Design Patterns for Persistence Management in
Reflective Object-Oriented Languages

Stéphane Demphlous Franck Lebastard

CERMICS / INRIA Database Team
2004, route des Lucioles,
B.P.93, F-06902 Sophia Antipolis Cedex, France
Email: {Stephane.Demphlous, Franck.Lebastard}@sophia.inria.fr

ABSTRACT

The reflection paradigm has proved to be useful both for both programming langondgietabases. We
think that there will be a growing need to design, with an objeentwd reflective language, persistent
applications that are client of a server database manageysésins These applications can themselves
include several instanciation levels. In this research report wedeoriee ways to manage persistence in
reflective object-oriented programming languages. We justify pdrgistence can be added through a
class library. Then we propose several design patterns, depending chroslem persistence paradigm,
the constraints enforced by the language, or those enforced by theedeSigese design patterns take
into account some important properties of most of reflective lamguag particular, the ability to define
several instanciation levels. So the designer of an applicatiorcltaose one of the proposed object
models, according to her/his needs and the properties of her/his language.

RESUME

Le paradigme de la réflexion a témoigné de son utilité & ladais le domaine des langages de
programmation et dans celui des bases de données. Nous pensons queapgeetéra des besoins
croissants de définition de clients de systémes de gestion de dmskoonnées serveur au moyen de
langages de programmation réflexifs a objets. Ces applicationemiezlies-mémes comporter plusieurs
niveaux d'instanciation. Dans ce rapport de recherche, nous prenons en considératgeiede gérer
la persistance dans des langages de programmation réflexifeta. dpus justifions les raisons pour
lesquelles la persistance peut étre ajoutée au moyen d'une bibliotleeglasses. Puis nous proposons
plusieurs patrons de conception, compte tenu du paradigme de persistarste desoicontraintes
imposées par le langage, ou de celles imposées par le conceptgepat®ns de conception prennent en
considération des propriétés importantes communes a la plupart des landegi¢s, €ifen particulier la
possibilité de définir plusieurs niveaux d'instanciation. Ainsi, le quiece d'une application peut choisir
un des modeles a objets proposés en fonction de ses besoins et des propriétés du langage.

1. INTRODUCTION

A key to design modern applications is to use the client-servadigan. When an application needs to
create or to manipulate persistent data, a good policy is to degigrsistent client connected to a server
database management systemMsS).

Now, the reflection, defined in [2] as the ability for a programntanipulate as data something
representing its state during its own execution, and the reflectradligen [5, 10, 19] have become a
major issue for system definition. Languages and tools [1, 11, 12] lideaed the use of reflection. So
client persistent applications may be built using a reflegtiegramming language, or can be themselves
reflective.

Moreover, adding reflective propertiesdBMSs appears to be very promising: it helps to adapbsives
data model, that is, the formalism in which user data and theiitiefi (metadata) are expressed and
controlled. The intercession property of many reflective systelefned in [2] as the ability for a
program to modify its own execution state or alter its own int&apo& or meaning, can be applied to a
DBMS, allowing the user to modify or to extend the data model. Several studies have showmdkedhte
this approach [9, 16, 17]. Vodak [17] and Tigukat [24] are fully reflectibgect-orientedDBMSS
(ooDBMS).

So we believe that, in a near future, there will be growing nefegesrsistence management in reflective
models with intercession properties.

One of the interests of a reflective object-oriented systeto be described as an object model. The
persistence properties of such a system should be described asfalmarobject model. An aim of this
research report is to show how a persistent reflective objedeintan be defined. But we widen the
scope. Some reflective object-oriented languages are actualy lng designers — for example,
Smalltalk [12] or Cos[1]. These designers would probably like to design persistent applications in these
transient reflective languages, for example, in order to encapsulate an existingflectivebBms by an
end-user application having introspection properties. In that casepud not provide for the needs of

the designers by showing that a persistent reflective langragée created. As a matter of fact, we
would implicitly ask the designer to modify her/his language, oewwite it from scratch. A more useful
work would be to show how persistent applications can be designed in transient eeffemivages.

So there is a need to offer design patterns for persistencedibira object-oriented reflective languages.
These languages have some specific properties. There are ,obgletd metaobjects, that represent
elements of the programs or of the language itself. For exarglesldsses are objects, called class
metaobjects, instance of metaclass metaobjects [15]. The provided desigrspatter

O should be language independent;

O should take into account some properties specific to reflectionfHikénstanciation relationships
between objects, or the different instanciation levels;

O and, finally, should solve the problems induced by the coexistence oktraasd persistent objects
or metaobjects in a same application.

In this paper, we aim at providing such design patterns, and justifiyarg. This research report is
divided in six parts. We first show in the section 2 why persistebitéies can be, and should be, added
to a class-based object-oriented reflective system using act obgelel. We show that the management
of an instanciation branch is one of the specific problems encountereddesigning a class library in
such a reflective language. We propose then, in the section 3, sebgeat models to manage

persistence, according to the capabilities of the language. The=e aljdels raise some problems
related to the management of transient and persistent clasdet) the compatibility of metaclasses.
They are treated in the sections 4 and 5. Then, in the section 6, weoapproposals to the reflective
object-oriented language Power Classes. Finally, we consideeldted works and we conclude the
research report.

2. OBJECT PERSISTENCE IN A REFLECTIVE CLIENT
2.1. The persistence property: a consequence of message passing

In many persistent languages, the persistent objects are irsstzir@eommon class because they must
receive messages related to persistence, like lockingagess$4, 20]. In short, the persistent objects
must be instances of a common class in order to be manipulatedsesdepérobjects. However, the
possible need of an object to be instance of a specific classshar® a specific metaclass, in order to
be persistent has not been clearly shown in previous works. We lignk &an important question since
the answer may justify our will to design a class librargritter to add persistence to a system. We study
this problem in the following lines and we show that the persistpnogerty of an object can be
managed only by message passing.

Creating proxies

Let us assume for the moment that, when created, a persistent object is, in the pliexy of the actual
object in the servepobBMS. When, in the client, an instanciation message is sent to ac¢classame
message is sent, in the server, to the glass,., associated to. An object is created in the server and a
proxy, associated to this newly created object, is created inligmt. d'his architecture implies that a
special, that is, persistent, instanciation message is seim¢ twassc. In order to receive a persistent
instanciation message, a class must be instance of a metacslasich this behavior has been defined.
So we need to define a special, devoted to persistence, metaclass.

In this approach, the persistence is defined at the meta levaasA does not need to inherit from a
special class in order to allow its own instances to be persidigt must be itself instance of a special
metaclass.

Client Server DBMS
standardMClasg PMclass :
: PMClas
new new : ‘A
b : j CAPTION
" new: 3 [] metaclass

1 2 1 O class
}/D@ : —
} ‘ behavior

: f A ~~'= B Alinstance of B
: O A —* B A inherits from B

proxy persistent objegt m/‘> message passing

Figure 1. Instanciating objects on the server and defining proxies in the client.

This approach is summarized in the figure 1.

Replicating persistent objects in the server DBMS

A different point of view can be taken. One can consider that antabjficst transiently created in the
client, and then it can be replicated in the seo@pBMS. A transient object becomes persistent when it
is replicated. This architecture can be interesting: it canskéul to keep two versions of a persistent
object, one in the client, and one in the server, to minimize the comationis between the client and
the server.

Client Server

CAPTION
O class
—1
behavior

: A "= B Ainstance of B
save m_~S message passing

Figure 2. Replicating transient object.

We think that the object replication must be realized by megsggng. First, replicating an objecon

a server means, semantically, performing an operatiom. dWoreover this replication can lead to
modifications ofo itself, for example it may store any kind of reference torépdicated object in the
server. According to the object-oriented paradigm, the operations onsobgee to be realized by
message passing.

This second approach is summarized in the figure 2. A messeges sent to an objeet instance of a
classc. The classc)..r associated, in the server, to the clads then instanciated.

Persistence and message passing

So we state that, in a client-server environment, when the asestan object-oriented reflective model,
the creation of persistent objects is always the consequence of message passing

O The use of proxies implies that persistent objects share a common metaclass;

O The use of the replication approach implies that the persisterdt®ltje instances of a common
class.

Now we have to decide whether these persistence-related behshootd be closely integrated to the
language or should be designed in an additional class library.
2.2. Persistent languages and persistent libraries

Two approaches can be taken to manage persistence in a reflective objeet daieguiage.

The first one is to design the native metaobject protocol of tiguéme so that the whole language has
persistent abilities.

Let us consider the ObjVLisp model [5]. In this model, the ctaszct is the root of every inheritance
tree. The class1lass is a metaclass that inherits framject. The class1lass is instance of itself and
a class is instance @fLass.

O If we want to use the proxy approach, then we can define a new iastamdiehavior on the class
class, that creates persistent objects on the server.

O But if we want to use the replication approach, we have to defindieoddssobject, a behavior
that replicates the target object on the server.

Since every object in this language is instance of a clasmti&its from the classbject and is itself
an instance either of the classass itself, or of a subclass eflass, any application will be persistent.

This example shows that a persistent and reflective object-oriented langndaue louilt.

However, in this paper, we have a different point of view. We consider that aetesigy want to build,
with a programming language that is not natively persistentppglication managing persistent objects.
In this case, the following question arises: how can we design, wehake transient language may be, a
library that manages persistent objects, metaobjects, classes andissett!

2.3. Management of an instanciation branch

We show now that the previous questions are related to a problens tepécific to class-based
reflective languages: the management of different levels of instamcratationships.

We first define the following notations that we will use in the rest of this paper.

Notations

Let us assume that an objeds a direct instance of a clagsthat is,c is the most specialized classcof
We use the notation < c.

Now, let us consider an objegt with i > 0. We state thad, , is the most specialized mé&talass ofo,.
That is,0; is a direct instance af.; (o; < 0,-,), 0,1, is itself a direct instance of , (0,-; < 0;,) and so
on, till 0, 4 is reached.

Finally the notatiorr < d means that the clagsnherits from the class.

Persistence of an object in an instanciation branch

Let us consider that we want to define a persistent objeict the client. According to the chosen
persistence paradigm, this may mean either that we want tagedistent instanciation message to its
most specialized clasgg-;, in order to create,, or that we want to send a replication messagg itself.

In short, in order to get, persistent, we need to send a message.... which semantics may be

related to the instanciation or to the replication process, to ant ehjdlcat may be equal t@, ; or o,
according to the semantics mf, ience-

In any way, the persistence @fimplies that, in the server, the class metaohj@ct)..... exists, and is
associated to the class metaobjgct of the client. So an objety) e < (0 1)serer aSSOCiated to; is
created in the server.

The objecb,_; must have been previously set persistent in order t, petrsistent. Since; is persistent
when the message,........ IS sent to the objeat;, the objecto,,; is persistent when the message
Mpergisience 1S SENE tO the objeet, ;.

Management of the instanciation root

Let us assume that belongs to a finite branch of direct instanciation relationshipsjghttere exists a
class metaobjeat;, metdclass ofo;, which is instance of itsélf By induction on the instanciation
relationships, we see that, first, the messagg;.... must be sent to,, then too,,, to oy, ..., and
finally to o..

According to this proposal, sineg is instance of itself, its associated class metaobjedtansérver
(09)srver Should be created by sending to itself an instanciation messages thiviously a paradox. But,
if there is an infinite tower of meta-levels, and if theraégther a cycle, nor a root, on the instanciation
branch, the regression in the branch would be infinite and no object would be created on the server.

In order to solve these problems, we assume that the ebjeas not been created by instanciation. The
main idea is to consider that, for a given instanciation branch, veechelient and a server that share at
least a common class metaobject. This does not mean that we have necesaary thegiage or model

in the client and the server. There may be, in the client, olgadtslass metaobjects instances,ahat
belong to the language but that are not present in the server. Mpria@es not mean that must
necessary exist in the server. Being able to manage instaineeas if (0y).... €Xists is sufficient (see,

for example [8]). Note thab, can be any language or user-defined class metaobject instead of a
instanciation root.

We sum up the problem we face by the following three points:
O There is, at least a class metaobjgddommon to the client and the server.

O There are transient objects of the client that we cannot chanigese objects may be standard
metaobjects, or class metaobjects, of the language that areeeehipin the server, or they may be
classes of a user library that cannot be modified.

O There may be objects of the client that can be changed — for exammplelasses of an user
application being designed.

We show now how persistence libraries can be designed, accordinglémgege properties and the
needs of the user.

! The class:1ass in ObjVLisp corresponds to,.

3. DESIGNING THE OBJECT MODEL OF A PERSISTENCE CLASS LIBRARY
3.1. Managing the instances of a natively persistent class
We consider in a first time that we have, in the client, no class metaobjearnhat be changed.

We have stated that a class metaohjetd “natively persistent”. However this does not imply that all the
instanciation sub-branch rooted @rcan be considered as persistent.

As a matter of fact, let us consider thats the meticlass of an objeas,. If we can modify all the
class metaobjects ,, ..., o,;,, we can design on them an instanciation or replication beh@ayiQtec..

But we cannot modify;, itself. Soo,.; will not be able to receive the messagg.ience. If Mpersistence 1S @
replication message, the object cannot be replicated. #f,....;..ncc IS @ persistent instanciation message,
since it is defined neither an nor ono,.,, the persistent objects ; ando,., cannot be created.

Using the replication paradigm
We propose the following model to manage persistent instances when using the replication

paradigm. We define, in the client, a cldgs (its name stands for “persistamt) with the following
properties:

O Po, <o,
O Poy=< oy

O Po, specializes the behaviot,........ (that is, the replication behavior) with two special semantics:
(1) when an instance &b, receives th@z,.,...... message, it does not send it to its own class; (2) the
Myerisience DENAVION INStanciates thiey) ..., class associated to,).

As a consequence of these rules, has no associated class in the server.

We require thab,; be an instance dfo,. We can note that it is still an instancenpfWhen the object;.

; receives the messagg. e, the behaviom,,..... defined onPo, is invoked andan instanciation
message is sent, in the server(d@...... The objecto,.;)sme < (0y)wmeiS created. The only difference
betweeno,, and 0,). IS the impossibility to send thes,.,gm.. Message to 0 1) server-
Nevertheless, this impossibility is not a problem since the s#e8a0f 71,,.,5enc. 1S t0 S€t persistent a
transient object an@;.)., IS already persistent.

Using the persistent instanciation paradigm
We propose a similar approach to manage the persistent instamgatiadigm. We define a similar

classPo;. The only difference is that,.,.nc. IS @n instanciation message. So there is, of course, no need
to send it to the receiver’'s own class. Moreover we define aszlaBs,; which properties are:

O subPo, < Pog;

O subPo, < Po,.

When the message,.sisnce iS sent toubPo, an 0bjecto, ;) semer < (0y)sermer IS Created.

3.2. Modifying an existing model

When the designer defines a new application from scratch, s/haeze a clasg; — which notation
stands for “persistent object” — and define on it the behawigfi..... Then s/he defines the claBs
and defines on it the specializationmy,;.... that we have proposed.

Finally, s/he can specify her/his own classes oy, ..., 0,.; as follows:
O oy, < Po,oro,; <subPos according to the semanticS/maf. ience;
O Oie€[0,s-2],0, <p;, thatisdi € [1,s-1], o0;,<p;.

Since several instanciation levels of a same instanciatiorchrimherit of a same clags, metaclass
compatibility problems can arise according to the classes and metaoligssad’e study this problem in
the section 5.

3.3. Extending the model using multiple inheritance

The previous model implies that all of the class metaobjects., o,.; can be modified. This may be
impossible if there are, in this list, some standard classobjetas belonging to the language, or class
metaobjects reused from a class library. In this case, ifatiguage allows multiple inheritance, we
propose to define new persistent class metaobjects {., o’.;} inheriting from the transient class
metaobjects:

O Oie€[l,s-1],0<0,ando’ < py;
O 0ie[0,s-2,0<0’

O o’ < subPo, or o’y; < Po, according to the persistence paradigm (persistent instanciation or
persistent replication).

The user must use the class metaobjedts..., o', instead of the class metaobjeots ..., o,.; and
instanciate the class’, instead ofo,. Owing to the object-oriented paradigm, this will cause no type-
checking problem. However, the management of the inherited trarsttgatand methods can be a
problem. As a matter of fact, we have to manage a graph obteatsand transient class metaobjects.
We discuss this point in the section 4. Moreover, as previously, lamtacompatibilities have to be
checked. This common problem is presented in the section 5. An applied example of this apprbach c
found in the figure 8.

3.4. Copying dynamically a transient object model

The most difficult case to manage is when some class meteobg@mot be modified and the language
does not allow multiple inheritance.

A first proposal would be to subclass each classin.{., o..;} by a classo’; < o; and to define on each

0, j € [1, s-1], a behaviom,,,s...c. dedicated to the persistence management. However, if there are
many classes and many instanciation levels, this is obviousigsaderable work. So we propose to rely
on the introspective properties of a reflective language.

Let us consider that we have a transient ohjestich thab; <l o,-;. We want to create another persistent
objecto’;, instance of a class metaobject ; < p;. The objecto’; has no link witho; or 0., but it is,
semantically, a copy af.. The class metaobjeat; , is itself instance of a copy of,,. So any message
that can be sent g can be sent to’.. It will be executed in the same way @hthat it would have been
executed om,.

The goal is in no way to try to set persistent the alas®r the objecb,. We do not pretend that; and
o’i-; should be used in the application instead,&ndo,.,;. After all, the type checker of the language
would not allow it. But if the designer has a transient applicatioiclwdata and models are important to
store and to share, s/he can realize a copy of this model anddttas& he identifiers and the actual
types of the copied objects and class metaobjects are diffeeenthe original ones, but the semantics
and the encapsulated data are identical.

This proposal relies on the dynamic and introspective propertieseffeative language: the language
may be able to inspect objects, metaobjects and class metaohjects dynamically create classes and
metaclasses.

Proposal of an object model

This proposal implies that a copy instanciation behavior can be defieeds consider two classes
ando’;, let us assume that the properties of the first one are a sifitibetproperties of the second dne
and let us consider an objegt <l o;. It must be possible to send a copy instanciation message..;)
too’; in order to get a new objeet.; <l o’; encapsulating data equal to the data encapsulated.by

We use two notations:

O o’ « new(o,;) means thab’, is instanciated to create a new object, or class metaobjecty ’.; <
0, semantically equal ta, ;.

O o’ « new(or; ¢) means that the metaclas$ is instanciated to create a new class metaobjget
inheriting from the class metaobjegtsemantically equal to.;.

So, if a designer has a persistent instanciation brapeh, ..., o,; (with o,; < o,) that s/he wants to
duplicate into a persistent instanciation bram¢ho’;, ..., 0’..;, we propose to use the following model.

The classe®o, andsubPo, are the ones described previously. Moreover, the copy instanciatiovidseha
new is defined onPo,. We assume that the behavien is also defined on a clas®pyClass inheriting
from the persistence clags So, in order to get’, the following messages must be successively sent:

2 We do not mean that; should inherit fromp, but we require that the selectorsoptan be found im’; with the
same types and properties.

O subPos, — new(o’s,;, CopyClass);
O foridecreasing from-7/t03, 0", « new(o,;, CopyClass);
O o’y « new(oy, py);

O o'; « new(oy);

With this model, every object from the set o’y{ ..., 0’s;} can receive the persistence message
Myerisience- W€ present in the figure 3 a schema summing up this approach. figtinés the persistence
messagen,..s.q... 1S the replication message. Note that this approach has a dkavdlaat transient
object is replicated in a persistent object. This can lead to an importanioivastenory. In order to save
memory, the primary encapsulated data should be shared betweenghentrand the persistent objects.
This approach should be used only when the others cannot be used.

4. MANAGING TRANSIENT AND PERSISTENT CLASS METAOBJECTS
4.1. Transient and persistent objects

We have presented, in the section 3.3, a way to add persistence psofgedn existing object model,
relying on multiple inheritance. The main idea was to creatdelass:’; of a transient class, with an
equal semantics, then to useinstead ot..

Now we need to ponder on the relationships between persistent clasbjeets and transient ones. In
most of the reflective object-oriented languages, the inheritaatagonship between two classes finds
expression in a reference link between the two class metaobg=susiated with these classes. Thus, a
persistent class metaobject inheriting from a transient class matasba persistent object referencing a
transient object.

A common way to manage persistent objects is to use the paratligensistence by reachability (see,
for example [4]). When, after a transaction commitment, a potgngatisistent objeact is stored in the
database, every potentially persistent object that can be reachedtfiiough reference relationships, is
stored. No transient object can be stored in the database

Since classes are objects, the same management is done folf thgrarsistent class’; inherits from a
transient class;, then the class metaobject will have, in the server, an associated class metaobject
(c’)semer DUt the referred class metaobjectvill have no associated object in the server. So, the server
class metaobjeet) ..., has no superclass.

As a consequence, all the slots and the behaviors defined in the;,classneither defined in, nor
inherited by,)server- ANy 0bject(c’. ;) server, INStANce ofc’)s.ver, SUPPOSed to be associated to an object

% In this section, we name “transient objects” thxeots that are not potentially persistent. They definitively
transient.

¢’.; of the client, does not encapsulate the data encapsulated liyat have been defined on In the
same way, all the messages corresponding to behaviors defirgdlmt can be sent g, cannot be
sent to(ci—l)xcrver-

This can be useful in some cases, for example, when a superclass dfagously transient semantics.
However, it cannot be generalized, since the object model proposed sed¢hen 3.3 would be
meaningless.

4.2. Inheritance management

Two approaches can solve this problem:
O redefining in the subclass the slots and behaviors of the superclasses;

O using introspection to dynamically inspect transient metaobjects.

Specializing transient properties

A first choice can be to let the designer redefine in the pensisubclass, all the slots and behaviors of
the transient superclass that s/he wants to be treated as persistent.

Of course, the designer can specialize these slots or behawo@dig to the possible properties of
the language meta-level, a transparent rerouting towards tbeetmsebf the superclass can also be
implemented [7].

Inspecting the transient class metaobjects

A second approach relies on the introspection properties of a nedléatiguage. The main idea is to
design the persistence behavior (instanciation or replication) so that, when invakethss metaobject
¢’;, the inheritance relationship is isolated. Then the inherited transietaobjects are dynamically
inspected. Finally, the direct slots and behaviors of the generatadt@eat class metaobjeet’) ... are
the set of the direct ones ©f and the ones inherited from the transient superclassgés of

For example, let us suppose that, in the client, the persistent ¢ldefines the direct slots, ..., s, and
that the transient superclagsof ¢’; defines the direct slots,_;, ..., s,. Then, the direct slots of the
generated class metaobj@&ct) ., Will De s, ..., Sy Sty oovy S

The first approach implies that the designer chooses the persistsreind behaviors of her/his transient
classes s/he wants to consider as persistent. S/he has to feechvpersistence contingencies. The
second approach implies that all the slots of a transient class becomesmpersiste

4.3. Slot types
Problems of type declaration in the server

Some type problems can occur in a client environment where traasigrgersistent class metaobjects
coexist.

Let us assume, for example, that a transient eldsss a slot which type is a reference to an instance of
another transient class. Let us consider that a persistent cldss< d; has been defined. When a

persistent class’; < ¢; is defined, the slat should be specialized in; so that its type be a reference to
d’;instead of a reference &b

As a matter of fact, it is not possible, in the server, to défirtee class metaobjegt’).... @ slot which
type is a reference @)....- This last class does not exist in the server sihcea transient class. But
the class?’; is persistent, so the associated clasSg,..... exists in the server. As a consequence, a slot
which type is a reference &b; can be described i@’).rver-

However, there may be some cases where the type of the idhesitsient slots cannot be specialized.
For example, a reflective language is often dynamic: the €fassmy not have been created yet when the
¢’ class is saved.

Another case can appear when the ctdsis created while many instancesdohave been created yet.
The goal of an object instance ©f (that is, semantically, a persistent instance,omay be to refer to
direct instances af, (transient objects) and to direct instanceg’ofpotentially persistent objects).

Finally, the second model presented in the section 4.2, where thergldtseabehaviors of the inherited
transient classes are transparently inspected, shows a casetiddypes of the inherited “transient”

Pos Copy > p1
new new
m A
A
| subﬁ’osF"" o’s-1|<‘ """" 0s2~F =02 = (0l T (o}
l 7 ; A B /:\
1] 2 7 3 e 4) |
new(os—l,Copy)new(OS-Z,Copy)new(°2’COpy new(ol,p) new(o

e

— CAPTION
class N~ message sending -« inheritance
behavior — — . resultof message sending _.... instanciation

Figure 3. Dynamically copying a transient model.

slots are not specialized.

Setting the slot types in the server

A first answer could be to ignore the slots with a “transieypét However, this is against the principles
of persistence by reachability. A potentially persistent objeatilsl be stored when it is refered by a
stored persistent object, even if the type of the referencesstoansient. In our example, when an
instance ot ’; refers to an instance df;, the latter one should be stored when the former one is stored,
whatever the type of the slomay be.

A second answer could be to let the system automatically gertbeapersistent subclass of a transient
superclass when it cannot find one. However, there is a risk &tecigcompatibilities with the user
object model, since the last one can dynamically evolve too.

So a third possibility can be to loosen, in the server, the types of the transient slots.

If the language has an inheritance radtke the classbject in ObjVLisp, and if this inheritance root
is common to the client and the server, we can set the typktbé @tansient slots ta We symbolize it
with the following notation:

O type(c’,». S) = d,‘ and lype((c ’i)server- S) =r

Now, let us consider that there is no inheritance nodhe language. Our hypothesis throughout this
paper is that there is at least a class metaobjeximmon to the client and the server. Moreover, any
persistent object that is not a instancecofs an instance of the clags. So, if the clasg; can be
considered as persistent, we can staté:that

O if ope(c’;. s) =d, if dis transientand if d’; < ¢, thentype((¢)server - S) = (Co)server
O if ope(c’;. s) =d, if d;is transient and’; < ¢, thentype((¢)server - 8) = (P1)server

In short, a reference to a subclasscofs converted into a reference (@)..... and a reference to a
subclass op; is converted to a referencen) e ver-

A way to setp; as persistent is to give persistence properties to the os® afa;. Provided that the
metaclass compatibility problems are solved, it can be done by ggttitd@o,, or p; < subPo, if subPo
exists.

This looseness of the slot types can obviously generate problemandtber designer directly uses the
object model stored in the server. If s/he is unaware of the lsxses#e can link wrong objects
together, and s/he will get no type checking warning. However, gsept this approach only to solve a
problem that can be avoided in most of the cases.

4 We use the notatian< b to symbolize that either = 5 ora < b.

5. MANAGING THE METACLASS COMPATIBILITIES
5.1. Importance of the study

In the four generic object models proposed in the section 3, a claskeisted by several classes
belonging to different instanciation levels in a same instaocidiranch. In this architecture, metaclass
compatibility problems can possibly occur.

The metaclass compatibility problem has been presented in [13]. Inlshas suppose that a classs
instance of a metaclass; and that a behavigbo is defined orr; while a behaviometaFoo is defined
onc,,,. Let us assume, finally, that the behayiar is implemented ir; so that each time an instance of
c; receives go message, metaFoo message is sent to the own class of the object. For exampleawhen
direct instance..; of ¢; receives thgoo message, theeraFoo message is sent tp Now, if we subclass

¢; by a clasgl, any instancé,.; of d; should be able to receive tfim message. Let us call , the class

of d.. When an objedt; receives thgoo message theieraFoo message is sent to the own clasg,of

that is, tod,. But if d;_;, does not define thaeraFoo behavior, theneraFoo message sending fails, and, as
a consequence, thien message sending &, fails too.

It may be up to the designer to solve these problems. Howeveirrtlod snany systems is to prevent the
designer to create metaclass compatibility problems. In theopseexample, there cannot be any
metaclass compatibility problem . ;=c;-; or d.; < c.;. The isomorphic graphs of classes and
metaclasses in Smalltalk [12] avoid the compatibility problefhe llog Power Classes language [14]
enforces that the metaclass of a subclass must be equal to,acsubelass of, the metaclass of the
superclass. Thed system [6, 11] transparently solves the metaclass compatibilidblem by
generating adequate metaclasses. However, the metaclasses are ddnyracteheritance graph similar
to the ones that can be created in Power Classes with multh@eitance. In [3], the Smalltalk-like
inheritance rules between metaclasses are excluded only whetacas® is designed to manage a
unigue instance.

So our study would not be complete if we would not take into account thetamioe rules enforced on
the meta-levels by several systems with metaclassésnbt sufficient to state that, for example, the
persistent clasg; should be inherited by instanciation levelsd;, ..., o} without considering the
inheritance relationships between, on the one hand, each member of{ihe seto,} and, on the other
hand, the own class pf, that are induced by this statement in most of the systems.tiillisis the goal

of this section.

5.2. Consequences of the inheritance of a class

We suppose that we have a setatlasses P={py, ..., pn} such thatllj € [1, m-1], p; < p;-;,
that does not intersect with a second setdassesC = {c,, ..., ¢,} such that)j € [1, n-1], ¢; < ¢, ;. If
we consider an objegt, < p, and another object ¢, < ¢,, the setP is the maximal set of the
metdclasses 0p, such that no element ihis a met&class ofc,.

In this paperp, stands for a persistence class angflotass metaobjects are its class and metaclasses.

Finally, we assume that the class metaohjg@s instance of itself, that i§)i > », ¢; = ¢,. We enforce
that the most specialized classpgf that is,p,,-;, belongs to the sét. This last requirement means that

the setP is a class library of a language. A part of the standard ot@saobjects of the language can be
found inC.

If the system enforces that the metaclass of a subclasgubkte, or be a subclass of, the metaclass of
the superclass, and if a clasinherits from a clasg;, thenc,_; < p;1;, and, by induction:

O 0i>0,c¢; < piy (1)
As a consequence of the rule 1, we have:

O Uie[l,m], c=<p: (2)
O and, ifm> n,0i € [n,m], c, < p; 3)
The rule 3, whem > n, enforces that

O either multiple inheritance can be expressed,

O or the class, inherits from a class Pq € {Pns ..., pu} that inherits from every class ipf,
s Da-1y Pagr1» -+ Pm} DY Successive single inheritance relationships.

Now, we have to determine the direct clasg,ofthat isp,.-;. We have stated tha},.; € C. We havep,,
¢, andc, € C. Sincec, < p;, we have:

O Dl € [11 n-q]l Cm—i < cqf/f—l (4)

We can note that the rule 4 if true everyik m. We show an example of these relationships in the
figure 4 wheren = 4,4 = 7 andn = 10.

e i 151 T O

41 on =] Cq*<|<'”'| cqr1 =] Cq\|<'"'| om+2=" | em+ 1= em[= | 3 [| c2 [(1)

CAPTION

A "= B Ainstance of B
A— B A inherits from B

Figure 4. Example of inheritance relationships induced by the inheritance of theclagshe class;. Note
thatp,, andc,, do not share a common metaclass.

Managing the inheritance constraints

We can divide into two sets the constraints presented in the previous discussion.

A first kind of constraint is the connection of elements of th&€'detelements of the set by inheritance
relationships. For example, the rules (1), (2) and (3) enforce thesectionee These constraints are
quite natural: the use of a class library in an application usinatiljes that the classes of the application
inherit from some of the classes of the library.

However, there is another kind of constraints that may raise gopi#dems: the enforcement of
inheritance relationships between elements of th€ s€he setC contains a subset of class metaobjects

belonging to the language itself — at least, the cladisat is instance of itself. Requiring that these
class metaobjects comply with special inheritance relationships means that

O either the language itself has to be modified, if these relationships do not exist;

O orthe language will not be able to be changed, if these relationships exist.
So, when designing a class library, it is better not to enforceitahee relationships inside the set of

user-defined class metaobjects or standard class metaobjectglé sy to do it is enforce that, and
¢, be instance of a common class, that is,

O ¢, is a user-defined classdp,, < c, ; (5)

5.3. Inheritance of a class by several instanciation levels

The main problem of our study is to allow the inheritance of a thas®veral instanciation levels. So,
let us consider that thefirst levels of instanciation in the sétinherit fromp,, thatis, Ui € [1, 4], ¢

<pi
The rule 2 implies that

O Oie[l,m], 0|0,k c<p (6)
and the rule 3 implies that

O Ui € [n, m+k], ¢, < pik (7)
Finally, the rule 4 implies that

O Ui e [1,n-m-1], Og € [m, m-1+K], cg1i < cgii1 (8)

The important result is that the rule (8) implies no inheritameestcaint between members ©Gfif £=1.
For example, in the figure 5, the inheritance constraints impliéd=hy are shown.

We have shown in this section that, when using a language that enfokasd of parallelism between
the inheritance tree of a class and the one of its metaclhsggwer more than one instanciation level
inherits from a same class, there are inheritance constb&twsen the own classes and metaclasses of

the language and/or the own classes or metaclasses of the tappliesing the library. We have
formalized them, so a designer can evaluate if her/his langzagexpress a library usable by several
instanciation levels.

CAPTION

A -~ "= B Ainstance of B
A— B A inherits from B

Figure 5. Example of inheritance constraints implied when two instanciation levels ifroania same
class.

5.4. Isolating the instanciation levels

However, there is an expensive way to allownstanciation levels to share some common behaviors,
with no inheritance constraints in the 6edf standard classes and user-defined classes.

We can definé classe, , ..., pi, With no link among themselves and no link with implementing
all of the behaviors op,. Of course, it may be expensive since the code related to pecsist
management must be duplicatetimes orp, ;, p; 2, ..., andp; ;.

Then we state that:

O Uie L4, p<pi;

0O 0i € [1,k], pi<pu

The inheritance constraints induceddp p; are:
O Ui€ [k, ci<pi<pii

Thus, k instanciation levels will have the same persistence behaaars10 inheritance constraints are
setinC.

The figure 6 shows an example where2,m = 4, anth = 6.

“pa [pzi (D)

A A

Lpm
|

4] e Tomeg Tome (a3 Toi)= (&)

Figure 6. Duplicating the persistence management class.

6. A CASE STUDY: ADDING PERSISTENCE TO THE POWER CLASSES LANGUAGE

6.1. Overview of Power Classes

We have applied our proposal to a real case. We provide a persigtesgeto the Lisp-based reflective
and object-oriented language llog Power Classes [14]. It is a comnardi@nhanced version of EuLisp
[21].. The actual persistence tool used is a relational databasmyemaent system accessed through
ObjectDRIVER, our object wrapper [18].

Power Classes has some interesting properties that justify the use af eéwver proposals.

O The language deals with possible metaclass compatibility protidgraaforcing the rules described
in the section 5.1, that is, the metaclass of a subclass must beequamust inherit from, the
metaclass of the superclasses.

O The language offers two object model paradigms. In the first ongplauhheritance can be used, in
the second one, only simple inheritance can be used.

As we can see in the figure 7, Power Classes offers two stanu#aclassesitandard-class and
structure-class. The classes that are instances®indard-class can be related using multiple
inheritance, while the classes that are instancegficture-class can only be related using simple
inheritance.

Figure 7. Part of the standard model of Power Classes

The rules enforced to avoid any metaclass compatibility probleoidfdne designer to link instances of
structure-class andstandard-class by inheritance relationships.

PstandardClass
=t
m

b

Figure 8. Persistence management in Power Classes using the generic object mods¢ctiohe3.3

The possibility to define multiple inheritance for instancestfndard-class justifies the use of the
model based on the multiple inheritance paradigm that has been dgscriiee section 3.3. The
impossibility to use multiple inheritance for instances ®fucture-class justifies the dynamic copy
of a transient model into a persistent one, as described in thensget. Finally, the rules enforced to
ensure metaclass compatibility are compatible with the dismuséithe section 5. So, it occurred to us
that Power Classes is a good test case for our proposals.

We arbitrarily choose the persistent replication paradigm. An blgeat first transiently created in the
client, then it is duplicated in the server when it receives a replicatioROB@8s,siscnc.-

In order to bind a reflective object-oriented language with dioekl formalism, we used the patterns

proposed in this research report. The implementation keeps the ngsldtiguage open. This
implementation is beyond the scope of this research report and can be found in [7, 8].

6.2. Extending a transient model

In this section, we apply the model proposed in the section 3.3. We stumhgtanciation branch
oy, ..., o,Whereo, is an instance of itself. In Power Classes,

O the class metaobjeat is the clasglass;
O the class metaobjeat.; is the classstandard-class;

O moreover, we have,.; < o,, that is, standard-class < class.

As a standard metaobject of the language, we assumetiwdard-class iS natively present in the
server. It corresponds to the class metaolsjeat the section 3.1.

We define the metaclagstandardClass, corresponding to the cla8s,. We have

O PstandardClass < standard-class, and

‘ | classig] structure-class<a--------- 0s-1 (- 0s-2 k- <----{02f=----(0ol)=~ 00
5

PstructureClass

new

m
subPstructureClags® -~ 'S-1<T - g2 g ..
m

£

Figure 9. Persistence management in Power Classes using the generic object modstctiohe3.4

O PstandardClass <| standard-class.
We define orPstandardClass a non-regressive replication messagg,;ence-

Now, we define a clasgy....., €quivalent to the clags of the section 3. We define gnuu« the
be h aVi 0 rmpersixtenue .

>

We want to define the persistent class metaobjggts.., 0’,.; such thatli € [1,n-2],0" < 0;and o’

< Pstandard-
So,n-2 instanciation levels can inherit frgh,,....« but we are only sure that> 3.

With regard to the metaclass compatibility problem, since we dwawot to change neithetandard-
class Norclass (that is, neitheo,.; noro,), the rule (7) presented in the section 5.3 impliesghat.
be an instance of a standard metaclass of the language.

Many applications defined in Power Classes do not define new nesegldn these applications, every
class is instance @ftandard-class. To respect the rule (5), we $8t,uv <l standard-class.

The rule (8) enforces that:

O 0ie[2,n-2],0:<0,;

O 0ie[2,n-1], 6<o,

Now, in Power Classes,.; < o, is true. So, the only constraint enforced is that any persisteatlamgs
defined by the user should inherit fratgandard-class. We have noticed that, in most of the cases,

this is a weak constraint, sineeandard-class provides very useful behaviors and tools.

Since we need the user-defined persistent metaclasses tib frdverstandard-class and from
Pswnaaras W€ define the clas®ClassMetaobject such that:

O PClassMetaobject is instance oktandard-class,
O PClassMetaobject < standard-class

O PClassMetaobject < pgundara-

The last statement allows to send persistence messages tbjelceso’y, ..., 0’3 The persistence
behaviors that can be sentotl)., are defined o®standardClass.

We ask the user to define her/his persistent metaclasseeasses aPclassMetaobject and her/his
persistent classes that are not metaclasses, as subclassgs.of

We have seen in the section 4.3 that, in order to manage the tygestsofit can be useful to set
persistent the clags;a. SO we set:

O Pyandara < PstandardClass

The rules enforced by Power Classes to avoid any metaclass compatibilityrproiply that
O PClassMetaobject <| PstandardClass
O PClassMetaobject < PstandardClass

O The persistence behaviors defined @f,....« override onPClassMetaobject those defined on
PstandardClass. This can be done by specifying an order in the inheritance tree.

The figure 8 sums up the object model.

6.3. Persistent copies of transient models

In order to manage the classes instancestoficture-class, that cannot be combined with multiple
inheritance, we use the model defined in the section 3.4.

O We define a clasBstructureClass, subclass and instancefructure-class. We specialize on it
the instanciation message as described in the section 3.4.

O We define a classubPstructureClass, subclass and instance RfrructureClass. \We define on it the
non-regressive replication MessSage.;ence-

Since we did not want to rewrite the instanciation messageesgech the clasSopyClass and the class
PstructureClass and we defined the regressive persistence behayiQt.... on PstructureClass.

® As a side effect, this discrimination between js¢est class metaobjects and persistent final fes is useful to
manage a non object-oriented semems [8].

However, the classes that are not metaclasses cannot inbveri®sitrucrureClass which is a metaclass.

So we define another clags,..... and we define on it the same persistence behaviors that have been
defined onPstructureClass. Note that the clas®structureClass cannot inherit fronpg,cur. Since it
inherits fromstructure-class, and, as an instance etructure-class, it cannot use multiple
inheritance.

The figure 9 sums up this model.

7. RELATED WORKS

Few works have explicitly considered the problem of designing pemsks libraries for a transient,
object-oriented and reflective language, as we did.

Due to the nature of the involved programming languages, most of ndends between an object-
oriented language andosMs do not consider the problems induced by a user-defined meta-level. For
example, the Java language has metaobjects but, since the usemmaginothem, and cannot add new
metaclasses, the management of several levels of instanciation iseesed.

In the reflectiveoobBmss Vodak [17] and Tigukat [24], the problem of object persistence has aot be
considered as we did. The main idea was to offer an object-oriegfledtive model useful in the
domain ofoobBMSs. But, as far as the authors know, there is no study on the coexistence of transient and
persistent objects, the reengineering of existent transient modéih& way to provide persistence to an
existing reflective model by adding a class library. The whategliage is supposed to be natively
persistent, possibly by system programming.

The studies the closest to our interests have been done @iths 22, 23]. RLOsS binds the Cos
programming language and a virtual relatiavaiis. However, if the final instances and the user-defined
classes are managed, the way an arbitrary number of instand&tels could be managed is not shown.
Moreover this study is very bound to thedS programming language. We have taken a much more
general approach: the Power Classes language is for us only a test case.

8. CONCLUSION

In this research report, we have focused on the design of aibtasg for persistence management in an
object-oriented reflective language. We have shown that perssteacagement, in such a language,
can be, and should be, modeled by an object-oriented model.

So, our goal was to provide to the user design patterns to build @ecsistibraries in reflective
languages. The class-based object-oriented reflective syharasan interesting property: objects can
belong to different instanciation levels and be related by instamtiinks. This property cannot be
found in classical object-oriented programming languages. So, wehi@ogroblem into account. We
took a general approach, and independently of any programming langualgayevproposed different
object models, or design patterns, to design such a library, according to:

O the persistence paradigm chosen — use of proxies, or replication mechanism;

O the needs of the designer — for example, the freedom to creatsdratoh a new application or the
need to add persistence abilities to an existing application;

O the properties of the language — single or multiple inheritance, introspectiomtigmpeles to avoid
metaclass compatibility problems.

According to the set of her/his needs and her/his constraints, tigaetesiho wants to design persistent
application exploiting different instanciation levels, can choose omeirobbject models: s/he can see
the reasons of its use, its interests or its drawbacks. Ohe ofterest of our work is to specifically deal
with multiple instanciation levels: the designer does not havetem@ a design pattern managing only
the instanciation level of the user-defined classes.

When an adequate design pattern has been chosen, the designer can thethelsiossge tool s/he
prefers without any change in the object model. For example, s/he can use aatigetistaroODBMS,
or an heterogeneous storage as we did with the language Power Classes.

REFERENCES

1. D. Bobrow, L. DeMichiel, R. Gabriel, S. Keene, G. Kiczales and D. Moamr@on Lisp Object
System Specification, iINGPLAN notices 23 (special issue), 1988.

»

D. Bobrow, R. Gabriel and J. WhiteL@5s in Context, inObject-Oriented Programming: the CLOS
Perspective, theMIT Press, chap. 2., pp. 29-61, 1995.

3. N. Bouragadi-Saadani, T. Ledoux and F. Rivard, Safe Metaclass Prog@gnmProceeding of the

Conference on Object-Oriented Programming, Systems, Languages and Applications OOPSLA’98,
1998.

4. R. Catell, D. Barry, D. Bartels, M. Berler, J. Eastman, S. Gawae, D. Jordan, A. Pringer, H.
Strickland and D. Wad@de Object Database Standard: obMG 2.0, Morgan-Kauffman, 1997.

5. P. Cointe, Metaclasses are First Class: the ObjVLisp Madélrdc. of the Conference on Object-
Oriented Programming, Systems, Languages and Applications OOPSLA’87, pp. 156-167, 1987.

6. S. Danforth and I. Forman, Reflections on Metaclass ProgrammingMn/Soc. of the Conference

on Object-Oriented Programming, Systems, Languages and Applications, 00OPSLA’94, pp. 440-452,
1994

7. S. DemphlousGestion de la persistance au sein de systemes réflexifs a objets, Ph.D. Thesis,
University of Nice-Sophia Antipolis, France, 1998.

8. S. Demphlous and F. Lebastard, Designing Persistence Librarieeflactke Models with
Intercession Property for a Client-Server EnvironmenBMSs management, to appeardhintl Conf.
on Meta-level Architecture and Reflection (Reflection’99), 1999.

9. O. Diaz and N. Paton, Extendingp@BMss Using Metaclasses, IBEE Sofiware, vol. 11(3), pp. 28-
39, 1994.

10.J. Ferber, Computational Reflection in Class based Object Oridrmteguages,Proc. of the

Conference on Object-Oriented Programming, Systems, Languages and Applications, OOPSLA’89, pp.
317-326, 1989.

11. I. Forman and S. Danfort®urting Metaclasses to Work, Addison-Wesley, 1998.

12. A. Goldberg and D. RobsoSmalltalk-80: the Language and its Implementation, Addison Wesley,
1983.

13. N. Graube, Metaclass CompatibilitProc. of the Conference on Object-Oriented Programming,
Systems, Languages and Applications, 0OPSLA’89, pp. 305-315, 1989.

14. llog, llog Power Classes Reference Manual, version 1.3, Gentilly, France, 1994.
15. G. Kiczales, J. deRivieres and D. Bobrowihe Art of the Metaobject Protocol, theMIT Press, 1991.

16. W. Klas, G. Fischer and K. Aberer, Integrating Relational and ®klgented Database Systems
using a Metaclass Concept owrnal of Systems Integration, vol. 4, pp. 341-372, 1994.

17. W. Klas and M. Schref, Metaclasses and their application: DatdeMTailoring and Database
Integration,Lecture Notes in Computer Science n. 943, Springer Verlag, 1995.

18. F. Lebastard, S. Demphlous, V. Aguiléra and O. Jaut2§jectDRIVER Reference Manual,
http://ww. inria.fr/cerncs/dbteam ObjectDriver, 1999.

19. P. Maes, Concepts and Experiments in Computational Refle@iotgedings of the Conference on
Object-Oriented Programming, Languages, Systems and Applications, OOPSLA’S87, pp. 147-155,
1987

20. Poet SoftwarePoet Technical Overview, technical reportyt t p: / / ww. poet . com t echover, 1998

21.J. Padget, G. Nuyens and H. Bretthauer, An Overview of EuLisp,and Symbolic Computation,
vol. 6, N. 1/2, pp. 9-99, 1993.

22. A. Paepcke, €Los. A flexible Implementation of Clos Persisten@eoc. of ECOOP, Lecture Note in
Computer Science n. 322, pp. 374-389, Springer-Verlag, 1988.

23. A. Paepcke, User-level Language CraftingDiject-Oriented Programming — the CLOS Perspective,
themiT Press, chap. 3, pp. 65-101, 1993

24. R. PetersTigukat: a Uniform Behavioral Objectbase Management System, Ph.D. thesis, University
of Alberta, Canada, 1994.

