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Abstract: We use recent improvements in the parametrization of controllable multidi-
mensional control systems to show how to transform the study of a linear quadratic optimal
problem into that of a variational problem without constraints. We give formal conditions on
the differential module determined by the control system, to pass from the Pontryagin method
to a purely Euler-Lagrange variational problem. This formal approach uses the cost function in
order to link the formally exact sequence formed by the controllable system and its parametriza-
tions with the sequence formed by their adjoint operators. In the case of partial differential
equations, this scheme is typical for any problem of elasticity.
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1 Introduction

In this paper, we show how new results on parametrization of linear multidimensional control
systems can be used to find formal results on optimal control and variational calculus. In
particular, we are interested in knowing how the structural properties of a multidimensional
control system, described in the framework of module theory, can be useful in order to reduce
a constrained variational problem to a free one.

We first recall the fact that a controllable system, in the sense that the system determines
a torsion-free differential module, is parametrizable and we show how to find effectively its
parametrization |13, 15, 17]. The problem investigated in this paper is to extremize a func-
tional under the constraint given by a linear multidimensional control system. We prove that
if the control system generates a torsion-free module and if the differential sequence formed by
the system and one of its parametrizations is locally exact, then by substitution, we are led to a
simple variational problem without constraints. In particular, if the control system determines
a projective module, one can always reduce our problem to this case. Moreover, if the system
is defined by a surjective operator and determines a projective module, the Lagrange multi-
pliers can always be found explicitly, without any integrations. Many examples illustrate this
approach and, in particular, we show how this formal method can be used to linear quadratic
problem, elasticity theory, electromagnetism... We hope to convince the reader that these al-
gebraic and geometric methods, developped for control system theory in [13, 14, 15, 17|, and



using as main ingredients, formal adjoint of an operator, differential sequences and module the-
ory, are in fact closely related to some physics principles, for example, duality existing between
geometry and physics, in the sense of Poincaré.

2 Formal Tools

Let us expose and recall some results about the formal theory of differential operators |9, 10,
13, 24] and its dual approach in terms of differential modules [1, 8, 11, 12, 15].

Let E and F be trivial vector bundles over a differential manifold X of dimension n with
local coordinates x = (z',...,2"). In the course of this paper, we shall take R* for X or open

subsets. Let

E 2 F 0
(z,&5(z)) — (2,07 (2) = Zog\u\gq,1gk§m at(2)0, &5, 1 <71 <),

be a differential operator from E to F, where the fibered dimension of E (resp. F) is equal to
m (resp. equal to 1), u = (u1, ..., j1,,) is a multi-index of length || = py + ... + p, and we adopt
the notation 9, = 0{"... 9. If we denote by O the kernel of the operator D, then we have the
following exact sequence:

0—0-—E-2F (2)

Now, we associate with any differential operator D an algebraic object, namely a differential
module M, in the following way (see [15] for more details). For that, when K is a differential
field |7, 22], let us introduce the ring D = K[dy, ..., d,] of differential operators, i.e. the ring of
elements of the form P =3, a"(x)d,, where the coefficients a*(z) belong to K and where
the derivations d; satisfy:

di(a(z)d;) = a(x)d; d; + O;a(x)d;.

We associate with (1) the D-homomorphism . D defined as follows

p -2 pm
() = Locuzgzra Prap (@)dy, 1 < k< m),

(3)

i.e. we let operate a row vector of D' on the left of D to obtain a row vector of D™. Now,
we associate with (2), the finitely presented left D-module M defined by the following exact
sequence:

D®k F* 2 D@y B — M — 0,
or simply, because the vector bundles are trivial:
D' B D" — M — 0, (4)

ie. M =D™/D'D (see [8, 9, 10, 11, 12, 15] for more details).
When D : £ — n is a sufficiently regular differential operator, the compatibility conditions
of the inhomogeneous system

D¢ =, (5)

are defined by an operator Dy : Fy — F}, with F' = Fy and | = [y. In other words, all the
necessary conditions on 7, in order to have the local existence of £ such that (5) is satisfied,
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are generated by Dyn = 0. The operator D; can be constructed by bringing the operator D
to involutiveness [13]. A historical problem was to construct effectively the operator D; and it
was investigated by Riquier and Cartan at the beginning of the century [2, 20, 21| but received
a nice improvement with Janet’s work in the twenties |3, 4| and a final achievement with the
works of Spencer in the seventies |13, 24]. Then, we can construct the formally exact sequence
[13, 15, 24]:

0—60-—F-2F 25 F,. (6)

In the differential module langage, this means that we have computed the beginning of the free
resolution (see e.g [23|) of the D-module M corresponding to D, i.e. we have the following
exact sequence:

D 2By plo ~2y pm s Af 5 0. (7)

We can repeat the same thing with D; instead of D and we obtain a long formally exact
sequence of compatibility conditions in the operator language, or a free resolution of M in the
algebraic one. Moreover, we know, from the works of Spencer [24], that we can find a resolution
of M of length equal to n, where n is the number of derivatives 0;, or equivalently, the number
of derivations d; in D. However, the Spencer resolution is in general very difficult to compute
[13] and thus it is much easier to compute the Janet sequence |13, 15]

Dn—l

0—0 —E2%F 252 2SE 2 E —0,

giving rise to a free resolution of M of length equal to n + 1:
0 — Din 2y plnt —y —y ph 2By plo 2Py pmo__y hp g, (8)

obtained by replacing D by an involutive operator Dy : E — Fy with the same kernel © [13]
and where D; are involutive first order operators. In this case, we know that the last operator
D, : F,, 1 — F, defines a projective D-module (see e.g. [23| and definition 1).

Applying the functor homp(-, D) to (8), we obtain the dual sequence

0¢— D &re ph-t v« ph 2 plo 22 pm o homp(M,D) «— 0,  (9)
where D;. means that we make D; operate on the left of a column vector of D% ! in order
to obtain a column vector of D'. The defect of cohomology at D% is denoted by H(D%) =
ext’, (M, D) = ker D;;,/im D;. The defects of cohomology ext’,(M, D) do only depend in fact
on M and not on its resolution (8), that is, if we have two different resolutions of the same D-
module M, then we obtain the same defect of cohomology from the two different dual sequences
[23]. Now, we have to notice that, using the fact that D is both a left and right D-module, we
can endow homp (M, D) with the structure of a right D-module:

Vae D,V¢ € homp(M,D):Vme M, (pa)(m) =¢(m)a.
The cokernel of Dy is the right D-module N, defined by:
0¢— N, +— D" &% D™ «— homp(M, D) +— 0. (10)

[t can be shown that NNV, only depends on M up to a projective equivalence [18|. If we want to
give an interpretation of the extension functor coming from the functor homp(-, D) in terms
of differential operators, we have to use the notion of formal adjoint [13, 15, 17|: if T* denotes
the cotangent bundle of X and D : F — F'is a differential operator, then its formal adjoint is
the operator D: N"F = \"T* ® F* - E = \"T* ® E*, defined by using the three following
formal rules equivalent to integration by parts:
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e the adjoint of a matrix (zero order operator) is the transposed matrix,

e the adjoint of 0; is —0;,

— ~

e for two linear PD operators P, Q that can be composed, then: PoQ = Q o P.
Moreover, we have the relation
<\ Dinp>— <D\ n>=d(),

expressing a difference of n-forms and where d is the standard exterior derivative. In homological
language, the functor \" T ®y - is the side changing functor [1] and it allows to pass from a
right D-module N, to a left ~D—module. Thus the left D-module N = A" T'®x N, is the module
determined by the adjoint D of D and we have:

0¢— N« N\ TexD <& N\ TeyD" (11)

Now, let us start with an involutive operator Dy : E — F{ and let us denote by M the
D-module determined by D. We give a formal test to check whether or not ext’, (M, D) is equal
to zero or not.

Computation of ext, (M, D):

1. Start with Dy.

2. Find the sequence of the compatibility condition operators D, up to D;.

3. Construct the adjoint sequence formed by the operators D; and D;_;.

4. Find the compatibility conditions D} , of D;.

5. Check whether or not D;_; generates all the compatibility conditions 152_1 of D;. If yes,
then ext), (M, D) = 0 else ext, (M, D) is defined by all the compatibility conditions which
are in D , and not in D;_,.

We can represent the above algorithm by the following diagram

D D D;- Di- D;
1 FE%F —%.. .28 F,"3F, —5F 2

~ Di1 = ~i ~
3 F,¢— F, & Fi,
T/ @1,:71
4 Fiy
where the number indicates the step of the algorithm.

More generally, from algebraic analysis [6, 11, 17|, we have the following theorem:

Theorem 1. We can embed the D-module M into an exact sequence

0 — M — D™ 25 Dt 252yt plrss 2 pler (12)

if and only if ext',(N,D) = 0, Vi = 1,...,r, where N is the left D-module corresponding to
the right D-module defined by (10). Equivalently, we have, in the framework of differential
operator, the following formally exact sequence:

D_, D_, D_: D_ D
E,—=3F.,, = .=23E,—=E —F

where Ey = E and each operator generates all the compatibility conditions of the preceding one
if and only if ext’,(N,D) =0, Vi =1,...,r, where N is the left D-module determined by D.
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Definition 1. e A finitely generated D-module M is free if it is isomorphic to copies of D.

e A finitely generated D-module M is projective if there exist a free D-module F' and a
D-module N such as FF'= M & N.

e A finitely generated D-module M is reflexive if M = homp(homp(M, D), D).

e A finitely generated D-module M is torsion-free if (M) = {m € M |Ip#0, pm =0} =
0. We call t(M) the torsion submodule of M.

We have the following inclusions of D-modules:
free C projective C ... C reflexive C torsion-free. (13)

Proposition 1. Let M be a finitely generated left D-module determined by the operator D and
N the left D-module defined by D. We have the following propositions [17]:

e M is a torsion-free D-module < ext},(N, D) = 0.
e M is a reflexive D-module < ext’y (N, D) =0, 1 = 1,2.
e M is a projective D-module < ext'y,(N,D) =0, i =1,...,n.

Let us notice that, if n = 1, then any torsion-free D-module is projective. It has been shown
in [19, 17] that the notions of torsion-freeness and projectiveness were the intrinsic formulation
of the notion of minor left coprimeness and zero minor coprimeness, used in multidimensional
systems theory |26, 27, 25, 28|, for matrices with maximal generic rank.

Theorem 2. e If D is a principal ideal ring (for ezample D = K[%]), then any torsion-free
D-module is free.

e If k is the field of constants, i.e. Ya € k : d;a =0, then any projective D = k[dy, ..., d,]-
module is free.

The first point is a well-known result and one can find the proof in any textbook on module
theory. The second point is the famous and difficult Quillen-Suslin theorem (see e.g. [23] for a
proof).

Example 1. Let D : £ — n be defined by

{ 8126 = 7717
D & =177,

dydy
d;
whether or not ext}, (M, D) is equal to zero. We first find that the compatibility condition of
DE =nis given by Dy : n — ¢ defined by 81n% — dyn* = ¢. Its adjoint D; : A — u, obtained by
multiplying D; on the left by a row vector A and integrating by parts, is defined by:

{ 82)\ = M1,
—81)\ = H2.

D = R[d;,ds] and let M = D/D? ( > be the D-module determined by D. Let us check

The compatibility conditions D’ : i — v of D; are generated by

O1 p1 + 09 pip = V',



whereas the adjoint D of D is defined by:
Oig 11 + O 12 = 1.
Thus, D does not generate all the compatibility conditions of D, and we have the relation
M =v.

We let the reader check by himself that the left D-module determined by the operator D is
not a torsion-free D-module and z = 0y u; + 0, o is a torsion element because it satisfies the
equation 0y z = 0.

Example 2. We let the reader check by himself that the sequence of compatibility conditions
of the operator D : £ — 1, defined by the gradient in R?, i.e. V& = n, is formed respectively
by the curl and the divergence operator. Moreover, we can easily verify that, up to a sign,
the differential sequence is self-adjoint, i.e. the formal adjoint of the gradient is minus the
divergence... Now, if we start with the divergence operator and call M = D3/D(d; dy d3), the
corresponding left D-module, then we easily verify that ext},(/V, D) = 0 because the divergence
is parametrized by the curl, ext% (N, D) = 0 because the curl is parametrized by the gradient and
ext?, (N, D) = D/D3(d, dy d3)' # 0 because the gradient is not a formally injective operator.
Hence, using proposition 1, we obtain that the D-module M is reflexive but not projective.
Similarly, one can prove that the D-module determined by the curl is only torsion-free and the
gradient determines a torsion D-module.

Example 3. Let us consider the operator D : £ — n defined by
&+ 0,8 =2’ =1,

D = R(z',2%)[dy,ds] and let M = D*/D ( dy —a® dy ) be the left D-module determined by
D. Let us determine the algebraic nature of M. First of all, we have to notice that D is formally
surjective, i.e. D has no compatibility conditions. The operator D : yu — v is defined by:

_aliu - .Z'2ﬂ =,
14
{ —ag,u = V3. ( )

We easily verify that we have u = 0,15 — 0oy + 2?15, which implies that D is an injective
operator. Let us define the operator Piv—s i by 01v5 — Oovy + 2?5 = p, then PoD = id,
i.e. P is a left-inverse of D. The A" T ®k D-morphism .D : A" T ®x D™ — \"T ®x D" is
then surjective because for all a € A" T ®g D", we can define b = aP and we easily verify
that « = bD. Hence, the left D-module N, defined by (11), verifies N = coker.D = 0 =
extlL,(N,D) = 0,i=1,2 and M is projective by proposition 1. Dualizing the operator P, we
obtain a right-inverse P of D, i.e. Do P =idp. We refer the reader to [15] for the applications
of left and right-inverses to the generalized Bezout identity. Substituting the expression of y in
functions of v and 1, in (14), we obtain the operator D_; : v — 7 defined by:

O11vg — vy + 2220119 — 2209vy + (22)1 + 11 = 71,
812V2 — 822V1 + .’17262V2 —+ 21/2 = 2.

Dualizing D_;, we obtain D_; : § — & given by:

—822 02 - 812 91 + l‘282 91 + 201 = 51,
812 92 + 811 91 — .1'28292 — 2.1'281 91 + (.’L’2)2 01 + 92 = €2.
We let the reader check by himself that the compatibility conditions of D_; 0 = £ are exactly

generated by the operator D& = 0. Hence, D is parametrized by D_; in agreement with the
fact that any projective module is torsion-free.



3 Optimal Control

We first recall how the preceding section can be used for the analysis of control systems. We
refer the reader to [13, 15, 17| for more details and examples.

3.1 Controllablity

In agreement with the notion of controllability used in multidimensional control theory, we have
the following definition [19, 13, 25, 28]:

Definition 2. A control system, described by the operator D; : Fy — Fi, is controllable if the
module M determined by D; is a torsion-free D-module.

By Proposition 1, a control system, defined by the operator Dy, is controllable if and only if
exth (N, D) = 0, where N is the left D-module determined by D;. In the case where the system
is controllable, using theorem 1, we know that D; can be parametrized by an operator Dy, i.e.
D, represents exactly all the compatibility conditions of Dy. If we want to check whether or
not a system is controllable and to compute effectively the operator Dy or the torsion elements,
we have to proceed in the following way:

Controllability test:
1. Start with D;.

2. Construct its adjoint D;.

3. Find the compatibility conditions of D1\ = p and denote this operator by Dy.

4. Construct its adjoint Dy (= Dy).
5. Find the compatibility conditions of Dy & = n and call this operator D;.
This leads to two different cases:

e If D, is exactly the compatibility conditions D of Dy, then the system D; determines a
torsion-free D-module M and Dy is a parametrization of D;.

e Otherwise, the operator D; is among, but not exactly, the compatibility conditions of D
and we shall write D; < D). The torsion elements of M are all the new compatibility
conditions modulo the equations Dn = 0.

Remark 1. For a matrix with polynomial entries and maximal generic rank, it is well-known
that this matrix determines a torsion-free module if there is no common factor on all the
maximal minors [19, 17, 25]. The above test can be used for more general systems (variable
coefficients case, non surjective operator). Moreover, if the D-module is torsion-free, it gives
effectively an explicit parametrization and, if the module is not torsion-free, it gives a basis of
torsion elements.

Example 4. We have seen in example 3 that, up to a change of notations, the system defined
by Dy :n— ( by

o'+ don® — 2t =,
determines a projective D-module and thus is controllable. Moreover, we have found a parametriza-
tion Dy : & — (, defined by

—0pp & — 0 &' + 2?0 EF +2& =,
D12 & + 011 &' — 220,62 — 2220, &' + (a?)2 & + &2 = .
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of D;. This concept of parametrization generalizes the notion of controller form and partial
state [5] to non surjective operator and to multidimensional systems. We refer the interested
reader to [15, 18] for more details.

We use similarly the differential operator language to compute explicitly ext’, (N, D) and,
therefore, to know whether a multidimensional system determines a reflexive, ..., projective
D-module. Applications of projective modules to generalized Bezout identity are shown in [15].

Theorem 3. An OD control system defined by a surjective operator Dy, i.e. the operator D,
has no compatibility conditions, is controllable iff its adjoint D; is an injective operator, i.e.

Proof. Let M be the D = k[%]—module determined by the surjective operator D;. The left
D-module N is then defined by:

0¢— N+ T®gD & T @ D™

If 151 is an injective operator, then there exists an operator 751 : Fl — Fg such that 751 o 151 =
idj, . This implies that the operator Dy : T Q®x D™ = T @y Db is surjective. Indeed, for all
a € T ®x D", we define b = a751 and we easily verify that a = bf)l. Thus N = coker .151 =
0 = exth(N,D) = 0 = M is a torsion-free D-module. Reciprocally, suppose that M is a
torsion-free D-module then, since D is a principal ideal ring, by theorem 2, M is a projective
D-module. Thus, the sequence

0— D' 25 D™ — M — 0,

splits 23], i.e. there exists an operator Py : D! — D™ such that .D;y o Py = .idp, that is to
say, Dy o P; = idp,. Hence, D, is injective with left-inverse P;. Notice that, in this case, we
have N = 0. O

Example 5. Let us consider the system in the Kalman form —y + A(t) y + B(¢) u = 0, where
A is a square n X n matrix and B is n x m. The OD surjective operator D; : n — (, defined
by —n' + A(t) n' + B(t) n* = ¢, determines a torsion-free D-module M iff M is projective. The
adjoint operator D; : A — i is given by:

{ A+ NA(t) =,
AB(t) = po.

Differentiating the zero order equation and using the first one, we obtain that A (AB — B) =
0= \(A’B— AB—2AB +B) = 0... Therefore, the operator D; is injective, i.e. N =0 < M
is projective, iff the rank over K of the controlability matrix rk (B AB—B ... A" 'B+... ... )
is equal to n. Of course, we can proceed similarly if A and B do not depend on the time ¢, and
we recover the classical Kalman test. See [17] for more details.

The controllability of a linear multidimensional control system with variable or unknown
coefficients may depend on some differential relations on the coefficients. We refer the reader
to [14] where examples of trees of conditions are exhibited.

3.2 Linear Quadratic Case

In the course of the text, we shall use the following jet notation n, = (1,,0 < |u| < ¢). For
example, if we take X = R, i.e. in the OD case, we have 5, = (1, ..., 7, ..., n?). Let us consider
the differential operator D; : n — ¢ of order ¢ and the Lagrangian function

1
L(n,) = 5773R77q,
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where R is a symmetric matrix (Rzlﬂ = Rf;ca) with entries in K and n = (n*,1 <k < m). Let
us consider the problem of minimizing
[t ae.

with dz = da' A ... A dz™, under the constraint
Dl n = 0.
The variation of the Lagrangian function is given by dL(n,) = Z‘a|<q71<k<m T2 n¥, where

o« _ OL(n,) o
T 877§q = > R’

1<l<m, |B|<q

We define the operator B : n — u by

Bn=(> (-1)¥dm) = p,

la|<q

and for any section n of Fy, Bn belongs to Fy = A" T*® F§ and we have the following diagram:

F, 25 R

1B
Fy.

Proposition 2. The operator B : Fy — Fy is a self-adjoint operator, i.e. B = B.

Proof. We multiply Bn on the left by a vector # € F, and we integrate by parts, we obtain
with implicit summation on the dumb indices :

<Bn,0> = (—1)(dyr®) 0 =78 d, 0% +d(-)
= Ryl da0F +d(-)
= R0kl +d(')
= ((=1)Pldgm )0 + d(-)
=<n,BO > +d().

Finally, we notice that (Fy) = Fy. O

Theorem 4. The optimal system s given by

{ Dl n :~0,

where X is a Lagrange multiplier. Moreover, if the compatibility condition of Dy are written by

means of an operator Dy and if the sequence E 2 F, il Fy is locally exact at F,, then the
optimal system is

Dl n= 07
{ (DyoB)n=0, (16)
and we have the following diagram:
R 2R
o B
R N



Proof. 1f we denote by A a Lagrange multiplier, then we have:

g/@mﬁ—ADmmx:/wm—ﬁMwnmwa”
Accordingly, a necessary condition of optimality is:
By — D=0, (17)
and we obtain (15). Eliminating the Lagrange multiplier by composing (17) on the left by

Dy, we obtain (Dy o B)n = 0 and we have (16). Now, if we have (16) and the sequence

E &j'o Pl F, is locally exact at F,, then we have DyoBn = 0 = D, (Bn) = 0 and thus
I\ € Fy such that By — DA = 0. It leads back to (15). O

Example 6. Let us minimize

under the constraint:
o' + oon? — 2*n' = 0.
The operator B : Fy — Fj is defined by Bn = 1 and the adjoint D; of D, is (see example 3):

{ _81)\ - .Z'2)\ = M1,
—82)\ = W2.

Thus, the optimal system has to satisfy:

Ot + 0o — ant =0,
’I'/1 + 81)\ + 2\ = 0,
7'/2 + 82)\ =0.
We have seen in example 3 that the operator Dy :  — 9in' + 9yn? — 2°n' = ¢ determines a
projective D-module and thus that the sequence E 2o F, il F is locally exact at F,. The
optimal system is equivalently given by:
8117']2 - 6127’]1 —+ 2.1‘2817’]2 — .’E262’I']1 + (.1'2)2772 + ’I']1 == 0,
8127’]2 — 822771 + .’L'2827’]2 + 2772 = O,
ot + 0yn? — z’nt = 0.

We let the reader check by himself that the above system is formally integrable (see [13] for
more details) and that its solution space depends on two arbitrary functions of one variable.

Theorem 5. If the control system Dy is controllable, that is parametrizable by an operator

Dy : E — Fyin such a way that the sequences B2 ﬁ’o L F, and F Do, Ey N Fi are
locally exact at Fy and Fy, then the optimal system is given by:

{ Do 5)
where A is defined by
A =DyoBoD,, (19)
and we have the following diagram:
E 2> KR 2 R
Al 1B
E & R & B



Proof. Let us show the equivalence between (16) and (18). Suppose that (16) is satisfied, then
we have Dy 1 =0 <« Dy =1 because the sequence formed by Dy and D; is a locally exact at
Fy. Moreover, (Do B)n = (DyoBoDy)&=AE=0and (16) and (18) are equivalent. O

Remark 2. Such an assumption gives the possibility to transfer a variational problem for n
with constraint into a variational problem for £ without any constraint.

Corollary 1. If the control system Dy determines a projective D-module M, then the optimal
system is determined by (18) where A is defined by (19). This is in particular the case if Dy is
a controllable OD system.

Proof. 1f Dy determines a projective D-module M, then the operator D; can be parametrized

by an operator Dy such that the two following sequences E & F, L F,and E Do, Fy T F
are locally exact at Fy and Fj respectively and thus we have the result. If D; is an OD control
system, then M is a torsion-free D-module and thus a projective one because D = k [%] is a
principal ideal ring. O

Remark 3. This result explains the importance of the controllability condition of an OD
control system in the study of the variational formulation of an optimal control problem. In
the PD case, the controllability is a necessary condition but, in general, not a sufficient one,
whereas the fact that the D-module M, determined by the control system, is projective is
a sufficient condition but not a necessary one because, for example, the Poincaré sequence,
induced by the exterior derivative, is a locally exact sequence [13] but none of its operators
determines a projective module.

Example 7. Let us take back example 6. The operator D; determines a projective D-module

and thus the sequence E Do, Fy KN Fi is locally exact at Fy. The optimal system is then
defined by A& =0 but in this case, as B = id, it follows that, with a slight abuse of language,
we can write A = Dy o Dy and the fourth order square operator A is trivially self-adjoint.

Example 8. Let the control system be defined by D(4)y + N(4%)u = 0, with det D(Z) # 0,
and (D N) left-coprime, i.e. controllable. Thus, the operator D; : (y u) — (, defined by
d d

D(—)y+N(%)

dt u=q

has a right-inverse and the D = R[-%]-module M determined by D; is a projective D-module
(see example 14 and see [15] for more details). But, D = R[£] is a principal ideal domain and
thus M is a free D-module, i.e. D; admits an injective parametrization Dy, which is in fact the

controller form o
{ N(s)€ =y,
D(s)€ =u,

where ¢ is the basis of M, called the partial state [5]. The adjoint Dy : (pi1, pto) — v of Dy is
defined by: B o
N(=s)"pa+D(=s) " p2 = v

Now, let us find the optimal system minimizing

]‘ t
/577 Rndt,

where n = (y,u)" and R is a symmetric matrix. We easily check that B = R. Finally, we
obtain: . o B
DyoB = (N(-s)" D(-s)") oR,

11



and the operator A : £ — v is defined by:

(N(-5)" D)) oo ( 3 ) €= (20)

I 0
0 S
acting on the inputs, we find that the dynamics of the optimal system is given by: (compare
with [5] where one needs many technical results on determinants of matrices):

(N(=5)" o N(s) + D(~s)" o SoD(s)) £ = 0.
Corollary 2. The operator A : E — E defined by (18) is self-adjoint, i.e. A=A

In particular, if we take R = , where S is a symmetric and definite positive matrix

Proof. We have:

——

A=DyoBoDy=DyoBoDy=A,
because we know from Proposition 2 that B is a self-adjoint operator, i.e. B=8. O

Example 9. We take again example 8. We have seen that the dynamics of the optimal system
is given by A& = 0, where A is defined by (20). We easily verified that A was a self-adjoint
operator. If we denote by A(s) = (N(—s)! D(—s)!) cRo ( %Ei)) ) and d(s) = det A(s),
thus we have:
d(s) = det (A(s)Y)

= det (A(—s))

=0(—s).
Hence, if there exists sy € C such that 6(sy) = 0, then §(—sy) = 0, showing that the eigenvalues
of the dynamics A& = 0 are symmetric with respect to the real axis.

Proposition 3. If the operator Dy : n — ( is surjective and determines a projective D-module
M, then we can express A as differential combination of n, i.e. A = 731 o Bn, where Py is a
left-inverse of the injective operator Dy. The operator Py o B : Fy — E) allows to observe \
and we have the diagram:

F, 25 F —0

Bl
Fb (D—1F1<—O
L

Proof. The fact that the operator D; is surjective and that it determines a projective D-module
implies that D1 is an injective operator and thus D1 admits a left-inverse 731, ie. P1 ODl idp, -

Accordingly, we have By =DiA = A= (P, o B) 1. O

Remark 4. In the OD case, a control system defined by a surjective operator D; is controllable
if and only if D is injective.

Example 10. We take back example 6. We have seen in example 3 that D, was an injective
operator and that D; had a left-inverse P; : u — A defined by:

Dopin + Orpin — 2 p1n = M.
Thus, the equation P; o B:n — ) is defined by:

627']1 + 617']2 — .1‘27’]2 =\

12



The following particular case is motivated by elasticity theory as we shall see later on and
by the fact that we closed the diagram of theorem 5 on the left and not on the right.

Proposition 4. If the operator B : Fy — Ey is invertible, then the optimal system is given by:

{ (Cl;\Too,f)l) A=n. (21)
where C s defined by:
C=D,0B oDy, (22)
and we have the following diagram:
R 25K
BltB! +C

& R

In particular, it is the case if Dy is a first order operator (e.g. Kalman system) and B = R

a non negative square matrix with constant entries.

Proof. We have seen that the optimal system is given by:

D17’]Z~0,
BT] — Dl)\ = 0,

From the second equation, we obtain = (B~! o D))\, and thus D, = (D, o B~'o DA =0
and we obtain (21). Reciproquely, if we have (21), then 0 = CA = (D o B! o Dy)A = Dy 1y,
which concludes the proof. O

We let the reader do the computations for Kalman systems and invertible cost.

Example 11. We take back example 6. The operator B : Fy — Fy is invertible and B~y =n.
Thus, the operator C : Fy — F} is defined by

AX— (2%)’A = 0.

The optimal system is governed by the following system:

AX— (%)X =0,
7’]1 = —81)\ - .’L‘2)\,
772 == —82)\

We find back that the optimal problem only depends on two arbitrary functions of one variable
needed for integrating the first equation above.

Let us finish with the Riccati equation and integrability conditions. We have seen that if
we start with a control system D;n = 0, then resolving the variational problem associated
with the optimal control problem adds the new equations Bn DA =0 (see theorem 4) and
the new system becomes (16). The solution of (15) does not depend, in general, on arbitrary
functions of n variables, i.e. the module determined by (15) is a torsion D-module, i.e. the
system (15) is determined. If we add new equations in 1 and A to the system (15), then there
exists a new solution if and only if some integrability conditions are satisfied (see [14] for trees

13



of integrability conditions). This is the way which leads to the Riccati equation: let us find the

solution of . 0
) t 0 T
mln/é(aj u)<0 R><u>dt,

where R is a definite positive matrix, ¢ is a positive one while z and u satisfy the Kalman

system:
t—Ax—Bu=0.

We obtain the following system:

t—Ar—Bu=0,
A+ AN+ Qx =0,
Ru+ B'\=0.

Using the fact that R is invertible, we have:

it — Az —BR B\ =0,
A+ AN+Quz =0,
—R "B\ =u.

The system in x and A is determined and thus, if we add to this system the new equation
A — Pz =0 as a kind of feedback for the total system, it becomes non formally integrable, i.e.
we cannot find step by step the solution of the system as a formal power series (see for more
informations [13, 15]). Indeed, if we differentiate the zero order equation and take into account
the other equations, we find the following new zero order equation:

(P+ A'P+ PA— PBR'B'P+Q)z=0.

Hence, the system
#—Ax — BR'B')\ =0,
A+ AN+Quz =0,
—~R !B\ = u,
A—Pzx =0,

has a solution different from zero iff the following integrability condition on P is satisfied
P+ A'P+ PA— PBR 'B'P+Q=0,
that is the Riccati equation for P. In this case, we can rewrite the system of equations as:

P+ A'P+ PA—PBR 'B'P+Q=0,
i—(A—BR'B'P)x =0,
—R'B'Px =u,

Pz =M\

We have recently shown in [14, 16] that the controllablity of a system with indetermined
coefficients depended on trees of integrability conditions on the coefficients. The same thing
may happen in optimal control and we provide an illustrative example.

Example 12. Let us consider the following system

1
min/ §(y2 — u?) dt,

14



where y and u satisfy the system
y+ay—u—u=0,

in which a is a constant coefficient. The system (15) is given by:

A—aA+y=0,
A+ A—u=0,
y+ay—u—u=0.

Let us eliminate A in order to find (16): summing the first two equations, we obtain the new

zero order equation (1 —a)A = u —y. Therefore, two cases may happen depending on the value
of the parameter a:

1. if a =1, then y — u = 0 and the optimal system is thus given by:

y+y—u—u=0,
y_u:()J

ie. y—u=0.
2. ifa # 1, then A = (y — u)/(a — 1) and, after substituting, we get:

y+ay—1u—u=0, y+ay—u—u=0,
y—y—t+au=0, (a+1) (y —u) = 0.

We are led to new integrability conditions:

(a) if @ = —1, then the optimal system is given by the only equation y+ay—a—u = 0.
In fact, we can notice that in this case a parametrization Dy : £ — ( Yy, U ) of the
system is given by: _

{§+€=%
5 - 6 = u,
1,2 2 o d o,
and thus 3(y* —u®) =2£{{ = E(f ).
(b) if @ # —1, then the only solution is y = 0 = w.

We notice that the condition a # 1 is, in fact, the condition on a for the system to be controllable
(if a = 1, the element z = y — u satisfies (& 4 1)z = 0).

4 Applications

We show in this section how all the preceding sections can be used for applications, specially
in elasticity theory.

4.1 Elasticity Theory

Let us denote the displacement in R" by £ = (£")1<i<, and contract the index of & by the
euclidean metric w;; = wj; = ;5,1 < i, < n, of R" in order to lower the index with & = w;; &,
The so-called small strain tensor is then given by the operator
;C() w: T —» SQT*,
£ — (65 = 5(L(Ew)ij = 5(0:& + 06) hr<ijj<n

15



where L is the Lie derivative of the euclidean metric. Let us only consider the case n = 2.
Thus, the small strain tensor is given by

en =0 51;
€12 = €21 = %(8152 + 0x61),
€90 = O 2.

This system has only one compatibility condition of order two, namely
O11 €22 + Oz €11 — 2012 €12 = 0, (23)

and we have the following sequence of differential operators
0— 60— E -2 Fy 2% Fy — 0, (24)

where E =T, Fy = S,T*,© is the field of small rigid displacements and D & = $(L£(§)w). In the
spirit of Poincaré, this sequence is only based on geometry whereas the adjoint sequence, i.e.
the sequence formed by the adjoint operators, gives the physics. Indeed, the adjoint D : o — f
of the operator D is defined by multiplying € by ¢ and integrating by parts, i.e.

11 12 21 22 11 12 22
0 €11 + 0 €1+ 0% €y +0%€n =0 €11+ 20 €19+ 0°€9

- —(81 0'11 +820'12) gl — (81 0'12 —|—820'22) 52—|—

where we have supposed that o'? = o?!. Thus, up to a sign, —D : 0 — f is given by

{ 61 O'11 +620'12 = fl,

81 012 + 82 022 — f2, (25)

where o is the stress tensor and f is a density of forces. Similarly, the adjoint D; of the operator
D, is obtained by multiplying (23) by A and integrating by parts
A (011 €29 + Opp €11 — 2012 €12) = Ori N €9 + O erg — 20N ep + ...

and thus D; : A — o is given by :

O A = UH,
—0ip A =02, (26)
O A= 0227

and we check easily that all the compatibility conditions of D; are generated by D or —D. We
find back the well-known parametrization of the stress tensor by the Airy function A. Finally,
we have the formally exact sequence:

0+ B2 Ry &8 Fy. (27)

In fact, it can be shown that the sequence (24) is locally equivalent to the Poincaré sequence

N T~ N A T* N N\’ T* — 0 (see [13]), which is a locally exact and self-adjoint sequence.
Hence, the sequences (24) et (27) are locally exact. Moreover, the Poincaré sequence being
a self-adjoint sequence, this is the reason why the kernel © of the operator D and the kernel
Q of D, both depend on three arbitrary constants. Finally, we can link these two differential
sequences with the constitutive law, namely the Hooke law B : € — o, defined by

ol = (a+20) €1 + e,
o2 = g2 =2 G,
0 = aey + (a+20)e,
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where (a, 3) are the Lamé constants and we obtain the following locally exact diagram:

0 > O > B D,FOD

lzs (28)
Fl < Q < 0.

s F, —— 0

0 < E <

With such a diagram, we naturally want to associate the operator A= -DoBoD:E—-E
to it. Now, let us notice that B is a symmetric matrix, i.e. B = B, and thus A is a self-adjoint
operator. This fact can easily be verified on the direct expression of the operator A

{ (@+2B3) 011 &+ B0n& + (a+ )0t =
(4 B3)012& + O &+ (a+20) 00k = [,

or equivalently on the so-called Navier equations:

{ (@+0)01 (01 & + &)+ BAE = [
(@+0)02 (01 & + &)+ BAE = f2

The Hook law is in fact invertible and the operator B! is given by

( _ (a+2p) 1 o 22
T R VT R R
{ 612:i012
0 (a+20)
R S £ | L 29
2T T p ity

and thus, we have an operator C = D, o B~ o 751 : Fl — F, defined by:

(a+2p0)
——AA )N = (.
46 (a+p)
Finally, we can sum up the different operators by the following locally exact diagram :
0 y O v B -2 F 2 R s 0
[o e e
- D D, .

To finish this section, let us connect the above results to controllability of multidimensional
systems. We can conclude, from the controllability test and what precedes, that the operator
D, determines a torsion-free D-module M, with Dy as a parametrization (it is not surprising
because, by definition, D; is the compatibility condition of Dy). More surprisingly, we have
proved that the D-module determined by the operator Dy is also a torsion-free module with
parametrization given by the operator (26) and a “potential” A called Airy function in this case.

4.1.1 Case without forces

In the case where there is no force, let us mimimize the energy of deformation given by
L, 19,2
¢ Bedrda?,
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under the constraint Die = 0. Introducing a new unknown A as a Lagrange multiplier, it is
equivalent to extremize the new integral

1
/(5 e Be — ADje)da'da?,
where the € are now considered as independent variables. Thus, by theorem 4, we have to solve
the system

{86—151)\20,

D1€ = 0, (29)

or, in another words, the system:

0'12 +811 0'22 = 0,

—822)\20
0'12+612)\:
_611811)\—

622 O'11 -2 812.

We can solve ¢ = (B™! 0151) A in the first equation of (29), and, substituting it in the second,
we obtain C A = (D; o B~' o D)\ = 0. Finally, we have to solve the following system:

(AAN=0,
(a+20) a
N A P Ty
< 612__ﬁ812)\
B (a+2p0)
L= T T

and, from the first equation of the above system, A is biharmonic.
Moreover, the sequence (24) is locally exact, therefore, as we saw in theorem 5, the solution
of the equivalent unconstrained problem

nm1/%§%ﬁosopmdfdﬁ

is
AE=0,
DE =,

or equivalently, we have to solve a system of PDE only in the displacements &:

(a+B)01 (01& +0:&)+BAE =0,
(a+B)02(01& +0:&) + BAE =0,

0 51 = €11
%(31 §o+ 02 &1) = ey,
0y 52 = €22.

4.1.2 Forces coming from a potential

If the force f comes from a potential ¢, i.e.

{ f1:81¢,
f2:a277b7
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then, from (25), we have the following system

(30)

81011+82012—811/):O,
81012+82022—821/):O,

and, if we introduce by 7! = o!' — 9, 7'2 = 02 and 722 = 0?2 — 1), we find the new system

without forces :

—11 —12 _
{810 +0yo° =0, (31)

O 7' + 0,52 =0,

Moreover, we have D& =0 <= 7 = D\ because the differential sequence F} T Fy P Eis
locally exact at Fj. Finally, we find the system

O'11 = 622 A + d),
0'12 - —812 )\, (32)
0'22 = 811 A + w

Therefore, solving the system (30), where o satisfies ¢ = Ao and D;e = 0, is the same as
solving the system (32) with ¢ = Ao and D;e = 0. Hence, we have to solve the following
system of PDE

p

and to substitute the result in (32) to obtain the corresponding stress tensor o. As a matter of
fact, when the only forces involved are of gravitational type, then A ¢ = 0, and we are brought
back to the preceding situation.

5 Conclusion

We hope to have convinced the reader about the possibility to extend optimal control theory
from the study of variational problems with linear ordinary differential constraints to varia-
tional problems with linear partial differential constraints. At the same time, we have ex-
plicitely stressed out the role of the controllability condition imposed on the control system as
a differential constraint.
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