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Abstract

We study here the problem of geometry optimization for a crystal in the TFW
solid-state setting, i.e the problem of minimizing the TFW energy with respect to the
periodic lattice defining the positions of the nuclei. We show the existence of such a
minimum, and use for that purpose the TF'W models of polymers and thin films defined
in a previous work [5].
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1 Introduction

We are interested here in the Thomas-Fermi-Von Weizséicker (TFW) theory of solids, and
more precisely in the geometry optimization problem, which may be stated in the following
way : given the energy functional which to a periodic lattice associates its TFW energy
(defined in [9]), does there exist a periodic lattice minimizing this energy 7

Let ¢ be a proper periodic lattice of R?, that is, a subgroup of (R?, +) generated by
three linearly independent vectors a, b, and ¢. We define the TF'W energy of this lattice with
respect to basis (a, b, ¢), i.e the TEW energy of a neutral crystal of lattice ¢, with each nuclei
of charge +1 :

e —ut{ BN, oz, vped0, [ o=1f ()
1—‘(abc)

where we used the following notation :

11
Lape) = {ta+ sb+re, t,rs€ [—5 5[}, (1.2)

H,,(0) = {f € H..(R*, f is (- periodic}, (1.3)

and, skipping here the subscript (a, b, ¢) for It p.¢) =

ELS(p) = /|V\/_|2 / B3 _ /Ggp+// y)Go(x — y)dady, (1.4)

the potential GG, being the /-periodic solution of :

{ —AGy = 47 ((Lher ) = 72, (1.5)

lim, o (Ge(z) — |w|) 0.

A preliminary observation is that these notations do not depend on the choice of the
basis (a,b,c). This is stated in Proposition 2.1 below : equations (1.1), (1.4) and (1.5) do
not depend on the choice of a basis of ¢, but only on /.

We now make precise the problem we are studying : denoting by £3(R?) the set of proper
periodic lattices of R?, does the problem

T = inf{é’(é), (e Lg(R3)} (1.6)

have a solution ?
Our main result is :
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Theorem 1.1 Any minimizing sequence of problem (1.6) is relatively compact. Therefore,
this problem has at least one solution.

In order to show this result, we begin with recalling in Section 3 the definition and basic
properties of what we call degenerate cases of the above solid state theory (1.1)-(1.4), namely
the atomic model (3.1)-(3.2), and the linear polymer (3.6)-(3.8) and thin film (3.36)-(3.38)
models. We refer to [3] and |7] for a study of the atomic model, and to |5] for a study of
polymer and thin film models. Moreover, we show in Section 3 some further results similar
to those of |[7] : in particular we show the positiveness of the associated Lagrange multiplier,
and give sharp estimates on the decay at infinity of the density. These estimates will be of
crucial importance in the sequel.

In Section 4, we investigate the behavior of the minimizing sequences of problem (1.6).
Up to rather technical complications that will be dealt with below but that we prefer to skip
in this simplified presentation, it is sufficient to consider minimizing sequences of the form :

0, = {iR’fa +jRI + kR, i,j.k€ z}, (1.7)

with 0 < R} < R} < R%, and (a, b, c) is a fixed basis such that |a| = [b] = |¢| = 1.
Hence, showing Theorem 1.1 amounts to prove that R} is bounded both from above and
away from 0, for all = 1,2, 3. For this purpose, we show the following proposition :

Proposition 1.2

(i) If R} goes to infinity as n goes to infinity, then the energy £({,,) converges to the atomic
TFW energy.

(ii) If R} converges to some Ry > 0, and RY goes to infinity as n goes to infinity, then
E(Ly,) converges to the TFW energy of a linear polymer defined by R;a.

(111) If (R}, RY) goes to (Ry, R2), with Ry, Ry > 0, and R% goes to infinity as n goes to
infinity, then £({,) converges to the TFW energy of a thin film defined by (Rya, Rab).

Once this proposition is proved, we show with the help of the results of Section 3 that
for any of the atomic, polymer and solid film TFW energies, there exists a proper lattice
having strictly lower energy than those limits. This is done in Section 5, through the fact
that the limits of Proposition 1.2 are asymptotically approached from below. Note that the
positiveness of the Lagrange multiplier plays a key-role here. We also show in this Section,
in order to complete the proof of Theorem 1.1, that the radii R} are bounded away from 0,
with the help of Teller’s Lemma [13|. As a by-product of these proofs, we finally prove that
in TF theory, any proper lattice has greater energy than the atomic TF energy, which shows
that the analogue of problem (1.6) in the TF setting has no solution. This corroborates the
fact that our whole argument in the TFW case is based on the positiveness of the Lagrange
multiplier in the degenerate problems (atomic, polymer and solid film cases). Now, one may
check that in the atomic TF model, the Lagrange multiplier is 0.
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Remark 1.3 Let us point out that here, we have used a different normalization than in [15]
and [8, 9] for the potential G,. This is due to the fact that the constant M appearing in
[13] and [8, 9] depends in fact on . Our renormalization (1.5) cancels M, or more precisely
includes it in the expression of Gy. This allows us to write E(L) as the exact limit of the
energy per nuclei, as may be seen in (5.2).

Let us mention that the results detailed here have been announced in [6].

2 Notation and representation of lattices

Throughout this paper, we will use the following notation :
Definition 2.1

(i) A subset l of R* will be said to be a proper lattice, or a lattice of dimension 3 (or of rank
3), if there exists three independent vectors (a, b, ¢) such that ¢ = {ia+jb+ke, i, 5,k €
Z}. We denote by L3(R?) the set of proper lattices of R>.

(ii) A subset of R® of the form {ia + jb, 14,5 € Z}, with a,b linearly independent will
be called a lattice of dimension 2. The set of 2-dimensional lattices will be denoted by
Lo(R3).

(111) A subset £ of R will be said to be a lattice of dimension 1 if there exists a € R*\ {0}
such that ¢ = {ia, i € Z}. We denote by L1(R?) the set of lattices of dimension 1.

Identifying £3(R?) with the quotient group GL3(R)/GL3(Z), we define on L3(R?) a
topology. (We denote by GL3(Z) the set of matrices belonging to GL3(R), having integer
entries, and such that their inverse have integer entries.) For this topology, L£3(R?) is a
separated locally compact manifold. After having checked out that £ is well-defined on
L3(R3), we then study its continuity on this manifold :

Proposition 2.1 The function £ defined in (1.1) and the potential defined in (1.5) do not
depend on the choice of the basis (a, b, c).

Proof : We choose two different basis (a,b,¢) and (a’,V,¢) of the same proper lattice /,
and denote respectively by £ and & the associated energy. We know that there exists M in
GL3(Z) such that o' = Ma, b' = Mb, and ¢ = Mec. M being invertible in the set M;3(Z) of
integer 3 x 3-matrices, its determinant must be invertible in Z, so we have :

|det M| = 1.

This implies in particular that [T, ¢ = |I(@ p.¢) ], so that the potential defined from (a, b, ¢)
in (1.5) must be equal to the one defined by (', ', ). Next, we notice that for any ¢-periodic

function f, we have :
/F(a,b,c) Liarprer)
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This implies, for any p > 0 such that \/p € H},,.(() :
Eaey(P) = E(a 7. (0), (2.1)

/ p= / p. (2.2)
Clab,e) Lar v ey

(2.1) and (2.2) then imply that £ =&". ¢

and

Remark 2.2 Note that one easily proves in the same fashion that for any orthogonal matrix
M, the energy is unchanged under M, that is, £(¢) = E(ML). This will be useful in the sequel.

Note also that up to minor modifications, Proposition 2.1 also holds for polymers and
solid films models defined in Section 3.

Now that the function £ is well-defined, we may show that it is continuous :

Proposition 2.3 The function £ is continuous with respect to the quotient topology of
L3(R3).

Proof : The only thing to show here is that £ is continuous as a function defined on
GL3;(R). This is easy to do by changing variables in the expression of E(Tal“;‘g and noticing
that if (a,b,c) is close enough to (a',t',c), then the norm (|G, — GollLi(r,, oo b o)) 19
small. (Here we denote by ¢ and ¢ respectively the lattices of basis (a,b,c) and (a',¥,).)
O

We now state a result on the representation of a lattice by one of its basis, referring to
[10] for its proof :

Theorem 2.4 (Engel, [10]) For any periodic lattice ¢ of rank 3, there ezists a basis (a, b, ¢)
of £ such that :

la] <[] < e,
{ (a,b), (a,c), (b,c) € [5, 5], (2.3)

where (x,y) denotes the angle between x and y.

We thus see that, according to Proposition 2.1 and Theorem 2.4, we may reduce any
minimizing sequence to the form (1.7), up to the fact that (a,b,c) will not be fixed but
satisfy conditions (2.3).

3 Preliminary results on the degenerate cases

We recall in this section the definitions of what we call here the degenerate models, namely
thin film models, polymers models and atomic models in the TEW setting. We refer to [5]
concerning precisions on the first two models, and to [13] and [7] for the latter. In the thin
film and polymer cases, we also show further results, mainly on the asymptotic behavior of
the density far away from the nuclei.
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3.1 TFW theory of atoms

We first recall the definition and the main properties of the TFW theory of atoms : the
ground state of an atom consisting of a point nucleus of charge +1 located at 0 and of an
electron is determined by its electronic density, unique solution of the problem :

JEEW — inf{EftFW(p), p>0, /pe H (R, /Rg p= 1}, (3.1)

where the energy functional ELFW is defined by :

e = [vvars [t [ e [ e 62

Problem (3.1) has a unique solution py; (see [13] or [3]), which is positive, and which
square root ug = /pat satisfies the following Euler-Lagrange equation, with a Lagrange
multiplier 6 =6, > 0 :

5
—Aug + w3

1 1
3 tat + (__ + ug, m)uat + Ogrttgr = 0. (3.3)

]

It is shown in [7] that the following estimates hold :

p(z) ~ —e , as |z| — oo, (3.4)

where a is a positive constant. The effective potential ¢ = — — px ﬁ satisfies :

\w\

o(x) ~ 9|x|26 VOl g |z| — oc. (3.5)

3.2 TFW theory of polymers

We now consider the TFW model of polymers, as defined in [5], and which we recall here.
Considering a periodic lattice of rank 1, that is some ¢ € £;(R?), we may assume with no
loss of generality that it is located on the vertical axis; that is, / = ZRe3, with R € R7,. We
define its TFW energy as follows :

£ = 115V (1) = inf{EZFW(m, p>0, JpeH.L(0),

log(2-+lal)o € L'T(0). [ - 1}, (3.6)
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where () = o € RY, a3 € [-£, [},

H,,(0) = {f € H.. R )NH'L(0), f is £— periodic},

TFW
EE

and the energy reads :

E{™ (p) =/ [V/ol* + / PP — | Gep
(¢ r(e) I

+ /Fe/ Y)Go(z — y)dzdy, (3.7)

the periodic potential Gy being defined by :

R
9 1 1 [2 dt
= - Zlogld! T
Gg(l‘) OK R Og|x|+z<|x—k€3| R/R |x—(k+t)€3|>
im( :1:3+I§

2
= Cg——log|a:|+— > / — s, (3.8)

kEZ\{O} R2 + |€|2

the constant C, being chosen so that we have lim, ,o(Gy(x) — ‘—i‘) = 0, and 2’ denoting the
vector (z1,x3). We recall a few properties of the potential Gy shown in [5] :

Proposition 3.1 We have :

(i) Gy is smooth on R3\ (,

(i) Go(x) = ﬁ + O(|z]) as . — 0,
(iii) Ge(x) = —%logla'| + Cyp + O(|$—,‘) as |¢'| — oo, uniformly with respect to 3.

We now show the following :
Proposition 3.2 For any R > 0, the problem (5.6) has a unique solution p,. The function
ug = \/pe¢ 18 a solution of :
A 5 7/3 2 _
—Auy + SU + (ue *(0) Gy — G()U,g + Opup = 0, (3.9)

where xr(p) denotes the convolution product over the set ['(¢). Moreover, the Lagrange mul-
tiplier 0, is positive.

Proof : We refer to [5| for the proof of the existence and uniqueness of p,. Moreover, we
recognize in (3.9) the Euler-Lagrange equation of problem (3.6). We now prove that 6, is
positive.

Denoting by ¢, the function

2
¢ = Gy — uy *p, Gy,
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it is possible to show the following a priori estimates (see |5|, Proposition 2.5) :

C
b—0<—C  on {|]>1} (3.11)
S TP ' ‘
We claim that
¢p —> 0 as |2'| = 0. (3.12)

In order prove our claim, we denote by GY the potential Gy — Cy, and notice that we have :
¢g = G2 — uf *F(g) G2

Hence, we have :
ole) = [ (64 =Gl — i)y
-/ (G3(z) - Ga — )iy
LNy’ <]’ |*/2}
+ [ (G2(e) - GY(o — ) (w)dy.
rn{ly’[>]a’|*/2}

If || < |2'|'/? < |2'| as |2'| — oo, we have, from Proposition 3.1-(iii) :

2 1
Gi(0) - Gila — 1) = 5 (') ~ os(l«' = ') ) + O )
Developing this expression, we find :
0 0 2 c
Gy(r) — Gy(v —y) )ui(y)dy| < IIIVER (3.13)
DOy’ |<le/|1/2} ||
In order to deal with the second term, we use (3.10) and show that :
C'log |2/

/ (680) — o ) )ity < S
LNy |>]2/|1/2} |2'|

This, together with (3.13), proves (3.12). Using estimate (3.11), we infer that
6, > 0.

We assume from now on that we have 6, = 0, and try to reach a contradiction, which will
conclude the proof.
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Since there is no ambiguity here, we skip the subscript ¢ for the rest of the proof. From the
uniqueness of u and the definition of ¢, these functions depend on z’ only through || = r.

We set,
R
_ 1 (=

¢(T) = E R ¢(T7 373)d.’173,
2
and
I
p(r) = 7 /_5 p(r, x3)dxs.
From the definition of ¢, we have :
_—ll . lal _ _47'(—p
r
on R, \ {0}. Hence, using (3.10) :
— C
0< (P < (3.14)

This shows that (¢ )’ is integrable on a neighborhood of +00. We now integrate (3.14) from
r > 0 to oo, and get :

ré (r) — lim (t6 (1)) < 0.

Denoting by [ the limit lim,_,.,(£¢ (¢)), which exists in virtue of (3.14), and assuming it to

be different from 0, we deduce that al(t) ~ % as t goes to infinity. This implies that ¢ goes

to £oo at infinity, which is a contradiction with estimate (3.11). Hence, 5, is non-positive
at infinity, which implies, in view of (3.12), that

¢>0 for r>rq. (3.15)
It follows that :
R R
dRy >0, Vr> Ry, dx;e€e [—5, E[, ¢(T, .1‘3) > 0. (316)

On the other hand, we have, using Holder estimates, for any ball B of radius 1, and any
v € C**(B) for some a > 0, (see [12] or [11])

190ty < v(nmncow) ; ||U||CO(B)>,

where %B denotes the ball of radius % having the same center as B, and vy being a universal
constant. Hence, from a scaling argument, we deduce that for any ball B, of radius a > 0,
and any v € C**(B,),

1
IVello sy < ’V<a||AU||00(Ba) - ;nvncowa)). (3.17)
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Applying this inequality to ¢, we find, for any ball B, of radius @ > 0 not containing 0 :

1
I96lncym < 7 (alllcon) + 2o ) (3.15)

Using estimate (3.10) and the fact that ¢ is periodic and bounded as r — 0o, and applying
(3.18) with a = @, B, centered at z, we thus find :

|V¢|§g as 1 — 00.

In particular, we have this bound on |03¢|. Hence, from property (3.16), we infer that :

CR
é(r) > ——— as r —> 00.
r
Inserting this information in (3.18), and using again (3.16), we find that ¢ > —5 for suffi-

ciently large r, hence, again from (3.11) :

C
lp(z)| < 3 as oo
We now apply again (3.18) on ¢, but with B, = B ;(z), and find that ¢ > _7«5%' Hence,
using (3.11), we have :

C C
2

— =7z < o(x) < as 1 — 00. (3.19)
,

,
With this result, we are going to show that V' = §u4/3 —¢ < r%
This estimate, in the spirit of a work by Benguria and Yarur [2], will imply that u > %,
which contradicts (3.10).
In view of equations (3.9) and (3.19), and the fact that § = 0, we infer that
5 C
A ST >
u+ Ju 2 -
on the set {r > ro}, for some ro > 0. Hence, denoting by uq the function 10%2’ one computes
easily :
) 9 5.3 1 C

_ _ (.73 _ 7/3 e ONT/3y_ -
Alu = ug) + 5 (" = ™) > (7 = 25" = — (3.20)

Since 2 — 3(2)7/3 > 0, it is then clear that there exists an r; > 0 such that on the set

{r > r}, v =u — ug satisfies the following :
5
Av < g(u7/3 —ug’?).

Defining F' = {r > 1} N {v < 0}, we now show the following assertions :
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(a) F' is unbounded,
(b) F has no bounded connected component strictly included in {r > r}.

In order to show (a), we assume that F' is bounded, and notice that then there exists ry
such that v > 0 on {r > r2}. Hence, on this set,

o
Ap > —.
¢_5r3

This means in particular :
—/\y 6
r > —.

Integrating this inequality from r to 400, one finds 51 < —5%, hence

D

™

a Z =
r
which is in contradiction with estimate (3.11).

We now show (b) by supposing that F' has at least one bounded connected component Fj
such that {r =r} N Fy, =0. On Fy, Av <0, and v = 0 on dFy. Hence from the maximum

principle, ¥ must be non-negative on Fj, which is contradictory.
From (a) and (b), we deduce that (3.16) holds for —uv :

R R 3
dRy >0, Vr> Ry, dx;e€e [—5, E[, U(T, .’L‘3) < W
Now, from the equation satisfied by wu, it is clearly possible to show, using the same Holder
estimate as for ¢, that

C

This implies that, as r — oo, u < 57«%’ and in particular :

5 43 1
The final step of the proof is merely a copy of Benguria and Yarur’s proof [2], which shows
that if u > 0 satisfies —Au + Vu = 0 with V' < T%, then u > % This is in contradiction
with (3.10). O

Proposition 3.3 The unique solution py of problem (3.6) satisfies the following, where ay >
0 depends only on { :

G_QMT

pe(r, x3) ~ ay , as 1 — 00. (3.21)
r
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Moreover, setting ¢ = Gy — Gy *re) pe the effective potential, there exists a finite set of
complex numbers A\, depending only on ¢ such that :

—(2V/0,—€)r
Go(r, x3) — Z A€ZTRTTY |y (r)| < bh;, as 1 — 00, (3.22)
2mg — 7% \/F

0<7|k|<RVO,

for all € > 0. The constant by > 0 depends only on € and €, and W, denotes the Yukawa
potential of parameter a > 0 in R?, i.e the solution of —Af + a®>f = 4wy in R? vanishing
at infinity.

Proof : We begin with a few properties of the Yukawa potential W, of R?, with a > 0: W,
is the unique solution vanishing at infinity of :

— AW, + a®*W, = 4ndp. (3.23)
The potential W, is spherically symmetric and satisfies the differential equation :
1
W'+ -W! —a®W, =0
r

on R}. Here ' denotes the radial derivative in R2. For all the following properties, we use
the notation of [1], in which one may find these results. We refer to [17| concerning their
proofs. The modified Bessel functions Iy and K are thus defined by :

Lo(t) = Z(?Z@!f’

n>0

Ko(t) = —(log(2 + ) ot Z(Z ) <2nn'>2’

n>1

where v = limn_m(zy 1 7 — logn) denotes the Euler constant. We have :

(a) The potential W, is equal to the modified Bessel function Kj :
Wa(t) = 2Ky (at).
(b) We denote by W, the potential
W, (t) = 2Ky(at) + 271y(at).
It is a solution of (3.23).

(¢c) The functions W, and W, are respectively decreasing and increasing, and satisfy the
following estimates :

Vi

(3.24)
Wo(t) ~ —2log(t) as t—0.

{Wa(t)w %7”7‘” as t— oo,
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W 2r et
Ka(t) w7 as t— oo, (3.25)
W(t) ~ —2log(t) as r— 0.
— e 4m
W W, —-WW, = 5 (3.26)
Keeping these results in mind, we may now begin our proof.
We denote by V; the (-periodic Yukawa potential with parameter 1/, :
—V0;|z—k|
e
Vi = _ 3.27
o) =3 (3.27)

Comparing it with W 5 (r), where r = \/27 + 23, and noticing that
W, (r) e« T,
r) = 2,
Vo, R /12 + 22

one shows through a basic computation that —Z%

W\/gl

o1\ e~ Vo
Vi(x) ~ ( —>7 (3.28)
Vo) VT
as r goes to infinity.

Denoting by f, the function gu[‘/?’ — ¢y, and using the bounds we have on wu, and ¢y,
namely (3.10) and (3.19), we deduce that

— 1 as r — oo, hence :

C
ﬁa

|fel < (3.29)

on {r > Ry}, for some Ry, > 0. Hence, we have there
C
—Auyp + (94 — ﬁ)ug < —Auy + (fz + QZ)UE =0.

. . 6—,/957‘ 7“/7. . .
Y Y :
Now, denoting by v the function NG one easily finds that

C 20— 1 —C 2p 1P
—AU + (9( — ﬁ)'l} = ( T2 + ﬁ — 7"_4),U
Hence, choosing ;1 > ‘;C—\/%, we have :
C

—Av+ (0, — ﬁ)v >0
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on some set {r > R;}. Next, by a similar computation, setting w(z) = \/Ee‘@('%{ﬁ,
one easily shows w satisfies the same estimate. Hence, taking v +w as a superso#ution, and
letting then R go to infinity, one can show that this implies :
Uy S CUJ
for some constant C' > 0. In particular, we have
a P
up < W@ VOrr at  infinity, (3.30)

for some a > 0. Now, an easy computation, in the spirit of |7], Proposition A.1, shows that,
from this estimate, together with (3.28) and (3.29), we have :

e Vo
VT
with /a, = % OQW eVlicost g fr(z) — foup, which is positive since — fpuy = —Aup+6,up. Hence,

convoluting —Auwy + Opup = — foup on both sides with V;, one finds (3.21).
We now prove (3.22) : we define a partial periodic Fourier transform by :

(—frue) *ry Vo~ Vay as 1 — 0Q,

Fa k)= [ fa)e 2R dy, (3.31)

R
2

for any L7 . and (-periodic function f. Applying this to ¢,, and using the fact that —Ag, =

47t (dg — pe) in T'(£), one finds :

~ 2 ~
— A2’ k) + 4#2%@(95', k) = 4n(6,=0 — pe(2', k)), (3.32)

for all k£ € Z, where A denotes the Laplacian with respect to x'. We first notice that

~ 72\/547‘
[Ge(a’,0)] < O : (3.33)

r

—2\/@[7‘

since it is a radially symmetric function in R? satisfying (r@(r,0)") ~ age . Moreover,

if |k| # 0, convoluting (3.32) with W,_ s, we have :
R

gbg = W27‘(‘% — W27‘(‘% *R2 Pe-

We use here the following Lemma, which proof is postponed until the end of the present
one :

Lemma 3.4 Let a be a positive real, and let W, and W, be the potentials defined in (a) and
(b) above. Then, for any spherically symmetric function v such that v € L'(R?), we have :

v x Wy(z) = 872 {Wa(a:) /y W ( /W [ vWaﬂ. (3.34)
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Applying this result to a = 27r‘£R| and v = py(-, k), which is spherically symmetric in R?,

and using estimates (3.21), (3.24) and (3.25), one easily finds :

(B 0) = ([ 2Tor )y 10 [, o)

whenever 27r|£R‘ < 2V/0,. Thus, for such a k, setting \, =

n L
R fR2 p£W27r|—II;"

~ . _kxg

¢g($’, k) = R)\kWQW%\ (7“)€2WT + 0 (/ ﬁg)
| |>r

= R)‘kWQWM (7“)62WT +0
R

We next use Plancherel’s formula and write :

bolz) = Z%@(gg',k)e%’%

kEZ

. kz ]_ ~ . _kz
= Z )\kW%% (r)e® ™ & + Z Em(x', k)e? R 4 O(
0<n|k|<RVO; w|k|>RvV0;

o—2v/0ir
)
Denoting by v, the function
_ L 2in L a3
(o WM;\@RW(@" ke :
proving (3.22) amounts to show that
o~ (VT—or
|the| < C'ET,
for all € > 0. For this purpose, we notice that, using (3.34) again, we have, for all |k| > RT‘@ :
—2V0,r
NG
On the other hand, from the fact that Ay, is smooth and that 1, is bounded on {r > 1},
g is bounded in CP(I'(¢) N {r > 1}), for all p € N, so that we have :
L
[P’
for all p > 0, with C, depending only on p. Those two bounds, together with the definition
of 1, and A, allow to write, for any <1 :

e, k)| = |o(a’, k)] < CF

[e(@', k)| < Cy

1 y
[ ST
r=Ro
w|k|>RV0,
e*4ﬂ\/§[R0 0;2_2/8) 674\/§ZR0
S R 2 e R )

7|k|>V0,
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This is valid for all Ry sufficiently large. We then choose =1 — 2\;@ and p > ﬁ, and
finally conclude through elliptic regularity and the fact that |Ay,| < C %. O

Proof of Lemma 3.4 : We denote by F(z) the function defined in (3.34). F is spherically
symmetric, and using estimates (¢) above, one easily shows that F' vanishes at infinity.
Hence, it is sufficient to prove that —AF + a?>F = 872v. For this purpose, we notice that :

—AF =—-F"— iF’.

||

We then compute :

Pl =Wel [ o el [ o= ).

Thus, we have :

—AF = —AW, vWa—AWa</ oW, — vWa>
ly|> | ly|<lz| R"
+W, oW, — W/ / oW,
lyl=lal ly|=lz|

This implies the following :
—AF + a*F = 027 |z|(W, W, — W'W,).
We then use (3.26) and conclude the proof. ¢

Estimate (3.22) has been proved for ¢, but what will be really useful is the same estimate
on the partial derivative 9,¢,, with r = /2% + x3. Since the estimates we have used on py
also hold for 0, p,, an easy adaptation of Proposition 3.3 shows :

Proposition 3.5 Let p; be the unique solution of problem (3.6), and ¢y = Gy — Gy *r() pe.
There exists a finite set of complexr numbers py depending only on ¢ such that :

e~ (2vV0,—e)r

arqsﬁ(ra 1'3) - Z Mke%ﬂ%wswgﬁ% (T) < bll,eT’

0<|k|<RVO,

as 1 — 00, (3.35)

for all € > 0, the constant b, . depending only on £ and e.

3.3 TFW theory of thin films

We recall the TFW model for thin films defined in [5] : considering a periodic lattice ¢ of
rank 2, we may assume that it is included in the plane generated by the two first vectors of
the canonical basis (eq, es, e3). In other words, there exists Ry > 0 and b = bye; + bgeg, such
that a = Rye; and b generate £ :

¢ = {ia +jb, 1i,j€Z*}.
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We define its TEFW energy by :
£(0) = TV — {E“”%>, p>0, . Jpe HL(0),
(+lmlpe @), [ p:l}, (3.36)
T(6)
where I'(() = {ua + vb+ we3, wu,ve[—3,3[, weR},
HY(6) = {fe HL(R®) 0 HY(T(6)), fise—pam&%,

EFTW reads :

EFWm::A wwwﬁ/pm—ﬁw@p

+ / / Y)Go(z — y)dzdy, (3.37)

and the energy

the periodic potential G, being the analogue of (3.8), with a A b denoting the inner product
of the two vectors a and b :

2m
= Op— ———|as| + -
Gy(z) ¢ a/\b|x3| Z x—k a/\b/ 0n{zz=0} | k Y
ke nioa=0)

o 2z7r k- :1:+$3§
= Co—plosl+ ——— Z / prea3 (3.38)
A D) 0, o Jn TEHEE

where CY is chosen so that lim,_,o(Gy(z) — m) = 0, and ¢* is the reciprocal lattice to ¢ in
the plane (ey, eq), that is, ¢* is the periodic lattice generated by the basis (a’, ') of {z3 = 0}
defined by a-a' =b-b'=1,and a-b' =b-ad = 0.

Here again, we have the analogue of Proposition 3.1, proven in [5] :

Proposition 3.6 We have :

(i) Gy is smooth on R3\ (,

(i) Go(x) = ﬁ + O(|z|) as  — 0,
(111) Go(x) = |aAb| |z3| + Cp + O(%) as |z3| — oo, uniformly with respect to (xq,xs).
We also have the following :

Proposition 3.7 For any basis (a,b) of the plane generated by (e, ez), the problem (3.36)
has a unique solution py. Setting up = \/pe, ue is a solution of :

Y
—Auyp + 3u7/ + (uf *1(0) Gy — Gg)Ug + yup = 0, (339)

with 05 > 0.
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Proof : We skip this proof, since it is a straightforward adaptation of Proposition 3.2’s. ¢
Next, we mimic the proof of Proposition 3.3 and find :

Proposition 3.8 The solution py of problem (3.36) satisfies the following estimate, where
ag 1S a positive constant depending only on 0 :

pe(x) ~ age=2V0sl s 2y — oo, (3.40)
Denoting by ¢y = Gy — Gy *r@ pe the effective potential, there exists complex numbers puy,
such that, for all € > 0,
03¢e(r, x3) — Z e g=2mlklzsl | < bg,ee_(Q‘/a"_e)'m', as |xz| = oo, (3.41)
0<n|k|<V0y,kee
with by > 0 depending only on ¢ and e.
Proof : The only necessary change is to show the above estimate for the Yukawa potential :

—V0;|z—k| o
_ € -0 |3
= ~ RS —
Ve(zx) kEEZ p— \/@e as |r3| — oo,

which is easy to prove by comparing it to the one-dimensional Yukawa potential with respect
to x3. The partial Fourier transform defined in (3.31) is adapted is follows :

Fk 1) = / Fla)e 2 gy (3.42)
D) {as=t}

for all k& € ¢*. And the role of W, is played here by e®®sl. ¢

4 Behaviour of unbounded sequences

We investigate in this section the behavior of the TF'W energy of unbounded sequences. By
unbounded sequences, we mean sequences of periodic lattices for which some sequence of
basis satisfying (2.3) is unbounded.

We first establish some bounds on the electronic density p, that are uniform with respect
to /.

4.1 Bounds on p; for £ € L3(R?)

Throughout this section, ¢ denotes a proper lattice, and I'(¢) is a cell of ¢ associated to a
basis (a;)1<i<3 satisfying (2.3), and choose :

0.< Ry < min |a;| = min R;. (4.1)

In the spirit of [4] and [16], we define, for a radius R > 0, the ground state ep of the
Laplace operator with Dirichlet condition on B, and set gr = €%.
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Lemma 4.1 For all R > 0, u; and ¢, denoting the solutions of the Euler-Lagrange equation
of (1.1), namely

{ AUZ + U( ¢gUg =0, (4.2)
Agbg = 4W(Zkel 519 ),
we have, % denoting a convolution product over R3 :
5 2
gr* ¢(x) < 2gpxu (@ )+ﬁ, (4.3)

for all x € T'(¢). Moreover, if 0 € x + Bpg, i.e if |x| > R, ¢u(x) < (gr * ¢r)(x).

Proof : We simply copy here the proof of [16], pointing out that it does not depend on /.
Since uy is non-negative and satisfies (4.2), the operator —A+ gug4/3 — ¢pp, with homogeneous
Dirichlet boundary conditions on By + =, is positive. Hence, for all x € H} (B + ),

5
/ IVx|? +/ (§W4/3 — ¢0)x* > 0.
I'(¢) N

We apply this inequality with x = eg(x — -), and find (4.3).
Assuming that |x| > R, ¢, is then subharmonic on Bg + x, hence from the mean-value
inequality and the fact that [, gr =1, de(x) < (gr * do)(2). O

Proposition 4.2 For any solution (ue, ¢¢) of (4.2), we have the following estimate, valid in

00 N {|z] > 2} :

b
4.4
DMy -

ket

a,b > 0 being universal constants.

Proof : Here again, we merely check out that [16]’s proof carries through this case, with
minor modifications. Using estimate (4.3), together with Holder inequality, we have :

71_2 5 2/3
JR * Pr — 2 S 3< R*W) :

Denoting by ¢ the function ¢y = gr * ¢r —
gr * ug?), hence :

R2, we then have —A¢g, = A (D peegr(- — k) —

~Adet (G60Y" < am S gal b

ket

We now introduce the corresponding periodic TF-potential Q/ﬁ\g, that is, the positive solution
of :

~ D ~3/2
—Agﬁg + g(ﬁg = 47TZgR(- — I{I)

kel
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It is thus clear, from a comparison argument, that we have : be < @ Now, on the one hand,
from Theorem V.12 of [14], we know that by < Y ket qﬁ( k), where ¢ is the solution of :

o 5 o
—Ag + §(¢)3/2 = 4dmgp.

On the other hand, Lemma 11 of [16] shows that

$s% on {|z|>R+1},

where a > 0is a universal constant. Collecting those results and taking, for |z| > 2, R = %]z,
we find (4.4). ¢

Proposition 4.3 For any solution (ug, ¢¢) of (4.2), we have the following estimate, for
zeTW)n{lz| > 2} :

uy’® < 4.5
Yt P )

where a',b' > 0 depend only on Ry defined in (4.1), and not on the R;.

Proof : We first remark that the proof of Propositions 3.5 and 3.10 of [9] do not in fact
depend on the periodic lattice, as far as its radii R; satisfy (4.1), and that we thus have :

0 <up <c,

where ¢ > 0 is a constant depending on Ry, and not on ¢. We define the function :

SR
=21z k|4 |x|2 T (aP — R

ket

An easy but tedious computation shows that :

2’)’ 2 |.’IZ‘|2 + R,2
“A Yy ] W e
202 7 S (o = R7)

We also have :

) 52R’4
S o i e A

ket

Hence, choosing v > 6, > 12 and ¢ > 24, we have, in Bg :

—Af+ f2>0. (4.6)
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Now, we also have : A(uﬁm) > %(guﬁm—@)u;}/?’. Thus, denoting by S the set .S = {u3/3 > f1,
which is open, bounded and included in {|z| > 2} N B}, as far as § > 16¢, from the definition
of f and (4.4), we notice that on S, u;}/g > mf(ﬂ’”’; ¢¢. Hence

= sup(a,b
45 sup(a,b)\, a3
A 4/3 > 222 SUP\&, V) / 2‘
b= 3(3 inf(ﬁ,7)>(u£ )

In addition to the above conditions on # and 7, we may impose the inequality 5,v >
2sup(a,b), so that, on S :

A(uy® = ) > (w)/*)? = f2>0.

4/

The function u, - f is thus subharmonic on S, and cancels on dS. From the maximum

principle, we infer that u;}/g — f is non-positive on S, which is impossible. Hence, S = (.
Letting then R’ go to infinity, we find (4.5). ¢

4.2 Convergence of G/

Considering unbounded sequences, we investigate here the behavior of the associated poten-
tial Gg.

4.2.1 The Thin film case

We consider here the case of a sequence (4,),>¢ such that only one of its radii R} is un-
bounded, and the others are bounded away from 0 as well as bounded from above. That is,
we consider a sequence (¢,)nen such that for all n € N, ¢, has a basis (a})1<;<3 satisfying
the conclusion of Theorem 2.4 together with :

(1) a} — a1 # 0 as n goes to infinity,
(2) a} — ag # 0 as n goes to infinity,
(3) |a%| = R} — oo as n goes to infinity.

Moreover, we may assume, changing the system of coordinates if necessary, that for alln > 0,
the plane generated by (af, a%) as well as the one generated by (ay, az), is included in (hence
equal to) the one generated by (ej,es). Note that since the angle between af and af is
confined in [%, 7], so is the angle between a; and ay, and these two vectors must be linearly
independent.

We denote by G, the periodic potential associated to £,,, defined in (1.5), and which may

be written as :

1 eZiwk-x

| ()] 2

keez\{0}

(4.7)

k>
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where C), = m‘fr(ln) G, is such that lim,_,o(Gy, () — W) = 0, and £ is the periodic
lattice reciprocal to £, i.e the lattice of basis (b7, 03, b}) satisfying :

afb;‘ :6ija VZ,] € {1,2,3}

The potential G, denotes the potential associated to the lattice (o, generated by (ay, as),
as defined in (3.38). We now show the following :

Proposition 4.4 The potentials G,, and G satisfy, for all x € T'(¢4,) :
|Gn(7) — Goo(z)| < C(1 + [a]), (4.8)
where C' > 0 is a constant independent of n.

Proof : The strategy of the proof is the following : writing Gy through its Fourier series, we
isolate singular terms, and deal with them separately, whereas in the remaining terms, we
recognize a Riemann sum converging to the Fourier coefficients of G, as defined in (3 38).

We denote by (@) the renormalized basis associated to (af), that is, a = gn |a”| We
thus have, setting ¢6,, = |a} - (a} A a})| = | det(ay,ay,ay)| :
1 e?iw(k1b¥+k2bg+k3b§f)-x
Gn(x)=Ch + —5—— : (4.9)
WR?R%R?&H keZo\(0) |k1bg + kgbg + k3b?|2

Hence, isolating the terms where k; = ky = 0, and denoting by b} the vector b2 = REbE :

n
217rk3 2
R3

Gu(z) = Cp+
1 €2i7r(k1b?+k2b§‘+k3}i—37§)-x

TRFRERES,

+ = .
bTL
(k1 ko) ez2\(0} ks [K1D] + Kbl + ks [

Next, considering the fact that (a;, aq) is a basis of the plane generated by (ej, e2), together
with the definition of 0}, we infer that Eg = \pe3, with A\, € R bounded away from 0 as
well as bounded from above. Next, we notice that the first sum is easily computable, since
> kez\{0) 2,:;“ = %2 + 272 [t|(|t| — 1) for |t| < 1. Hence, for all z € () :
TR} 2mxs 21 |3
T 3RIRION  G RTRSRS | RUR3O,M,
2z7r((k1 b7 4k bTY)-a+ *””3 )

Gn(r) = C,+

1
PR pRpns Z Z n n Ane
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We denote by G(anqp) the thin film potential associated to the lattice of basis (af,aj).
Denoting by G, the functlon

271_ 1 / e?iﬂ((k1b¥+k2bg)-x+§x3)

Ga@) = Cn— oo o]+~ ,
(z) s, It TR R, & [E1b} + kol + Ees]?

keZ2\{0}

with C,, chosen so that G, (z) — ﬁ cancels at 0, and computing its Laplacian, we find that

Grn — Gap,ap) is harmonic, bounded (from Proposition 3.6-(iii)), has value 0 at the origin.
Thus, G, = G(4n,qar). We then have, denoting by F;, the function G, — G :

Fn(x) = G(a%ag)(a:) — Go(2) - C, +C,

TRE 2m i}

T 3RIRyON | S, RIRLEY
. 1 p2im (kD] +k203)- < / st
ﬂ'R?Rg(Sn)\ (k1 k2)7(0,0) |I€1b + kgbg + €€3|2
\ 2ir Ankats
n e :
_ I 4.10
R g;z k1D + ko b +l<;3A"63|2> (4.10)

From estimate (ii) and (iii) of Proposition 3.6, it is clear that

Gy (0) — Gaul) < 1+ ) (4.11)

in I'(¢,,), for n sufficiently large. We now deal with the sum appearing in (4.10) : we denote

it by F}(z), omitting the factor —mp=—— since it is bounded, and write F), = F} + F?,
11ty 0nAn

where :

A 83)':E

1yAn . Ank
An —f(k3+2)ARZL €2z7r13(§ R"3 d§ 21w klb"+k2b”+
Ry (ka—3) 7%

FT} (.’E) = E Rg n n kg)\n 2 , (4]_2)
(k1,k2)#(0,0) ks €Z |ley b + kepblt + Edne|
§ : i (kb7 +ko b} Z (ka+3) 3 1
e Z71' 1 TL+ 2
(k1 k) # ks€Z /k D <|/€ DY + kobly + Bey 2
L 2imgas

1S d . 413
Ww?+km3+gap>e $ (4.13)

sin(m Any )

And we have Fl(z) = Fi(x)()‘—” — — M) with

Ry T3

2im (k1 b} +kaby + 52 Tes)

—1 (&
F = E E
n(x) |k bn +k2bn kaz\ne |2

(k1,k2)#(0,0) k3€Z
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One computes easily :

(Fulfeeny = CRE Y Z|kbl+k2bn Y

(k1,k2)#(0,0) k3€Z

f 3 < C
R |k1bT+kabl+Ees|t — |k1b?+k2b% |3

and since the sum over k3 is a Riemann sum converging to
as R§ goes to infinity, we infer that :

_1 n
1E |2 reeny) < CR,
where C' does not depend on n. This implies :
1 Fall2(eny) < C, (4.14)

with C independent of n. We now turn to F : noticing that

k3+ —’73 1 1 .
/ ( - >€217r§x3d€
(ks \ kD] + kb + ’“w esl2 kb + kobly + Ees)?

An 2 1
<c(in ,
= ( ) |]€1b + k2bn k3)\n |3

we deduce, according to (4.13), that we have :

A\ 2 1 2
12 ey < ORE (> )
L2(T'(£)) 3 Z Z(R3) |k'1b7f + k2b3 + %63|3

(k1,k2)#(0,0) “k3#0

<oy 1
— n\2 2 2\2°
(Ri) 2o 2 +13)

This shows that

C
F2|| 2 < —
1E |22 eeny) < 7k
with C independent of n. With (4.14), we get :
C
I 22 (ren)) < T (4.15)
3

the constant C' not depending on n. Now, since F! is harmonic in I'(¢,), standard elliptic
regularity results show that F] is necessarily bounded in L>(I'(¢,)). Since F,(0) = 0, this

also shows that Cy, — Clap ap) + % is bounded, and we finally get (4.8). ¢
1 2 nvn

Next, looking closely at F, we notice that its L>*(I'(¢,) N {|z3] < R}) norm satisfies

sin(m 2%23)
(4.15), for any fixed R > 0. Indeed, if 23| < R, |22 — M| < L 5o that (4.14) then
3

T3 (Ry)3>
becomes :

C

F ) < .
|| ||L2 = (R§)2
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Hence, with the help of (4.10),the last bound we have obtained may be improved :

— TRy

Cp—Crt—"8 4.16
3R RN, (4.16)

This implies the following :
Proposition 4.5 As n goes to infinity, we have, for any fixed R > 0 :
|1Gn — Gooll Lo (r(en)nfjesl<ry) —> 0 as  n — oo.

Proof : From the above remark (4.16), we only need to improve (4.11), and show that this
quantity is not only bounded, but goes to zero as n goes to infinity when |z3| is bounded.
In order to do so, we only need to show it for the Fourier series, since the term of the form
oy, |z3] does converge. And the Fourier series may be dealt with in the same way as F)|. This
completes the proof. ¢

Remark 4.6 In all the above bounds, we have omitted for simplicity the factor since

1
it is bounded from above. Rigorously, it should appear in all bounds, so that in fact (4.8)
may very well read :

|373|

- < (C(1
Gal) = Goe(0)] < CC1 + e

) (4.17)
with C independent of n. This will be useful in the sequel.

4.2.2 The polymer case

We use here the same notation as in Section 4.2.1, except that only R} is bounded. In other
words, we have :

(1) a} — a1 # 0 as n goes to infinity,
(2) R} — oo as n goes to infinity,
(3) Ry — oo as n goes to infinity.
Changing coordinates if necessary, we may assume that af is collinear to e, for all n € N.

Next, we may rotate the system of coordinates so that the angle between a} and e; is lower

than %. Hence, from (2.3), the angle between af and e, is necessarily bounded, and there

exists a constant C' independent of n such that :
lay - €| > CRY, and |a} - el > CRY.

Here the lattice /., is the one generated by a; = Rje3, and G is thus defined by (3.8).
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Proposition 4.7 There exists a constant C' independent of n such that for all x in I'(¢,),
we have :

|G () — Goo(z)] < C<1+%+log(2+ |a;'|)> (4.18)

2

Moreover, G,, — G goes to 0 in L°(T(¢,) N {r < R}), for any R > 0.

Proof : Writing G, through its Fourier coefficients, we argue exactly as in the proof of
Proposition 4.4 concerning the Fourier series F,. The argument carries through this case.
Hence, we only study the residual term, that is,

o2im (k2b} +h3b%)-

+
o [E2b3 + Esb P

1
An(x) _ Cn — Can + ¢ pnpnpn
' 7w, RY RS RS (k2,k§;;(0,

2
o log |#'| 4+ G (2) — Goo(w),

1
where Gn is the polymer potential associated to a lattice of basis (af'), and Cy,» the corre-

sponding constant appearing in (3.8). We use estimates (ii)-(iii) of Proposition 3.1 to deal
with Gon(2) — Goo(), finding :

‘Garf(a;) — Gool@)| < O +log(2+|2'))), (4.19)

in I'(¢,). Next, we need a bound on the remaining term. Unfortunately, we do not have,
as in the preceding case, an exact expression of this Fourier series. But we know that it
depends only on 2/ = (x1, z3), since a' is collinear to e3, and we may compute its Laplacian
in the plane {z3 =0} :

€2i7r(k2bg+k3bg‘)-x 1

1
_A< n RN Z n n2>:47r(60_ n n)’
7TR1 RQ (kg,kg);ﬁ(o,o) |k2b2 + k3 b3 | Rl RQ

and this function is periodic. Its periodic cell is defined by the basis (ay,@}) reciprocal to
(b, b%). It is thus clear that @} and @} are respectively the projection of a} and a% on the
plane {x3 = 0}, so that their norms R} and R} go to infinity as n goes to infinity. Two cases
are then possible :

Case 1 : Rg/fzg is bounded. We reduce this case to R} = Ng = R", the general case
being a rather technical adaptation of this one. We then have, denoting by B,,(z") the above

function,

B.(x) = B(o),

where B is the function B,, with R" = 1. Hence, we have, denoting by T, the set {ta} +
uay, —3<tu<i}:
|7'|

||Bn + 210gﬁ||Loo(f‘n) = ||B + 210g |x,|||L°°(#f‘n) < C’
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C being a constant independent of n. This gives a bound on A, (z) — C,, + Cyn» — log(R") in
L*®(I'(£,)), hence on G, — Gop — €, + Cyn — log(R"). Pointing out that G, — G cancels at
0, we thus deduce a bound on —C), + Cy» — log(R"), and conclude the proof of (4.18).

If now R” #* R3, we may re-scale by R” in the same way as above, and thus get a periodic
Green function on a periodic cell of the form —F The above bounds are then still valid,

since the domain is bounded independently of n.

Case 2 : R}/R? is unbounded. We may then assume that this quotient goes to infinity.
Re-scaling by RY as in Case 1, we then have a problem of the same kind as Proposition 4.5’s,
except that it is in two dimensions and not in three. Nevertheless, it may be dealt with in
the same way. As pointed out in Remark 4.6, we then get the right coefficient with |z].
This concludes the proof of (4.18).

The L convergence is then proved by pointing out that the same remarks as in Propo-
sition 4.5’s proof are available. ¢

Remark 4.8 Here again, we have omitted the coefficient - = n front of all terms, but it will
1
be useful to keep in mind that it is implicit in the constant C of (4.18).

4.2.3 The atomic case

We now consider the case when all radii go to infinity :
Ry > R} > R} — oo.

We assume (changing coordinates if necessary, here again) that a} is collinear to ey, and that
the angle between a3 and ey is not larger than §. This also implies that the angle between

ay and ez is bounded, and that :
lay - eo] > CRY, and |ay -e3] > CRj.
In this case, we have the following :

Proposition 4.9 There exists a constant C' independent of n such that :

log(2 + |2/ T
g2+ 1) I

|Gn(z) — B 7 g)' (4.20)

||<C(

|z

Moreover, G,, — |71| converges to 0 in L2 (R3).

Proof :We ﬁrst assume that —% is bounded. In this case, we may assume that this ratio,

together with £ converge. Thus, denoting by G, the function

R"’
Gn(z) = R!G,(R}z), (4.21)

a direct computation shows that G, is the periodic potential associated to the lattice of

basis (Z,}L, ;i, R") Next, we notice that G, | has its Laplacian identically equal to 1 in
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R%F(én) and that G,, is bounded in L*(T'(¢,)) (from its Fourier coefficients), independently

of n, so that we have :
— 1
‘ G

This implies :
<

1<
o) BU

and (4.20) follows, as well as the L{S, convergence.

We next consider the possibility :

n n

3 . 2
— — 00, with —= bounded.

Ry Ry

Here again, we rescale the potential G, with respect to R}, according to (4.21), and find
ourselves in the case of Proposition 4.4, and using the same tricks, we show (4.8) for G,, and
R!'G(R}z). Next, we notice that, from the same reasons as in the first case,

1 C
R'G(Rlz) — —| < —
1 ( 133) |$| — R?
in I'(¢,). Therefore :
1 1 |.Z'3|
|Gn(2) = =] < Clop + o)
|| Ry RYR;
Here again, this shows (4.20) as well as the L;° convergence.
The last case is the following :
—i — 00, and —i — 0
1 1

Here again, we rescale and find the polymer case. Adapting the corresponding proof, our
Proposition is proved. ¢

Remark 4.10 Formally, the above estimates assert that the convergence of G, to G s
a good one if it is isotropic. When it is not, the convergence defect behaves like the corre-
sponding intermediate potential. For example, in the case of the convergence towards |?1|, it
G, — ﬁ converges to 0 in L= (I'(¢,)) if R} = Ry = R}, whereas if R} = R} < R}, a residual
term appears, which has the same behavior as the thin film potential associated to the basis

(a, a3).

4.3 Convergence of the energy

From the bounds we have shown in the preceding sections, we are now in position to show
the following :
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n

Theorem 4.11 Let {,, be a sequence of proper lattices, with basis (al') satisfying conclusions

of Theorem 2.4. Assume in addition that there exists an Ry such that
Vn >0, Vi=1,2,3, R!=|a}|> Ry.
Then we have :

(i) If R} — oo and a! — a;, i # 3, as n — oo, then the energy E({,) converges to
E(ly), where Ly is the periodic lattice of rank 2 generated by (ay, as),

(i1) If Ry — 0o as n — oo, and if a} converges to some ay # 0, then E({y,) converges to
the energy £(ly) of the polymer defined by ay,

(iii) If R? — oo as n — oo, then E({,) converges to the atomic energy 115"V .

Proof : We first prove (i) : in this case, we may assume (as has been done in the proof of
Proposition 4.4) that a} and a} belong to the plane {z3 = 0}. We first show that :

limsup&(4,) < E(lw)- (4.22)

n—00

For this purpose, we fix a p > 0, such that \/p € C*(R?), \/p has compact support with
respect to x3, and is {-periodic, and has total mass one over I'({). We denote by M,, the
unique matrix satisfying :

Mpa! =a;, ©=1,2, and M,e3 = e;.

It is clear that M, converges to the identity matrix as n goes to infinity. Moreover, if n is
large enough to ensure that Suppp C {|zs| < R}, p, = |det M, |p o M, is a test-function
for the variational problem I, defining £(¢,). Hence :

BT () 2 €(6y).
We then study separately the four terms appearing in E} 7" (py).

Considering the term fF(ln) IV./p, |2, we notice that V/p = | det My|Y2M, -V (,/p)oM,,
so that, changing variables in this term, we have :

2
[owval=[ vl
L(n) I'(foo)

which converges to fr(z ) |V\/ﬁ|2 as n goes to infinity. The second term may be dealt with
exactly in the same way, and we then turn to the electrostatic terms :

/ pnGn = / pGn o Mn_l
['(£n) ['(foo)

= / p(GROMnl—GOOOMnI)+/ pGoo o M, L.
F(eoo) F(ZOO)
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Since [, ) pGoc © Myt = [1, ) [det My|(p o My)Goo, the fact that Goo is bounded in
L2 .(T(¢,)) together with the convergence of p, towards p in L*(I'({s)) and the fact that p

loc
has compact support with respect to x3, shows that

[ pGaon— [ e
I'fo) I'(foo)

On the other hand, we have, choosing R so that Suppp C {|z3] < R} :
/F(l )‘p(Gn oM, ' —Goo M) < |(Gr — Goo) © My, || oo (0t ) { s < RY)

< Gn = Goollzos(r(en)nflzal<ry)
which vanishes as n — oo from Proposition 4.5. Since the remaining term of the energy
follows then exactly in the same way, we have proved that

lim sup€(6,) < BL (p).
n—o00
This is valid for all £,-periodic p such that \/p € C* (R?) and Suppp is compact with respect
to x3. Since this subspace of H, ({) is dense, we conclude that (4.22) holds.

per

The next step consists in showing :

liminf £ (6,) > & (L) (4.23)

n—00

We denote by p, the unique solution of problem (1.1) defining £(¢,), and by u,, = \/p, its
square root. From (4.22), we know that the energy E/""(p,) is bounded. Moreover, if we
fix an R > 2 and choose n large enough to have I'(¢,) N {|z3| > R} # (), we have :

L(n) L(n)

N{|zs|>R}

We infer from Propositions 4.3 and 4.4 :

3/2
1 1
£y §C<—+Z,—>
o <| P4 |x—k|4> P T 2w — jRyesP

JEZ

in I'(¢,) N {|z3| > R}, hence :

Ry /1 1 3/2
PnlGrn — Goo| < ||Gr — GoollLoo(0(e,)n{|2s|< R +C/ t(— + Y —— > dt.
/%) (P ()N { |z <R}) L e ;#0: 2y R

Using the convergence result of Proposition 4.5, we thus have :

B /1 1\*?
/ Pn|Gn — Goo| < 0(1)+C/ t( +—n> dt
I(tn) R tR

RY 1 2
< 1 [ el e —
< o+ [ 1 + )

c, c
< ol
< o)+ Ht g

3/2
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where o(1) denotes a function which goes to 0 as n goes to infinity. Letting n, then R, go to
infinity, this shows that :

/ pu(Gr — Gog) — 0. (4.24)
T'(¢n)

Repeating exactly the same kind of argument, one easily shows :
[ m@n)(Gale ) = Gucla = y))dady — 0. (4.29)
T(6,) JT (L)

Now, it is not difficult, from estimate (4.5) of Proposition 4.3 together with Proposition
3.6-(ii)-(iii), to show that [, ) paGoc and [r, 1 [y Pr(@)Pn(y)Goo(w —y)dzdy are bounded
independently of n. With the fact that Eg;FW(pn) is bounded, this implies that u,, is bounded

in H} .(R?). Extracting a subsequence if necessary, u,, then converges weakly to some VP =
u € H. (R?). Then, letting Q@ CC I'({s), we have, taking n large enough to have Q C T'(¢,,),
/ Vual / Vual,
N Q
so that

liminf/ |Vu,|* > liminf/ (Vu,|? > / |Vul?.

This is valid for any 2 CC I'(/), so that :

n—00

liminf/ |Vun|22/ Vul?. (4.26)
I'(€n) (b))

With a slight adaptation of this argument, we have :

liminf/ P33 Z/ p°3. (4.27)
ne Jr(tn) [(foo)

2

The weak convergence in H} -~

loc implies a strong one in L
so that, with estimate (4.5), it is easy to show that :

/ PnGo — / PG oo, (4.28)
I'(€n) I'(fs0)

with a similar result concerning the convolution term. Hence, collecting (4.24), (4.25),
(4.26), (4.27) and (4.28), and pointing out that the total mass of p, is conserved from the
L? . convergence and estimate (4.5), we prove (4.23). This concludes the proof of (i).

The proofs of (ii) and (iii) follow exactly the same pattern : we show (4.22), by the very
same argument. Showing (4.23) in cases (ii)-(iii) requires sharper estimates, precisely those

shown in Propositions 4.7 and 4.9. ¢

up to extracting a subsequence,
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5 Compactness of the minimizing sequences
We show in this Section our main result, namely Theorem 1.1, that we recall here :

Theorem 5.1 Let £ be the functional defined by (1.1), and denote by T the minimization
problem (1.6), that is :

T= inf{s(@, le Lg(R3)}.

Then any minimizing sequence of I is relatively compact in L3(R?), so that this problem has
at least one solution.

In order to show this compactness result, we consider a minimizing sequence /¢,, and
intend to prove that there exists a basis (a}) of ¢, satisfying (2.3), together with :

(a) The sequences R! = |a}| are bounded from below : IRy > 0, s.t Vi = 1,2,3, Vn € N,
RY > Ry,

(b) The sequences R are bounded from above, i.e AR; > 0, s.t Vi = 1,2,3, Vn € N,
Rr < R,.

We start with the proof of assertion (a).

5.1 Bound from below
Proposition 5.2 Let { € L3(R?), and (a;)i=123 one of its basis. Denote by R; = |a;| the

associated radit, and assume that Ry < Ry < R3. Then we have the following :

() > 4%1 +a, (5.1)

the constant a € R being independent of £.

Proof : We go back to the thermodynamic limit process (see |9, 8]), and recall that taking
= {Z?Zl kiai, k; € {—n,—m+1,...,n,n+ 1}}, we have :

I/I\“FW
El) = nh—>I£10 TR (5.2)

where [A,| = (2n + 2)? is the cardinal of A,, and I{"" is the TFW energy defined by :

1 1
Iffw = inf{E{fW(p) + 3 Z ﬁ,
k#iehn J

p>0, JpeH\RY), /Rgp=(2n+2>3},

with

EX"W(p) = / IV/p|* + / /3_/«;%/RS |£(_x)k|dx+%/R3/R3%dxdy.



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 33

In particular, we may bound this energy from below by the corresponding TF energy :

1 p(@)p(y)
pTEW > gTr _/ 5/3 _ / plo) dr + _/ / ———=dxdy,
A (P) 2 By, (0) R3 ’ Z rs |2 — k| 2 Jrs Jrs |z =y ’

keA

so that
v > e
ITT being defined by

1 1
I = inf{Eff(p) +5 > T P20, pe L' I8 (R?), / p=(2n+ 2)3}.
ktgeAn |k —j R3
We now invoke Teller’s Lemma [14], which we recall here :
Lemma 5.3 (Teller) Let A = A, U Ay be a finite subset of R?, with (Aq, \y) a partition of
A. Then we have :
L7 > I+ If7

Separating A,, into 4(n + 1) sets of two points which distance is equal to R;, we then have :
L >an+ 1100,
with Ag = {0,a,}. Hence, it is sufficient to prove (5.1) for If i.e :

E{fy(p) > a, VpeL'nL? /Rg p=2, (5.3)
with a independent of a;. In order to do so, we notice that ﬁ € L?O/f(R:"), and thus :

1 2/5 5/3 G 2/5 5/3 G
P < p+ (8) p <2+ (8m) p :
r® |Z] lz|>1 lz|<1 R3

This implies that :

3/5
B0z [ -t ( [ 00) iz

for some universal constant a € R. This implies (5.3), and thus concludes the proof. ¢

At this stage, we would like to make some comment on the Thomas-Fermi case (see
[13, 14]). It is worth noticing that we may use directly Teller’s Lemma on the TF energy, in
order to obtain (since the analogous result to (5.2) is valid in the TF setting, see [14]), that

5”w:mlg>1”>ﬂF
n—00 |An| -2 Ao at >

where ]Kf is the TF energy of the diatomic molecule with nuclei at positions 0 and a;, and
I'F is the atomic TF energy (defined exactly as in (3.1)-(3.2), but without the gradient
term). Since the same convergence results as those of Theorem 4.11 may be shown in the
TF setting, we have the following :
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Theorem 5.4 In the Thomas-Fermi case, problem (1.6) has no solution. Moreover, for any
0 € L3(R3), E(0) > ILFW.

A direct consequence of Proposition 5.2 is the following :

Proposition 5.5 For any minimizing sequence (£,),en of problem (1.6), any sequence of
basis (al') of ¢, satisfy :
IRy >0, |af| > Ry.

5.2 Bound from above

We now turn to the proof of (b). We assume that there exists an unbounded minimizing
sequence (€,)nen, and try to reach a contradiction. For that purpose, we denote by (al') a
basis of ¢,, given by Theorem 2.4, by R! = |a!'| the corresponding radii, and notice that, up
to extracting a subsequence, only three cases may occur :

(1) R} goes to infinity as n goes to infinity,
(2) ab converges to some a; and R} goes to infinity as n goes to infinity,

(3) (at,al) converges to some (ai, az) and RY goes to infinity as n goes to infinity.

From Theorem 4.11, we know that respectively in case (1), (2), (3), £(¢,) converges to
the atomic energy, the polymer energy associated to a;, or the thin film energy associated
to (a1, as). It is thus sufficient to prove that in all three cases, there exists a proper lattice
having a lower energy than those limits. This is our aim in the following subsections.

5.2.1 The thin film case

We show here that for any ¢ € £L5(R3), £(f) cannot be a minimum of £, therefore excluding
occurrence (3).

Proposition 5.6 For any { € Lo(R?), there exists an y € L3(R?) such that :

Proof : We fix an ¢ € Ly(R?), of basis (a;,az), that we may assume to be in the plane
{x3 = 0}. For any R > 0, we define ( € L3(R?) the proper lattice of basis (ay, as, Re3).
We intend to show the following :

E(lg) <EM) — Ce VIR L o(eVIRY a5 R — oo, (5.4)

with C' > 0, and where 6, > 0 is the Lagrange multiplier of problem (3.36). For this
purpose, we denote by p the unique electronic density associated to the lattice ¢, and set

PR = #. Since p is even with respect to w3, pgr is £r-periodic, thus is a test function
LL(C(tR))
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for the variational problem defining £(¢g). Denoting by e = fr(e)m{\x3|>R} p, we have, from

Proposition 3.8,

la; A a2|e,\/glR _ ae"/g‘fR,

2V/0,

We now study each terms of the energy functional :

ER ~ Qy as R — oo.

/ IV Bl < LIV S (1) / VAP toler).  (55)
C'(¢r) r'(€)

Likewise,

5
/ 2 < (14 2ep) / 13 4 o(ep). (5.6)
I'(tr) 3 Jre

We then turn to the electrostatic terms : setting

EZ;FW’el(PR) = / pPrGep + / / r(Y)G (v — y)dzdy,
I'(¢r) I'(¢r) /T (Lr)
and denoting by hgr the function Gy — Gy, we have :
EZ;FW’el(PR) = —/ prGe+ = / / (y)Ge(x — y)dzdy
KR ZR KR

n / [ i / » / o @)yt = y)dady +ofer)

Hence, developing in the same fashion as above :

EI™pr) = —(1+n) / PG+ (5 +2x) / . /. o PI)Gle — iy

+/ PRhR——/ / pr(x)pr(Y)hr(z — y)dzdy + o(e k).
T(tr) r(tr) JT(tR)

We are now going to show that :

_/( %/ZR /zR (y)Ge(x —y)dedy <
_/r PGt / / y)Ge(a = y)dedy (5.7)

1
/ prha— / / pr(@)pr()ha(e — y)dedy < o(cr) (5.8)
I'(¢g) I(¢r) JT(¢R)

and
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and write the difference of these two expressions as :

)

/ pGy + / / (y)Ge(x — y)dzdy
F(ER) ZR ZR

/ pGy — / / Y)Go(z — y)dady
()

- / p(Ge - —Gz *r() (Pres) + p))-
(O\I(£r)

We begin with (5.7),
_|_

Hence, proving that G, — 1G (o) (pireg) + p) < 0 on T'(¢) \ T'(¢g), for R sufficiently large,
will conclude the proof of (5 7). For this purpose, we use Proposition 3.6 and write :

—alzs| + 5 — H<Gl( )<—a|x3|+ﬁ+%

in F(ﬁ) where o, 3 and v are positive constants independent of R. From this and the fact
that £(p+ p‘r((R)) has total mass 1 — Z over I'(£), we deduce that :

(5.9)

emy 7
2 Jal =

with a constant 7' > 0 independent of R. This, together with (5.9), proves that

IGZ*F ) (Pt pree)) < —a(l- —)IJJ3|+ﬁ(1——)+l

G — —Ge *r() (Pren) +p) < (1 - 7)(5 — alas]) <0
whenever |z3| is sufficiently large. This proves our claim, and thus completes the proof of

(5.7).
We now turn to (5.8), and set ¢r = Gy — Gy %) pr- We have :

—A¢R = 477'((50 - PR)

Since hpg cancels at 0, we have :

-[ o+ 5/ » | o o pulr)puw) it — )y
S hR(x_w(pR(x)—ao(x)) (o)l ) dacy
— / - / BRICE ( A (s )) (—A¢R(y))dxdy.

We now integrate by parts this expression, and find :

1
_/ prfn ‘/ / pr()pr(y)hn(x — y)dedy
(¢g) r(ex) Jr(eR)
8¢R 8¢R rgt
- he(z — y)de'dy'.
/(9F (Lr) /6F (¢r) an n( ) R( y) Y
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From the /-periodicity of ¢g, this boundary integral reduces to an integral over the set
O (Cg) N{|zs] = £}. And using the fact that ¢ and hp are even with respect to xz, we
thus have :

1
—/ prhr + 5/ / pr(x)pr(y)hr(z — y)dzdy
INCZS) I'(€r) Y I'(LR)

= / _/ O30 (7)030r(y)hr(r — y)dz'dy’
{ws=L}T(0) J {ys=EF}n

T(0)

_/ —/ _ 030r()030r(y)hr(z — y)da'dy'.
{z3=F}N0(0) / {ys=—F}NI(0)

In order to bound this term, we write :

g ~
br=0+ by *Ge— 7= —p*Ge =0+ on,

I—SRP‘F( — &R

where the convolution products are over I'(¢), and ¢ = G, — p x Gy. We are going to prove
(5.8) for all those terms. The second one may be dealt with as follows : we first notice that

R
lpx Gy(xs = i§)| < CR, (5.10)
and
R R
|(Pireenye * Ge) (w3 = £5)| = PY)Gela —y)dy|(ws = £5)
{lys|> 23T (LR)
p(y
< / ) dy+/ p(y)|z —yldy
{lus|> Eynr(er) 1T = Y {lys|> B} (¢R)
< CRep. (5.11)
(5.10) and (5.11) imply that :
R R

On the other hand, | — A¢g(xs = +8)] <|pr(zs = ££)| < Ceg, so that we have :
~ R
|V¢R(.Z'3 = i§)| < ORSR.

Since we also know that |[V¢(zs = ££)| < Ce™F, for some a > 0 independent of R, (5.8) is
proved for ¢ and for the crossing term. Thus, the proof of (5.8) amounts to show :

/ / 030(2)030(y) hr(v — y)da'dy’
{z3=E}N0(0) J {ys=E}N1(¢)

—/ / 030(2)BP(y)hg(z — y)da'dy’ > o(eg). (5.13)
{zs=F1N0(8) J {ys=—F}NC(0)
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To prove this, we expand hg as a Fourier series with respect to z’. Using (3.38) and (4.7),
one easily computes :

€
hi(x) = Hg(xs) —co Y 7 D e Ml kRl (5.14)

keex\{0} k3€Z\{0}

with |Hg(t)] < C(1 + |t]), C being independent of R, and ¢, > 0. Here we have used the

fact that .
6217rx3§

——d
r |k|? + &2

and the corresponding periodic equality, that is :

21
€= e*%lkstI,
||

217r

Z ﬁ — Z e [kI2m|zs—ks R
k z kP + 7 fecz
We then insert (5.14) into the left-hand side of (5.13), which we denote by Ag, and find :
| ] 20@0sw Hales - wdsdy
T3=% YYs=35

_/ R/ R 030(x)030(y) Hr(z3 — y3)da'dy’
r3=% Jys=—=%
TG Z (agqﬁ(k; g)agqﬁ(—k, g) Z e—?wlkk3R>

ketx k3#0
oioe Brvaro(—p. B 2|1 —ks| R
+CZZ 3¢( ) 2) 3¢( ) 2)2(6 ) )
kel k3#0

where the ~ -transform is defined by (3.42). We next use estimate (3.41)of Proposition 3.8,
with € < V8, to show that the first two integrals of the above sum may be bounded by
O(R2e2V0=9R) — 5(c), and that up to terms of the same order, the sum reduces to a

sum over K = ¢*N {0 < n|k| < v0,}. We thus have, y; being defined in (3.41) :

Ap = —¢ Z Z fi e~ 2mRIR (g=2mlkllkal R o=2mlklL=kalR) | o )
keK k3#0
= —or Y e (14 TR oep).
keK

Then, noticing that since 03¢ is a real-valued function, we infer that p_, = 7., so that we
may write the above sum as :

AR = ¢ Z |Mk|2672w|k\R(_ef27r\k|R + 1) >0,
keK

for R large enough, since K does not depend on R. This proves (5.13), hence (5.8).
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We now collect (5.5), (5.6), (5.7) and (5.8), and find :

5
ELY (on) < E{FW(HsR(/ I /W)pw

_/F Ggp+/ / y)Go(z — )dxdy) + o(eg).

Integrating the Euler-Lagrange equation of the minimization problem defining £(¢), we find

that :
/ IVol* + / / G£P+/ / y)Gi(x — y)dzdy = —0y,
INY4

so that we infer that :
8(63) < (‘:(Z) — 6R95 + O(ER).

This concludes the proof. ¢

5.2.2 The polymer case

We now turn to case (2) :
Proposition 5.7 For any { € L1(R?), there exists {y € L3(R?) such that :

Proof : We use exactly the same trick as for Proposition 5.6, defining ¢; as the lattice of
basis (Rey, Res, a), where a is the basis of ¢, and is collinear to e3 (this is always possible to
do by change of coordinates). We intend to show estimate (5.4) in this case. We define pg
and £ exactly in the same way, so that (5.5) and (5.6) follow immediately. (Note that from
Proposition 3.3, ¢ satisfies exactly the same estimate as in the thin film case.)

A straightforward adaptation of (5.7)’s proof shows that this estimate also holds (just
replace |x3| by log|2'|). To prove (5.8), the same ¢g-trick works, and we are here again
reduced to show bounds on integrals over the set {|z1| = £} U {|z2] = £}. Here again, the
same type of estimates are available, namely (3.8), (4.7) and (3.35), so that the above proof
can be easily adapted, replacing the function e~ by W, (') defined in (3.23) ¢

5.2.3 The atomic case
We deal here with case (3) :

Proposition 5.8 There exists an ¢ € L3(R?) satisfying the following :

() < ILFW
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Proof : We follow step by step the proof of Proposition 5.6, with ¢z = RZ?, and find out
that difficulties might only occur in the electrostatic terms. We introduce here again the
function ¢r = ﬁ — ﬁ * PR|r(eg), and using the same tricks, conclude the proof. Note that
here, the proof is simpler since the eigenmodes appearing in the polymer and thin film case
with coefficients j; vanish, so that the proof of (5.8) is simplified. ¢

This concludes the proof of Theorem 1.1, since, considering a minimizing sequence ¢,, of
problem (1.6), Proposition 5.5 shows that there exists an Ry > 0 such that for any basis
(al)i=123 of £,, we have :

lal'| > Ry, Vie{1,2,3},Vn e N.

On the other hand, Theorem 4.11 together with Propositions 5.6, 5.7 and 5.8, show that
there exists a sequence of basis of £, which is bounded in R?, and hence is relatively compact.
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