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ABSTRACT

The reflection paradigm has proved to be useful both for both programming languages and databases. We
think that there will be a growing need to design, with an object-oriented reflective language, persistent
applications that are client of a server database management system. These applications can themselves
include several instanciation levels. In this research report we consider the ways to manage persistence in
reflective object-oriented programming languages. We justify why persistence can be added through a
class library. Then we propose several design patterns, depending on the chosen persistence paradigm,
the constraints enforced by the language, or those enforced by the designer. These design patterns take
into account some important properties of most of reflective languages, in particular, the ability to define
several instanciation levels. So the designer of an application can choose one of the proposed object
models, according to her/his needs and the properties of her/his language.

RESUME

Le paradigme de la réflexion a témoigné de son utilité à la fois dans le domaine des langages de
programmation et dans celui des bases de données. Nous pensons que l'avenir apportera des besoins
croissants de définition de clients de systèmes de gestion de bases de données serveur au moyen de
langages de programmation réflexifs à objets. Ces applications peuvent elles-mêmes comporter plusieurs
niveaux d'instanciation. Dans ce rapport de recherche, nous prenons en considération les moyens de gérer
la persistance dans des langages de programmation réflexifs à objets. Nous justifions les raisons pour
lesquelles la persistance peut être ajoutée au moyen d'une bibliothèque de classes. Puis nous proposons
plusieurs patrons de conception, compte tenu du paradigme de persistance choisi, des contraintes
imposées par le langage, ou de celles imposées par le concepteur. Ces patrons de conception prennent en
considération des propriétés importantes communes à la plupart des langages réflexifs, et en particulier la
possibilité de définir plusieurs niveaux d'instanciation. Ainsi, le concepteur d'une application peut choisir
un des modèles à objets proposés en fonction de ses besoins et des propriétés du langage.



1.� INTRODUCTION

A key to design modern applications is to use the client-server paradigm. When an application needs to
create or to manipulate persistent data, a good policy is to design a persistent client connected to a server
database management system (DBMS).

Now, the reflection, defined in [2] as the ability for a program to manipulate as data something
representing its state during its own execution, and the reflection paradigm [5, 10, 19] have become a
major issue for system definition. Languages and tools [1, 11, 12] have widened the use of reflection. So
client persistent applications may be built using a reflective programming language, or can be themselves
reflective.

Moreover, adding reflective properties to DBMSs appears to be very promising: it helps to adapt the DBMS

data model, that is, the formalism in which user data and their definition (metadata) are expressed and
controlled. The intercession property of many reflective systems, defined in [2] as the ability for a
program to modify its own execution state or alter its own interpretation or meaning, can be applied to a
DBMS, allowing the user to modify or to extend the data model. Several studies have shown the interest of
this approach [9, 16, 17]. Vodak [17] and Tigukat [24] are fully reflective object-oriented DBMSs
(OODBMS).

So we believe that, in a near future, there will be growing needs of persistence management in reflective
models with intercession properties.

One of the interests of a reflective object-oriented system is to be described as an object model. The
persistence properties of such a system should be described as a part of this object model. An aim of this
research report is to show how a persistent reflective object model can be defined. But we widen the
scope. Some reflective object-oriented languages are actually used by designers – for example,
Smalltalk [12] or CLOS [1]. These designers would probably like to design persistent applications in these
transient reflective languages, for example, in order to encapsulate an existing, non reflective DBMS by an
end-user application having introspection properties. In that case, we would not provide for the needs of
the designers by showing that a persistent reflective language can be created. As a matter of fact, we
would implicitly ask the designer to modify her/his language, or to rewrite it from scratch. A more useful
work would be to show how persistent applications can be designed in transient reflective languages.

So there is a need to offer design patterns for persistence libraries in object-oriented reflective languages.
These languages have some specific properties. There are objects, called metaobjects, that represent
elements of the programs or of the language itself. For example, the classes are objects, called class
metaobjects, instance of metaclass metaobjects [15]. The provided design patterns

 should be language independent;

 should take into account some properties specific to reflection, like the instanciation relationships
between objects, or the different instanciation levels;

 and, finally, should solve the problems induced by the coexistence of transient and persistent objects
or metaobjects in a same application.

In this paper, we aim at providing such design patterns, and justifying them. This research report is
divided in six parts. We first show in the section 2 why persistence abilities can be, and should be, added
to a class-based object-oriented reflective system using an object model. We show that the management
of an instanciation branch is one of the specific problems encountered when designing a class library in
such a reflective language. We propose then, in the section 3, several object models to manage



persistence, according to the capabilities of the language. These object models raise some problems
related to the management of transient and persistent classes, and to the compatibility of metaclasses.
They are treated in the sections 4 and 5. Then, in the section 6, we apply our proposals to the reflective
object-oriented language Power Classes. Finally, we consider the related works and we conclude the
research report.

2.� OBJECT PERSISTENCE IN A REFLECTIVE CLIENT

2.1.�The persistence property: a consequence of message passing

In many persistent languages, the persistent objects are instances of a common class because they must
receive messages related to persistence, like locking messages [4, 20]. In short, the persistent objects
must be instances of a common class in order to be manipulated as persistent objects. However, the
possible need of an object to be instance of a specific class, or to share a specific metaclass, in order to
be persistent has not been clearly shown in previous works. We think this is an important question since
the answer may justify our will to design a class library in order to add persistence to a system. We study
this problem in the following lines and we show that the persistence property of an object can be
managed only by message passing.

Creating proxies

Let us assume for the moment that, when created, a persistent object is, in the client, a proxy of the actual
object in the server OODBMS. When, in the client, an instanciation message is sent to a class F, a same
message is sent, in the server, to the class �F�VHUYHU�associated to F. An object is created in the server and a
proxy, associated to this newly created object, is created in the client. This architecture implies that a
special, that is, persistent, instanciation message is sent to the class F. In order to receive a persistent
instanciation message, a class must be instance of a metaclass on which this behavior has been defined.
So we need to define a special, devoted to persistence, metaclass.

In this approach, the persistence is defined at the meta level. A class does not need to inherit from a
special class in order to allow its own instances to be persistent, but must be itself instance of a special
metaclass.
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This approach is summarized in the figure 1.



Replicating persistent objects in the server DBMS

A different point of view can be taken. One can consider that an object is first transiently created in the
client, and then it can be replicated in the server OODBMS. A transient object becomes persistent when it
is replicated. This architecture can be interesting: it can be useful to keep two versions of a persistent
object, one in the client, and one in the server, to minimize the communications between the client and
the server.
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We think that the object replication must be realized by message passing. First, replicating an object R on
a server means, semantically, performing an operation on R. Moreover this replication can lead to
modifications of R itself, for example it may store any kind of reference to the replicated object in the
server. According to the object-oriented paradigm, the operations on objects have to be realized by
message passing.

This second approach is summarized in the figure 2. A message VDYH is sent to an object R instance of a
class F. The class �F�VHUYHU associated, in the server, to the class F, is then instanciated.

Persistence and message passing

So we state that, in a client-server environment, when the client uses an object-oriented reflective model,
the creation of persistent objects is always the consequence of message passing.

 The use of proxies implies that persistent objects share a common metaclass;

 The use of  the replication approach implies that the persistent objects be instances of a common
class.

Now we have to decide whether these persistence-related behaviors should be closely integrated to the
language or should be designed in an additional class library.

2.2.�Persistent languages and persistent libraries

Two approaches can be taken to manage persistence in a reflective object-oriented language.



The first one is to design the native metaobject protocol of the language so that the whole language has
persistent abilities.

Let us consider the ObjVLisp model [5]. In this model, the class REMHFW�is the root of every inheritance
tree. The class FODVV is a metaclass that inherits from REMHFW. The class FODVV is instance of itself and
a class is instance of FODVV.

 If we want to use the proxy approach, then we can define a new instanciation behavior on the class
FODVV, that creates persistent objects on the server.

 But if we want to use the replication approach, we have to define, on the class REMHFW, a behavior
that replicates the target object on the server.

Since every object in this language is instance of a class that inherits from the class REMHFW and is itself
an instance either of the class FODVV�itself, or of a subclass of FODVV, any application will be persistent.

This example shows that a persistent and reflective object-oriented language can be built.

However, in this paper, we have a different point of view. We consider that a designer may want to build,
with a programming language that is not natively persistent, an application managing persistent objects.
In this case, the following question arises: how can we design, whatever the transient language may be, a
library that manages persistent objects, metaobjects, classes and metaclasses?

2.3.�Management of an instanciation branch

We show now that the previous questions are related to a problem that is specific to class-based
reflective languages: the management of different levels of instanciation relationships.

We first define the following notations that we will use in the rest of this paper.

Notations

Let us assume that an object R�is a direct instance of a class F, that is, F�is the most specialized class of R.
We use the notation R v F.

Now, let us consider an object RL, with L�≥��. We state that RL�N is the most specialized metak-1class of RL.
That is, RL�is a direct instance of RL�� (RL�v RL��), RL�� is itself a direct instance of RL�� (RL�� v RL��) and so
on, till RL�N is reached.

Finally the notation F�p d means that the class F�inherits from the class G.

Persistence of an object in an instanciation branch

Let us consider that we want to define a persistent object RN� in the client. According to the chosen
persistence paradigm, this may mean either that we want to send a persistent instanciation message to its
most specialized class RN��, in order to create RN,�or that we want to send a replication message to RN itself.
In short, in order to get RN persistent, we need to send a message PSHUVLVWHQFH, which semantics may be



related to the instanciation or to the replication process, to an object RL, that may be equal to RN�� or RN
according to the semantics of PSHUVLVWHQFH.

In any way, the persistence of RN implies that, in the server, the class metaobject �RN���VHUYHU�exists, and is
associated to the class metaobject RN�� of the client. So an object �RN�VHUYHU�v �RN���VHUYHU�associated to RN is
created in the server.

The object RN���must have been previously set persistent in order to set RN persistent. Since RN is persistent
when the message PSHUVLVWHQFH is sent to the object RL, the object RN�� is persistent when the message
PSHUVLVWHQFH is sent to the object RL��.

Management of the instanciation root

Let us assume that RL belongs to a finite branch of direct instanciation relationships, that is, there exists a
class metaobject RV, metas-i-1class of RL, which is instance of itself1. By induction on the instanciation
relationships, we see that, first, the message PSHUVLVWHQFH must be sent to RV, then to RV��, to RV��, …, and
finally to RL.

According to this proposal, since RV is instance of itself, its associated class metaobject in the server
�RV�VHUYHU should be created by sending to itself an instanciation message. This is obviously a paradox. But,
if there is an infinite tower of meta-levels, and if there is neither a cycle, nor a root, on the instanciation
branch, the regression in the branch would be infinite and no object would be created on the server.

In order to solve these problems, we assume that the object RV�has not been created by instanciation. The
main idea is to consider that, for a given instanciation branch, we have a client and a server that share at
least a common class metaobject. This does not mean that we have necessary the same language or model
in the client and the server. There may be, in the client, objects and class metaobjects instances of RV that
belong to the language but that are not present in the server. Moreover, it does not mean that RV must
necessary exist in the server. Being able to manage instances of RV as if �RV�VHUYHU exists is sufficient (see,
for example [8]). Note that RV can be any language or user-defined class metaobject instead of an
instanciation root.

We sum up the problem we face by the following three points:

 There is, at least a class metaobject RV common to the client and the server.

 There are transient objects of the client that we cannot change – these objects may be standard
metaobjects, or class metaobjects, of the language that are not present in the server, or they may be
classes of a user library that cannot be modified.

 There may be objects of the client that can be changed – for example, the classes of an user
application being designed.

We show now how persistence libraries can be designed, according to the language properties and the
needs of the user.
                                                     

1 The class FODVV in ObjVLisp corresponds to RV.



3.� DESIGNING THE OBJECT MODEL OF A PERSISTENCE CLASS LIBRARY

3.1.�Managing the instances of a natively persistent class

We consider in a first time that we have, in the client, no class metaobject that cannot be changed.

We have stated that a class metaobject RV is “natively persistent”. However this does not imply that all the
instanciation sub-branch rooted on RV can be considered as persistent.

As a matter of fact, let us consider that RV is the metas-i-1class of an object RL. If we can modify all the
class metaobjects RL��, …, RV��, we can design on them an instanciation or replication behavior PSHUVLVWHQFH.
But we cannot modify RV itself. So RV�� will not be able to receive the message PSHUVLVWHQFH. If PSHUVLVWHQFH is a
replication message, the object RV�� cannot be replicated. If PSHUVLVWHQFH is a persistent instanciation message,
since it is defined neither on RV nor on RV��, the persistent objects RV�� and RV�� cannot be created.

Using the replication paradigm

We propose the following model to manage persistent instances of RV� when using the replication
paradigm. We define, in the client, a class 3RV (its name stands for “persistent RV”) with the following
properties:

 3RV v RV

 3RV p RV

 3RV specializes the behavior PSHUVLVWHQFH (that is, the replication behavior) with two special semantics:
(1) when an instance of 3RV receives the PSHUVLVWHQFH�message, it does not send it to its own class; (2) the
PSHUVLVWHQFH behavior instanciates the �RV�VHUYHU class associated to �RV�.

As a consequence of these rules, 3RV has no associated class in the server.

We require that RV�� be an instance of 3RV. We can note that it is still an instance of RV. When the object RV�
� receives the message PSHUVLVWHQFH, the behavior PSHUVLVWHQFH defined on 3RV is invoked and�an instanciation
message is sent, in the server, to �RV�VHUYHU. The object �RV���VHUYHU v �RV�VHUYHU�is created. The only difference
between RV�� and (RV���VHUYHU is the impossibility to send the PSHUVLVWHQFH message to       (RV���VHUYHU.
Nevertheless, this impossibility is not a problem since the semantics of PSHUVLVWHQFH is to set persistent a
transient object and �RV���VHUYHU�is already persistent.

Using the persistent instanciation paradigm

We propose a similar approach to manage the persistent instanciation paradigm. We define a similar
class 3RV. The only difference is that PSHUVLVWHQFH is an instanciation message. So there is, of course, no need
to send it to the receiver’s own class. Moreover we define a class VXE3RV which properties are:

 VXE3RV v 3RV;

 VXE3RV p 3RV.



When the message PSHUVLVWHQFH is sent to VXE3RV an object �RV���VHUYHU v �RV�VHUYHU is created.

3.2.�Modifying an existing model

When the designer defines a new application from scratch, s/he can create a class S� – which notation
stands for “persistent object” – and define on it the behavior PSHUVLVWHQFH. Then s/he defines the class 3RV
and defines on it the specialization of PSHUVLVWHQFH that we have proposed.

Finally, s/he can specify her/his own classes          R�, …, RV�� as follows:

 RV�� v 3RV or RV�� v VXE3RV according to the semantics of PSHUVLVWHQFH;

 ∀ L �[0, V-2], RL v S�, that is, ∀ L �[1, V-1],      RL p S�.

Since several instanciation levels of a same instanciation branch inherit of a same class S�, metaclass
compatibility problems can arise according to the classes and metaclasses of S�. We study this problem in
the section 5.

3.3.�Extending the model using multiple inheritance

The previous model implies that all of the class metaobjects R�, …, RV�� can be modified. This may be
impossible if there are, in this list, some standard class metaobjects belonging to the language, or class
metaobjects reused from a class library. In this case, if the language allows multiple inheritance, we
propose to define new persistent class metaobjects {R¶�, …, R¶V��} inheriting from the transient class
metaobjects:

 ∀ L�  [1, V-1], R¶L p RL and R¶L p S�;

 ∀ L  [0, V-2], R¶L v R¶L��;

 R¶V�� v VXE3RV or R¶V�� v 3RV according to the persistence paradigm (persistent instanciation or
persistent replication).

The user must use the class metaobjects R¶�, …, R¶V�� instead of the class metaobjects R�, …, RV�� and
instanciate the class R¶� instead of R�. Owing to the object-oriented paradigm, this will cause no type-
checking problem. However, the management of the inherited transient slots and methods can be a
problem. As a matter of fact, we have to manage a graph of persistent and transient class metaobjects.
We discuss this point in the section 4. Moreover, as previously, metaclass compatibilities have to be
checked. This common problem is presented in the section 5. An applied example of this approach can be
found in the figure 8.

3.4.�Copying dynamically a transient object model

The most difficult case to manage is when some class metaobjects cannot be modified and the language
does not allow multiple inheritance.



A first proposal would be to subclass each class in {R�, …, RV��} by a class R¶M  p RM and to define on each
R¶M, M � [1, V-1], a behavior PSHUVLVWHQFH dedicated to the persistence management. However, if there are
many classes and many instanciation levels, this is obviously a considerable work. So we propose to rely
on the introspective properties of a reflective language.

Let us consider that we have a transient object RL such that RL�v RL��. We want to create another persistent
object R¶L, instance of a class metaobject R¶L�� p S�. The object R¶L has no link with RL or RL��, but it is,
semantically, a copy of RL. The class metaobject R¶L�� is itself instance of a copy of RL��. So any message
that can be sent to RL can be sent to R¶L. It will be executed in the same way on R¶L�that it would have been
executed on RL.

The goal is in no way to try to set persistent the class RL�� or the object RL. We do not pretend that R¶L and
R¶L�� should be used in the application instead of RL and RL��. After all, the type checker of the language
would not allow it. But if the designer has a transient application which data and models are important to
store and to share, s/he can realize a copy of this model and these data. The identifiers and the actual
types of the copied objects and class metaobjects are different than the original ones, but the semantics
and the encapsulated data are identical.

This proposal relies on the dynamic and introspective properties of a reflective language: the language
may be able to inspect objects, metaobjects and class metaobjects, and to dynamically create classes and
metaclasses.

Proposal of an object model

This proposal implies that a copy instanciation behavior can be defined. Let us consider two classes RL
and R¶L, let us assume that the properties of the first one are a subset of the properties of the second one2

and let us consider an object RL�� v RL. It must be possible to send a copy instanciation message QHZ�RL���

to R¶L in order to get a new object R¶L�� v R¶L encapsulating data equal to the data encapsulated by RL��.

We use two notations:

 R¶N ← QHZ�RN��� means that R¶N is instanciated to create a new object, or class metaobject,         R¶N�� v
R¶N, semantically equal to RN��.

 R¶N ← QHZ�RN����F� means that the metaclass R¶N is instanciated to create a new class metaobject R¶N��
inheriting from the class metaobject F,�semantically equal to RN��.

So, if a designer has a persistent  instanciation branch R���R���«��RV�� (with RV�� v RV) that s/he wants to
duplicate into a persistent instanciation branch R¶���R¶���«��R¶V��, we propose to use the following model.

The classes 3RV and VXE3RV are the ones described previously. Moreover, the copy instanciation behavior
QHZ is defined on 3RV. We assume that the behavior QHZ is also defined on a class &RS\&ODVV inheriting
from the persistence class S�. So, in order to get R¶�, the following messages must be successively sent:

                                                     

2 We do not mean that R¶L should inherit from RL but we require that the selectors of RL can be found in R¶L with the
same types and properties.



 VXE3RV ← QHZ�R¶V����&RS\&ODVV�;

 for L decreasing from V�� to �, R¶L ← QHZ�RL����&RS\&ODVV�;

 R¶� ← QHZ�R���S��;

 R¶� ← QHZ�R�);

With this model, every object from the set          {R¶���«��R¶V��} can receive the persistence message
PSHUVLVWHQFH. We present in the figure 3 a schema summing up this approach. In this figure, the persistence
message PSHUVLVWHQFH is the replication message. Note that this approach has a drawback: each transient
object is replicated in a persistent object. This can lead to an important waste of memory. In order to save
memory, the primary encapsulated data should be shared between the transient and the persistent objects.
This approach should be used only when the others cannot be used.

4.� MANAGING TRANSIENT AND PERSISTENT CLASS METAOBJECTS

4.1.�Transient and persistent objects

We have presented, in the section 3.3, a way to add persistence properties to an existing object model,
relying on multiple inheritance. The main idea was to create a subclass F¶L of a transient class FL, with an
equal semantics, then to use F¶L instead of FL.

Now we need to ponder on the relationships between persistent class metaobjects and transient ones. In
most of the reflective object-oriented languages, the inheritance relationship between two classes finds
expression in a reference link between the two class metaobjects associated with these classes. Thus, a
persistent class metaobject inheriting from a transient class metaobject is a persistent object referencing a
transient object.

A common way to manage persistent objects is to use the paradigm of persistence by reachability (see,
for example [4]). When, after a transaction commitment, a potentially persistent object R is stored in the
database, every potentially persistent object that can be reached from R�through reference relationships, is
stored. No transient object can be stored in the database3.

Since classes are objects, the same management is done for them. If a persistent class F¶L inherits from a
transient class FL, then the class metaobject F¶L will have, in the server, an associated class metaobject
�F¶L�VHUYHU but the referred class metaobject FL will have no associated object in the server. So, the server
class metaobject �F¶L�VHUYHU has no superclass.

As a consequence, all the slots and the behaviors defined in the class FL are neither defined in, nor
inherited by, �F¶L�VHUYHU. Any object �F¶L���VHUYHU, instance of �F¶L�VHUYHU, supposed to be associated to an object

                                                     

3 In this section, we name “transient objects” the objects that are not potentially persistent. They are definitively
transient.



F¶L�� of the client, does not encapsulate the data encapsulated by F¶L�� that have been defined on FL. In the
same way, all the messages corresponding to behaviors defined on FL, that can be sent to FL�� cannot be
sent to �FL���VHUYHU.

This can be useful in some cases, for example, when a superclass has an obviously transient semantics.
However, it cannot be generalized, since the object model proposed in the section 3.3 would be
meaningless.

4.2.�Inheritance management

Two approaches can solve this problem:

 redefining in the subclass the slots and behaviors of the superclasses;

 using introspection to dynamically inspect transient metaobjects.

Specializing transient properties

A first choice can be to let the designer redefine in the persistent subclass, all the slots and behaviors of
the transient superclass that s/he wants to be treated as persistent.

Of course, the designer can specialize these slots or behaviors. According to the possible properties of
the language meta-level, a transparent rerouting towards the selector of the superclass can also be
implemented [7].

Inspecting the transient class metaobjects

A second approach relies on the introspection properties of a reflective language. The main idea is to
design the persistence behavior (instanciation or replication) so that, when  invoked on a class metaobject
F¶L, the inheritance relationship is isolated. Then the inherited transient metaobjects are dynamically
inspected. Finally, the direct slots and behaviors of the generated persistent class metaobject �F¶L�VHUYHU are
the set of the direct ones of F¶L and the ones inherited from the transient superclasses of F¶L.

For example, let us suppose that, in the client, the persistent class F¶L defines the direct slots V�, …, VP and
that the transient superclass FL of F¶L defines the direct slots VP��, …, VQ. Then, the direct slots of the
generated class metaobject �F¶L�VHUYHU will be V�, …, VP, VP��, …, VQ.

The first approach implies that the designer chooses the persistent slots and behaviors of her/his transient
classes s/he wants to consider as persistent. S/he has to be aware of persistence contingencies. The
second approach implies that all the slots of a transient class becomes persistent.



4.3.�Slot types

Problems of  type declaration in the server

Some type problems can occur in a client environment where transient and persistent class metaobjects
coexist.

Let us assume, for example, that a transient class FL has a slot V which type is a reference to an instance of
another transient class GL. Let us consider that a persistent class G¶L p GL has been defined. When a
persistent class F¶L�p FL is defined, the slot V should be specialized in F¶L so that its type be a reference to
G¶L�instead of a reference to GL.

As a matter of fact, it is not possible, in the server, to define in the class metaobject �F¶L�VHUYHU a slot which
type is a reference to �GL�VHUYHU. This last class does not exist in the server since GL is a transient class. But
the class G¶L is persistent, so the associated class �G¶L�VHUYHU exists in the server. As a consequence, a slot
which type is a reference to G¶L can be described in �F¶L�VHUYHU.

However, there may be some cases where the type of the inherited transient slots cannot be specialized.
For example, a reflective language is often dynamic: the class G¶L may not have been created yet when the
F¶L�class is saved.

Another case can appear when the class F¶L is created while many instances of GL have been created yet.
The goal of an object instance of F¶L (that is, semantically, a persistent instance of FL��may be to refer to
direct instances of GL (transient objects) and to direct instances of G¶L (potentially persistent objects).

Finally, the second model presented in the section 4.2, where the slots and the behaviors of the inherited
transient classes are transparently inspected, shows a case where the types of the inherited “transient”
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slots are not specialized.

Setting the slot types in the server

A first answer could be to ignore the slots with a “transient” type. However, this is against the principles
of persistence by reachability. A potentially persistent object should be stored when it is refered by a
stored persistent object, even if the type of the reference slot is transient. In our example, when an
instance of F¶L refers to an instance of G¶L, the latter one should be stored when the former one is stored,
whatever the type of the slot V may be.

A second answer could be to let the system automatically generate the persistent subclass of a transient
superclass when it cannot find one. However, there is a risk to create incompatibilities with the user
object model, since the last one can dynamically evolve too.

So a third possibility can be to loosen, in the server, the types of the transient slots.

If the language has an inheritance root U, like the class REMHFW in ObjVLisp, and if this inheritance root
is common to the client and the server, we can set the type of all the transient slots to U. We symbolize it
with the following notation:

 W\SH��F¶L���V�� �GL  and �W\SH���F¶L�VHUYHU���V��� �U

Now, let us consider that there is no inheritance root� in the language. Our hypothesis throughout this
paper is that there is at least a class metaobject FV common to the client and the server. Moreover, any
persistent object that is not a instance of FV is an instance of the class S�. So, if the class S� can be
considered as persistent, we can state that4:

 if W\SH�F¶L���V�� �GL, if GL is transient and if         G¶L  FV, then W\SH���F¶L�VHUYHU���V�� ��FV�VHUYHU

 if W\SH�F¶L���V�� �GL, if GL is transient and G¶L   FV then W\SH���F¶L�VHUYHU���V�� ��S��VHUYHU

In short, a reference to a subclass of FV is converted into a reference to �FV�VHUYHU and a reference to a
subclass of S� is converted to a reference to �S��VHUYHU.

A way to set S� as persistent is to give persistence properties to the own class of S�. Provided that the
metaclass compatibility problems are solved, it can be done by setting S� v 3RV, or S� v VXE3RV if VXE3RV
exists.

This looseness of the slot types can obviously generate problems when another designer directly uses the
object model stored in the server. If s/he is unaware of the looseness, s/he can link wrong objects
together, and s/he will get no type checking warning. However, we present this approach only to solve a
problem that can be avoided in most of the cases.

                                                     

4 We use the notation D� �E�to symbolize that either D = E or D p�E.



5.� MANAGING THE METACLASS COMPATIBILITIES

5.1.�Importance of the study

In the four generic object models proposed in the section 3, a class is inherited by several classes
belonging to different instanciation levels in a same instanciation branch. In this architecture, metaclass
compatibility problems can possibly occur.

The metaclass compatibility problem has been presented in [13]. In short, let us suppose that a class FL�is
instance of a metaclass FL�� and that a behavior IRR is defined on FL while a behavior PHWD)RR is defined
on FL��. Let us assume, finally, that the behavior IRR is implemented in FL�so that each time an instance of
FL receives a IRR�message, a PHWD)RR message is sent to the own class of the object. For example, when a
direct instance FL�� of FL receives the IRR message, the PHWD)RR message is sent to FL. Now, if we subclass
FL by a class GL, any instance GL���of GL should be able to receive the IRR message. Let us call GL�� the class
of GL. When an object GL�� receives the IRR message the PHWD)RR message is sent to the own class of GL��,
that is, to GL. But if GL�� does not define the PHWD)RR behavior, the PHWD)RR�message sending fails, and, as
a consequence, the IRR message sending to GL�� fails too.

It may be up to the designer to solve these problems. However, the aim of many systems is to prevent the
designer to create metaclass compatibility problems. In the previous example, there cannot be any
metaclass compatibility problem if GL�� FL�� or GL�� p FL��. The isomorphic graphs of classes and
metaclasses in Smalltalk [12] avoid the compatibility problems. The Ilog Power Classes language [14]
enforces that the metaclass of a subclass must be equal to, or be a subclass of, the metaclass of the
superclass. The SOM system [6, 11] transparently solves the metaclass compatibility problem by
generating adequate metaclasses. However, the metaclasses are connected by an inheritance graph similar
to the ones that can be created in Power Classes with multiple inheritance. In [3], the Smalltalk-like
inheritance rules between metaclasses are excluded only when a metaclass is designed to manage a
unique instance.

So our study would not be complete if we would not take into account the inheritance rules enforced on
the meta-levels by several systems with metaclasses: it is not sufficient to state that, for example, the
persistent class S� should be inherited by N instanciation levels {R�, …, RN} without considering the
inheritance relationships between, on the one hand, each member of the set {R�, …, RV} and, on the other
hand, the own class of S�,�that are induced by this statement in most of the systems. This study is the goal
of this section.

5.2.�Consequences of the inheritance of a class

We suppose that we have a set of P classes              3�= {S�, …, SP} such that ∀ M�  [1, P�1], SM v SM��,
that does not intersect with a second set of Q�classes  & =  {F�, …, FQ} such that ∀ M�  [1, Q-1], FM v FM��. If
we consider an object S� v S� and another object     F� v F�, the set 3� is the maximal set of the
metakclasses of S� such that no element in 3 is a metakclass of F�.

In this paper, S��stands for a persistence class and the SM�class metaobjects are its class and metaclasses.

Finally, we assume that the class metaobject FQ is instance of itself, that is, ∀ L�! Q, FL = FQ. We enforce
that the most specialized class of SP, that is, SP��, belongs to the set &. This last requirement means that



the set 3 is a class library of a language. A part of the standard class metaobjects of the language can be
found in &.

If the system enforces that the metaclass of a subclass be equal to, or be a subclass of, the metaclass of
the superclass, and if a class FL inherits from a class SL, then FL�� p SL��, and, by induction:

 ∀ L������FL�M�  SL�M  (1)

As a consequence of the rule 1, we have:

 ∀ L�  [1, P], FL p SL  (2)

 and, if P����Q, ∀ L�  [Q, P], FQ p SL  (3)

The rule 3, when P���Q, enforces that

 either multiple inheritance can be expressed,

 or the class FQ inherits from a class                    ST  {SQ, …, SP} that inherits from every class in {SQ,
…, ST��, ST��, …, SP} by successive single inheritance relationships.

Now, we have to determine the direct class of SP, that is, SP��. We have stated that SP��  &. We have SP
v FT and FT �&. Since F� p S�, we have:

 ∀ L�  [1, Q-T], FP�L �FT�L��                               (4)

We can note that the rule 4 if true even if T < P. We show an example of these relationships in the
figure 4 where P�= 4, T�= 7 and Q�= 10.
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)LJXUH����Example of inheritance relationships induced by the inheritance of the class S� by the class F�. Note
that SP and FP�do not share a common metaclass.



Managing the inheritance constraints

We can divide into two sets the constraints presented in the previous discussion.

A first kind of constraint is the connection of elements of the set & to elements of the 3 set by inheritance
relationships. For example, the rules (1), (2) and (3) enforce these connections. These constraints are
quite natural: the use of a class library in an application usually implies that the classes of the application
inherit from some of the classes of the library.

However, there is another kind of constraints that may raise some problems: the enforcement of
inheritance relationships between elements of the set &. The set & contains a subset of class metaobjects
belonging to the language itself    – at least, the class FQ that is instance of itself. Requiring that these
class metaobjects comply with special inheritance relationships means that:

 either the language itself has to be modified, if these relationships do not exist;

 or the language will not be able to be changed, if these relationships exist.

So, when designing a class library, it is better not to enforce inheritance relationships inside the set of
user-defined class metaobjects or standard class metaobjects. A simple way to do it is enforce that SP and
FP be instance of a common class, that is,

 FP is a user-defined class�and SP v FP��  (5)

5.3.�Inheritance of a class by several instanciation levels

The main problem of our study is to allow the inheritance of a class by several instanciation levels. So,
let us consider that the N first levels of instanciation in the set & inherit from S�, that is,       ∀ L�  [1, N], FL
p S�.

The rule 2 implies that

 ∀ L�  [1,�P], ∀ M�  [0,�N], FL�M�p SL           (6)

and the rule 3 implies that

 ∀ L�  [Q, P�N], FQ p SL�N  (7)

Finally, the rule 4 implies that

 ∀ L�  [1, Q-P-1], ∀ T�  [P, P-1+k], FT�L p FT�L�� (8)

The important result is that the rule (8) implies no inheritance constraint between members of & if N=1.
For example, in the figure 5, the inheritance constraints implied by N� �� are shown.

We have shown in this section that, when using a language that enforces a kind of parallelism between
the inheritance tree of a class and the one of its metaclass, whenever more than one instanciation level
inherits from a same class, there are inheritance constraints between the own classes and metaclasses of



the language and/or the own classes or metaclasses of the application using the library. We have
formalized them, so a designer can evaluate if her/his language can express a library usable by several
instanciation levels.
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)LJXUH����Example of inheritance constraints implied when two instanciation levels inherit from a same
class.

5.4. Isolating the instanciation levels

However, there is an expensive way to  allow N instanciation levels to share some common behaviors,
with no inheritance constraints in the set & of standard classes and user-defined classes.

We can define N classes S���, …, S��N� with no link among themselves and no link with S�, implementing
all of the behaviors of S�. Of course, it may be expensive since the code related to persistence
management must be duplicated N times on S���, S���, …, and S��N.

Then we state that:

 ∀ L�  [1, N], S��L v SL��

 ∀ L�  [1, N], SL p S��L

The inheritance constraints induced by F� p S� are:

 ∀ L�  [1, N], FL p SL p S��L

Thus, N instanciation levels will have the same persistence behaviors and no inheritance constraints are
set in &.

The figure 6 shows an example where N�= 2, P = 4, and Q = 6.
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6.� A CASE STUDY: ADDING PERSISTENCE TO THE POWER CLASSES LANGUAGE

6.1.�Overview of Power Classes

We have applied our proposal to a real case. We provide a persistence library to the Lisp-based reflective
and object-oriented language Ilog Power Classes [14]. It is a commercial and enhanced version of EuLisp
[21].. The actual persistence tool used is a relational database management system accessed through
ObjectDRIVER, our object wrapper [18].

Power Classes has some interesting properties that justify the use of several of our proposals.

 The language deals with possible metaclass compatibility problems by enforcing the rules described
in the section 5.1, that is, the metaclass of a subclass must be equal to, or must inherit from, the
metaclass of the superclasses.

 The language offers two object model paradigms. In the first one multiple inheritance can be used, in
the second one, only simple inheritance can be used.

As we can see in the figure 7, Power Classes offers two standard metaclasses: VWDQGDUG�FODVV and
VWUXFWXUH�FODVV. The classes that are instances of VWDQGDUG�FODVV can be related using multiple
inheritance, while the classes that are instances of VWUXFWXUH�FODVV can only be related using simple
inheritance.

structure-class

standard-class

object class

)LJXUH��� Part of the standard model of Power Classes

The rules enforced to avoid any metaclass compatibility problem forbid the designer to link instances of
VWUXFWXUH�FODVV and�VWDQGDUG�FODVV by inheritance relationships.



The possibility to define multiple inheritance for instances of VWDQGDUG�FODVV justifies the use of the
model based on the multiple inheritance paradigm that has been described in the section 3.3. The
impossibility to use multiple inheritance for instances of VWUXFWXUH�FODVV justifies the dynamic copy
of a transient model into a persistent one, as described in the section 3.4. Finally, the rules enforced to
ensure metaclass compatibility are compatible with the discussion of the section 5. So, it occurred to us
that Power Classes is a good test case for our proposals.

We arbitrarily choose the persistent replication paradigm. An object is at first transiently created in the
client, then it is duplicated in the server when it receives a replication message PSHUVLVWHQFH.

In order to bind a reflective object-oriented language with a relational formalism, we used the patterns
proposed in this research report. The implementation keeps the resulting language open. This
implementation is beyond the scope of this research report and can be found in [7, 8].

6.2.�Extending a transient model

In this section, we apply the model proposed in the section 3.3. We study an instanciation branch
R�, …, RQ�where RQ is an instance of itself. In Power Classes,

 the class metaobject RQ is the class FODVV;

 the class metaobject RQ�� is the class  VWDQGDUG�FODVV;

 moreover, we have RQ�� p RQ, that is,  VWDQGDUG�FODVV p FODVV.

As a standard metaobject of the language, we assume that VWDQGDUG�FODVV is natively present in the
server. It corresponds to the class metaobject RV of the section 3.1.

We define the metaclass 3VWDQGDUG&ODVV, corresponding to the class 3RV. We have

 3VWDQGDUG&ODVV�p  VWDQGDUG�FODVV, and
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 3VWDQGDUG&ODVV�v VWDQGDUG�FODVV.

We define on 3VWDQGDUG&ODVV a non-regressive replication message PSHUVLVWHQFH.

Now, we define a class SVWDQGDUG, equivalent to the class S� of the section 3. We define on SVWDQGDUG the
behavior PSHUVLVWHQFH.

We want to define the persistent class metaobjects R¶�, …, R¶Q�� such that ∀ L�  [1, Q-2], R¶L p RL and     R¶L
p SVWDQGDUG.

So, Q-2 instanciation levels can inherit from SVWDQGDUG but we are only sure that Q ����

With regard to the metaclass compatibility problem, since we do not want to change neither VWDQGDUG�

FODVV nor FODVV (that is, neither RQ�� nor RQ), the rule (7) presented in the section 5.3 implies that SVWDQGDUG
be an instance of a standard metaclass of the language.

Many applications defined in Power Classes do not define new metaclasses. In these applications, every
class is instance of VWDQGDUG�FODVV. To respect the rule (5), we set SVWDQGDUG  v VWDQGDUG�FODVV.

The rule (8) enforces that:

 ∀ L�  [2, Q-2], RL p RQ��

 ∀ L�  [2, n-1], oi�p RQ

Now, in Power Classes, RQ�� p RQ is true. So, the only constraint enforced is that any persistent metaclass
defined by the user should inherit from VWDQGDUG�FODVV. We have noticed that, in most of the cases,
this is a weak constraint, since VWDQGDUG�FODVV provides very useful behaviors and tools.

Since we need the user-defined  persistent metaclasses  to inherit from VWDQGDUG�FODVV and from
SVWDQGDUG, we define the class 3&ODVV0HWDREMHFW such that:
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 3&ODVV0HWDREMHFW�is instance of VWDQGDUG�FODVV,

 3&ODVV0HWDREMHFW p VWDQGDUG�FODVV

 3&ODVV0HWDREMHFW�p SVWDQGDUG.

The last statement allows to send persistence messages to the objects R¶�, …, R¶Q��. The persistence
behaviors that can be sent to R¶Q�� are defined on 3VWDQGDUG&ODVV.

We ask the user to define her/his persistent metaclasses as subclasses of 3FODVV0HWDREMHFW and her/his
persistent classes that are not metaclasses, as subclasses of SVWDQGDUG

�.

We have seen in the section 4.3 that, in order to manage the types of slots, it can be useful to set
persistent the class SVWDQGDUG. So we set:

 SVWDQGDUG v 3VWDQGDUG&ODVV

The rules enforced by Power Classes to avoid any metaclass compatibility problem imply that

 3&ODVV0HWDREMHFW�v 3VWDQGDUG&ODVV

 3&ODVV0HWDREMHFW�p 3VWDQGDUG&ODVV

 The persistence behaviors defined on SVWDQGDUG override on 3&ODVV0HWDREMHFW� those defined on
3VWDQGDUG&ODVV. This can be done by specifying an order in the inheritance tree.

The figure 8 sums up the object model.

6.3.�Persistent copies of transient models

In order to manage the classes instances of VWUXFWXUH�FODVV, that cannot be combined with multiple
inheritance, we use the model defined in the section 3.4.

 We define a class 3VWUXFWXUH&ODVV, subclass and instance of VWUXFWXUH�FODVV. We specialize on it
the instanciation message as described in the section 3.4.

 We define a class VXE3VWUXFWXUH&ODVV, subclass and instance of 3VWUXFWXUH&ODVV. We define on it the
non-regressive replication message PSHUVLVWHQFH.

Since we did not want to rewrite the instanciation message we merged the class &RS\&ODVV and the class
3VWUXFWXUH&ODVV and we defined the regressive persistence behavior PSHUVLVWHQFH on 3VWUXFWXUH&ODVV.

                                                     

5 As a side effect, this discrimination between persistent class metaobjects and persistent final instances is useful to
manage a non object-oriented server DBMS [8].



However, the classes that are not metaclasses cannot inherit from 3VWUXFWXUH&ODVV which is a metaclass.
So we define another class SVWUXFWXUH and we define on it the same persistence behaviors that have been
defined on 3VWUXFWXUH&ODVV. Note that the class 3VWUXFWXUH&ODVV cannot inherit from SVWUXFWXUH since it
inherits from VWUXFWXUH�FODVV, and, as an instance of VWUXFWXUH�FODVV, it cannot use multiple
inheritance.

The figure 9 sums up this model.

7.� RELATED WORKS

Few works have explicitly considered the problem of designing persistence libraries for a transient,
object-oriented and reflective language, as we did.

Due to the nature of the involved programming languages, most of the bindings between an object-
oriented language and a DBMS do not consider the problems induced by a user-defined meta-level. For
example, the Java language has metaobjects but, since the user cannot modify them, and cannot add new
metaclasses, the management of several levels of instanciation is never needed.

In the reflective OODBMSs Vodak [17] and Tigukat [24], the problem of object persistence has not been
considered as we did. The main idea was to offer an object-oriented reflective model useful in the
domain of OODBMSs. But, as far as the authors know, there is no study on the coexistence of transient and
persistent objects, the reengineering of existent transient models, or the way to provide persistence to an
existing reflective model by adding a class library. The whole language is supposed to be natively
persistent, possibly by system programming.

The studies the closest to our interests have been done with PCLOS [22, 23]. PCLOS binds the CLOS

programming language and a virtual relational DBMS. However, if the final instances and the user-defined
classes are managed, the way an arbitrary number of instanciation levels could be managed is not shown.
Moreover this study is very bound to the CLOS programming language. We have taken a much more
general approach: the Power Classes language is for us only a test case.

8.� CONCLUSION

In this research report, we have focused on the design of a class library for persistence management in an
object-oriented reflective language. We have shown that persistence management, in such a language,
can be, and should be, modeled by an object-oriented model.

So, our goal was to provide to the user design patterns to build persistence libraries in reflective
languages. The class-based object-oriented reflective systems have an interesting property: objects can
belong to different instanciation levels and be related by instanciation links. This property cannot be
found in classical object-oriented programming languages. So, we took this problem into account. We
took a general approach, and independently of any programming language, we have proposed different
object models, or design patterns, to design such a library, according to:

 the persistence paradigm chosen – use of proxies, or replication mechanism;

 the needs of the designer – for example, the freedom to create from scratch a new application or the
need to add persistence abilities to an existing application;



 the properties of the language – single or multiple inheritance, introspection properties, rules to avoid
metaclass compatibility problems.

According to the set of her/his needs and her/his constraints, the designer who wants to design persistent
application exploiting different instanciation levels, can choose one of our object models: s/he can see
the reasons of its use, its interests or its drawbacks. One of the interest of our work is to specifically deal
with multiple instanciation levels: the designer does not have to extend a design pattern managing only
the instanciation level of the user-defined classes.

When an adequate design pattern has been chosen, the designer can then choose the storage tool s/he
prefers without any change in the object model. For example, s/he can use a direct storage in an OODBMS,
or an heterogeneous storage as we did with the language Power Classes.
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