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Abstract

We present a short introduction to the models in use for the simulation of
the evolution of a molecular system in the context of Quantum Chemistry.
We explain how these models can provide experts at control theory with in-
teresting topics of investigation, and how control theory can in turn be of
great usefulness in the modelling of the laser control of chemical reactions.
Some tracks for mathematical investigations are indicated.

Résumé

Nous présentons une bréve introduction auz modéles utilisés en Chimie Quan-
tique pour la stmulation de [’évolution d’un systéme moléculaire. Nous ex-
pliquons comment ces modéles peuvent fournir des sujets de recherche que
nous croyons pertinents pour la communauté des mathématiciens experts en
théorie du contréle, et comment de telles études peuvent a leur tour étre trés
utiles aux chimistes pour la compréhension du contréle des réactions chim-
iques par laser. Nous indiquons des pistes possibles pour une recherche de
nature mathématique.
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1. INTRODUCTION

Quantum Chemistry aims at understanding the properties of matter through
the modelling of its behaviour at the microscopic scale. It is undoubtedly
a new field of investigations for applied mathematicians. The story began
twenty years ago from a rather theoretical standpoint with the fundamental
contributions of E.H. Lieb, B. Simon, H. Brézis and coworkers, and con-
tinued with the works of P-L. Lions. A rapid list of the most significant
articles in this field should include at least the following [22, 23, 24] (For a
complete list, we refer to [5, 11, 12]). To this day, it sounds reasonable to
claim that most of the molecular models of Quantum Chemistry are now
well understood mathematically and have been carefully analyzed'. The fo-
cus has now turned either towards the side of the study of the condensed
phase (See [7, 10]), or towards the side of numerical analysis (See [25]). How-
ever, to the best of the author’s knowledge, no applied mathematician has
payed attention yet to the richness and variety of problems that can arise
from the interplay between control theory and Quantum Chemistry. A large
amount of work in this direction has soon been accomplished by eminent
chemists such as H. Rabitz and his collaborators (See the short review [19]
on the optimal control of chemical reactions using laser beams, the works
[4, 30, 32, 34, 36, 37, 38] and the references therein), but no mathematician
seems to be involved in this scientific adventure. The present article has the
modest goal to draw the attention of the community of experts at control
theory to some relevant problems of Quantum Chemistry.

Before we enter (some) technicalities, let us briefly state the problem we
shall deal with. Basically, the evolution of a molecular system (all what we
will say below can be adapted to more complicated microscopic systems,
but for our explanatory treatment, we prefer to restrict ourselves to the
simple case of a (small) molecular system) is governed by the time-dependent
Schrédinger equation

0y
T _H
1 { or ~H Y
$(0) = ¢°,
where H is the Hamiltonian of the molecular system “at rest”. If we apply to

this molecular system a laser field (which will play the role of the “control”),
the above equation is modified into

) { i‘z—‘f — Hy + E(t)z1,
P(0) = y°,

where the (scalar real) electric field E(t) varies in time, the laser being fixed
in the z; direction, say.

It is noteworthy to already mention that the caracteristic length and time
of this equation are the atomic ones, namely 1 Angstrém (107!% m) and
50 femtoseconds (50.1071° s).

LOf course, some questions (of outstanding difficulty) remain open, but a large body of
work has been achieved.
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The purpose of the control by laser can be stated as follows: design the
laser field E(t) in such a way that the molecular system attains (exactly, or
at least approximately) some given state ¢y at time ¢ = 7. In most (but not
all) applications, both the initial state and the target state 1 are actually
steady states of some hamiltonian at rest, H itself or another one (We want
to “jump” from a steady state to another one). In addition, let us already
make precise that the success of the enterprise is measured in practice by a
criterion explicitly involving the scalar product < 9(T'),9r > rather than
the norm ||¢(T") — 7| : indeed, we want some projection of the final state
to be like this or like that, which amounts to prescribing some symmetry of
the final state for instance.

On equation (2), the fundamental properties of the control problems we
shall deal with already appear :

1: - this is a bilinear control problem : the state 1 is multiplied by the
control E(t),

2: - this is a distributed-in-time control : at the length scale of the molec-
ular system, the laser field is seen as a homogeneous field in space, it
only varies in time,

3: - this is (likely to be) an open-loop control : the characteristic time of
the process is so small that (at least for today’s technology) it cannot
be possible to react as fast as the molecular system (in other words
the only system that can react as fast as the molecular system is the
molecular system itself), the electric field is set (programmated) in
advance, and then the experiment goes.

In the following sections, we shall give some details on the above state-
ments so that the reader may make his own opinion on the feasibility of a
mathematical analysis in this framework.

Before we get to the heart of the matter, we believe it is useful to give
some basics on the one hand about the models in use in Quantum Chemistry
(Section 2 below), and on the other hand on some technical data on laser
technology that it is safe to keep in mind (Section 3). We also give there a
short overview on the control theory applied to Quantum Chemistry.

In Section 4, we then introduce some time dependent models for a molec-
ular system, and suggest in Section 5 a toy model that can be derived from
it and treated as a “test case”. Finally, we draw some conclusions.

2. BAsics oF QUANTUM CHEMISTRY

This section is to be seen as a short user’s guide for an expert at control
theory that would be curious of knowing more on the models of Quantum
Chemistry. A more general and comprehensive introduction can be found
for instance in [13, 18, 21, 27, 29, 35]. For the theoretical background coming
from Quantum Mechanics, we refer to [20, 26] e.g. We only give here a brief
overview of the stationary models, without getting into the details nor in
the rigorous foundations. The time dependent models will be the topic of
Section 4. Let us anticipate on that by saying, somewhat formally, that to
figure what a time dependent model is reading the following stationary ones

is quite intuitive : just insert a partial derivative with respect to time ¢—+

ot
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in front of the stationary operator. Of course, this will be made precise in
Section 5.

The flagstone of any molecular modelling is the calculation of the ground
state of the molecular system. It consists in the following minimization
problem

(3)
U(jlv"' ) 1nf{<¢67 ($1,--- 7fM) '¢6>7 the € He, ||¢e|| = 1}

where H, denotes the electronic Hamiltonian

N N M
(4) He(zy, - om)=—Y Dg =D > —F—+ >
i—1 i=1 k=1 |xl N xk| 1<z<]<N Ti— x3|
In the above equation, the nuclei are fixed at positions Zy, with charge
zg, & < k < M. This is the so-called Born-Oppenheimer approximation,
based upon the observation that the nuclei can be treated as classical par-
ticles because they are far heavier than the electrons. At this stage, the
positions zj are supposed to be known. So far they are only parameters of
the electronic problem, but actually they will be optimized afterwards (see
below). The normalized wavefunction describing the state of the N electrons
typically? belongs to a subspace H. of L2(R3") (the subscript a stands for
antisymmetric functions because of the Pauli exclusion principle).
The above problem, which amounts to finding the smallest eigenvalue in

(5) H, e¢e = >\e¢e
is well understood mathematically. However, it cannot be treated in practice.

The overwhelming difficulty is twofold. First, the size of the space L?(IR?*Y)
becomes prohibitive even for a small number N of electrons. Second, the

1
so-called bielectronic term Z
1<i<j<N i — ;]
<i<g<
of the computations. Consequently, approximations of this exact problem
have been developped and numerically simulated.

n (4) increases the complexity

Basically, the models of Quantum Chemistry that approximate (3)-(4)
range in two classes : the class of the Density Functional Theory (DFT)
models, and that of the Hartree-Fock (HF) type models.

The idea of the DFT (see [13, 21, 27, 29]) is to replace problem (3)-(4) by
a problem set on the electronic density

(6) p=N / el (2,3, -+ ) das -~ iy,
RS(N—I)

which has the advantage to be a function of only 3 variables instead of 3IV.
Next, one approximates the energy by a functional of this density p (whence
the name of the approach). The determination of this approximated energy
functional is the topic of many researches in today’s theoretical chemistry.
Actually, the practical implementation of the DFT resembles that of the
Hartree-Fock approximation. Therefore, we shall focus henceforth on that

2For simplicity, we forget the spin variable.
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latter approximation, keeping in mind that the mathematical and computa-
tional issues are relevant for both approaches.

The Hartree-Fock approximation (see [18, 21, 35]) consists in reducing the
complexity of problem (3)-(4) by restricting the test function 1, to be of the
form of a determinant of N functions of L?(IR?) (this is the prototype of
a function of L2(R3?")). By testing the Hamiltonian (4) on this restricted
class of functions, we obtained the Hartree-Fock problem

0 I =B o on) € HURY), [ iy =8,

B on) =3 96 - z/ 3 e

®) oY= |x—y| raf %

N
9) plz,y) =Y eil@)eily), pla) = plz,z).
=1

It is easy to see that the Euler-Lagrange Equations associated to (7)-(8) read
as the following system of N equations, which is of the form of a (nonlinear)
eigenvalue problem

(10) Hodi = Nigy;

where Hg is the Hartree-Fock Hamiltonian

- M 2 N 1 N
(1) Ho=-A=3 =t | D16l * o —Z(@-- m)@
j=1

k=1 j=1

This system of equations can then be attacked numerically. Of course,
some more sophisticated models* might be constructed upon the basis of
this model, but the essential feature is here.

What is obvious in the formulation (8) (and which also applies to DFT
type models) is that the price to pay to make from (3)-(4) a numerically
tractable problem is nonlinearity. This will be one of the main difficulty,
which we shall keep in our toy model of Section 5.

As announced above, once the electronic ground state is calculated, many
computations remain to be done, such as the determination of the excited
states, or the determination of the nuclear configuration (Zi,---,Zs) that
yields the minimum total energy U(Z1,---,Za) (such a process is called
geometry optimization). Next, dipolar moments, polarizabilities, and a lot

3From the standpoint of the control theory, let us mention that the stationary Hartree-
Fock model (7)-(8) gives rise to an interesting (open) question, namely that of the Opti-
mized Effective Potential problem: minimize the Hartree-Fock energy (8) over the set of
eigenvectors ¢; of some Schréodinger operator —A + V| and then try to find the optimal V'
that yields the lowest energy.

“Take a sum of determinants, ...
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of other physical and chemical properties of the molecular system under
study can be evaluated. We refer the reader to our bibliography.

Likewise, for extensions of the models introduced above to the case of the
condensed phase, liquid or solid, we refer the reader to [28, 31]. The sequel
of this article would apply, mutatis mutandis, to the more sophisticated class
of models described therein.

3. A RAPID INTRODUCTION TO THE LASER CONTROL TECHNOLOGY:
THEORY AND EXPERIMENT

The use of laser technology in chemistry goes back to the sixties. Among
all the problems that were attacked through this then new technology was the
challenge to break a given bond determined in advance in a given molecule.
The canonical example is the linear molecule consisting say of 20 atoms,
and where we want to break, right in the middle, the ninth bond. The
intuitive idea was that it was sufficient to fit the laser frequency on that of
the target bond (modelled as an harmonic oscillator, which is common in
that framework) to give to this bond a huge amount of energy and therefore
finally make it break (such a strategy is called mode selective chemistry).
The flaw in this argument is that the bonds are actually not independent
from one another: consequently, the laser energy does not concentrate on the
target bond, but rather spreads over the whole molecule, through the game
of interferences. In other words, the design of the convenient laser field is not
so obvious, and the intuition fails. The problem has to be set in a control
theory language. In addition, the modelling of a chemical reaction can go
further than the simple “stationary” image given above : in a simplified
view, it is nothing else but the breakings of a few well chosen bonds, but in
a more sophisticated manner, we can see it as an evolution in time. Such
questions have been attacked by Rabitz and coworkers.

The consequence of the above observation is that the optimal laser field to
be used is not necessarily a splendid sine function. It might be much more
chaotic (see Figure 1). Typically, what is needed is an electric field that has
some given shape at the scale of a few tenth of picosecond. Therefore the
question arises as to know what kind of signal can technically be done by
lasers. Let us briefly give some insight into this.

Today, lasers available on the commercial market commonly permits pulses
whose duration is of the order of one tenth of picosecond. Current research
in laboratories is directed towards building lasers that produce impulsions
of one hundredth of picosecond (that is 10 femtoseconds). Of course, the
shorter the impulsion, the larger the bandwidth : one cannot be too de-
manding on both items. In terms of power, the short term goal is the
Table-Top-Terawatt (102 Watt), and further the Petawatt (10'® Watt) in
any laboratory. Here again, a compromise has to be made between power
and duration: the highest power cannot be emitted during a “long” time.

In addition to the duration, the power, and the bandwidth of the impul-
sion, two other technological data of importance are a) the modulation rise-
time, that is the time necessary to establish the given shape of the impulsion
(one can play with that, for creating a moderate pulse in an extremely short
time can be almost as efficient as giving to the system a “slowly” increasing
more powerful impulsion) : the typical modulation risetime available today
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is 5 femtoseconds, b) the repetition frequency, as it is important to be able
to make a lot of experiments in a short time’; today the frequency ranges
from 10 Hertz to one kiloHertz, depending on the power.

Finally, the chemist must establish a trade-off between all these techno-
logical constraints in order to choose the most efficient way to proceed.

Experimentaly, today’s state of the art of laser control of chemical reac-
tions is still at a very early stage, to the best of the author’s knowledge. The
short term goal is to discriminate among the possible ways of dissociation
for a molecule, like in

A+ BC
ABC — ¢ AB +C
A+ B+ C.

Another goal can for instance be to prevent dissociation of a molecular
system (to give it as much energy as possible, and let it release that energy
in one go). So far, doing (experimentally) isotopic separation of hydrogen
with laser control is possible, and current research is directed towards going
further®.

On the theoretical side, things are more advanced.

As mentioned above, there is a lot of works devoted to the application of
control theory to some models of Quantum Chemistry: [30, 32, 34, 36, 37, 38].
The mathematician will be most inspirated by these works. However, some
comments are in order.

1: - most of the works deal either with optimal control on a very simplified
model, or with exact control on a finite dimensional approximation,
2: - there seems to be plenty of room for improvement in the mathemat-

ical proofs [30], and in the numerical analysis [37],

3: - there is a huge discrepancy between the sophistication of the the-
oretical models that are available for the simulation of the evolution
of molecular systems, and the simplified models that are actually used
in the theoretical arguments for control theory. Typically, either the
Schodinger equation itself is used, which is technically very limiting
because only a “significant” subsystem (of very limited size) of the to-
tal system can be considered, or some very crude approximation of the
Schrodinger equations is used, which in turn also dramatically reduces
the scope of the study.

4: - what is probably partially responsible for the observation 3 - is the
fact that although a large number of codes are available for the simu-
lation of the steady state of a molecular system and for the associated

"Note that this is (again) a highly uncommon feature of the control theory applied to
quantum chemistry : we are here in a framework where we can do plenty of experiments
in a minute. This is obviously not the case in other fields of engineering sciences. And
this must be taken into account.

5More precisely, the chemists usually classify the techniques of control in experimental
quantum chemistry into three categories : those of optimal control (works by Rabitz and
collaborators, these are the ones we focus on), those of coherent control (use of more than
one single laser in order to create constructive interferences and lead the molecule where
desired, works by Brumer and collaborators [4]), and those of nonlinear control (use of
very intense laser beams, works by Bandrauk and collaborators).
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E(t)

t=0

afew tenthsof ps

FIGURE 1. A typical output of optimal control theory
applied to the evolution of a molecular system: the
laser field to be used in order to approach the target
state.

physico-chemical properties, there are only a few of them whose ca-
pabilities include the simulation of time dependent phenomena’. In
addition, these “rare” code are mostly home-made codes, rather confi-
dential, and not commercial user-friendly worldwide known codes.

5: - apparently, connections seem to be missing between chemists do-
ing the theoretical works and chemists doing the experiments. The
fact that oversimplified models are used in the theoretical works and
the numerical simulations seem to play some role here, because they
are likely to make difficult the comparison between experiment and
numerical simulation. Using more sophisticated models could help in
that respect.

For all the above reasons, it seems that we mathematicians could try to
do something in this field. Of course, the author does not pretend that a
mathematical approach (what is more if made by him) will succeed where
the chemical somewhat pragmatic approach has failed. But at least it can
do no harm.

Before we suggest a way to proceed, let us emphasize the following fact.

In view of the technological data recalled above, there is a legitimate
question that can be asked. When we define our mathematical model (2)
for the laser control, we shall need to prescribe a class of admissible controls
E(t). Then

1: - should we stick to reality and consider in our class of mathematical

admissible fields E(t) only fields that are feasible by today’s state of
the art of the laser technology (indeed, this is often a critics made to
the theoretician that he must take into account the constraints of the
real life), or

2: - should we extend the class of admissible controls to electric fields

that we definitely know to be irrealistic today 7

It turns out that both choices are correct and useful. As it might seem
unclear for the second choice, let us emphasize that one useful output of

"Time-dependent phenomena are mostly approached through the determination of fre-
quencies, and not as such.
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a theoretical control approach in this context could be a significant help
in the design of the next generation of lasers, or more generally on the
next generation of devices used in laser technology. Indeed, it is somewhat
difficult, without disposing of any concrete need and without formulating it
in precise statements, to give directions and anticipate for the need of lasers.
Saying “for the application we have in mind, we would need to generate
an electric field of the following shape, within the following risetime” would
therefore provide some help in that respect.

In other words, the situation is such that we can feel free on the theoretical
side, and this is good news.

4. TOWARDS MORE SOPHISTICATED MODELS: APPROXIMATIONS OF THE
TIME-DEPENDENT SCHRODINGER EQUATION FOR MOLECULAR SYSTEMS

We consider a chemical system consisting of M nuclei and of N electrons.
Denoting by my the mass of the k-th nucleus and z; its charge, the “exact”
non-relativistic Hamiltonian reads

Mo N
(12) H = _Z—Af Z T ZZ|xz_xk|

m
k=1 k =1 i=1 k=1
2k 2l
+ 2 D
1<i<j<

N i $J| 1<k<I<M Tk — 2]

The first term in the Hamiltonian H represents the kinetic energy of the
nuclei, the second term that of the electrons, the third term the attraction
between electrons and nuclei, the fourth and the fifth terms the interelec-
tronic and the internuclear repulsions respectively. To write this Hamilton-
ian, all the physical constants have been set to one for simplicity. The space
of the physical states is a tensor product of the subspaces H, and H, of
the nuclear and electronic wave functions. For chemical systems made up of
more than two or three particles, the problem of solving directly equation
(1) with the Hamiltonian H given by (12) is of too much a large size to be
directly tackled by standard numerical methods and it is then necessary to
approximate it.

4.1. The adiabatic approximation. A standard approximation method
is the so-called adiabatic approximation. Briefly speaking, it consists in
getting rid of the fast dynamics of the electrons by assuming that at any
time the electrons are in the electronic ground state, which of course depends
on the time wvia the nuclear coordinates. In a some cases, the adiabatic
approximation means that the electrons remain in the k-th excited state, k
being independent of time, but for simplicity, we shall only deal here with
the ground state. More precisely, the nuclei are assumed to interact with
the electrons through the potential

(13) U(fla"' a*fZ‘M) = inf{<¢67He([Z‘la"' 7fM) "‘;b8>a ¢6 € HC? ||¢6|| = 1}

where H, denotes the electronic Hamiltonian
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(14)
He(@1,--- &u) = = Z D 3) proe e REP D  reent
-1 i=1 k= 1|xl—xk 1<i< l_$3|
J<N
Next, the nuclear motion is treated either as a quantum problem
Oy

(15) i@t = n@bn

with

M
_ _ 2k 2l
(16) Hn:_zAi‘k_'_U(xlu"' ,xM)‘i— Z m,
k=1 1<k<i<m kT
or as a semi-classical problem, or also, which is most frequently the case, as
a classical problem. In the latter case, the system reads

(17)

d2fk 2l Zm,
— () = —Vj; U(zq(t yrot ,7 t P ———
G 0 = ~Va, (V@ o)+ P HE
1<l<m<M

U(fla e a*fZ‘M) = inf{<¢ea HE([Z‘la e 7£M) : ¢8>a ¢6 € Hea ||¢8|| = 1}
The adiabatic approximation is in fact the generalization of the Born--
Oppenheimer approximation to a time-dependent setting.

In practice, the minimization problem (13) has to be approximated, as in the
time-independent case, by one of the standard (Hartree-Fock [18] or Density
Functional [13]) method. The quantum nature of the problem is completely
enclosed in the potential U. The rest of the problem is a matter of classical
dynamics for the nuclei moving along the hypersurface of energy (see the
connected theory of chemical reaction paths in [14]). However, problem
(17) remains very time-consuming since a time-independent minimization
problem has to be solved for each time step in order to compute VU. A
possibility is to make an additional approximation first introduced by Car
and Parrinello [9]: it consists in replacing the minimization problem by
a fictitious (non-physical) electronic dynamics which makes the electronic
wave function evolve in the neighbourhood of the adiabatic state. From a
mathematical point of view, the Car-Parrinello method is investigated in [3].
All the models described so far can be attacked in a control theory approcah.
Nevertheless, we prefer to concentrate on another type of models, to which
we now turn.

4.2. A non-adiabatic approximation. Unfortunately, the adiabatic ap-
proximation is not always valid. When a time-dependent electric field is
turned on, the electrons do not stay in a well-defined Born-Oppenheimer
energy surface, for this perturbation induces a priori transitions in the
electronic spectrum. Adaptations of the adiabatic models can indeed be
made, but in order to deal with such situations, the following approximation
method is often used. Firstly, the nuclei are considered as classical point
particles. In the sequel, this is refered to as the point nuclei approximation.
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Like that of the Born-Oppenheimer approximation, the physical justification
of the point nuclei approximation comes from the fact that nuclei are much
heavier than electrons. Consequently, the quantum nature of the nuclei can
be neglected with good reason in most applications®. The point nuclei ap-
proximation is almost always valid in Chemistry: the state of the system is

then described at time ¢ by

di N
1 <{xk(t)’ d—;(t)}1<k<M’¢e(t)> =R AL,

=1

where Z(t) and dx’f (t) denote respectively the position and the speed of the
k-th nuclear at tlme t and where 1, (t) denotes the electronic wave function at
time ¢. The motion of the electrons is controlled by the electronic Schrodinger
equation

.
? ot —He(t)";bea

where the electronic Hamiltonian reads

(19)

N
@) HB=-Y A zz|w_xk T D .
=1 ¢

i=1 k=1 1<z<]<N Ti =

Note that H,(t) acts on the electronic variables only; the nuclear coordinates
Tk (t) are parameters. Chemical reactions are then described by the system
consisting of (19) together with

(21)

where

_ 2 p(t, ) 2k 2]
22 Wit z1,--- ,Zp / dz + P
(22)  w( Z Tl >

1<k<I<M |#% — @]

and p(t,z) = N / - [ibe|?(t, &, @9, - -+ ,2N) ds - - - dry denotes the elec-
3(N—-1

tronic density. The above two equations mean that each nucleus moves
according to the Newton dynamics in the electrostatic potential created by
the other nuclei and by the mean electronic density p.

The point nuclei approximation enables one to deal with the nuclear part
of the system. Now, as in the time-independent setting, the electronic
Schrodinger equation cannot be solved directly and additional approxima-
tions are necessary.

A possibility we shall focus on is to use the Hartree-Fock approximation: it
consists in forcing the wave function to move on the manifold

8 Again, not all applications, but we need to be schematic.
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(23)
A={¢e(x1,---,wn)zx/%det(@(wj)) bem @) [ o ¢J_au}

of H. and in replacing equation (19) by the stationarity condition for the
action

T
(24) / (e (1), (i00pe () — Ho(t)ibe(t))) dt

The associated Euler-Lagrange equations [26] read

;0%

(25) i = Hy; + ZAZJ%
7j=1
with
_ M N 1 N 1
(26) H¢:_A_Z| z:|¢j|2*m —Z<¢;‘*m> (j)j.
k=1 j=1 J=1

We draw the reader’s attention on the fact that, again, this approximation
has created nonlinearity.

The system under study couples the electronic Hartree-Fock evolution
equation with the nuclear dynamics and reads?:

(27)
( 090 _ al 1 al 1
¢ —A¢; — Z |¢i+ lebjl?*m @—Z(W*m)%
d2fk _ _ = -
mkW(t) = —ijW(t;xl(t):- T (t))
60 = m0) =af ) =)

with

M N
(28) Wtz au) == Y0 S (GO lgo) + 3 L

k—1i—1 |-~k 1<k<I<M @k — @l

Incidentally, let us mention that a lot of theoretical work remains to
be done concerning the rigorous foundations of the time-dependent mod-
els above. Although, we have plenty of information at our disposal (mainly
asymptotic limits) to understand to which extent the stationary models of
Quantum Chemistry approximate the stationary Schrodinger equation, we
miss such results in the time dependent setting.

%Let us notice that in calculations on large biological systems, the chemical system
under consideration is sometimes split into two parts, the first one being computed with
Quantum Mechanics, the other one with Classical Mechanics. The system obtained then
is of the same form as (27).



14 CLAUDE LE BRIS

5. A TOY MODEL

Taking only one electronic wavefunction and one nucleus in the above
system (27) leads to the following simpler system:

(29)
Gy (t2) = ~Ag(0,0) + V(o ~ 2(0)i,2) + (105 1) (2ot
2z
mT2 (1) = (BOIVV( — 2(0))[6(1)

B0 = ¢, 3(0) =" ()=

where V(z) = —‘—i‘ (Z being given).

Understanding the mathematical properties of this latter system is enough
to completely understand that of the original system (27). A complete study
of the Cauchy problem for (29) has been given in [6]. The case when the
molecular system is subjected to an electric field has also been studied,
therefore preparing the groundwork for a study of the laser control in this

setting. In fact, system (29) may be further simplified into

% ) = — €T —£ €T 2 i X xr
ooy { ot = skt = ot (e ) 6.0t
50, = ¢,

where we get rid of the moving nucleus and replace it by a fixed one at the
origin. Although system (29) and system (30) do not exactly exhibit the
same mathematical properties (the conservation law for energy is slightly
different), we believe it is enough for a first step to understand the control
problem on the toy model (30). In [8], we therefore investigate the following
optimal control problem that we formulate somewhat vaguely here : let us
be given some final time 7', some constant o > 0, some initial state ¢°(-)
and some target state (), both living, at least, in L?(IR?),

Find some electric field E(¢), minimizing
(31)
inf{[[¢(t = T,-) — ¢r() > + | EC)II*}

where ¢(t =T, ) is value at time ¢ = T of the solution to

.0
Yot

L (|¢|2 *i> (t,2)(t,)

(t,z) = —A¢(t,x) —
|z| |z|
(32)

+E(t)z19(t, x)

¢(07 ) = ¢0-

One may find in equation (32) the general difficulties of the type of prob-
lems we consider : the equation is nonlinear, nonlocal, and features a poten-
tial that is both locally singular and long ranged. We therefore believe that
a complete study of this question will give some valuable insight into the
more general problem of control. Needless to say, other simplified “model”
problems could as well be considered.
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6. CONCLUSION

In our opinion, Quantum Chemistry is an unexplored field for experts at
Control Theory that is worthwhile investigating.

Having in mind the applications related to the laser control of chemical
reactions, we have given a short (not exhaustive) list of time dependent mod-
els, concentrating on the time-dependent Hartree-Fock model, that seems to
us the most interesting. However, in this list and in the models mentioned in
the numerous references we have given'?, the reader can pick out any model
and study it from the control theory standpoint : such a study will certainly
give some precious insight into the whole hierarchy of models. Anyhow, the
community of applied mathematicians can benefit from the studies made by
chemists on these topics.

In the variety of models that can be used to simulate the evolution of a
molecular system (or more generally the interaction of molecular systems
through chemical reactions), it is crucial to understand questions such as
the following one. Should we approzimate the “exact” Schrodinger equation
by some numerically tractable theoretical model, then apply the machinery
of control theory to this model, and finally get into the numerics, or should
we proceed the other way round, applying the control theory to the exact
Schodinger equation, and next try to approximate things, continuously and
then numerically'! (See Figure 2)? Of course, many intermediate ways can
alternatively be followed ...

We have concentrated on purpose on the theoretical aspects of control
theory applied to quantum chemistry. However, a companion article could
be written, the focus being this time on the computational aspects. Indeed,
the numerical optimization problems are numerous and interesting in Quan-
tum Chemistry. They are not all issued from an optimization related to an
optimal control problem for the laser control of chemical reaction: they also
arise in other contexts. In any case, they exhibit some very peculiar features,
that can be either advantages or disadvantages from the practical viewpoint.
To mention just one feature, let us say that in Quantum Chemistry, the gra-
dient of the energy with respect to some parameters of the problem (like the
positions of nuclei) often admits an explicit analytic expression, which rarely
occurs in the everyday life of engineering sciences ! Special algorithms have
to be used or designed, taking benefit of such a feature, and of other ones
of the same peculiarity. This makes Quantum chemistry also a rich field of
investigation for researchers interested by such computational issues.

In addition, we have concentrated on the optimal control problem, mainly
because we believe the exact controllability question to be too difficult. Even
in the most “simple” cases [1], bilinear control is quite an achievement.
However, there may be some simplified problems, for instance corresponding
to finite dimensional approximations of the PDE, where that question could
be tractable.

Likewise, other questions of interest such as robustness issues (See [38])
may be addressed.

10why not use a molecular dynamics model like those of [15, 17, 33], coupled with a
quantum model for the reactive part of the system, if necessary?
" Obviously, we prefer the first strategy which we suspect to be more efficient...
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Schrodinger Equation — Control —— approximation

| | !

“Continuous” approximation —— Control —— Discretization
FIGURE 2. Some possible ways to proceed, amongst others.

The author strongly encourages the interested reader to contact him. Any
suggestion or comment is welcome and will receive his best attention.
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