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Abstract

In this paper, we are interested in the solution of a viscous scalar conservation law. We
remark that its first order spatial derivatives solve a system of partial differential equations
presenting a nonlocal nonlinearity. We associate a nonlinear martingale problem with this
system. After proving existence and uniqueness for the martingale problem, we obtain a
propagation of chaos result for a system of interacting diffusion processes. We deduce that it
is possible to approximate the solution of the viscous scalar conservation law thanks to the
interacting diffusions.

Let v > 0 and A = (Ay,...,4,) be a C? Rl-valued function on R satisfying A(0) = 0. We
are interested in the parabolic equation obtained by adding a second order diffusion term to the
scalar conservation law dyu + V.A(u) =0 :

{atu =vAu—V.A(u), (t,z) € [0,+00) x R? (0.1)

u(0,z) = up(z).

where V. stands for the divergence with respect to the space variables. This equation presents
a local nonlinearity. Formally, it is possible to associate a nonlinear martingale problem with it
when ug(z) is a probability density on R?. If a probability measure @ on C([0,+00), R¢) with
time-marginals Q, ¢ > 0 is such that Qo = ug(z)dz, Vt > 0, Q; = q(t,z)dz and V¢ € CZ(R?),

t
d(Xy) — d(Xo) —/0 VvAP(Xs) + a(q(s, Xs)).Vo(Xs)ds is a @Q martingale (0.2)

where a(u) = A(u)/u, then ¢(t,x) is a weak solution of (0.1). One could try to prove existence
of a unique solution @ to this problem and to show propagation of chaos to @) for a sequence
of moderately interacting diffusion processes (see Oelschléger [11] who first introduced moderate
interaction).

We are not interested in this point of view. We want to generalize for d > 2 the one-dimensional
approach developped by Bossy and Talay [2] in the case of the viscous Burgers equation (A(u) =
u?/2). Differentiating (0.1) with respect to the i — th space variable, we obtain that Vi < d,
v; = O;u satisfies

Oy = vAv; — V.(A' (u)v;),
Ui(o, ) = Biuo.
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To obtain a closed system for (vy,...,v4), we need to express u in terms of its gradient.

When d = 1, the function v is easily recovered from its spatial derivative v by convolution with
the Heaviside function H(y) = 1y,>0y i-e. u(t,z) = c+ (H xv(t,.))(z). The equation satisfied by
v, O = v0yv — 0z (A’ (¢ + H * v)v), presents a nonlocal nonlinearity. It is therefore possible to
associate with it a nonlinear martingale problem with a drift coefficient which depends globally
on the time-marginals of its solution and not locally on their densities like in (0.2). Moreover
a propagation of chaos result to the solution of this martingale problem can be proved for a
system of weakly interacting diffusion processes (see [2], [7]). Hence differenciation of equation
(0.1) simplifies its probabilistic interpretation.

From now on, we suppose that d > 2. The way the scalar field u(¢,x) can be recovered from
its gradient is not as obvious as in the one-dimensional case. Anderson [1] first suggested to use
the fundamental solution of the Laplacian in R? for this purpose in a particle-method framework
(see also [4], [12]). If  — ~y(z) denotes this fundamental solution and f = ¢ + ¢ where ¢ is a
C™ function with compact support on R%, then f = ¢+ v * Af and by integration by parts,
f=c+ Egzl 0y *0; f. As mentionned in [12], although this method appears to be very different
from the one-dimensional method, it is actually a natural generalization. Indeed the fundamental
1

solution of the Laplacian on R, z — %', has a derivative equal to H(z) — 5.

In the last part of this introduction we remark that the equality f = ¢+ Egzl Oiy * 0; f still
holds under less restrictive assumptions on f i.e. if f € WH1T(R?) where W11+ (R?) denotes
the subspace of L>(R?) consisting in functions with first order distribution derivatives in L' N
L>®(R?). In the first section of the paper, we recall that for uy continuous and bounded, the
scalar conservation law (0.1) admits a unique classical solution bounded by ||ug|/~. Replacing
A by a C? function A equal to A on [—||uo|lco, [|10]|cc] and admitting bounded first and second
order derivatives, we obtain that when uy € WHIH(RY), V¢ > 0,u(t,.) € WHIHT®(RY) and the
constant ¢ in the equality u(t,.) = c+ Egzl O;y+0;u(t,.) does not depend on ¢. As a consequence,
the derivatives (0iu,...,04u) solve the following system with a nonlocal nonlinearity.

(0.3)

Oi = vAv; — V.(0 A (c + Y1, 057 % v;(t,.))),
v;(0,.) = Qjup, 1 <d.

In the second section of the paper we associate a nonlinear martingale problem with this system
and we prove existence of a unique solution for this problem.

The last section is dedicated to a propagation of chaos result. The main difficulty encountered
is the singularity of the kernel Vv at the origin. To overcome this problem, we follow the
approach of Marchioro Pulvirenti [9] and Méléard [10]| who are interested in the two-dimensional
incompressible Navier-Stokes equation. The vorticity w = Osu; — O1us of the velocity field
u = (u1,us2) solution of the Navier-Stokes equation satisfies

Ow = vAw — V.(uw). (0.4)
The velocity field is recovered from its vorticity thanks to the Biot and Savart kernel :
U’(ta $) = (_827 * U)(t, )($), 817 * w(ta )(x))

In the framework first introduced by Marchioro and Pulvirenti, Méléard proves a propagation
of chaos result to the solution of a nonlinear martingale problem associated with (0.4). As the
kernel Vv and the Biot and Savart kernel are very closely connected, we adapt their ideas and
define the n-particles system with a cutoffed kernel replacing Vvy. We first prove that when
the cutoffed kernel converges to V< as n tends to +oo, the empirical measure of the particle
system converges in probability to the unique solution of the nonlinear martingale problem. As



an easy consequence, it is possible to approximate the solution of (0.1) thanks to the empirical
measure. Supposing moreover that the cutoff depends on n in a precise asymptotics given by
the computations like in Méléard [10], we obtain a trajectorial rate of convergence.

To our knowledge, these are the first convergence results for a method based on gradient particles
when the space dimension is strictly greater than 1.

In the numerical simulation of the n-particles system, the complexity of the naive computation
of the interaction between particles is O(n?). One advantage of the gradient approach in space
dimension one is that the drift coefficient of a particle is obtained by calculating the convolution
of the Heaviside function with the empirical measure at the position of the particle i.e. by
counting the number of particles under this position [2]. The numerical complexity can be
reduced drastically by sorting the particles. In space dimension d > 2, computation of the drift
coefficient involves convolution of the empirical measure with the cutoffed kernel replacing V.
This corresponds to the computation of a Coulombic-like interaction. Some fast approximation
algorithms have been developped for the Coulombic interaction [5] [6]. We also point out that
for simulation, the convergence of the cutoffed kernels to V- is far easier to handle than the
convergence of the approximations of identity which appear in the definition of the moderately
interacting diffusion systems associated with the martingale problem (0.2).

Notations

- C denotes a real constant which can change from line to line.
- The Euclidian norm of z € R? is denoted by |x|.

- Let P(C(]0,+00), R%)) denote the set of probability measures @ on C([0,4+00), R%) with time-
marginals Q;, t > 0 admitting densities with respect to Lebesgue measure on R? that belong to
L®(RY).

- The space of bounded signed measures on R? is denoted by M (R?).

- For a function f(z) defined on R%, 9;f (i < d) and V f denote respectively the partial derivative
of f with respect to the i-th variable and its gradient. For a function u(t,z) on Ry x R?, dsu
and O;u denote respectively the derivatives of u with respect to its first (time) variable and its
(¢ + 1)-th (i-th space) variable.

- The heat kernel on R? is denoted by GY(z) =
get

—_— 2 .
(47w%:)d/26_‘x‘ /%t By an easy computation, we

Vi >0, Vi <d, |0;GY|1 =1/Vmvt. (0.5)
- Let CZ(R?) be the space of C? functions on R? bounded together with their first and second
order derivatives.
- L'(R?) = L' N L*®(R?) endowed with the norm |||f|| = ||f]|1 V || f]|s is a complete space.

- Let WHIHo(R?) denote the Sobolev space of functions belonging to L>®(R?) with first order
distribution derivatives belonging to L'**°(R?) endowed with the norm ||f|1,1400 = [l floo +
Egzl [[10:fl|l. Note that if f € Wh!+°(R?), then f admits a globally Lipschitz continuous
representative still denoted by f and

Yo,y € RY | f(x) — f(y)| < C|lfll11400]z —y| where C does not depend on f. (0.6)



In(r)/Sy if d=2

doo\ - where S, denotes the area of the unit sphere in R?,
—1/(Sgr* ) if d>3

- For g(r)= {

the function 2 € R? — g(|z|) is the fundamental solution of the Laplacian in RY. Let K(r) =
(Ki(x),...,Kq(x)) = ¢'(|z|)z/|x| denotes its gradient. The next Lemma groups some useful
properties of the kernel K. It is proved in the Appendix.

Lemma 0.1 1. The function |K|(.) is bounded in the complementary set of the unit ball
B(0,1) and belongs to LP(B(0,1)) for any 1 <p <d/(d—1).
Moreover, for v = (vy,...,vq) € (L' N L®(R4))4, the function K x v : R? — R defined by
K xv(z) = Egzl K+ vi(z), © € R? is continuous and bounded and satisfies

d
1K # vlloo < C D [lfuil]] (0.7)
1=1

Last, A(K *v) = E?:l O;v; in the distribution sense.
2. For fe WHIT©(RY), JceR, f =K+ Vf+ec.

Acknowledgement : [ want to thank Bernard Lapeyre for advising me of the paper of Sherman
and Mascagni [12].

1 Existence and uniqueness for the viscous scalar conservation
law (0.1)

Let uy be a continuous and bounded function on R?. We say that u : [0,+00) x R? — R
is a classical solution of (0.1) if u is continuous on [0, +00) x R, continuously differentiable
with respect to the time variable and twice continuously differentiable with respect to the space
variables on (0, +00) x R? and satisfies

Vo € RY, u(0,2) = up(z) and VY(t,z) € (0,400) x RY, dyu = vAu — V.A(u).

From now on, A denotes a C? function equal to A on [—||ugl|oo, ||t0]|o0] and admitting bounded
first and second order derivatives.

Proposition 1.1 Let uy be a continuous and bounded function on R:. Then the viscous scalar
conservation law (0.1) admits a unique classical solution u bounded by ||upllec. Moreover, the
function u has the following integral representation

t —
u(t,z) = G} * up — /0 VGY_ x A(u(s,.))(z)ds (1.1)

where VGY_, x A(u(s,.)) stands for Egzl 0,GY_s % Ai(u(s,.)).

Proof : Existence of a classical solution is a consequence of results concerning quasilinear
parabolic equations given by Ladyzenskaja, Solonnikov and Ural’ceva [8] (Theorem 8.1 p.495



and Remark 8.1 p. 495). By the maximum principle ([8] Theorem 2.5 p.18), any such solution
is bounded by ||ug]|co-

As the initial condition ug is only continuous, it is not possible to apply the maximum principle
like in [8] p.494-495 to prove uniqueness. That is why we are going to show that any classical
solution w bounded by ||up|lc has the integral representation (1.1). Using the integration by
parts formula, we easily check that u is such that for any C*° with compact support function
¥ : [0, +00) x R = R, Vt > 0,

/Rd Y(t, 2)u(t,z)dr = /Rd (0, 2)up ()dx + /(o,t}de <uz—f + vulyp + A(u).qu) (s, z)dsdz
(1.2)

For t > 0 and f: R = R a C? with compact support function, let ¢(s,z) = Lo, (8)G{_s * f(7).
It is possible to approximate the function ¢, its first order time derivative and its first and second
order spatial derivatives in L'([0,#] x R?) by C* functions 4" with compact support and their
corresponding derivatives such that 1™ (¢,.) and 1™ (0,.) converge to ¢(t,.) and $(0,.) in L'(R?).
Writing (1.2) for ™ and taking the limit n — +o00, we get that (1.2) holds for v replaced by ¢.
As 05¢ +vAd =0 on [0, x RY, we deduce

Rdf(w)u(t,x)dx = /Rd GY * f(z)ug(z)dz —I—/O /Rd A(u(s,x)).VGY_, * f(r)dzds.

This equality is satisfied for any C? with compact support function f on R?. Hence (1.1) holds.
Let now u and v be two classical solutions of (0.1) bounded by ||uo||co-

By (1.1) and (0.5), [Ju(t,.) = o(t, )]l _/ ZII8 GY sl A loolluls, ) — (s, )lloods

t—s

Iterating this inequality, we get ||u(t,.) — v(t,.)|loo < Cfo ||u(r, ) —v(r,.)||codr and we conclude
that u = v by Gronwall’s lemma. [ |

Remark 1.2 If uy is constant and equal to ¢, then u = c is the solution of (0.1) given by
Proposition 1.1.

Suppose now that ug does not depend on the variables z;,...,x;, 1 < i1 < ... <4 < d
where 1 < k < d—1 ie ug(zi,...,2i,y) = wo(y) where y € RF groups the variables z;,
J F#i1,-..,0k. Let w(t,y) denote the solution of the d— k-dimensional viscous scalar conservation
law with initial condition wy(y) where A = (A;)i<q is replaced by (Aj)jzi,,...i,.- We easily check
that u(t,x) = w(t,y) is the solution of (0.1) for the initial condition .

We are now going to prove that in the particular case ug € WH+>(R?), for i < d the derivative
O;u(t,.) satisfy an integral equation similar to (1.1).

Proposition 1.3 Ifuy € WHIHT®(RY) then u, the classical solution of (0.1) given by Proposition
1.1, is such that ¥t > 0, u(t,.) € WHIH°(RY) and supsefog lu(s, )l11400 < +o0. Fori <d the
partial derivative with respect to the 1 — th space variable satisfies the integral equation

ult, ) = G % Dyuo(x /VG (u(s, ) Bhu(s, ) (x)ds (1.4)



Last, V(t,z) € [0,4+00) x R, u(t,z) = ¢+ K * Vu(t,.)(z) where c is a real constant which does
not depend on t.

Proof : Let ug € WHH®(RY), T > 0 and Cr = C([0,T], L®(R?)) endowed with the norm
[vlle; = supgego,r [[v(2)]]. For v € Cr, we define

t
O(v)(t) = G} *up — / VGY_ x A(v(s))ds, 0 <t <T.
0

As wg is Lipschitz continuous (see (0.6)) and bounded and [|4;(v(s))]lco < [|A%]oollv(8) |50
we easily check that ©(v) € Cp. By computations similar to (1.3), we obtain that for Ty =
/(4 Z;j 1 1A l00)?, the mapping © is a contraction on Cr,. Moreover, its fixed-point is equal
to t € [0,Tp] — u(t,.) and when ||vlley, < 2[|luglloo, then [|O(v)lles, < 2|uollso-

Let v € Cr, be such that Vs € [0,Tp], v(s) € WHIH(R?) and Vi < d, supgeo,ry] 10iv(s)l]| <
2|/|0;up]|]. As 4;(0) = A;(0) =0 and A; is C! with a bounded derivative, by Brezis [3] Proposi-
tion IX.5 p.155, 4;(v(s)) € WHIT®°(R?) with gradient Al(v(s))Vu(s). Differentiating ©(v)(t),
we get

L
L 1A s (110
V< Ty, 10O < sl + == sl [ MO,

VVT 0 \/t—s
4% A oo Vol |85l ||
< |||Bsuol|] + —=2 Jﬁﬁ = 2|(|;uo] ||

Hence the sequence of fixed-point iterations defined in Cy, by Vt € [0,7p], v°(t) = up and
vFtt = ©(vF) for k > 0 is such that

¥k >0, Vt € [0, 7o), 0"(t)lc < 2lluolloe and Vi < d,[[|0:0" (1)]]] < 2|||95uoll].

As Vt € [0,Ty], v*(t) — wu(t,.) in the distribution sense, we deduce that V¢ € [0,Ty], u(t,.) €
WL (R), [u(t, ) oo < 2luolloc and ¥i < d, |95t | < 21l10yusll].

By induction on n, using the mapping defined like © with wug replaced by u(nTp,.), we conclude

Vn €N, Vt € [nTy, (n+ 1)Tp], u(t,.) € WHIT®(RY),

[u(t, oo < 2" luolloo and Vi < d, |||Bult, )| < 2] O5uoll|-
(1.5)

The integral equation (1.4) is obtained from (1.1) by differentiation with respect to z;.

Since u(t,.) € WHT(R?), by Lemma 0.1, there exists a constant ¢(¢) € R such that u(t,.)
c(t) + K * Vu(t,.). Similarly, since 4;(u(t,.)) € WH*T(R?) with gradient A)(u(t,.))Vul(t,
there exists a constant b(t) € R? such that Vj < d, A;(u(t,.)) = b;(t) + K * (f_l;-(u(t, N)Vu(t,.)

Using (1.4) to compute K x Vu(t,.), we get

),
)-
K «Vu(t,z) = GY * K * Vug(x / ZB GY s * (K * (Al (u(s,.))Vu(s,.))(x)ds.

Hence u(t, z)—c(t) = Gt”*uo(x)—Gt”*c(O)—f(;5 VGY_x(A(u(s,.))=b(s))(z)ds. As GYxc(0) = ¢(0)
and VGY_, xb(s) =0, using (1.1) we conclude that ¢ — ¢(¢) is constant. |



2 Existence and uniqueness for the nonlinear martingale problem

From now on, let ug € WH1T°(R%). We are interested in giving a probabilistic representation
of the solution of (0.1) given by Proposition 1.1. As uy does not depend on the space variables
x; for which [|0;ugl|1 = 0, by Remark 1.2, the solution of (0.1) is easily derived from the solution
of the similar problem obtained by removing these space variables. Hence we can suppose that
Vi < d, ||Ojup|l1 > 0 which ensures that |0;ug|/||@juo||1 is a probability density.

For i < d let hi(z) = |8;uoll10iuo(x)/|duo(x)| (with convention § = 1). Using the functions
hiyi < d as signed weights, we associate with P = (P!,..., P%) in (P(C([0,+o0),R%)))? the
signed measures P, = (P}, ..., P%) € (M(R%))? defined by

Vi <d, VB € B(RY), P{(B) = E (15(X,)hi(X0))

where X denotes the canonical process on C([0, +00), RY).

Lemma 2.1 Let P = (P',...,P% in (P(C(]0,+00),R)))L. Fori <d and s >0, the measure
P! admits a density p;(s,.) with respect to Lebesqgue measure on R? which satisfies ||p;(s,.)||1 <

0iug|ly and belongs to L (R?) with a norm smaller than ||Oyugl|y times the L norm of the
density of Py.

Proof : Let A denote the Lebesgue measure on R?.
VB € B(RY), |Pi(B)| = [E” (15(Xs)hi(X0))| < [|0suoll Pi(B) (2.1)

As P! admits a density with respect to A, A(B) = 0 implies that P/(B) = P}(B) = 0. Hence
P! admits a density p;(s,.) with respect to A. Summing (2.1) for BT = {z : p;(s,z) > 0} and
B~ ={z:pi(s,z) <0}, we get [|pi(s,.)[l1 < [|9iuollr- _

Let ci(s) denote the L° norm of the density of P!. By (2.1), |P{B)| < ¢i(s)]|0iuol|1A(B).
Therefore M({z : pi(s,z) > ci(s)||Oiuol1}) = AM{z : pi(s,z) < —ci(s)||Ouolli}) = 0 an:

12 (55 ) oo < ci(s)[|Biuoll1-

Combining this result and Lemma 0.1, we obtain that for P € (P(C([0, +00), R)))¢, K+ Py(z) =
Egzl(Ki * pi(s,.))(z) makes sense.
To simplify notations, we set

A(w) = A(c +w) where ¢ € R is such that ug = ¢ + K * Vug (see Lemma 0.1). (2.2)

Definition 2.2 We say that P € (P(C([0,+00), R%)))¢ solves the nonlinear martingale problem
(M P) starting at ug if Vi < d, Pt has density |0;uo ()| /||Oiuol| 11 with respect to Lebesque measure
and V¢ € C2(RY),

Mt“b = ¢p(Xy) — p(Xp) — /t VAY(X,) + A (K « Py(X,)).V(X,)ds is a P* martingale.
0

where X denotes the canonical process on C([0,+00), R?).

Remark 2.3 The martingale problem (M P) is linked to the scalar conservation law (0.1) through
the system (0.3) obtained from (0.1) by spatial derivation. Indeed, if P solves the martingale prob-
lem, the constancy of the expectation of the P* martingale hi(Xo)Mt“b implies that the densities



pi(s,.) of the measures P! satisfy

S

W@t a)do = [ §o)ou(o)ds
Rd Rd
! A! - 5. 5.
+ /0 /Rd vAp(x)pi(s,xz) + A (c + ;(KJ * Pj(s, ))(x)) NVo(x)pi(s,z) drds.
And (p1,...,pq) is a weak solution of (0.3).

Theorem 2.4 The nonlinear martingale problem (M P) starting at up admits a unique solution
P € (P(C([0,+00),RM)))4. Moreover, (s,z) — ¢+ K * Ps(z) is equal to the solution of (0.1)
studied in Proposition 1.1.

To prove this result, we need the following lemma obtained by a reasoning similar to the one
made in the proof of Proposition 1.3 (see (1.5)).

Lemma 2.5 Let w : Ry x RY — R denote a measurable function and vy € L' N L®(RY). If
t —wv(t) € LY(R?Y) is a bounded mapping such that

t
Vi >0, v(t) = GY * vy — /0 VGY_ (A (w(s))v(s))ds (2.3)

_t _
then ¥t > 0, [[o(t)||oo <270 Juglloo where Ty = mv/ (4 1L, [|Aflloo)?.

Proof of Theorem 2.4 : Existence

Let (B)i>0 be a d-dimensional Brownian motion and X (0) = (X;(0),...,X¢(0)) an indepen-
dent R?¥*“¢_valued random variable such that Vi < d, X;(0) has the density |0;uo|/||0;uol|1 with
respect to Lebesgue measure. Let u(¢, ) denote the solution of (0.1) studied in Proposition 1.1.
Combining the estimation supyejg 4 [|u(s,.)[1,14+00 given by Proposition 1.3 and (0.6), we obtain
that for any ¢t > 0, z € RY — wu(s,z) is Lipschitz continuous uniformly for s € [0,]. Hence
Vi < d, existence and pathwise uniqueness hold for the stochastic differential equation

X;(t) = Xi(0) + V2uB; + /Ot Al(u(s, X;(s)))ds

Let P denote the distribution of X*. As A’ is bounded, by Girsanov theorem, ¥s > 0, P! admits
a density p;(s,.) with respect to Lebesgue measure. As in Lemma 2.1, we deduce that ]5; admits
a density p;(s,.) with [[pi(s,.)[l1 < [|Guoll1-

Let + > 0, f be a C? function with compact support on R? and t(s,z) = G¥_, * f(x). As
(0s +vA)p =0 on [0,¢] x R, It6’s formula yields

f(Xi(t)) = (0, X;(0)) +/0 A’(U(S,Xi(S)))-Vl/)(S,Xi(S))dS+\/5/0 Vi(s, Xi(s)).dBs (2.4)

Multiplying by h;(X§) and taking expectations, we deduce that

! Al v ~
[ @it = [ 6 f@om@e+ [ [ A(u(s.0) VG f)e)ids,)dads.



Hence Vt > 0, dx a.e.,

Bt x) = GY * Qup(x / VGY_, x (A'(u(s, ))pi(s, ) (2)ds

Combining this equation with (1.4), we conclude that V¢ > 0, ||p;(¢,.) — diu(t,.)]1 = 0 by
Gronwall’s lemma.

By Proposition 1.3, Vt > 0, u(t,.) = ¢ + K * Vu(t,.). Hence V¢t > 0, Yoz € R?, A'(u(t,z)) =
A'(c+K * Py(z)) = A'(K % Py()) where P = (P',..., P%). Applying It6’s formula and replacing
A'(u(s,.)) by A'(K * Py(.)), we check that ¥ € CZ(RY), My = ¢(X;) — ¢(Xo) — [y (vAP(X,) +
A'(K * Py(X,)).Vp(X,))ds is a P* martingale.

Taking expectations in (2.4), we obtain that the densities p;(s,.) of the time-marginals P! satisfy

O t -

Vt >0, dz a.e., pi(t,z) = G} * [Otol () —/ VG]_g* (A (u(s,.)pi(s,.))(z)ds.
19suol[1 0

As |dug| € L®(R?), Lemma 2.5 implies that V¢ > 0, pi(t,.) € L®(R?). Hence Vi < d, P' €

P(C([0,4+0),R%)) and P = (P',..., P?%) solves problem (M P) starting at u.

Uniqueness

Let P= (P',...,P%) and Q = (Q%,...,Q% be two solutions.

By Paul Levy’s characterization, Xy — Xy — fot A'(K % Py(X,))ds is a P’ Brownian motion Vi < d.
Hence by a reasoning similar to the one made in the proof for existence, we get that the densities
pi(s,.) of the measures P! satisfy

V>0, dz ace., pilt,z) = GV * uo(x /VG v Py())pils,.)) () ds.

For ty > 0, as djup € L®(R?), Lemma 2.5 implies that ||5;(Z,.)||co is bounded on [0,%o]. The
densities ql( ) of the measures QZ satisfy similar properties. As according to Lemma 0.1,
| K % Py — K % Qy|o0 < CZ] 1 11185 (s) — G;(s)[]], using the boundedness of A and A7 j < d, we
obtain that for ¢ < ¢y,

~ ~ 1 i~ Al D \& Al 9
i) = 0l < <= [ DI + P = A5 (K + Q) =

1 P& . - -
< /0Z(HA;Hoonm(s)—qi(s)|||+||A;~'||oo||K*Ps—K*anoonmi(snn)

Uz

<c(z',to)/ me )|||¢—

Summing this inequality for ¢ < d, and iterating the result, we conclude by Gronwall’s Lemma
that Vi < d, Vt < to, |||[pi(t) — ¢i(¢)||| = 0. Hence Vi < d, both P’ and Q' solve the classical
martingale problem with diffusion matrix equal to 2v x I; (where I, is the identity d x d matrix),

bounded drift coefficient equal to Z’(K % Py(x)) and initial marginal ‘|(|93u’3(||2‘

theorem, we conclude that Vi < d, P* = Q". [ |

ﬁ -
| [V
w

dz. By Girsanov



3 Probabilistic approximation of the solution of (0.1)

3.1 Approximation of the kernel K

Because of the explosion of K at the origin, we are going to replace this kernel by Lipschitz
continuous and bounded ones in the definition of the interacting particle systems. Following
Marchioro and Pulvirenti [9] who deal with the Biot-Savart kernel (d = 2), for € > 0, we set

In(r)

for d =2, ge(r) = { 5;22
255€2

if r>ce
+ g (In(e) —3) if 0<r<e

#&72 if r Z €
for d >3, ge(r) = (572)7‘2 P
QSdEd B 25d6d72

if 0<r<e

and K¢(z) = V(¢°(|z])) = g.(|z|)x/|z|. The next lemma groups the properties of these kernels
that will be needed in the sequel.

Lemma 3.1 The function K€ is bounded by M. and Lipschitz continuous with constant Le where

1 3
—9 M, = — Lo=—

for d » Me= 52 and L, 5,

for d>3, M, = =2 g g, =3¢=2d=1)

Sdsdfl Sded

Last, Vi < d, |K{ — K;|l1 < Ce where C does not depend on .

Proof : It is easy to check that g is C! on [0, +00) and g is C* on [0, €) U (¢, +00). Moreover,

1 1
for d =2, Vr >0, 0 < ¢g/(r) < min (g'(r), —) and |g”(r)] < min (W, |g"(r)|>
o€

Soe
d—2 d—2)(d—-1
for d >3, Vr >0, 0 < ¢g.(r) < min (g'(r), 7Sd€d1> and |g!(r)| < min (—( Szl(ed ), |g”(r)|>.

As |K¢(z)| = |g.(Jz|)|, we deduce that K€ is bounded by M. The Lipschitz continuity property
is obtained by the following computation.

Ty
As g:(0) =0, |K(z) — K(y)| < lgc(z]) — ge(lyD] + Igé(lyl)l‘ =i m‘
Ty
<llgdlloo (Iw —yl+ Iyl‘ =i WD < 3llg/ llolz — |

For |z| > €, ¢.(Jz]) = ¢'(|z|) and K¢(xz) = K(z). Moreover, as 0 < g/ < ¢', |Kf — K;| < |Kj].
Hence,

1
|Ki(z)|dx < C(d)/ ———dr < C(d)e.
B(0,e) 17|

Hm—EMS/

B(0,¢)

10



3.2 The weak propagation of chaos result

Let (Z*(0) = (ZF(0),...,2%(0)))ken+ be a sequence of initial variables independent and iden-
tically distributed according to a probability measure on R4*? with i — th marginal de
for 1 < d and (Bf)kew a sequence of independent R?-valued Brownian motions independent of
the initial variables. For (€,), a sequence of strictly positive numbers, the n-particles system is

defined as the unique solution of the stochastic differential equation

d
2E"(0) = 2h0) + vaust + [ B S K20 — 220 | ds 3)
0 =T

where 1 <i<dand 1<k <n.
Computation of the interaction between particles involves Coulombic field calculations. Indeed,
apart from the cutoff, the drift coefficient of Zf ™ is obtained by composition of A’ with the

summation over j < d of the j-th component of the electrostatic field generated at Z{c "(s) by
the charges hj(ZJl-(O))/(n — 1) at positions Z]l-’n(s), | #Ek.
The empirical measure p" = (uf,...,u"%) € (P(C([0,400),R%)))? is defined by

1< 1 ¢
u = (;Z‘Szf’”""’ﬁz%g’”) and for ¢ > 0, we have
k=1 k=1

0 = ) 0 = (5 D0 M ZE O gy D Bl ZE O )
k=1 k=1

Theorem 3.2 If €, converges to 0 as n — o0, the empirical measures p" = (ut,..., ;)
converge in probability to P, the unique solution of problem (M P) starting at uyg.

To prove this result, we have to deal with two difficulties. The first one is the singularity of
the kernel K at the origin. We overcome it thanks to the following lemma which is an easy
consequence of Girsanov theorem :

Lemma 3.3 Let 1 < g < 7%

ViI<k<i<n,V1<ij<d Ya<l,Vt>0,
E(| K|1p(0,0) (20" (t) — 2" (1))

100l uajuoum>”q <zd1||A;ﬂ||§o>
< |||K|(. N Zm=1_ T 2t 3.2
< T oo (o A I ) oy (2t 32)
Vo € B, SR Lo (o = ZE"(0)) < NKI Do (o) exp ( Zmt Bl )
2
(3.3)

where by convention |K|(0) = +oo.

The second difficulty is the possible lack of continuity of the density h;. Approximating h; by
functions of the form ||0;ugl/1((1 — kd(z, F)) V —1) where F' is a closed set included in {h;(z) =
||Ojupl|1} and using the regularity of the probability measure |0;ug|(x)dz/||0;upl|1, we obtain that

11



Lemma 3.4 For any 1 <1 <d, Ve > 0, there exists a Lipchitz continuous function h{ bounded
by ||Ojuol|1 such that

|0jug|(x)dx 9
PR e AIC2 P S WY ) 3.4
/Rd {RS (@) #hi ()} EX / (3.4)

We are now ready to prove the Theorem.

Proof : Let 7" denote the distribution of p" and ¢ < d. Since the processes Zil’", e, Z°" are
exchangeable, according to [13|, the tightness of the distribution of the variables (u'), is equiv-
alent to the tightness of the distributions of the processes (le "™)n. Because of the boundedness
of A’, both sequences are tight. By Prokhorov theorem, we deduce that (7™), is tight. Let 7
denote the limit of a converging subsequence that we still denote by n for notational simplicity.
We are going to check that 7 = 0p.

To do so, we introduce @ = (Q',...,Q%) the canonical variable on (P(C0,+00),R?%))? and
(X, X! ..., X") the canonical process on (C([0,+00),R?))4*L. We define Ff(Q) to be equal to

t
<@ e e.. .00 (qs(xt) —B(X,) - / VAG(X, )dr

/ A’ ( Z K§(X. ) (XJ)> .Vqﬁ(Xr)dr)g(Xsl, o X,) >

where 0 < s <t, sy <sforany k <p, ¢ € C’,?(Rd) and g € C,(RP*?). The function G¢ (resp.
G;) is defined like Ff but with h; replacing hj for j <d (resp K; and h; replacing K ; and h;)
As Ff is continuous and bounded,

B |Ff(Q) = lim E™|F(Q)] < limsup E™ (| — G{|(Q)) + limsupE™ |G5(Q)] (3.5

n—+00 n——+00
Using the Lipschitz continuity of A’ and the boundedness of V¢ and g, we get
e k l, €
-Gy < G 305 [ KSR - 270005 - ) 2o
k,l=1j5=1
As Z}(0) has the density |0;uo(w)|/]|0juolly, using (3.4), we deduce

d
E™(|Ff - Gil(Q)) < CMc(t — ) Y E(|h§ — hyl(Z](0))) < % (3.6)
j=1

To upper-bound the second term of the r.h.s. of (3.5), we compute gb(Zf’n(t)) by Ito’s formula :

t d
$zm0) - 42 ) = [ (30 SR @) - 20 (2400 ) Tz

j=1 I#k

t t
— / vAG(ZE" (r))dr = V2v / V(ZE™(r)).dBE.

S

12



Hence

G5 \‘/2_

(g<Zf’”<sl>, 2 | vz ). ) ‘

o Z A Z SIS — K ) — 25y (2400
ll;ék
d

C - [!
MDY
k=1"% j=1

As |[K;" — K§| < |K[1p(0,eve,), taking expectations and using (3.2), we get for 1 < ¢ < d/(d—1)

dr

3 (M _ 1>K;(zf:n(r> = 2"(1)-hi(Z}(0))
=1

n—1 n

o 1 M,
B 6@ < 0z + K1 tpoeveay + o )

We combine this estimation with (3.5) and (3.6) to conclude that
¥i <d, im B F(Q)] = 0. (3.7)
Since |K| A M, is a continuous and bounded function we get that V1 <i,j <d, Vr >0,
7 (<Q Q' ®...0Q% |K|(X, — X]) >)

=lim lim E(; Z(|K|/\M)(Z (T)—Z;"n(r))>

e—~>0n—4o0
k=1

. . M, n-—1
< lim sup lim sup (—6 + MK T zoe (B(0,1)e) + CHNE ()l e (B0 1)))) < +o0,
e—0 n—+oo n n

by using (3.2) for 1 < g < d/(d—1). We deduce that 7 a.s., Q" a.s., dr a.e. K Q,(X,) makes
sense i.e. 7 a.s., G;(Q) makes sense. Using the previous upper-bound and remarking that 7>
as. Qb = % we check that lime_,o E™ (|G; — F£|(Q)) = 0.

With (3.7), we obtain that Vi < d, E |Gi(Q)| = 0. Paul Levy’s characterization implies
that 7 a.s. Vi < d, Xy — Xg — fo A'(K « Qs( s))ds is a Q' Brownian which implies that

Q' € P(C([O,—l—oo),Rd)) by arguments given in the proof of theorem 2.4. Hence 7 a.s., @
solves problem (M P) starting at ug which puts an end to the proof. |

As a consequence, it is possible to approximate the solution w(t,z) of (0.1) thanks to the
empirical measure of the particle system :

Corollary 3.5 For any ty > 0,

lim sup Elu(t,z) —c— (K * i"(t))(x)| = 0.
n=H00 (4 1) e0,to] xR

Proof : Let e > 0 and (X',..., X% be the canonical process on (C([0,+00),R?))%. Since

13



u(t,z) = c+ K  Py(z),

Elu(t,z) — ¢ — (K™ " (1)) ()] S

|<P' ®sz Kj(x — X{)hj(X3) — Kj(@ — X])h5(X])) > |

d
+E <P'®@...oP - ple...ou, Y Kz —X])hi(X]) > |
j=1
d . . . .
+E <pp @ @pg, Y (Kf(z— X))h§(X3) — K™ (z — X])hj(X7)) > |
j=1

According to Theorem 3.2, for fixed € the second term of the right-hand-side converges to 0
uniformly on [0, #y] x R? as n — +oo. Replacing (3.2) by (3.3) to adapt the computations made in
the proof of this Theorem, we obtain that the third term is smaller than C(|||K[(.)||ze(B(0,even)) T
1/M,) where 1 < ¢ < d/(d—1) and the constant C' does not depend on €, n, (¢t,z) € [0 to] x RY.
Last, since Vi < d, P{ = |diuo|(z)dz/||0;up|y and P} has a density bounded uniformly for
t € [0,%p], we check that the first term of the right-hand-side converges to 0 uniformly on
[0,%0] x R as € — 0. ||

Remark 3.6 Because of the boundedness of A" and the polarity of the Brownian path in space
dimension d > 2, by Girsanov theorem, we obtain weak existence for the stochastic differential
equation without cutoff :

26m(0) = 2E0) + vVt + [ A’(Z L3 K2 6) ~ 2y 2400 ) ds

j=1 l;ék

where (ﬁf)kgn,igd are independent R -valued Brownian motions independent of the initial vari-
ables (Z¥(0),...,2%(0))k<,, which are IID according to a probability measure with i —th (i < d)
marginal |O;ug(x)|dz/||0;upll1. Note that unlike in (3.1), we have to assume independence for
the Brownian motions governing the evolution of the different coordinates of the k — th particle.
The previous propagation of chaos result can be adapted for this particle system.

3.3 Trajectorial estimates

To obtain a trajectorial result, we define a sequence of independent limit processes indexed by
E>1: Xb=(XF,... X 5) is the solution of the nonlinear stochastic differential equation

{sz(t) = Z{C(O) + \/ﬂBtk + f(f ZI(K * Ps(sz(s))dsv i1 <d (3.8)

P = (PY,...,P% € (P(C([0,400),R?)))¢ is such that Vi < d, P’ is the law of X¥.

By the existence part of the proof of Theorem 2.4, existence holds for this equation. Moreover,
any solution is such that P solves problem (M P) starting at ug. Therefore A'(K * Py(z)) =
A'(u(s,r)) where u(s,z), the solution of (0.1) is Lipschitz continuous in x uniformly for s € [0, #]
(Vt > 0) according to (0.6) and Proposition 1.3. Hence trajectorial uniqueness holds. The main
result of this section is the following one :

14



Theorem 3.7 Let tg > 0.

(Zsup|an - ()|> <C(to,u0, A)ey,

i—1 t<to
L dm,
5L -1

where C(tg,ug, A) is a constant depending on to, ug and A but not on n.

exp (2d|||A"|(.)||oo sup ||8ju0||1L€nt0>.
Jj<d

Remark 3.8 If the sequence €, converges to 0 in such a way that

" ) _
i o (2aa >||oo§gg||ayuo||1Lento) 0
then limn_>+ooE(E?:1 SUPy<¢, |Zf’"(t) —Xf(t)|) = 0 i.e. trajectorial propagation of chaos
holds.

To prove this result we need to introduce the processes Y*" solution of the nonlinear stochastic
differential equation defined like (3.8) with K* replacing K :

Yik’n(t) = Z(0) +\/$Bf+f0t Al(Ken *ﬁ;n(y—ik,n(s))ds, i1 <d
Por = (Pl Pord) € (P(O((0, +00), RY)))? s such that Vi < d, P4 s the law of Y}*".
(3.9)

As the kernel K is Lipschitz continuous and bounded, without the signed weights h; that
appear in the definition of the measures P{™", this stochastic equation would enter in the classical
McKean-Vlasov framework. Existence and uniqueness can be proved by an adaptation of the
arguments of Sznitman [13] Theorem 1.1 p.172 (see [7]). The first step in the proof of Theorem
3.7 consists in the following estimation :

Proposition 3.9 Let ty > 0.

k;n k;n dM ( An )
sup |Y;” e 2d||| A sup ||0;uo||1 Le, to |-
(§:t<£| - 2501 < gy oo (2110w sup Iyl ot

Proof :
sup| V" (s) — Zf’”<s)|
s<t
€ € ,1 1 €n T T
< IAOlle | K“*PW(Y’“ () = =7 DK (277 (5) = 27" () by (25(0)) | ds

14k
d

< II4"|( ||oo/t(2

D (K w Brd (Y (9) = K (V" () = Y (9)) By (2 (0>>>‘
l;ék

d
+ % > (I9guoll D (V" () = ZE" ()] + ¥ "(s) - Z;,R(S)D)) o
j=1 I#k

(3.10)
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As the processes (Yl’”)lzl are independent and the common law of the processes (le,n)l21 is
P5n7j7

1

n—1

E

SRS+ B (Y (s)) — KO (VE(s) - nl’"(s»hj(z;(om\
1£k

< ( T ( K§m x Pod (Y (s)) = K5 (Y, (s) = Y, " ())hy(25(0)))

l,m#k

NI

(K« (VR (6) = K (V) = Y 6Dy (2700 ) )
< Me, 11910l
T ovn—1

Summing inequality (3.10) over ¢ < d, taking expectations and using exchangeability of the
processes (Y, Zl’")lggn, we get

(Zsupw’“" 259

) s<t

x d® M, sup; [|9juo |1 (N ;
< A (TR 2, sup sl | B 3 1V4) - 230 ) s )
N J i=1

since the above expectation equals 0 for m # [.

We conclude by Gronwall’s lemma. [ |

The second step in the proof of Theorem 3.9 consists in showing that the solution Y*™ of the
nonlinear stochastic differential equation with kernel K converges to the solution X* of the
nonlinear stochastic differential equation with kernel K as e, — 0.

Proposition 3.10 Let ty > 0.

(Zsupw’” XHO)) < Cta,un, ey

t<to

where C(tg,ug, A) is a constant depending on to, ug and A but not on n.

Combining both the last Propositions, we obtain that Theorem 3.7 holds.

3.3.1 Proof of Proposition 3.10

As the result does not depend on k, to simplify notations, we replace B¥, X* and Y*" by B

X and Y™. Since the drift coefficients of the stochastic differential equation satisfied by X; and
Y; are respectively A'(K * Py(z)) and A'(K % P (z)), we need to compare K % Py(z) and
K % PE”( ). By the existence part of the proof of Theorem 2.4, the densities p;(s,.) of the
measures P! satisfy

V>0, dz ace., it z) = GY * Oy (o /VG  PyO)pi(s, ) (@)ds  (3.11)
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Similarly, for any n > 0, Pt admits a density p;(s,.) with respect to Lebesgue measure,
Vt >0, dz a.e., p;(t,z) = G} * jup(x / VGY_, (A'(KE" « P ())pR(s,.))(x)ds.  (3.12)

By Lemmas 2.5 and 2.1,

Vi < d, 20, llpi(t, [V sup [[|p; Pt < 28T [0 (3.13)

Comparing the integral equations (3.11) and (3.12) like in Méléard [10] (Theorem 3.4, Lemma
3.5 and Corollary 3.6), we are going to show :

Lemma 3.11 Let tg > 0.

sup |K  Py(z) — K x Pt (z)] < O(to, ug, A)en
[0,t] xR?

where C(tg,ug, A) is a constant depending on to, ug and A but not on n.

Proof : Let tg >0, t € [0,t] and € R?. By (3.13) and Lemmas 0.1 and 3.1,
K Py(x) — K= % P ()| < |K + (P — Pf)( |+Z| (K; = K{") by () ()]
<CZ (2i () = g O + 1K — K 11157 () lloo)

<CZ 15:(8) = B @)11] + 2|90l |en) (3.14)

By (3.11) and (3.12), we have

~ n 1 't Al >, ~ A/ € e ~n ds
Il =0l < —= | D IS5 « POYAS) = &K + POl 7

1 td - ~ ~ - ds
< — AN |K * Py — K % P|| oo || P4 Alllsollpi(s) — p
_\/75/0;:1 (II illoo [l K * P5 [loo 193 ()] + [| Al oo |3 (s) pz(8)|||>\/m

Using (3.13) and (3.14), we deduce that there exists a constant C' depending on tg, ug and A
but not on n such that

Vi < d, V< to, [|Fi(t) = B¢ |||<o/ (en+2|||p] >|||)¢—

Summing this inequality for + < d and iterating the result, we obtain by Gronwall’s lemma that

sup lelpz i (DIl < Cen.
tE 0 to i=1
Combining this inequality with (3.14), we conclude the proof. |
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Let t <t and 1 <d.

— t ~ ~
sup |Y;"(s) — Xi(s)| < HIA"I(-)Hoo/ (IKE” * Py (Y (5)) = K x Ps(Y]"(s))]
s<t 0

+ |K * Py(Y"(s)) — K * Ps(Xi(s))|>ds

By Theorem 2.4, K * P,(x) = u(s,z) — ¢ where u(s, z), the solution of (0.1) given by Proposition
1.1 satisfies suppg 4] lu(s, )[l1,1400 < 400 according to Proposition 1.3. Using (0.6), we deduce
that ¢ — K * Ps(x) is Lipschitz continuous uniformly for s < tp. By this Lipschitz property and
Lemma 3.11, we get

t

Vit < to, ]E( sup |Y;"(s) — Xl(s)|> <C <en —I—/ E( sup |Y;"(r) — Xi(r)|>ds> .
s<t 0 r<s

where the constant C' depends on tg, uy and A but not on n. Gronwall’s lemma implies the

desired inequality.

3.3.2 Approximation of the solution of 0.1

Thanks to the previous trajectorial estimates, it is possible to bound the rate of the convergence
stated in Corollary 3.5.

Proposition 3.12 Let ty > 0.

ap Blu(t,z) —c — (K » i (0)(x)] < Clton uo, A)ey
[0,to] xR?

dMe, sup;<4 [10;uol|1

2v/n —1

(2+exp (24141l sup 00l ey to))
S

Proof : Let t <ty and z € R?. As, by Theorem 2.4, u(t,z) = ¢ + K * Py(x),

Elu(t,z) —c — (K i"(t))(z)| < sup |K * Py(z) — K % P (z)|

[O,to}XRd
d 1 n
€n ~€n;. €n k:
+ 3 E|KSx P () — - Y K (x -, ”(t))hj(Zf(O))‘
j=1 k=1
d 1 n 1 n
€n k,n €n k,n
+ Y B[S K @ =Y O (ZF(0) — ~ YK (a - 2 (t))hj(Zf(O))‘
j=1 k=1 k=1

» ~ dM. sup. l|0:u
< sup |K % Py(x) — K % P (2)] + —= p; 10juolly
[0,t0] xR \/’E

d
+ Loy sup 9ol sup E( o) - ZS’”(t>|)
J 0,0 i=1

Combining Lemma 3.11 and Proposition 3.9, we easily conclude the proof. |
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Appendix : proof of Lemma 0.1

1. Let B(0,1) denote the unit ball in R?. We easily check that for 1 < i < d, K; belongs to
LP(B(0,1)) for 1 < p < d/(d —1) and to LY(B(0,1)¢) for d/(d — 1) < q < +oo. Hence for
v = (vla s avd) € (Ll n LOO(Rd))da

d
K« o(z)] <D (1Killpr s 1villse + 1Killze (0,10 lvill1)
=1

d
< (1K1l o,y + 1Kl Bo,00) > villl-
i=1
To prove the continuity of K * v, we set i < d, o > 0 and suppose that |z —y| < .

K+ vi(a) — Ky + vi(y)| s/B( (Ko = 2)|+ |Kily = 2)Dlos(2)ld=

+/B( Wil —2) Ky = 22

The first term of the right-hand-side is smaller that 2|[viloo||Kill 1 (p (o 22)) and converges to 0
)

as a — 0. For fixed «, by Lebesgue theorem, the second term converges to 0 as y — z, since the
integrand is smaller than 2||Ki||Loo(B(07%)c)|Ui(Z)|. We deduce that K; * v; is continuous. Hence
K x v is continuous.

Let ¢ be a C* function with compact support on R¢. By Fubini’s theorem and the integration
by parts formula,

[ ot [ Ko = )i ) ay

—— [ st ( [, otie ~ shagp(alas) ay

As g(|z|) is the fundamental solution of the Laplacian in R?, we obtain

A¢(z)K; * vi(z)dz = /

Rd

A (@)K * vi(w)de = - / 0i(y)Bih () dy
R4 Rd

ie. A(K; *v;) = 0;v; in the distribution sense.

2. When f € WHIHT®(R?), applying 1. to v = V£, we get that K * Vf is bounded and satisfies
A(K «Vf) = Af in the distribution sense. Hence f — K % V f is a bounded harmonic function
and therefore a constant.
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