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Abstract

We define a Thomas-Fermi-von Weizsécker model for polymers and
solid films through a thermodynamic limit process. Our argument
makes use of standard techniques for elliptic PDEs, such as maximum
principles or supersolution methods. In the course of our work, we
establish some existence and uniqueness results for a system of non-
linear PDE.
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1 Introduction

In [5], I. Catto, P.L. Lions and one of us have studied the problem of ther-
modynamic limit for a three-dimensional crystal in the Thomas-Fermi-von
Weizsdcker (TFW in short) setting. Given a finite set of nuclei represented
by a set of points A C R?, each one of charge +1, the TFW model associates
to this set an electronic density, denoted by p,, which minimizes the so-called
TEFW energy, that is :

) = [ v [ o3 [

keA

1
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In other words, the density p) is a solution to the following minimization
problem :

IA—mf{EA Z ,p_O Vp € H'(R?), /3p=|A|},

Ic;é eA
(1.2)

where |A| denotes the cardinal of the set A. The case of smeared nuclei can
be also considered ; that is when the measure defining the nuclei in (1.1) is
replaced by a smooth measure m, having compact support and total mass
one. In this latter case, (1.1) and (1.2) become :

) = [ ik [ o= [ s

where my =, ., m(- — k), and % is the convolution product over R?,
- 1 ma(x)ma(y)
IV = infS EYV'(p) + —/ —dxdy,
. { R ) 2 Jrs Jrs |z —yl

pzo vpem®). [ o=} (13)

It is well-known that the problem (1.2) (respectively (1.3)) has a unique
minimizer (see for instance [2]|, [10] or [12]), basically because the energy
functional E, is convex with respect to p.
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The thermodynamic limit problem is the following : letting A be a subset
of a periodic lattice, determine the behaviour of Iy and p, as A progressively
fills in the entire lattice.

In order to tackle this problem mathematically, we introduce the notion
of Van Hove sequences :

Let A = (Ap)nen be a sequence of subsets of Z", having cardinal |A]. A
is a Van Hove sequence of Z" if it satisfies the following :

(An) For any finite subset A of Z™, there exists hy € N such that for all
h > hy, ACAy.

(Bn) Denoting by T the unit cube centered at the origin, by T'(A) the set
Ukea (D + k), by A® the set {x € R™ / d(x,0L'(\)) < a}, where d is the
Euclidean distance in R™, and by |A}| the Lebesgue measure (in R")
of the set Ay, we have, for all a > 0, the Van Hove condition, that is :

ARl
Ji 5 =0 =

The thermodynamic limit problem studied in |5| consists then in answer-
ing the following questions, for any Van Hove sequence A of Z3 :

(L1) Does the energy per cell % converge as |A| goes to infinity ¢

(L2) Does the density pn converge to a limit py as |A| goes to infinity ?
(L3) Does the limit ps, have the same periodicity as that of the lattice ?

In this article, we study questions (L1), (L2), (L3) in two cases that do
not satisfy conditions (A3) and (B3) :

(a) The first case is the thermodynamic limit of a lineic molecule, that is
A ={(0,0)} x A3 will be a subset of {(0,0)} X Z, such that A3 is a Van

1
Hove sequence of Z-,

(b) The second case is the same problem concerning a solid film : A =
Ay x {0} is a subset of Z* x {0}, and the sequence Ay is a Van Hove
sequence of Z?.

1.1 Lineic molecules

In this case, to which Section 2 is devoted, we are going to answer affirma-
tively the questions (L1), (L2), and (L3). More precisely, we introduce the
following notation :

(i) we denote by I'y = R*x| — 3, 7] the periodic cell of the problem, and

by T'(A) the set Ugeal'y + k.
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Figure 1: The set A in the case of polymers (on the left) and solid films (on
the right)

(ii) For any functional space S, Spe(I'g) denotes the set of elements of
Sie(R*) M S(Ty) that are periodic with periodic cell T'y.

We introduce the following variational problem :

Tper = inf{Eper(p),p >0, /p € Xper, / p= 1}, (1.5)
To

where X, is a subspace of H,,.(I'y) to be made precise later on (see for-

mula 2.14), and E,., is defined by :

1
B = [ (il + [ 7= [ Gotg [ [ ponnGle = sy

(1.6)

0

The potential GG, which is not to be confused with the potential G ap-
pearing in [5] (it is its 1-D analogue), is the periodic potential modeling the
Coulombian interaction in the periodic lattice {(0,0)} x Z. (In the smeared
nuclei case, the only necessary change is to take G %p, m instead of G in
the third term of the energy.) From the conclusions of [11], it is natural to
introduce :

1
2

, 1 ; d
) = ~2os' + 3 = - / om0

keZ

where we denote by z' the vector (z1,x2), and by (ej, es,e3) the canonical
basis of R?. It is easy to check that G is periodic, with periodic cell I'y, and
that it satisfies :
—AG =47 Se,.
keZ
The constant M is defined by follows :
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e In the point nuclei case, M = lim,_,o(G(z) — ﬁ)

e In the smeared nuclei case, M = [ [ m(z)m(y)(G(z —y) — =)
The main result of Section 2 is the following theorem :

Theorem 1.1 Let A be a Van Hove sequence in the third dimension, in the
sense made precise above, and py the minimizing density of the TF'W energy.
Then we have :

(i) Umasoo (37 = Lper + 5

(ii) The density pn converges to ppe, uniformly on any subset of the form
R? x K, K being a compact subset of R.

The strategy of the proof is as follows : we first write down I,’s Euler-
Lagrange equation, that is : (setting py = uj and my =Y, ., m(- — k), m
being either ¢y in the point nuclei case, or a smooth function in the smeared
nuclei case)

5 1
—Auyp + guj\/3 — ((mA — u?\) * m)u/\ = —frun,
where #, denotes the Lagrange multiplier associated to the mass constraint
in Iy. Hence, denoting by ¢, the function (my — u3) ﬁ — 0y, we get a
solution of the system :

—AU,A + guZ\B — uA¢A = 0,
—Adp = 4dm(my — u}), (1.8)
UA Z 0.

As in [5], we then establish bounds on u, and ¢4, so that we can pass
locally to the limit in the above system. Next, we show the following unique-
ness result :

Theorem 1.2 Let p £ 0 be a non-negative measure with compact support
with respect to (x1,x5). Assume that p is periodic with periodic cell Ty, and
that u(Ty) = 1. Then the following system

—Au+ 34" —up =0,
—A¢ = dm(p — u?), (1.9)
u>0

has a unique solution (u, ) € (Limf N L7/3(R3)) x Ll ..(R®). In addition,

loc unif
this solution satisfies the following properties :
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(i) u € L¥(R3), and u(z) < 71+(x2fx2)3/4, C > 0 being a constant indepen-
1 2
dent of x.

(ii) ¢ € LF .(R?) for all p < 3, and there exists a constant O, such that

¢ = Gy (1t —u?) = Oper.
(iii) fp, u=1.

The space L.,/ (R?) is {f € L, (R?) / supyeqs || fllion o) < 00}.

Once this result is established, applying it to the case pn = Y, .7z m(-+k),
we may therefore identify the limit of u, as the unique solution of this system.

Concerning the proof of Theorem 1.2, the strategy consists in showing
that any solution of system (1.9) is periodic, with periodic cell Iy, hence
that p = u? is a critical point of I,.,, with nuclei defined by m = u on Ty,
and next showing that this problem is strictly convex, so that p is necessarily
its unique minimizer. In order to show that I, is convex, we introduce the

bilinear form D¢ defined by :

mﬂm=£ {mw@mwwmwzﬁqum

and we rewrite E,,, as :

1 1
Eper(p) = |V\/ﬁ|2+/ p5/3+§DG’(m_p7m_p) _§DG(mam)'
To To

Of course, this is possible only in the smeared nuclei case, or equivalently
if m is smooth. If it is not, we introduce the characteristic function of the
unite cube, denoted by 1¢, and write :

1 1
Eper(p) = g IV/pl? +/r p*/® + §DG(1Q —-p,log—p) — §DG’(1Q; 1g)
0 0

+/F (Lo — m) *r, G)p.

In both cases, the point is that, by studying closely the potential G, we find
that D¢ is positive on a set that includes m — p and 1¢ — p as far as /p lies
in X, and p has total mass one over I'y. So D¢ is a convex functional on
that set. Hence I, becomes a convex problem.

Those results answer questions (L2) and (L3). Next, we use them as in
[5] to show the convergence of the energy, answering question (L1).

All these results give a TFW model for any molecule which nuclei are
periodically ditributed with respect to x3, and contained in a cylinder having
vertical axis. This is the case for many polymers, and for DNA molecules.
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1.2 Solid films

The second part of our work concerns problem (b).

As above, we denote by I'g the periodic cell of the problem, which is now
]—3. 3> xR, and by I'(A) the set Upeal'g+ k. The notation H},, (o) follows
as in the one-dimensional case.

Here again, we introduce a periodic potential, that we still denote by G,

though it is neither the same as in [5] nor as in (1.7) :

G(z) = —2lzs| + ) <|xik|_/ L), (1.10)

kTP (0} Kx{oy [€ =y — k|

where K is the unit square of R?, namely ] — %, 2[>. We notice that G satisfies
the equation
—AG=dr Y b

keZ2x{0}

The energy E,., is defined by (1.6), and the problem I, by (1.5). We
also define the constant M exactly in the same way as in the polymers case.

We do not have here a convergence result as that of the preceding section,
although we suspect it to hold. In fact, to be able to show a convergence
theorem as Theorem 1.1, we need the additional assumption that A is sym-
metric with respect to x; and z5. However, it is only a technical hypothesis,
and the convergence result that is stated in Theorem 1.3 below is likely to
be true for any Van Hove sequence.

Theorem 1.3 Let A be a Van Hove sequence in the first two directions.
Assume that A is symmetric with respect to xy and xy. (In the smeared
nuclei case, m is also supposed to be symmetric.) Then, we have :

. . I o M

(it) pa uniformly converges to pper on any set of the form K x R, K being
a compact subset of R?.

As in the preceding section, we start by proving the second assertion of
Theorem 1.3, the first one being a consequence of it. For this purpose, we
use exactly the same strategy as above, showing first that the Euler-Lagrange
passes to the limit, and then that such a solution is a critical point of I, .
The same positiveness property holds concerning D¢, and so the proof carries
through. The only difference is that, for technical reasons, we are not able to
show a uniqueness result similar to that of Theorem 1.2 : such a result would
hold only (so far as we know) to a solution coming from the thermodynamic
limit process for a sequence of symmetric domains.
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Remark 1.1 In all the results we have stated above, we have used the Cou-
lombian interaction potential, that is V(x) = ﬁ Another choice is possible,
namely the Yukawa potential :

e_a|x|

V(z) = T (1.11)

where a > 0.
Then (1.1) and (1.8) become :

Ex(p) = /Rs IV\/5|2+/R$/)5/3—Z/RSW(-—/€)

keA
1
+—/ (pxV)p. (1.12)
2 Jrs
—Auy + guj\/?’ — upopp =0,
—Adp + a’pp = dm(my — ud), (1.13)

U,AZO

In this case, we have stronger results that are briefly exposed (without

proofs) in Section 4, together with uniqueness results for some related semi-
linear PDFEs.

2 Polymers

We study here the thermodynamic limit problem in one dimension, that is
to say the limit of a line growing to infinity. More precisely, we consider
a sequence A = {(0,0)} x A3 C {(0,0)} x Z, such that Az is a Van Hove
sequence of Z. We recall that T'y is the periodic cell of the problem, i.e
Ty =R?x]| — 3, 3], and T'(A) = Jyep Do + k. Putting & = (1, 22, 3) a point
in R?, we denote by r = r(z) the quantity \/z? + x3. For all A, we denote
by :

Ene) = [ 19vil+ [ o= [ e [ s @)

the Thomas-Fermi-von Weizsdcker energy. Here my = Zke A 0. In the case
of smeared nuclei, d; will be replaced by m(- — k), where m is the measure
defining the shape of a nucleus. In this case, m will be considered to be in
D(R?), such that its support lies in I'y. We will denote by I, the minimization
problem :

Iy =inf{Ex(p) + > :7_ p>0,\p€ HI(R3),/Rgp: A}, (2.2)

k#jEA | |
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We will denote by pa the solution of the problem 1.
We also recall the Euler-Lagrange equation of problem (2.2) :

5
—Auy + §u1/3 — ppup =0, (2.3)

where uy = \/p, and ¢y = (my — u}) x 51' — By, 05 € R being the Lagrange
multiplier associated to the constraint in (2.2). Hence ¢, satisfies

~A¢p = 4m(my — u}). (2.4)

Let us begin with some a priori estimates.

2.1 A priori estimates
2.1.1 Energy bounds

First of all, we establish some bounds on p, and ¢,. For this purpose, we
follow exactly the proof of [5], Chapter 3, Section 3.2, which carries through
here since it does not depend on the sequence A, and we get :

Theorem 2.1 (Catto, Le Bris, Lions, [5]) There ezist various positive
constants C such that, for any sequence A C Z3, we have :

(i) [Ia] < C|A[,

(i) [ IV 0s? < CIA
(iii) \|oalle < CIAIMP for all p < 3,
(iv) 0 < Jga @apa < CIA],

(v) 0<O,) < C,

(vi) | Zk;ﬁje/\ ﬁ — Jre pa(ma * |?1|)| < CIA|.
In the case of smeared nuclei, we also have :

(vii) D(mp — pa,ma — pa) < CIA|, e [qs |[Vorl> < CIA|

2.1.2 L* bounds

Next, we may obtain L> bounds, still exactly as in [5], Section 3.2. Here
again, the proof does not depend on the sequence A, so we have :

Theorem 2.2 (Catto, Le Bris, Lions, [5]) There ezist positive constants
C independent of A such that, for all A C Z3, we have :

(i) llpall=ms) < C.
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(ii) In the smeared nuclei case, ||@a||pems) < C.

In the point nuclei case, we have :

(ii°) ||PallL=(@a)e) < O, where Q(A) = Upea@ + k, Q being the unit cube of

R3 and :
(11i’) ||¢A||Lﬁmf(R3) <, foralll <p<3.
The norm || - ||L§mf(R3) is defined by sup,egs || - Lo @+5))-

Remark 2.1 Let us point out that the proof of Theorem 2.2 is based only on
the Euler equations (2.3)-(2.4), and the fact that the measure m is positive,
bounded, and has compact support. Hence it holds for any such solutions,
and in particular if my is replaced by Mmoo = Y . m(- — kes), or by any
Lo-periodic measure with compact support in the direction (1, xs). This will
be useful in the proof of the uniqueness Theorem 2.4 below.

2.1.3 Asymptotic estimates

As the set of nuclei remains confined in a subset of R? which is bounded with
respect to r, we expect the above uniform bounds not to be optimal. More
precisely, we expect, at least concerning the density pa, a decay as r goes to
infinity. For this purpose, we use Solovej’s method [15] (see also [1]).

Let er be the ground state of the Laplacian with homogeneous Dirich-
let boundary conditions on the ball By of radius R centered at the origin,
normalized by the condition |leg||zz= = 1, and prolonged by 0 outside Bp.

That is, eg(z) = % on Bg. Then we have ||Vegl||2 = n/R. We set
2
gR = BR.

Lemma 2.1 (Benguria, Lieb, [1]) Let Q be any open subset of R3. If
uy € H}(Q) is positive and satisfies (2.3) with ¢n € L*(Q)+L>°(Q) satisfying
(2.4), then for all x € Q such that d(x,0Q) > R, we have :

gr % da < grruy® + TR, (2.5)
And if B 4+ x does not contain any nuclei, i.e my =0 in Bg + x, we have :
oa(x) < gr* da(2). (2.6)

Proof : For the sake of consistency, we reproduce here the proof of this
lemma. Since u, is positive, and u, satisfies (2.3), it is the ground state of
the operator H = —A + ui/3 — ¢ with Dirichlet condition on §2. Hence, for
all w € Hy(Q), we have :

/ [Vwl? + / (uy® = pa)w? > 0. (2.7)
Q Q
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We now apply this inequality to w = eg(x — -), and we get (2.5), provided
d(xz,00Q) > R. Let us now show (2.6) : if ¢, satisfies (2.4) and Bg + «
contains no nuclei, ¢, is subharmonic on By + x, hence applying the mean-
value inequality (see for instance [8]), we get :

gr*pa(T) = /0R< . ¢A($—?J)d@/> gr(r)dr > /R Arr?n (v)gr(r)dr = da(x)

0

because gg is of total mass one. ¢

Now we turn to the estimate at infinity :

Theorem 2.3 For any solution (up, ¢a) of the system (2.3)-(2.4) satisfying
up > 0, we have :

C
¢A < ﬁ,\ﬂ"zl,
r

C

0=t L4732 7

where C' denotes various positive constants independent of the measure my.
Furthermore, in the smeared nuclei case, i.e when m in (2.4) is supposed
to be smooth, the first inequality holds everywhere.

Remark 2.2 The first estimate is not efficient for A fized : ¢ = (mp —

u3) * ﬁ — 0y is negative at infinity, since 0y is positive (see [15]). However,
the point is that this estimate does not depend on the measure my, hence is
independent of the sequence A, as far as it satisfies the hypotheses we have

required at the beginning of this section.

Proof :
We apply lemma 2.1, with Q = R?, and get :

2
4 T
IR * P SgR*uA/g—i_ﬁ;

for all R > 0. We define qg = gr*Pp — ;—z, and get, using Jensen’s inequality :

6 < grxuy” < (grxud)*’.

Now, convoluting (2.4) on both sides, we get :
—A(gr * ¢a) = 4mw(my * gr — U} * gr),

that is, } .
—AG+ (¢)3* < 4m(my * gr).
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Now, we may assume, without loss of generality, that the support of my
lies in {r < 1}. So we have my x gg = 0 on Cgy1 = {r > R + 1}, hence
—Ad+ ($)%* <0 on that set.

We are going now to use a comparison argument on gzNS, in the spirit of [3].
For that purpose, we fix an R’ > R+ 1 and introduce the function

a bR

U=
(7B (R JaP)”

where a and b are positive constants to be determined later on. In particular,
we need U to be a supersolution of the differential inequality satisfied by ¢,
that is, —AU + Uji/Q > 0. One easily computes :

AU = —SaM _ 8hR™ 3R” + 7|3:|2

(r2 — R?)* (R’2 —7|33|2)6' (2.8)

Using the inequality (o + 3)%? > o2 + 33/2, which is valid for all o, 3 > 0,
one finds :

a(va — 8522 pRA(VBR? — 24R" — 56|1[?)

—AU +U?? >
+ = (7“2 _ R2)3 + (R’2 _ |x|2)6

(2.9)

We want this quantity to be positive on Cry1 N Bg, which is true as soon

as a > (16 + %)2 and b > 802. We also need that U > ¢ on dCry1 N B,

ie GEiE 2 |4||e. The latter quantity exists because ¢, € Lyip and gg

is smooth. So we can choose a large enough to ensure all those properties,
together with a < cR?, ¢ being a universal constant.
We then have :

—A(p-U) +(9)Y* - U <.
Hence, using Kato’s inequality :
~A(¢—U)y < —sgn* (6 - U)((9)Y* — U*?) <.
We use now the maximum principle to conclude that on the set Cry1 N Bgr,

cR? N bR
(r2 = R%)?  (R? - |z[)*

¢ <

This holds for any R > R + 1, with ¢ and b being universal constants. So,
by letting R’ go to infinity, we find :

cR?
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on Cpgy1.
Furthermore, from Lemma 2.1, we know that on this set, (2.6) holds.
Therefore, we finally get :

CR? 2
op < 7(7“2 — R + R

This inequality holds whenever R > 0 and r > R + 1. So if r is fixed and
larger than 2, we may choose R = r/2, and we find

C
VTZ27¢A§ﬁ-

Pointing out that ¢, € L*({r > 1}, we infer that

C

Vr>1 < .

And in the smeared nuclei case, we know that ¢, € L, so this inequality
holds on R3.

We now turn to the second assertion, namely the estimate on u,. For
this purpose, we use the above inequality and (2.3), and write :

5) 7/3 OUA
—AuA+§uA/ < 2

, Vr > 1.

Now, there exists a constant ¢ such that for all a,b > 0, ab < 1a”/3 + cb™/*.
So we have, on the set {r > 1} :

4 7/3 C
—AUA+§UA S m

We are now going to use the same comparison argument as above, introducing

13/2 . . .
the function V' = 5 —l—%. Computing —AV', and using (here again)
that (o + 3)7/3 > a™/3 + 37/3, we find that

47 a 4a*? 9 bR'3/? 4,473 or2 2 2

Thus, choosing a*/? > 2L and 6*/% > 22 we have :

4 4

So by the same argument as above, we conclude that uy < V on the set
{r > 1}. Since uy € L*(R?), this concludes the proof. ¢
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2.1.4 Compactness

The next step consists in proving the compactness of the sequence p,, i.e the
fact that no electrons escape at infinity. Mathematically, this will be stated
as :

1
—/ pr — 1 as A — 0. (2.10)
IA[ Jrea)
We start with the smeared nuclei case, and next generalize the result to
the point nuclei case :
Proposition 2.1 In the smeared nuclei case, (2.10) holds.

Proof : The key-point of the proof is, as in [5], that we have, for all h €
HY(R?),

| 3(mA —pa)h| < D(my — pa,my — pa) P VA 2ms).  (2.11)
R

(2m)?
(We recall that D(f,9) = [gs ng = T/) drdy.) This inequality holds

because my — py € LS/°(R?) ¢ H~'(R?) : it is exactly the Cauchy-Schwarz
inequality in H=' x H', through the Fourier transform.
Now, we know from Theorem 2.3, that D(my — pa,ma — pa) < C|A|.
Next, we choose h = hy : we put hp(x) = fa(r)ga(zs3), where :

o fa(r) =1—(5)*if r < R, 0 otherwise, with 1 > o > 0, and R =
R(A) > 0 being chosen below.

e gr» € D(R), g» = 1 on the set {z € R/d(z,A3) < 3}, 0 on the set
{r e R/d(z,A3) > 1},0 < gy <1 and|g}| < 4.

(We recall that A = {(0,0)} x Az, and that |[A}]| = {t € R, d(t, d(Ugen,[k —

1/2,k+1/2])) < h}.)
For such an h,, we compute :

/ IVha? = / gA(xg) fA()27rrdrd:L"3+/ ga(3)? fr(r)?2mrdrdas
R3

R?x[0,00]

O|A1|/ (1—(L rdr+C|A|/

< CO(R*AL +a|A|)

IN

A
gether with R|A}|'/? < |A|"/2. Thus, we find that [|[Vhy||2@s) < C(v/ oA+

o(y/]A])), hence

1/4
We now choose R = <ﬂ> , so that we have R —» oo as |A| — oo, to-

|A||/ 7nA_pAhA|<C’\/_+ ()
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Now, because hy <1, fR3 maha < |A|. On the other hand,

,
mAh,A Z |A| - m/\(ﬁ)a.
R3 R?
And [zsma(%)* < CIA|/R®, so we have :
1
— mAhA — 1.
A Jre

Furthermore,

.
/ paha = / PA—/ PA(ﬁ)a+/ paha
R? P(A)N{r<R} L(A)N{r<R} r(A)e

r

= [ mroumih- [ [
r(A) I(AN{r<R} r(A)N{r> R}

because fI‘(A)C hapa < C|AY fOR 111:3 < C|A}], according to Theorem 2.3.

Concerning the remaining terms of the right-hand side of the above equal-
ity, we have :

d A
o< [ psonl[ Gecllap,
L(A)N{r>R} r>R T R

and :
r |A| [ rotd

Al
Og/ pa(=) < C dr < C— < |A],
I(A)N{r<R} (R) R Jo 1+71? R~ A

because 3 —a —1 > 1.
Collecting all those convergence results, we get :

1
|1 — W/F(A) pa| < Cva+ o(1).

Letting |A| — oo, this implies that

1
limsup|1——/ pa| < CVa.
Al e

A—o0
Here C' does not depend on « > 0, so letting o« — 0, we find (2.10). ¢

Let us now turn to the point nuclei case. The only difference between
this case and the preceding one is that D(my — pa, ma — pa) does not exist.
So we are going to replace my by 1g(a), @(A) denoting J,., @+ K, where Q
is the unit cube in R?. 1gs) lies in L' N L*(R?) and have compact support,
so that the existence of ﬁD(lQ(A) — pas Lgea) — pa) is ensured. The point is
then to prove that this quantity is bounded independently of A, so that the
smeared nuclei case proof will apply. Since this is only a technical adaptation
of [5], Section 3.3.4, we skip this proof.

Proposition 2.2 In the point nuclei case, (2.10) holds.
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2.2 Uniqueness for the system of PDE-Identification of
the limit
Now that we have bounds on the sequence p,, we may pass locally to the

limit (up to a subsequence) in the system (2.3)-(2.4). Denoting by p, = u%
and ¢, the corresponding limits, we get a solution to the system :

. 5, 7/3 _
Ao + 3Uco uooqgoo =0, (2.12)
—A¢o = 47r(mOO —uZ),

where the measure mq, is either equal to ), ., de, in the point nuclei case,
or to Y ..z m(- — kes) in the smeared nuclei case. In both cases, mq is
periodic and its periodic cell is ['y.

The aim of this section is to show a uniqueness result on the system, so
as to identify the limit (uoo, Poo) as the solution of the system (2.12). The
first step will be the periodicity of the solution. Next, when the solution is
shown to be periodic, we will compare it with the solution of the periodic
variational problem :

Lyer = in{Epen(p), p > 0, /7 € Xper,/ p=1}, (2.13)
To
Xper being defined by :

Xper = {u € HY, (Ty), (log(2+|a]))"*u € L*(T)}, (2.14)

The energy E,, is defined by :

Bpalp) = Jo)9VAF 4 [ P [ (@mmp 15
w ] ct ety

(We denote by f *1“0 g the convolution product over 'y for periodic functions,

that is, f *r, g fFo g(y)dy.)
The poten’mal G is the peI‘IOdIC potential defined by (1.7).
We first study this periodic potential.

2.2.1 The potential GG

We recall that in this section,

G(z) = —2log(r +Z<m /; |x—(;g—jkk)es|>'

keZ

M
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Lemma 2.2 We have :

(0) G is smooth on R? \ Ze.
(i) G(x) = ﬁ +C+ O(Jz])asz — 0.
(it) G(x) = —2log(r) + O(%) as r — 0o, uniformly with respect to xs.

Proof :
First of all, we prove that the sum defining G does exist on R*\ {r = 0} :
1
indeed, denoting by f(x) the quantity 51' le 7 dfe -, we have, for |z| — o0,
and r # 0 :

flx) =

1 /2 dt
x| S o] = 2tas + 82

|
1 1/5 dt
ol Wy immm o

t.’Eg 1

- - |x|/§ p O
— o1, (2.16)

|z f?

so this shows that ), ., f(x + kes) is normally convergent on any compact
subset of R*\ {r = 0}. This proves our claim, and that G is smooth on this
set, and periodic with periodic cell T',.

We now turn to the proof of (i) : we isolate the interesting terms, and
write G as :

Gl) = —2log(r) +- /5 at (2.17)
x) = —2log(r — = P —— .
TRl et
1 /5 dt )
+ — - :
’;Z*<|$—k€3| _1 |z = (t+ k)es|
Now, we compute, with v — 0, z # 0 :
D dt Ly l+:c3
" = Argsh(2 Argsh
[t = A A

B log<x3+ L+ /r? )

.’Eg——+ +(.’173——)

.’173+ +\/

= lo )
g(arg — s +3(1—2z3+ 2|.Z‘|2 — 2x3 + O(|x|3))>
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because

1 1

\/r2+(x3—§)2 = 5\/1—4a:3+4|a:|2
1 1

= 5(1—2x3+2|x|2— §(4x3)2)+0(|x|3).

Hence
/é dt_ _ . (1+0(a)
le—te] P\ O(aP)
= —2log(r) + O(|z]).

So we may write

1 1 2 dt
6@ = 1+ 2 (e - / Feysu o) RG]

keZ*

as x| — 0.

Now, all the terms of the remaining sum are clearly defined on T'y, so
using the estimate (2.16) on f, we conclude that this series defines a smooth
function on I'y. With the periodicity of G, this shows (o) and (i), with

1
_ 1 _ (3 _dt
C=> ez <|k f_% |k+t>‘

We now turn to the proof of (ii), which results only in showing that :

D

keZ

C
< — 2.1
<= (218)

1 / dt
|z —kes| ) 1|z — (k+t)es]

as r — 00, uniformly with respect to xs.
Considering the function f defined above, this expression may be written
as : Y ez f(@ — kes). So, as we know that

C
< —
@< 1
we have : .
|k2f(x—k€3)| SZW)
€Z keZ

for r sufficiently large. Now, we have

1 < 1 1 < C
Zr3+ i 3 +k§: r3R2|k[32 = 32
S

ke€Z Y/
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This proves (2.18). ¢

Now that we know the behaviour of G, we turn to a positiveness property
for Dg. We recall that :

Delf.g) = / [ 1@a(0)Glo = y)drdy (2.19)

Since D¢ appears in the expression of the energy and is a bilinear form,
its positiveness (in the sense of bilinear forms) will ensure its convexity, hence
the convexity of the energy.

In the following Proposition, we assume that Supp(m) C {r < 1}, since
this may be done without loss of generality

Proposition 2 3 The bilinear form D¢ is positive on the set Yy, = {f €
per 1—‘0 / \/ 6 H;er 1—‘0 N {7” > 1})7 fro f = 0and lOg(2 + |£U|)f S LI(FO)}

Where the space H,,,.(I'gN {r > 1}) is defined as the set of functions lying
in H. ({r >1}) N HY(Ty N {r > 1}) that are periodic with respect to x3, of

loc

period 1.

Proof :

We define on S, (), that is, the set of functions that are C* on R?,
periodic with periodic cell T, and decaying faster than any power of r as
r — oo, the Fourier transform f —— f as:

:/ f(x)efi27r($'.§+a;3n)dx7 (2.20)
I'o

where © = (2/,z3), 2/, € R? and n € Z. Tt is easy to check out that this
Fourier transform has the isometry-property of the classical Fourier trans-
form, that is :

/f da;—z fg, G(€, n)de. (2.21)

Hence it may be prolonged to S/, (I'y). We also have :

per

Vf € S)p (Do), 0;f(E,m) = i2n&; f(€,n), j=1,2.

And - R
Vf S per(l—‘o) and g€ SPBT(FU)a f *ry 9 = ffq\

So, since we know that —AG = 47wy on I'y, we deduce :

w2 (|€)* + nz)@(f,n) = 4r.
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Hence when n # 0, @(f,n) = W Now for n = 0, G becomes

the classical Fourier transform of log |2/| on R?. Indeed, we have, putting
Go(z) = G(z) + 2log(r),

=

/ Go(z)das = 0. (2.22)

N

1
Because computing —A [2, Go(z)dxs, with 2 € Iy, one finds :
2

—A/% Golw)des = / —A(Go(x))das

NI
D=

= 477'/5 ((50 - (Sr:())d.’b‘g

1
2

= 477'(57“20 — 67‘:0) - 0

So the left-hand side of (2.22) is the expression of a harmonic function, which
lies in L*° because of Lemma 2.2, hence is a constant. But, still because of
Lemma 2.2, Gy goes to 0 as r goes to infinity, so (2.22) holds.

The classical Fourier transform of log |z| on R? is equal to Vp(ﬁ) + ady,

with @ > 0, and where Vp(#) is defined as follows (see [14]) :

1 () loge
<vp(—3),p >= lim (/ dr + / ol (2.23)
|2 e=0 \ Jjgp>e 7] € Jiz|=e
(In fact, vp(‘wlp) d1v( “z) in D'(R2).)
So we have : )
(6 0) _Vp(|€|2)+a60

Now, we compute, for all f € Y., :

Delf.f) = / (G 1y 1)f
- / G oo (.m) F (€, m)de

nez
————" —df+ < vp f(&,0
Z/R PG der < (. (e 02 >
since f fr = 0. So Proposition 2.3 will be proved if we show that

when f € Yper, < Vp( 5), (f(f 0))? >> 0.
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From the fact that f € Y., we have :

feol = | [ @5 D@
o
< [ e @ [ e e ()i
rom{r>\ﬁ} Foﬂ{r<\/—}
2
B S — log(2 + 1)\ £ (x) da
10g(2 + ﬁ) /Foﬂ{r>ﬁ}
s Wl
Foﬂ{T‘<\/—}
1 d d
g T o, 2+ DI @l + VI8 /|f )|da
C
< 2.24
~ Jlog¢]] (2.24)
as |£] — 0.

‘*=>

Hence, (2.24) implies that (|§’|0) € L7 .(Ty), and that 1055 f\g\:s f(§,0)2

vanishes as ¢ — 0. Since f(-,0) € L2(R?), we conclude from (2.23) that we

have : —~ )
fle.0
<ol Fleon>= [ Hodhie=o

This concludes the proof. ¢

Remark 2.3 Let us point out that the important property of f is that its
integral vanishes. For example, if f = Oge, + 0—ge, on Lo, f being periodic
with periodic cell Ty, one may compute that, for k > 0 large enough, we have
Dg(f, f) ~ —logk < 0. And we may even convolute f with a regularizing
kernel, so as to get a C'*™° function g, having compact support, and such that

D¢(g,9) < 0.

We now turn to our main result : the uniqueness of the solution of the
system (2.12), which will be stated more precisely in Theorem 2.4 below. We
consider a positive measure p with compact support, periodic with periodic
cell ['y, such that u # 0, and the system :

—Au+ 2u"? —up =0,
—A¢ = dr(p — u?), (2.25)
u >0,

and intend to prove a uniqueness result for this system.
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We write

M= Zm( — kes),
k€Z
with m having its support in I'y. With no loss of generality, we may assume
that Supp m C {r < 1}, and that m(I'y) = 1. We first need some a priori
estimates on the solution of the system. It is the aim of the following section.

2.2.2 A priori bounds

Proposition 2.4 Let (u,d) be a solution of (2.25), with u € L*(R3) and
NS L,lmif(R:"). Then for any R > 0, there exists a constant v > 0 such that
inf,cpu > v.

Proof : First of all, we remark that, by elliptic regularity, the fact that
¢ € L, implies that u € Wf;llif, hence belongs to H,,;((R*). So ¢ €
Hy i ({r > 1}) € L®({r > 1}, and u lies in L™ N C%*({r > 1}) for some
a > 0. Moreover, the fact that ¢ € L,,,,(R?) and A¢ is a uniformly locally
bounded measure, we deduce that ¢ € LP?(R?), for all p < 3.

We argue by contradiction, and suppose that the above property is false,

i.e that there exists R > 0 such that :

inf v = 0. (2.26)
r<R
This means in particular that there exists a sequence (x,),>¢ such that
r(z,) < R and u(xz,) — 0 as n — oo. So, denoting by u, and ¢, the
functions u(- + z,) and ¢(- + x,,) respectively, we have that

un(0) — 0asn — oo. (2.27)

Now, we may write x, = k, + z°, with k, € Zes and 2% € T'y. Since
r(x,) = r(2%) < R, we may extract a subsequence so as to have 20 — z°,
for some 2° € Ty, satisfying r(2°) < R.

But from (2.25), (2.27) and Harnack’s inequality (see for instance [8]), we
deduce that u, — 0 uniformly on any compact subset of R?. Considering
the bounds on v and ¢, we may pass locally to the limit, up to a subsequence,

in (2.25). We then get ¢ € L},,;; a solution to :
—A¢ = dmpu(- + 2°). (2.28)
Hence, denoting by ¢ the function @(- — 2°), we have 1 € L. .. satisfying :

unifr

— Ay = dmp. (2.29)
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With no loss of generality, we may assume that r(z°%) = 0, so that —Az
has its support in {r < 1}.

We are now going to use a scaling argument to show that the fact that
¢ is a solution to (2.29) is in contradiction with its belonging to L;,,;;. The
first thing is that ¢ is harmonic on the set {r > 1}, hence continuous on this
set, and thus belongs to L>*({r > 1}).

Let & € C*(R), such that & = 1 on [—1,1], & = 0 on [—2,2]¢ and
|€0] < 4. Let « €]0,1[ and 1y : R? — R be the solution of —An = 0 on
{1 < |z| < R*} with boundary conditions n = 1 on {1 = |z|}, n = 0 on
{|z| = R*}. Namely, we have

| loglz|

M) =1 =R

on the set {1 < |z| < R*}. We prolong it by 1 on {1 > |z|}, 0 on {|z| > R“}.
We set Eg(x) = nr(a)&o(%2), for all z € R?.
And we compute :

<_Aw7€R> = 47T<MJ§R>
= Z < m('—i‘k@g),fR >

ke€Z

.’Eg—k
= ) So(—5—)m(x)da

keZ,|k|<2r” 10

v

m.
To
kEZ,|k|<R

So we conclude that :
< =AY, Egr >> 2R. (2.30)

On the other hand, we have, denoting by Q the set {r < R, |z3| < 2R}
and by wp the set {r < 1, |z3| < R},

/R A = /Q -t

- /Q e

0 9]
— — [ wag- [ ey [ pn
Qr\wr r=R" |z3|<2R or r=1,|z3|<2R or
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We know that Alr = 7:nr(r)E)(52) on the set Qg \ wg, so we have :

€3
bAG| = / bn(r)el(2)
/QR\WR R Qr\wr ° R
4
<
< = /Q K
< CQ =CR* '« R
> ﬁ| R|_ < )

because 1 € Ly,,;; and a < 1.
Next, we compute that

e &(F)
or  arlogR’

so we also have, using the fact that ¢» belongs to L>({r > 1}) and is smooth
on this set :

0&r CR! CR
< = R. 2.31
/rRa,z3|<2Rw or |~ aR*logR logR < (2:31)
And :
O&R CR
Voo S s <R 2.32
/r:1,|a:3<2R or log R ( )

So we conclude that
‘< _AwagR >‘ < R7

reaching a contradiction with (2.30). This concludes the proof. ¢

We now have a lower bound on u, and intend to get upper bounds :

Proposition 2.5 Let (u,¢) be a solution of (2.25), satisfying u € L* and
¢ € Ly,i;- Then we have :

(1) ¢ < 1fr2 Vr > 1;and

(ii) u < 5.
Proof : The proof follows exactly the same pattern as that of Theorem 2.3.
Indeed, this proof only uses the fact that the measure m, has its support in
{r < 1} and that the functions uy, ¢, are solutions of the system (2.3)-(2.4).
So the whole proof carries through to this case. ¢
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2.2.3 Periodicity of the solutions

We are now going to show that the solutions of the system (2.25) are neces-
sarily periodic.
For this purpose, we denote, for any function f defined on R3,

Tf(x) = f(x + e3). (2.33)
We then have, if (u, ¢) is a solution to (2.25),
~A(1¢ — ¢) = 4n(u® — Tu?). (2.34)
Hence, from elliptic regularity, (7¢ — ¢) € C° N L>(R?).

Proposition 2.6 Let (u,$) € L*(R?) x L.

wnif (R?) be a solution of (2.25).
Then

T¢—¢:U2*(|?1|—Ti).

]

And o
_ bl =2
-6l < 1o,

for some constant C' independent of x5.

Proof : The first thing is to check out if this convolution product exists :
Since we have

2 C
u® <
T 14
and
1 1 2 1
-] s 2o+ 1
I |zl + es|(|z| + [@ + es])
1 1

_'_ )
lz|(Jz] + |z +es]) |z + es|(Jz] + |z + es])

this is easy to check. Moreover, we have :

) 11 1 dy
ux(tT— — —)| < 5
lz| |z re L+7(y)3 e —y+es|(lv—y|+ v —y+es|)

+/ 1 dy
r: L+7(y)? v —yl(lo —y| + |z —y +es])

< 2/ L 4y
T el —yl(lr -yl + e -y +es))

We split this integral into two others, and write, with r(z) > 2 :
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/ 1 dy
re L+7()? e —yl(lv —y| + |v —y +es])

_/ 1 dy
wyl<2 L7 |z —y|(lz —y| + v —y +es])

+/ ! dy
w—y>2 LT3 e —yl(lz =yl + v —y +es])

So that we have, denoting by A(x) and B(x) respectively the terms of this
sum,

(2.35)

because

o—yl<2 1T = Yllz —y + e5] wi<2 [Ylly + €3]

and because the fact that |z — y| < 2 together with r(z) > 2 imply that
1+r1(y)3 < 1+7%)3, where C' does not depend on z.
Concerning B, we have, for an R < r(x) = |2'| that will be chosen later

on :

C dy
B <
() < /Rs T+7ry)?31+ |z —yl?

C d
S / /3(/ ! /2yg 2>dyl
re LHYP\Jr 1+ 2" =92 + |25 — y3]

/ 1 C a / C dy'

Yy = T

rz L+ Y[} 2" — o] re (1+ ]2 —y']?) [y
C dy’ C dy’
S / ! 1|3 —y/—i_/ ! /3—y/
i<k L+ =y Py Jysr X+ 12 = y']3) |y]

/ dy' 1 L] / dy'
wi<r Y1+ (2| = R)?® R Jyrl+]2 —y3

< CR N C

~ 1+ (|- R? R’
where C' is a constant independent of z. Finally, we choose R = @J, so as to
have :

B(z) < % . (2.36)
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Now, collecting (2.35) and (2.36), we get :

1 1 C
w ok (r— — —)] < —. (2.37)
O S
Finally, since u? % (T‘—i‘ — ﬁ) is continuous, (2.37) implies :
1 1 C
2 — ——) < . 2.38
W) S T (2.38)

So there only remains to prove that this expression is indeed equal to 7¢ — ¢.
In order to do so, we compute its Laplacian, and find :

1 1 1 1
AW x (T1— — —)) = *x (~A(T— — —)) = u? % (8, — 0g) = Tu® — v’
2| || 2| || "

So the function 7¢ — ¢ — u? x (7= — %) is harmonic. But since, from (2.38),

lz| ||
it lies in L>°(R?), it must be a constant. Hence

T¢—¢:u2*(7|—1| L

- - m) + a. (239)

Now, considering (2.38), we know that for some R large enough,

1 1 |a|
2h(r— - ) < =
|u (T|x| |x|)| 5

on the set {r > R}. So we have

|a| |a|
I bl g < =
a 5 <T¢ ¢_a+2

on this set, which implies that, for all n € N, we have :

76— 6] > nl2

on {r > R}. So

la|

Aol 2 [ 6oz ntl|Bl
Bi1+2Re;
This is valid for all n € N, so we reach a contradiction with the fact that
¢e Lt unless @ = 0. This concludes the proof. ¢

unif?
Next we turn to a uniqueness result that will ensure the periodicity of u,
hence of ¢.
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Lemma 2.3 Let (u,$) and (v,) be two solutions of system (2.25), both
lying in L™ X L}Lm-f, such that |¢ — | < % for some constant C. Then

u=uv and ¢ = 1.

Proof : The proof follows exactly the same pattern as the uniqueness The-
orem of [5], Section 5.3 : we are going to collect all the former results, and
then use a scaling argument on u and ¢.

First of all, we know from Proposition 2.4 that there exists a positive
function 7, independent of x3, such that :

w,v > 1. (2.40)

Next, denoting by w the function u — v, we get, substracting the two
systems :

—Aw +u? =03 — (pu — ) = 0. (2.41)
and :
~Ap — ) = v* — u’. (2.42)
Hence, for any £ € D(R?), we have :
| vuve)+ [ @ =g~ [ ou-dojeg 0. @243
R3 R? R?
The first term of this sum may be rewritten as :

Vo) = [

R

Vo= [ uver. e

R3

Now, from (2.40), we deduce that there exists a positive function v(r) such
that :

(W3 =03 (u—v) > =(u"? + "% (u — v)? + v(u —v)2

DN |

That is,

(u7/3 - U7/3)w > (U4/3 + v4/3)w2 + vw?. (245)

DN | —

On the other hand, we write :

bu—po = 5(6+ D)w+ 56— ¥)u+ ). (2.46)
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We denote by L the operator —A + 2(u"/3 +v1/%) — 1 (¢ + ), and deduce
from (2.43), (2.45) and (2.46) that :

< L(w€), w& > +/

R3

e < /<¢ ) (u? — )€l +/ W?|VEP.
(2.47)

We claim that the operator L (with homogeneous Dirichlet boundary
conditions on a bounded set) is positive. Indeed, we may write it as

L= (A +u'— 9)+ (-A+07 =) = S(L + L),

and the only thing to prove is that L, and Ly are positive. This comes from
the first equation of (2.25) : denoting by \; the first eigenvalue of L; on (2,
and by f; the associated eigenvector, satisfying f; > 0 on 2, we have :

/Q—Af1u+/u4/3f1u—/¢fluz/)\lflu-

Integrating by parts and using the first equation of (2.25), we find :

Lo [ e

Since the second term of the left-hand side is 0, and because of Hopf’s Lemma,
which shows that % < 0 on 092, we infer that A\; > 0, hence that L, is
positive. Lo may be dealt with exactly in the same way, so our claim is
proved.

So the equation (2.47) implies :

200 1 _ 2 o\ 1
/Rgz/wf §2/R3(¢ V) (u” —v*)¢ +/R3w |VE|°. (2.48)

We now go back to (2.42), and use it to rewrite the first term of (2.48)’s
right-hand side as :

%/Rg(d)_ib)ﬁ(cb—w)fz = —%/R |V(¢—1/))€|2+%/R3(¢—¢)2|V§|2.

So the inequality (2.48) becomes :

/R e /R V(- 0P < /R W Ve + / (6— vPIVEP,

(2.49)

Since this holds for any ¢ € D(R?), we may apply it to a sequence &,

converging to
1

N e
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With @ > £, 8> 0 and o+ 3 < 1. We then get (2.49) for this choice of &.
Now, for this function &, it is clear, from the hypotheses on « and 3, and from
Proposition 2.5, (ii) that we have [p, w?¢? < 0o and [g4(¢ — 1)%? < 0.

We are now going to use a scaling argument on the inequality (2.49). We
define &, as :

& (x) = E(ex). (2.50)
We then compute :
2,0 2 2 2
|V§5|2 = 5537 | T 66 - o
(1+e2r2)3+D(1 4 23)2 (1+¢e2r2)z (1 +223)(2+Y
P er? Lo el
— o
(1 +&2r2)(B+2) (1 + 22) (1 +£2r2)B(1 + g223)(2+2)
< B e? 1ol e?
o
- (1+e2r2)8(1 + e22%) (1+£2r2)B(1 4 e2a3)
(e2-20-28
= Q2 20720¢2, (2.51)

(1+ 23)x(1+r2)»

Now we consider inequality (2.49) together with (2.51), and find :

/ l/w2§§ < Q220728
R3

Fixing R > 0, we also have :

infp, v
/ vw?e? > %/ w? > infl// w?.
R3 1 + ¢ R Br Br Br

Letting € go to 0, and using the fact that a4+ 3 < 1, we deduce that

/ w? =0,
Br

hence w = 0. Now, since u,v > 0, we also conclude, from the first equation
of (2.25), that ¢ = 1. ¢

This Lemma, together with Proposition 2.4, Proposition 2.5 and propo-
sition 2.6, allows us to assert that any solution of (2.25) is periodic, with
periodic cell ['y. Now, we are going to complete the proof of our uniqueness
theorem.

2.2.4 Uniqueness for the system

We intend to prove the following theorem :
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Theorem 2.4 Let i be a periodic positive measure, with periodic cell I'y =

R?x] — 1, %] such that :

(a) Supp p C {r < 1}.
(b) pu(l'o) = 1.
Then the system (2.25), that is :
—Au+2u"? —up =0,

—A¢ = dr(p — u?), (2.52)
u > 0.

has a unique solution (u,) in (LZ,;; N LZ)/S(R?’)) X Ly,i;(R*). Moreover,

this solution is periodic with respect to x3, of period 1, and we have :

(i) u € L®(R?), and there exists a constant C' > 0 and a positive function

v depending only on r, such that 0 < v < wu < TC?’” s and

(ii) there exists a constant 0 such that ¢ = G xp, (u — u?) +0 ; and
(iii) [, u®=1.

Remark 2.4 Of course, in properties (a)-(b), the number 1 may be replaced
by any positive real. That is, those assumptions could be replaced by :

(a’) 1 has compact support with respect to (xy1,x3).

(b’) n#0.

And in this case, the conclusion (iii) would become :
(i) f, 0 = n(To)

Remark 2.5 In the three-dimensional case, that is if A is a Van Hove se-
quence of Z3, this uniqueness result holds provided j satisfies weaker condi-
tion of the kind (Hy) — (Hs) of Theorem 4.1. Here we are not able to adapt
our proof to those kind of p’s. The periodicity is a necessary condition of our
proof. However, in the Yukawa case, such a result holds (see Section 4).

Proof : We give here two technical results that we will need in the course
of the proof, their proof being postponed until the end of the present one :
Lemma 2.4 Let ¢ € L7 ,:(R*) N Hli/f(szo) for some Ry > 0, and denote

by Vg the function ¢ — ﬁ fmzR@/). Assume that (—A)g is bounded in
L'(BS, ) independently of R. Then Vi € L*(BY, ).
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Lemma 2.5 Let v € Zyer = {g € S'(T0), [1, log(2+]z])]g| < oo, [1, g =0},
such that v € L, (Do N {r > 1}) and [v] < 155 on {r > 1}. Then G4y, v €
Ll ..(Tp).

unif\*+ 0

The proof of the existence is a straight-forward adaptation of the ther-
modynamic limit process, using the measure m instead of a smooth function
or dp. One checks easily that the point nuclei case proofs generalizes to
any bounded measure with compact support. And the associated variational
problem I, has been studied in [10].

We refer the reader to [5], Section 5.3.2 for the belonging of u to L*°. The
proof also gives the information that ¢ € L} ..(R*) N L>®({r > 1}), for all
1 < p < 3. This comes from elliptic regularity results.

Now, we know that whenever v € L*(R?) and ¢ € L, (R?) satisfy
(2.25), Lemma 2.3 and Propositions 2.4, 2.5 and 2.6 show that u and ¢ are
periodic, with periodic cell I'y, and that (i) holds.

Now that the periodicity of u and ¢ is ensured, we introduce the varia-

tional problem (2.13), that is :

Lyer = inf{Eper(p)a \/ﬁ € Xper, / p= 1}'
1)

Where E,,., is defined by (2.15), i.e

Blp) = i, IVVoE + [ 57 = [ (G

+ %/FO /FO p(x),zzy)G(x — y)dady.

Here G is the periodic potential defined in (1.7), and X, is the functional
space :

Xper = {v € H, (To), (log(2 + [2]))*v € L3(Ty)}.

The first observation is that u € X,.,. Indeed, we already know from
(i),the second equation of (2.25) and the fact that ¢ € L} .., that :

unifr

C
I = Aullo(s, +a) = | = ™ + SullLo(s, +a) < T+r@p?

(We recall that r(z) = |2/| = \/2? + 23.) The same inequality holds for u
instead of Awu, so by standard elliptic regularity results, and taking p large
enough, we deduce that

C
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Hence u € H'(T'y). Since u is periodic, this shows that
U € Xper.

The next step is to show that u is a critical point of the problem I,.,. So
we write the Euler-Lagrange equation of this problem :

A+ 20T (G (1= )y = B, (2.54)

for some # € R. The point is then to show that

¢ =G *p, (n—u?) +d, (2.55)
with d € R. We set :
1/2
Zb - ¢(£U)d£b'3,
—1/2

and
1/2
f= / 1 — u?)das.
1/2
Those functions are defined on R?, and since we have —Aq) = II{Z —A¢ =

flﬁwu — u?, from the periodicity of ¢, the first Laplacian being a two-
dimensional one, and the second one a three-dimensional one, we have :

~A¢ = f

on R?.

We want here to apply Lemma 2.4 with Ry = 1. For that purpose, we
only need to show that ||(=Aw)yr[/L1(se) is bounded independently of R.
So, denoting by @ the unit cube of R3, we write :

NS / o

kE Z2 Q+k ﬂBC

VAN

S I ll@mlivnly,, o

ke(Z2)~

¢ 2

ke(ZZ)*

[Vrlles,, )

unzf

L+ [kf?

VAN

[N

|
C o+ C lzl=R
1l ey + SUp| =5

Cliéles,, r>1p + Cllgllrers1y-

[N
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So we may apply Lemma 2.4 to ¢, deducing that Vi € L?(R?). Knowing
this, we are going now to prove that :

/F u? = 1. (2.56)

—Ap =0,

This will follow from :

o

And, since this last property may be written as :

“AY =0, (2.57)

R2
we focus on this last equation. Let (x be a cut-off function, in the following
sense :

2]

Crl@) = (), with s
e CEDR),0<C<T, <2

o ((t)=1Vte[-1,1].

o C(t) =0Vt e [-2,2

We have, for all R > 1:

| —svte = [ vove

1/2 1/2
—sval < ([ wer) ([ wak)
R?2 R<r<2R R<r<2R
And, since
1 z\|° _ C
2 _ |t <
|V<R| R2 C (R) =~ R27
we conclude that
1/2
| -avcn §C</ |Vw|2> -
R2 r>R

The right-hand side of this inequality vanishes as R goes to infinity, since
Vi € L*(BY). Hence we get (2.57), that is (2.56), or (iii).

Now, we are going to prove (2.55). In order to do so, we compute the
Laplacian of ¢ — G xp, (1 — u?), and find, from the equality

—AG = bk,

keZ
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that ¢ — G xp, (1 — u?) is harmonic. On the other hand, we set v = p — u?,
hence we have [ v=0,v € S,,,(Ty) and v is smooth on {r > 1}, satisfying

per

lv| < H% Hence, applying Lemma 2.5, we deduce that

G Hry (11— ) € Ly (2.58)
Now, since a harmonic function belonging to Ly, is necessarily a constant,
we conclude that (2.55) holds.

Thus, we know that u € X, that u? has total mass one on I'y, and that
it satisfies the Euler-Lagrange equation of I,.,. Since this problem is convex,
because the quadratic form D¢ is positive, hence convex with respect to p,
we conclude that u must be a solution of I,.,. Hence u is unique, and so is
¢. O

We now give proofs of the two lemmas that we have stated at the begin-
ning of our proof :

Proof of Lemma 2.4 : This result seems to be a standard one, but since
we have found no proof in the literature, we provide one for the convenience

of the reader.
We first notice that ¢ € L2, .. (R?), since ¢ € L2 ..(R?).

We fix an R > Ry. Let {g be a cut-off function, that is, £ € D(R?),
such that £gr(z) = 1 on Bg \ Bag, and 0 on B, U Bg,, 0 < {g < 1, and

IVErl> < 1+ £

We have :
. —AYrippép| < C (2.59)
| vuvigiin| < c.
This implies :
[ Wl < o+ [ vhiver

< C+CR, (2.60)
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We also have :
[ Vol = [ ez [ onvenaven
R2 R2 R?2
> | vuele;

1/2 1/2
—2(/ |va|2fz) (/ |V§R|2wé)
R? R?
1/2
> / |va|2fé—20¢ﬁ(/ |va|2fé)
R? R?
1
> 5 [ 190aPE; - CR
R2
This, together with (2.60), shows that

/ [Vy|? = / [Vipr|* < / IVyr|*¢}, < OR, (2.61)
Bgr\Bag, Bgr\Bag, R2

for some constant C' independent of R. We also have, integrating by parts
over BR \ BQRO,

81/)R ad)R

_A _ Virf? Ovn ovr

/ o (OO / L S / b,
(2.62)

And from Poincaré inequality, we know that :

([o) <3(L,.

This, together with (2.62) and (2.59), gives :

O

2\ 1/2
50 ) . (2.63)

2 1/21 2\ 1/2
frw 7= = 2S5 w5
Br\Bag, |z|=R or R |z|=R 00

R R
<o veP=3[ vl
lz|=R |z|=R

Cy being a constant bounding ‘f'$|2RO ¢Rg—f + fBR\BZRO (—AYR)r
So, letting ¢ be the function

m = [ vep-c,
Br\B2g,
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we get the differential inequality :

Hence
d , 1 1

- (50(R)) = (Rg'(R) — 29(R) > 0.

So, integrating from R; > Ry to R, we get, for all R > Ry,

If there exists at least one Ry such that g(R;) > 0, we reach a contradiction
with (2.61). Hence g < 0, that is

/ IVy|? < Co.
Bgr\B2g,

Which implies that Vi € L*(Bf, ). O

Proof of Lemma 2.5 : We already know that G r, v lies in Lj,.(T), so
the only thing to check out is that it is bounded as r — oc.
We now write :

Girgv = / v(y)(G o — y) + 2log(r(z — y)))dy
- / 20(y) (log(r(x — ) — log(r(«)))dy.

We first consider the first term of this expression : from Lemma 2.2, we
know that

G () + 21og(r)| < =

for x € 2I'y. Hence :

/ v(y)(G(x—y>+2log<r<x—y>>>dy\ <cof vl g,

r(z —y)

c / [o(y)|dy
Lon{r(z—y)>1}

L v(y)] dy
Con{r(z—y)<1} r(z —y)
dy

C+ C/ —
lys|<3.r(y)<1 T(y)

C. (2.64)

IN

IN

IN



2 POLYMERS

38
Now we rewrite the second term as :
.’E, yl
[ 2poliostrta = ) = ogtr@lar < [ fotlfoe] %~ el s
r'o o 2’| 2]
(2.65)
l I l I
<cf oS~ L \dyw o(w)|log 2 — ¥ \dy
Con{|y’|<R} |~”U | | | Con{|y'|>R} |33 | | |
(2.66)

Where R = R(x) satisfies R < |2'|. So we may write, for || < R :

! ! !,.1 112
Y 1 22'y" Y| R
— llog(1- 1Y 4 —O(4).
‘ 2‘ °g< e )| T Oy

'] ]

log

Which implies :

/ / C’R
[ w5 Ll < O o)y
Pon{ly'|<R} [o'] o] 2] Jrongyi<ry
CR (*rdr C
S Ty ST

Concerning the remaining term of (2.66), we integrate first over the set
Lo n{ly'| > Ry n{]a’ —y| > 1} = D,

then over the set

Con{|y| > R}n{|a’ — | <1} = Ek.
On the first one, we have :

/ l

| X
:g
|x/| | I|

| < C’log<1+ ||y||> (2.67)

The second one is a compact subset of R?, so, as log|2'| € Lj,.(R?), we may

bound the integral of |v(y)| L

log| % |x,| — 1277|| over Er by ik
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/ !

And coming back to (2.67), we write :
C
/‘ |U@nbm%ﬁ}-ﬂr kg<1+wy|>w + 75
Ton{|y'|>R} 2’| |2]

\dys/DRun g

% |log(1l + =
c/| ( “mw+£

IN

R 2 R3
C [ |log(l+1t)] C
< — —dt + —
- |~"U'| R/|a'| t2 TR
o (o1 + £
- |3:’| R
Lot w o
|.Z"| R/|a’| t(l + t) R3
o c C’
< 2.

All this is bounded as |z'| — o0, so this ends the proof. ¢

Remark 2 6 Looking closely at inequality (2.68), we notice that the bound
W’ for any o < 1. (Just take R = |2'|*.) On the other hand the
same kind of computation could be done in (2.64), by developing = . ] 08
|z'| — 00. One would find the same kind of inequality, namely C in (2.64)
would be replaced by % So we may in fact assert that ¢ = ¢g + d, with
de€R and ¢y € L}

may be

satisfying

unif?

C
|¢0| < W, Ya < 1.

We may also notice that, in the course of our proof, we have found a
solution to the problem I, and hence ensured that this problem is well-
posed :

Remark 2.7 As a corollary of Theorem 2.4, one may state the result that
the periodic problem I, is well-posed. Of course, this result could be proved
without using the above theorem, by using standard variational methods, but
it 1s not our point here.

2.2.5 Convergence and identification of the limit

Now that we have a uniqueness result for the system (2.25), we are able to
show the convergence of the sequence p, :

Proposition 2.7 The sequence up converges to upe, in H'(Tp).
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Proof : The proof only consists in collecting the preceding results, as pointed
out above.

Actually, as in [5], we establish in Theorem 2.5 below a much stronger
convergence result. In order to do so, we introduce what we will in this
context call interior domains :

Definition 2.1 Let A C {(0,0)} x Z be a Van Hove sequence in the third
direction. A" will be said to be a sequence of interior domains, denoted by
AN CC A, if it satisfies the following properties :
(1) A" C A.
(i) For any finite subset A of Zes, there exists an hy € N such that Vh >
ho, A C Aj},.

(iii) 5 — 1 as A — oo,

(iv) d(A', 0T (A)) — o0 as A — o0.
Theorem 2.5 For any sequence ' CC A and any R > 0, we have :

||U,A — uPerHLoo(F(A/)), — 0 (269)

|pA — Bper||Lo@arnir<ry) — 0, (2.70)

as A — oo. (We recall that ¢pper = G *py (M —u2,) = Oper )

Proof : We follow step by step, here again, the proof of |[5]. We only provide
a proof of (2.69), the proof of (2.70) following exactly the same pattern. We
argue by contradiction, and suppose that (2.69) does not hold. This implies
that there exists, extracting a subsequence if necessary, a sequence x, in
['(A'), such that :

[ua(za) — tper(24)] > g (2.71)

for some € > 0. On the other hand, we have :

|UA(33A) Uper(lL"A)| =1 +7”(.’L'A)3/2

Hence r(x,) is necessarily bounded. Now we write zy, = y, + kpes, with
ya € I'g and ky € Z. Since the sequence r(z,) is bounded, so is y5. We then
may assume that this sequence is convergent, and that the limit 7 lies in ['y.
We then have, using (2.71), and taking |A| large enough,

[uaa) = wper (@) > 7. (2.72)
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We denote by u, the function us (-+x,), and by ¢, the function ¢, (-4, ).
One may then rewrite (2.3)-(2.4) as :

~Agy = dn(my(- + 1) — UL).

The bounds on u, and ¢, hold for 7, and ¢, , so we may pass locally to the
limit in the system (2.73) above, and denoting by @ and ¢ the corresponding
limits, we have :

{ —Au+ 2073 — gu =0,

_AG = dn(ma(- +7) — T), (2.74)

because ma (- + z5) — Moo(- +7) in D'(R3) as A — oco. Indeed, we have,
for any ¢ € D(R?), K being its support :

<ma(-+xp),p > = Z<m(-+x/\+k),g0>
keA

= Z <m,p(-—xp — k) >.

kEAﬂ(Fo—K—IA)

Using Definition 2.1-(iv), we have that the set AN (I'y — K — x,) becomes
Zes;N(I'y— K —x,) when A is large enough, because in this case, I'o — K —x
comes to be included in A. Hence,

<ma(+aa) 9> = D> <mp(-—axy—k) >
k€Zes

= < mooagp(' - yA) >—< moo(' +y),g0 >

Now, from Theorem 2.4, we know that (2.74) implies that

U = Uper (- + 7).
Hence
Uy — Uper(' + y)
in L? (R*). On the other hand, from the bounds we have on Vu, (see

formula (2.53)), we deduce that the above convergence is point-wise, reaching
a contradiction with (2.72).

Now, concerning (2.70), the only change is the fact that we do not need
to show that y, is bounded, all the other steps of the proof carrying through.
O



3 SOLID FILMS 42

2.2.6 Convergence of the energy

We are now going to answer the only question of the problem of thermo-
dynamic limit that we have left aside so far, namely the convergence of the
energy per unit volume.

Theorem 2.6 For any Van Hove sequence, we have :

Iy

— 1 +M
|A| per

2

as A — oo.

Proof : Here again, our proof is an adaptation of [5]’s, using the compactness
result (2.10), and the decay we have obtained on Vu in (2.53), that is :

C

[Vup| < 11 32

The strategy of proof is to study one by one the terms of the energy, and to
split the integrals over R? into integrals over T'(A’), T'(A) \ T'(A’) and T'(A)¢,
for some A" CC A, the first being dealt with using the convergence result of
Theorem 2.5, the second using the bounds we have on w,., and u,, and the
third one using the compactness result (2.10). We refer the reader to |5] for
more details. ¢

3 Solid films

This section is devoted to the thermodynamic limit problem in two dimen-
sion, that is to say, the problem of the thermodynamic limit concerning solid
films. Throughout this section, A = Ay x {0} C Z? x {0} will denote a
Van Hove sequence in the first two dimensions, i.e such that Ay is a Van
Hove sequence of Z2. T'y will denote the periodic cell of the problem, that
is, ] — 2,3 x R, and T'(A) = Jycp o + k. For such a A, we define as in
the preceding section the energy E\(p) and the minimizing problem I, by
formulas (2.1) and (2.2).

The unique minimizer py = u? satisfies here again :

5
—Auy + guj\/g — prup = 0, (3.1)
where ¢p = (mp — u3) * ﬁ — 0, satisfies :
~A¢p = 4m(my — u}). (3.2)

Following exactly the steps of Section 2, we start with some a priori
estimates.
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3.1 A priori estimates
3.1.1 Energy bounds and L*° bounds

We have exactly the same results as in Section 2, namely Theorems 2.1 and
2.2. Here again, as in Section 2, we notice that the proof of theorem 2.2
is only based on equations (3.1)-(3.2), and on the fact that the measure
my is non-negative, bounded and has compact support with respect to ws.
Hence it will hold for any such solutions, and in particular if we replace mx
by Mo = Y czm(- — kes), or by any I'g-periodic measure having compact
support with respect to 3.

3.1.2 Asymptotic estimates

As in Section 2, we now derive bounds at infinity, that is estimates of the
decay of up as |r3] —> oo, which are uniform with respect to A. As in
Section 2, we use Lemma 2.1 to prove the following estimates :

Theorem 3.1 For any solution (up, ¢a) of the system (3.1)-(3.2) satisfying
upr > 0, we have :

C
< —— . Yz >1,
¢A = ].—|—|ZU3|2 |3|—
0<uy < 70
S R PR

where C' denotes various positive constants independent of the measure my.
Furthermore, in the smeared nuclei case, i.e when m in (3.2) is supposed
to be smooth, the first inequality holds everywhere.

Proof : The proof is only a copy of that of Theorem 2.3. We only point out
the necessary changes in that proof : the function gg is unchanged, and so is
¢. In all the inequalities and definition of sets, r becomes |z3|. Hence Criq
is now the set {|z3] > R+ 1}, and U is the function :

a bR

U= + :
(lzs]* = R?)? (R — |z32)*

Computations follow exactly the same pattern, and we find in U the desired

supersolution, the only change being the constants m and b. The whole

proof carries through, and we finally get the desired conclusion. ¢

3.1.3 Compactness

We now study the compactness of the sequence p,, namely we are going to
show that :
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Proposition 3.1 For any sequence A C Z? x 0, being a Van Hove sequence
in the first two dimensions, we have :

1
I'(A

Proof : Here again, we provide only a smeared nuclei case proof, referring
to [5] for the generalization to the point nuclei case. We start exactly as in
Proposition 2.1, writing that for all h € H'(R?), we have :

1
| / (ma — pa)H] < Dl — p,ma — pa) I Vhlloms). (3.4)
R3 (277)

We then choose h = hy : we set hy(z) = fa(x3)ga(x1, z2), with :

o fa(t)=1-— % if |t| < R, 0 otherwise, where R = R(A) will be chosen

later on.

e g» € D(R?),0<gp <1, gr=1on the set {z € R?/d(z,\y) < %}, 0
on the set {z € R?*/d(z,Ay) > 1}, and satisfying |Vga| < 4.

(We recall that A = Ay x {0}, that A} = {t € R?, d(t, Ugen, (k+] — 1, 1]?)) <
1}, and that the Van-Hove hypotheses imply |[A}| < |A].)
We have, for such an hy :

/ VP = [ BP0+ [ e de,
R

O|A|/ +(J|A1|/ (15

Al !
< C CRIA
< O+ Ayl

IN

We now choose R = (%)I/Q, so that we have %' < |Al, and RIAY| < |Al.

Hence, we have :

||VhA||L2(R3) :0(|A|) (35)

Thus, since we already know from Theorem 2.1 (vii) that D(my — pp, my —
pa) < C|A[, (3.5) implies :

1

— (mA — pA)hA — 0 (36)
Al Jrs
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as A — oo.
On the other hand, since hy <1, we have [p,mahy < [A]. We also have :

|z3]
ha > |A] — —
o Tl 2 1A /R TR
and 0 < [po mpa 52 < %', hence we infer that :
1
— mAhA — 1. (37)
Al Jrs

Next, we compute :

T3
/ pahy = / PA—/ PA |R| +/ paha
R3 rA) r)N{jzs|<Rr} L(A)e

_ / oa. (3.8)
r(A)N{|z3|>R}
Concerning the second term of the right-hand side, we write :
x Al (7 tat A
| 3| | | / —— < | | < |A|
F(A)ﬁ{|:1;3\<R} 1+1¢

We then deal with the third term as follows :
AS| [ tdt A
/ paha §C| 2|/ <cl 2|<<|A|.
r(A)e R J

1+~ R
Turning to the fourth one, we have :

%0 tdt A
/ <(J|A|/ Al
r(A )n{|xg|>R} R

Hence (3.8) implies :

1
A] Jra ™

1

hy = —/ on+o(1). (3.9)
Al Sy

Thus, collecting (3.6), (3.7) and (3.9), we conclude that (3.3) holds. ¢

3.2 Identification of the limit

Following the steps of Section 2, and we are now able to pass locally to the
limit in the system (3.1)-(3.2), getting solutions u,, and ¢, of the system :
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5 7/3 _
Aqﬁoo = 47r(mOo —uZ).

My being the measure ), . m(-— k), and in particular a periodic measure.
We suspect a uniqueness result similar to that of Section 2 to be true in this
case, but we did not manage to prove it. However, we are going to prove a
convergence result for the sequence py.

We first need some preliminary results on the periodic potential G.

3.2.1 The potential GG

In this section, we denote by G the function

():—27r|x3|+z< /|a;—y k|>

Where K denotes the unit square of R?, that is, K =] — 1, 1[%.
First of all, we check out that this sum clearly defines G :

Proposition 3.2 The sum defining G is convergent over the set R\ (Z? x
{0}), and normally convergent on any compact subset of this set.

Proof : Here again, we develop the integrand as |z| — 00 :

1 dy
7| Sk lz =yl

flx) =

/ -
V]2 — wa + |y

7 J] / o i-2 +

fv|2 |z [?
= / (1+ O( ! ))d
T ot * O
1
= O(—)
El I@“I |z[?
And this concludes our proof, since », > lep does converge. ¢

We now prove the analogue of Lemma 2.2 :

Lemma 3.1 We have :

(i) G(z) = El‘ +C+o(1) as |[x] — 0.
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i) G(z) = —27|zs| + =) as |z3| — oo, for any a < 1, uniformly
i) G 2 O ‘m' fi 1 forml
with respect to x' = (xq, 2).

> (ma- f=v=n)
Ix m lz—k| Jxlv—y—k|l)

(3.11)

Proof : We rewrite GG as :

G(r) = —2m|xs| +

From the computation of the preceding proposition’s proof, we know that
the remaining sum converges normally on a neighborhood of 0. Hence it
is continuous on that neighborhood. On the other hand, x — fK

is
|z— yl
continuous on R?*, and this concludes the proof of (i).

We now turn to (ii). We intend to show that :

C
/ |x—k 7| = Tl (3.12)

Considering the function f defined above, we know that |f(z)| < % So
we may write :

> fa-bE Y ms ¥

ke(Z2)* ke(Z2)* ke(Z2)*

ke(Z2

We now use Young’s inequality, finding that for all & < 1, we have :
k> + [t > ClkP=*[e].

So we infer that :

ke(z2)*
Since a < 1 implies 3 — o > 2, we conclude that (3.12) holds. ¢
Let us now establish a positiveness property on the operator D¢g (We

recall that it is defined by D¢(f,9) = [i, Jp, f( VG(x — y)dzdy =

Jr, (G*r, f)g). We assume here that the support ofm is contalned in {r <1}.
(This implies no loss of generality).

Proposition 3.3 The bilinear form D¢ is positive on the set Yy, = {f €
per FO /\/ | < Hz}er Foﬂ{|.’1?3| > 1})7 fI‘O f =0, and (1—|—|.Z‘|)f S Ll(ro)}

Where the space H), (o N {|x3] > 1}) is defined by the set of all functions

belonging to H} ({|z3] > 1}) N H*(Ty N {|z3] > 1}) that are periodic of
periodic cell ['y.
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Proof : We introduce, as in Section 2, the Fourier transform on I'y, defined
by :

f(n,€) = f( Je~i2mlEstna) gy, (3.13)

where ¢ € R, n € Z? and z = (3: ,x3). By a straightforward computation,
one finds that for this Fourier transform, Parceval’s and Plancherel’s formulas
hold, so that we may prolong it to S/ ( 0). We also have :

per

Vf € 8, (To), D5 (n, ) = i2nEf (n, ). (3.14)
And o R
vf € per( )7 qu € Sper(l—‘ﬂ)a f*l_‘o g = ffq\

So, since —AG = 4mwdy on 'y, we deduce :
47(6 + )G (n, €) = 4.

Thus, when n # 0, we have G(n ) = W

we notice that G(O, €) is exactly equal to the classical Fourier transform of
—27r|3:3| over R. Indeed, putting Go(z) = G(z) + 27|z;3|, we notice that
[ Go(x)dz" is a harmonic function, which goes to zero as |z3] — oo, from
Lemma 3 1. So it is necessarily 0.

Furthermore, the Fourier transform of —27|z3| is shown to be 47rvp(§%) +

ady in [14], where vp(g%) is defined by :

! = lim 4y - = —€
Zhe> = (/M5 I~ 2 (0(6) + 0(2))

e—0t

Concerning the case n = 0,

< vp(
+(loge) (¢'(g) — go'(—e))). (3.15)

In fact, vp(Zz) = —(log|z[)” in D'(R). Now let f € Y. We have :

Dolf,f) = / (G ey )f
= ¥ | Gt o)k

_ (A( 75))2 T v iy 2
"2 o g 4 < () (0.7 >

~

So the only thing to show is that < Vp(%) (f(0,8))* >> 0. We notice that
the belonging of f to Y., implies that | £(0,8)] < Cl€] as & — 0, so that
(f(%i’f))z € L*(R), and (3.15) implies that
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~

< Vp(é),(f(o,g))2 >:/ (F(0.))°

5 d¢ > 0.

This concludes the proof. ¢

3.2.2 Periodicity of the limit

We will say from now on that a function u is symmetric with respect to x;
if it satisfies the equality :

(1, Te, x3) = u(—x1, Ta, T3). (3.16)

And the sequence A will be said to be symmetric if 1p) is.
For all function f, we denote by 71 f the function :

nf(z) = f(z +er). (3.17)

Proposition 3.4 Assume that A is symmetric with respect to x1, in addition
to the hypotheses we have required so far. In the smeared nuclei case, m is
also required to be symmetric. Let (u,d) be the limit of (ua,¢n). Then
ue L*R3?), pe L (R?), and we have :

unif

16— ¢| < (3.18)

1+ |.l‘3|

Proof : The belonging of (u, ¢) to L*°(R?) x L.

unif
the bounds of Theorem 2.2. Moreover, we have :

(R3?) comes directly from

~A(11¢ — @) = 4n(u® — Tu?).

Hence (19— ¢) € Wj;f;f(R?’) for all p > 1, and in particular it lies in L>°(R?),
so the bound (3.18) need only to be shown on the set {|x3] > 2}. Hereafter,
we assume that |x3| > 2.

Now we are going to show this estimate for (u,¢s), uniformly with
respect to A, and hence deduce it for (u, @).

From the uniqueness of u,, we know that vy = my — v is symmetric
with respect to x1. Hence we have :

/ oa(y) Ldy = 0, (3.19)
Br |?J|

for all k <4 and R > 0.
We split the expression of 1y = 75 — ¢ into two terms :
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1 1 Y1
(INE :/‘ vy( - ——)@
o) = N T el el P

1 1 yl
v m@( - ——)@,
o—y|>R z—y+el| |v—yl |y

where R = 122l We call a(x) the first term, b(z) the second one. We notice

that
[l LDy < C
vAlY - — T 30> T
lo—y|<2 [t —y+el |e—yl |yP | 75|
because m - ﬁ + f;ﬁ lies in L'(By +x) and is bounded independently

of x in this space. So we may as well restrict ourselves to integrals over
|z — y| > 2, which is equivalent to replacing |x — y| by 1+ |z — y| in the

integrals. The same remark holds concerning terms of the form \_;I’ which

will be replaced by ﬁ‘y'

On the other hand, we may bound ||$Ji—el‘ - |?1|| by Sl on {|z| > 21,

|
for a universal constant C'. Hence we have, 2’ and y’ denoting the variables
(x1,22) and (yi, yo) respectively :

C
mw|s/‘ :
|z—y|<R 1+ |y3|

C _
< / : 21—y _dy
oyl<r L+ y3P 1+ [z —y]

C
_|_/ - |y1| 3dy
oyl<r L+ |ys> 1+ [y|

1 1 yl
z—y+el| |r—yl |yP

dy

C / dy'
< —=R —_—
(Jzs] = R)*  Jyyj<r 1+ Y2
,_CR / dy'
(|.’L'3| - R)3 |z’ —y'|<R 1+ |yl|2
CRlog R CR? 1
< 5 T 3 2
(Jzs| = R)* ~ (|lzs| — R)? (Jz| — R)
C
< o (3.20)

Concerning b(x), we split it again into two terms, writing :

]_ ]_ yl
o) = m@( - ——)@
le—y|> RoJy|<R lz—y+el Je—yl |yP

1 1 yl
- o) B
le—y[> RoJy|> R lz—y+el| Je—yl |yP
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where R' = |z|®, for some «a < 1.
We call respectively ¢(x) and d(z) those two terms. In order to bound
c(x), we write, for |y| < R’ < |z| :

1 1 —r1 3(1-2x, 2y — 1 R?
— = + = + +0 . (3.21
T ytel Tyl aP 2( f ) zp "+ Olpp) B2
This implies :
1 1 ‘ - CR CR®
lz—y+e| Jr—yl| " |z[* |z

On the other hand, we notice that (3.19) allows us to convert the term
containing f;ﬁ into

Y1
- / UA(y)—3dy7
o—y|<R,[y| <R’ |y

and we have already bounded such a term when dealing with a(z). So we

have :
1 CR 1 CR"®
< [ st [ Sy
wl<r 1+ [ysl® 2] wl<r 1+ ysl® |23

CR CR"®
/ dy' + / dy’
2 3
|33| ly'|<R! |.%'| ly'|[<R!

|l‘|2_30‘ |x|3—5a' (322)

We now turn to d(z). Knowing that we have

1 _ 1 rr — U1 < C
lt—y+e| |e—yl |e—y?|~ 2+ z—y?

on the set {|z —y| > R, |y| > R'}, we infer that :

C
d(z)] < / 0y
oror AT P2+ 2 — )

C |.’E1|
+ 3 3
oy Ry R LT s | =yl

+/ C Y1 Y1
oy/>R >R 1+ [ys]?

v —y[F Jy?

(3.23)
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Here we point out that bounding the second term, which we denote by d; (x),
will be sufficient to bound the first one. In order to bound d;(x), we use the
inequality |z — y| > ||| — |y||, and write :

Cdy
3
o=y >rly>r (14 |ys*) (1 +]||z| = |y]])

|di ()]

IN

|21

|3:|/ Cdz

-~ T 12 , 3

2P 2 s B s (1 |2 (1 + |1 = [2]])
C

R

(3.24)

where we have set y = |z]z.
We now bound the third term of (3.23), which we call dy(z). In order to
do so, we write :

v —yl|* = ly|*
[z —yPlyP(lz —y| + |yl)
|z =y = ly?|(Jz — yI* + |y[*)
|z —yl3(lz —y| + |yl)
22y — |2’ (Jz — y| + |y])

Y1 Y1

lz—yP |y

< |y

< C

- 2z —yf?
< C|33|(|y| + | —y|)?
- ly2|z —y?

1 1
< C’|x|< e )
lz—yl®  |yl*z -y

Hence we see that dy(x) may be bounded by the sum of two terms, the first
one being equivalent to d;(x), and the second one, which we call ds(z), being
dealt with as follows :

¢ ]
d3(z)] < / dy
ale) eyi>r >R 1+ [y T+ [yPle —y]
|zl C dz
B B e U e Ve Bl
C
T 3.25
P (3.29
Hence, collecting (3.23), (3.24) and (3.25), we find that
C
|d(2)] < 5 (3.26)

>
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Thus, gathering (3.26) and (3.22), we find that

ba) < o+ Y C
280 " |gpee g2

Choosing now an « such that o < % and o < %, we find that

b(z)] < . (3.27)

There only remains to collect (3.20) and (3.27) to conclude that (3.18)
holds for ¢,. Now, since this bound is uniform with respect to A, ¢ inherits
it. ¢

We now need a lower bound on wu, which is the aim of the following
proposition :

Proposition 3.5 Let (u, ¢) be a solution of (3.10), such that u € L°(R?),
u>0, and ¢ € L}mif(R:‘). Then for any R > 0, there exists a constant v > 0
such that inf ., cru > v.

Proof : We follow exactly the steps of Proposition 2.4, and arguing by
contradiction, build ¢ € L. ..(R?) solution to :

unif
—A¢Y = drp(- + 2°). (3.28)

This is exactly where the proof differs : we are going to use here again a
scaling argument, but the scaling function needs to be chosen differently.

Let & € C*°(R), such that §, =1 on [—1,1], & = 0 on [—2,2]¢, |&]| < 4,
and 0 < & < 1. Let ng : R — R be defined by follows :

- nr =1 on [-1,1].
- r(t) =1+ 2001 < |t < R,

- nrg =0 on [—-R, R]".

We denote by {g the function {z(2) = nr(23)&(F). And we compute :

< AP, Ep > = AT <Moo, R >
,

= dr ) <ml+k)&(p) >

kez?

.

> dr Y <+ k) &l(p) >

keZ2,|k|<2R
> CR% (3.29)
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On the other hand, we have, denoting by Qg the set {r < 2R, |z3] < R} and
by wg the set {r < R, |z3| <1} :

< A ER> = /Q VUV

8§R aé-R
= —-A — —.
/QR\wR i ¢a) ¥ 43|R,r<2R v on " /:C31,T<R v on

Since —A&r = —nr(23)A&(F) = mr(rs) (R (F) — 728 (£)), the first
term may be dealt with as follows :

/ b(-Ag)| < -
Qr\wr

¥ ()]
— Y|+ / dx
R? Qr id Qr\wr rit

R3 C 1/2 2R d 1/2
< o q([f) (L)
R R Qr\wr R T

3/2

R
< CR+C
S + 7

(Rlog2)"? < R2. (3.30)

Concerning the remaining terms, we have :

aé-R C’ R2 )
w—é/ b < O <RV 3.31
‘/stlR,r<2R 0x3 ‘Is‘:R7T<2R| |R R ( )
And :
aé-R / O RZ )
s | = = S C— <R 3.32
‘/|;73|:1,7‘<R¢8x3 - |zs|=1,r<R |w|R — R ( )

Hence, collecting (3.29), (3.30), (3.31) and (3.32), we infer that (3.28) is
in contradiction with the belonging of ¢ to Ly, O

We now state a uniqueness lemma that will allow us to conclude that u

and ¢ are periodic.

Lemma 3.2 Let (u, ¢) and (v, 1) be solutions to the system (3.10), satisfying
the following :
(i) u,v € L®(R?), and ¢, € Ly, (R?).

(ii) There exists a function U € L*(R) such that |¢ — |+ |u —v| < U(z3).
Then u=wv and ¢ = ).
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Proof : The firsts steps of the proof are exactly those of Lemma 2.3. We
thereby skip it, and start with equation (2.49), that is :

2¢2 2 2 1 _ )2 2
[ o< [ wrvepeg [ @-vPver sy

where v is a positive function depending only on z3, w = u — v, and £ is any
smooth function with compact support.

We apply inequality (3.33) to a sequence &, converging to & defined by
follows :

o &(x) =1— %= on the set {r < R}.
e £(x) = 0 elsewhere.

where R > 0 and o > 0. Hence (3.33) is valid for this choice of . For such

a &, we compute that

r2a—2

R2a ’

/ vw?e? < §/ ozzEU(a:g)2
R3 - 2 R3 R2a

3 R 7,,20:—1
< §||U||L2(R)/ O£2 2mdr
0

VEl* = o

So we have :

R2a
3

We let now R go to infinity, deducing, from the monotone convergence the-
orem, that we have :

3
/1{3 l/’LU2 S §7TOC||U||L2(R)

Since this holds for any a > 0, we let now « go to zero, and find that :
/ vw? = 0.
R3
This implies that w = 0, since v is positive, hence that ¢ = ¢. ¢

3.2.3 Convergence and identification of the limit

We recall the periodic variational problem I, :

Lyer = nf{Epe, (p), VP € Xper, / p=1}, (3.35)
I'o
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where E,., and X, are defined as follows :

Xper = {v € HL,(To), (1+ |z])2v € L*(Ty)}.

Eprp) = Jo, IVVol + [ 0= [ Gy mao
1)

+ %/FO /FO p(x),zzy)G(x — y)dudy.

We are now able to state the following theorem :

Theorem 3.2 Let A = Ay x {0} be a Van Hove sequence in the first two

directions, that is, Ay is supposed to be a Van Hove sequence of Z?. Assume

in addition that A s symmetric both with respect to x1 and with respect to o

(in the smeared nuclei case, we also assume that the measure m is symmetric

with respect to x1 and x2). Denote by py = u?\ the solution of Ix. Then uz
2

converges to Upey in HY(Ty), Pper = Uy, being the minimizer of the periodic

problem I,e,. Moreover, we have the following estimates :
(i) Uper(x) < W for some constant C' > 0.

(1) There ezists a positive function v depending only on x3 such that we
have : v < tpe,.

Proof : We know that (us,s) is bounded in H'(To) x L ;(R?), for all
p < 3. Hence we may pass locally to the limit in the system (3.1)-(3.2).
Denoting by (u, ) € H'(I'g) x L,,;;(R?) the corresponding limit, we find a

solution to the system (3.10), that is :

—Au+ 2u"? —up =0,
—A¢ = 41 ( Mo — u?).

From the a priori bounds shown in Theorem 3.1, which shows in partic-
ular that u < W, and from Proposition 3.4, we know that, applying
Lemma 3.2, we find :

) = .

On the other hand, all the symmetries being also satisfied with respect to
x9, we deduce, denoting by ¢ the function ¢(- + e3),

29 = ¢.

This implies that ¢, hence u, are periodic with periodic cell T'y.
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From the estimate of Theorem 3.1, we also deduce that u € X,,,. We are
now going to prove that

/F u? =1. (3.36)

In order to do so, we introduce the functions :

Y(xs) = /[_; » d(x)dxdr,.

and

f(xg):/  dr(mag(a) — u(e)?)da,

[—3,5)°

Those functions satisfy the differential equation
—y" = f
920

. 824 _ C
since f[*%:%P (a_x% + 8—x%)dl’1dl‘2 = 0 from the periodicity of ¢.

Furthermore, ¢ € L*®({|z3| > 1}), hence ¢ € L*([—1,1]¢), so from the
estimates on u, we deduce that

Yy € LY [-1,1]%).
On the other hand, ¢'(t) — ¢'(1) = flt f, for all t > 1. Hence we infer that
Y e L™([1,00)).

Those two properties, together with the equality

/ " = ) — B (1) — / e,
show that
= L2([1,oo)).

Repeating the same argument for ¢ < —1, replacing 1 by —1, we conclude
that
Y e L*([-1,1]).

But ¢’ has a limit at infinity, namely ¢'(1) + [° f, so this limit must be 0.
The same results holds concerning its limit at —oo, so that we have :

/ " =lim¢y)’ — limvy' = 0.
R oo — 00

This implies [, —A¢ =0, hence (3.36).
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The next step is to show that
¢ = G *p, (Mog — u?) +d, (3.37)

for some d € R. Noticing that ¢ — G *r, (ms, — u?) is harmonic over R?, and
periodic with periodic cell ['y, we conclude that it is sufficient to show that
G *r, (Moo —u?) € LL ..(Ty). And from Lemma 2.2, we know that

unif

(G(x) 1y 27r|x3|> e L®(Ty).

]

So we only need to prove that

1
m *1y (Moo — u?) € L}mif(ro) (3.38)
and
23] %1y (Moo — u?) € L}mz.f(l“o). (3.39)

(3.38) has been shown in the course of Lemma 2.5, so we only provide a proof
of (3.39) :
Since we already know that the convolution product arising in (3.39) lies

in L},.(T'y), we only need to bound it as |z3] — oo. (3.36) implies that we
have :
[ e = )@l = wokdy = [ (o = )3 = 5] = s
FO l—‘0

Letting R = /|z3|, we have, for |y;| < R, and |z3] — oo,

RZ
|23 — ys| — |23] = —y3 + O(—) = —ys + O(1).

| 3]
Hence we may write :

sl ory (moo = o)) < [ e = () s~ sl =
Fon{lys|>R}

[ e = a?l(0) (] + )y
Fon{|ys| <R}

VAN

[ = )l - o+ sy
Ton{[ys|>R}

s Gl )1+ by
Pon{lys| <R}

Those two terms are bounded because u € X,,,, so this concludes the proof
of (3.39), hence of (3.37).
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Now, this implies that u? is a solution of the Euler-Lagrange equation of
the problem I,,, namely :

5
—Aﬂﬂgﬂm—<GﬁAmm—m+%0v$:0

(Oper is the Lagrange multiplier associated with the constraint in I, .)

On the other hand, the problem I, is convex because D¢ is, since it
is bilinear and positive, on the set of the test-functions of I,.,. So u is the
solution of I, which is unique. Thus, the convergence does not only occur
for a subsequence of u,, but for the whole sequence. {

3.2.4 Convergence of the energy

This paragraph is the exact analog of the corresponding one in Section 2.
We start with the definition of interior domains, which is exactly the same
as in Section 2.

Definition 3.1 Let A C Z? x {0} be a Van Hove sequence in the first two
directions. N will be said to be a sequence of interior domains, denoted by
AN CC A, if it satisfies the following properties :

(i) ' C A.

(ii) For any finite subset A of Z?, there exists an hy € N such that Vh >
ho, A C A},.

(iii) Bl — 1 as A — oo,
(iv) d(A', 0T (A)) — o0 as A — o0.

For now on, we assume that the sequence A satisfies the hypotheses of
Theorem 3.2, that is, in addition to the Van Hove hypotheses, A is supposed
to be symmetric with respect to x; and w9, and so is m.

Next, we state the following theorem :

Theorem 3.3 For any sequence ' CC A and any R > 0, we have :

|ua — tper || oo (rary) — 0, (3.40)

|6A — Bper|| Lo (A {jesl<ry) — 0, (3.41)

as A — o0o. (We recall that ¢per = G *r, (m — uZ,,) — Oper )

per
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Proof : The proof starts exactly as that of Theorem 2.5, except that The-
orem 2.4 is not available here. Hence, we slightly modify the proof in the
following way : w, will not be uy (- 4+ z,), but :

EA = U,A(' + (.’I?A)geg).

Hence, the same convergence argument hold, except that we notice that m, =
ma (-4 (x4 )ses) defines a Van Hove sequence, since x5 € I'(A'), and that it is
symmetric with respect to both x; and z5. Hence the proof carries through,
replacing the use of Theorem 2.4 by that of Theorem 3.2, or (equivalently)
by the fact that I,., has a unique solution. ¢

We end up by stating the energy convergence Theorem for solid films :

Theorem 3.4 For any Van Hove sequence, symmetric with respect to x

and xo, we have :
Iy M
— — T or _
AT

as A — oo.

Proof : Here again, the proof is not different from that of Theorem 2.6, the
only thing to check being that we have :

C
Vuyp| < ——.
| A| =14 |£U3|3/2
And this easy to prove from elliptic regularity, together with the bounds we
have on uy and ¢,. ¢

4 The Yukawa case

We give here without proof some results that can be obtained on the Yukawa
case.
Replacing the Coulombian interaction potential I?ll by the Yukawa poten-

tial defined in (1.11), we get :

—Auy + guj\m — upopp =0,
—A¢A + a2¢A = 47r(mA — ’LL?\), (41)

U,AZO

The limit system (1.9) being modified in an analogous way. Next, we notice
that in this system, we have added a coercive term in the second equation.
This fundamental difference allows us to show stronger uniqueness results,
as the following one :
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Theorem 4.1 Let ju be a nonnegative measure, having its support in the set
{|z3| < 1}, and satisfying the following :

(H1) sup,erexiop #(B1 + 2) < +oo.

(H3) limp_oinf er2x 0} w = +00.

Then the system

—Au+ 34" — pu =0,
—Ad+ a*p = dr(p — u?), (4.2)
u > 0.

has a unique solution (u, ) in the set

{(u.¢) € Lj) N L2, /(R®) x Ly, (R?), Yh >0, >0}
z3|<

Furthermore, this solution belongs to Wf;f;f(R:") x LP . (R3) for all p < 3,

and there exists a constant C' such that u < W

A similar theorem is also valid in the one-dimensional case. This implies
that we have convergence results in both cases (namely solid films and poly-
mers), at least for the density, provided the finite problem I, with Yukawa
potential has a unique solution p,. This is the case for instance (see [5]) if a
is small enough.

On the other hand, the use of the Yukawa potential destroys the com-
pactness of the sequence py (in the sense of (2.10) and (3.3)). In fact, this
potential is too weak at infinity to prevent some of the electrons from escap-
ing at infinity. Thus, the periodic variational problems I, in addition to
the potential change, will bear a different mass constraint.

Alternatively, in the spirit of the results displayed in [5|, Chapter 4, we
have :

Theorem 4.2 (Here I'y denotes | — %, %]2 x R, and r the cylindrical radius

Vai+a3.) Let p > 1, T' a Ty-periodic potential lying in Ll (R?) for some
q> 2;’—32, such that TT < %IZ as |x3| — oo. Assume that there exists R > 0
such that the first eigem}a)ue of the operator —A — T with periodic boundary
conditions with respect to (x1,22) and homogeneous Dirichlet conditions with

respect to x3 on Uy N {|zs| < R} is negative. Then the equation
—Au+u? —Tu=0 (4.3)
has a unique nonnegative non trivial solution in the set

{ue H,.R*) /Vz e R*ue H' (I, +x)}.
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This solution satisfies :

C
uw(@) < ————-,
1+ |zs|e-t
for some constant C' > 0.

Here again, a similar result may be stated in the one-dimensional case.
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