
Geometry optimization for rystals in Thomas-Fermitype theories of solidsX. BlanCERMICS, Éole Nationale des Ponts et Chaussées,6 & 8, avenue Blaise Pasal, Cité Desartes,Champs sur Marne, 77455 Marne-La-Vallée CedexandÉole Normale Supérieure,45 Rue d'Ulm,75230 Paris Cedex 05June 17, 1999AbstratWe study here the problem of geometry optimization for a rystal in the TFWsolid-state setting, i.e the problem of minimizing the TFW energy with respet to theperiodi lattie de�ning the positions of the nulei. We show the existene of suh aminimum, and use for that purpose the TFW models of polymers and thin �lms de�nedin a previous work [5℄.
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1 INTRODUCTION 21 IntrodutionWe are interested here in the Thomas-Fermi-Von Weizsäker (TFW) theory of solids, andmore preisely in the geometry optimization problem, whih may be stated in the followingway : given the energy funtional whih to a periodi lattie assoiates its TFW energy(de�ned in [9℄), does there exist a periodi lattie minimizing this energy ?Let ` be a proper periodi lattie of R3, that is, a subgroup of (R3;+) generated bythree linearly independent vetors a; b, and . We de�ne the TFW energy of this lattie withrespet to basis (a; b; ), i.e the TFW energy of a neutral rystal of lattie `, with eah nuleiof harge +1 :E(`) = inf�ETFW(a;b;)(�); � � 0; p� 2 H1per(`); Z�(a;b;) � = 1�; (1.1)where we used the following notation :�(a;b;) = �ta + sb + r; t; r; s 2 [�12 ; 12[�; (1.2)H1per(`) = �f 2 H1lo(R3); f is `� periodi�; (1.3)and, skipping here the subsript (a; b; ) for �(a;b;) = � :ETFW(a;b;)(�) = Z� jrp�j2 + Z� �5=3 � Z�G`� + Z� Z� �(x)�(y)G`(x� y)dxdy; (1.4)the potential G` being the `-periodi solution of :( ��G` = 4��(Pk2` Æk)� 1j�(a;b;)j�;limx!0�G`(x)� 1jxj� = 0: (1.5)A preliminary observation is that these notations do not depend on the hoie of thebasis (a; b; ). This is stated in Proposition 2.1 below : equations (1.1), (1.4) and (1.5) donot depend on the hoie of a basis of `, but only on `.We now make preise the problem we are studying : denoting by L3(R3) the set of properperiodi latties of R3, does the problemI = inf�E(`); ` 2 L3(R3)� (1.6)have a solution ?Our main result is :



1 INTRODUCTION 3Theorem 1.1 Any minimizing sequene of problem (1.6) is relatively ompat. Therefore,this problem has at least one solution.In order to show this result, we begin with realling in Setion 3 the de�nition and basiproperties of what we all degenerate ases of the above solid state theory (1.1)-(1.4), namelythe atomi model (3.1)-(3.2), and the linear polymer (3.6)-(3.8) and thin �lm (3.36)-(3.38)models. We refer to [3℄ and [7℄ for a study of the atomi model, and to [5℄ for a study ofpolymer and thin �lm models. Moreover, we show in Setion 3 some further results similarto those of [7℄ : in partiular we show the positiveness of the assoiated Lagrange multiplier,and give sharp estimates on the deay at in�nity of the density. These estimates will be ofruial importane in the sequel.In Setion 4, we investigate the behavior of the minimizing sequenes of problem (1.6).Up to rather tehnial ompliations that will be dealt with below but that we prefer to skipin this simpli�ed presentation, it is su�ient to onsider minimizing sequenes of the form :`n = �iRn1a+ jRn2 b + kRn3 ; i; j; k 2 Z�; (1.7)with 0 < Rn1 � Rn2 � Rn3 ; and (a; b; ) is a �xed basis suh that jaj = jbj = jj = 1.Hene, showing Theorem 1.1 amounts to prove that Rni is bounded both from above andaway from 0, for all i = 1; 2; 3. For this purpose, we show the following proposition :Proposition 1.2(i) If Rn1 goes to in�nity as n goes to in�nity, then the energy E(`n) onverges to the atomiTFW energy.(ii) If Rn1 onverges to some R1 > 0, and Rn2 goes to in�nity as n goes to in�nity, thenE(`n) onverges to the TFW energy of a linear polymer de�ned by R1a.(iii) If (Rn1 ; Rn2 ) goes to (R1; R2), with R1; R2 > 0, and Rn3 goes to in�nity as n goes toin�nity, then E(`n) onverges to the TFW energy of a thin �lm de�ned by (R1a; R2b).One this proposition is proved, we show with the help of the results of Setion 3 thatfor any of the atomi, polymer and solid �lm TFW energies, there exists a proper lattiehaving stritly lower energy than those limits. This is done in Setion 5, through the fatthat the limits of Proposition 1.2 are asymptotially approahed from below. Note that thepositiveness of the Lagrange multiplier plays a key-role here. We also show in this Setion,in order to omplete the proof of Theorem 1.1, that the radii Rni are bounded away from 0,with the help of Teller's Lemma [13℄. As a by-produt of these proofs, we �nally prove thatin TF theory, any proper lattie has greater energy than the atomi TF energy, whih showsthat the analogue of problem (1.6) in the TF setting has no solution. This orroborates thefat that our whole argument in the TFW ase is based on the positiveness of the Lagrangemultiplier in the degenerate problems (atomi, polymer and solid �lm ases). Now, one mayhek that in the atomi TF model, the Lagrange multiplier is 0.



2 NOTATION AND REPRESENTATION OF LATTICES 4Remark 1.3 Let us point out that here, we have used a di�erent normalization than in [13℄and [8, 9℄ for the potential G`. This is due to the fat that the onstant M appearing in[13℄ and [8, 9℄ depends in fat on `. Our renormalization (1.5) anels M , or more preiselyinludes it in the expression of G`. This allows us to write E(`) as the exat limit of theenergy per nulei, as may be seen in (5.2).Let us mention that the results detailed here have been announed in [6℄.2 Notation and representation of lattiesThroughout this paper, we will use the following notation :De�nition 2.1(i) A subset ` of R3 will be said to be a proper lattie, or a lattie of dimension 3 (or of rank3), if there exists three independent vetors (a; b; ) suh that ` = fia+jb+k; i; j; k 2Zg: We denote by L3(R3) the set of proper latties of R3.(ii) A subset of R3 of the form fia + jb; i; j 2 Zg, with a; b linearly independent willbe alled a lattie of dimension 2. The set of 2-dimensional latties will be denoted byL2(R3).(iii) A subset ` of R3 will be said to be a lattie of dimension 1 if there exists a 2 R3 n f0gsuh that ` = fia; i 2 Zg. We denote by L1(R3) the set of latties of dimension 1.Identifying L3(R3) with the quotient group GL3(R)=GL3(Z), we de�ne on L3(R3) atopology. (We denote by GL3(Z) the set of matries belonging to GL3(R), having integerentries, and suh that their inverse have integer entries.) For this topology, L3(R3) is aseparated loally ompat manifold. After having heked out that E is well-de�ned onL3(R3), we then study its ontinuity on this manifold :Proposition 2.1 The funtion E de�ned in (1.1) and the potential de�ned in (1.5) do notdepend on the hoie of the basis (a; b; ).Proof : We hoose two di�erent basis (a; b; ) and (a0; b0; 0) of the same proper lattie `,and denote respetively by E and E 0 the assoiated energy. We know that there exists M inGL3(Z) suh that a0 = Ma, b0 = Mb, and 0 = M. M being invertible in the set M3(Z) ofinteger 3� 3-matries, its determinant must be invertible in Z, so we have :j detM j = 1:This implies in partiular that j�(a;b;)j = j�(a0;b0;0)j, so that the potential de�ned from (a; b; )in (1.5) must be equal to the one de�ned by (a0; b0; 0). Next, we notie that for any `-periodifuntion f , we have : Z�(a;b;) f = Z�(a0;b0;0) f:



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 5This implies, for any � � 0 suh that p� 2 H1per(`) :ETFW(a;b;)(�) = ETFW(a0 ;b0;0)(�); (2.1)and Z�(a;b;) � = Z�(a0;b0;0) �: (2.2)(2.1) and (2.2) then imply that E = E 0. �Remark 2.2 Note that one easily proves in the same fashion that for any orthogonal matrixM , the energy is unhanged underM , that is, E(`) = E(M`): This will be useful in the sequel.Note also that up to minor modi�ations, Proposition 2.1 also holds for polymers andsolid �lms models de�ned in Setion 3.Now that the funtion E is well-de�ned, we may show that it is ontinuous :Proposition 2.3 The funtion E is ontinuous with respet to the quotient topology ofL3(R3).Proof : The only thing to show here is that E is ontinuous as a funtion de�ned onGL3(R). This is easy to do by hanging variables in the expression of ETFW(a;b;) and notiingthat if (a; b; ) is lose enough to (a0; b0; 0), then the norm kG` � G`0kL1(�(a;b;)[�(a0;b0;0)) issmall. (Here we denote by ` and `0 respetively the latties of basis (a; b; ) and (a0; b0; 0).)� We now state a result on the representation of a lattie by one of its basis, referring to[10℄ for its proof :Theorem 2.4 (Engel, [10℄) For any periodi lattie ` of rank 3, there exists a basis (a; b; )of ` suh that : ( jaj � jbj � jj;[(a; b);[(a; );[(b; ) 2 [�3 ; �2 ℄; (2.3)where[(x; y) denotes the angle between x and y.We thus see that, aording to Proposition 2.1 and Theorem 2.4, we may redue anyminimizing sequene to the form (1.7), up to the fat that (a; b; ) will not be �xed butsatisfy onditions (2.3).3 Preliminary results on the degenerate asesWe reall in this setion the de�nitions of what we all here the degenerate models, namelythin �lm models, polymers models and atomi models in the TFW setting. We refer to [5℄onerning preisions on the �rst two models, and to [13℄ and [7℄ for the latter. In the thin�lm and polymer ases, we also show further results, mainly on the asymptoti behavior ofthe density far away from the nulei.



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 63.1 TFW theory of atomsWe �rst reall the de�nition and the main properties of the TFW theory of atoms : theground state of an atom onsisting of a point nuleus of harge +1 loated at 0 and of aneletron is determined by its eletroni density, unique solution of the problem :ITFWat = inf�ETFWat (�); � � 0; p� 2 H1(R3); ZR3 � = 1�; (3.1)where the energy funtional ETFWat is de�ned by :ETFWat (�) = ZR3 jrp�j2 + ZR3 �5=3 � ZR3 �jxj + 12 ZR3 ZR3 �(x)�(y)jx� yj dxdy: (3.2)Problem (3.1) has a unique solution �at (see [13℄ or [3℄), whih is positive, and whihsquare root uat = p�at satis�es the following Euler-Lagrange equation, with a Lagrangemultiplier � = �at > 0 :��uat + 53u7=3at + �� 1jxj + u2at ? 1jxj�uat + �atuat = 0: (3.3)It is shown in [7℄ that the following estimates hold :�(x) � ajxj2 e�2p�jxj; as jxj �! 1; (3.4)where a is a positive onstant. The e�etive potential � = 1jxj � � ? 1jxj satis�es :�(x) � �a�jxj2 e�2p�jxj; as jxj �! 1: (3.5)3.2 TFW theory of polymersWe now onsider the TFW model of polymers, as de�ned in [5℄, and whih we reall here.Considering a periodi lattie of rank 1, that is some ` 2 L1(R3), we may assume with noloss of generality that it is loated on the vertial axis; that is, ` = ZRe3, with R 2 R�+. Wede�ne its TFW energy as follows :E(`) = ITFWpol (`) = inf�ETFW` (�); � � 0; p� 2 H1per(`);log(2 + jxj)� 2 L1(�(`)); Z�(`) � = 1�; (3.6)



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 7where �(`) = fx 2 R3; x3 2 [�R2 ; R2 [g,H1per(`) = �f 2 H1lo(R3) \H1(�(`)); f is `� periodi�;and the energy ETFW` reads :ETFW` (�) = Z�(`) jrp�j2 + Z�(`) �5=3 � Z�(`)G`�+ Z�(`) Z�(`) �(x)�(y)G`(x� y)dxdy; (3.7)the periodi potential G` being de�ned by :G`(x) = C` � 2R log jx0j+Xk2`� 1jx� ke3j � 1R Z R2�R2 dtjx� (k + t)e3j�= C` � 2R log jx0j+ 1�R Xk2Znf0g ZR2 e2i�( kRx3+x0��)k2R2 + j�j2 d�; (3.8)the onstant C` being hosen so that we have limx!0(G`(x)� 1jxj) = 0, and x0 denoting thevetor (x1; x2). We reall a few properties of the potential G` shown in [5℄ :Proposition 3.1 We have :(i) G` is smooth on R3 n `,(ii) G`(x) = 1jxj +O(jxj) as x! 0,(iii) G`(x) = � 2R log jx0j+ C` +O( 1jx0j) as jx0j ! 1, uniformly with respet to x3.We now show the following :Proposition 3.2 For any R > 0, the problem (3.6) has a unique solution �`. The funtionu` = p�` is a solution of :��u` + 53u7=3` + (u2̀ ?�(`) G` �G`)u` + �`u` = 0; (3.9)where ?�(`) denotes the onvolution produt over the set �(`). Moreover, the Lagrange mul-tiplier �` is positive.Proof : We refer to [5℄ for the proof of the existene and uniqueness of �`. Moreover, wereognize in (3.9) the Euler-Lagrange equation of problem (3.6). We now prove that �` ispositive.Denoting by �` the funtion �` = G` � u2̀ ?�` G`;



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 8it is possible to show the following a priori estimates (see [5℄, Proposition 2.5) :0 < u` � C1 + jx0j3=2 ; (3.10)�` � �` � C1 + jx0j2 on fjx0j > 1g: (3.11)We laim that �` �! 0 as jx0j ! 1: (3.12)In order prove our laim, we denote by G0̀ the potential G` � C`, and notie that we have :�` = G0̀ � u2̀ ?�(`) G0̀:Hene, we have : �`(x) = Z�(`)(G0̀(x)�G0̀(x� y))u2̀(y)dy;= Z�(`)\fjy0 j<jx0j1=2g(G0̀(x)�G0̀(x� y))u2̀(y)dy+ Z�(`)\fjy0j>jx0j1=2g(G0̀(x)�G0̀(x� y))u2̀(y)dy:If jy0j < jx0j1=2 � jx0j as jx0j ! 1; we have, from Proposition 3.1-(iii) :G0̀(x)�G0̀(x� y) = � 2R�log(jx0j)� log(jx0 � y0j)�+O( 1jx0j):Developing this expression, we �nd :����Z�(`)\fjy0j<jx0j1=2g�G0̀(x)�G0̀(x� y)�u2̀(y)dy���� � Cjx0j1=2 : (3.13)In order to deal with the seond term, we use (3.10) and show that :����Z�(`)\fjy0j>jx0j1=2g�G0̀(x)�G0̀(x� y)�u2̀(y)dy���� � C log jx0jjx0j :This, together with (3.13), proves (3.12). Using estimate (3.11), we infer that�` � 0:We assume from now on that we have �` = 0, and try to reah a ontradition, whih willonlude the proof.



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 9Sine there is no ambiguity here, we skip the subsript ` for the rest of the proof. From theuniqueness of u and the de�nition of �, these funtions depend on x0 only through jx0j = r.We set �(r) = 1R Z R2�R2 �(r; x3)dx3;and �(r) = 1R Z R2�R2 �(r; x3)dx3:From the de�nition of �, we have : ��00 � 1r�0 = �4��on R+ n f0g. Hene, using (3.10) : 0 � (r�0)0 � Cr2 : (3.14)This shows that (r�0)0 is integrable on a neighborhood of +1. We now integrate (3.14) fromr > 0 to 1, and get : r�0(r)� limt!1(t�0(t)) � 0:Denoting by l the limit limt!1(t�0(t)), whih exists in virtue of (3.14), and assuming it tobe di�erent from 0, we dedue that �0(t) � lt as t goes to in�nity. This implies that � goesto �1 at in�nity, whih is a ontradition with estimate (3.11). Hene, �0 is non-positiveat in�nity, whih implies, in view of (3.12), that� � 0 for r � r0: (3.15)It follows that : 9R0 > 0; 8r � R0; 9x3 2 [�R2 ; R2 [; �(r; x3) � 0: (3.16)On the other hand, we have, using Hölder estimates, for any ball B of radius 1, and anyv 2 C2;�(B) for some � > 0, (see [12℄ or [11℄)krvkC0( 12B) � �k�vkC0(B) + kvkC0(B)�;where 12B denotes the ball of radius 12 having the same enter as B, and  being a universalonstant. Hene, from a saling argument, we dedue that for any ball Ba of radius a > 0,and any v 2 C2;�(Ba),krvkC0( 12Ba) � �ak�vkC0(Ba) + 1akvkC0(Ba)�: (3.17)



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 10Applying this inequality to �, we �nd, for any ball Ba of radius a > 0 not ontaining 0 :kr�kC0( 12Ba) � �ak�kC0(Ba) + 1ak�kC0(Ba)�: (3.18)Using estimate (3.10) and the fat that � is periodi and bounded as r !1, and applying(3.18) with a = jxj2 , Ba entered at x, we thus �nd :jr�j � Cr as r �!1:In partiular, we have this bound on j�3�j. Hene, from property (3.16), we infer that :�(x) � �CRr as r �!1:Inserting this information in (3.18), and using again (3.16), we �nd that � � � Cr2 for su�-iently large r, hene, again from (3.11) :j�(x)j � Cr2 as r �!1:We now apply again (3.18) on �, but with Ba = Bpr(x); and �nd that � � � Cr5=2 . Hene,using (3.11), we have : � Cr5=2 � �(x) � Cr2 as r !1: (3.19)With this result, we are going to show that V = 53u4=3 � � � 1r2 :This estimate, in the spirit of a work by Benguria and Yarur [2℄, will imply that u � Cr ,whih ontradits (3.10).In view of equations (3.9) and (3.19), and the fat that � = 0, we infer that��u + 53u7=3 � �Cr4 ;on the set fr > r0g, for some r0 > 0. Hene, denoting by u0 the funtion 310r3=2 , one omputeseasily : ��(u� u0) + 53(u7=3 � u07=3) � (94 � 53( 310)7=3) 1r7=2 � Cr4 : (3.20)Sine 94 � 53( 310)7=3 > 0, it is then lear that there exists an r1 > 0 suh that on the setfr > r1g, v = u� u0 satis�es the following :�v � 53(u7=3 � u07=3):De�ning F = fr > r1g \ fv < 0g, we now show the following assertions :



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 11(a) F is unbounded,(b) F has no bounded onneted omponent stritly inluded in fr > r1g.In order to show (a), we assume that F is bounded, and notie that then there exists r2suh that v � 0 on fr > r2g. Hene, on this set,�� � 6�5r3 :This means in partiular : (r�0)0 � 6�5r2 :Integrating this inequality from r to +1, one �nds �0 � � 6�5r2 , hene� � 6�5r ;whih is in ontradition with estimate (3.11).We now show (b) by supposing that F has at least one bounded onneted omponent F0suh that fr = r1g \ F0 = ;. On F0, �v < 0, and v = 0 on �F0. Hene from the maximumpriniple, v must be non-negative on F0, whih is ontraditory.From (a) and (b), we dedue that (3.16) holds for �v :9R0 > 0; 8r � R0; 9x3 2 [�R2 ; R2 [; u(r; x3) � 310r3=2 :Now, from the equation satis�ed by u, it is learly possible to show, using the same Hölderestimate as for �, that j�3uj � Cr5=2 :This implies that, as r !1, u � 35r3=2 ; and in partiular :V = 53u4=3 � � � 1r2 :The �nal step of the proof is merely a opy of Benguria and Yarur's proof [2℄, whih showsthat if u > 0 satis�es ��u + V u = 0 with V � 1r2 , then u � Cr . This is in ontraditionwith (3.10). �Proposition 3.3 The unique solution �` of problem (3.6) satis�es the following, where a` >0 depends only on ` : �`(r; x3) � a` e�2p�`rr ; as r �!1: (3.21)



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 12Moreover, setting �` = G` � G` ?�(`) �` the e�etive potential, there exists a �nite set ofomplex numbers �k depending only on ` suh that :�����`(r; x3)� X0<�jkj�Rp�` �ke2i� kRx3W2� jkjR (r)���� � b`;�e�(2p�`��)rpr ; as r �!1; (3.22)for all � > 0. The onstant b`;� > 0 depends only on ` and �, and Wa denotes the Yukawapotential of parameter a > 0 in R2, i.e the solution of ��f + a2f = 4�Æ0 in R2 vanishingat in�nity.Proof : We begin with a few properties of the Yukawa potentialWa of R2, with a > 0 : Wais the unique solution vanishing at in�nity of :��Wa + a2Wa = 4�Æ0: (3.23)The potential Wa is spherially symmetri and satis�es the di�erential equation :W 00a + 1rW 0a � a2Wa = 0on R+� . Here 0 denotes the radial derivative in R2. For all the following properties, we usethe notation of [1℄, in whih one may �nd these results. We refer to [17℄ onerning theirproofs. The modi�ed Bessel funtions I0 and K0 are thus de�ned by :I0(t) =Xn�0� tn2nn!�2;K0(t) = ��log( t2) + �I0(t) +Xn�1� nXj=1 1j�� tn2nn!�2;where  = limn!1(Pnj=1 1j � logn) denotes the Euler onstant. We have :(a) The potential Wa is equal to the modi�ed Bessel funtion K0 :Wa(t) = 2K0(at):(b) We denote by W a the potentialW a(t) = 2K0(at) + 2�I0(at):It is a solution of (3.23).() The funtions Wa and W a are respetively dereasing and inreasing, and satisfy thefollowing estimates : ( Wa(t) �q2�a e�atpt as t!1;Wa(t) � �2 log(t) as t! 0: (3.24)



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 13( W a(t) �q2�a eatpt as t!1;W a(t) � �2 log(t) as r ! 0: (3.25)W 0aWa �W 0aW a = 4�t : (3.26)Keeping these results in mind, we may now begin our proof.We denote by V` the `-periodi Yukawa potential with parameter p�` :V`(x) =Xk2` e�p�`jx�kjjx� kj : (3.27)Comparing it with Wp�`(r), where r =px21 + x22, and notiing thatWp�`(r) = ZR e�p�`(r2+z2)pr2 + z2 dz;one shows through a basi omputation that V`Wp�` ! 1 as r !1, hene :V`(x) � �s 2�p�`�e�p�`rpr ; (3.28)as r goes to in�nity.Denoting by f` the funtion 53u`4=3 � �`, and using the bounds we have on u` and �`,namely (3.10) and (3.19), we dedue thatjf`j � Cr2 ; (3.29)on fr > R0g, for some R0 > 0: Hene, we have there��u` + (�` � Cr2 )u` � ��u` + (f` + �`)u` = 0:Now, denoting by v the funtion e�p�`rpr e��=r, one easily �nds that :��v + (�` � Cr2 )v = (2�p�` � 14 � Cr2 + 2�r3 � �2r4 )v:Hene, hoosing � > 4C+18p�` , we have :��v + (�` � Cr2 )v � 0



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 14on some set fr > R1g. Next, by a similar omputation, setting w(x) = pR ep�`(jxj�R)jxj e� �jxj ,one easily shows w satis�es the same estimate. Hene, taking v +w as a supersolution, andletting then R go to in�nity, one an show that this implies :u` � Cv;for some onstant C > 0. In partiular, we haveu` � apre�p�`r; at in�nity; (3.30)for some a > 0. Now, an easy omputation, in the spirit of [7℄, Proposition A.1, shows that,from this estimate, together with (3.28) and (3.29), we have :(�f`u`) ?�(`) V` � pa` e�p�`rpr ; as r !1;withpa` = 12� R 2�0 ep�` os �d� R�(`)�f`u`; whih is positive sine �f`u` = ��u`+�`u`. Hene,onvoluting ��u` + �`u` = �f`u` on both sides with V`, one �nds (3.21).We now prove (3.22) : we de�ne a partial periodi Fourier transform by :~f(x0; k) = Z R2�R2 f(x)e�2i� kRx3dx3; (3.31)for any L2lo and `-periodi funtion f . Applying this to �`, and using the fat that ���` =4�(Æ0 � �`) in �(`), one �nds :��T ~�`(x0; k) + 4�2 k2R2 ~�`(x0; k) = 4�(Ær=0 � ~�`(x0; k)); (3.32)for all k 2 Z, where �T denotes the Laplaian with respet to x0. We �rst notie thatj~�`(x0; 0)j � Ce�2p�`rr ; (3.33)sine it is a radially symmetri funtion in R2 satisfying (r ~�`(r; 0)0)0 � a`e�2p�`r: Moreover,if jkj 6= 0, onvoluting (3.32) with W2� jkjR , we have :~�` = W2� jkjR �W2� jkjR ?R2 ~�`:We use here the following Lemma, whih proof is postponed until the end of the presentone :Lemma 3.4 Let a be a positive real, and let Wa and W a be the potentials de�ned in (a) and(b) above. Then, for any spherially symmetri funtion v suh that v 2 L1(R2), we have :v ? Wa(x) = 8�2�W a(x) Zjyj>jxj vWa +Wa(x)�Zjyj<jxj vW a � ZR2 vWa��: (3.34)



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 15Applying this result to a = 2� jkjR and v = ~�`(�; k), whih is spherially symmetri in R2;and using estimates (3.21), (3.24) and (3.25), one easily �nds :�W2� jkjR ?R2 ~�`�(r) = �ZR2 ~�`W 2� jkjR �W2� jkjR (r) +O�Zjx0j>r ~�`�;whenever 2� jkjR < 2p�`. Thus, for suh a k, setting �k = 1R � 1R RR2 ~�`W 2� jkjR ,~�`(x0; k) = R�kW2� jkjR (r)e2i� kx3R +O�Zjx0j>r ~�`�= R�kW2� jkjR (r)e2i� kx3R +O�e�2p�`rpr �:We next use Planherel's formula and write :�`(x) = Xk2Z 1R ~�`(x0; k)e2i� kx3R= X0<�jkj�Rp�` �kW2� jkjR (r)e2i� kx3R + X�jkj>Rp�` 1R ~�`(x0; k)e2i� kx3R +O�e�2p�`rpr �:Denoting by  ` the funtion  ` = X�jkj>Rp�` 1R ~�`(x0; k)e2i� kRx3;proving (3.22) amounts to show thatj `j � C�e�(2p�`��)rpr ;for all � > 0. For this purpose, we notie that, using (3.34) again, we have, for all jkj > Rp�`� :j ~ `(x0; k)j = j~�`(x0; k)j � Ce�2p�`rpr :On the other hand, from the fat that � ` is smooth and that  ` is bounded on fr > 1g, ` is bounded in Cp(�(`) \ fr > 1g), for all p 2 N, so that we have :j ~ `(x0; k)j � Cp 1jkjp ;for all p > 0, with Cp depending only on p. Those two bounds, together with the de�nitionof  ` and �k, allow to write, for any � < 1 :Zr=R0 j `j2dx3 = 1R X�jkj>Rp�` j ~ (R0; k)j2� Ce�4�p�`R0R0 X�jkj>p�` C(2�2�)pjkjp(2�2�) +O(e�4p�`R0R0 ):



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 16This is valid for all R0 su�iently large. We then hoose � = 1 � �2p�` and p > 12�2� , and�nally onlude through ellipti regularity and the fat that j� `j � C e�p�`rpr . �Proof of Lemma 3.4 : We denote by F (x) the funtion de�ned in (3.34). F is spheriallysymmetri, and using estimates () above, one easily shows that F vanishes at in�nity.Hene, it is su�ient to prove that ��F + a2F = 8�2v. For this purpose, we notie that :��F = �F 00 � 1jxjF 0:We then ompute :F 0(jxj) = W 0a(jxj) Zjyj>jxj vWa +W 0a(jxj)�Zjyj<jxj vW a � ZRn vWa�:Thus, we have :��F = ��W a Zjyj>jxj vWa ��Wa�Zjyj<jxj vW a � ZRn vWa�+W 0a Zjyj=jxj vWa �W 0a Zjyj=jxj vW a:This implies the following :��F + a2F = v2�jxj(W 0aWa �W 0aW a):We then use (3.26) and onlude the proof. �Estimate (3.22) has been proved for �`, but what will be really useful is the same estimateon the partial derivative �r�`, with r = px21 + x22. Sine the estimates we have used on �`also hold for �r�`, an easy adaptation of Proposition 3.3 shows :Proposition 3.5 Let �` be the unique solution of problem (3.6), and �` = G` �G` ?�(`) �`:There exists a �nite set of omplex numbers �k depending only on ` suh that :�����r�`(r; x3)� X0<�jkj�Rp�` �ke2i� kRx3W2� jkjR (r)���� � b0̀ ;� e�(2p�`��)rpr ; as r !1; (3.35)for all � > 0, the onstant b0̀ ;� depending only on ` and �.3.3 TFW theory of thin �lmsWe reall the TFW model for thin �lms de�ned in [5℄ : onsidering a periodi lattie ` ofrank 2, we may assume that it is inluded in the plane generated by the two �rst vetors ofthe anonial basis (e1; e2; e3). In other words, there exists R1 > 0 and b = b1e1 + b2e2; suhthat a = R1e1 and b generate ` : ` = fia+ jb; i; j 2 Z2g:



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 17We de�ne its TFW energy by :E(`) = ITFWfilm = �ETFW` (�); � � 0; ;p� 2 H1per(`);(1 + jx3j)� 2 L1(�(`)); Z�(`) � = 1�; (3.36)where �(`) = fua+ vb+ we3; u; v 2 [�12 ; 12 [; w 2 Rg;H1per(`) = �f 2 H1lo(R3) \H1(�(`)); f is `� periodi�;and the energy ETFW` reads :ETFW` (�) = Z�(`) jrp�j2 + Z�(`) �5=3 � Z�(`)G`�+ Z�(`) Z�(`) �(x)�(y)G`(x� y)dxdy; (3.37)the periodi potential G` being the analogue of (3.8), with a ^ b denoting the inner produtof the two vetors a and b :G`(x) = C` � 2�ja ^ bj jx3j+Xk2`� 1jx� kj � 1ja ^ bj Z�(`)\fx3=0g dyjx� k � yj�= C` � 2�ja ^ bj jx3j+ 1�ja ^ bj Xk2`�nf0g ZR e2i�(k�x+x3�)jkj2 + �2 d�; (3.38)where C` is hosen so that limx!0(G`(x) � 1jxj) = 0, and `� is the reiproal lattie to ` inthe plane (e1; e2), that is, `� is the periodi lattie generated by the basis (a0; b0) of fx3 = 0gde�ned by a � a0 = b � b0 = 1, and a � b0 = b � a0 = 0.Here again, we have the analogue of Proposition 3.1, proven in [5℄ :Proposition 3.6 We have :(i) G` is smooth on R3 n `,(ii) G`(x) = 1jxj +O(jxj) as x! 0,(iii) G`(x) = � 2�ja^bj jx3j+ C` +O( 1jx3j) as jx3j ! 1, uniformly with respet to (x1; x2).We also have the following :Proposition 3.7 For any basis (a; b) of the plane generated by (e1; e2), the problem (3.36)has a unique solution �`. Setting u` = p�`; u` is a solution of :��u` + 53u7=3` + (u2̀ ?�(`) G` �G`)u` + �`u` = 0; (3.39)with �` > 0.



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 18Proof : We skip this proof, sine it is a straightforward adaptation of Proposition 3.2's. �Next, we mimi the proof of Proposition 3.3 and �nd :Proposition 3.8 The solution �` of problem (3.36) satis�es the following estimate, wherea` is a positive onstant depending only on ` :�`(x) � a`e�2p�`jx3j; as jx3j �! 1: (3.40)Denoting by �` = G` � G` ?�(`) �` the e�etive potential, there exists omplex numbers �ksuh that, for all � > 0,�����3�`(r; x3)� X0<�jkj�p�`;k2`� �ke2i�k�x0e�2�jkjjx3j���� � b`;�e�(2p�`��)jx3j; as jx3j ! 1; (3.41)with b`;� > 0 depending only on ` and �.Proof : The only neessary hange is to show the above estimate for the Yukawa potential :V`(x) =Xk2` e�p�`jx�kjjx� kj � 2�p�` e�p�`jx3j as jx3j ! 1;whih is easy to prove by omparing it to the one-dimensional Yukawa potential with respetto x3. The partial Fourier transform de�ned in (3.31) is adapted is follows :~f(k; t) = Z�(`)\fx3=tg f(x)e�2i�k�x0dx0; (3.42)for all k 2 `?. And the role of W a is played here by eajx3j. �4 Behaviour of unbounded sequenesWe investigate in this setion the behavior of the TFW energy of unbounded sequenes. Byunbounded sequenes, we mean sequenes of periodi latties for whih some sequene ofbasis satisfying (2.3) is unbounded.We �rst establish some bounds on the eletroni density �` that are uniform with respetto `.4.1 Bounds on �` for ` 2 L3(R3)Throughout this setion, ` denotes a proper lattie, and �(`) is a ell of ` assoiated to abasis (ai)1�i�3 satisfying (2.3), and hoose :0 < R0 � mini=1;2;3 jaij = mini=1;2;3Ri: (4.1)In the spirit of [4℄ and [16℄, we de�ne, for a radius R > 0, the ground state eR of theLaplae operator with Dirihlet ondition on BR, and set gR = e2R.



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 19Lemma 4.1 For all R > 0, u` and �` denoting the solutions of the Euler-Lagrange equationof (1.1), namely � ��u` + 53u`7=3 � �`u` = 0;���` = 4�(Pk2` Æk � u`2); (4.2)we have, ? denoting a onvolution produt over R3 :gR ? �`(x) � 53gR ? u`4=3(x) + �2R2 ; (4.3)for all x 2 �(`). Moreover, if 0 62 x+BR, i.e if jxj > R, �`(x) � (gR ? �`)(x):Proof : We simply opy here the proof of [16℄, pointing out that it does not depend on `.Sine u` is non-negative and satis�es (4.2), the operator ��+ 53u`4=3��`, with homogeneousDirihlet boundary onditions on BR + x, is positive. Hene, for all � 2 H10 (BR + x),Z�(`) jr�j2 + Z�(`)(53u`4=3 � �`)�2 � 0:We apply this inequality with � = eR(x� �), and �nd (4.3).Assuming that jxj > R, �` is then subharmoni on BR + x, hene from the mean-valueinequality and the fat that RR3 gR = 1, �`(x) � (gR ? �`)(x): �Proposition 4.2 For any solution (u`; �`) of (4.2), we have the following estimate, valid in�(`) \ fjxj > 2g : �`(x) �Xk2` ajx� kj4 + bjxj2 ; (4.4)a; b > 0 being universal onstants.Proof : Here again, we merely hek out that [16℄'s proof arries through this ase, withminor modi�ations. Using estimate (4.3), together with Hölder inequality, we have :gR ? �` � �2R2 � 53�gR ? u`2�2=3:Denoting by ~�` the funtion ~�` = gR ? �` � �2R2 , we then have �� ~�` = 4�(Pk2` gR(� � k) �gR ? u`2); hene : �� ~�` + (35 ~�`)3=2+ � 4�Xk2` gR(� � k):We now introdue the orresponding periodi TF-potential b�`, that is, the positive solutionof : �� b�` + 53 b�`3=2 = 4�Xk2` gR(� � k):



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 20It is thus lear, from a omparison argument, that we have : ~�` � b�`: Now, on the one hand,from Theorem V.12 of [14℄, we know that b�` �Pk2` b�(� � k), where b� is the solution of :��b� + 53(b�)3=2 = 4�gR:On the other hand, Lemma 11 of [16℄ shows thatb� � ajxj4 on fjxj > R + 1g;where a > 0 is a universal onstant. Colleting those results and taking, for jxj > 2, R = 12 jxj,we �nd (4.4). �Proposition 4.3 For any solution (u`; �`) of (4.2), we have the following estimate, forx 2 �(`) \ fjxj > 2g : u4=3` � a0Xk2` 1jx� kj4 + b0jxj2 ; (4.5)where a0; b0 > 0 depend only on R0 de�ned in (4.1), and not on the Ri.Proof : We �rst remark that the proof of Propositions 3.5 and 3.10 of [9℄ do not in fatdepend on the periodi lattie, as far as its radii Ri satisfy (4.1), and that we thus have :0 < u` � ;where  > 0 is a onstant depending on R0, and not on `. We de�ne the funtion :f(x) = �Xk2` 1jx� kj4 + jxj2 + ÆR02(jxj2 � R02)2 :An easy but tedious omputation shows that :��f � �Xk2` �12jx� kj6 � 2jxj4 � 12ÆR02 jxj2 +R02(jxj2 � R02)4 :We also have :f(x)2 � �2Xk2` 1jx� kj8 + 2jxj4 + 2�Xk2` 1jx� kj4jxj2 + Æ2R04(jxj2 �R02)4 :Hene, hoosing  � 6, � � 12 and Æ � 24, we have, in BR0 :��f + f 2 � 0: (4.6)



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 21Now, we also have : �(u4=3` ) � 43(53u4=3` ��`)u4=3` : Thus, denoting by S the set S = fu4=3` > fg,whih is open, bounded and inluded in fjxj > 2g\B0R as far as � � 16, from the de�nitionof f and (4.4), we notie that on S, u4=3` � inf(�;)sup(a;b)�`. Hene�u4=3` � 43�53 � sup(a; b)inf(�; )�(u4=3` )2:In addition to the above onditions on � and , we may impose the inequality �;  >2 sup(a; b), so that, on S : �(u4=3` � f) � (u4=3` )2 � f 2 > 0:The funtion u4=3` � f is thus subharmoni on S, and anels on �S. From the maximumpriniple, we infer that u4=3` � f is non-positive on S, whih is impossible. Hene, S = ;.Letting then R0 go to in�nity, we �nd (4.5). �4.2 Convergene of G`Considering unbounded sequenes, we investigate here the behavior of the assoiated poten-tial G`.4.2.1 The Thin �lm aseWe onsider here the ase of a sequene (`n)n�0 suh that only one of its radii Rni is un-bounded, and the others are bounded away from 0 as well as bounded from above. That is,we onsider a sequene (`n)n2N suh that for all n 2 N, `n has a basis (ani )1�i�3 satisfyingthe onlusion of Theorem 2.4 together with :(1) an1 �! a1 6= 0 as n goes to in�nity,(2) an2 �! a2 6= 0 as n goes to in�nity,(3) jan3 j = Rn3 �!1 as n goes to in�nity.Moreover, we may assume, hanging the system of oordinates if neessary, that for all n � 0,the plane generated by (an1 ; an2 ) as well as the one generated by (a1; a2), is inluded in (heneequal to) the one generated by (e1; e2). Note that sine the angle between an1 and an2 ison�ned in [�3 ; �2 ℄, so is the angle between a1 and a2, and these two vetors must be linearlyindependent.We denote by Gn the periodi potential assoiated to `n, de�ned in (1.5), and whih maybe written as : Gn(x) = Cn + 1�j�(`n)j Xk2`�nnf0g e2i�k�xjkj2 ; (4.7)



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 22where Cn = 1j�(`n)j R�(`n)Gn is suh that limx!0(G`n(x) � 1jxj) = 0, and `�n is the periodilattie reiproal to `n, i.e the lattie of basis (bn1 ; bn2 ; bn3 ) satisfying :ani � bnj = Æij; 8i; j 2 f1; 2; 3g:The potential G1 denotes the potential assoiated to the lattie `1 generated by (a1; a2),as de�ned in (3.38). We now show the following :Proposition 4.4 The potentials Gn and G1 satisfy, for all x 2 �(`n) :jGn(x)�G1(x)j � C(1 + jx3j); (4.8)where C > 0 is a onstant independent of n.Proof : The strategy of the proof is the following : writing G` through its Fourier series, weisolate singular terms, and deal with them separately, whereas in the remaining terms, wereognize a Riemann sum onverging to the Fourier oe�ients of G1, as de�ned in (3.38).We denote by (~ani ) the renormalized basis assoiated to (ani ), that is, ~ani = aniRni = anijani j . Wethus have, setting Æn = j~an1 � (~an2 ^ ~an3 )j = j det(~an1 ; ~an2 ; ~an3 )j :Gn(x) = Cn + 1�Rn1Rn2Rn3 Æn Xk2Z3nf0g e2i�(k1bn1+k2bn2+k3bn3 )�xjk1bn2 + k2bn2 + k3bn3 j2 : (4.9)Hene, isolating the terms where k1 = k2 = 0, and denoting by ~bn3 the vetor ~bn3 = Rn3 bn3 :Gn(x) = Cn + Rn3�Rn1Rn2 Æn Xk3 6=0 e2i�k3 ~bn3 �xRn3k23j~bn3 j2+ 1�Rn1Rn2Rn3 Æn X(k1;k2)2Z2nf0g Xk32Z e2i�(k1bn1+k2bn2+k3 ~bn3Rn3 )�xjk1bn1 + k2bn2 + k3 ~bn3Rn3 j2 :Next, onsidering the fat that (a1; a2) is a basis of the plane generated by (e1; e2), togetherwith the de�nition of bni , we infer that ~bn3 = �ne3; with �n 2 R bounded away from 0 aswell as bounded from above. Next, we notie that the �rst sum is easily omputable, sinePk2Znf0g e2i�ktk2 = �23 + 2�2jtj(jtj � 1) for jtj � 12 . Hene, for all x 2 �(`) :Gn(x) = Cn + �Rn33Rn1Rn2 Æn�2n + 2�x23ÆnRn1Rn2Rn3 � 2�jx3jRn1Rn2 Æn�n+ 1�Rn1Rn2Rn3 Æn X(k1;k2)2Z2nf0g Xk32Z e2i�((k1bn1+k2bn2 )�x+�nx3Rn3 )jk1bn1 + k2bn2 + k3 �ne3Rn3 j2 :



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 23We denote by G(an1 ;an2 ) the thin �lm potential assoiated to the lattie of basis (an1 ; an2 ).Denoting by Gn the funtionGn(x) = Cn � 2�Rn1Rn2�nÆn jx3j+ 1�Rn1Rn2�nÆn Xk2Z2nf0g ZR e2i�((k1bn1+k2bn2 )�x+�x3)jk1bn1 + k2bn2 + �e3j2 ;with Cn hosen so that Gn(x)� 1jxj anels at 0, and omputing its Laplaian, we �nd thatGn � G(an1 ;an2 ) is harmoni, bounded (from Proposition 3.6-(iii)), has value 0 at the origin.Thus, Gn = G(an1 ;an2 ). We then have, denoting by Fn the funtion Gn �G1 :Fn(x) = G(an1 ;an2 )(x)�G1(x)� Cn + Cn+ �Rn33Rn1Rn2 Æn�2n + 2�x23ÆnRn1Rn2Rn3� 1�Rn1Rn2 Æn�n X(k1;k2)6=(0;0)e2i�(k1bn1+k2bn2 )�x�ZR e2i��x3jk1bn1 + k2bn2 + �e3j2� �nRn3 Xk32Z e2i� �nk3x3Rn3jk1bn1 + k2bn2 + k3 �ne3Rn3 j2�: (4.10)From estimate (ii) and (iii) of Proposition 3.6, it is lear that����G(an1 ;an2 )(x)�G1(x)���� � C(1 + jx3j) (4.11)in �(`n), for n su�iently large. We now deal with the sum appearing in (4.10) : we denoteit by F 0n(x), omitting the fator 1�Rn1Rn2 Æn�n sine it is bounded, and write F 0n = F 1n + F 2n ,where :F 1n(x) = X(k1;k2)6=(0;0) Xk32Z � �nRn3 � R (k3+ 12 ) �nRn3(k3� 12 ) �nRn3 e2i�x3(���nk3Rn3 )d��e2i�(k1bn1+k2bn2+ k3�nRn3 e3)�xjk1bn1 + k2bn2 + k3�nRn3 e3j2 ; (4.12)F 2n(x) = X(k1;k2)6=(0;0)e2i�(k1bn1+k2bn2 )�x Xk32ZZ (k3+ 12 ) �nRn3(k3� 12 ) �nRn3 � 1jk1bn1 + k2bn2 + k3�nRn3 e3j2� 1jk1bn1 + k2bn2 + �e3j2�e2i��x3d�: (4.13)And we have F 1n(x) = F 1n(x)( �nRn3 � sin(� �nx3Rn3 )�x3 ), withF 1n(x) = X(k1;k2)6=(0;0) Xk32Z e2i�(k1bn1+k2bn2+ k3�nRn3 e3)�xjk1bn1 + k2bn2 + k3�nRn3 e3j2 :



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 24One omputes easily :kF 1nk2L2(�(`n)) = CRn3 X(k1;k2)6=(0;0) Xk32Z 1jk1bn1 + k2bn2 + k3�nRn3 e3j4 ;and sine the sum over k3 is a Riemann sum onverging to RR d�jk1bn1+k2bn2+�e3j4 � Cjk1bn1+k2bn2 j3as Rn3 goes to in�nity, we infer that :kF 1nkL2(�(`n)) � CRn3 ;where C does not depend on n. This implies :kF 1nkL2(�(`n)) � C; (4.14)with C independent of n. We now turn to F 2n : notiing that����Z (k3+ 12 ) �nRn3(k3� 12 ) �nRn3 � 1jk1bn1 + k2bn2 + k3�nRn3 e3j2 � 1jk1bn1 + k2bn2 + �e3j2�e2i��x3d������ C� �nRn3 �2 1jk1bn1 + k2bn2 + k3�nRn3 e3j3 ;we dedue, aording to (4.13), that we have :kF 2nk2L2(�(`)) � CRn3 X(k1;k2)6=(0;0)�Xk3 6=0� �nRn3 �2 1jk1bn1 + k2bn2 + k3�nRn3 e3j3�2� C �4n(Rn3 )2 X(k1;k2)6=(0;0) 1(k21 + k22)2 :This shows that kF 2nkL2(�(`n)) � CRn3 ;with C independent of n. With (4.14), we get :kF 0nkL2(�(`n)) � CRn3 ; (4.15)the onstant C not depending on n. Now, sine F 0n is harmoni in �(`n), standard elliptiregularity results show that F 0n is neessarily bounded in L1(�(`n)): Sine Fn(0) = 0, thisalso shows that Cn � C(an1 ;an2 ) + �Rn33Rn1Rn2 �nÆn is bounded, and we �nally get (4.8). �Next, looking losely at F 0n, we notie that its L1(�(`n) \ fjx3j � Rg) norm satis�es(4.15), for any �xed R > 0. Indeed, if jx3j � R, j �nRn3 � sin(� �nx3Rn3 )�x3 j � CR2(Rn3 )3 ; so that (4.14) thenbeomes : kF 1nkL2(�(`n)) � C(Rn3 )2 :



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 25Hene, with the help of (4.10),the last bound we have obtained may be improved :Cn � Cn + �Rn33Rn1Rn2�nÆn �! 0: (4.16)This implies the following :Proposition 4.5 As n goes to in�nity, we have, for any �xed R > 0 :kGn �G1kL1(�(`n)\fjx3j<Rg) �! 0 as n!1:Proof : From the above remark (4.16), we only need to improve (4.11), and show that thisquantity is not only bounded, but goes to zero as n goes to in�nity when jx3j is bounded.In order to do so, we only need to show it for the Fourier series, sine the term of the form�njx3j does onverge. And the Fourier series may be dealt with in the same way as F 0n. Thisompletes the proof. �Remark 4.6 In all the above bounds, we have omitted for simpliity the fator 1Rn1Rn2 , sineit is bounded from above. Rigorously, it should appear in all bounds, so that in fat (4.8)may very well read : jGn(x)�G1(x)j � C(1 + jx3jRn1Rn2 ); (4.17)with C independent of n. This will be useful in the sequel.4.2.2 The polymer aseWe use here the same notation as in Setion 4.2.1, exept that only Rn1 is bounded. In otherwords, we have :(1) an1 �! a1 6= 0 as n goes to in�nity,(2) Rn2 �!1 as n goes to in�nity,(3) Rn3 �!1 as n goes to in�nity.Changing oordinates if neessary, we may assume that an1 is ollinear to e3, for all n 2 N.Next, we may rotate the system of oordinates so that the angle between an2 and e1 is lowerthan �6 . Hene, from (2.3), the angle between an3 and e2 is neessarily bounded, and thereexists a onstant C independent of n suh that :jan2 � e1j � CRn2 ; and jan3 � e2j � CRn3 :Here the lattie `1 is the one generated by a1 = R1e3, and G1 is thus de�ned by (3.8).



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 26Proposition 4.7 There exists a onstant C independent of n suh that for all x in �(`n),we have : jGn(x)�G1(x)j � C�1 + jx2jRn2 + log(2 + jx0j)�: (4.18)Moreover, Gn �G1 goes to 0 in L1(�(`n) \ fr < Rg), for any R > 0.Proof : Writing Gn through its Fourier oe�ients, we argue exatly as in the proof ofProposition 4.4 onerning the Fourier series F 0n. The argument arries through this ase.Hene, we only study the residual term, that is,An(x) = Cn � Can1 + 1�ÆnRn1Rn2Rn3 X(k2;k3)6=(0;0) e2i�(k2bn2+k3bn3 )�xjk2bn2 + k3bn3 j2 + 2Rn1 log jx0j+Gan1 (x)�G1(x);where Gan1 is the polymer potential assoiated to a lattie of basis (an1 ), and Can1 the orre-sponding onstant appearing in (3.8). We use estimates (ii)-(iii) of Proposition 3.1 to dealwith Gan1 (x)�G1(x), �nding :����Gan1 (x)�G1(x)���� � C(1 + log(2 + jx0j)); (4.19)in �(`n). Next, we need a bound on the remaining term. Unfortunately, we do not have,as in the preeding ase, an exat expression of this Fourier series. But we know that itdepends only on x0 = (x1; x2), sine an1 is ollinear to e3, and we may ompute its Laplaianin the plane fx3 = 0g :��� 1�Rn1Rn2 X(k2;k3)6=(0;0) e2i�(k2bn2+k3bn3 )�xjk2bn2 + k3bn3 j2 � = 4�(Æ0 � 1Rn1Rn2 );and this funtion is periodi. Its periodi ell is de�ned by the basis (an2 ; an3 ) reiproal to(bn2 ; bn3 ). It is thus lear that an2 and an3 are respetively the projetion of an2 and an3 on theplane fx3 = 0g, so that their norms ~Rn2 and ~Rn3 go to in�nity as n goes to in�nity. Two asesare then possible :Case 1 : ~Rn2= ~Rn3 is bounded. We redue this ase to ~Rn2 = ~Rn3 = Rn, the general asebeing a rather tehnial adaptation of this one. We then have, denoting by Bn(x0) the abovefuntion, Bn(x0) = B( x0Rn );where B is the funtion Bn with Rn = 1. Hene, we have, denoting by ~�n the set ft~an1 +u~an2 ; �12 < t; u � 12g :kBn + 2 log jx0jRn kL1(~�n) = kB + 2 log jx0jkL1( 1Rn ~�n) � C;



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 27C being a onstant independent of n. This gives a bound on An(x)�Cn+Can1 � log(Rn) inL1(�(`n)), hene on Gn�G1�Cn+Can1 � log(Rn). Pointing out that Gn�G1 anels at0, we thus dedue a bound on �Cn + Can1 � log(Rn), and onlude the proof of (4.18).If now ~Rn2 6= ~Rn3 , we may re-sale by ~Rn2 in the same way as above, and thus get a periodiGreen funtion on a periodi ell of the form 1~R2n ~�n. The above bounds are then still valid,sine the domain is bounded independently of n.Case 2 : ~Rn2= ~Rn3 is unbounded. We may then assume that this quotient goes to in�nity.Re-saling by Rn2 as in Case 1, we then have a problem of the same kind as Proposition 4.5's,exept that it is in two dimensions and not in three. Nevertheless, it may be dealt with inthe same way. As pointed out in Remark 4.6, we then get the right oe�ient with jx2j.This onludes the proof of (4.18).The L1 onvergene is then proved by pointing out that the same remarks as in Propo-sition 4.5's proof are available. �Remark 4.8 Here again, we have omitted the oe�ient 1Rn1 in front of all terms, but it willbe useful to keep in mind that it is impliit in the onstant C of (4.18).4.2.3 The atomi aseWe now onsider the ase when all radii go to in�nity :Rn3 � Rn2 � Rn1 �!1:We assume (hanging oordinates if neessary, here again) that an1 is ollinear to e1, and thatthe angle between an2 and e2 is not larger than �6 . This also implies that the angle betweenan3 and e3 is bounded, and that :jan2 � e2j � CRn2 ; and jan3 � e3j � CRn3 :In this ase, we have the following :Proposition 4.9 There exists a onstant C independent of n suh that :jGn(x)� 1jxj j � C(1 + log(2 + jx0j)Rn1 + jx3jRn1Rn2 ): (4.20)Moreover, Gn � 1jxj onverges to 0 in L1lo(R3).Proof :We �rst assume that Rn3Rn1 is bounded. In this ase, we may assume that this ratio,together with Rn2Rn1 , onverge. Thus, denoting by Gn the funtionGn(x) = Rn1Gn(Rn1x); (4.21)a diret omputation shows that Gn is the periodi potential assoiated to the lattie ofbasis ( an1Rn1 ; an2Rn1 ; an3Rn1 ): Next, we notie that Gn � 1jxj has its Laplaian identially equal to 1 in



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 281Rn1 �(`n) and that Gn is bounded in L2(�(`n)) (from its Fourier oe�ients), independentlyof n, so that we have : Gn � 1jxjL1( 1Rn1 �(`n)) � C:This implies : Gn � 1jxjL1(�(`n)) � CRn1 ;and (4.20) follows, as well as the L1lo onvergene.We next onsider the possibility :Rn3Rn1 �!1; with Rn2Rn1 bounded:Here again, we resale the potential Gn with respet to Rn1 , aording to (4.21), and �ndourselves in the ase of Proposition 4.4, and using the same triks, we show (4.8) for Gn andRn1G1(Rn1x). Next, we notie that, from the same reasons as in the �rst ase,����Rn1G1(Rn1x)� 1jxj ���� � CRn1in �(`n). Therefore : jGn(x)� 1jxj j � C( 1Rn1 + jx3jRn1Rn2 ):Here again, this shows (4.20) as well as the L1lo onvergene.The last ase is the following :Rn3Rn1 �!1; and Rn2Rn1 �!1:Here again, we resale and �nd the polymer ase. Adapting the orresponding proof, ourProposition is proved. �Remark 4.10 Formally, the above estimates assert that the onvergene of Gn to G1 isa good one if it is isotropi. When it is not, the onvergene defet behaves like the orre-sponding intermediate potential. For example, in the ase of the onvergene towards 1jxj , itGn� 1jxj onverges to 0 in L1(�(`n)) if Rn1 = Rn2 = Rn3 , whereas if Rn1 = Rn2 � Rn3 , a residualterm appears, whih has the same behavior as the thin �lm potential assoiated to the basis(an1 ; an2 ).4.3 Convergene of the energyFrom the bounds we have shown in the preeding setions, we are now in position to showthe following :



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 29Theorem 4.11 Let `n be a sequene of proper latties, with basis (ani ) satisfying onlusionsof Theorem 2.4. Assume in addition that there exists an R0 suh that8n � 0; 8i = 1; 2; 3; Rni = jani j � R0:Then we have :(i) If Rn3 �! 1 and ani �! ai, i 6= 3, as n ! 1, then the energy E(`n) onverges toE(`1), where `1 is the periodi lattie of rank 2 generated by (a1; a2),(ii) If Rn2 �! 1 as n !1, and if an1 onverges to some a1 6= 0, then E(`n) onverges tothe energy E(`1) of the polymer de�ned by a1,(iii) If Rn1 �!1 as n!1, then E(`n) onverges to the atomi energy ITFWat .Proof : We �rst prove (i) : in this ase, we may assume (as has been done in the proof ofProposition 4.4) that an1 and an2 belong to the plane fx3 = 0g. We �rst show that :lim supn!1 E(`n) � E(`1): (4.22)For this purpose, we �x a � � 0, suh that p� 2 C1(R3), p� has ompat support withrespet to x3, and is `1-periodi, and has total mass one over �(`1). We denote by Mn theunique matrix satisfying :Mnani = ai; i = 1; 2; and Mne3 = e3:It is lear that Mn onverges to the identity matrix as n goes to in�nity. Moreover, if n islarge enough to ensure that Supp� � fjx3j � Rn3g; �n = j detMnj� ÆMn is a test-funtionfor the variational problem In de�ning E(`n). Hene :ETFW`n (�n) � E(`n):We then study separately the four terms appearing in ETFW`n (�n).Considering the term R�(`n) jrp�nj2, we notie thatrp�n = j detMnj1=2Mn �r(p�)ÆMn,so that, hanging variables in this term, we have :Z�(`n) jrp�nj2 = Z�(`1)��Mn � rp���2;whih onverges to R�(`1) jrp�j2 as n goes to in�nity. The seond term may be dealt withexatly in the same way, and we then turn to the eletrostati terms :Z�(`n) �nGn = Z�(`1) �Gn ÆM�1n= Z�(`1) �(Gn ÆM�1n �G1 ÆM�1n ) + Z�(`1) �G1 ÆM�1n :



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 30Sine R�(`1) �G1 Æ M�1n = R�(`n) j detMnj(� Æ Mn)G1; the fat that G1 is bounded inL2lo(�(`n)) together with the onvergene of �n towards � in L2(�(`1)) and the fat that �has ompat support with respet to x3, shows thatZ�(`1) �G1 ÆM�1n �! Z�(`1) �G1:On the other hand, we have, hoosing R so that Supp� � fjx3j < Rg :Z�(`1)���(Gn ÆM�1n �G1 ÆM�1n )�� � k(Gn �G1) ÆM�1n kL1(�(`1)\fjx3j�Rg)� kGn �G1kL1(�(`n)\fjx3j�Rg);whih vanishes as n ! 1 from Proposition 4.5. Sine the remaining term of the energyfollows then exatly in the same way, we have proved thatlim supn!1 E(`n) � ETFW`1 (�):This is valid for all `1-periodi � suh thatp� 2 C1(R3) and Supp� is ompat with respetto x3. Sine this subspae of H1per(`1) is dense, we onlude that (4.22) holds.The next step onsists in showing :lim infn!1 E(`n) � E(`1): (4.23)We denote by �n the unique solution of problem (1.1) de�ning E(`n), and by un = p�n itssquare root. From (4.22), we know that the energy ETFW`n (�n) is bounded. Moreover, if we�x an R > 2 and hoose n large enough to have �(`n) \ fjx3j > Rg 6= ;, we have :Z�(`n) �njGn �G1j � kGn �G1kL1(�(`n)\fjx3j<Rg) + Z�(`n)\fjx3j>Rg�njGn �G1j:We infer from Propositions 4.3 and 4.4 :�n � C� 1jxj2 +Xk2`n 1jx� kj4�3=2 � C� 1jxj2 +Xj2Z 1jx� jRn3e3j2�3=2;in �(`n) \ fjx3j > Rg, hene :Z�(`n) �njGn �G1j � kGn �G1kL1(�(`n)\fjx3j<Rg) + C Z Rn3R t� 1t2 +Xj 6=0 1t2 + j2Rn3 2�3=2dt:Using the onvergene result of Proposition 4.5, we thus have :Z�(`n) �njGn �G1j � o(1) + C Z Rn3R t� 1t2 + 1tRn3 �3=2dt� o(1) + C Z Rn3R t� 1t3=2 + 1(Rn3 t)3=4�2� o(1) + CR + CRn3 ;



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 31where o(1) denotes a funtion whih goes to 0 as n goes to in�nity. Letting n, then R, go toin�nity, this shows that : Z�(`n) �n(Gn �G1) �! 0: (4.24)Repeating exatly the same kind of argument, one easily shows :Z�(`n) Z�(`n) �n(x)�n(y)(Gn(x� y)�G1(x� y))dxdy �! 0: (4.25)Now, it is not di�ult, from estimate (4.5) of Proposition 4.3 together with Proposition3.6-(ii)-(iii), to show that R�(`n) �nG1 and R�(`n) R�(`n) �n(x)�n(y)G1(x�y)dxdy are boundedindependently of n. With the fat that ETFW`n (�n) is bounded, this implies that un is boundedin H1lo(R3). Extrating a subsequene if neessary, un then onverges weakly to some p� =u 2 H1lo(R3). Then, letting 
 �� �(`1), we have, taking n large enough to have 
 � �(`n),Z�(`n) jrunj2 � Z
 jrunj2;so that lim infn!1 Z�(`n) jrunj2 � lim infn!1 Z
 jrunj2 � Z
 jruj2:This is valid for any 
 �� �(`1), so that :lim infn!1 Z�(`n) jrunj2 � Z�(`1) jruj2: (4.26)With a slight adaptation of this argument, we have :lim infn!1 Z�(`n) �5=3n � Z�(`1) �5=3: (4.27)The weak onvergene in H1lo implies a strong one in L2lo, up to extrating a subsequene,so that, with estimate (4.5), it is easy to show that :Z�(`n) �nG1 �! Z�(`1) �G1; (4.28)with a similar result onerning the onvolution term. Hene, olleting (4.24), (4.25),(4.26), (4.27) and (4.28), and pointing out that the total mass of �n is onserved from theL2lo onvergene and estimate (4.5), we prove (4.23). This onludes the proof of (i).The proofs of (ii) and (iii) follow exatly the same pattern : we show (4.22), by the verysame argument. Showing (4.23) in ases (ii)-(iii) requires sharper estimates, preisely thoseshown in Propositions 4.7 and 4.9. �



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 325 Compatness of the minimizing sequenesWe show in this Setion our main result, namely Theorem 1.1, that we reall here :Theorem 5.1 Let E be the funtional de�ned by (1.1), and denote by I the minimizationproblem (1.6), that is : I = inf�E(`); ` 2 L3(R3)�:Then any minimizing sequene of I is relatively ompat in L3(R3), so that this problem hasat least one solution.In order to show this ompatness result, we onsider a minimizing sequene `n, andintend to prove that there exists a basis (ani ) of `n satisfying (2.3), together with :(a) The sequenes Rni = jani j are bounded from below : 9R0 > 0, s.t 8i = 1; 2; 3; 8n 2 N,Rni � R0.(b) The sequenes Rni are bounded from above, i.e 9R1 > 0, s.t 8i = 1; 2; 3; 8n 2 N,Rni � R1.We start with the proof of assertion (a).5.1 Bound from belowProposition 5.2 Let ` 2 L3(R3), and (ai)i=1;2;3 one of its basis. Denote by Ri = jaij theassoiated radii, and assume that R1 � R2 � R3. Then we have the following :E(`) � 14R1 + a; (5.1)the onstant a 2 R being independent of `.Proof : We go bak to the thermodynami limit proess (see [9, 8℄), and reall that taking�n = �P3i=1 kiai; ki 2 f�n;�n + 1; : : : ; n; n+ 1g	, we have :E(`) = limn!1 ITFW�nj�nj ; (5.2)where j�nj = (2n+ 2)3 is the ardinal of �n, and ITFW�n is the TFW energy de�ned by :ITFW�n = inf�ETFW�n (�) + 12 Xk 6=j2�n 1jk � jj ; � � 0; p� 2 H1(R3); ZR3 � = (2n+ 2)3�;withETFW�n (�) = ZR3 jrp�j2 + ZR3 �5=3 � Xk2�n ZR3 �(x)jx� kjdx+ 12 ZR3 ZR3 �(x)�(y)jx� yj dxdy:



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 33In partiular, we may bound this energy from below by the orresponding TF energy :ETFW�n (�) � ETF�n (�) = ZR3 �5=3 �Xk2� ZR3 �(x)jx� kjdx+ 12 ZR3 ZR3 �(x)�(y)jx� yj dxdy;so that ITFW�n � ITF�n ;ITF�n being de�ned byITF�n = inf�ETF�n (�) + 12 Xk 6=j2�n 1jk � jj ; � � 0; � 2 L1 \ L5=3(R3); ZR3 � = (2n+ 2)3�:We now invoke Teller's Lemma [14℄, whih we reall here :Lemma 5.3 (Teller) Let � = �a [ �b be a �nite subset of R3, with (�a;�b) a partition of�. Then we have : ITF� > ITF�a + ITF�b :Separating �n into 4(n+1)3 sets of two points whih distane is equal to R1, we then have :ITF�n > 4(n+ 1)3ITF�0 ;with �0 = f0; a1g. Hene, it is su�ient to prove (5.1) for ITF�0 , i.e :ETFf0;a1g(�) � a; 8� 2 L1 \ L5=3; ZR3 � = 2; (5.3)with a independent of a1. In order to do so, we notie that 1jxj 2 L5=2lo (R3); and thus :ZR3 1jxj� � Zjxj>1 �+ (8�)2=5�Zjxj<1 �5=3�3=5 � 2 + (8�)2=5�ZR3 �5=3�3=5:This implies that : ETF�0 (�) � ZR3 �5=3 � 2(8�)2=5�ZR3 �5=3�3=5 � 4 � a;for some universal onstant a 2 R. This implies (5.3), and thus onludes the proof. �At this stage, we would like to make some omment on the Thomas-Fermi ase (see[13, 14℄). It is worth notiing that we may use diretly Teller's Lemma on the TF energy, inorder to obtain (sine the analogous result to (5.2) is valid in the TF setting, see [14℄), thatETF (`) = limn!1 ITF�nj�nj � 12ITF�0 > ITFat ;where ITF�0 is the TF energy of the diatomi moleule with nulei at positions 0 and a1, andITFat is the atomi TF energy (de�ned exatly as in (3.1)-(3.2), but without the gradientterm). Sine the same onvergene results as those of Theorem 4.11 may be shown in theTF setting, we have the following :



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 34Theorem 5.4 In the Thomas-Fermi ase, problem (1.6) has no solution. Moreover, for any` 2 L3(R3), E(`) > ITFWat :A diret onsequene of Proposition 5.2 is the following :Proposition 5.5 For any minimizing sequene (`n)n2N of problem (1.6), any sequene ofbasis (ani ) of `n satisfy : 9R0 > 0; jani j � R0:5.2 Bound from aboveWe now turn to the proof of (b). We assume that there exists an unbounded minimizingsequene (`n)n2N, and try to reah a ontradition. For that purpose, we denote by (ani ) abasis of `n given by Theorem 2.4, by Rni = jani j the orresponding radii, and notie that, upto extrating a subsequene, only three ases may our :(1) Rn1 goes to in�nity as n goes to in�nity,(2) an1 onverges to some a1 and Rn2 goes to in�nity as n goes to in�nity,(3) (an1 ; an2 ) onverges to some (a1; a2) and Rn3 goes to in�nity as n goes to in�nity.From Theorem 4.11, we know that respetively in ase (1), (2), (3), E(`n) onverges tothe atomi energy, the polymer energy assoiated to a1, or the thin �lm energy assoiatedto (a1; a2). It is thus su�ient to prove that in all three ases, there exists a proper lattiehaving a lower energy than those limits. This is our aim in the following subsetions.5.2.1 The thin �lm aseWe show here that for any ` 2 L2(R3); E(`) annot be a minimum of E , therefore exludingourrene (3).Proposition 5.6 For any ` 2 L2(R3); there exists an `0 2 L3(R3) suh that :E(`0) < E(`):Proof : We �x an ` 2 L2(R3); of basis (a1; a2), that we may assume to be in the planefx3 = 0g. For any R > 0, we de�ne `R 2 L3(R3) the proper lattie of basis (a1; a2; Re3).We intend to show the following :E(`R) � E(`)� Ce�p�`R + o(e�p�`R); as R �!1; (5.4)with C > 0, and where �` > 0 is the Lagrange multiplier of problem (3.36). For thispurpose, we denote by � the unique eletroni density assoiated to the lattie `, and set�R = �j�(`R)k�kL1(�(`R)) . Sine � is even with respet to x3, �R is `R-periodi, thus is a test funtion



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 35for the variational problem de�ning E(`R). Denoting by "R = R�(`)\fjx3j>Rg �, we have, fromProposition 3.8, "R � a` ja1 ^ a2j2p�` e�p�`R = �e�p�`R; as R �!1:We now study eah terms of the energy funtional :Z�(`R) jrp�Rj2 � 11� "R Z�(`) jrp�j2 � (1 + "R) Z�(`) jrp�j2 + o("R): (5.5)Likewise, Z�(`R) �5=3R � (1 + 53"R) Z�(`) �5=3 + o("R): (5.6)We then turn to the eletrostati terms : settingETFW;el`R (�R) = � Z�(`R) �RG`R + 12 Z�(`R) Z�(`R) �R(x)�R(y)G`R(x� y)dxdy;and denoting by hR the funtion G` �G`R , we have :ETFW;el`R (�R) = � Z�(`R) �RG` + 12 Z�(`R) Z�(`R) �R(x)�R(y)G`(x� y)dxdy+ Z�(`R) �RhR � 12 Z�(`R) Z�(`R) �R(x)�R(y)hR(x� y)dxdy + o("R):Hene, developing in the same fashion as above :ETFW;el`R (�R) = �(1 + "R) Z�(`R) �G` + (12 + "R) Z�(`R) Z�(`R) �(x)�(y)G`(x� y)dxdy+ Z�(`R) �RhR � 12 Z�(`R) Z�(`R) �R(x)�R(y)hR(x� y)dxdy + o("R):We are now going to show that :� Z�(`R) �G` + 12 Z�(`R) Z�(`R) �(x)�(y)G`(x� y)dxdy �� Z�(`) �G` + 12 Z�(`) Z�(`) �(x)�(y)G`(x� y)dxdy (5.7)and Z�(`R) �RhR � 12 Z�(`R) Z�(`R) �R(x)�R(y)hR(x� y)dxdy � o("R) (5.8)



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 36We begin with (5.7), and write the di�erene of these two expressions as :� Z�(`R) �G` + 12 Z�(`R) Z�(`R) �(x)�(y)G`(x� y)dxdy+ Z�(`) �G` � 12 Z�(`) Z�(`) �(x)�(y)G`(x� y)dxdy= Z�(`)n�(`R) ��G` � 12G` ?�(`) (�j�(`R) + �)�:Hene, proving that G` � 12G` ?�(`) (�j�(`R) + �) � 0 on �(`) n �(`R), for R su�iently large,will onlude the proof of (5.7). For this purpose, we use Proposition 3.6 and write :��jx3j+ � � jxj � G`(x) � ��jx3j+ � + jxj (5.9)in �(`), where �, � and  are positive onstants independent of R. From this and the fatthat 12(�+ �j�(`R)) has total mass 1� "R2 over �(`), we dedue that :��(1� "R2 )jx3j+�(1� "R2 )� 0jxj � 12G` ?�(`) (�+�j�(`R)) � ��(1� "R2 )jx3j+�(1� "R2 )+ 0jxj ;with a onstant 0 > 0 independent of R. This, together with (5.9), proves thatG` � 12G` ?�(`) (�j�(`R) + �) � (1� "R2 )(� � �jx3j) � 0whenever jx3j is su�iently large. This proves our laim, and thus ompletes the proof of(5.7).We now turn to (5.8), and set �R = G` �G` ?�(`) �R: We have :���R = 4�(Æ0 � �R):Sine hR anels at 0, we have :� Z�(`R) �RhR + 12 Z�(`R) Z�(`R) �R(x)�R(y)hR(x� y)dxdy= 12 Z�(`R) Z�(`R) hR(x� y)��R(x)� Æ0(x)���R(y)� Æ0(y)�dxdy= 12 Z�(`R) Z�(`R) hR(x� y)����R(x)�����R(y)�dxdy:We now integrate by parts this expression, and �nd :� Z�(`R) �RhR + 12 Z�(`R) Z�(`R) �R(x)�R(y)hR(x� y)dxdy= 12 Z��(`R) Z��(`R) ��R�n (x)��R�n (y)hR(x� y)dx0dy0:



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 37From the `-periodiity of �R, this boundary integral redues to an integral over the set��(`R) \ fjx3j = R2 g. And using the fat that �R and hR are even with respet to x3, wethus have :� Z�(`R) �RhR + 12 Z�(`R) Z�(`R) �R(x)�R(y)hR(x� y)dxdy= Zfx3=R2 g\�(`) Zfy3=R2 g\�(`) �3�R(x)�3�R(y)hR(x� y)dx0dy0� Zfx3=R2 g\�(`) Zfy3=�R2 g\�(`) �3�R(x)�3�R(y)hR(x� y)dx0dy0:In order to bound this term, we write :�R = �+ 11� "R�j�(`R) ? G` � "R1� "R� ? G` = �+ �̂R;where the onvolution produts are over �(`), and � = G` � � ? G`. We are going to prove(5.8) for all those terms. The seond one may be dealt with as follows : we �rst notie thatj� ? G`(x3 = �R2 )j � CR; (5.10)andj(�j�(`R) ? G`)(x3 = �R2 )j = ����Zfjy3j�R2 g\�(`R) �(y)G`(x� y)dy����(x3 = �R2 )� Zfjy3j�R2 g\�(`R) �(y)jx� yjdy + Zfjy3j�R2 g\�(`R) �(y)jx� yjdy� CR"R: (5.11)(5.10) and (5.11) imply that : j�̂R(x3 = �R2 )j � CR"R: (5.12)On the other hand, j ���̂R(x3 = �R2 )j � j�R(x3 = �R2 )j � C"R, so that we have :jr�̂R(x3 = �R2 )j � CR"R:Sine we also know that jr�(x3 = �R2 )j � Ce�aR; for some a > 0 independent of R, (5.8) isproved for �̂R and for the rossing term. Thus, the proof of (5.8) amounts to show :Zfx3=R2 g\�(`) Zfy3=R2 g\�(`) �3�(x)�3�(y)hR(x� y)dx0dy0� Zfx3=R2 g\�(`) Zfy3=�R2 g\�(`) �3�(x)�3�(y)hR(x� y)dx0dy0 � o("R): (5.13)



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 38To prove this, we expand hR as a Fourier series with respet to x0. Using (3.38) and (4.7),one easily omputes :hR(x) = HR(x3)� ` Xk2`�nf0g e2i�k�x0jkj Xk32Znf0g e�jkj2�jx3�k3Rj; (5.14)with jHR(t)j � C(1 + jtj), C being independent of R, and ` > 0. Here we have used thefat that ZR e2i�x3�jkj2 + �2d� = 2�jkje�2�jkjjx3j;and the orresponding periodi equality, that is :2�jkj Xk32Z e2i� k3R x3jkj2 + k23R2 = Xk32Z e�jkj2�jx3�k3Rj:We then insert (5.14) into the left-hand side of (5.13), whih we denote by AR, and �nd :AR = Zx3=R2 Zy3=R2 �3�(x)�3�(y)HR(x3 � y3)dx0dy0� Zx3=R2 Zy3=�R2 �3�(x)�3�(y)HR(x3 � y3)dx0dy0�`Xk2`�� ~�3�(k; R2 ) ~�3�(�k; R2 )Xk3 6=0 e�2�jkjjk3jR�+`Xk2`�� ~�3�(k; R2 ) ~�3�(�k;�R2 )Xk3 6=0(e�2�jkjj1�k3jR)�;where the � -transform is de�ned by (3.42). We next use estimate (3.41)of Proposition 3.8,with � < p�` to show that the �rst two integrals of the above sum may be bounded byO(R2e�2(p�`��)R) = o("R); and that up to terms of the same order, the sum redues to asum over K = `� \ f0 < �jkj < p�`g. We thus have, �k being de�ned in (3.41) :AR = �`Xk2K Xk3 6=0�k��ke�2�jkjR(e�2�jkjjk3jR � e�2�jkjj1�k3jR) + o("R)= �`Xk2K �k��ke�2�jkjR(�1 + e�2�jkjR) + o("R):Then, notiing that sine �3� is a real-valued funtion, we infer that ��k = �k, so that wemay write the above sum as :AR = `Xk2K j�kj2e�2�jkjR(�e�2�jkjR + 1) � 0;for R large enough, sine K does not depend on R. This proves (5.13), hene (5.8).



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 39We now ollet (5.5), (5.6), (5.7) and (5.8), and �nd :ETFW`R (�R) � ETFW` (�) + "R�Z�(`) jr�j2 + 53 Z�(`) �5=3� Z�(`)G`�+ Z�(`) Z�(`) �(x)�(y)G`(x� y)dxdy�+ o("R):Integrating the Euler-Lagrange equation of the minimization problem de�ning E(`), we �ndthat : Z�(`) jr�j2 + 53 Z�(`) �5=3 � Z�(`)G`� + Z�(`) Z�(`) �(x)�(y)G`(x� y)dxdy = ��`;so that we infer that : E(`R) � E(`)� "R�` + o("R):This onludes the proof. �5.2.2 The polymer aseWe now turn to ase (2) :Proposition 5.7 For any ` 2 L1(R3); there exists `0 2 L3(R3) suh that :E(`0) < E(`):Proof : We use exatly the same trik as for Proposition 5.6, de�ning `R as the lattie ofbasis (Re1; Re2; a), where a is the basis of `, and is ollinear to e3 (this is always possible todo by hange of oordinates). We intend to show estimate (5.4) in this ase. We de�ne �Rand "R exatly in the same way, so that (5.5) and (5.6) follow immediately. (Note that fromProposition 3.3, "R satis�es exatly the same estimate as in the thin �lm ase.)A straightforward adaptation of (5.7)'s proof shows that this estimate also holds (justreplae jx3j by log jx0j). To prove (5.8), the same �R-trik works, and we are here againredued to show bounds on integrals over the set fjx1j = R2 g [ fjx2j = R2 g. Here again, thesame type of estimates are available, namely (3.8), (4.7) and (3.35), so that the above proofan be easily adapted, replaing the funtion e�ajx3j by Wa(x0) de�ned in (3.23) �5.2.3 The atomi aseWe deal here with ase (3) :Proposition 5.8 There exists an ` 2 L3(R3) satisfying the following :E(`) < ITFWat :
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