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tWe study here the problem of geometry optimization for a 
rystal in the TFWsolid-state setting, i.e the problem of minimizing the TFW energy with respe
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lei. We show the existen
e of su
h aminimum, and use for that purpose the TFW models of polymers and thin �lms de�nedin a previous work [5℄.
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1 INTRODUCTION 21 Introdu
tionWe are interested here in the Thomas-Fermi-Von Weizsä
ker (TFW) theory of solids, andmore pre
isely in the geometry optimization problem, whi
h may be stated in the followingway : given the energy fun
tional whi
h to a periodi
 latti
e asso
iates its TFW energy(de�ned in [9℄), does there exist a periodi
 latti
e minimizing this energy ?Let ` be a proper periodi
 latti
e of R3, that is, a subgroup of (R3;+) generated bythree linearly independent ve
tors a; b, and 
. We de�ne the TFW energy of this latti
e withrespe
t to basis (a; b; 
), i.e the TFW energy of a neutral 
rystal of latti
e `, with ea
h nu
leiof 
harge +1 :E(`) = inf�ETFW(a;b;
)(�); � � 0; p� 2 H1per(`); Z�(a;b;
) � = 1�; (1.1)where we used the following notation :�(a;b;
) = �ta + sb + r
; t; r; s 2 [�12 ; 12[�; (1.2)H1per(`) = �f 2 H1lo
(R3); f is `� periodi
�; (1.3)and, skipping here the subs
ript (a; b; 
) for �(a;b;
) = � :ETFW(a;b;
)(�) = Z� jrp�j2 + Z� �5=3 � Z�G`� + Z� Z� �(x)�(y)G`(x� y)dxdy; (1.4)the potential G` being the `-periodi
 solution of :( ��G` = 4��(Pk2` Æk)� 1j�(a;b;
)j�;limx!0�G`(x)� 1jxj� = 0: (1.5)A preliminary observation is that these notations do not depend on the 
hoi
e of thebasis (a; b; 
). This is stated in Proposition 2.1 below : equations (1.1), (1.4) and (1.5) donot depend on the 
hoi
e of a basis of `, but only on `.We now make pre
ise the problem we are studying : denoting by L3(R3) the set of properperiodi
 latti
es of R3, does the problemI = inf�E(`); ` 2 L3(R3)� (1.6)have a solution ?Our main result is :



1 INTRODUCTION 3Theorem 1.1 Any minimizing sequen
e of problem (1.6) is relatively 
ompa
t. Therefore,this problem has at least one solution.In order to show this result, we begin with re
alling in Se
tion 3 the de�nition and basi
properties of what we 
all degenerate 
ases of the above solid state theory (1.1)-(1.4), namelythe atomi
 model (3.1)-(3.2), and the linear polymer (3.6)-(3.8) and thin �lm (3.36)-(3.38)models. We refer to [3℄ and [7℄ for a study of the atomi
 model, and to [5℄ for a study ofpolymer and thin �lm models. Moreover, we show in Se
tion 3 some further results similarto those of [7℄ : in parti
ular we show the positiveness of the asso
iated Lagrange multiplier,and give sharp estimates on the de
ay at in�nity of the density. These estimates will be of
ru
ial importan
e in the sequel.In Se
tion 4, we investigate the behavior of the minimizing sequen
es of problem (1.6).Up to rather te
hni
al 
ompli
ations that will be dealt with below but that we prefer to skipin this simpli�ed presentation, it is su�
ient to 
onsider minimizing sequen
es of the form :`n = �iRn1a+ jRn2 b + kRn3 
; i; j; k 2 Z�; (1.7)with 0 < Rn1 � Rn2 � Rn3 ; and (a; b; 
) is a �xed basis su
h that jaj = jbj = j
j = 1.Hen
e, showing Theorem 1.1 amounts to prove that Rni is bounded both from above andaway from 0, for all i = 1; 2; 3. For this purpose, we show the following proposition :Proposition 1.2(i) If Rn1 goes to in�nity as n goes to in�nity, then the energy E(`n) 
onverges to the atomi
TFW energy.(ii) If Rn1 
onverges to some R1 > 0, and Rn2 goes to in�nity as n goes to in�nity, thenE(`n) 
onverges to the TFW energy of a linear polymer de�ned by R1a.(iii) If (Rn1 ; Rn2 ) goes to (R1; R2), with R1; R2 > 0, and Rn3 goes to in�nity as n goes toin�nity, then E(`n) 
onverges to the TFW energy of a thin �lm de�ned by (R1a; R2b).On
e this proposition is proved, we show with the help of the results of Se
tion 3 thatfor any of the atomi
, polymer and solid �lm TFW energies, there exists a proper latti
ehaving stri
tly lower energy than those limits. This is done in Se
tion 5, through the fa
tthat the limits of Proposition 1.2 are asymptoti
ally approa
hed from below. Note that thepositiveness of the Lagrange multiplier plays a key-role here. We also show in this Se
tion,in order to 
omplete the proof of Theorem 1.1, that the radii Rni are bounded away from 0,with the help of Teller's Lemma [13℄. As a by-produ
t of these proofs, we �nally prove thatin TF theory, any proper latti
e has greater energy than the atomi
 TF energy, whi
h showsthat the analogue of problem (1.6) in the TF setting has no solution. This 
orroborates thefa
t that our whole argument in the TFW 
ase is based on the positiveness of the Lagrangemultiplier in the degenerate problems (atomi
, polymer and solid �lm 
ases). Now, one may
he
k that in the atomi
 TF model, the Lagrange multiplier is 0.



2 NOTATION AND REPRESENTATION OF LATTICES 4Remark 1.3 Let us point out that here, we have used a di�erent normalization than in [13℄and [8, 9℄ for the potential G`. This is due to the fa
t that the 
onstant M appearing in[13℄ and [8, 9℄ depends in fa
t on `. Our renormalization (1.5) 
an
els M , or more pre
iselyin
ludes it in the expression of G`. This allows us to write E(`) as the exa
t limit of theenergy per nu
lei, as may be seen in (5.2).Let us mention that the results detailed here have been announ
ed in [6℄.2 Notation and representation of latti
esThroughout this paper, we will use the following notation :De�nition 2.1(i) A subset ` of R3 will be said to be a proper latti
e, or a latti
e of dimension 3 (or of rank3), if there exists three independent ve
tors (a; b; 
) su
h that ` = fia+jb+k
; i; j; k 2Zg: We denote by L3(R3) the set of proper latti
es of R3.(ii) A subset of R3 of the form fia + jb; i; j 2 Zg, with a; b linearly independent willbe 
alled a latti
e of dimension 2. The set of 2-dimensional latti
es will be denoted byL2(R3).(iii) A subset ` of R3 will be said to be a latti
e of dimension 1 if there exists a 2 R3 n f0gsu
h that ` = fia; i 2 Zg. We denote by L1(R3) the set of latti
es of dimension 1.Identifying L3(R3) with the quotient group GL3(R)=GL3(Z), we de�ne on L3(R3) atopology. (We denote by GL3(Z) the set of matri
es belonging to GL3(R), having integerentries, and su
h that their inverse have integer entries.) For this topology, L3(R3) is aseparated lo
ally 
ompa
t manifold. After having 
he
ked out that E is well-de�ned onL3(R3), we then study its 
ontinuity on this manifold :Proposition 2.1 The fun
tion E de�ned in (1.1) and the potential de�ned in (1.5) do notdepend on the 
hoi
e of the basis (a; b; 
).Proof : We 
hoose two di�erent basis (a; b; 
) and (a0; b0; 
0) of the same proper latti
e `,and denote respe
tively by E and E 0 the asso
iated energy. We know that there exists M inGL3(Z) su
h that a0 = Ma, b0 = Mb, and 
0 = M
. M being invertible in the set M3(Z) ofinteger 3� 3-matri
es, its determinant must be invertible in Z, so we have :j detM j = 1:This implies in parti
ular that j�(a;b;
)j = j�(a0;b0;
0)j, so that the potential de�ned from (a; b; 
)in (1.5) must be equal to the one de�ned by (a0; b0; 
0). Next, we noti
e that for any `-periodi
fun
tion f , we have : Z�(a;b;
) f = Z�(a0;b0;
0) f:



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 5This implies, for any � � 0 su
h that p� 2 H1per(`) :ETFW(a;b;
)(�) = ETFW(a0 ;b0;
0)(�); (2.1)and Z�(a;b;
) � = Z�(a0;b0;
0) �: (2.2)(2.1) and (2.2) then imply that E = E 0. �Remark 2.2 Note that one easily proves in the same fashion that for any orthogonal matrixM , the energy is un
hanged underM , that is, E(`) = E(M`): This will be useful in the sequel.Note also that up to minor modi�
ations, Proposition 2.1 also holds for polymers andsolid �lms models de�ned in Se
tion 3.Now that the fun
tion E is well-de�ned, we may show that it is 
ontinuous :Proposition 2.3 The fun
tion E is 
ontinuous with respe
t to the quotient topology ofL3(R3).Proof : The only thing to show here is that E is 
ontinuous as a fun
tion de�ned onGL3(R). This is easy to do by 
hanging variables in the expression of ETFW(a;b;
) and noti
ingthat if (a; b; 
) is 
lose enough to (a0; b0; 
0), then the norm kG` � G`0kL1(�(a;b;
)[�(a0;b0;
0)) issmall. (Here we denote by ` and `0 respe
tively the latti
es of basis (a; b; 
) and (a0; b0; 
0).)� We now state a result on the representation of a latti
e by one of its basis, referring to[10℄ for its proof :Theorem 2.4 (Engel, [10℄) For any periodi
 latti
e ` of rank 3, there exists a basis (a; b; 
)of ` su
h that : ( jaj � jbj � j
j;[(a; b);[(a; 
);[(b; 
) 2 [�3 ; �2 ℄; (2.3)where[(x; y) denotes the angle between x and y.We thus see that, a

ording to Proposition 2.1 and Theorem 2.4, we may redu
e anyminimizing sequen
e to the form (1.7), up to the fa
t that (a; b; 
) will not be �xed butsatisfy 
onditions (2.3).3 Preliminary results on the degenerate 
asesWe re
all in this se
tion the de�nitions of what we 
all here the degenerate models, namelythin �lm models, polymers models and atomi
 models in the TFW setting. We refer to [5℄
on
erning pre
isions on the �rst two models, and to [13℄ and [7℄ for the latter. In the thin�lm and polymer 
ases, we also show further results, mainly on the asymptoti
 behavior ofthe density far away from the nu
lei.



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 63.1 TFW theory of atomsWe �rst re
all the de�nition and the main properties of the TFW theory of atoms : theground state of an atom 
onsisting of a point nu
leus of 
harge +1 lo
ated at 0 and of anele
tron is determined by its ele
troni
 density, unique solution of the problem :ITFWat = inf�ETFWat (�); � � 0; p� 2 H1(R3); ZR3 � = 1�; (3.1)where the energy fun
tional ETFWat is de�ned by :ETFWat (�) = ZR3 jrp�j2 + ZR3 �5=3 � ZR3 �jxj + 12 ZR3 ZR3 �(x)�(y)jx� yj dxdy: (3.2)Problem (3.1) has a unique solution �at (see [13℄ or [3℄), whi
h is positive, and whi
hsquare root uat = p�at satis�es the following Euler-Lagrange equation, with a Lagrangemultiplier � = �at > 0 :��uat + 53u7=3at + �� 1jxj + u2at ? 1jxj�uat + �atuat = 0: (3.3)It is shown in [7℄ that the following estimates hold :�(x) � ajxj2 e�2p�jxj; as jxj �! 1; (3.4)where a is a positive 
onstant. The e�e
tive potential � = 1jxj � � ? 1jxj satis�es :�(x) � �a�jxj2 e�2p�jxj; as jxj �! 1: (3.5)3.2 TFW theory of polymersWe now 
onsider the TFW model of polymers, as de�ned in [5℄, and whi
h we re
all here.Considering a periodi
 latti
e of rank 1, that is some ` 2 L1(R3), we may assume with noloss of generality that it is lo
ated on the verti
al axis; that is, ` = ZRe3, with R 2 R�+. Wede�ne its TFW energy as follows :E(`) = ITFWpol (`) = inf�ETFW` (�); � � 0; p� 2 H1per(`);log(2 + jxj)� 2 L1(�(`)); Z�(`) � = 1�; (3.6)



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 7where �(`) = fx 2 R3; x3 2 [�R2 ; R2 [g,H1per(`) = �f 2 H1lo
(R3) \H1(�(`)); f is `� periodi
�;and the energy ETFW` reads :ETFW` (�) = Z�(`) jrp�j2 + Z�(`) �5=3 � Z�(`)G`�+ Z�(`) Z�(`) �(x)�(y)G`(x� y)dxdy; (3.7)the periodi
 potential G` being de�ned by :G`(x) = C` � 2R log jx0j+Xk2`� 1jx� ke3j � 1R Z R2�R2 dtjx� (k + t)e3j�= C` � 2R log jx0j+ 1�R Xk2Znf0g ZR2 e2i�( kRx3+x0��)k2R2 + j�j2 d�; (3.8)the 
onstant C` being 
hosen so that we have limx!0(G`(x)� 1jxj) = 0, and x0 denoting theve
tor (x1; x2). We re
all a few properties of the potential G` shown in [5℄ :Proposition 3.1 We have :(i) G` is smooth on R3 n `,(ii) G`(x) = 1jxj +O(jxj) as x! 0,(iii) G`(x) = � 2R log jx0j+ C` +O( 1jx0j) as jx0j ! 1, uniformly with respe
t to x3.We now show the following :Proposition 3.2 For any R > 0, the problem (3.6) has a unique solution �`. The fun
tionu` = p�` is a solution of :��u` + 53u7=3` + (u2̀ ?�(`) G` �G`)u` + �`u` = 0; (3.9)where ?�(`) denotes the 
onvolution produ
t over the set �(`). Moreover, the Lagrange mul-tiplier �` is positive.Proof : We refer to [5℄ for the proof of the existen
e and uniqueness of �`. Moreover, were
ognize in (3.9) the Euler-Lagrange equation of problem (3.6). We now prove that �` ispositive.Denoting by �` the fun
tion �` = G` � u2̀ ?�` G`;



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 8it is possible to show the following a priori estimates (see [5℄, Proposition 2.5) :0 < u` � C1 + jx0j3=2 ; (3.10)�` � �` � C1 + jx0j2 on fjx0j > 1g: (3.11)We 
laim that �` �! 0 as jx0j ! 1: (3.12)In order prove our 
laim, we denote by G0̀ the potential G` � C`, and noti
e that we have :�` = G0̀ � u2̀ ?�(`) G0̀:Hen
e, we have : �`(x) = Z�(`)(G0̀(x)�G0̀(x� y))u2̀(y)dy;= Z�(`)\fjy0 j<jx0j1=2g(G0̀(x)�G0̀(x� y))u2̀(y)dy+ Z�(`)\fjy0j>jx0j1=2g(G0̀(x)�G0̀(x� y))u2̀(y)dy:If jy0j < jx0j1=2 � jx0j as jx0j ! 1; we have, from Proposition 3.1-(iii) :G0̀(x)�G0̀(x� y) = � 2R�log(jx0j)� log(jx0 � y0j)�+O( 1jx0j):Developing this expression, we �nd :����Z�(`)\fjy0j<jx0j1=2g�G0̀(x)�G0̀(x� y)�u2̀(y)dy���� � Cjx0j1=2 : (3.13)In order to deal with the se
ond term, we use (3.10) and show that :����Z�(`)\fjy0j>jx0j1=2g�G0̀(x)�G0̀(x� y)�u2̀(y)dy���� � C log jx0jjx0j :This, together with (3.13), proves (3.12). Using estimate (3.11), we infer that�` � 0:We assume from now on that we have �` = 0, and try to rea
h a 
ontradi
tion, whi
h will
on
lude the proof.



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 9Sin
e there is no ambiguity here, we skip the subs
ript ` for the rest of the proof. From theuniqueness of u and the de�nition of �, these fun
tions depend on x0 only through jx0j = r.We set �(r) = 1R Z R2�R2 �(r; x3)dx3;and �(r) = 1R Z R2�R2 �(r; x3)dx3:From the de�nition of �, we have : ��00 � 1r�0 = �4��on R+ n f0g. Hen
e, using (3.10) : 0 � (r�0)0 � Cr2 : (3.14)This shows that (r�0)0 is integrable on a neighborhood of +1. We now integrate (3.14) fromr > 0 to 1, and get : r�0(r)� limt!1(t�0(t)) � 0:Denoting by l the limit limt!1(t�0(t)), whi
h exists in virtue of (3.14), and assuming it tobe di�erent from 0, we dedu
e that �0(t) � lt as t goes to in�nity. This implies that � goesto �1 at in�nity, whi
h is a 
ontradi
tion with estimate (3.11). Hen
e, �0 is non-positiveat in�nity, whi
h implies, in view of (3.12), that� � 0 for r � r0: (3.15)It follows that : 9R0 > 0; 8r � R0; 9x3 2 [�R2 ; R2 [; �(r; x3) � 0: (3.16)On the other hand, we have, using Hölder estimates, for any ball B of radius 1, and anyv 2 C2;�(B) for some � > 0, (see [12℄ or [11℄)krvkC0( 12B) � 
�k�vkC0(B) + kvkC0(B)�;where 12B denotes the ball of radius 12 having the same 
enter as B, and 
 being a universal
onstant. Hen
e, from a s
aling argument, we dedu
e that for any ball Ba of radius a > 0,and any v 2 C2;�(Ba),krvkC0( 12Ba) � 
�ak�vkC0(Ba) + 1akvkC0(Ba)�: (3.17)



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 10Applying this inequality to �, we �nd, for any ball Ba of radius a > 0 not 
ontaining 0 :kr�kC0( 12Ba) � 
�ak�kC0(Ba) + 1ak�kC0(Ba)�: (3.18)Using estimate (3.10) and the fa
t that � is periodi
 and bounded as r !1, and applying(3.18) with a = jxj2 , Ba 
entered at x, we thus �nd :jr�j � Cr as r �!1:In parti
ular, we have this bound on j�3�j. Hen
e, from property (3.16), we infer that :�(x) � �CRr as r �!1:Inserting this information in (3.18), and using again (3.16), we �nd that � � � Cr2 for su�-
iently large r, hen
e, again from (3.11) :j�(x)j � Cr2 as r �!1:We now apply again (3.18) on �, but with Ba = Bpr(x); and �nd that � � � Cr5=2 . Hen
e,using (3.11), we have : � Cr5=2 � �(x) � Cr2 as r !1: (3.19)With this result, we are going to show that V = 53u4=3 � � � 1r2 :This estimate, in the spirit of a work by Benguria and Yarur [2℄, will imply that u � Cr ,whi
h 
ontradi
ts (3.10).In view of equations (3.9) and (3.19), and the fa
t that � = 0, we infer that��u + 53u7=3 � �Cr4 ;on the set fr > r0g, for some r0 > 0. Hen
e, denoting by u0 the fun
tion 310r3=2 , one 
omputeseasily : ��(u� u0) + 53(u7=3 � u07=3) � (94 � 53( 310)7=3) 1r7=2 � Cr4 : (3.20)Sin
e 94 � 53( 310)7=3 > 0, it is then 
lear that there exists an r1 > 0 su
h that on the setfr > r1g, v = u� u0 satis�es the following :�v � 53(u7=3 � u07=3):De�ning F = fr > r1g \ fv < 0g, we now show the following assertions :



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 11(a) F is unbounded,(b) F has no bounded 
onne
ted 
omponent stri
tly in
luded in fr > r1g.In order to show (a), we assume that F is bounded, and noti
e that then there exists r2su
h that v � 0 on fr > r2g. Hen
e, on this set,�� � 6�5r3 :This means in parti
ular : (r�0)0 � 6�5r2 :Integrating this inequality from r to +1, one �nds �0 � � 6�5r2 , hen
e� � 6�5r ;whi
h is in 
ontradi
tion with estimate (3.11).We now show (b) by supposing that F has at least one bounded 
onne
ted 
omponent F0su
h that fr = r1g \ F0 = ;. On F0, �v < 0, and v = 0 on �F0. Hen
e from the maximumprin
iple, v must be non-negative on F0, whi
h is 
ontradi
tory.From (a) and (b), we dedu
e that (3.16) holds for �v :9R0 > 0; 8r � R0; 9x3 2 [�R2 ; R2 [; u(r; x3) � 310r3=2 :Now, from the equation satis�ed by u, it is 
learly possible to show, using the same Hölderestimate as for �, that j�3uj � Cr5=2 :This implies that, as r !1, u � 35r3=2 ; and in parti
ular :V = 53u4=3 � � � 1r2 :The �nal step of the proof is merely a 
opy of Benguria and Yarur's proof [2℄, whi
h showsthat if u > 0 satis�es ��u + V u = 0 with V � 1r2 , then u � Cr . This is in 
ontradi
tionwith (3.10). �Proposition 3.3 The unique solution �` of problem (3.6) satis�es the following, where a` >0 depends only on ` : �`(r; x3) � a` e�2p�`rr ; as r �!1: (3.21)



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 12Moreover, setting �` = G` � G` ?�(`) �` the e�e
tive potential, there exists a �nite set of
omplex numbers �k depending only on ` su
h that :�����`(r; x3)� X0<�jkj�Rp�` �ke2i� kRx3W2� jkjR (r)���� � b`;�e�(2p�`��)rpr ; as r �!1; (3.22)for all � > 0. The 
onstant b`;� > 0 depends only on ` and �, and Wa denotes the Yukawapotential of parameter a > 0 in R2, i.e the solution of ��f + a2f = 4�Æ0 in R2 vanishingat in�nity.Proof : We begin with a few properties of the Yukawa potentialWa of R2, with a > 0 : Wais the unique solution vanishing at in�nity of :��Wa + a2Wa = 4�Æ0: (3.23)The potential Wa is spheri
ally symmetri
 and satis�es the di�erential equation :W 00a + 1rW 0a � a2Wa = 0on R+� . Here 0 denotes the radial derivative in R2. For all the following properties, we usethe notation of [1℄, in whi
h one may �nd these results. We refer to [17℄ 
on
erning theirproofs. The modi�ed Bessel fun
tions I0 and K0 are thus de�ned by :I0(t) =Xn�0� tn2nn!�2;K0(t) = ��log( t2) + 
�I0(t) +Xn�1� nXj=1 1j�� tn2nn!�2;where 
 = limn!1(Pnj=1 1j � logn) denotes the Euler 
onstant. We have :(a) The potential Wa is equal to the modi�ed Bessel fun
tion K0 :Wa(t) = 2K0(at):(b) We denote by W a the potentialW a(t) = 2K0(at) + 2�I0(at):It is a solution of (3.23).(
) The fun
tions Wa and W a are respe
tively de
reasing and in
reasing, and satisfy thefollowing estimates : ( Wa(t) �q2�a e�atpt as t!1;Wa(t) � �2 log(t) as t! 0: (3.24)



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 13( W a(t) �q2�a eatpt as t!1;W a(t) � �2 log(t) as r ! 0: (3.25)W 0aWa �W 0aW a = 4�t : (3.26)Keeping these results in mind, we may now begin our proof.We denote by V` the `-periodi
 Yukawa potential with parameter p�` :V`(x) =Xk2` e�p�`jx�kjjx� kj : (3.27)Comparing it with Wp�`(r), where r =px21 + x22, and noti
ing thatWp�`(r) = ZR e�p�`(r2+z2)pr2 + z2 dz;one shows through a basi
 
omputation that V`Wp�` ! 1 as r !1, hen
e :V`(x) � �s 2�p�`�e�p�`rpr ; (3.28)as r goes to in�nity.Denoting by f` the fun
tion 53u`4=3 � �`, and using the bounds we have on u` and �`,namely (3.10) and (3.19), we dedu
e thatjf`j � Cr2 ; (3.29)on fr > R0g, for some R0 > 0: Hen
e, we have there��u` + (�` � Cr2 )u` � ��u` + (f` + �`)u` = 0:Now, denoting by v the fun
tion e�p�`rpr e��=r, one easily �nds that :��v + (�` � Cr2 )v = (2�p�` � 14 � Cr2 + 2�r3 � �2r4 )v:Hen
e, 
hoosing � > 4C+18p�` , we have :��v + (�` � Cr2 )v � 0



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 14on some set fr > R1g. Next, by a similar 
omputation, setting w(x) = pR ep�`(jxj�R)jxj e� �jxj ,one easily shows w satis�es the same estimate. Hen
e, taking v +w as a supersolution, andletting then R go to in�nity, one 
an show that this implies :u` � Cv;for some 
onstant C > 0. In parti
ular, we haveu` � apre�p�`r; at in�nity; (3.30)for some a > 0. Now, an easy 
omputation, in the spirit of [7℄, Proposition A.1, shows that,from this estimate, together with (3.28) and (3.29), we have :(�f`u`) ?�(`) V` � pa` e�p�`rpr ; as r !1;withpa` = 12� R 2�0 ep�` 
os �d� R�(`)�f`u`; whi
h is positive sin
e �f`u` = ��u`+�`u`. Hen
e,
onvoluting ��u` + �`u` = �f`u` on both sides with V`, one �nds (3.21).We now prove (3.22) : we de�ne a partial periodi
 Fourier transform by :~f(x0; k) = Z R2�R2 f(x)e�2i� kRx3dx3; (3.31)for any L2lo
 and `-periodi
 fun
tion f . Applying this to �`, and using the fa
t that ���` =4�(Æ0 � �`) in �(`), one �nds :��T ~�`(x0; k) + 4�2 k2R2 ~�`(x0; k) = 4�(Ær=0 � ~�`(x0; k)); (3.32)for all k 2 Z, where �T denotes the Lapla
ian with respe
t to x0. We �rst noti
e thatj~�`(x0; 0)j � Ce�2p�`rr ; (3.33)sin
e it is a radially symmetri
 fun
tion in R2 satisfying (r ~�`(r; 0)0)0 � a`e�2p�`r: Moreover,if jkj 6= 0, 
onvoluting (3.32) with W2� jkjR , we have :~�` = W2� jkjR �W2� jkjR ?R2 ~�`:We use here the following Lemma, whi
h proof is postponed until the end of the presentone :Lemma 3.4 Let a be a positive real, and let Wa and W a be the potentials de�ned in (a) and(b) above. Then, for any spheri
ally symmetri
 fun
tion v su
h that v 2 L1(R2), we have :v ? Wa(x) = 8�2�W a(x) Zjyj>jxj vWa +Wa(x)�Zjyj<jxj vW a � ZR2 vWa��: (3.34)



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 15Applying this result to a = 2� jkjR and v = ~�`(�; k), whi
h is spheri
ally symmetri
 in R2;and using estimates (3.21), (3.24) and (3.25), one easily �nds :�W2� jkjR ?R2 ~�`�(r) = �ZR2 ~�`W 2� jkjR �W2� jkjR (r) +O�Zjx0j>r ~�`�;whenever 2� jkjR < 2p�`. Thus, for su
h a k, setting �k = 1R � 1R RR2 ~�`W 2� jkjR ,~�`(x0; k) = R�kW2� jkjR (r)e2i� kx3R +O�Zjx0j>r ~�`�= R�kW2� jkjR (r)e2i� kx3R +O�e�2p�`rpr �:We next use Plan
herel's formula and write :�`(x) = Xk2Z 1R ~�`(x0; k)e2i� kx3R= X0<�jkj�Rp�` �kW2� jkjR (r)e2i� kx3R + X�jkj>Rp�` 1R ~�`(x0; k)e2i� kx3R +O�e�2p�`rpr �:Denoting by  ` the fun
tion  ` = X�jkj>Rp�` 1R ~�`(x0; k)e2i� kRx3;proving (3.22) amounts to show thatj `j � C�e�(2p�`��)rpr ;for all � > 0. For this purpose, we noti
e that, using (3.34) again, we have, for all jkj > Rp�`� :j ~ `(x0; k)j = j~�`(x0; k)j � Ce�2p�`rpr :On the other hand, from the fa
t that � ` is smooth and that  ` is bounded on fr > 1g, ` is bounded in Cp(�(`) \ fr > 1g), for all p 2 N, so that we have :j ~ `(x0; k)j � Cp 1jkjp ;for all p > 0, with Cp depending only on p. Those two bounds, together with the de�nitionof  ` and �k, allow to write, for any � < 1 :Zr=R0 j `j2dx3 = 1R X�jkj>Rp�` j ~ (R0; k)j2� Ce�4�p�`R0R0 X�jkj>p�` C(2�2�)pjkjp(2�2�) +O(e�4p�`R0R0 ):



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 16This is valid for all R0 su�
iently large. We then 
hoose � = 1 � �2p�` and p > 12�2� , and�nally 
on
lude through ellipti
 regularity and the fa
t that j� `j � C e�p�`rpr . �Proof of Lemma 3.4 : We denote by F (x) the fun
tion de�ned in (3.34). F is spheri
allysymmetri
, and using estimates (
) above, one easily shows that F vanishes at in�nity.Hen
e, it is su�
ient to prove that ��F + a2F = 8�2v. For this purpose, we noti
e that :��F = �F 00 � 1jxjF 0:We then 
ompute :F 0(jxj) = W 0a(jxj) Zjyj>jxj vWa +W 0a(jxj)�Zjyj<jxj vW a � ZRn vWa�:Thus, we have :��F = ��W a Zjyj>jxj vWa ��Wa�Zjyj<jxj vW a � ZRn vWa�+W 0a Zjyj=jxj vWa �W 0a Zjyj=jxj vW a:This implies the following :��F + a2F = v2�jxj(W 0aWa �W 0aW a):We then use (3.26) and 
on
lude the proof. �Estimate (3.22) has been proved for �`, but what will be really useful is the same estimateon the partial derivative �r�`, with r = px21 + x22. Sin
e the estimates we have used on �`also hold for �r�`, an easy adaptation of Proposition 3.3 shows :Proposition 3.5 Let �` be the unique solution of problem (3.6), and �` = G` �G` ?�(`) �`:There exists a �nite set of 
omplex numbers �k depending only on ` su
h that :�����r�`(r; x3)� X0<�jkj�Rp�` �ke2i� kRx3W2� jkjR (r)���� � b0̀ ;� e�(2p�`��)rpr ; as r !1; (3.35)for all � > 0, the 
onstant b0̀ ;� depending only on ` and �.3.3 TFW theory of thin �lmsWe re
all the TFW model for thin �lms de�ned in [5℄ : 
onsidering a periodi
 latti
e ` ofrank 2, we may assume that it is in
luded in the plane generated by the two �rst ve
tors ofthe 
anoni
al basis (e1; e2; e3). In other words, there exists R1 > 0 and b = b1e1 + b2e2; su
hthat a = R1e1 and b generate ` : ` = fia+ jb; i; j 2 Z2g:



3 PRELIMINARY RESULTS ON THE DEGENERATE CASES 17We de�ne its TFW energy by :E(`) = ITFWfilm = �ETFW` (�); � � 0; ;p� 2 H1per(`);(1 + jx3j)� 2 L1(�(`)); Z�(`) � = 1�; (3.36)where �(`) = fua+ vb+ we3; u; v 2 [�12 ; 12 [; w 2 Rg;H1per(`) = �f 2 H1lo
(R3) \H1(�(`)); f is `� periodi
�;and the energy ETFW` reads :ETFW` (�) = Z�(`) jrp�j2 + Z�(`) �5=3 � Z�(`)G`�+ Z�(`) Z�(`) �(x)�(y)G`(x� y)dxdy; (3.37)the periodi
 potential G` being the analogue of (3.8), with a ^ b denoting the inner produ
tof the two ve
tors a and b :G`(x) = C` � 2�ja ^ bj jx3j+Xk2`� 1jx� kj � 1ja ^ bj Z�(`)\fx3=0g dyjx� k � yj�= C` � 2�ja ^ bj jx3j+ 1�ja ^ bj Xk2`�nf0g ZR e2i�(k�x+x3�)jkj2 + �2 d�; (3.38)where C` is 
hosen so that limx!0(G`(x) � 1jxj) = 0, and `� is the re
ipro
al latti
e to ` inthe plane (e1; e2), that is, `� is the periodi
 latti
e generated by the basis (a0; b0) of fx3 = 0gde�ned by a � a0 = b � b0 = 1, and a � b0 = b � a0 = 0.Here again, we have the analogue of Proposition 3.1, proven in [5℄ :Proposition 3.6 We have :(i) G` is smooth on R3 n `,(ii) G`(x) = 1jxj +O(jxj) as x! 0,(iii) G`(x) = � 2�ja^bj jx3j+ C` +O( 1jx3j) as jx3j ! 1, uniformly with respe
t to (x1; x2).We also have the following :Proposition 3.7 For any basis (a; b) of the plane generated by (e1; e2), the problem (3.36)has a unique solution �`. Setting u` = p�`; u` is a solution of :��u` + 53u7=3` + (u2̀ ?�(`) G` �G`)u` + �`u` = 0; (3.39)with �` > 0.



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 18Proof : We skip this proof, sin
e it is a straightforward adaptation of Proposition 3.2's. �Next, we mimi
 the proof of Proposition 3.3 and �nd :Proposition 3.8 The solution �` of problem (3.36) satis�es the following estimate, wherea` is a positive 
onstant depending only on ` :�`(x) � a`e�2p�`jx3j; as jx3j �! 1: (3.40)Denoting by �` = G` � G` ?�(`) �` the e�e
tive potential, there exists 
omplex numbers �ksu
h that, for all � > 0,�����3�`(r; x3)� X0<�jkj�p�`;k2`� �ke2i�k�x0e�2�jkjjx3j���� � b`;�e�(2p�`��)jx3j; as jx3j ! 1; (3.41)with b`;� > 0 depending only on ` and �.Proof : The only ne
essary 
hange is to show the above estimate for the Yukawa potential :V`(x) =Xk2` e�p�`jx�kjjx� kj � 2�p�` e�p�`jx3j as jx3j ! 1;whi
h is easy to prove by 
omparing it to the one-dimensional Yukawa potential with respe
tto x3. The partial Fourier transform de�ned in (3.31) is adapted is follows :~f(k; t) = Z�(`)\fx3=tg f(x)e�2i�k�x0dx0; (3.42)for all k 2 `?. And the role of W a is played here by eajx3j. �4 Behaviour of unbounded sequen
esWe investigate in this se
tion the behavior of the TFW energy of unbounded sequen
es. Byunbounded sequen
es, we mean sequen
es of periodi
 latti
es for whi
h some sequen
e ofbasis satisfying (2.3) is unbounded.We �rst establish some bounds on the ele
troni
 density �` that are uniform with respe
tto `.4.1 Bounds on �` for ` 2 L3(R3)Throughout this se
tion, ` denotes a proper latti
e, and �(`) is a 
ell of ` asso
iated to abasis (ai)1�i�3 satisfying (2.3), and 
hoose :0 < R0 � mini=1;2;3 jaij = mini=1;2;3Ri: (4.1)In the spirit of [4℄ and [16℄, we de�ne, for a radius R > 0, the ground state eR of theLapla
e operator with Diri
hlet 
ondition on BR, and set gR = e2R.



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 19Lemma 4.1 For all R > 0, u` and �` denoting the solutions of the Euler-Lagrange equationof (1.1), namely � ��u` + 53u`7=3 � �`u` = 0;���` = 4�(Pk2` Æk � u`2); (4.2)we have, ? denoting a 
onvolution produ
t over R3 :gR ? �`(x) � 53gR ? u`4=3(x) + �2R2 ; (4.3)for all x 2 �(`). Moreover, if 0 62 x+BR, i.e if jxj > R, �`(x) � (gR ? �`)(x):Proof : We simply 
opy here the proof of [16℄, pointing out that it does not depend on `.Sin
e u` is non-negative and satis�es (4.2), the operator ��+ 53u`4=3��`, with homogeneousDiri
hlet boundary 
onditions on BR + x, is positive. Hen
e, for all � 2 H10 (BR + x),Z�(`) jr�j2 + Z�(`)(53u`4=3 � �`)�2 � 0:We apply this inequality with � = eR(x� �), and �nd (4.3).Assuming that jxj > R, �` is then subharmoni
 on BR + x, hen
e from the mean-valueinequality and the fa
t that RR3 gR = 1, �`(x) � (gR ? �`)(x): �Proposition 4.2 For any solution (u`; �`) of (4.2), we have the following estimate, valid in�(`) \ fjxj > 2g : �`(x) �Xk2` ajx� kj4 + bjxj2 ; (4.4)a; b > 0 being universal 
onstants.Proof : Here again, we merely 
he
k out that [16℄'s proof 
arries through this 
ase, withminor modi�
ations. Using estimate (4.3), together with Hölder inequality, we have :gR ? �` � �2R2 � 53�gR ? u`2�2=3:Denoting by ~�` the fun
tion ~�` = gR ? �` � �2R2 , we then have �� ~�` = 4�(Pk2` gR(� � k) �gR ? u`2); hen
e : �� ~�` + (35 ~�`)3=2+ � 4�Xk2` gR(� � k):We now introdu
e the 
orresponding periodi
 TF-potential b�`, that is, the positive solutionof : �� b�` + 53 b�`3=2 = 4�Xk2` gR(� � k):



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 20It is thus 
lear, from a 
omparison argument, that we have : ~�` � b�`: Now, on the one hand,from Theorem V.12 of [14℄, we know that b�` �Pk2` b�(� � k), where b� is the solution of :��b� + 53(b�)3=2 = 4�gR:On the other hand, Lemma 11 of [16℄ shows thatb� � ajxj4 on fjxj > R + 1g;where a > 0 is a universal 
onstant. Colle
ting those results and taking, for jxj > 2, R = 12 jxj,we �nd (4.4). �Proposition 4.3 For any solution (u`; �`) of (4.2), we have the following estimate, forx 2 �(`) \ fjxj > 2g : u4=3` � a0Xk2` 1jx� kj4 + b0jxj2 ; (4.5)where a0; b0 > 0 depend only on R0 de�ned in (4.1), and not on the Ri.Proof : We �rst remark that the proof of Propositions 3.5 and 3.10 of [9℄ do not in fa
tdepend on the periodi
 latti
e, as far as its radii Ri satisfy (4.1), and that we thus have :0 < u` � 
;where 
 > 0 is a 
onstant depending on R0, and not on `. We de�ne the fun
tion :f(x) = �Xk2` 1jx� kj4 + 
jxj2 + ÆR02(jxj2 � R02)2 :An easy but tedious 
omputation shows that :��f � �Xk2` �12jx� kj6 � 2
jxj4 � 12ÆR02 jxj2 +R02(jxj2 � R02)4 :We also have :f(x)2 � �2Xk2` 1jx� kj8 + 
2jxj4 + 2�
Xk2` 1jx� kj4jxj2 + Æ2R04(jxj2 �R02)4 :Hen
e, 
hoosing 
 � 6, � � 12 and Æ � 24, we have, in BR0 :��f + f 2 � 0: (4.6)



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 21Now, we also have : �(u4=3` ) � 43(53u4=3` ��`)u4=3` : Thus, denoting by S the set S = fu4=3` > fg,whi
h is open, bounded and in
luded in fjxj > 2g\B0R as far as � � 16
, from the de�nitionof f and (4.4), we noti
e that on S, u4=3` � inf(�;
)sup(a;b)�`. Hen
e�u4=3` � 43�53 � sup(a; b)inf(�; 
)�(u4=3` )2:In addition to the above 
onditions on � and 
, we may impose the inequality �; 
 >2 sup(a; b), so that, on S : �(u4=3` � f) � (u4=3` )2 � f 2 > 0:The fun
tion u4=3` � f is thus subharmoni
 on S, and 
an
els on �S. From the maximumprin
iple, we infer that u4=3` � f is non-positive on S, whi
h is impossible. Hen
e, S = ;.Letting then R0 go to in�nity, we �nd (4.5). �4.2 Convergen
e of G`Considering unbounded sequen
es, we investigate here the behavior of the asso
iated poten-tial G`.4.2.1 The Thin �lm 
aseWe 
onsider here the 
ase of a sequen
e (`n)n�0 su
h that only one of its radii Rni is un-bounded, and the others are bounded away from 0 as well as bounded from above. That is,we 
onsider a sequen
e (`n)n2N su
h that for all n 2 N, `n has a basis (ani )1�i�3 satisfyingthe 
on
lusion of Theorem 2.4 together with :(1) an1 �! a1 6= 0 as n goes to in�nity,(2) an2 �! a2 6= 0 as n goes to in�nity,(3) jan3 j = Rn3 �!1 as n goes to in�nity.Moreover, we may assume, 
hanging the system of 
oordinates if ne
essary, that for all n � 0,the plane generated by (an1 ; an2 ) as well as the one generated by (a1; a2), is in
luded in (hen
eequal to) the one generated by (e1; e2). Note that sin
e the angle between an1 and an2 is
on�ned in [�3 ; �2 ℄, so is the angle between a1 and a2, and these two ve
tors must be linearlyindependent.We denote by Gn the periodi
 potential asso
iated to `n, de�ned in (1.5), and whi
h maybe written as : Gn(x) = Cn + 1�j�(`n)j Xk2`�nnf0g e2i�k�xjkj2 ; (4.7)



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 22where Cn = 1j�(`n)j R�(`n)Gn is su
h that limx!0(G`n(x) � 1jxj) = 0, and `�n is the periodi
latti
e re
ipro
al to `n, i.e the latti
e of basis (bn1 ; bn2 ; bn3 ) satisfying :ani � bnj = Æij; 8i; j 2 f1; 2; 3g:The potential G1 denotes the potential asso
iated to the latti
e `1 generated by (a1; a2),as de�ned in (3.38). We now show the following :Proposition 4.4 The potentials Gn and G1 satisfy, for all x 2 �(`n) :jGn(x)�G1(x)j � C(1 + jx3j); (4.8)where C > 0 is a 
onstant independent of n.Proof : The strategy of the proof is the following : writing G` through its Fourier series, weisolate singular terms, and deal with them separately, whereas in the remaining terms, were
ognize a Riemann sum 
onverging to the Fourier 
oe�
ients of G1, as de�ned in (3.38).We denote by (~ani ) the renormalized basis asso
iated to (ani ), that is, ~ani = aniRni = anijani j . Wethus have, setting Æn = j~an1 � (~an2 ^ ~an3 )j = j det(~an1 ; ~an2 ; ~an3 )j :Gn(x) = Cn + 1�Rn1Rn2Rn3 Æn Xk2Z3nf0g e2i�(k1bn1+k2bn2+k3bn3 )�xjk1bn2 + k2bn2 + k3bn3 j2 : (4.9)Hen
e, isolating the terms where k1 = k2 = 0, and denoting by ~bn3 the ve
tor ~bn3 = Rn3 bn3 :Gn(x) = Cn + Rn3�Rn1Rn2 Æn Xk3 6=0 e2i�k3 ~bn3 �xRn3k23j~bn3 j2+ 1�Rn1Rn2Rn3 Æn X(k1;k2)2Z2nf0g Xk32Z e2i�(k1bn1+k2bn2+k3 ~bn3Rn3 )�xjk1bn1 + k2bn2 + k3 ~bn3Rn3 j2 :Next, 
onsidering the fa
t that (a1; a2) is a basis of the plane generated by (e1; e2), togetherwith the de�nition of bni , we infer that ~bn3 = �ne3; with �n 2 R bounded away from 0 aswell as bounded from above. Next, we noti
e that the �rst sum is easily 
omputable, sin
ePk2Znf0g e2i�ktk2 = �23 + 2�2jtj(jtj � 1) for jtj � 12 . Hen
e, for all x 2 �(`) :Gn(x) = Cn + �Rn33Rn1Rn2 Æn�2n + 2�x23ÆnRn1Rn2Rn3 � 2�jx3jRn1Rn2 Æn�n+ 1�Rn1Rn2Rn3 Æn X(k1;k2)2Z2nf0g Xk32Z e2i�((k1bn1+k2bn2 )�x+�nx3Rn3 )jk1bn1 + k2bn2 + k3 �ne3Rn3 j2 :



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 23We denote by G(an1 ;an2 ) the thin �lm potential asso
iated to the latti
e of basis (an1 ; an2 ).Denoting by Gn the fun
tionGn(x) = Cn � 2�Rn1Rn2�nÆn jx3j+ 1�Rn1Rn2�nÆn Xk2Z2nf0g ZR e2i�((k1bn1+k2bn2 )�x+�x3)jk1bn1 + k2bn2 + �e3j2 ;with Cn 
hosen so that Gn(x)� 1jxj 
an
els at 0, and 
omputing its Lapla
ian, we �nd thatGn � G(an1 ;an2 ) is harmoni
, bounded (from Proposition 3.6-(iii)), has value 0 at the origin.Thus, Gn = G(an1 ;an2 ). We then have, denoting by Fn the fun
tion Gn �G1 :Fn(x) = G(an1 ;an2 )(x)�G1(x)� Cn + Cn+ �Rn33Rn1Rn2 Æn�2n + 2�x23ÆnRn1Rn2Rn3� 1�Rn1Rn2 Æn�n X(k1;k2)6=(0;0)e2i�(k1bn1+k2bn2 )�x�ZR e2i��x3jk1bn1 + k2bn2 + �e3j2� �nRn3 Xk32Z e2i� �nk3x3Rn3jk1bn1 + k2bn2 + k3 �ne3Rn3 j2�: (4.10)From estimate (ii) and (iii) of Proposition 3.6, it is 
lear that����G(an1 ;an2 )(x)�G1(x)���� � C(1 + jx3j) (4.11)in �(`n), for n su�
iently large. We now deal with the sum appearing in (4.10) : we denoteit by F 0n(x), omitting the fa
tor 1�Rn1Rn2 Æn�n sin
e it is bounded, and write F 0n = F 1n + F 2n ,where :F 1n(x) = X(k1;k2)6=(0;0) Xk32Z � �nRn3 � R (k3+ 12 ) �nRn3(k3� 12 ) �nRn3 e2i�x3(���nk3Rn3 )d��e2i�(k1bn1+k2bn2+ k3�nRn3 e3)�xjk1bn1 + k2bn2 + k3�nRn3 e3j2 ; (4.12)F 2n(x) = X(k1;k2)6=(0;0)e2i�(k1bn1+k2bn2 )�x Xk32ZZ (k3+ 12 ) �nRn3(k3� 12 ) �nRn3 � 1jk1bn1 + k2bn2 + k3�nRn3 e3j2� 1jk1bn1 + k2bn2 + �e3j2�e2i��x3d�: (4.13)And we have F 1n(x) = F 1n(x)( �nRn3 � sin(� �nx3Rn3 )�x3 ), withF 1n(x) = X(k1;k2)6=(0;0) Xk32Z e2i�(k1bn1+k2bn2+ k3�nRn3 e3)�xjk1bn1 + k2bn2 + k3�nRn3 e3j2 :



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 24One 
omputes easily :kF 1nk2L2(�(`n)) = CRn3 X(k1;k2)6=(0;0) Xk32Z 1jk1bn1 + k2bn2 + k3�nRn3 e3j4 ;and sin
e the sum over k3 is a Riemann sum 
onverging to RR d�jk1bn1+k2bn2+�e3j4 � Cjk1bn1+k2bn2 j3as Rn3 goes to in�nity, we infer that :kF 1nkL2(�(`n)) � CRn3 ;where C does not depend on n. This implies :kF 1nkL2(�(`n)) � C; (4.14)with C independent of n. We now turn to F 2n : noti
ing that����Z (k3+ 12 ) �nRn3(k3� 12 ) �nRn3 � 1jk1bn1 + k2bn2 + k3�nRn3 e3j2 � 1jk1bn1 + k2bn2 + �e3j2�e2i��x3d������ C� �nRn3 �2 1jk1bn1 + k2bn2 + k3�nRn3 e3j3 ;we dedu
e, a

ording to (4.13), that we have :kF 2nk2L2(�(`)) � CRn3 X(k1;k2)6=(0;0)�Xk3 6=0� �nRn3 �2 1jk1bn1 + k2bn2 + k3�nRn3 e3j3�2� C �4n(Rn3 )2 X(k1;k2)6=(0;0) 1(k21 + k22)2 :This shows that kF 2nkL2(�(`n)) � CRn3 ;with C independent of n. With (4.14), we get :kF 0nkL2(�(`n)) � CRn3 ; (4.15)the 
onstant C not depending on n. Now, sin
e F 0n is harmoni
 in �(`n), standard ellipti
regularity results show that F 0n is ne
essarily bounded in L1(�(`n)): Sin
e Fn(0) = 0, thisalso shows that Cn � C(an1 ;an2 ) + �Rn33Rn1Rn2 �nÆn is bounded, and we �nally get (4.8). �Next, looking 
losely at F 0n, we noti
e that its L1(�(`n) \ fjx3j � Rg) norm satis�es(4.15), for any �xed R > 0. Indeed, if jx3j � R, j �nRn3 � sin(� �nx3Rn3 )�x3 j � CR2(Rn3 )3 ; so that (4.14) thenbe
omes : kF 1nkL2(�(`n)) � C(Rn3 )2 :



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 25Hen
e, with the help of (4.10),the last bound we have obtained may be improved :Cn � Cn + �Rn33Rn1Rn2�nÆn �! 0: (4.16)This implies the following :Proposition 4.5 As n goes to in�nity, we have, for any �xed R > 0 :kGn �G1kL1(�(`n)\fjx3j<Rg) �! 0 as n!1:Proof : From the above remark (4.16), we only need to improve (4.11), and show that thisquantity is not only bounded, but goes to zero as n goes to in�nity when jx3j is bounded.In order to do so, we only need to show it for the Fourier series, sin
e the term of the form�njx3j does 
onverge. And the Fourier series may be dealt with in the same way as F 0n. This
ompletes the proof. �Remark 4.6 In all the above bounds, we have omitted for simpli
ity the fa
tor 1Rn1Rn2 , sin
eit is bounded from above. Rigorously, it should appear in all bounds, so that in fa
t (4.8)may very well read : jGn(x)�G1(x)j � C(1 + jx3jRn1Rn2 ); (4.17)with C independent of n. This will be useful in the sequel.4.2.2 The polymer 
aseWe use here the same notation as in Se
tion 4.2.1, ex
ept that only Rn1 is bounded. In otherwords, we have :(1) an1 �! a1 6= 0 as n goes to in�nity,(2) Rn2 �!1 as n goes to in�nity,(3) Rn3 �!1 as n goes to in�nity.Changing 
oordinates if ne
essary, we may assume that an1 is 
ollinear to e3, for all n 2 N.Next, we may rotate the system of 
oordinates so that the angle between an2 and e1 is lowerthan �6 . Hen
e, from (2.3), the angle between an3 and e2 is ne
essarily bounded, and thereexists a 
onstant C independent of n su
h that :jan2 � e1j � CRn2 ; and jan3 � e2j � CRn3 :Here the latti
e `1 is the one generated by a1 = R1e3, and G1 is thus de�ned by (3.8).



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 26Proposition 4.7 There exists a 
onstant C independent of n su
h that for all x in �(`n),we have : jGn(x)�G1(x)j � C�1 + jx2jRn2 + log(2 + jx0j)�: (4.18)Moreover, Gn �G1 goes to 0 in L1(�(`n) \ fr < Rg), for any R > 0.Proof : Writing Gn through its Fourier 
oe�
ients, we argue exa
tly as in the proof ofProposition 4.4 
on
erning the Fourier series F 0n. The argument 
arries through this 
ase.Hen
e, we only study the residual term, that is,An(x) = Cn � Can1 + 1�ÆnRn1Rn2Rn3 X(k2;k3)6=(0;0) e2i�(k2bn2+k3bn3 )�xjk2bn2 + k3bn3 j2 + 2Rn1 log jx0j+Gan1 (x)�G1(x);where Gan1 is the polymer potential asso
iated to a latti
e of basis (an1 ), and Can1 the 
orre-sponding 
onstant appearing in (3.8). We use estimates (ii)-(iii) of Proposition 3.1 to dealwith Gan1 (x)�G1(x), �nding :����Gan1 (x)�G1(x)���� � C(1 + log(2 + jx0j)); (4.19)in �(`n). Next, we need a bound on the remaining term. Unfortunately, we do not have,as in the pre
eding 
ase, an exa
t expression of this Fourier series. But we know that itdepends only on x0 = (x1; x2), sin
e an1 is 
ollinear to e3, and we may 
ompute its Lapla
ianin the plane fx3 = 0g :��� 1�Rn1Rn2 X(k2;k3)6=(0;0) e2i�(k2bn2+k3bn3 )�xjk2bn2 + k3bn3 j2 � = 4�(Æ0 � 1Rn1Rn2 );and this fun
tion is periodi
. Its periodi
 
ell is de�ned by the basis (an2 ; an3 ) re
ipro
al to(bn2 ; bn3 ). It is thus 
lear that an2 and an3 are respe
tively the proje
tion of an2 and an3 on theplane fx3 = 0g, so that their norms ~Rn2 and ~Rn3 go to in�nity as n goes to in�nity. Two 
asesare then possible :Case 1 : ~Rn2= ~Rn3 is bounded. We redu
e this 
ase to ~Rn2 = ~Rn3 = Rn, the general 
asebeing a rather te
hni
al adaptation of this one. We then have, denoting by Bn(x0) the abovefun
tion, Bn(x0) = B( x0Rn );where B is the fun
tion Bn with Rn = 1. Hen
e, we have, denoting by ~�n the set ft~an1 +u~an2 ; �12 < t; u � 12g :kBn + 2 log jx0jRn kL1(~�n) = kB + 2 log jx0jkL1( 1Rn ~�n) � C;
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onstant independent of n. This gives a bound on An(x)�Cn+Can1 � log(Rn) inL1(�(`n)), hen
e on Gn�G1�Cn+Can1 � log(Rn). Pointing out that Gn�G1 
an
els at0, we thus dedu
e a bound on �Cn + Can1 � log(Rn), and 
on
lude the proof of (4.18).If now ~Rn2 6= ~Rn3 , we may re-s
ale by ~Rn2 in the same way as above, and thus get a periodi
Green fun
tion on a periodi
 
ell of the form 1~R2n ~�n. The above bounds are then still valid,sin
e the domain is bounded independently of n.Case 2 : ~Rn2= ~Rn3 is unbounded. We may then assume that this quotient goes to in�nity.Re-s
aling by Rn2 as in Case 1, we then have a problem of the same kind as Proposition 4.5's,ex
ept that it is in two dimensions and not in three. Nevertheless, it may be dealt with inthe same way. As pointed out in Remark 4.6, we then get the right 
oe�
ient with jx2j.This 
on
ludes the proof of (4.18).The L1 
onvergen
e is then proved by pointing out that the same remarks as in Propo-sition 4.5's proof are available. �Remark 4.8 Here again, we have omitted the 
oe�
ient 1Rn1 in front of all terms, but it willbe useful to keep in mind that it is impli
it in the 
onstant C of (4.18).4.2.3 The atomi
 
aseWe now 
onsider the 
ase when all radii go to in�nity :Rn3 � Rn2 � Rn1 �!1:We assume (
hanging 
oordinates if ne
essary, here again) that an1 is 
ollinear to e1, and thatthe angle between an2 and e2 is not larger than �6 . This also implies that the angle betweenan3 and e3 is bounded, and that :jan2 � e2j � CRn2 ; and jan3 � e3j � CRn3 :In this 
ase, we have the following :Proposition 4.9 There exists a 
onstant C independent of n su
h that :jGn(x)� 1jxj j � C(1 + log(2 + jx0j)Rn1 + jx3jRn1Rn2 ): (4.20)Moreover, Gn � 1jxj 
onverges to 0 in L1lo
(R3).Proof :We �rst assume that Rn3Rn1 is bounded. In this 
ase, we may assume that this ratio,together with Rn2Rn1 , 
onverge. Thus, denoting by Gn the fun
tionGn(x) = Rn1Gn(Rn1x); (4.21)a dire
t 
omputation shows that Gn is the periodi
 potential asso
iated to the latti
e ofbasis ( an1Rn1 ; an2Rn1 ; an3Rn1 ): Next, we noti
e that Gn � 1jxj has its Lapla
ian identi
ally equal to 1 in



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 281Rn1 �(`n) and that Gn is bounded in L2(�(`n)) (from its Fourier 
oe�
ients), independentlyof n, so that we have : 



Gn � 1jxj



L1( 1Rn1 �(`n)) � C:This implies : 



Gn � 1jxj



L1(�(`n)) � CRn1 ;and (4.20) follows, as well as the L1lo
 
onvergen
e.We next 
onsider the possibility :Rn3Rn1 �!1; with Rn2Rn1 bounded:Here again, we res
ale the potential Gn with respe
t to Rn1 , a

ording to (4.21), and �ndourselves in the 
ase of Proposition 4.4, and using the same tri
ks, we show (4.8) for Gn andRn1G1(Rn1x). Next, we noti
e that, from the same reasons as in the �rst 
ase,����Rn1G1(Rn1x)� 1jxj ���� � CRn1in �(`n). Therefore : jGn(x)� 1jxj j � C( 1Rn1 + jx3jRn1Rn2 ):Here again, this shows (4.20) as well as the L1lo
 
onvergen
e.The last 
ase is the following :Rn3Rn1 �!1; and Rn2Rn1 �!1:Here again, we res
ale and �nd the polymer 
ase. Adapting the 
orresponding proof, ourProposition is proved. �Remark 4.10 Formally, the above estimates assert that the 
onvergen
e of Gn to G1 isa good one if it is isotropi
. When it is not, the 
onvergen
e defe
t behaves like the 
orre-sponding intermediate potential. For example, in the 
ase of the 
onvergen
e towards 1jxj , itGn� 1jxj 
onverges to 0 in L1(�(`n)) if Rn1 = Rn2 = Rn3 , whereas if Rn1 = Rn2 � Rn3 , a residualterm appears, whi
h has the same behavior as the thin �lm potential asso
iated to the basis(an1 ; an2 ).4.3 Convergen
e of the energyFrom the bounds we have shown in the pre
eding se
tions, we are now in position to showthe following :
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e of proper latti
es, with basis (ani ) satisfying 
on
lusionsof Theorem 2.4. Assume in addition that there exists an R0 su
h that8n � 0; 8i = 1; 2; 3; Rni = jani j � R0:Then we have :(i) If Rn3 �! 1 and ani �! ai, i 6= 3, as n ! 1, then the energy E(`n) 
onverges toE(`1), where `1 is the periodi
 latti
e of rank 2 generated by (a1; a2),(ii) If Rn2 �! 1 as n !1, and if an1 
onverges to some a1 6= 0, then E(`n) 
onverges tothe energy E(`1) of the polymer de�ned by a1,(iii) If Rn1 �!1 as n!1, then E(`n) 
onverges to the atomi
 energy ITFWat .Proof : We �rst prove (i) : in this 
ase, we may assume (as has been done in the proof ofProposition 4.4) that an1 and an2 belong to the plane fx3 = 0g. We �rst show that :lim supn!1 E(`n) � E(`1): (4.22)For this purpose, we �x a � � 0, su
h that p� 2 C1(R3), p� has 
ompa
t support withrespe
t to x3, and is `1-periodi
, and has total mass one over �(`1). We denote by Mn theunique matrix satisfying :Mnani = ai; i = 1; 2; and Mne3 = e3:It is 
lear that Mn 
onverges to the identity matrix as n goes to in�nity. Moreover, if n islarge enough to ensure that Supp� � fjx3j � Rn3g; �n = j detMnj� ÆMn is a test-fun
tionfor the variational problem In de�ning E(`n). Hen
e :ETFW`n (�n) � E(`n):We then study separately the four terms appearing in ETFW`n (�n).Considering the term R�(`n) jrp�nj2, we noti
e thatrp�n = j detMnj1=2Mn �r(p�)ÆMn,so that, 
hanging variables in this term, we have :Z�(`n) jrp�nj2 = Z�(`1)��Mn � rp���2;whi
h 
onverges to R�(`1) jrp�j2 as n goes to in�nity. The se
ond term may be dealt withexa
tly in the same way, and we then turn to the ele
trostati
 terms :Z�(`n) �nGn = Z�(`1) �Gn ÆM�1n= Z�(`1) �(Gn ÆM�1n �G1 ÆM�1n ) + Z�(`1) �G1 ÆM�1n :
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e R�(`1) �G1 Æ M�1n = R�(`n) j detMnj(� Æ Mn)G1; the fa
t that G1 is bounded inL2lo
(�(`n)) together with the 
onvergen
e of �n towards � in L2(�(`1)) and the fa
t that �has 
ompa
t support with respe
t to x3, shows thatZ�(`1) �G1 ÆM�1n �! Z�(`1) �G1:On the other hand, we have, 
hoosing R so that Supp� � fjx3j < Rg :Z�(`1)���(Gn ÆM�1n �G1 ÆM�1n )�� � k(Gn �G1) ÆM�1n kL1(�(`1)\fjx3j�Rg)� kGn �G1kL1(�(`n)\fjx3j�Rg);whi
h vanishes as n ! 1 from Proposition 4.5. Sin
e the remaining term of the energyfollows then exa
tly in the same way, we have proved thatlim supn!1 E(`n) � ETFW`1 (�):This is valid for all `1-periodi
 � su
h thatp� 2 C1(R3) and Supp� is 
ompa
t with respe
tto x3. Sin
e this subspa
e of H1per(`1) is dense, we 
on
lude that (4.22) holds.The next step 
onsists in showing :lim infn!1 E(`n) � E(`1): (4.23)We denote by �n the unique solution of problem (1.1) de�ning E(`n), and by un = p�n itssquare root. From (4.22), we know that the energy ETFW`n (�n) is bounded. Moreover, if we�x an R > 2 and 
hoose n large enough to have �(`n) \ fjx3j > Rg 6= ;, we have :Z�(`n) �njGn �G1j � kGn �G1kL1(�(`n)\fjx3j<Rg) + Z�(`n)\fjx3j>Rg�njGn �G1j:We infer from Propositions 4.3 and 4.4 :�n � C� 1jxj2 +Xk2`n 1jx� kj4�3=2 � C� 1jxj2 +Xj2Z 1jx� jRn3e3j2�3=2;in �(`n) \ fjx3j > Rg, hen
e :Z�(`n) �njGn �G1j � kGn �G1kL1(�(`n)\fjx3j<Rg) + C Z Rn3R t� 1t2 +Xj 6=0 1t2 + j2Rn3 2�3=2dt:Using the 
onvergen
e result of Proposition 4.5, we thus have :Z�(`n) �njGn �G1j � o(1) + C Z Rn3R t� 1t2 + 1tRn3 �3=2dt� o(1) + C Z Rn3R t� 1t3=2 + 1(Rn3 t)3=4�2� o(1) + CR + CRn3 ;



4 BEHAVIOUR OF UNBOUNDED SEQUENCES 31where o(1) denotes a fun
tion whi
h goes to 0 as n goes to in�nity. Letting n, then R, go toin�nity, this shows that : Z�(`n) �n(Gn �G1) �! 0: (4.24)Repeating exa
tly the same kind of argument, one easily shows :Z�(`n) Z�(`n) �n(x)�n(y)(Gn(x� y)�G1(x� y))dxdy �! 0: (4.25)Now, it is not di�
ult, from estimate (4.5) of Proposition 4.3 together with Proposition3.6-(ii)-(iii), to show that R�(`n) �nG1 and R�(`n) R�(`n) �n(x)�n(y)G1(x�y)dxdy are boundedindependently of n. With the fa
t that ETFW`n (�n) is bounded, this implies that un is boundedin H1lo
(R3). Extra
ting a subsequen
e if ne
essary, un then 
onverges weakly to some p� =u 2 H1lo
(R3). Then, letting 
 �� �(`1), we have, taking n large enough to have 
 � �(`n),Z�(`n) jrunj2 � Z
 jrunj2;so that lim infn!1 Z�(`n) jrunj2 � lim infn!1 Z
 jrunj2 � Z
 jruj2:This is valid for any 
 �� �(`1), so that :lim infn!1 Z�(`n) jrunj2 � Z�(`1) jruj2: (4.26)With a slight adaptation of this argument, we have :lim infn!1 Z�(`n) �5=3n � Z�(`1) �5=3: (4.27)The weak 
onvergen
e in H1lo
 implies a strong one in L2lo
, up to extra
ting a subsequen
e,so that, with estimate (4.5), it is easy to show that :Z�(`n) �nG1 �! Z�(`1) �G1; (4.28)with a similar result 
on
erning the 
onvolution term. Hen
e, 
olle
ting (4.24), (4.25),(4.26), (4.27) and (4.28), and pointing out that the total mass of �n is 
onserved from theL2lo
 
onvergen
e and estimate (4.5), we prove (4.23). This 
on
ludes the proof of (i).The proofs of (ii) and (iii) follow exa
tly the same pattern : we show (4.22), by the verysame argument. Showing (4.23) in 
ases (ii)-(iii) requires sharper estimates, pre
isely thoseshown in Propositions 4.7 and 4.9. �



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 325 Compa
tness of the minimizing sequen
esWe show in this Se
tion our main result, namely Theorem 1.1, that we re
all here :Theorem 5.1 Let E be the fun
tional de�ned by (1.1), and denote by I the minimizationproblem (1.6), that is : I = inf�E(`); ` 2 L3(R3)�:Then any minimizing sequen
e of I is relatively 
ompa
t in L3(R3), so that this problem hasat least one solution.In order to show this 
ompa
tness result, we 
onsider a minimizing sequen
e `n, andintend to prove that there exists a basis (ani ) of `n satisfying (2.3), together with :(a) The sequen
es Rni = jani j are bounded from below : 9R0 > 0, s.t 8i = 1; 2; 3; 8n 2 N,Rni � R0.(b) The sequen
es Rni are bounded from above, i.e 9R1 > 0, s.t 8i = 1; 2; 3; 8n 2 N,Rni � R1.We start with the proof of assertion (a).5.1 Bound from belowProposition 5.2 Let ` 2 L3(R3), and (ai)i=1;2;3 one of its basis. Denote by Ri = jaij theasso
iated radii, and assume that R1 � R2 � R3. Then we have the following :E(`) � 14R1 + a; (5.1)the 
onstant a 2 R being independent of `.Proof : We go ba
k to the thermodynami
 limit pro
ess (see [9, 8℄), and re
all that taking�n = �P3i=1 kiai; ki 2 f�n;�n + 1; : : : ; n; n+ 1g	, we have :E(`) = limn!1 ITFW�nj�nj ; (5.2)where j�nj = (2n+ 2)3 is the 
ardinal of �n, and ITFW�n is the TFW energy de�ned by :ITFW�n = inf�ETFW�n (�) + 12 Xk 6=j2�n 1jk � jj ; � � 0; p� 2 H1(R3); ZR3 � = (2n+ 2)3�;withETFW�n (�) = ZR3 jrp�j2 + ZR3 �5=3 � Xk2�n ZR3 �(x)jx� kjdx+ 12 ZR3 ZR3 �(x)�(y)jx� yj dxdy:



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 33In parti
ular, we may bound this energy from below by the 
orresponding TF energy :ETFW�n (�) � ETF�n (�) = ZR3 �5=3 �Xk2� ZR3 �(x)jx� kjdx+ 12 ZR3 ZR3 �(x)�(y)jx� yj dxdy;so that ITFW�n � ITF�n ;ITF�n being de�ned byITF�n = inf�ETF�n (�) + 12 Xk 6=j2�n 1jk � jj ; � � 0; � 2 L1 \ L5=3(R3); ZR3 � = (2n+ 2)3�:We now invoke Teller's Lemma [14℄, whi
h we re
all here :Lemma 5.3 (Teller) Let � = �a [ �b be a �nite subset of R3, with (�a;�b) a partition of�. Then we have : ITF� > ITF�a + ITF�b :Separating �n into 4(n+1)3 sets of two points whi
h distan
e is equal to R1, we then have :ITF�n > 4(n+ 1)3ITF�0 ;with �0 = f0; a1g. Hen
e, it is su�
ient to prove (5.1) for ITF�0 , i.e :ETFf0;a1g(�) � a; 8� 2 L1 \ L5=3; ZR3 � = 2; (5.3)with a independent of a1. In order to do so, we noti
e that 1jxj 2 L5=2lo
 (R3); and thus :ZR3 1jxj� � Zjxj>1 �+ (8�)2=5�Zjxj<1 �5=3�3=5 � 2 + (8�)2=5�ZR3 �5=3�3=5:This implies that : ETF�0 (�) � ZR3 �5=3 � 2(8�)2=5�ZR3 �5=3�3=5 � 4 � a;for some universal 
onstant a 2 R. This implies (5.3), and thus 
on
ludes the proof. �At this stage, we would like to make some 
omment on the Thomas-Fermi 
ase (see[13, 14℄). It is worth noti
ing that we may use dire
tly Teller's Lemma on the TF energy, inorder to obtain (sin
e the analogous result to (5.2) is valid in the TF setting, see [14℄), thatETF (`) = limn!1 ITF�nj�nj � 12ITF�0 > ITFat ;where ITF�0 is the TF energy of the diatomi
 mole
ule with nu
lei at positions 0 and a1, andITFat is the atomi
 TF energy (de�ned exa
tly as in (3.1)-(3.2), but without the gradientterm). Sin
e the same 
onvergen
e results as those of Theorem 4.11 may be shown in theTF setting, we have the following :



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 34Theorem 5.4 In the Thomas-Fermi 
ase, problem (1.6) has no solution. Moreover, for any` 2 L3(R3), E(`) > ITFWat :A dire
t 
onsequen
e of Proposition 5.2 is the following :Proposition 5.5 For any minimizing sequen
e (`n)n2N of problem (1.6), any sequen
e ofbasis (ani ) of `n satisfy : 9R0 > 0; jani j � R0:5.2 Bound from aboveWe now turn to the proof of (b). We assume that there exists an unbounded minimizingsequen
e (`n)n2N, and try to rea
h a 
ontradi
tion. For that purpose, we denote by (ani ) abasis of `n given by Theorem 2.4, by Rni = jani j the 
orresponding radii, and noti
e that, upto extra
ting a subsequen
e, only three 
ases may o

ur :(1) Rn1 goes to in�nity as n goes to in�nity,(2) an1 
onverges to some a1 and Rn2 goes to in�nity as n goes to in�nity,(3) (an1 ; an2 ) 
onverges to some (a1; a2) and Rn3 goes to in�nity as n goes to in�nity.From Theorem 4.11, we know that respe
tively in 
ase (1), (2), (3), E(`n) 
onverges tothe atomi
 energy, the polymer energy asso
iated to a1, or the thin �lm energy asso
iatedto (a1; a2). It is thus su�
ient to prove that in all three 
ases, there exists a proper latti
ehaving a lower energy than those limits. This is our aim in the following subse
tions.5.2.1 The thin �lm 
aseWe show here that for any ` 2 L2(R3); E(`) 
annot be a minimum of E , therefore ex
ludingo

urren
e (3).Proposition 5.6 For any ` 2 L2(R3); there exists an `0 2 L3(R3) su
h that :E(`0) < E(`):Proof : We �x an ` 2 L2(R3); of basis (a1; a2), that we may assume to be in the planefx3 = 0g. For any R > 0, we de�ne `R 2 L3(R3) the proper latti
e of basis (a1; a2; Re3).We intend to show the following :E(`R) � E(`)� Ce�p�`R + o(e�p�`R); as R �!1; (5.4)with C > 0, and where �` > 0 is the Lagrange multiplier of problem (3.36). For thispurpose, we denote by � the unique ele
troni
 density asso
iated to the latti
e `, and set�R = �j�(`R)k�kL1(�(`R)) . Sin
e � is even with respe
t to x3, �R is `R-periodi
, thus is a test fun
tion



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 35for the variational problem de�ning E(`R). Denoting by "R = R�(`)\fjx3j>Rg �, we have, fromProposition 3.8, "R � a` ja1 ^ a2j2p�` e�p�`R = �e�p�`R; as R �!1:We now study ea
h terms of the energy fun
tional :Z�(`R) jrp�Rj2 � 11� "R Z�(`) jrp�j2 � (1 + "R) Z�(`) jrp�j2 + o("R): (5.5)Likewise, Z�(`R) �5=3R � (1 + 53"R) Z�(`) �5=3 + o("R): (5.6)We then turn to the ele
trostati
 terms : settingETFW;el`R (�R) = � Z�(`R) �RG`R + 12 Z�(`R) Z�(`R) �R(x)�R(y)G`R(x� y)dxdy;and denoting by hR the fun
tion G` �G`R , we have :ETFW;el`R (�R) = � Z�(`R) �RG` + 12 Z�(`R) Z�(`R) �R(x)�R(y)G`(x� y)dxdy+ Z�(`R) �RhR � 12 Z�(`R) Z�(`R) �R(x)�R(y)hR(x� y)dxdy + o("R):Hen
e, developing in the same fashion as above :ETFW;el`R (�R) = �(1 + "R) Z�(`R) �G` + (12 + "R) Z�(`R) Z�(`R) �(x)�(y)G`(x� y)dxdy+ Z�(`R) �RhR � 12 Z�(`R) Z�(`R) �R(x)�R(y)hR(x� y)dxdy + o("R):We are now going to show that :� Z�(`R) �G` + 12 Z�(`R) Z�(`R) �(x)�(y)G`(x� y)dxdy �� Z�(`) �G` + 12 Z�(`) Z�(`) �(x)�(y)G`(x� y)dxdy (5.7)and Z�(`R) �RhR � 12 Z�(`R) Z�(`R) �R(x)�R(y)hR(x� y)dxdy � o("R) (5.8)



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 36We begin with (5.7), and write the di�eren
e of these two expressions as :� Z�(`R) �G` + 12 Z�(`R) Z�(`R) �(x)�(y)G`(x� y)dxdy+ Z�(`) �G` � 12 Z�(`) Z�(`) �(x)�(y)G`(x� y)dxdy= Z�(`)n�(`R) ��G` � 12G` ?�(`) (�j�(`R) + �)�:Hen
e, proving that G` � 12G` ?�(`) (�j�(`R) + �) � 0 on �(`) n �(`R), for R su�
iently large,will 
on
lude the proof of (5.7). For this purpose, we use Proposition 3.6 and write :��jx3j+ � � 
jxj � G`(x) � ��jx3j+ � + 
jxj (5.9)in �(`), where �, � and 
 are positive 
onstants independent of R. From this and the fa
tthat 12(�+ �j�(`R)) has total mass 1� "R2 over �(`), we dedu
e that :��(1� "R2 )jx3j+�(1� "R2 )� 
0jxj � 12G` ?�(`) (�+�j�(`R)) � ��(1� "R2 )jx3j+�(1� "R2 )+ 
0jxj ;with a 
onstant 
0 > 0 independent of R. This, together with (5.9), proves thatG` � 12G` ?�(`) (�j�(`R) + �) � (1� "R2 )(� � �jx3j) � 0whenever jx3j is su�
iently large. This proves our 
laim, and thus 
ompletes the proof of(5.7).We now turn to (5.8), and set �R = G` �G` ?�(`) �R: We have :���R = 4�(Æ0 � �R):Sin
e hR 
an
els at 0, we have :� Z�(`R) �RhR + 12 Z�(`R) Z�(`R) �R(x)�R(y)hR(x� y)dxdy= 12 Z�(`R) Z�(`R) hR(x� y)��R(x)� Æ0(x)���R(y)� Æ0(y)�dxdy= 12 Z�(`R) Z�(`R) hR(x� y)����R(x)�����R(y)�dxdy:We now integrate by parts this expression, and �nd :� Z�(`R) �RhR + 12 Z�(`R) Z�(`R) �R(x)�R(y)hR(x� y)dxdy= 12 Z��(`R) Z��(`R) ��R�n (x)��R�n (y)hR(x� y)dx0dy0:



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 37From the `-periodi
ity of �R, this boundary integral redu
es to an integral over the set��(`R) \ fjx3j = R2 g. And using the fa
t that �R and hR are even with respe
t to x3, wethus have :� Z�(`R) �RhR + 12 Z�(`R) Z�(`R) �R(x)�R(y)hR(x� y)dxdy= Zfx3=R2 g\�(`) Zfy3=R2 g\�(`) �3�R(x)�3�R(y)hR(x� y)dx0dy0� Zfx3=R2 g\�(`) Zfy3=�R2 g\�(`) �3�R(x)�3�R(y)hR(x� y)dx0dy0:In order to bound this term, we write :�R = �+ 11� "R�j�(`R)
 ? G` � "R1� "R� ? G` = �+ �̂R;where the 
onvolution produ
ts are over �(`), and � = G` � � ? G`. We are going to prove(5.8) for all those terms. The se
ond one may be dealt with as follows : we �rst noti
e thatj� ? G`(x3 = �R2 )j � CR; (5.10)andj(�j�(`R)
 ? G`)(x3 = �R2 )j = ����Zfjy3j�R2 g\�(`R) �(y)G`(x� y)dy����(x3 = �R2 )� Zfjy3j�R2 g\�(`R) �(y)jx� yjdy + Zfjy3j�R2 g\�(`R) �(y)jx� yjdy� CR"R: (5.11)(5.10) and (5.11) imply that : j�̂R(x3 = �R2 )j � CR"R: (5.12)On the other hand, j ���̂R(x3 = �R2 )j � j�R(x3 = �R2 )j � C"R, so that we have :jr�̂R(x3 = �R2 )j � CR"R:Sin
e we also know that jr�(x3 = �R2 )j � Ce�aR; for some a > 0 independent of R, (5.8) isproved for �̂R and for the 
rossing term. Thus, the proof of (5.8) amounts to show :Zfx3=R2 g\�(`) Zfy3=R2 g\�(`) �3�(x)�3�(y)hR(x� y)dx0dy0� Zfx3=R2 g\�(`) Zfy3=�R2 g\�(`) �3�(x)�3�(y)hR(x� y)dx0dy0 � o("R): (5.13)



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 38To prove this, we expand hR as a Fourier series with respe
t to x0. Using (3.38) and (4.7),one easily 
omputes :hR(x) = HR(x3)� 
` Xk2`�nf0g e2i�k�x0jkj Xk32Znf0g e�jkj2�jx3�k3Rj; (5.14)with jHR(t)j � C(1 + jtj), C being independent of R, and 
` > 0. Here we have used thefa
t that ZR e2i�x3�jkj2 + �2d� = 2�jkje�2�jkjjx3j;and the 
orresponding periodi
 equality, that is :2�jkj Xk32Z e2i� k3R x3jkj2 + k23R2 = Xk32Z e�jkj2�jx3�k3Rj:We then insert (5.14) into the left-hand side of (5.13), whi
h we denote by AR, and �nd :AR = Zx3=R2 Zy3=R2 �3�(x)�3�(y)HR(x3 � y3)dx0dy0� Zx3=R2 Zy3=�R2 �3�(x)�3�(y)HR(x3 � y3)dx0dy0�
`Xk2`�� ~�3�(k; R2 ) ~�3�(�k; R2 )Xk3 6=0 e�2�jkjjk3jR�+
`Xk2`�� ~�3�(k; R2 ) ~�3�(�k;�R2 )Xk3 6=0(e�2�jkjj1�k3jR)�;where the � -transform is de�ned by (3.42). We next use estimate (3.41)of Proposition 3.8,with � < p�` to show that the �rst two integrals of the above sum may be bounded byO(R2e�2(p�`��)R) = o("R); and that up to terms of the same order, the sum redu
es to asum over K = `� \ f0 < �jkj < p�`g. We thus have, �k being de�ned in (3.41) :AR = �
`Xk2K Xk3 6=0�k��ke�2�jkjR(e�2�jkjjk3jR � e�2�jkjj1�k3jR) + o("R)= �
`Xk2K �k��ke�2�jkjR(�1 + e�2�jkjR) + o("R):Then, noti
ing that sin
e �3� is a real-valued fun
tion, we infer that ��k = �k, so that wemay write the above sum as :AR = 
`Xk2K j�kj2e�2�jkjR(�e�2�jkjR + 1) � 0;for R large enough, sin
e K does not depend on R. This proves (5.13), hen
e (5.8).



5 COMPACTNESS OF THE MINIMIZING SEQUENCES 39We now 
olle
t (5.5), (5.6), (5.7) and (5.8), and �nd :ETFW`R (�R) � ETFW` (�) + "R�Z�(`) jr�j2 + 53 Z�(`) �5=3� Z�(`)G`�+ Z�(`) Z�(`) �(x)�(y)G`(x� y)dxdy�+ o("R):Integrating the Euler-Lagrange equation of the minimization problem de�ning E(`), we �ndthat : Z�(`) jr�j2 + 53 Z�(`) �5=3 � Z�(`)G`� + Z�(`) Z�(`) �(x)�(y)G`(x� y)dxdy = ��`;so that we infer that : E(`R) � E(`)� "R�` + o("R):This 
on
ludes the proof. �5.2.2 The polymer 
aseWe now turn to 
ase (2) :Proposition 5.7 For any ` 2 L1(R3); there exists `0 2 L3(R3) su
h that :E(`0) < E(`):Proof : We use exa
tly the same tri
k as for Proposition 5.6, de�ning `R as the latti
e ofbasis (Re1; Re2; a), where a is the basis of `, and is 
ollinear to e3 (this is always possible todo by 
hange of 
oordinates). We intend to show estimate (5.4) in this 
ase. We de�ne �Rand "R exa
tly in the same way, so that (5.5) and (5.6) follow immediately. (Note that fromProposition 3.3, "R satis�es exa
tly the same estimate as in the thin �lm 
ase.)A straightforward adaptation of (5.7)'s proof shows that this estimate also holds (justrepla
e jx3j by log jx0j). To prove (5.8), the same �R-tri
k works, and we are here againredu
ed to show bounds on integrals over the set fjx1j = R2 g [ fjx2j = R2 g. Here again, thesame type of estimates are available, namely (3.8), (4.7) and (3.35), so that the above proof
an be easily adapted, repla
ing the fun
tion e�ajx3j by Wa(x0) de�ned in (3.23) �5.2.3 The atomi
 
aseWe deal here with 
ase (3) :Proposition 5.8 There exists an ` 2 L3(R3) satisfying the following :E(`) < ITFWat :



REFERENCES 40Proof : We follow step by step the proof of Proposition 5.6, with `R = RZ3; and �nd outthat di�
ulties might only o

ur in the ele
trostati
 terms. We introdu
e here again thefun
tion �R = 1jxj � 1jxj ? �Rj�(`R), and using the same tri
ks, 
on
lude the proof. Note thathere, the proof is simpler sin
e the eigenmodes appearing in the polymer and thin �lm 
asewith 
oe�
ients �k vanish, so that the proof of (5.8) is simpli�ed. �This 
on
ludes the proof of Theorem 1.1, sin
e, 
onsidering a minimizing sequen
e `n ofproblem (1.6), Proposition 5.5 shows that there exists an R0 > 0 su
h that for any basis(ani )i=1;2;3 of `n, we have : jani j � R0; 8i 2 f1; 2; 3g; 8n 2 N:On the other hand, Theorem 4.11 together with Propositions 5.6, 5.7 and 5.8, show thatthere exists a sequen
e of basis of `n whi
h is bounded inR3, and hen
e is relatively 
ompa
t.A
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