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using as main ingredients, formal adjoint of an operator, di�erential sequences and module the-ory, are in fact closely related to some physics principles, for example, duality existing betweengeometry and physics, in the sense of Poincaré.2 Formal ToolsLet us expose and recall some results about the formal theory of di�erential operators [9, 10,13, 24] and its dual approach in terms of di�erential modules [1, 8, 11, 12, 15].Let E and F be trivial vector bundles over a di�erential manifold X of dimension n withlocal coordinates x = (x1; :::; xn). In the course of this paper, we shall take Rn for X or opensubsets. Let E D�! F(x; �k(x)) 7�! (x; �� (x) =P0�j�j�q;1�k�m a��k (x)@� �k; 1 � � � l); (1)be a di�erential operator from E to F , where the �bered dimension of E (resp. F ) is equal tom (resp. equal to l), � = (�1; :::; �n) is a multi-index of length j�j = �1 + :::+�n and we adoptthe notation @� = @�11 ::: @�nn . If we denote by � the kernel of the operator D, then we have thefollowing exact sequence: 0 �! � �! E D�! F: (2)Now, we associate with any di�erential operator D an algebraic object, namely a di�erentialmodule M , in the following way (see [15] for more details). For that, when K is a di�erential�eld [7, 22], let us introduce the ring D = K[d1; :::; dn] of di�erential operators, i.e. the ring ofelements of the form P =Pj�j<1 a�(x)d�, where the coe�cients a�(x) belong to K and wherethe derivations di satisfy: di(a(x)dj) = a(x)di dj + @ia(x)dj:We associate with (1) the D-homomorphism :D de�ned as followsDl :D�! Dm(P� ) 7�! (P0�j�j�q;1���l P� a��k (x)d�; 1 � k � m); (3)i.e. we let operate a row vector of Dl on the left of D to obtain a row vector of Dm. Now,we associate with (2), the �nitely presented left D-module M de�ned by the following exactsequence: D 
K F ? :D�! D 
K E? �!M �! 0;or simply, because the vector bundles are trivial:Dl :D�! Dm �!M �! 0; (4)i.e. M = Dm=DlD (see [8, 9, 10, 11, 12, 15] for more details).When D : � ! � is a su�ciently regular di�erential operator, the compatibility conditionsof the inhomogeneous system D � = �; (5)are de�ned by an operator D1 : F0 ! F1, with F = F0 and l = l0. In other words, all thenecessary conditions on �, in order to have the local existence of � such that (5) is satis�ed,2



are generated by D1� = 0. The operator D1 can be constructed by bringing the operator Dto involutiveness [13]. A historical problem was to construct e�ectively the operator D1 and itwas investigated by Riquier and Cartan at the beginning of the century [2, 20, 21] but receiveda nice improvement with Janet's work in the twenties [3, 4] and a �nal achievement with theworks of Spencer in the seventies [13, 24]. Then, we can construct the formally exact sequence[13, 15, 24]: 0 �! � �! E D�! F0 D1�! F1: (6)In the di�erential module langage, this means that we have computed the beginning of the freeresolution (see e.g [23]) of the D-module M corresponding to D, i.e. we have the followingexact sequence: Dl1 :D1�! Dl0 :D�! Dm �!M �! 0: (7)We can repeat the same thing with D1 instead of D and we obtain a long formally exactsequence of compatibility conditions in the operator language, or a free resolution of M in thealgebraic one. Moreover, we know, from the works of Spencer [24], that we can �nd a resolutionof M of length equal to n, where n is the number of derivatives @i, or equivalently, the numberof derivations di in D. However, the Spencer resolution is in general very di�cult to compute[13] and thus it is much easier to compute the Janet sequence [13, 15]0 �! � �! E D0�! F0 D1�! F1 D2�! : : : Dn�1�! Fn�1 Dn�! Fn �! 0;giving rise to a free resolution of M of length equal to n+ 1:0 �! Dln :Dn�! Dln�1 �! ::: �! Dl1 :D1�! Dl0 :D0�! Dm �!M �! 0; (8)obtained by replacing D by an involutive operator D0 : E ! F0 with the same kernel � [13]and where Di are involutive �rst order operators. In this case, we know that the last operatorDn : Fn�1 ! Fn de�nes a projective D-module (see e.g. [23] and de�nition 1).Applying the functor homD(�; D) to (8), we obtain the dual sequence0 � Dln Dn : � Dln�1  � ::: � Dl1 D1 : � Dl0 D0 : � Dm  � homD(M;D) � 0; (9)where Di : means that we make Di operate on the left of a column vector of Dli�1 in orderto obtain a column vector of Dli. The defect of cohomology at Dli is denoted by H(Dli) =extiD(M;D) = kerDi+1=imDi. The defects of cohomology extiD(M;D) do only depend in facton M and not on its resolution (8), that is, if we have two di�erent resolutions of the same D-moduleM , then we obtain the same defect of cohomology from the two di�erent dual sequences[23]. Now, we have to notice that, using the fact that D is both a left and right D-module, wecan endow homD(M;D) with the structure of a right D-module:8 a 2 D; 8� 2 homD(M;D) : 8m 2M; (� a)(m) = �(m) a:The cokernel of D0 is the right D-module Nr de�ned by:0 � Nr  � Dl0 D0 : � Dm  � homD(M;D) � 0: (10)It can be shown that Nr only depends on M up to a projective equivalence [18]. If we want togive an interpretation of the extension functor coming from the functor homD(�; D) in termsof di�erential operators, we have to use the notion of formal adjoint [13, 15, 17]: if T ? denotesthe cotangent bundle of X and D : E ! F is a di�erential operator, then its formal adjoint isthe operator ~D : Vn ~F = Vn T ? 
 F ? ! ~E = Vn T ? 
 E?; de�ned by using the three followingformal rules equivalent to integration by parts:3



� the adjoint of a matrix (zero order operator) is the transposed matrix,� the adjoint of @i is �@i,� for two linear PD operators P;Q that can be composed, then: P̂ �Q = ~Q � ~P .Moreover, we have the relation< �; D1 � > � < ~D1 �; � >= d(�);expressing a di�erence of n-forms and where d is the standard exterior derivative. In homologicallanguage, the functor Vn T 
K � is the side changing functor [1] and it allows to pass from aright D-module Nr to a left D-module. Thus the left D-module N = Vn T 
KNr is the moduledetermined by the adjoint ~D of D and we have:0 � N  �^n T 
K Dl : ~D �^n T 
K Dm: (11)Now, let us start with an involutive operator D0 : E ! F0 and let us denote by M theD-module determined by D. We give a formal test to check whether or not extiD(M;D) is equalto zero or not.Computation of extiD(M;D):1. Start with D0.2. Find the sequence of the compatibility condition operators Dr up to Di.3. Construct the adjoint sequence formed by the operators ~Di and ~Di�1.4. Find the compatibility conditions ~D0i�1 of ~Di.5. Check whether or not ~Di�1 generates all the compatibility conditions ~D0i�1 of ~Di. If yes,then extiD(M;D) = 0 else extiD(M;D) is de�ned by all the compatibility conditions whichare in ~D0i�1 and not in ~Di�1.We can represent the above algorithm by the following diagram1 E D0�! F0 D1�! ::: ::: Di�2�! Fi�2 Di�1�! Fi�1 Di�! Fi 23 ~Fi�2 ~Di�1 � ~Fi�1 ~Di � ~Fi;4 ~F 0i�2 ~D0i�1 �where the number indicates the step of the algorithm.More generally, from algebraic analysis [6, 11, 17], we have the following theorem:Theorem 1. We can embed the D-module M into an exact sequence0 �!M �! Dm :D�1�! Dl�1 :D�2�! ::: :D�r+1�! Dl�r+1 :D�r�! Dl�r ; (12)if and only if extiD(N;D) = 0; 8 i = 1; :::; r, where N is the left D-module corresponding tothe right D-module de�ned by (10). Equivalently, we have, in the framework of di�erentialoperator, the following formally exact sequence:E�r D�r�! E�r+1 D�r+1�! ::: D�2�! E�1 D�1�! E0 D�! F;where E0 = E and each operator generates all the compatibility conditions of the preceding oneif and only if extiD(N;D) = 0; 8 i = 1; :::; r, where N is the left D-module determined by ~D.4



De�nition 1. � A �nitely generated D-moduleM is free if it is isomorphic to copies of D.� A �nitely generated D-module M is projective if there exist a free D-module F and aD-module N such as F = M �N .� A �nitely generated D-module M is re�exive if M �= homD(homD(M;D); D).� A �nitely generated D-moduleM is torsion-free if t(M) = fm 2 M j 9 p 6= 0; pm = 0g =0. We call t(M) the torsion submodule of M .We have the following inclusions of D-modules:free � projective � ::: � re�exive � torsion-free: (13)Proposition 1. Let M be a �nitely generated left D-module determined by the operator D andN the left D-module de�ned by ~D. We have the following propositions [17]:� M is a torsion-free D-module , ext1D(N;D) = 0.� M is a re�exive D-module , extiD(N;D) = 0; i = 1; 2:� M is a projective D-module , extiD(N;D) = 0; i = 1; :::; n:Let us notice that, if n = 1, then any torsion-free D-module is projective. It has been shownin [19, 17] that the notions of torsion-freeness and projectiveness were the intrinsic formulationof the notion of minor left coprimeness and zero minor coprimeness, used in multidimensionalsystems theory [26, 27, 25, 28], for matrices with maximal generic rank.Theorem 2. � If D is a principal ideal ring (for example D = K[ ddt ]), then any torsion-freeD-module is free.� If k is the �eld of constants, i.e. 8 a 2 k : di a = 0, then any projective D = k[d1; :::; dn]-module is free.The �rst point is a well-known result and one can �nd the proof in any textbook on moduletheory. The second point is the famous and di�cult Quillen-Suslin theorem (see e.g. [23] for aproof).Example 1. Let D : � ! � be de�ned by� @12 � = �1;@22 � = �2;D = R[d1 ; d2] and let M = D=D2� d1d2d22 � be the D-module determined by D. Let us checkwhether or not ext1D(M;D) is equal to zero. We �rst �nd that the compatibility condition ofD � = � is given by D1 : � ! � de�ned by @1�2� @2�1 = �: Its adjoint ~D1 : �! �, obtained bymultiplying D1 on the left by a row vector � and integrating by parts, is de�ned by:� @2� = �1;�@1� = �2:The compatibility conditions ~D0 : �! � of ~D1 are generated by@1 �1 + @2 �2 = � 0;5



whereas the adjoint ~D of D is de�ned by:@12 �1 + @22 �2 = �:Thus, ~D does not generate all the compatibility conditions of ~D1 and we have the relation@2 � 0 = �:We let the reader check by himself that the left D-module determined by the operator ~D isnot a torsion-free D-module and z = @1 �1 + @2 �2 is a torsion element because it satis�es theequation @2 z = 0.Example 2. We let the reader check by himself that the sequence of compatibility conditionsof the operator D : � ! �, de�ned by the gradient in R3 , i.e. r� = �, is formed respectivelyby the curl and the divergence operator. Moreover, we can easily verify that, up to a sign,the di�erential sequence is self-adjoint, i.e. the formal adjoint of the gradient is minus thedivergence... Now, if we start with the divergence operator and call M = D3=D(d1 d2 d3), thecorresponding left D-module, then we easily verify that ext1D(N;D) = 0 because the divergenceis parametrized by the curl, ext2D(N;D) = 0 because the curl is parametrized by the gradient andext3D(N;D) = D=D3(d1 d2 d3)t 6= 0 because the gradient is not a formally injective operator.Hence, using proposition 1, we obtain that the D-module M is re�exive but not projective.Similarly, one can prove that the D-module determined by the curl is only torsion-free and thegradient determines a torsion D-module.Example 3. Let us consider the operator D : � ! � de�ned by@1 �1 + @2 �2 � x2�1 = �;D = R(x1 ; x2)[d1; d2] and let M = D2=D � d1 � x2 d2 � be the left D-module determined byD. Let us determine the algebraic nature ofM . First of all, we have to notice that D is formallysurjective, i.e. D has no compatibility conditions. The operator ~D : �! � is de�ned by:� �@1�� x2� = �1;�@2� = �2: (14)We easily verify that we have � = @1�2 � @2�1 + x2�2, which implies that ~D is an injectiveoperator. Let us de�ne the operator ~P : � ! � by @1�2 � @2�1 + x2�2 = �, then ~P � ~D = id ~F ;i.e. ~P is a left-inverse of ~D. The Vn T 
K D-morphism : ~D : Vn T 
K Dm ! Vn T 
K Dl0 isthen surjective because for all a 2 Vn T 
K Dl0 , we can de�ne b = a ~P and we easily verifythat a = b ~D. Hence, the left D-module N , de�ned by (11), veri�es N = coker : ~D = 0 )ext1D(N;D) = 0; i = 1; 2 and M is projective by proposition 1. Dualizing the operator ~P, weobtain a right-inverse P of D, i.e. D�P = idF . We refer the reader to [15] for the applicationsof left and right-inverses to the generalized Bezout identity. Substituting the expression of � infunctions of �1 and �2 in (14), we obtain the operator ~D�1 : � ! � de�ned by:� @11�2 � @12�1 + 2x2@1�2 � x2@2�1 + (x2)2�2 + �1 = 1;@12�2 � @22�1 + x2@2�2 + 2�2 = 2:Dualizing ~D�1, we obtain D�1 : � ! � given by:� �@22 �2 � @12 �1 + x2@2 �1 + 2 �1 = �1;@12 �2 + @11 �1 � x2@2�2 � 2x2@1 �1 + (x2)2 �1 + �2 = �2:We let the reader check by himself that the compatibility conditions of D�1 � = � are exactlygenerated by the operator D � = 0. Hence, D is parametrized by D�1 in agreement with thefact that any projective module is torsion-free.6



3 Optimal ControlWe �rst recall how the preceding section can be used for the analysis of control systems. Werefer the reader to [13, 15, 17] for more details and examples.3.1 ControllablityIn agreement with the notion of controllability used in multidimensional control theory, we havethe following de�nition [19, 13, 25, 28]:De�nition 2. A control system, described by the operator D1 : F0 ! F1, is controllable if themodule M determined by D1 is a torsion-free D-module.By Proposition 1, a control system, de�ned by the operator D1, is controllable if and only ifext1D(N;D) = 0, where N is the left D-module determined by ~D1. In the case where the systemis controllable, using theorem 1, we know that D1 can be parametrized by an operator D0, i.e.D1 represents exactly all the compatibility conditions of D0. If we want to check whether ornot a system is controllable and to compute e�ectively the operator D0 or the torsion elements,we have to proceed in the following way:Controllability test:1. Start with D1.2. Construct its adjoint ~D1.3. Find the compatibility conditions of ~D1� = � and denote this operator by ~D0.4. Construct its adjoint D0 (= eeD0).5. Find the compatibility conditions of D0 � = � and call this operator D01.This leads to two di�erent cases:� If D1 is exactly the compatibility conditions D01 of D0, then the system D1 determines atorsion-free D-module M and D0 is a parametrization of D1.� Otherwise, the operator D1 is among, but not exactly, the compatibility conditions of D0and we shall write D1 < D01. The torsion elements of M are all the new compatibilityconditions modulo the equations D1� = 0.Remark 1. For a matrix with polynomial entries and maximal generic rank, it is well-knownthat this matrix determines a torsion-free module if there is no common factor on all themaximal minors [19, 17, 25]. The above test can be used for more general systems (variablecoe�cients case, non surjective operator). Moreover, if the D-module is torsion-free, it givese�ectively an explicit parametrization and, if the module is not torsion-free, it gives a basis oftorsion elements.Example 4. We have seen in example 3 that, up to a change of notations, the system de�nedby D1 : � ! � by @1�1 + @2�2 � x2�1 = �;determines a projectiveD-module and thus is controllable. Moreover, we have found a parametriza-tion D0 : � ! �, de�ned by� �@22 �2 � @12 �1 + x2@2 �1 + 2 �1 = �1;@12 �2 + @11 �1 � x2@2�2 � 2x2@1 �1 + (x2)2 �1 + �2 = �2:7



of D1. This concept of parametrization generalizes the notion of controller form and partialstate [5] to non surjective operator and to multidimensional systems. We refer the interestedreader to [15, 18] for more details.We use similarly the di�erential operator language to compute explicitly extiD(N;D) and,therefore, to know whether a multidimensional system determines a re�exive, ..., projectiveD-module. Applications of projective modules to generalized Bezout identity are shown in [15].Theorem 3. An OD control system de�ned by a surjective operator D1, i.e. the operator D1has no compatibility conditions, is controllable i� its adjoint ~D1 is an injective operator, i.e.~D1� = 0) � = 0:Proof. Let M be the D = k[ ddt ]-module determined by the surjective operator D1. The leftD-module N is then de�ned by:0 � N  � T 
K Dl : ~D1 � T 
K Dm:If ~D1 is an injective operator, then there exists an operator ~P1 : ~F1 ! ~F0 such that ~P1 � ~D1 =id ~F1 : This implies that the operator : ~D1 : T 
K Dm ! T 
K Dl0 is surjective. Indeed, for alla 2 T 
K Dl0, we de�ne b = a ~P1 and we easily verify that a = b ~D1. Thus N = coker : ~D1 =0 ) ext1D(N;D) = 0 ) M is a torsion-free D-module. Reciprocally, suppose that M is atorsion-free D-module then, since D is a principal ideal ring, by theorem 2, M is a projectiveD-module. Thus, the sequence 0 �! Dl :D1�! Dm �!M �! 0;splits [23], i.e. there exists an operator :P1 : Dl ! Dm such that :D1 � P1 = :idDl, that is tosay, D1 � P1 = idF1 . Hence, ~D1 is injective with left-inverse ~P1. Notice that, in this case, wehave N = 0.Example 5. Let us consider the system in the Kalman form � _y +A(t) y +B(t) u = 0, whereA is a square n � n matrix and B is n �m. The OD surjective operator D1 : � ! �, de�nedby � _�1 +A(t) �1+B(t) �2 = �, determines a torsion-free D-moduleM i� M is projective. Theadjoint operator ~D1 : �! � is given by:� _�+ �A(t) = �1;�B(t) = �2:Di�erentiating the zero order equation and using the �rst one, we obtain that � (AB � _B) =0) � (A2B� _AB�2A _B+ �B) = 0 : : : Therefore, the operator ~D1 is injective, i.e. N = 0,Mis projective, i� the rank over K of the controlability matrix rk (B AB� _B : : : An�1B+: : : : : : )is equal to n. Of course, we can proceed similarly if A and B do not depend on the time t, andwe recover the classical Kalman test. See [17] for more details.The controllability of a linear multidimensional control system with variable or unknowncoe�cients may depend on some di�erential relations on the coe�cients. We refer the readerto [14] where examples of trees of conditions are exhibited.3.2 Linear Quadratic CaseIn the course of the text, we shall use the following jet notation �q = (��; 0 � j�j � q). Forexample, if we take X = R, i.e. in the OD case, we have �q = (�; :::; _�; :::; �(q)). Let us considerthe di�erential operator D1 : � ! � of order q and the Lagrangian functionL(�q) = 12 �tq R�q;8



where R is a symmetric matrix (R�;�k;l = R�;�l;k ) with entries in K and � = (�k; 1 � k � m). Letus consider the problem of minimizing Z L(�q) dx;with dx = dx1 ^ ::: ^ dxn; under the constraintD1 � = 0:The variation of the Lagrangian function is given by �L(�q) =Pj�j�q;1�k�m � �k � �k�; where��k = @L(�q)@ �k� = X1�l�m; j�j�qR�;�k;l �l�:We de�ne the operator B : � ! � byB � = (Xj�j�q(�1)j�jd�� �k ) = �;and for any section � of F0, B � belongs to ~F0 = Vn T ?
F ?0 and we have the following diagram:F0 D1�! F1# B~F0:Proposition 2. The operator B : F0 ! ~F0 is a self-adjoint operator, i.e. ~B = B.Proof. We multiply B � on the left by a vector � 2 F0 and we integrate by parts, we obtainwith implicit summation on the dumb indices :< B �; � > = (�1)j�j(d�� �k ) �k = ��k d� �k + d(�)= R�;�k;l �l� d��k + d(�)= R�;�k;l �k��l� + d(�)= ((�1)j�jd���l )�l + d(�)=< �;B � > +d(�):Finally, we notice that g( ~F0) = F0.Theorem 4. The optimal system is given by� D1 � = 0;B � � ~D1� = 0: (15)where � is a Lagrange multiplier. Moreover, if the compatibility condition of ~D1 are written bymeans of an operator ~D0 and if the sequence ~E ~D0 � ~F0 ~D1 � ~F1 is locally exact at ~F0, then theoptimal system is � D1 � = 0;( ~D0 � B) � = 0; (16)and we have the following diagram: F0 D1�! F1. # B~E ~D0 � ~F0 ~D1 � ~F1:9



Proof. If we denote by � a Lagrange multiplier, then we have:� Z (L(�q)� �D1�) dx = Z (B � � ~D1�)� � dx + :::Accordingly, a necessary condition of optimality is:B � � ~D1� = 0; (17)and we obtain (15). Eliminating the Lagrange multiplier by composing (17) on the left by~D0, we obtain ( ~D0 � B) � = 0 and we have (16). Now, if we have (16) and the sequence~E ~D0 � ~F0 ~D1 � ~F1 is locally exact at ~F0, then we have ~D0 � B � = 0 ) ~D0 (B �) = 0 and thus9� 2 ~F0 such that B� � ~D1� = 0. It leads back to (15).Example 6. Let us minimize Z 12((�1)2 + (�2)2) dx;under the constraint: @1�1 + @2�2 � x2�1 = 0:The operator B : F0 ! ~F0 is de�ned by B � = � and the adjoint ~D1 of D1 is (see example 3):� �@1�� x2� = �1;�@2� = �2:Thus, the optimal system has to satisfy:8<: @1�1 + @2�2 � x2�1 = 0;�1 + @1�+ x2� = 0;�2 + @2� = 0:We have seen in example 3 that the operator D1 : � ! @1�1 + @2�2 � x2�1 = � determines aprojective D-module and thus that the sequence ~E ~D0 � ~F0 ~D1 � ~F1 is locally exact at ~F0. Theoptimal system is equivalently given by:8<: @11�2 � @12�1 + 2x2@1�2 � x2@2�1 + (x2)2�2 + �1 = 0;@12�2 � @22�1 + x2@2�2 + 2�2 = 0;@1�1 + @2�2 � x2�1 = 0:We let the reader check by himself that the above system is formally integrable (see [13] formore details) and that its solution space depends on two arbitrary functions of one variable.Theorem 5. If the control system D1 is controllable, that is parametrizable by an operatorD0 : E ! F0 in such a way that the sequences ~E ~D0 � ~F0 ~D1 � ~F1 and E D0�! F0 D1�! F1 arelocally exact at ~F0 and F0, then the optimal system is given by:� A � = 0;D0 � = �; (18)where A is de�ned by A = ~D0 � B � D0; (19)and we have the following diagram: E D0�! F0 D1�! F1A # # B~E ~D0 � ~F0 ~D1 � ~F1:10



Proof. Let us show the equivalence between (16) and (18). Suppose that (16) is satis�ed, thenwe have D1 � = 0, D0 � = � because the sequence formed by D0 and D1 is a locally exact atF0. Moreover, ( ~D � B) � = ( ~D0 � B � D0) � = A � = 0 and (16) and (18) are equivalent.Remark 2. Such an assumption gives the possibility to transfer a variational problem for �with constraint into a variational problem for � without any constraint.Corollary 1. If the control system D1 determines a projective D-module M , then the optimalsystem is determined by (18) where A is de�ned by (19). This is in particular the case if D1 isa controllable OD system.Proof. If D1 determines a projective D-module M , then the operator D1 can be parametrizedby an operator D0 such that the two following sequences ~E ~D0 � ~F0 ~D1 � ~F1 and E D0�! F0 D1�! F1are locally exact at ~F0 and F0 respectively and thus we have the result. If D1 is an OD controlsystem, then M is a torsion-free D-module and thus a projective one because D = k [ ddt ] is aprincipal ideal ring.Remark 3. This result explains the importance of the controllability condition of an ODcontrol system in the study of the variational formulation of an optimal control problem. Inthe PD case, the controllability is a necessary condition but, in general, not a su�cient one,whereas the fact that the D-module M , determined by the control system, is projective isa su�cient condition but not a necessary one because, for example, the Poincaré sequence,induced by the exterior derivative, is a locally exact sequence [13] but none of its operatorsdetermines a projective module.Example 7. Let us take back example 6. The operator D1 determines a projective D-moduleand thus the sequence E D0�! F0 D1�! F1 is locally exact at F0. The optimal system is thende�ned by A � = 0 but in this case, as B = id; it follows that, with a slight abuse of language,we can write A = ~D0 � D0 and the fourth order square operator A is trivially self-adjoint.Example 8. Let the control system be de�ned by D( ddt)y +N( ddt)u = 0, with det D( ddt) 6= 0,and (D N) left-coprime, i.e. controllable. Thus, the operator D1 : (y u)! �, de�ned byD( ddt)y +N( ddt)u = �has a right-inverse and the D = R[ ddt ]-module M determined by D1 is a projective D-module(see example 14 and see [15] for more details). But, D = R[ ddt ] is a principal ideal domain andthus M is a free D-module, i.e. D1 admits an injective parametrization D0, which is in fact thecontroller form � N(s) � = y;D(s) � = u;where � is the basis of M , called the partial state [5]. The adjoint ~D0 : (�1; �2) ! � of D0 isde�ned by: N(�s) t �1 +D(�s) t �2 = �Now, let us �nd the optimal system minimizingZ 12 �tR� dt;where � = (y; u)t and R is a symmetric matrix. We easily check that B = R. Finally, weobtain: ~D0 � B = (N(�s) t D(�s) t) �R;11



and the operator A : � ! � is de�ned by:(N(�s) t D(�s) t) �R � � N(s)D(s) � � = �: (20)In particular, if we take R = � I 00 S � ; where S is a symmetric and de�nite positive matrixacting on the inputs, we �nd that the dynamics of the optimal system is given by: (comparewith [5] where one needs many technical results on determinants of matrices):(N(�s) t �N(s) +D(�s) t � S �D(s)) � = 0:Corollary 2. The operator A : E ! ~E de�ned by (18) is self-adjoint, i.e. ~A = A.Proof. We have: ~A = ^~D0 � B � D0 = ~D0 � ~B � D0 = A;because we know from Proposition 2 that B is a self-adjoint operator, i.e. ~B = B.Example 9. We take again example 8. We have seen that the dynamics of the optimal systemis given by A � = 0; where A is de�ned by (20). We easily veri�ed that A was a self-adjointoperator. If we denote by �(s) = (N(�s) t D(�s) t) � R � � N(s)D(s) � and �(s) = det�(s),thus we have: �(s) = det (�(s)t)= det (�(�s))= �(�s):Hence, if there exists s0 2 C such that �(s0) = 0, then �(�s0) = 0, showing that the eigenvaluesof the dynamics A � = 0 are symmetric with respect to the real axis.Proposition 3. If the operator D1 : � ! � is surjective and determines a projective D-moduleM , then we can express � as di�erential combination of �, i.e. � = ~P1 � B �, where ~P1 is aleft-inverse of the injective operator ~D1. The operator ~P1 � B : F0 ! ~F1 allows to observe �and we have the diagram: F0 D1�! F1 �! 0B # &~F0 ~D1 � ~F1 � 0:~P1�!Proof. The fact that the operator D1 is surjective and that it determines a projective D-moduleimplies that ~D1 is an injective operator and thus ~D1 admits a left-inverse ~P1, i.e. ~P1� ~D1 = id ~F1 .Accordingly, we have B � = ~D1�) � = ( ~P1 � B) �.Remark 4. In the OD case, a control system de�ned by a surjective operator D1 is controllableif and only if ~D1 is injective.Example 10. We take back example 6. We have seen in example 3 that ~D1 was an injectiveoperator and that ~D1 had a left-inverse ~P1 : �! � de�ned by:@2�1 + @1�2 � x2�2 = �:Thus, the equation ~P1 � B : � ! � is de�ned by:@2�1 + @1�2 � x2�2 = �:12



The following particular case is motivated by elasticity theory as we shall see later on andby the fact that we closed the diagram of theorem 5 on the left and not on the right.Proposition 4. If the operator B : F0 ! ~F0 is invertible, then the optimal system is given by:� C� = 0;(B�1 � ~D1)� = �: (21)where C is de�ned by: C = D1 � B�1 � ~D1; (22)and we have the following diagram: F0 D1�! F1B #" B�1 " C~F0 ~D1 � ~F1:In particular, it is the case if D1 is a �rst order operator (e.g. Kalman system) and B = Ra non negative square matrix with constant entries.Proof. We have seen that the optimal system is given by:� D1 � = 0;B � � ~D1� = 0;From the second equation, we obtain � = (B�1 � ~D1)�, and thus D1 � = (D1 � B�1 � ~D1)� = 0and we obtain (21). Reciproquely, if we have (21), then 0 = C� = (D1 � B�1 � ~D1)� = D1 �,which concludes the proof.We let the reader do the computations for Kalman systems and invertible cost.Example 11. We take back example 6. The operator B : F0 ! ~F0 is invertible and B�1� = �.Thus, the operator C : ~F1 ! F1 is de�ned by��� (x2)2� = 0:The optimal system is governed by the following system:8<: ��� (x2)2� = 0;�1 = �@1�� x2�;�2 = �@2�:We �nd back that the optimal problem only depends on two arbitrary functions of one variableneeded for integrating the �rst equation above.Let us �nish with the Riccati equation and integrability conditions. We have seen that ifwe start with a control system D1 � = 0, then resolving the variational problem associatedwith the optimal control problem adds the new equations ~B � � ~D1� = 0 (see theorem 4) andthe new system becomes (16). The solution of (15) does not depend, in general, on arbitraryfunctions of n variables, i.e. the module determined by (15) is a torsion D-module, i.e. thesystem (15) is determined. If we add new equations in � and � to the system (15), then thereexists a new solution if and only if some integrability conditions are satis�ed (see [14] for trees13



of integrability conditions). This is the way which leads to the Riccati equation: let us �nd thesolution of min Z 12 � x u �t� Q 00 R �� xu � dt;where R is a de�nite positive matrix, Q is a positive one while x and u satisfy the Kalmansystem: _x� Ax� B u = 0:We obtain the following system: 8<: _x� Ax� B u = 0;_�+ At�+Qx = 0;R u+Bt � = 0:Using the fact that R is invertible, we have:8<: _x� Ax�BR�1Bt� = 0;_�+ At�+Qx = 0;�R�1Bt� = u:The system in x and � is determined and thus, if we add to this system the new equation�� Px = 0 as a kind of feedback for the total system, it becomes non formally integrable, i.e.we cannot �nd step by step the solution of the system as a formal power series (see for moreinformations [13, 15]). Indeed, if we di�erentiate the zero order equation and take into accountthe other equations, we �nd the following new zero order equation:( _P + AtP + PA� PBR�1BtP +Q) x = 0:Hence, the system 8>><>>: _x� Ax�BR�1Bt� = 0;_�+ At�+Qx = 0;�R�1Bt� = u;�� P x = 0;has a solution di�erent from zero i� the following integrability condition on P is satis�ed_P + AtP + PA� PBR�1BtP +Q = 0;that is the Riccati equation for P . In this case, we can rewrite the system of equations as:8>><>>: _P + AtP + PA� PBR�1BtP +Q = 0;_x� (A�BR�1Bt P ) x = 0;�R�1Bt P x = u;P x = �:We have recently shown in [14, 16] that the controllablity of a system with indeterminedcoe�cients depended on trees of integrability conditions on the coe�cients. The same thingmay happen in optimal control and we provide an illustrative example.Example 12. Let us consider the following systemminZ 12(y2 � u2) dt;14



where y and u satisfy the system _y + a y � _u� u = 0;in which a is a constant coe�cient. The system (15) is given by:8<: _�� a �+ y = 0;� _� + �� u = 0;_y + a y � _u� u = 0:Let us eliminate � in order to �nd (16): summing the �rst two equations, we obtain the newzero order equation (1� a)� = u� y: Therefore, two cases may happen depending on the valueof the parameter a:1. if a = 1, then y � u = 0 and the optimal system is thus given by:� _y + y � _u� u = 0;y � u = 0;i.e. y � u = 0.2. if a 6= 1, then � = (y � u)=(a� 1) and, after substituting, we get:� _y + a y � _u� u = 0;_y � y � _u+ a u = 0; , � _y + a y � _u� u = 0;(a + 1) (y � u) = 0:We are led to new integrability conditions:(a) if a = �1, then the optimal system is given by the only equation _y+a y� _u�u = 0.In fact, we can notice that in this case a parametrization D0 : � ! � y; u � of thesystem is given by: � _� + � = y;_� � � = u;and thus 12(y2 � u2) = 2 � _� = ddt(�2):(b) if a 6= �1, then the only solution is y = 0 = u.We notice that the condition a 6= 1 is, in fact, the condition on a for the system to be controllable(if a = 1, the element z = y � u satis�es ( ddt + 1)z = 0).4 ApplicationsWe show in this section how all the preceding sections can be used for applications, speciallyin elasticity theory.4.1 Elasticity TheoryLet us denote the displacement in Rn by � = (�i)1�i�n and contract the index of �i by theeuclidean metric !ij = !ji = �ij; 1 � i; j � n; of Rn in order to lower the index with �i = !ij �j.The so-called small strain tensor is then given by the operatorL(�)! : T �! S2T ?;� �! (�ij = 12(L(�)!)ij = 12(@i�j + @j�i))1�i;j�n15



where L is the Lie derivative of the euclidean metric. Let us only consider the case n = 2.Thus, the small strain tensor is given by8<: �11 = @1 �1;�12 = �21 = 12(@1�2 + @2�1);�22 = @2 �2:This system has only one compatibility condition of order two, namely@11 �22 + @22 �11 � 2 @12 �12 = 0; (23)and we have the following sequence of di�erential operators0 �! � �! E D�! F0 D1�! F1 �! 0; (24)where E = T; F0 = S2T ?;� is the �eld of small rigid displacements and D � = 12(L(�)!): In thespirit of Poincaré, this sequence is only based on geometry whereas the adjoint sequence, i.e.the sequence formed by the adjoint operators, gives the physics. Indeed, the adjoint ~D : � ! fof the operator D is de�ned by multiplying � by � and integrating by parts, i.e.�11�11 + �12�12 + �21�21 + �22�22 = �11�11 + 2 �12�12 + �22�22= �(@1 �11 + @2 �12) �1 � (@1 �12 + @2 �22) �2 + : : :where we have supposed that �12 = �21. Thus, up to a sign, � ~D : � ! f is given by� @1 �11 + @2 �12 = f 1;@1 �12 + @2 �22 = f 2; (25)where � is the stress tensor and f is a density of forces. Similarly, the adjoint ~D1 of the operatorD1 is obtained by multiplying (23) by � and integrating by parts� (@11 �22 + @22 �11 � 2 @12 �12) = @11� �22 + @22� �11 � 2 @12� �12 + : : :and thus ~D1 : �! � is given by : 8<: @22 � = �11;�@12 � = �12;@11 � = �22; (26)and we check easily that all the compatibility conditions of ~D1 are generated by ~D or � ~D. We�nd back the well-known parametrization of the stress tensor by the Airy function �. Finally,we have the formally exact sequence:0 � ~E � ~D � ~F0 ~D1 � ~F1: (27)In fact, it can be shown that the sequence (24) is locally equivalent to the Poincaré sequenceV0 T ? d�! V1 T ? d�! V2 T ? �! 0 (see [13]), which is a locally exact and self-adjoint sequence.Hence, the sequences (24) et (27) are locally exact. Moreover, the Poincaré sequence beinga self-adjoint sequence, this is the reason why the kernel � of the operator D and the kernel
 of ~D1 both depend on three arbitrary constants. Finally, we can link these two di�erentialsequences with the constitutive law, namely the Hooke law B : �! �, de�ned by8<: �11 = (�+ 2 �) �11 + � �22;�12 = �21 = 2 � �12;�22 = � �11 + (� + 2 �)�22;16



where (�; �) are the Lamé constants and we obtain the following locally exact diagram:0 ���! � ���! E D���! F0 D1���! F1 ���! 0??yB0  ��� ~E - ~D ��� ~F0 ~D1 ��� ~F1  ��� 
  ��� 0: (28)With such a diagram, we naturally want to associate the operator A = � ~D � B � D : E ! ~Eto it. Now, let us notice that B is a symmetric matrix, i.e. ~B = B, and thus A is a self-adjointoperator. This fact can easily be veri�ed on the direct expression of the operator A� (� + 2 �) @11 �1 + � @22 �1 + (� + �) @12 �2 = f 1;(� + �) @12 �1 + � @11 �2 + (� + 2 �) @22 �2 = f 2;or equivalently on the so-called Navier equations:� (� + �) @1 (@1 �1 + @2 �2) + �� �1 = f 1;(� + �) @2 (@1 �1 + @2 �2) + �� �2 = f 2:The Hook law is in fact invertible and the operator B�1 is given by8>>>>><>>>>>: �11 = (� + 2 �)4 � (� + �) �11 � �4 � (�+ �) �22;�12 = 12 � �12;�22 = � �4 � (� + �) �11 + (�+ 2 �)4 � (�+ �) �22:and thus, we have an operator C = D1 � B�1 � ~D1 : ~F1 ! F1, de�ned by:(� + 2 �)4 � (� + �) ��� = �:Finally, we can sum up the di�erent operators by the following locally exact diagram :0 ���! � ���! E D���! F0 D1���! F1 ���! 0??yA ??yB x??C0  ��� ~E - ~D ��� ~F0 ~D1 ��� ~F1  ��� 
  ��� 0To �nish this section, let us connect the above results to controllability of multidimensionalsystems. We can conclude, from the controllability test and what precedes, that the operatorD1 determines a torsion-free D-module M , with D0 as a parametrization (it is not surprisingbecause, by de�nition, D1 is the compatibility condition of D0). More surprisingly, we haveproved that the D-module determined by the operator ~D0 is also a torsion-free module withparametrization given by the operator (26) and a �potential� � called Airy function in this case.4.1.1 Case without forcesIn the case where there is no force, let us mimimize the energy of deformation given byZ 12 �t B � dx1dx2;17



under the constraint D1� = 0. Introducing a new unknown � as a Lagrange multiplier, it isequivalent to extremize the new integralZ (12 �t B �� �D1 �) dx1dx2;where the � are now considered as independent variables. Thus, by theorem 4, we have to solvethe system � B �� ~D1� = 0;D1 � = 0; (29)or, in another words, the system: 8>>>><>>>>: �12 + @11 �22 = 0;�11 � @22 � = 0;�12 + @12 � = 0;�22 � @11 @11 � = 0;@22 �11 � 2 @12:We can solve � = (B�1� ~D1)� in the �rst equation of (29), and, substituting it in the second,we obtain C � = (D1 � B�1 � ~D1)� = 0. Finally, we have to solve the following system:8>>>>>>><>>>>>>>:
��� = 0;�11 = (� + 2 �)4 � (� + �) @22 �� �4 � (�+ �) @11 �;�12 = � 12 � @12 �;�22 = � �4 � (� + �) @22 �+ (�+ 2 �)4 � (�+ �) @11 �:and, from the �rst equation of the above system, � is biharmonic.Moreover, the sequence (24) is locally exact, therefore, as we saw in theorem 5, the solutionof the equivalent unconstrained problemmin Z 12 �t ( ~D � B � D) � dx1 dx2is � A � = 0;D � = �;or equivalently, we have to solve a system of PDE only in the displacements �:8>>>><>>>>: (�+ �) @1 (@1 �1 + @2 �2) + �� �1 = 0;(�+ �) @2 (@1 �1 + @2 �2) + �� �2 = 0;@1 �1 = �1112(@1 �2 + @2 �1) = �12;@2 �2 = �22:4.1.2 Forces coming from a potentialIf the force f comes from a potential  , i.e.� f 1 = @1  ;f 2 = @2  ;18



then, from (25), we have the following system� @1 �11 + @2 �12 � @1  = 0;@1 �12 + @2 �22 � @2  = 0; (30)and, if we introduce by �11 = �11 �  ; �12 = �12 and �22 = �22 �  , we �nd the new systemwithout forces : � @1 �11 + @2 �12 = 0;@1 �12 + @2 �22 = 0; (31)Moreover, we have ~D � = 0() � = ~D1� because the di�erential sequence ~F1 ~D1�! ~F0 ~D�! ~E islocally exact at ~F0. Finally, we �nd the system8<: �11 = @22 �+  ;�12 = �@12 �;�22 = @11 �+  : (32)Therefore, solving the system (30), where � satis�es � = A � and D1 � = 0, is the same assolving the system (32) with � = A � and D1 � = 0. Hence, we have to solve the followingsystem of PDE ���+ �(� + 2 �) � = 0;and to substitute the result in (32) to obtain the corresponding stress tensor �. As a matter offact, when the only forces involved are of gravitational type, then � = 0, and we are broughtback to the preceding situation.5 ConclusionWe hope to have convinced the reader about the possibility to extend optimal control theoryfrom the study of variational problems with linear ordinary di�erential constraints to varia-tional problems with linear partial di�erential constraints. At the same time, we have ex-plicitely stressed out the role of the controllability condition imposed on the control system asa di�erential constraint.References[1] Bjork, J. E. (1993). Analytic D-modules and Applications, Kluwer.[2] Cartan, E. (1945). Les systèmes di�érentiels extérieurs et leurs applications géométriques,Hermann.[3] Janet, M. (1920). �Sur les systèmes aux dérivées partielles�, Journal de Math., 8ème série,III, pp. 65-151.[4] Janet, M. (1929). Leçons sur les systèmes d'équations aux dérivées partielles, Cahiers Sci-enti�ques IV, Gauthier-villars.[5] Kailath, T. (1980). Linear Systems, Prentice-Hall.[6] Kashiwara, M. (1970). Algebraic Study of Systems of Partial Di�erential Equations, Mé-moires de la Société Mathématiques de France, no. 63 (1995).19
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