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(H2) 9 �0 > 0 suh that j�(x)j � �0 for x > 0.Under these hypotheses, the proess log(Xt) has a smooth transition density pt(�; �) w.r.t.the Lebesgue measure on R. It implies that the proess Xt has also a density qt(�; �) givenby qt(x; x0) = pt(log(x); log(x0))x0 8(x; x0) 2 R�+ � R�+ :As usual, we introdue the proess Wt = Bt + R t0 �(Xs)�r�(Xs) ds whih is a Brownian motionunder an appropriate probability, alled the neutral-risk probability, denoted by P. Thus,the risky asset satis�es a new stohasti di�erential equation:dXt = rXtdt + �(Xt)XtdWt:In the following, we onsider European vanilla options with payo� funtion f 2 L2(XT ).Mathematially, the prie of this option is given byh(f) = E (exp (�rT )f(XT ) j F0) :If we set u(t; x) = Ex �e�r(T�t)f(XT�t)� ; (1)note that h(f) is equal to u(0; x) and that u solves the Cauhy problem:� ��tu(t; x) = 12�2(x)x2 �2�x2u(t; x) + rx ��xu(t; x)� ru(t; x) with (t; x) 2 [0; T )� (0;1)(2)u(T; x) = f(x) for x 2 (0;1):The well known option valuation formula ise�rT f(XT ) = h(f) + Z T0 �t d eXt;where fXt = e�rtXt is the disounted prie of the risky asset. Itô's formula implies thatthe delta hedging strategy � is given by�t = �u�x(t;Xt):In other words, to have a perfet hedging, the investor must trade at eah time t 2 [0; T ℄and hold �t units of the underlying asset. In pratie, this is impossible.An alternative solution is to hedge only at disrete times. In fat, assume that the investorwill trade at n �xed times in the period [0; T ℄. At eah trading times de�ned by tk = kT=n(k 2 f0; : : : ; ng), the trader holds �tk units of the asset Xt. Hene, at maturity the investorwill be left with the di�erene:�n(f) := e�rT f(XT )��u(0; x) + Z T0 �u�x ('(t);X'(t))dfXt�= �Z T0 �u�x(t;Xt)dfXt � Z T0 �u�x('(t);X'(t))dfXt� ;2



where '(t) = supfti j ti � tg.Our purpose is to study some aspets of the onvergene of �n(f) to 0 when n goes toin�nity.2 ResultsIt is already known thatProposition 2.1. (Revuz-Yor([2℄) Proposition 2.13 p. 135)With the above notation, �n(f) onverges in probability to 0:�n(f) P�����!n! +1 0:From now on, we are going to analyze the risk inurred by the trader by evaluating therate of onvergene of the variane of �n(f). The main ontribution of this paper is toprove that the results strongly depend on the regularity property of the payo� funtion f .� The ase where f is absolutely ontinuous with polynomial growth (European all orput e.g.) was studied by Zhang [5℄: under tehnial assumptions, the error dereasesas 1=n. One hasE�2n(f) = T2nE  Z T0 e�2rtX4t �4(Xt)��2u�x2 (t;Xt)�2 dt!+O� 1n 32 � :We now fous on more irregular payo�s.� For an European all digital option with strike K > 0 and maturity T (a ontingentlaim whih pays 1 if the prie of the underlying risky asset lies above K at maturityand whih pays nothing otherwise), the rate of onvergene is 1=pn.Theorem 2.1. Under (H1) and (H2), for the ase(C0) f(x) = 1x�K ;one has E�2n(f) =rTn C04p�K�3(K)e�2rT qT (x;K) +O� log(n)n �where C0 is an universal onstant, de�ned in lemma (3.4) below.The same rate of onvergene ours for funtions f whih an be written as f(x) =C 1x�K + g(x), for some onstants C and K, and for some funtion g of lass C1pol,e.g. for the digital put 1x�K .� Some intermediate rates of onvergene (between 1=pn and 1=n) an be ahievedwith funtions f satisfying a H�older ondition i.e. with an intermediate regularityproperties between disontinuity and absolute ontinuity.3



Theorem 2.2. Under (H1) and (H2), for the ase(Ca) f(x) = (x�K)a+ a 2 �0; 12� ;one hasE�2n(f) = �Tn� 12+a ĈaK1+2a�3+2a(K)e�2rT qT (x;K) + o� 1n1=2+a� ;with Ĉa = Ca ZR dÆ�Z +1�Æ aw dwp2�(Æ + w)1�a e�w22 �2 ;where Ca is an universal onstant, de�ned in lemma (3.4) below.Note that these results are still available under the historial probability.These previous results on the rate of onvergene in L2 norm might be surprising beausethe weak onvergene in the ases (C0) and (Ca) ours at rate 1=pn. This an be derivedfrom a general result of Rootzen ([4℄) by hard hekings of the assumptions for somepartiular models.Theorem 2.3 (Rootzen ([4℄)). Let Xt be a di�usion that solves the Blak & Sholesequation dXt = �XtdWt, then if u is de�ned as in (1), it follows thatpn�n(f)!d Ŵ� ; n!1; (3)where � = 12 R T0 ��2u�x2 (t;Xt)�2 �4X4t dt, and Ŵ is an extra Brownian motion independentof � .Note that this last theorem is not ontraditory with the theorems 2.1 and 2.2 sine weannot take the "expetation of the square" in the onvergene equation (3). It is evenpossible to hek that for the ases (C0) and (Ca), one has E (�) = +1.3 Proof of theorems 2.1 and 2.23.1 General deomposition of the errorWe are interested in omputingE ��2n(f)� = E "�Z T0 ��u�x(t;Xt)� �u�x('(t);X'(t))� d eXt�2# :Sine eXt is a martingale under the neutral-risk probability, one hasE ��2n(f)� = E "Z T0 ��u�x(t;Xt)� �u�x('(t);X'(t))�2X2t e�2rt�2(Xt)dt# = E �Z T0 M2t dt� ;4



where we denote Mt = ��u�x(t;Xt)� �u�x ('(t);X'(t))� e�rt�(Xt)Xt:Itô's formula for M2t , between '(t) and t, yieldsM2t = 2Z t'(t)MsdMs + Z t'(t) dhM;Mis:Put Du(t) = �u�x(t;Xt)� �u�x('(t);X'(t)) (note that '(�) = '(t) 8� 2 ['(t); t℄), a straight-forward alulation leads toer�dM� = � �2u�x�t(�; x)x�(x) � rDu(�)x�(x)�����x=X� d�+ �rx��2u�x2 (�; x)x�(x) +Du(�)(x�(x))0������x=X� d�+ �x�(x)��2u�x2 (�; x)x�(x) +Du(�)(x�(x))0������x=X� dW�+ �12x2�2(x)��3u�x3 (�; x)x�(x) + 2�2u�x2 (�; x)(x�(x))0 +Du(�)(x�(x))00������x=X� d�;and dhM;Mi� =  ��2u�x2 (�; x)x�(x) +Du(�)(x�(x))0�2 e�2r�x2�2(x)!�����x=X� d�:The derivative of u w.r.t. t an be rewritten using (2) :� �2u�x�t(t; x) = 12x2�2(x)�3u�x3 (t; x) + x�(x)(x�(x))0 �2u�x2 (t; x) + rx�2u�x2 (t; x):Consequently, we obtain, after some simpli�ations,E ��2n(f)� = E Z T0 dt Z t'(t) d�" e�2r�Du(�)x�(x)n� 2rDu(�)x�(x)+ 2rxDu(�)(x�(x))0 + x2�2(x)Du(�)(x�(x))00o+ e�2r�x2�2(x)D2u(�)[(x�(x))0℄2 + 2e�2r� �2u�x2 (t; x)x3�3(x)Du(�)(x�(x))0!�����x=X�+��2u�x2 (�;X�)�2 e�2r��4(X�)X4�#:Therefore, we have E ��2n(f)� = A1 +A2 +A3; (4)5



with A1 = E Z T0 dt Z t'(t) d� �e�2r� �2u�x2 (�;X�)�2�4(X�)X4� ; (5)A2 = E Z T0 dt Z t'(t) d� e�2r�D2u(�)X2��(X�)g(X�); (6)A3 = 2E Z T0 dt Z t'(t) d� �e�2r� �2u�x2 (�; x)x3�3(x)Du(�)(x�(x))0� �����x=X� ; (7)where the funtion g is de�ned byg(x) = �2r�(x) + 2r(x�(x))0 + (x�(x))00x�2(x) + [(x�(x))0℄2�(x)= 2 x�0(x)(r + �2(x)) + x2�00(x)�2(x) + [(x�(x))0℄2�(x);and is bounded under assumption (H1).The remainder of the proof onsists in proving that A1 gives the main term in the expansionof E ��2n(f)�, whereas A2 and A3 are negligible. We �rst need some estimates to ontrolderivatives of u.3.2 Preliminary estimatesFrom now on, K(T ) will always stand for a non dereasing, �nite, positive map, whih anhange throughout the alulus, but without numbering in a di�erent way the funtionswhih will appear.We put Yt = log(Xt) andb(y) = r � �2(ey)2 ; s(y) = �(ey); y0 = log(x0):Hene, obviously, the proess Yt is the solution of the stohasti di�erential equation:Yt = y0 + Z t0 b(Yu)du+ Z t0 s(Yu)dWu: (8)Note that, under assumption (H1), the oeÆients b and s belongs to C2+Æb (R;R). Hene,we haveProposition 3.1. (Friedman, [1℄, Chapter 6)Under (H1) and (H2), for t > 0, the proess Yt(y) has a smooth transition density pt(y; �)w.r.t. the Lebesgue measure on R, whih ful�lls:� 8t > 0, pt(�; �) belongs to C4(R2 ;R)� 8�; � 2 N suh as �+� � 4, there exist a funtion K(T ) and a onstant  > 0, suhthat: 8(t; y; y0) 2 (0; T ℄� R � R ���� ��+�pt�y��y0� (y; y0)���� � K(T )t�+�+12 e� (y�y0)2t : (9)6



� pt(�; �) satis�es the Kolmogorov bakward equation:�pt�t (y; y0) = Lpt(y; y0) = s2(y)2 �2�y2 pt(y; y0) + b(y) ��ypt(y; y0); (10)and the forward equation:�pt�t (y; y0) = L�pt(y; y0) = �2�y02 �s2(y0)2 pt(y; y0)�� ��y0 �b(y0)pt(y; y0)� : (11)With the above notation, we de�ne the funtion v byv(t; y) := u(t; ey) = E y �e�r(T�t)f(eYT�t)� = e�r(T�t) ZR f(ey0)pT�t(y; y0) dy0;whih satis�es the Cauhy problem� ��tv(t; y) = 12s2(y) �2�y2 v(t; y) + b(y) ��y v(t; y)� rv(t; y) in (t; y) 2 [0; T ) � R (12)v(T; y) = f(ey) on R:Estimates from proposition (3.1) now enable us to establish some spei� estimations onthe derivatives of v whih are not given by standard results on PDE's.Lemma 3.1. Case (C0)Under (H1) and (H2), the funtion v belongs at least to C2;4 ([0; T ) � R) and for (t; y) 2[0; T )� R and � � 4, the following inequalities hold:������v�y� (t; y)���� � K(T )(T � t)�2 ; (13)and E � �2v�y2 (t; Yt)�2 � K(T )T 12 (T � t) 32 : (14)Lemma 3.2. Case (Ca)Under (H1) and (H2), the funtion v belongs at least to C2;4 ([0; T ) � R) and for (t; y) 2[0; T )� R and 1 � � � 4 an integer, the following inequalities hold:������v�y� (t; y)���� � K(T )ejyj(T � t)��a2 ; (15)and E � �2v�y2 (t; Yt)�2 � K(T )e2jy0jT 12 (T � t) 32�a : (16)7



Proof of lemma 3.1. Inequality (13) is easy to obtain, using (9), sine we have������v�y� (t; y)���� � e�r(T�t) Z +1log(K) ������pT�t�y� (y; y0)���� dy0� K(T )(T � t)�2 Z +1log(K) e� (y�y0)2T�tpT � t dy0 � K(T )(T � t)�2 :To prove estimate (14), we �rst use the bakward equation (10) to obtain�2v�y2 (t; y) = e�r(T�t) ZR f(ey0)�2pT�t�y2 (y; y0)dy0= e�r(T�t) ZR f(ey0)��2b(y)s2(y) �pT�t�y (y; y0)� 2s2(y) �pT�t�t (y; y0)� dy0;and then, the forward one (11) to evaluate the derivative w.r.t. the time, to get�2v�y2 (t; y) = �2b(y)s2(y) �v�y (t; y)+ e�r(T�t) ZR f(ey0)� 2s2(y) � �2�y02 �s2(y0)2 pT�t(y; y0)�� ��y0 �b(y0)pT�t(y; y0)��� dy0(17)= �2b(y)s2(y) �v�y (t; y) + 2 e�r(T�t)s2(y) �b(y0)pT�t(y; y0)� ��y0 �s2(y0)2 pT�t(y; y0)�� �����y0=log(K);(18)where we used an elementary omputation of the integral. Using the estimates (9), itreadily follows that�����2v�y2 (t; y)���� � K(T )pT � t �1 + 1pT � t exp��(y � log(K))2T � t �� :Hene, one hasE � �2v�y2 (t; Yt)�2 � K(T )T � t �1 + E � 1T � t exp��2(Yt � log(K))2T � t ��� :To onlude the proof of estimate (14), it remains to show thatE � 1pT � t exp��2(Yt � log(K))2T � t �� � K(T )pT ;whih is easily obtained using an upper bound (9) for the law of Yt and standard argumentsinvolving onvolution of Gaussian kernels.We now intend to prove the equivalent lemma for the ase (Ca). The tehniques are quitesimilar. 8



Proof of lemma 3.2. For (15), if we remark that for � � 1, ��y RR pt(y; y0)dy0 = 0, we areable to write that��v�y� (t; y) = e�r(T�t) ZR(f(ey0)� f(ey))��pT�t�y� (y; y0)dy0:Now, applying the H�older properties for the funtion f and inequality (9), we get������v�y� (t; y)���� � K(T )(T � t)��a2 ZR jey0 � eyja(T � t)a2 e� (y0�y)2T�t dy0pT � t :The hange of variable z = y0 � ypT � t (19)yields (15). For the seond inequality, if t is small (t � T=2), (16) is an immediateonsequene of estimate (15). For t large (t > T=2), we start from (17) (whih is alsoavailable in this ase) and after an integration by parts, we obtain:�2v�y2 (t; y) = �2b(y)s2(y) �v�y (t; y)� e�r(T�t) Z +1log(K) ey0f 0(ey0)�s2(y0)s2(y) �pT�t�y0 (y; y0)� 2b(y0)� 2s(y0)s0(y0)s2(y) pT�t(y; y0)� dy0:(20)To go on with the proof of (16), we admit the following lemma, whih proof is postponedin Appendix A.Lemma 3.3. With the above notation and assumptions, for any bounded funtion g, for� = 0 or 1, one has�����Z +1log(K) ey0f 0(ey0)g(y; y0)��pT�t�y0� (y; y0)dy0����� � K(T )ejyj(T � t)�+1�a2 11 _ ��� log(K)�ypT�t ���1�a : (21)We apply (15) to upper bound the �rst term of (20) and the lemma above for the two lastones. It follows thatE � �2v�y2 (t; Yt)�2 � K(T )e2jy0j(T � t)1�a + K(T )(T � t)2�a Z +1log(K) pt(y0; y0) e2jy0jdy01 _ ��� log(K)�y0pT�t ���2�2a :The hange of variable z = y0�log(K)pT�t leads to
9



E ��2v�y2 (t; Yt)�2� K(T )e2jy0j(T � t)1�a + K(T )(T � t) 32�a Z +10 pt(y0; zpT � t+ log(K))e2jzpT�t+log(K)jdz1 _ jzj2�2a� K(T )e2jy0jpT (T � t) 32�awhere we use that pt(y0; zpT � t+log(K))e2jzpT�t+log(K)j is bounded by K(T )e2jy0j=pT ,uniformly in z (see inequality (9) with t � T=2) and that the funtion 11_jzj2�2a is integrableover R (a belongs to (0; 1=2)).3.3 Upper bound of the terms A2 and A3Reall that we intend to prove that these terms are negligible w.r.t. the expeted order ofthe term A1.3.3.1 Case (C0)First, from v(t; x) = u(t; exp x), we easily dedueE �X2tD2u(t;Xt)� � 2E � �v�y (t; Yt)�2 + 2E � XtX'(t) �v�y ('(t); Y'(t))�2 � K(T )T � t ;using (13) and some lassial exponential estimates to ontrol E(Xpt +X�pt ).Hene, one has jA2j � Z T0 dt Z t'(t) d� K(T )T � � = O� log(n)n � :To ontrol A3, we ombine the Cauhy Shwarz inequality with estimates (13) and (14)to have jA3j � K(T )Z T0 dt Z t'(t) d� 1T 14 (T � �) 34 � 1(T � �) 12 = O� 1n3=4� ;whih proves that A3 is of order less than the required one, i.e. n�1=2. To obtain A3 =O � log(n)n �, we need to apply Itô's formula one again (this replaes the rough estimategiven by the Cauhy Shwarz inequality) and develop same arguments as above. We omitthe details.
10



3.3.2 Case (Ca)Analogous arguments apply to obtainjA2j � Z T0 dt Z t'(t) d� K(T )(T � �)1�a = O� 1n�sine a > 0, andjA3j � K(T )Z T0 dt Z t'(t) d� 1T 14 (T � �) 34�a2 � 1(T � �) 1�a2 = o� 1n1=2+a� :3.4 Term A1We �rst rewrite the term A1 as follows, using the proess Yt:A1 = E Z T0 dt Z t'(t) d� ��2v�y2 (�; Y�)� �v�y (�; Y�)�2e�2r�s4(Y�):To obtain the expansion result of theorems 2.1 and 2.2, we �rst state an analysis lemma,whih proof is given in Appendix B.Lemma 3.4. Let g : [0; T ℄ 7! R be a measurable bounded funtion whih is ontinuous inT . Then, for all a 2 [0; 1=2),Z T0 dsZ s'(s) dt g(t)(T � t) 32�a = Ca g(T )�Tn�1=2+a + o� 1n1=2+a�where Ca := +1Xk=1 Z 10 dsZ s0 dt(k � t) 32�a 2 (0;+1).Moreover, if jg(t) � g(T )j �MpT � t, thenZ T0 dsZ s'(s) dt g(t)(T � t) 32 = C0 g(T )rTn +O� log(n)n � :To omplete the proof of theorems, the above lemma (3.4) will be applied with the funtiong de�ned byFor the ase (C0) g(t) = (T � t) 32 e�2rtE  ��2v�y2 (t; Yt)� �v�y (t; Yt)�2 s4(Yt)! (22)For the ase (Ca) g(t) = (T � t) 32�ae�2rtE  ��2v�y2 (t; Yt)� �v�y (t; Yt)�2 s4(Yt)! (23)We now intend to prove that g is bounded and has a limit in T (whih enables to extendg as a ontinuous funtion in T ), limit whih will give the main term in the expansion ofE(�2n(f)). 11



3.4.1 The funtion g is boundedFor (C0), this diretly omes from the inequalities (13) and (14), sinejg(t)j � K(T )(T � t) 32  1(T � t) 32 + 1T � t! � K(T ):The same statement holds for (Ca) using (15) and (16).3.4.2 Calulus of limt!T g(t).3.4.2.1 Case (C0) Atually, our purpose is to prove a little more, i.e. jg(t) � g(T )j �K(T )pT � t, to ensure that the remainder term is a O � log(n)n �. The de�nition of g (22)and equality (18) yield:g(t) = e�2rT (T � t) 32 E" � 2r�v�y (t; Yt)er(T�t)+ 2fb(log(K)� s(log(K))s0(log(K))gpT�t(Yt; log(K))� s2(log(K))� ��y0 (pT�t(Yt; y0))� ���y0=log(K)#2:Thus, ombining the estimates (9) and (13) with lassial alulations involving onvolu-tion of Gaussian kernels, verify that�����g(t) � e�2rT s4(log(K))(T � t) 32 E � ��y0 pT�t(Yt; y0))���y0=log(K)�2����� � K(T )pT pT � t: (24)To ompute some aurate expansions of the derivatives of the transition density of Yt insmall time, we use the standard representation of the transition density of a 1-dimensionaldi�usion involving some funtional of a Brownian bridge. We refer to Rogers [3℄ for thisrepresentation. If we putS(y) = Z y0 s�1(x)dx; �(y) = � bs � 12s0� Æ S�1(y); h(y) = Z y0 �(x)dx; � = �0 + �2;(t; y; y0) = (2�t)� 12 exp��(y � y0)22t � ; (t; y; y0) = E �exp��12 Z t0 ��y + �t (y0 � y) +�W� � �tWt�� d��� ;then, we havepT�t(y; y0) = (T � t; S(y); S(y0)) exp �Z S(y0)S(y) �(z)dz! (T � t; S(y); S(y0)):
12



If we di�erentiate the above expression w.r.t. y0, the main term when t is near T omesfrom (t; S(y); S(y0)) and is equal to�(T � t; y; y0) := �S0(y0)S(y0)� S(y)T � t (T � t; S(y); S(y0))exp �Z S(y0)S(y) �(z)dz! (T � t; S(y); S(y0)): (25)More preisely, sine the funtions �; h; � and their derivatives are bounded, it is not hardto show that���� ��y0 (pT�t(y; y0))���y0=log(K) � �(T � t; y; log(K))���� � K(T )pT�t(y; y0): (26)Combining (9), (24) and (26), we dedue thatjg(t)� ĝ(t)j � K(T )pT � t;where the funtion ĝ is de�ned byĝ(t) := e�2rT s4(log(K))(T � t) 32 E�2(T � t; Yt; log(K)):Consequently, it remains to prove that ĝ(t) has a limit in T (whih will be equal to g(T ))and that jĝ(t)� ĝ(T )j � K(T )pT � t. We haveĝ(t) = ZR dy0 pt(y0; y0)s2(log(K))e�2rT (S(y0)� S(log(K)))22�(T � t) 32exp��(S(y0)� S(log(K)))2T � t � exp �2Z S(log(K))S(y0) �(�)d�! 2(T � t; S(y0); S(log(K))):By the hange of variables z = S(y0)�S(log(K))pT�t , one has:ĝ(t) = ZR dz s�S�1 �zpT � t+ S(log(K))�� pt �y0; S�1 �zpT � t+ S(log(K))��s2(log(K))e�2rT z22�e�z2 exp �2Z zpT�t+S(log(K))S(log(K)) �(�)d�! 2 �T � t; S(log(K)); zpT � t+ S(log(K))� :By the Lebesgue dominated onvergene theorem, it immediately follows thatlimt!T ĝ(t) = pT (y0; log(K)) s3(log(K)) e�2rT ZR z22�e�z2 dz= pT (y0; log(K)) s3(log(K)) e�2rT4p� := ĝ(T ) = g(T ):13



Furthermore, basi alulations ensure thatjĝ(t)� ĝ(T )j � K(T )pT � t:Hene, by lemma (3.4), we dedue thatA3 = C04p� pTpn�3(K)e�2rT pT (y0; log(K)) +O� log(n)n � ;whih ompletes the proof of theorem 2.1, taking into aount that pT (y0; log(K)) =K � qT (x0;K).3.4.2.2 Case (Ca) From the expression of g, we substitute the derivative of seondorder with the equation (20), and after some simpli�ations, g an be written asg(t) = e�2rT (T � t) 32�aE" � 2r�v�y (t; Yt)er(T�t)+ Z +1log(K) ey0f 0(ey0)(2b(y0)� 2s(y0)s0(y0))pT�t(Yt; y0)dy0� Z +1log(K) ey0f 0(ey0)s2(y0)�pT�t�y0 (Yt; y0)dy0#2:Inequality (15) and lemma 3.3 leads to the fat that the main term in the above expressionwhen t is near T is:e�2rT (T � t) 32�aE" Z +1log(K) ey0f 0(ey0)s2(y0)�pT�t�y0 (Yt; y0)dy0#2:Keeping the same notation of the last paragraph to desribe the representation of thetransition density of a 1-dimensional di�usion, we denote�T�t(y) = Z +1log(K) ey0f 0(ey0)s2(y0)�(T � t; y; y0)dy0:Therefore, estimates (9), (26) and (21) yieldlimt!T e�2rT (T � t) 32�aE"  Z +1log(K) ey0f 0(ey0)s2(y0)�pT�t�y0 (Yt; y0)dy0!2 � �2T�t(Yt)# = 0:Consequently the limit of g when t tend to T is given by the limit of ĝ de�ned byĝ(t) = e�2rT (T � t) 32�aE�2T�t(Yt): (27)
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Writing the above expression in terms of integral, we haveĝ(t) = e�2rT (T � t) 32�a ZR dy pt(y0; y)(Z +1log(K) aey0(ey0 �K)1�a s2(y0)�(T � t; y; y0)dy0)2 :With the following hanges of variable and notation�t(w) = S�1(S(log(K)) + wpT � t); ! = S(y0)� S(y)pT � t ; Æ = S(y)� S(log(K))pT � t ;ĝ an be written asĝ(t) = e�2rT (T � t)2�a ZR dÆ pt (y0; �t(Æ)) s (�t(Æ))(Z +1�Æ a�(Æ + !)pT � t�1�ae�t(!+Æ)s3 (�t(! + Æ))�R 10 s (�t((! + Æ))) exp (�t ( (! + Æ))) d�1�apT � t � (T � t; �t(Æ); �t(Æ + !)) d!)2:Then, using the de�nition of � (25) and limt!T �t(�) = log(K), one haslimt!T(T � t)�(T � t; �t(Æ); �t(Æ + !)) = �!s(log(K))p2�e�!22 :Sine the funtion R +1�Æ a! d!p2�(Æ+!)1�a e�!22 is square integrable w.r.t. Æ (see estimate (28),Appendix A), the Lebesgue dominated onvergene theorem implieslimt!T ĝ(t) = e�2rT pT (y0; log(K))K2as3+2a(log(K))ZR dÆ�Z +1�Æ a! d!p2�(Æ + !)1�a e�!22 �2:= ĝ(T ) = g(T ):Finally, as in the preeding paragraph, we omplete the proof of theorem 2.2.Appendix A Proof of lemma 3.3Lemma 3.3. Under (H1) and (H2), for f(x) = (x �K)a+ (ase (Ca)), for any boundedfuntion g, for � = 0 or 1, one has�����Z +1log(K) ey0f 0(ey0)g(y; y0)��pT�t�y0� (y; y0)dy0����� � K(T )ejyj(T � t)�+1�a2 11 _ ��� log(K)�ypT�t ���1�a :
15



Proof. Estimate (9) ombined with the hange of variable (19) give:�����Z +1log(K) ey0f 0(ey0)g(y; y0)��pT�t�y0� (y; y0)dy0������ K(T )(T � t)�2 Z +1log(K)�ypT�t ezpT�t+y�ezpT�t+y �K�1�a e�z2dz:Note that ezpT�t+y �K = Z zpT�t+ylog(K) ed � K(zpT � t+ y � log(K));and ezpT�te�z2 � K(T )e�0z2 , where 0 is an other positive onstant. This readily impliesthat�����Z +1log(K) ey0f 0(ey0)g(y; y0)��pT�t�y0� (y; y0)dy0����� � K(T )ey(T � t)�+1�a2 Z +1log(K)�ypT�t e�0z2�z � log(K)�ypT�t �1�a dz| {z }I� log(K)�ypT�t � :
To omplete the proof of lemma 3.3, it remains to prove that8� 2 R I(�) = Z +1� e�0z2(z � �)1�a dz � C(a;0)1 _ j�j1�a ; (28)for some positive onstant C(a;0). In fat if � � 0, we haveI(�) = Z +10 e�0(z+�)2z1�a dz � e�0�2 Z +10 e�0z2z1�a dz � C(a;0)e�0�2 ;whih implies (28). If � is negative, one hasI(�) = Z �2� e�0z2(z � �)1�a dz + Z +1�2 e�0z2(z � �)1�a dz � Ce� 04 �2 j�ja + Cj�j1�a :This onludes the proof of (28) and therefore the proof of lemma (3.3).Appendix B Proof of lemma 3.4Lemma 3.4. Let g : [0; T ℄ 7! R be a measurable bounded funtion whih is ontinuousin T . Then, for all a 2 [0; 1=2),Z T0 dsZ s'(s) dt g(t)(T � t) 32�a = Ca g(T )�Tn�1=2+a + o� 1n1=2+a� (29)16



where Ca := +1Xk=1 Z 10 dsZ s0 dt(k � t) 32�a 2 (0;+1).Moreover, if jg(t)� g(T )j �MpT � t, thenZ T0 dsZ s'(s) dt g(t)(T � t) 32 = C0 g(T )rTn +O� log(n)n � : (30)Proof. 1. Suppose �rst that g is onstant.We an assume g � 1 e.g. . A simple hange of variables leads toZ T0 dsZ s'(s) dt(T � t) 32�a = n�1Xk=0 Z tk+1tk dsZ stk dt(T � t) 32�a= �Tn� 12+a nXk=1 Z 10 dsZ s0 dt(k � t) 32�a! :The series above is onvergent beause its terms derease like n�3=2+a: we denote by Caits limit. This ompletes the proof of (29) in that ase.2. Suppose now that g is a bounded measurable funtion, ontinuous in T .There's no restrition to assume that g(T ) = 0, up to replaing g by g�g(T ) and applyingthe �rst ase. The proof of (29) now onsists in showing thatlimn  �nT �1=2+a Z T0 dsZ s'(s) dt g(t)(T � t) 32�a! = 0: (31)Fix Æ > 0. Sine g is ontinuous in T , there exists � > 0 suh that 8t 2 [T � �; T ℄,jg(t)j � ÆCa . Thus, we dedue that�����Z TT�� dsZ s'(s) dt g(t)(T � t) 32�a ����� � Æ�Tn�1=2+a ;and for 0 � s � T � �, sine T � s � �, we obtain that�����Z T��0 dsZ s'(s) dt g(t)(T � t) 32�a ����� � T 2n kgk1� 32�a :Therefore, for n large enough,������nT �1=2+a Z T0 dsZ s'(s) dt g(t)(T � t) 32�a ����� � 2Æ;whih ompletes the proof of (31) and onsequently (29), when g(T ) = 0. To prove (30),we simply remark that�����Z T0 dsZ s'(s) dt g(t)(T � t) 32 ����� �M Z T0 dsZ s'(s) dtT � t = O� log(n)n � :17
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