
on
erning terms of the form 1jyj , whi
hwill be repla
ed by 11+jyj .On the other hand, we may bound j 1jx+e1j � 1jxj j by Cjx1jjxj3 on fjxj > 2g,for a universal 
onstant C. Hen
e we have, x0 and y0 denoting the variables(x1; x2) and (y1; y2) respe
tively :ja(x)j � Zjx�yj<R C1 + jy3j3 ���� 1jx� y + e1j � 1jx� yj � y1jyj3 ����dy� Zjx�yj<R C1 + jy3j3 jx1 � y1j1 + jx� yj3dy+ Zjx�yj<R C1 + jy3j3 jy1j1 + jyj3dy� C(jx3j �R)3R Zjy0j<R dy01 + jy0j2+ CR(jx3j �R)3 Zjx0�y0j<R dy01 + jy0j2� CR logR(jx3j �R)3 + CR3(jx3j � R)3 1(jxj � R)2� Cjx3j : (3.20)Con
erning b(x), we split it again into two terms, writing :b(x) = Zjx�yj>R;jyj<R0 v�(y)� 1jx� y + e1j � 1jx� yj � y1jyj3�dy+ Zjx�yj>R;jyj>R0 v�(y)� 1jx� y + e1j � 1jx� yj � y1jyj3�dy;



3 SOLID FILMS 51where R0 = jxj�, for some � < 1.We 
all respe
tively 
(x) and d(x) those two terms. In order to bound
(x), we write, for jyj < R0 � jxj :1jx� y + e1j � 1jx� yj = �x1jxj3 + 32�1� 2x1jxj4 �+ 2y1 � 1jxj2 +O(R03jxj3 ): (3.21)This implies : ���� 1jx� y + e1j � 1jx� yj���� � CR0jxj2 + CR03jxj3 :On the other hand, we noti
e that (3.19) allows us to 
onvert the term
ontaining y1jyj3 into � Zjx�yj<R;jyj<R0 v�(y) y1jyj3dy;and we have already bounded su
h a term when dealing with a(x). So wehave : j
(x)j � Zjyj<R0 11 + jy3j3 CR0jxj2 dy + Zjyj<R0 11 + jy3j3 CR03jxj3 dy� CR0jxj2 Zjy0j<R0 dy0 + CR03jxj3 Zjy0j<R0 dy0� C(R03jxj2 + R05jxj3 )� Cjxj2�3� + Cjxj3�5� : (3.22)We now turn to d(x). Knowing that we have���� 1jx� y + e1j � 1jx� yj + x1 � y1jx� yj3 ���� � C2 + jx� yj3on the set fjx� yj > R; jyj > R0g, we infer that :jd(x)j � Zjx�yj>R;jyj>R0 C(1 + jy3j3)(2 + jx� yj3)dy+ Zjx�yj>R;jyj>R0 C1 + jy3j3 jx1jjx� yj3dy+ Zjx�yj>R;jyj>R0 C1 + jy3j3 ���� y1jx� yj3 � y1jyj3 ����dy: (3.23)
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ond term, whi
h we denote by d1(x),will be su�
ient to bound the �rst one. In order to bound d1(x), we use theinequality jx� yj � ��jxj � jyj��, and write :jd1(x)j � jx1j Zjx�yj>R;jyj>R0 Cdy(1 + jy3j3)(1 + ��jxj � jyj��3)� jxjjxj3 Zj xjxj�zj> Rjxj ;jzj>R0jxj Cdz(1 + jz3j3)(1 + ��1� jzj��3)� Cjxj2 ; (3.24)where we have set y = jxjz.We now bound the third term of (3.23), whi
h we 
all d2(x). In order todo so, we write :���� y1jx� yj3 � y1jyj3 ���� � jy1j���� jx� yj4 � jyj4jx� yj3jyj3(jx� yj+ jyj)����� ��jx� yj2 � jyj2��(jx� yj2 + jyj2)jyj2jx� yj3(jx� yj+ jyj)� C j2xy � jxj2j(jx� yj+ jyj)jyj2jx� yj3� C jxj(jyj+ jx� yj)2jyj2jx� yj3� Cjxj� 1jx� yj3 + 1jyj2jx� yj�:Hen
e we see that d2(x) may be bounded by the sum of two terms, the �rstone being equivalent to d1(x), and the se
ond one, whi
h we 
all d3(x), beingdealt with as follows :jd3(x)j � Zjx�yj>R;jyj>R0 C1 + jy3j3 jxj1 + jyj2jx� yjdy� jxjjxj3 Zj xjxj�zj> Rjxj ;jzj>R0jxj C1 + jz3j3 dz1 + jzj2��1� jzj��� Cjxj2 : (3.25)Hen
e, 
olle
ting (3.23), (3.24) and (3.25), we �nd thatjd(x)j � Cjxj2 : (3.26)



3 SOLID FILMS 53Thus, gathering (3.26) and (3.22), we �nd thatjb(x)j � Cjxj2�3� + Cjxj3�5� + Cjxj2 :Choosing now an � su
h that � � 13 and � � 25 , we �nd thatjb(x)j � Cjxj : (3.27)There only remains to 
olle
t (3.20) and (3.27) to 
on
lude that (3.18)holds for ��. Now, sin
e this bound is uniform with respe
t to �, � inheritsit. �We now need a lower bound on u, whi
h is the aim of the followingproposition :Proposition 3.5 Let (u; �) be a solution of (3.10), su
h that u 2 L1(R3),u � 0, and � 2 L1unif(R3). Then for any R > 0, there exists a 
onstant � > 0su
h that inf jx3j<R u � �.Proof : We follow exa
tly the steps of Proposition 2.4, and arguing by
ontradi
tion, build  2 L1unif (R3) solution to :�� = 4��(�+ x0): (3.28)This is exa
tly where the proof di�ers : we are going to use here again as
aling argument, but the s
aling fun
tion needs to be 
hosen di�erently.Let �0 2 C1(R), su
h that �0 = 1 on [�1; 1℄, �0 = 0 on [�2; 2℄
, j�000 j � 4,and 0 � �0 � 1. Let �R : R �! R be de�ned by follows :- �R = 1 on [-1,1℄.- �R(t) = 1 + 1�jtjR�1 if 1 < jtj < R.- �R = 0 on [�R;R℄
.We denote by �R the fun
tion �R(x) = �R(x3)�0( rR). And we 
ompute :< �� ; �R > = 4� < m1; �R >= 4�Xk2Z2 < m(�+ k); �0( rR) >� 4� Xk2Z2;jkj�2R < m(�+ k); �0( rR) >� CR2: (3.29)



3 SOLID FILMS 54On the other hand, we have, denoting by 
R the set fr < 2R; jx3j < Rg andby !R the set fr < R; jx3j < 1g :< �� ; �R > = Z
Rn!R r r�R= Z
Rn!R  (���R) + Zjx3j=R;r<2R  ��R�n + Zjx3j=1;r<R  ��R�n :Sin
e ���R = ��R(x3)��0( rR) = �R(x3)( 1rR�00( rR) � 1R2 �000 ( rR)), the �rstterm may be dealt with as follows :����Z
Rn!R  (���R)���� � 1R2 Z
R j j+ Z
Rn!R j (x)jrR dx� CR3R2 + CR�Z
Rn!R j j2�1=2�Z 2RR Rdrr �1=2� CR + CR3=2R (R log 2)1=2 � R2: (3.30)Con
erning the remaining terms, we have :����Zjx3j=R;r<2R  ��R�x3 ���� � Zjx3j=R;r<2R j jCR � CR2R � R2: (3.31)And : ����Zjx3j=1;r<R  ��R�x3 ���� � Zjx3j=1;r<R j jCR � CR2R � R2: (3.32)Hen
e, 
olle
ting (3.29), (3.30), (3.31) and (3.32), we infer that (3.28) isin 
ontradi
tion with the belonging of  to L1unif . �We now state a uniqueness lemma that will allow us to 
on
lude that uand � are periodi
.Lemma 3.2 Let (u; �) and (v;  ) be solutions to the system (3.10), satisfyingthe following :(i) u; v 2 L1(R3), and �;  2 L1unif(R3).(ii) There exists a fun
tion U 2 L2(R) su
h that j�� j+ ju� vj � U(x3).Then u = v and � =  .



3 SOLID FILMS 55Proof : The �rsts steps of the proof are exa
tly those of Lemma 2.3. Wethereby skip it, and start with equation (2.49), that is :ZR3 �w2�2 � ZR3 w2jr�j2 + 12 ZR3(��  )2jr�j2; (3.33)where � is a positive fun
tion depending only on x3, w = u� v, and � is anysmooth fun
tion with 
ompa
t support.We apply inequality (3.33) to a sequen
e �n 
onverging to � de�ned byfollows :� �(x) = 1� r�R� on the set fr < Rg.� �(x) = 0 elsewhere.where R > 0 and � > 0. Hen
e (3.33) is valid for this 
hoi
e of �. For su
ha �, we 
ompute that jr�j2 = �2 r2��2R2� :So we have : ZR3 �w2�2 � 32 ZR3 �2 r2��2R2� U(x3)2� 32kUkL2(R) Z R0 �2 r2��1R2� 2�dr� 32kUkL2(R)��: (3.34)We let now R go to in�nity, dedu
ing, from the monotone 
onvergen
e the-orem, that we have : ZR3 �w2 � 32��kUkL2(R):Sin
e this holds for any � > 0, we let now � go to zero, and �nd that :ZR3 �w2 = 0:This implies that w = 0, sin
e � is positive, hen
e that � =  . �3.2.3 Convergen
e and identi�
ation of the limitWe re
all the periodi
 variational problem Iper :Iper = inffEper(�); p� 2 Xper; Z�0 � = 1g; (3.35)



3 SOLID FILMS 56where Eper and Xper are de�ned as follows :Xper = fv 2 H1per(�0); (1 + jxj) 12 v 2 L2(�0)g:Eper(�) = R�0 jrp�j2 + Z�0 �5=3 � Z�0(G ?�0 m1)�+ 12 Z�0 Z�0 �(x)�(y)G(x� y)dxdy:We are now able to state the following theorem :Theorem 3.2 Let � = �2 � f0g be a Van Hove sequen
e in the �rst twodire
tions, that is, �2 is supposed to be a Van Hove sequen
e of Z2. Assumein addition that � is symmetri
 both with respe
t to x1 and with respe
t to x2(in the smeared nu
lei 
ase, we also assume that the measure m is symmetri
with respe
t to x1 and x2). Denote by �� = u2� the solution of I�. Then u�
onverges to uper in H1(�0), �per = u2per being the minimizer of the periodi
problem Iper. Moreover, we have the following estimates :(i) uper(x) � C1+jx3j3=2 for some 
onstant C > 0.(ii) There exists a positive fun
tion � depending only on x3 su
h that wehave : � � uper.Proof : We know that (u�; ��) is bounded in H1(�0) � Lpunif (R3), for allp < 3. Hen
e we may pass lo
ally to the limit in the system (3.1)-(3.2).Denoting by (u; �) 2 H1(�0)� Lpunif (R3) the 
orresponding limit, we �nd asolution to the system (3.10), that is :� ��u + 53u7=3 � u� = 0;��� = 4�(m1 � u2):From the a priori bounds shown in Theorem 3.1, whi
h shows in parti
-ular that u � C1+jx3j3=2 , and from Proposition 3.4, we know that, applyingLemma 3.2, we �nd : �1� = �:On the other hand, all the symmetries being also satis�ed with respe
t tox2, we dedu
e, denoting by �2� the fun
tion �(�+ e2),�2� = �:This implies that �, hen
e u, are periodi
 with periodi
 
ell �0.



3 SOLID FILMS 57From the estimate of Theorem 3.1, we also dedu
e that u 2 Xper. We arenow going to prove that Z�0 u2 = 1: (3.36)In order to do so, we introdu
e the fun
tions : (x3) = Z[� 12 ; 12 ℄2 �(x)dx1dx2:and f(x3) = Z[� 12 ; 12 ℄2 4�(m1(x)� u(x)2)dx3:Those fun
tions satisfy the di�erential equation� 00 = f;sin
e R[� 12 ; 12 ℄2��2��x21 + �2��x22 �dx1dx2 = 0 from the periodi
ity of �.Furthermore, � 2 L1(fjx3j > 1g), hen
e  2 L1([�1; 1℄
), so from theestimates on u, we dedu
e that  00 2 L1([�1; 1℄
):On the other hand,  0(t)�  0(1) = R t1 f , for all t > 1. Hen
e we infer that 0 2 L1([1;1)):Those two properties, together with the equalityZ t1   00 =  (t) 0(t)�  (1) 0(1)� Z t1  02;show that  0 2 L2([1;1)):Repeating the same argument for t < �1, repla
ing 1 by �1, we 
on
ludethat  0 2 L2([�1; 1℄
):But  0 has a limit at in�nity, namely  0(1) + R11 f , so this limit must be 0.The same results holds 
on
erning its limit at �1, so that we have :ZR  00 = lim1  0 � lim�1  0 = 0:This implies R�0 ��� = 0, hen
e (3.36).



3 SOLID FILMS 58The next step is to show that� = G ?�0 (m1 � u2) + d; (3.37)for some d 2 R. Noti
ing that ��G?�0 (m1�u2) is harmoni
 over R3, andperiodi
 with periodi
 
ell �0, we 
on
lude that it is su�
ient to show thatG ?�0 (m1 � u2) 2 L1unif(�0). And from Lemma 2.2, we know that�G(x)� 1jxj + 2�jx3j� 2 L1(�0):So we only need to prove that1jxj ?�0 (m1 � u2) 2 L1unif (�0) (3.38)and jx3j ?�0 (m1 � u2) 2 L1unif(�0): (3.39)(3.38) has been shown in the 
ourse of Lemma 2.5, so we only provide a proofof (3.39) :Sin
e we already know that the 
onvolution produ
t arising in (3.39) liesin L1lo
(�0), we only need to bound it as jx3j ! 1. (3.36) implies that wehave :Z�0(m1 � u2)(y)jx3 � y3jdy = Z�0(m1 � u2)(y)(jx3 � y3j � jx3j)dy:Letting R =pjx3j, we have, for jy3j < R, and jx3j ! 1,jx3 � y3j � jx3j = �y3 +O( R2jx3j) = �y3 +O(1):Hen
e we may write :��jx3j ?�0 (m1 � u2)�� � Z�0\fjy3j>Rg jm1 � u2j(y)��jx3 � y3j � jx3j��dy+ Z�0\fjy3j<Rg jm1 � u2j(y)(jy3j+ C)dy� Z�0\fjy3j>Rg jm1 � u2j(y)jy3 � x3 + x3jdy+ Z�0\fjy3j<RgCjm1 � u2j(y)(1 + jy3j)dy:Those two terms are bounded be
ause u 2 Xper, so this 
on
ludes the proofof (3.39), hen
e of (3.37).



3 SOLID FILMS 59Now, this implies that u2 is a solution of the Euler-Lagrange equation ofthe problem Iper, namely :��p� + 53�7=6 � �G ?�0 (m1 � �) + �per�p� = 0:(�per is the Lagrange multiplier asso
iated with the 
onstraint in Iper.)On the other hand, the problem Iper is 
onvex be
ause DG is, sin
e itis bilinear and positive, on the set of the test-fun
tions of Iper. So u is thesolution of Iper, whi
h is unique. Thus, the 
onvergen
e does not only o

urfor a subsequen
e of u�, but for the whole sequen
e. �3.2.4 Convergen
e of the energyThis paragraph is the exa
t analog of the 
orresponding one in Se
tion 2.We start with the de�nition of interior domains, whi
h is exa
tly the sameas in Se
tion 2.De�nition 3.1 Let � � Z2 � f0g be a Van Hove sequen
e in the �rst twodire
tions. �0 will be said to be a sequen
e of interior domains, denoted by�0 �� �, if it satis�es the following properties :(i) �0 � �.(ii) For any �nite subset A of Z2, there exists an h0 2 N su
h that 8h �h0; A � �0h.(iii) j�0jj�j �! 1 as �!1.(iv) d(�0; ��(�)) �!1 as �!1.For now on, we assume that the sequen
e � satis�es the hypotheses ofTheorem 3.2, that is, in addition to the Van Hove hypotheses, � is supposedto be symmetri
 with respe
t to x1 and x2, and so is m.Next, we state the following theorem :Theorem 3.3 For any sequen
e �0 �� � and any R > 0, we have :ku� � uperkL1(�(�0)) �! 0; (3.40)k�� � �perkL1(�(�0)\fjx3j<Rg) �! 0; (3.41)as � �!1: (We re
all that �per = G ?�0 (m� u2per)� �per )



4 THE YUKAWA CASE 60Proof : The proof starts exa
tly as that of Theorem 2.5, ex
ept that The-orem 2.4 is not available here. Hen
e, we slightly modify the proof in thefollowing way : u� will not be u�(�+ x�), but :u� = u�(�+ (x�)3e3):Hen
e, the same 
onvergen
e argument hold, ex
ept that we noti
e thatm� =m�(�+(x�)3e3) de�nes a Van Hove sequen
e, sin
e x� 2 �(�0), and that it issymmetri
 with respe
t to both x1 and x2. Hen
e the proof 
arries through,repla
ing the use of Theorem 2.4 by that of Theorem 3.2, or (equivalently)by the fa
t that Iper has a unique solution. �We end up by stating the energy 
onvergen
e Theorem for solid �lms :Theorem 3.4 For any Van Hove sequen
e, symmetri
 with respe
t to x1and x2, we have : I�j�j �! Iper + M2as �!1.Proof : Here again, the proof is not di�erent from that of Theorem 2.6, theonly thing to 
he
k being that we have :jru�j � C1 + jx3j3=2 :And this easy to prove from ellipti
 regularity, together with the bounds wehave on u� and ��. �4 The Yukawa 
aseWe give here without proof some results that 
an be obtained on the Yukawa
ase.Repla
ing the Coulombian intera
tion potential 1jxj by the Yukawa poten-tial de�ned in (1.11), we get :8<: ��u� + 53u7=3� � u��� = 0;���� + a2�� = 4�(m� � u2�);u� � 0: (4.1)The limit system (1.9) being modi�ed in an analogous way. Next, we noti
ethat in this system, we have added a 
oer
ive term in the se
ond equation.This fundamental di�eren
e allows us to show stronger uniqueness results,as the following one :



4 THE YUKAWA CASE 61Theorem 4.1 Let � be a nonnegative measure, having its support in the setfjx3j < 1g, and satisfying the following :(H1) supx2R2�f0g �(B1 + x) < +1.(H2) limR!1 infx2R2�f0g �(BR+x)R = +1.Then the system 8<: ��u+ 53u7=3 � �u = 0;���+ a2� = 4�(�� u2);u � 0: (4.2)has a unique solution (u; �) in the setf(u; �) 2 L7=3lo
 \ L2unif (R3)� L1unif (R3); 8h > 0; inffjx3j<hgu > 0g:Furthermore, this solution belongs to W 2;punif (R3) � Lpunif (R3) for all p < 3,and there exists a 
onstant C su
h that u � C1+jx3j3=2 .A similar theorem is also valid in the one-dimensional 
ase. This impliesthat we have 
onvergen
e results in both 
ases (namely solid �lms and poly-mers), at least for the density, provided the �nite problem I� with Yukawapotential has a unique solution ��. This is the 
ase for instan
e (see [5℄) if ais small enough.On the other hand, the use of the Yukawa potential destroys the 
om-pa
tness of the sequen
e �� (in the sense of (2.10) and (3.3)). In fa
t, thispotential is too weak at in�nity to prevent some of the ele
trons from es
ap-ing at in�nity. Thus, the periodi
 variational problems Iper, in addition tothe potential 
hange, will bear a di�erent mass 
onstraint.Alternatively, in the spirit of the results displayed in [5℄, Chapter 4, wehave :Theorem 4.2 (Here �0 denotes ℄� 12 ; 12 ℄2 �R, and r the 
ylindri
al radiuspx21 + x22.) Let p > 1, � a �0-periodi
 potential lying in Lqlo
(R3) for someq > 3p2p�2 , su
h that �+ � Cjx3j2 as jx3j ! 1. Assume that there exists R > 0su
h that the �rst eigenvalue of the operator ��� � with periodi
 boundary
onditions with respe
t to (x1; x2) and homogeneous Diri
hlet 
onditions withrespe
t to x3 on �0 \ fjx3j < Rg is negative. Then the equation��u+ up � �u = 0 (4.3)has a unique nonnegative non trivial solution in the setfu 2 H1lo
(R3) = 8x 2 R3; u 2 H1(�0 + x)g:
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