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Abstract

We study a property of correctness of programs written in a shared-memory parallel language.
This property is a semantic equivalence between the parallel program and its sequential version,
that we define. The language we consider is a subset of a standard parallel language. Within
this subset, this correctness property follows from the preservation of data dependences by the
control flow and the synchronizations. Our result makes use of the semantics of the sequential
version only. Hence, through our result, checking the correctness of some parallel program boils
down to verifying properties of some sequential program.

1 Introduction

In the field of parallel programming, an important trend has been to provide program designers
with automatic parallelizers which transform a sequential program source into a parallel program
source in such a way that some correctness property remains true along the way. However, another
possible approach consists in considering “directly” a parallel program source and wondering whether
it meets some correctness specification. The latter approach may reveal interesting, for example,
for a programmer who would design a program “directly” in a parallel form, in order to get a better
performance and/or a good understanding of the parallelization obtained.

In view of this approach, it may be useful to provide a tool to statically verify parallel programs.
In this paper, we present results which could be applied in the design of such a verification tool.

The programming model we address in this paper is the shared-memory asynchronous model
(MIMD-SM), as opposed to the distributed-memory one (MIMD-DM). However, some recent de-
velopments allow to apply the shared-memory programming model on distributed message-passing
architectures [15], through functionalities which allow to compile a shared-memory program to-
wards a network of interconnected workstations (i.e. a distributed-memory device), hence an access
to extended resources, without the extra programming burden classically associated to distributed-
memory programming. Moreover, there are a few hints of an increasing interest in the shared-
memory model these last years: let us mention the OpenMP standard [22|, and some recent research
works [27]. Such developments might contribute to popularize the shared-memory programming
model which we consider here.

We study a property of semantic correctness of programs written in a shared-memory parallel
language. Various semantic correctness properties have been considered in the literature.

*CERMICS, Ecole Nationale des Ponts et Chaussées, 6 & 8 avenue Blaise Pascal, Cité Descartes, Champs-sur-
Marne, F-77455 Marne-La-Vallée Cedex2, France. Email: caplain@cermics.enpc.fr. This work was developed within
a project undertaken together with René Lalement and Thierry Salset (same address). I am grateful to both of them
for helpful comments.



Sequential consistency of a multiprocess device is the requirement that the result of any exe-
cution of a parallel program should be the same as if all operations executed by the several processes
had been executed sequentially in a certain strict (unspecified) order compatible with the execution
order of operations of every process [18]. Linearizability is a more stringent requirement, derived
from sequential consistency by adding the constraint that the “equivalent” sequential execution of
every operation lie within a specified time interval [14|. Serializability is a correctness condition
roughly similar to sequential consistency, adapted to the study of database systems [24] liable to be
accessed and modified by several users in parallel.

Sequential consistency and linearizability can be viewed as required properties of a memory
management system in a shared-memory parallel machine. One may consider testing of these
properties through an experimental study of some run of a parallel program. The complexity of
such a test has been thoroughly studied in [12]: the general problem is NP-complete. An analogous
complexity result has been obtained for the general problem of serializability [24].

The sequential correctness requirement that we will consider is different from the properties
we have just alluded to. In those properties, it was required that any parallel run of some program be
similar (in its observable effects) to some, unspecified, sequential run of this program. The property
we will consider is more stringent, in the following sense: in the framework we are considering, a
parallel program is viewed as a parallelization of some given sequential program — basically, this
parallelization will consist in parallelizing loops and introducing event synchronizations —, and we
require that the results of any run of the parallel program be identical to those of the sequential
program being considered, and not merely to the results of “some possible sequential run”. The
property we are considering is a semantic equivalence between the parallel program and its sequential
version. The improvement sought through the parallelization, in this context, lies only in the ability
to run the program faster, by allowing several parts of it to be executed simultaneously, on several
available processors. Considering this sequential correctness property seems relevant especially in
many scientific computing applications.

The main purpose of this paper is to present and prove a theorem which states sufficient condi-
tions for this semantic equivalence property. This result applies to a fairly general shared-memory
parallel language. Although the corresponding general correctness problem is undecidable, there
are prospects that our theorem may be applied through tools to verify a wide range of parallel
programs. A preliminary application, dealing with a subset of our language, is developed in |7, 26].

Here we are interested in static, i.e. compile-time, correctness checking. Indeed, since there is an
inherent indeterminism in the behavior of a parallel program, we could not rely on an observation of
one run of this parallel program: we seek a proof that any possible run of this program will deliver
correct results, in our sense. Besides, this static character will allow us to consider parametered
programs, i.e. classes of programs differing from one another by the values of parameters.

For the sake of brevity, some extensions of our theorem (e.g. introducing critical sections) are
not developed here; they are introduced in [4, 5].

Some of the basic concepts we use have been introduced in [3]. In the development of shared-
memory parallel programs, the most difficult challenge is to avoid data races, a circumstance which
corresponds to data dependences. A data dependence links a pair of accesses to the same variable
(memory location) when at least one of these accesses is a write. In order to ensure that the
parallelized program displays the same results as its sequential counterpart, we must check that



every data dependence is preserved, i.e. that the two corresponding accesses operate in the suitable
order (this is the dependence implies precedence requirement).

This dependence preservation paradigm is fairly well-known, to the point that some of its intrica-
cies may not be apparent at first sight. What does “dependence implies precedence” precisely mean?
In first approximation, it should be interpreted as “dependence (defined in the sequential version)
implies precedence (ensured during a run of the parallel version)”. But, what if some statements
executed in the sequential version are not executed in some parallel run? or if their execution in this
parallel run does not involve the same variables as in the sequential run? We will not limit ourselves
to static control programs, a limitation adopted very often in the literature (see e.g. [11]): in the
language we will consider, loop bounds and subscript expressions in arrays may contain variables,
which may influence the condition for a statement to execute and the designation of the inputs
and outputs of that statement. As long as we have not proved the semantic equivalence we are
interested in, therefore, such intricacies imply that a “dependence implies precedence” requirement
has no well-defined meaning at this point.

As a way to deal with these intricacies, in our search for a static correctness criterion, the
semantic equivalence theorem we present here states sufficient conditions which refer to the semantics
of the sequential version only, i.e. involve predicates that are defined on the sequential version.

This reference to the sequential version has an interesting consequence regarding the possibility
to use dataflow analysis in the process of applying our theorem. Dataflow analysis (see e.g. |20,
30, 21, 1, 11, 8, 9]) is inherently adapted to the study of data flows in a sequential program; it
cannot be straightforwardly transposed within a parallel context, especially due to the crucial use
of the strict time ordering in sequential execution, which is not preserved in a parallel run (let
us however mention that some recent works, e.g. [10], develop some kinds of dataflow analyses
for concurrent programs). However, due to our theorem, checking the semantic equivalence of a
parallel program boils down to checking some properties of the sequential version of this program,
i.e. werifying properties of some sequential program, hence the possibilities to use the resources of
dataflow analysis when applying our theorem.

In Section 2, we describe the language we study — a standard imperative language with a few
parallel features — and its execution model; then, we set up the correctness problem: a parallel
program and its sequential version must have the same observable behavior (semantic equivalence).
In Section 3, we study data dependence and precedence relations. In Section 4, we derive some
preliminary results.

In Section 5, we derive our theorem of semantic equivalence: assuming the preservation of
dependences by the precedence relations as defined under the semantics of the sequential version, and
a few other assumptions dealing with the sequential version too, we derive the semantic equivalence
property for any possible run of the parallel program being considered.

Section 6 illustrates an application of our theorem on a little example, together with highlighting
an interesting incremental property of a check-and-repair procedure making use of our theorem.



2 The language studied

2.1 Outline

The language we study is a parallel extension of a standard language'.

On the sequential side, we have assignment, variables of integer, real, boolean types; variable
arrays of these types (the subscript expressions in array references have type integer); usual arith-
metic and logical operations. It would be straightforward to extend our results so as to include more
complex, structured variable types, and pointers as well (as in C++, for instance), but applying our
results may reveal more intricate then, especially when considering pointers. (The general concern
here, is that the input/output references in a statement should be rather “clear-cut”.)

We include the following structured statements:
e Static loops, denoted:
DO <index>=<lower_bound>,<upper_bound> <statement_list> ENDDO

The bounds are evaluated at entry, and not reevaluated at every iteration. (It is in this sense
that the loop is said to be static.) The index cannot be written within the loop. For the sake
of convenience, loops are normalized, i.e. their increment is set to 1.

e Conditionals, denoted:

IF <test> THEN <statement_list> ELSE <statement_list> ENDIF
e Dynamic loops, denoted:

WHILE <test> <statement_list> ENDWHILE

These structured statements may be nested.

We do not include GoTOs. It is a well-known result that any sequential algorithm can be
implemented without using GOTOs; therefore, ruling them out is not a restriction here.

Our language contains subroutine and function calls, however with three important restric-
tions: all such calls should terminate; outputs should be functions only of inputs (determinacy),
input/output exchanges should occur only at the call (for inputs) and at the return (for outputs)
— in other words, the call must be comparable to a simple statement execution as regards value
exchanges (More on this later).

We introduce the following parallel features:

e Parallel static loops, denoted PDO, specify that iterations in the loop may execute in parallel.

PDO <index>=<lower_bound>,<upper_bound> <statement_list> ENDPDO

LOur previous work (|6, 7|) was developed in the framework of the Fortran X3H5 proposal [31, 23|, but the result
presented here is valid in a more general framework.



e Parallel sections, denoted:

PSECTIONS SECTION <statement_list>
SECTION <statement_list>

ENDPSECTIONS

specify that several sections of code may execute in parallel.

e Explicit synchronizations: we consider event variable synchronization through POST/WAIT
pairs.

POST ( <event_reference> )
WAIT ( <event_reference> )
CLEAR ( <event_reference> )

These three statements are the only ones accessing the event variables. A POST (resp. a
CLEAR) sets value posted (resp. value cleared) to the event variable it refers to. The event
variables are initialized at cleared. A WAIT reads the event it refers to: if this event is cleared,
the WAIT waits and tries again later; if this event is posted, the WAIT continues (only then, we
will say that the WAIT ezecutes); and the execution flow comes to the next statement. Thus,
a WAIT is led to wait for the event to be posted by the execution of some POST statement, as
was intended.

Further explanations, on the behavior of synchronizations, will be provided later (§2.2), and
an example will be described in §2.3 (figure 3).

We allow for parameters under the form of “variables” that get a value “once and for all”
when the program starts, and are not written afterwards. Thus, in our framework, a program in
fact represents a “class of programs”, differing from one another by the values of parameters. (For
instance, in many applications, dimensions of matrices will be such parameters. In a different way,
considering programs designed to run several times on different data, these data will be parameters
in our sense.)

A program instance is obtained from a program by assigning constant values to the parame-
ters.

In what follows, parameters and DO or PDO loop indices within their loop, will not be termed
as “variables”. A wariable is a memory location other than a location assigned to a loop index or a
parameter. A (variable) reference is a syntactic element pointing to a variable. For instance, in the
assignment:

A = B(D)

where B is not an array of parameters, “A” and “B(I)” are variable references; if I is a loop index and
this statement happens to be executed for I = 3, then, in this statement execution, the reference
“B(I)” points to the variable B(3).



Variables will be allowed in DO and PDO loop bounds, test expressions in IFs and (obviously) in
WHILEs, and subscript expressions in arrays (dynamic variable reference), including event arrays.

The dynamic variable reference feature makes it useful to introduce the notion of indirection
order. A variable reference will be said to be of indirection order 0 whenever it is a scalar or an
array the subscript list of which involves only loop indices and program parameters. A reference
will be said to be of indirection order n > 0 whenever it is an array the subscript list of which
involves variable references whose indirection orders are less than or equal to n — 1, with equality
for at least one of them. (In everyday programs, the indirection order is seldom greater than 2.)?

Notion of statement instance

For the sake of convenience, in what follows, the statements we will consider will be only simple
statements, not structured ones, unless otherwise stated; correlatively, we will consider as statements
not only executable statements in the usual sense, but also such features as: heads and ends of DOs,
IFs, WHILEs and parallel constructs; and the test expressions in WHILES.

Considering DO, PDO and WHILE loops leads us to define a notion of statement instance.
Classically (see e.g. [32]), since a statement within a loop may execute several times, each of these
executions is termed as a statement instance. Thus, in a loop iterating 10 times, each statement
generates 10 instances. This usual point of view brings a difficulty in our framework: since our
language allows for variables in static loop bounds, and also for dynamic loops, the set of instances
generated by one statements will generally not be known statically. Thus, we are led to introduce
a different definition of a statement instance.

To every statement in the program, we will associate a set of statement instances, every instance
corresponding to a possible execution of the statement, in such a way that two conditions are
met: the set of statement instances associated to every statement is defined statically; a statement
instance is executed at most once in a given run (obviously, whether it is executed or not is not
defined statically).

To every statement in the program, will be associated a (possibly empty) index vector, every
component of which takes its values in the set of rational integers. A statement instance will then
be obtained by assigning an integer value to every component of the index vector. The index vector
is recursively defined as follows. Let a be a statement:

e If ¢ is not contained in a DO, a PDO nor a WHILE, its index vector is empty: then, a generates
one statement instance.

Otherwise, let us consider the innermost loop containing a. Let ¢ be the header of this
innermost loop, and i be the index vector of c.

e If ¢ is a DO or PDO header, the index vector of a is obtained as the concatenation of i and a
component j, denoted i::j. 7 corresponds to the iteration index of the loop.

e If ¢ is a WHILE header, the index vector of a is obtained as the concatenation of i and a
component j. This time, 5 will take positive integer values, numbering the successive WHILE
iterations.

’In case our language would be extended to include pointers, this notion of indirection order would apply to
pointer references as well.



Thus, through the two latter rules, every (executed or not) instance c¢(i) generates an infinite
(on both sides for DOs and PDOs, on one side for WHILEs) sequence of instances a(i::j).

Through this formalism, a statement contained in a loop generates a countable infinity of state-
ment instances but, in any given run not leading to an infinite loop, only a finite number of them
will come to be executed.

2.2 Execution model

In order to obtain a good generality in our results, we must not specify the execution model of our
language entirely; we will only specify a few properties supposed to hold in what follows. These
specifications are inspired by the X3H5 proposal [31].

Two important notions will be introduced: the notions of process and unit of work.

e The program execution begins, from the program start, with an initial process.
e A process runs until one of these circumstances occurs:

- it reaches the end of the program (normal termination — this may occur only to the initial
process);

- it encounters a parallel construct;
- it encounters the end of a parallel construct;
- it encounters a WAIT;

- it encounters an execution fault.

e When a process encounters a parallel construct, it becomes the base process for this construct.
This parallel construct specifies a number of units of work: each iteration of a PDO and each
section of a PSECTIONS is a unit of work. A team of processes is created. Every unit of work
is then assigned to some process in this team, in some order. Thus, from this point on, every
process will have one or several units of work in charge3. (Since nested parallelism is allowed,
this definition of units of work and process teams operates recursively: a unit of work may
give place to subunits, a process team member may become itself a base process, and so on.)

Asregards variables, when the base process creates the team of processes, replicates of variables
are made for every process in the team; computations are then performed locally in every
process in the team.

e When a process has completed the execution of a unit of work, the execution passes to the
next unit of work this process has in charge, if any (we will say that the next unit of work is
loaded); if this process has completed the execution of all the units of work it had in charge,
it waits for the other processes in the team to complete their work.

e If and when all processes in the team have completed their work, that means that all the
units of work in the parallel construct have been executed. Then, the processes in the team
communicate the values of the updated variables to the base process; afterwards, the team is

3 As an alternative, we could consider the possibility that this assignment of units to processes be dynamic: every
unit of work still to be executed would be “waiting somewhere” till a process gets ready to run it. Such a variant
could increase efficiency, but would not bring any essential change in the results to follow.



dissolved and its base process continues execution. (Only then, we will say that the ENDPDO
or ENDPSECTIONS is ezecuted.)?

e Such a variable updating also occurs when a process executes a POST or WAIT instance. We
have outlined (§2.1) how a WAIT instance “waits for” a POST instance to have “posted” the
matching event, and executes only then. To be more specific, when a process encounters a
WAIT, it evaluates the event this WAIT statement instance involves. If this event is not posted,
the process reiterates this step, till the event being considered gets posted, if at all>. When
this condition is filled, the process realizes the variable updating and continues (only then, we
will say that the WAIT is executed). This specification is consistent with the fact that a WAIT
instance is aimed at waiting for the execution of some POST instance, presumably in order
to ensure that — for instance — some value computed before the POST in its process is indeed
available just after the WAIT in its process.

e Moreover, regarding the variable updatings we have mentioned, there may be memory conflicts,
hence an inherent indeterminism. The aim of our study will be to detect whether such conflicts
may occur (a circumstance which is unwanted in our framework) or whether we will be able
to derive, from a static study of the program source, that such conflicts cannot happen (a
circumstance which is desirable in our framework). In order our results to be as comprehensive
as possible, we must not hypothesize exactly what happens, under our execution model,
whenever such conflicts arise. This is why our execution model must not be specified entirely:
hence our results will be valid for several nonequivalent execution models.

Moreover, it is not assumed whether variable updatings occur in other cases than those men-
tioned above: termination of a parallel construct and event synchronization®. However, as
regards the execution of a single statement instance within a process, we make the assumption
that this instance gets its inputs if any, then performs its computations if any, then produces
its outputs if any, without interference of variable updatings during these computations.

e As regards execution faults, they will be examined below.

It is important to point out the difference to be made between these two notions of process and
unit of work. During the running of the program, the process generation is highly dependent on the

“In our language, we could introduce the notion of private variable (mentioned in the X3H5 proposal [31]), a
temporary variable designed to be used locally in each process of the team, without communication among processes,
and therefore, not involved in the variable updatings. Such variables would not be involved in the dependence
preservations we will consider. Introducing such variables would be straightforward, as soon as “private” references
and “shared” ones (our “variables”) would be easily distinguishable. We have not done so, for the sake of brevity.
However, the Do and PDO loop indices are supposed to hold this “private” status, in relation to parallel constructs
the loop is nested in, if any.

5In the execution model of a WAIT instance involving a dynamic reference, a point is not specified here, regarding
the variables involved in the event reference: are they reevaluated at every attempt, or “once and for all”? (in the
latter case, the WAIT instance keeps on waiting for the same event.) We do not need to decide between these two
possibilities: our results will be valid in both hypotheses.

SHowever, we have to notice that an efficient execution model will keep such variable updatings to a minimum, due
to the cost of data transfers (von Neumann bottleneck — see e.g. [32]). Moreover, it would be possible to introduce
synchronizations with guards clause, specifying the references to the variables to be updated, and thereby limiting
these updates. We have not done so here, for the sake of brevity; such an extension, which was mentioned in [4],
would be rather straightforward within our framework.
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Figure 1: Loading units of work on processes

resources available at that moment: it is a machine-dependent phenomenon. In the contrary, the
characterization of the units of work depends solely on the semantics of the program being run, as
that semantics develops while the program is running; in case the program is correct in our sense,
this characterization will be machine independent.

This is why we could not realistically hypothesize that one process per unit of work is created:
in the contrary, we take care of the possibility that several units of work are assigned to one
process, which will run them sequentially. Moreover, within our framework, we will require that the
correctness of our programs be ensured independently of the number of processes which will turn out
to be available for some run. This correctness will have to be guaranteed even in the extreme case
when there is only one process available, or in the more common case when some parallel construct
within the program will find only one process available for its execution, during a “multiprocess”
run of the whole program.

A unit of work which is waiting for a process to run it will be said to be pending. More precisely,
as regards statement instances, the first instance in such a unit of work will be said to be pending
at that time (we will see later why only the first)".

As an example, Figure 1 depicts a possible case where a parallel loop creates 14 units of work
(corresponding to 14 iterations) which are assigned to 5 processes (available at that point). The
arrows indicate the order of execution, before the loop (upper part), within the loop (medium part:
the 5 processes execute in parallel), and after the loop ends (lower part).

"In case such an instance is a WAIT, we will say that it is pending as long as it is not loaded; it gets reached as
soon as it is loaded, and waiting if its event is not posted yet.



Execution faults

An execution fault occurs whenever the execution of a statement instance creates an operation which
is forbidden by the language and/or by the execution environment, so that the execution stops at
that point (fault deadlock).

In our execution model, we must address the possibility of execution faults. Indeed, whereas we
will consider that the sequential version of our program will not produce execution faults, such an
assumption cannot be made as regards our parallel program, because we aim at deriving semantic
equivalence properties, referring only to the sequential semantics.

We will make the following assumption regarding execution faults: considering o parallel pro-
gram, and a statement instance coming to be executed in some run of this program, the occurrence
of an execution fault at the execution of this instance depends only on the values of the inputs of this
instance and the operations it attempts to perform using these inputs; it does not otherwise depend
on the specific run considered. As a consequence, whenever there are processes running in parallel
to the one on which the fault occurs, we hypothesize that they are not stopped thereby — as long as
they do not produce an execution fault themselves. This is a simplifying assumption which is not
restrictive in our framework: indeed, we will derive conditions under which there is no execution
fault meeting this assumption (primary execution fault); therefore, under the same conditions, and
supposing that we do not make this simplifying assumption, there will not be induced-in-parallel
faults either.

Deadlocks and infinite loops

In our language, there are three ways in which a program may not stop normally: it may come to
a fault deadlock, or to a waiting deadlock, or it may enter an infinite loop.

A waiting deadlock necessarily involves a WAIT statement the event of which persistently remains
unposted. In the (usual) case when this WAIT is located within a parallel construct, a waiting
deadlock condition may be described as follows:

e one or several WAIT statement instances are reached but not executed; so, the corresponding
units of work remain uncompleted;

e as a consequence, the execution of the parallel construct cannot be completed;

e as a possible consequence too, some parallel units of work do not begin execution because they
are assigned to a process after a deadlocked unit of work, though they would be “executable
in principle”. The first statement instance in each of these units of work is thus persistently
pending.

e in case of nested parallel constructs, a deadlock in an inner construct brings a similar deadlock
situation in an outer construct.

A fault deadlock will induce effects quite similar to those of a waiting deadlock.

An infinite loop can occur only due to a WHILE construct (remember the absence of GOTOs and
the fact that DO and PDO loop bounds are evaluated once at the loop entry). The corresponding
ENDWHILE statement instance never gets executed: we will say that it is persistently pending. (Thus,
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Figure 2: Parallel execution: a few possible pathologies

there are two different ways in which some statement instance may become persistently pending; in
spite of the difference in nature, we will notice some similarity between the two, hence the same
name for these two features.)

Whenever the WHILE construct is nested in a parallel construct, an infinite loop in this WHILE
brings a situation similar to the one brought by a deadlock, described previously.

Figure 2 depicts a situation which is similar to the one represented previously (Figure 1) as
regards units of work and processes, but exhibits various pathologies leading the parallel loop to
deadlock. The shaded parts represent the instances unexecuted because of the deadlocks. Here, we
get a deadlocking WAIT instance W1 the event of which never got posted. As a consequence, the units
of work loaded next to it on the same process are prevented from executing: therefore, the POST
instance P2 does not “post” towards the corresponding WAIT instance W2, which therefore deadlocks
too (induced waiting deadlock). Independently of these waiting deadlocks, an infinite WHILE loop is
depicted on the right of the figure: it too prevents the normal termination of the parallel loop.

The sequential assignment

About the assignment of units of work to processes, we will make an assumption as regards our
language:

Assumption SA (Sequential assignment) In all parallel constructs containing synchroniza-
tion statements (i.e. POST, WAIT, CLEAR statements), the assignment of units of work to available

11



a0:  A(0)=... ACO)=...

pO0:  post(E(0)) continue
pdo I=1,N do I=1,N

Ww: wait (E(I-1)) continue

b: ...=A(I-1) ...=A(I-1)

a: A(D)=... A(D=...

p: post(E(I)) continue
endpdo enddo

Figure 3: An example of a parallel loop with synchronizations (left) and its sequential version (right)

processes is made in such o way that the units of work assigned to every process are assigned se-
quentially: in the index ordering for a PDO, in the section ordering for a PSECTIONS.

Comment: Let us consider a parallel construct, and a POST/WAIT pair linking two units of work in
this construct. If there were no assignment requirement whatever, it could randomly occur that the
unit of work containing the WAIT be assigned to the same process as the unit of work containing
the corresponding POST, and before it, hence a waiting deadlock situation. One possible way to
avoid such “spurious deadlocks” is to state Assumption SA as a requirement in our execution model:
indeed, this requirement is consistent with the following fact: in case the parallelization is correct
in our sense, in a POST/WAIT pair, the POST instance precedes the WAIT instance in the sequential
order, because such a synchronization pair is designed to keep the sequential execution order between
statement instances which would otherwise be allowed to execute in parallel.

2.3 Serial semantics. The notion of semantic equivalence

By definition, the sequential version of a parallel program is the result of the transformation of PDO
into DO, the deletion of PSECTIONS, SECTION and ENDPSECTIONS statements, and the disabling of
POST, WAIT and CLEAR statements: by “disabling”, we mean that, in the sequential version defined
here, they are converted into statements which do nothing (here denoted CONTINUE), but we retain
the possibility, in the following developments, to keep track of event references, allowing ourselves
to consider what occurs to these references as though they were indeed addressed in a sequential
run.

Figure 3 shows a typical example of a parallel loop with event synchronizations, together with
the sequential version of this loop, which sets the intended semantics: the output of statement
instance a(I-1) is used as input in statement instance b(I), as specified by the sequential order of
execution of the DO loop. The synchronization statements w and p have been introduced in the
parallel version, in order to preserve this execution order once the DO is parallelized into a PDO:
the WAIT statement w at iteration I waits for the event E(I-1) to have received the value posted
through the POST statement p at iteration I-1, or the statement p0 (for I=1). Of course, the events
E(I) must not have been posted before this loop without having been cleared meanwhile, nor have
been posted elsewhere in parallel, in case this loop is nested in a larger parallel construct.

12



Our aim is to prove the correctness (or lack thereof) of a parallel program, in that sense. We
would like to show that all variables coming to be computed must, in both versions, undergo the
same computations and, therefore, display the same values (semantic equivalence).

In our language, we assume a determinacy condition, as a prerequisite for correctness of our
program: n the sequential version, any variable used as input in an executed statement instance
has been initialized previously; similarly, any DO or PDO loop index used as input variable after the
loop, has been initialized after the loop and before this use.

Under this determinacy condition, we express the semantic equivalence requirement we are
considering as follows: any statement instance executed in any parallel run is also executed in
the sequential version, and conversely; any variable reference used by that statement instance as
input points to the same variable, and that variable has been computed by the same other statement
instance, in any parallel run as in the sequential version. (As a consequence, that variable will
indeed get the same value in both runs.)

Checking the semantic equivalence requires checking that the parallel program will not produce
a waiting deadlock, whatever the number of available processes; and also that data races will be
avoided. Whenever two statement instances involve the same variable location in the sequential
version, at least one of them modifying (i.e. writing) it, we will say that they are in a depen-
dence relation (denoted Dep). Then, we will have to check that these statement instances are in a
precedence relation (denoted Pre), i.e. that the program control structure and the synchronizations
preserve the order in which these statement instances will be executed together with ensuring the
updating of variables meanwhile — along the well-known “dependence implies precedence” pattern [3]
mentioned above.

For instance, under our execution model outlined above, a POST/WAIT synchronization is a
precedence in that sense (remember the “variable updating” specification in our execution model,
together with the succession in time).

3 Dependences and precedences

The theorem we present here refers to the semantics of the sequential version only. The gist of
this result is to show that checking “dependence implies precedence” under the sequential semantics
(“sequential” values of variables, etc.) indeed ensures the semantic equivalence between the parallel
program and its sequential version. Under this theorem, we will be led to consider the condition for
a statement instance to execute in the sequential version (predicate Exe®), which is well-defined in
our language; the dependence predicate Dep which deals with the sequential version, by definition;
and the precedence predicate Pre® expressing the precedence relations which would stand in the
parallel program, as a consequence of the execution model, assuming that all variables involved in
the definition of these relations get their “sequential” values.®

In the derivation of this theorem (Sections 4 and 5), we will be led to consider the parallel
counterparts of Exe® and Pre® — Exe and Pre respectively — which, as long as we have not proved
the semantic equivalence, are defined only in reference to some specific run of the parallel program
(they may differ for different runs of the same parallel program). Considering such a parallel run,

8As a consequence of this definition of Pre®, the precedence relation expressed by Pre® obviously holds in the
sequential version. In other words, for any statement instances o and 3 executed in the sequential version, Pre®(a, 3)
implies that « is executed before 3 in the sequential version.
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the precedence predicate Pre associated to this run expresses the precedence relations which stand in
this Tun, as a consequence of the execution model, considering the values in this run of the variables
involved in the definition of these relations. We will develop this point later (§3.4).

3.1 Sequential execution predicate

Let Exe® be the condition for a statement instance to be executed in the sequential version, under
the extra condition that the sequential program terminates, i.e. does not enter an infinite WHILE
loop. Then, Exe® is well-defined (although it is generally not computable!) and its expression is
rather straightforward for our language.

For a statement ¢ and an index vector i such that the instance a(i) is executed in the sequential
version, we may consider the environment in which the execution of a(i) takes place. For any
expression ezp which happens to be evaluated through the execution of a(i), its value is defined
in this environment: it will be denoted [ezp]@a(i). (Due to our assumption that subroutine calls
terminate, the evaluation of an expression always terminates, in our language.) We must emphasize
that [ezp]@a(i) is undefined whenever a(i) is not executed. This leads us, in the expressions to follow,
to make use of the sequential conjunction, denoted &, which differs from the logical conjunction,
denoted A, as follows: if A and B are boolean expressions (taking values true, false or undefined),
A & B is false whenever A is false, even if B is undefined, whereas A A B is undefined in this case?.

Let us give the expression of Exe®*(a(i)) when « is a statement of the parallel program, indexed
by i. Several cases have to be considered, depending on the nesting of a in a loop or IF structured
statement. In case a is nested, we consider the innermost DO, PDO, IF or WHILE a is nested in.

e ¢ is not contained in a DO, a PDO, a IF nor a WHILE construct: then, Exe®(a) = true.

e The innermost nesting of ¢ is in a [F construct of header ¢, with boolean expression c.BEXP.
Let i denote the index vector of ¢ and a:

— if @ is in the THEN branch, Exe®(a(i)) = Exe®(c(i)) & [c.BEXP]Qc(i)
— if @ is in the ELSE branch, Exe®(a(i)) = Exe®(c(i)) & —([c.BEXP]@Qc(i))

e The innermost nesting of a is in a DO or PDO loop of header ¢, with lower and upper bound
expressions c.LB and c.UB respectively. Let i denote the index vector of ¢ and i::j denote
the index vector of a. We then have: Exe®(a(i:: j)) = Exe®(c(i)) & ([e.LB]@Qc(i) < j <
[c.uB]@c(i))

e The innermost nesting of a is in a WHILE loop of header ¢. Let i denote the index vector of

c and i::j denote the index vector of a. Let b be the first statement in the WHILE body, i.e.
the test statement, of boolean expression b.BEXP.

— If a is not b: Exe*(a(i::j)) = Exe®(b(i::j)) & ([b.BEXP]@b(i::j))

— If a is b: Exe®(b(i::1)) = Exe®(c(i)) and, for the other iterations:
Exe®(b(i::j7)) = Exe®(b(i::(j — 1))) & ([b.BEXP]@b(i:: (5 — 1)))

®Consistently with this sequential aspect, in what follows, conjunctions are left-associative: e.g. AAB & C A D
is interpreted as: ((A A B) & C) A D. Moreover, in all cases when some expression C may be undefined if some
other expression A is false, we require that C' appear only in expressions (... A AA ...) & C..., so that these resulting
expressions are always defined.
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It is possible to extend the expression of Exe® so as to include cases when the sequential program
infinitely loops, however in function of the explicit data of the looping WHILE. Let ¢(i) be the
corresponding WHILE header, and e(i) the matching ENDWHILE. For e(i) and all instances a(j)
standing after it in the sequential order, the above expression of Exe®(a(j)), which besides is not
necessarily well-defined then, should be replaced by: Exe®*(a(j)) = false.

The condition that the sequential program terminates, which is of course undecidable in general,
can then be formally expressed here. Using the notations we have just introduced regarding WHILE
loops, we get:

Sequential termination condition:
For all WHILE loops, of header ¢ and test b,

Exe®(c(i)) = 35 Exe®(b(i:j)) & —([b.BEXP]@b(i:: )

In case of infinite loop, the above implication is trespassed only for the WHILE instance on which
the infinite loop occurs.

3.2 Dependences

Considering two statements a and b, indexed by i and j respectively, a predicate Dep(a(i), b(j)) will
express that: “in case a(i) and b(j) are both executed in the sequential version, in this order, then
they both access one same memory location (not corresponding to an event variable), at least one
of them writing it”1°.

The reference to the sequential version is crucial here, because we will always be interested in
the preservation, in the parallel version, of dependences as they appear in the sequential version. In
other words, the “dependence implies precedence” condition must be interpreted as: “dependence (as
appears in the sequential version) implies precedence (ensured in the parallel version)”

Let a(i) and b(j) be two statement instances respectively involving references ezpa and ezpb,
referring to variables (other than event variables), these two references not both being input refer-
ences. In case a(i) executes in the sequential version, [ezpa@a(i)]® denotes the variable exzpa refers
to during that execution. The relation = between variables to which two distinct references are
made, means that they are the same variable. < denotes the sequential order. We can give an
expression of Dep:

Dep(a(i), b(j)) = (a(i) < b(j)) A ([ezpa@al(i)]* = [ezpb@b(j)]®)

This expression of Dep is not necessarily defined when a(i) and/or b(j) does not execute in the
sequential version. Therefore, in what follows, we will be led to use Dep in expressions such as:

Exe®(a(i)) A Exe’(b(j)) & Dep(a(i),b(j))

making use of the sequential conjunction & introduced previously (§3.1).

10Tp the special case when a(i) and b(j) are the same instance accessing a variable, first as input, second as output
— e.g an instance of a statement such as: “x=x+1” — such a “reflexive” dependence will necessarily be preserved, in
our sense, through the precedence “input precedes output” guaranteed during the execution of one instance (§2.2).
Therefore, we will not have to take care of such reflexive dependences Dep(a(i), a(i)).
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ps: continue
section continue

a: A(N)=... A(N)=...
section continue

b: LLL=AQDD) . L LLL=AQDD) . L

c: AN+ %, L AN+ %, L
section continue

d: N=... N=...

endpsections continue

psections

Figure 4: Studying data dependences: an example

Let us study an example of a portion of program supposed to be executed (Figure 4). The
sequential version is shown on the right. We examine the dependences dealing with variable array
A(). Let us first consider the case when we can statically check that the integer variable N is
not written between ps and c¢ on the sequential version. (Such a check may be quite easy in a
Fortran-like language without procedure calls, but more intricate, or even intractable, whenever e.g.
pointers or procedure calls are used.) Then, statements a and b refer to the same memory location
in the sequential version (because [N]@Qa = [N]@b), and a writes it. Hence we have a dependence:
Dep(a, b) = true. On the other hand, we have no dependence (at least as regards references visible
here) between a and c.

Now, considering the more difficult case when we cannot statically know what may occur to IV
between ps and ¢ in the sequential version, we will have to assume (as a conservative approximation)
that there is a dependence from a to b and from a to ¢ (unless otherwise proved, we may very well
have [N]@Qa = [N]@Qc + 1 !).

On this example, let us now consider the dependence relations regarding variable N. This
variable location is an output of d and an input of a, b and c, hence a dependence relation from a
to d, from b to d and from c to d. There is no mutual dependence among a, b and c, regarding the
variable N, since these statements refer to IV as input.

As this example shows, mainly due to the dynamic variable reference feature, it will often be
impossible to specify exact dependence relations statically. Then, we will have to seek a conservative
approximation of these dependences, i.e. an approximation “from above” (More on this later: §4.1).

3.3 Precedences

The precedence predicate Pre® expresses the precedence relations which would apply in the parallel
program, as a consequence of the execution model, assuming that the variables involved in the
definition of these relations have their “sequential” values. We will characterize Pre® from a control
precedence Pre® and a synchronization precedence Sync® (corresponding to the POST/WAIT pairs). It
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may be of interest to notice that there may be several non equivalent predicates correctly expressing
a precedence relation. This comes from the following fact: through a predicate Pre(c, ) involving
two statement instances « and 3, we wish to express that “in case a and B are executed, the former
is executed before the latter (in such a way that variable updatings happen meanwhile); but we are
not interested in what is expressed if these instances are not both executed.” For any predicate P
correctly expressing that « precedes 3 in case both are executed, any other predicate () such that:

Exe(a) A Exe(8) A P = Q = (Exe(a) A Exe(8) A P) V (- Exe(a) V - Exe(5))

also correctly expresses this. This same multiplicity of correct predicates also holds for dependences;
furthermore, it is straightforward to check that the “dependence preservation” property we will
consider is (fortunately...) invariant by any change of correct predicates.

Let us now express control precedences through a predicate Pre’ independent of the specific run
of the program — in fact, a predicate independent of any variables and even parameters. Afterwards,
we will be interested in the synchronization precedences and the way they combine with the control
precedences.

Expression of control precedences

Calculating precedences on index vectors
In order to express Pre?, we have to express the precedence order between index vectors, denoted
<.

Let i be the loop index vector of a statement; let £ be the innermost index in i; let j be the
(possibly empty) “remaining” index vector, such that i is the concatenation of j with &, denoted
i=juk.

e If k indexes a DO or WHILE loop:

(ir <i2) = (1 <J2) V ((1 = J2) A (k1 < k2))
e If k indexes a PDO loop:

(iy <i2) = (1 <Jj2)

e (Starting the recurrence:) If j is empty — let us denote [ ] the empty index vector —, then we
set:

([h < [l2) = false; ([11 = []2) = true

This directly leads to the expression of Pre’(a,a) for a statement a. Let i be the index vector
of a; let a(iy) and a(iz) be two instances of a; we set:
Preo(a(il),a(ig)) = (i1 < i2)

Ezpression of Pre® between different statements

Let o and b be two statements such that a comes before b in the text of the program. We will
give expressions of Pre’(a,b) in the different cases. In what follows, we do not need to single out
the special case when a and b are in two alternative branches of a IF since, due to the above remark
(on multiplicity of correct predicates), the part of Pre’(a,b) corresponding to mutually exclusive
instances of a and b will be superfluous.
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Figure 5: Control precedences in a DO (top) and a PDO (bottom). Only six iterations are shown
here, but loop instances in fact extend infinitely on both sides. The control precedence links Pre®
(arrows) are independent of the specific run and the specific iterations coming to execute in this
run (three iterations shaded in the example).

In case a and b are not in the same loop or PSECTIONS, we get:

Pre®(a,b) = true ; Pre®(b, a) = false

Otherwise, we consider the innermost loop or PSECTIONS containing both ¢ and b. Let ¢ be the
header of this structured statement, and i be the index vector of c.

e If ¢ is a loop header, let j =1i::h be the index vector common to a and b. (h denotes the loop
index; the index vectors of @ and b are concatenations of j with possibly empty disjoint index
vectors k and 1 respectively.) We get:

Pre’(a(jo::ka), 0(s 1)) = (a < o) V (Ga = jo)
Pre®(b(p:: 1), a(ja 1 ka)) = Go < ja)
In the two next cases, when c is a PSECTIONS header, the index vector common to a and b is

i. Again, the index vectors of ¢ and b are concatenations of i with possibly empty disjoint index
vectors k and 1 respectively.

e If ¢ is a PSECTIONS header and ¢ and b are in the same SECTION of this PSECTIONS:
Preo(a(ia !:ka), b(lb :!lb)) = (ia < lb) V (ia = ib)
Pre®(b(ip::1p), aia ke)) = (ip < ig)
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e If ¢ is a PSECTIONS header and ¢ and b are in distinct SECTIONS of this PSECTIONS:
Pre®(a(iy ::kq), b(ip ::1p)) = (i < ip)
Pre®(b(ip::1p), a(ia: ka)) = (ip < ia)

As an example, Figure 5 shows control precedences in a DO and a PDO loops.

Combining control and synchronization precedences

To obtain the overall precedence relation Pre®, we have to combine the control precedence Pre® and
the synchronization precedence relations Sync® realized through POST/WAIT pairs (we will consider
the latter in a moment; meanwhile, we consider them as given). This composition of Pre® with
Sync® is not exactly a transitive closure, as might be expected; Pre®(a(i), b(j)) APre*(b(j), c¢(k)) does
not necessarily imply Pre®(a(i), c(k)) (consider the case when b(j) is not executed...). Instead, we

have “transitivity modulo Exe®”:

Pre®(a(i), b(j)) A Exe®(b(j)) A Pre®(b(j), c(k)) = Pre*(a(i), c(k))

Considering the directed precedence graph, whose vertices are the statement instances and edges
are the precedence links Pre® and Sync®, the relation Pre® will be obtained, through this transitive
closure modulo Exe® along paths, and by disjunction between alternate paths, in a “conjunction in
series, disjunction in parallel” manner, from Pre’ and Sync®. The transitive closure within Pre’
is taken care of by the previously given expressions of Pre’. Therefore, the precedence paths to
consider in order to obtain Pre® alternate Pre’ and Sync® links, in the following way:

Q= T~ W] —> T~ Wy —> ... = Ty ~ Wy — G,

where — denotes the Pre’ relation, 7; denotes a POST, w; denotes a WAIT, and ~ denotes the
synchronization relation Sync®.
The corresponding computation of Pre® will be realized through relations such as:

Pre’ (o, 71) A Exe®(m) A Sync® (1, wi) A Exe®(w;) A Pre®(wy, m2)A
... ASync®(mp, wy) A Exe®(w,) APre®(w,,5) = Pre’(a,f)

In fact, in what follows, we will be led to include the conditions of execution of m and w within
the Sync®(m,w) predicate. Hence, the above expression becomes:

Pre’(a, m1) A Sync®(m, wi) A Pre (wy, m)A
... ASync®(mn, wy) APre’(wp, 8) = Pre’(a, 3)

Let us consider again the precedence paths shown above, alternating the — and ~» links. In
case « is a POST, we must also include precedence paths where “a — 71" is replaced by “a = m”.
In other words, a precedence path expressed through Pre® may begin with a synchronization. In
the contrary, in case [ is a WAIT, we do not allow ourselves to consider paths in which “w, — §”
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nl: N=1
psections
section

n2: N=2
p: post E(N)

section
W wait E(N)

endpsections

Figure 6: A case of dynamic event reference in a WAIT

is replaced by “w, = (”. In other words, a precedence path expressed through Pre® may begin, but
not end, with a synchronization link. Why do we introduce this difference? We have been led to do
so in consideration of the specific behavior of the WAIT statements.

The problem of the dynamic references in the WAITs

In our language, we allow dynamic references in WAITs. This ability triggers specific problems,
illustrated through the example of Figure 6.

In this example, we assume that N is not present elsewhere than indicated. The underlying
intention is to ensure a synchronization from p to w, involving event E(2). Indeed, following the
sequential semantics, N has got value 2 at p and w. Howewver, in a parallel execution, N may have
value 1 when the control gets to w, which will then wait for the event E(1) (whereas p will still
post E(2)). Therefore, the dependence relation Dep(n2,w) involving variable N is not preserved
through the precedence path n2 — p ~» w. This is the reason why we have defined Pre® so as to
exclude such precedence paths ending with a synchronization link. Considering the execution model
(§2.2), this restriction we bring here allows us to ensure the following property for the precedence
predicate Pre®: if v is an executed instance and w is a waiting WAIT instance, Pre®(«, w) implies that
« executes before w begins waiting (and in such a way that variable updatings happen meanwhile).
Thus, in our example, if Pre®(n2,w) comes to be ensured, through a precedence path not apparent
here, then the output of N at n2 precedes (in the sense of our precedences) its input when w begins
waiting: w will then wait for F(2) (unless N is written meanwhile).

3.4 The synchronization precedence Sync®

The elementary synchronization precedence relation between a POST and a corresponding WAIT is
much less straightforward to consider than the above control precedence Pre®.

The first difficulty stems from the fact that we allow dynamic variable reference in POST, WAIT
and CLEAR statements. This possibility, together with the fact that Exe is defined only in reference
to a given run of the parallel program, implies that the POST/WAIT synchronizations which show up
during some specific run of the program, and the precedence brought by them as a consequence of
the execution model (§2.2 and 2.3), essentially depend upon the run being considered. Considering
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such a run, let w be an executed WAIT instance. Then, there is at least one POST instance =
(and possibly several of them) which set value posted to the involved event, and thus made possible
the execution of w together with ensuring the corresponding precedence from 7 to w. We denote
Sync(m,w) the predicate, essentially dependent on the specific run of the program, expressing the
synchronization precedence thus realized.

The precedence predicate Pre for a specific run of the parallel program, is then obtained from
Pre® and Sync, exactly along the same lines as Pre® is obtained from Pre® and Sync® (§3.3).

Since Sync, and therefore Pre, thus essentially depend on some specific run of the parallel
program, we are led to consider, instead of Sync, a predicate Sync® describing the synchronizations
which arise under the assumption that the variables involved in these synchronizations (through
the execution predicate and/or the dynamic event references) get their “sequential” values. Let us
remember that, when we consider the sequential version of our program, the synchronizations are
disabled, but we keep track of the event references they involve (§2.3). This will allow us to consider
“the execution of synchronizations in the sequential version”.

The second difficulty is of a different nature — and it will lead us to specify some properties we will
prescribe regarding synchronizations. Through a predicate Sync®(m,w), between a POST instance
and a corresponding WAIT instance, we wish to express that “supposing the sequential semantics, if
m and w are both executed, then necessarily w is executed before w.”. This supposes that no other
POST instance is susceptible to trigger the execution of w, by posting the same event. Indeed, in
case several non mutually exclusive POST statement instances will seem able to trigger the execution
of one WAIT statement instance, no precedence relation will be guaranteed between any one of these
POSTs and this WAIT — in such a case, we will not have a Sync® relation from any of these POSTs
to this WAIT — and the case will be intractable within our “precedence” framework. (Notice that,
conversely, one POST may very well post to several WAITs: this brings no problem in our framework.)

To the extent that one and only one POST statement instance should be able to trigger a WAIT
statement instance, it is suitable to require that two POST instances involving the same event not
execute in parallel. Moreover, a CLEAR statement instance, dealing with the same event, should not
be in a data race condition with this POST, nor with this WAIT.

We will express these restrictions through two assumptions dealing with the use of synchroniza-
tions. These assumptions will allow us to characterize the synchronization predicate Sync®. Let us
remind a few notations (§3.2). For any POST, WAIT or CLEAR statement instance 7 executed in
the sequential version, we denote [e,]° the event variable reference that v involves in the sequential
version. The relation = between variable references means that they refer to the same variable.

Assumption S1 (No race condition involving synchronizations) Let 6 and w be two in-
stances of synchronizations POST, WAIT or CLEAR. FEzcept in the case when one of these two
instances s a POST and the other is a WAIT, and in the case when both are WAITs, we have:

Exe®(0) A Exe®(w) & ([eg]° = [ew]”) = Pre’(0,w) v Pre’(w, 6)
For a POST instance 7w and a WAIT instance -, let us define a predicate Sync* as follows:

Sync*(m,y) = Exe’(m) AExe’(y) & ([ex]® = [e4]%) A = Prel(v,7) A
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(VCLEAR instance 6,
Exe*(y) A Exe’(0) & ([g9]° = [¢4]%) = —(Pre’ (7, 0) A Pre’(6,7)) )

Sync*(m,y) expresses that, under the sequential semantics, 7 is susceptible to trigger the exe-
cution of v, in the sense that 7 and v both execute, and involve the same event reference, in the
sequential version; that v does not precede 7 Pre’-wise; and that no CLEAR instance involving the
same event is bound to interfere between the two, Pre’-wise.

Notice that, under Assumption S1, the term —(Pre’(m,0) A Pre’(6,7)) in the definition of
Sync*(m,7), is equivalent to (Pre’ (8, ) V Pre’ (v, 0)).

Now we can express Assumption S2.

Assumption S2 (Ensured precedence from POST to WAIT) . For any POST instances m; and
any WAIT instance y:

Sync*(m1,y) A Sync*(ma,y) = m = 7y

in which case Sync* indeed expresses the synchronization relation Sync® we were looking for.

Comment This expresses that, under the sequential semantics, at most one POST statement
instance is susceptible to trigger the execution of the WAIT instance, in our sense, in the given
program instance. However, that POST instance may depend on the program instance considered,
i.e. on values of parameters; for example, it will often occur that two POSTs posting the same event
lie in two alternative branches of a IF: this is not contrary to our assumption because these two
POSTs are mutually exclusive.

In the derivation of the theorem to follow, Assumptions S1 and S2 will be used through the
following consequence, dealing with the case when a POST instance 7w and a WAIT instance y do not
form a synchronization pair:

Exe’(m) A Exe®(y) & ([ex])® = [e,]°) & = Sync’(m,v) = (Pre’(y,7) V
(JCLEAR instance 6, Exe®(y) A Exe®(0) & ([gg]° = [e,]°) A Pre(m,0) A Pre®(6,7) ) )

It would be possible to extend assumptions S1 and S2, by replacing the control precedences Pre’
with generalized precedences Pre®, however under the condition that the synchronization relations
Sync® involved in Pre® are given a priori; such a generalization (which we mentioned in [4], and
under which the theorem to follow still holds) does not allow to derive Sync®. In other words, such an
extension of S1 and S2 brings a circularity, in the sense that it presupposes that the synchronization
relations Sync® are given, whereas these two assumptions contribute to the very existence of these
synchronization relations.

It is important to keep in mind that assumptions S1 and S2 refer to the semantics of the
sequential version only, and do not depend on some specific parallel run.

Figure 7 shows an example of control and synchronization precedences in a parallel loop.
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Figure 7: Control precedences in a PDO (straight arrows, again) and synchronization precedences
Sync® (dashed arrows). Contrarily to the former, the latter precedences are defined referring to the
sequential semantics. These synchronization precedences might not be ensured in some specific run
of this parallel loop. In the example, the three iterations shaded are those which should be executed,
according to the sequential semantics.

4 Some preliminary results

Before proving our theorem in the next section, we will derive some preliminary results.

4.1 Conservative approximations of predicates

In light of the theorem we will prove in the next section, checking the semantic equivalence property
will mainly require checking the following implication:

Exe®(a(i)) A Exe*(b(j)) & Dep(a(i),b(j)) = Pre*(a(i), b(j))

for all statement instances a(i) and b(j) in the given program.

In many cases, it will be impossible (even in principle, sometimes) to statically produce exact
expressions of the predicates involved here. This is mainly due to the dynamic variable reference
and loop bound specifications. Then, we will have to seek conservative approzimations of these
predicates, i.e. approximations such that the use of them, instead of the unknown exact predicates,
will never lead us to give a positive conclusion when the preservation property is not met — but may
lead to a “don’t know” answer in some cases when the property is indeed true.

The direction of the above implication makes clear the kinds of approximations which will be
conservative: these will be approximations from above for Exe® and Dep, from below for Pre®: we
will then consider predicates Exe®™, Dep”* and Pre} such that Exe® = Exe®™, Dep = Dep”* and
Prel = Pre®, respectively meaning that “a statement instance may be executed”, “a dependence
may exist” and “a precedence must exist”.

The computation of a Pre® relation involves predicates Pre®, Sync® and Exe®, through “transitive
closure modulo Exe® along paths”, as we have seen before. Pre’ will be rather easily computable;
Sync® may be more intricate. So, approximating Pre® from below may involve approximating Exe®
from below, by a predicate Exe} such that Exe} = Exe®; and considering only some of the precedence
paths.
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4.2 A lemma about execution predicates

It will be useful to derive in which cases, and in what sense, the execution of some statement
instance « in a parallel run, strictly depends on the execution of some statement instances 8 such
that Pre®(3, a). This will be the object of the following lemma.

Considering a parallel run, let 1(«) denote the condition for « to be executed or persistently
waiting or persistently pending (let us remind that « is said to be reached in the two first cases).
If « is the (only) instance of the first statement in the program, ¢ (a) = true. For all the other
instances, we have the following lemma:

Lemma 1 Considering a parallel program, for any run of this program, and for any statement
instance « of any statement except the first one, ¥(a) is fully determined by the execution of one
or several statement instances 3 such that Pre (8, ). All or some of these instances 3 are specified
independently of the run considered; the other ones, if any, are specified by the execution of the
former. If at least one of these B produces an execution fault, this implies (a) = false.

We have Exe(a) = () except in the three following cases:

e « is an instance of a WAIT w: then, ¥ (a) expresses the condition for a to be reached (or the
condition for a to be reached or persistently pending, in case w is both a WAIT and the first
statement in a parallel construct body). Under this condition, however, a may be persistently
waiting (or persistently pending), instead of finally executing, in a deadlock situation (or in
an infinite loop situation in the latter case).

e « is an instance of the first statement in o PDO body or in a SECTION of a PSECTIONS,
without being an instance of a WAIT: then, () expresses the condition for « to be executed
or persistently pending; the latter possibility occurs in case of a deadlock or infinite loop.

e « is an instance of a ENDWHILE: then, ¢ (a) expresses the condition for a to be executed or
persistently pending; the latter possibility occurs in case the WHILE infinitely loops, or in case
of a deadlock or infinite loop within an iteration.

The proof of this lemma is tedious but not difficult. It is provided in Appendix A.

This lemma derives its main interest from the previously mentioned fact that Pre? is independent
of the specific parallel run considered. Its meaning can be summarized as follows: with the exception
of the WAIT statements and some other ones susceptible to be pending, the fact that some statement
instance is executed in some run of the program depends upon statement instances which are bound
to ezecute before it (by the control structure of the program), and not just upon statement instances
which merely happen to execute before it in some run being considered, as implied by plain causality.

4.3 A notion of execution date

In order to derive our main result in the next section, we need to introduce a notion of ezecution
date. This will be the object of the following result:

Discretized time lemma: For any run of a parallel program, we consider the precedences Pre and
Sync associated to this run (defined in Section 3). We assume the four following properties:
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i. To any statement instance a executed in this run, is associated a time lag [tq,t)] (of physical
time), with t, > t,, called the execution time lag of «.

1. Whenever the execution time lags of two statement instances a and 3 overlap and o outputs
a variable x which is an input of B, the value written by « is not available as input for 3.

iii. As a consequence of (ii), for any statement instances o and 3 executed in this run, if Pre(a, )
or Sync(a, 3), then tg > t,.

w. For any time t, only o finite number of instances a have begun execution before t.

To every statement instance « executed in this run, may be associated a positive integer T(w),
called the execution date of «, with the following properties:

1. 7(a) nondecreasingly depends on t,.

2. Computational causality: for any statement instances « and 3, a value output by o cannot be
used as input by B unless T7(8) > ().

3. As a consequence, for any two statement instances o and [ executed, whenever Pre(a, 3) or
Sync(a, ), we have 7(8) > ().

4. T is causally defined, i.e. 7(«) depends only on the execution time lags of a and the instances
beginning execution before a.

Comment: Hypotheses (i) and (ii) can be interpreted thus: for any instance o coming to be executed
in some run, « gets its input (if any) at or shortly before some time ¢, then executes without any
input/output exchange, till some time ¢/, when — or shortly after which — « provides its output (if
any). (We allow ourselves to set t, = t/, when « performs no computation.) Hypothesis (i) is a
consequence of the variable updating feature embedded in the relations Pre and Sync. Hypothesis
(iv) is, obviously, meaningful only when the run is endless, a case we have to consider too; this
hypothesis is then justified by the finiteness of available resources (especially the finite number of
processes).

Let us also mention that, consistently with our definition of the “execution” in case of a WAIT
instance, the execution time lag of such an instance does not contain the waiting time; it does not
begin before the involved event has been detected to be posted.

Proof :  Considering a run of the parallel program, let us rank the (countable) set of statement
instances « executed in this run, in the increasing order of the initial times ¢,. In case several initial
times are equal, we rank the corresponding instances arbitrarily. Even in case the run is endless,
this ordering of statement instances is well-founded, due to (iv): these instances are then ordered
into a sequence.

The (finite or infinite) sequence of instances obtained thus will be denoted aq,ag,...an,... .
For convenience, the execution time lag for «; will be denoted [t;, t}].

The date 7 will be defined by the following procedure:

1. Set 7(ap) =1landi=1
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2. For integers j following 4, if any, such that «; exists and ¢; < min(t) |i < k < j), set

7(ej) = 7(u)

3. If the sequence of instances « is not exhausted yet, let 5 be the index of the first remaining
a. Set 7(a;) = 7(q;) + 1; set « = j and go to [2.]

It is straightforward to check that the function 7 thus defined meets the required properties: we
notice that instances associated to the same date have execution time lags which mutually overlap:
hence, (i7) implies the computational causality feature; moreover, any two instances the execution
time lags of which are disjoint — especially, any two instances which are in a precedence relation Pre
or Sync — have different dates. |

Let us emphasize that we will make use of the mere fact that a date function ezists; we will not
need to be able to effectively compute it. Besides, the date function depends on the specific run
being considered, even if the parallel program is semantically equivalent to its sequential version.

As far as program semantics will be concerned, statement instances associated to the same date
will be considered as though they executed “at the same time”. Thus, for convenience, we will
say that “some statement instance executes at some date”. The computational causality feature
(property 2) is crucial here: it ensures that the result of a computation “made at some date” is
not available before the next date. (The causal definition feature (property 4) will not be used
here: it is a byproduct.) So to speak, what we are considering here is a causality-preserving time
discretization.

The reciprocal of property 2 is not true: having 7(8) > 7(«) does not imply that an output of «
can be used as input by 3 (besides, the execution time lags of @ and 3 may overlap). But we must
point out that this availability will stand if Pre(c, 8) (provided, of course, that the variable is not
written again meanwhile); or Sync(«, #) (in which case, besides, «a writes an event variable read by

).

The need to introduce a notion of execution date is the main reason why we consider simple
statements rather than structured ones: very often, a structured statement instance extends on
several dates, in our sense. This is not due to the time length of execution of this structured
statement, but rather to the existence of input/output exchanges within the execution time lag.
Thus, a subroutine or function call is attributed a single date in our framework, however long
its execution time may be, provided that it follows the specification we mentioned above: that
inputs/outputs occur only at the beginning and at the end of the subroutine or function'!.

Other notions of date

The notion of execution date we introduce here displays some similarities, and some differences, with
the well-known notion of linear time proposed by Lamport [17, 25]. Lamport considers sequential
processes, communicating with one another by sending and receiving messages. Events occurring
on every process are assigned dates by a local clock; every message includes the date when it is sent
(for the local time of the emitting process), and triggers an update of the local time of the receiving

1Tn the same flavor, in some languages — such as C' — where several operations may be condensed into one seemingly
“simple” statement, such a statement may have to be considered as structured in our sense, and will then extend on
several dates.
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process, if necessary, so that, so to speak, the message is received “after” it is sent. This mechanism
permits to effectively express causality through a global clock, realized only from local clocks —
without a need for a common time device with which all processes would have to communicate.

This causality feature of linear time is obviously what makes it somewhat similar to “our”
execution date. An important difference between our scheme and linear time (or more complex
time schemes outlined in |25]) is that the latter aim at effectively computing dates allowing to order
events, whereas, as we mentioned before, it is sufficient for us to know the ezistence of a date
function 7() endowed with some interesting properties; we will have no need whatever to effectively
compute it.

4.4 The ordered single process run

A single process run is a run of the parallel program, obtained when there is only one process
available. As mentioned before, it will be required that a parallel program not produce a waiting
deadlock whatever the number of available processes. Therefore, a single process run should not
produce a waiting deadlock.

We will be interested in the ordered single process run, defined as the single process run
in which Assumption SA (sequential assignment) above (§2.2) extends to all parallel constructs,
and not only to those containing synchronizations. Under the assumption that this ordered single
process run does not produce a waiting deadlock — an assumption in the theorem below — its
behavior matches the one of the sequential version exactly, not only from the point of view of
semantic equivalence, but also referring to the execution order of the statement instances. (As
a consequence of the semantic equivalence, the ordered single process run produces no execution
fault.)

On the other hand, if the ordered single process run deadlocks, its behavior matches the one of
the sequential version exactly, in the same sense, up to the WAIT statement instance on which the
deadlock occurs.

It may be of interest to express the condition that the ordered single process run does not
deadlock. Due to the above remark, we have to express that any WAIT instance executed in the
sequential version s not o deadlocking WAIT, assuming that the ordered single process run proceeded
up to that point, with semantic equivalence to the sequential run wup to that point. Considering
this semantic equivalence, we can express the no-deadlock condition (& expresses the sequential
execution order):

No-deadlock condition for an ordered single process run:'?

V WAIT instance v, Exe®(y) = 3 POST instance 7, Exe®(y) A Exe®(m)
AN <) & ([ex]” = [e4]°)
A( VY CLEAR instance 6,
Exe(7) A Bxe®(6) & (=] = [£,]9)
> @<rvVvygo) )

12 According to what we have mentioned above (§3.1) about the expression of Exe®, this condition is formally more
satisfactory under the hypothesis that the ordered single process run terminates (an assumption in our theorem),
since otherwise, the expression of Exe® explicitly depends on the location of the infinite loop.
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5 The theorem of semantic equivalence

We will now derive our theorem of semantic equivalence. We consider a parallel program written
in the language we have previously defined (Section 2). We consider the sequential version of this
program, which is supposed to conform to the rules of our language regarding sequential programs
(among others, determinacy, and absence of execution faults). Considering a few properties of
the ordered single process run (§4.4), we will derive the semantic equivalence between our parallel
program and its sequential version.

Theorem 1 Under the following hypotheses:
i. Assumptions S1 and S2 (§3.4);
1. No waiting deadlock in the ordered single process run;
15. No infinite loop in the ordered single process run;

. For all statement instances a(i) and b(j),

Exe(a(i)) A Exe®(b(j)) & Dep(a(i), b(j)) = Pre*(a(i), b(j)),

the parallel program is semantically equivalent to its sequential version. Especially, no parallel run
can deadlock (in waiting or in fault), nor infinitely loop.

Proof :  We consider a program instance, obtained by giving values to the parameters. Then,
there is only one ordered single process run of this program, which will be denoted S, whereas there
are generally many possible runs of the parallel version. We consider one of them, which will be
denoted P. In what follows, the predicates Exe and Pre, defined in Section 3, are the execution and
precedence predicates associated to this parallel execution P.

We will first derive the semantic equivalence extended to all statement instances executed in
this parallel run P and all variables involved in them (points 1 to 4); finally, we will prove that,
conversely, all instances executed in the ordered single process run S are executed in this parallel
run P (point 5).

Point 1 : We will consider the ezecution date function (§4.3) associated to the parallel run P we
are considering.
Let 7 be a date such that the following recurrence assumption holds:

Semantic equivalence up to date T — 1: for any statement instance a executed strictly
before 7 in P, « is also executed in S; moreover, any variable reference involved in « as
input (including the event references) points to the same variable in both runs, and that
variable has been written by the same other instance in both runs. Correlatively, all
variables written, in P, before date 7 (including event variables), underwent the same
computations, due to the same instances, in the same order, in S.

This hypothesis indeed expresses a semantic equivalence between P and S as regards all the
inputs and outputs of all statement instances executing before 7 in P. (As a consequence, especially,
P does not produce any execution fault before 7.)
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We wish to prove that this semantic equivalence extends to date 7. Considering that it obviously
applies to the program start, that will ensure the semantic equivalence along all the parallel run P.
First of all, we have to introduce a lemma.

Lemma 2 We assume the hypothesis of semantic equivalence up to date T — 1, and a statement
instance vy executed at T in P. For any statement instance « such that Exe®(a) and Pre®(«, ), we
have Exe(c) and Pre(a,y).

This result also holds if we replace v here by any statement instance executed before T in P.

The proof of this lemma is provided in Appendix B.

We have to show that, for any statement instance v which happens to be executed at date 7
in P, the semantic equivalence propagates to «y. First, we will prove that the semantic equivalence
extends to the inputs of yv. We will be led to consider separately the case when such an input is not
an event (point 2), and the case when it is (point 3). Then, we will notice that this execution
of v does not produce any execution fault; afterwards we will show that the semantic equivalence
extends to the outputs of -y, by deriving that there is no race condition between instances executing
at date 7 (point 4). Thus, the semantic equivalence up to date 7 will be derived.

We consider a statement instance y coming to be executed at date 7 in P. According to Lemma 1
(§4.2), the fact that -y is reached or persistently pending (not implying that it is executed) is fully
determined by some statement instance(s) 3 such that Pre’ (8, ), and which have all been executed
(therefore, before 7, since Pre” is common to all runs). Due to the recurrence hypothesis of semantic
equivalence up to date 7—1, these same statement instances 8 execute in S, and identically determine
that 7 is reached or persistently pending in S. Therefore, 7 is executed in S (due to hypotheses (%)
and (%i1), no instance remains waiting nor pending in S): we have Exe®(y).

Let us consider some variable reference ¢ used by v as input. In order to ensure the semantic
equivalence for this input, since we assume the semantic equivalence up to date 7 — 1, we just need
to rule out two possibilities:

1. the possibility that the reference € in vy does not point to the same variable in S; or, in case
it does (let then z be the variable £ points to in both runs),

2. the possibility that the value of z used by y as input is not obtained by the same computations
in both runs.

We will first show, by a recurrence on the indirection order (§2.1) of ¢, that ruling out Possibility 1
reduces to ruling out Possibility 2. Possibility 1 cannot arise if £ is of indirection order 0, since such
a reference statically points to the same variable in any run. Now, if £ is of indirection order n > 0,
let us suppose that possibilities 1 and 2 have been ruled out for all inputs of 7 of indirection order
less than n. Then, the semantic equivalence extends to all such inputs, and especially to all variable
references contained in the subscript list of &. Therefore, £ points to the same variable z in both
runs, and it is then sufficient to rule out Possibility 2 for this input z.

So, considering a variable reference & pointing to the same variable z in both runs, we have to
rule out Possibility 2 by making sure that the value of  used by  as input has been similarly
computed in both runs.
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Point 2 : Let us first consider the case when z is not an event variable.

Let 8 be the statement instance which computes the value of z used by  as input in S. [ exists,
due to the determinacy condition (§2.3). We will first show that Exe(8) and Pre(S,), which will
imply that 3 is executed in P before 7. The recurrence hypothesis of semantic equivalence will then
imply that z is similarly computed by § in both runs, and the precedence thus obtained will imply
that this value of z is available as input for v in P, unless some other computation of x interferes
between (8 and 7, a circumstance that we will rule out afterwards.

We have Exe®((3) because it is # which computes z for v in S; we have Exe®(ry) as we have seen;
we have Dep(3,~) because 3 computes a variable (which is not an event) used by 7 in S, the run
in reference to which Dep is defined. Therefore, according to (iv), we get Pre*((,~). According to
Lemma 2, having Exe®*() and Pre®((,~) implies Exe(3) and Pre(3,7). Now, in order to confirm
that the semantic equivalence extends to the input = of 7y, we need to prove that, in P, the statement
instance which computes z for 7 is indeed 3, and not some other statement instance ¢ interfering
between (3 and 7.

Such an instance d would execute before 7, so that its output = could be available for «y; so, due
to the recurrence hypothesis, § would execute in S too, and compute the same variable . Therefore,
there would be a dependence Dep between (3 and d, which, together with Exe®(5) and Exe®(d), would
imply a precedence Pre® between (3 and ¢, according to (iv). In what direction would this precedence
stand? If we had Pre®(d, 3), Lemma 2 applied to 8 would then imply Pre(d, 3), which, together with
Pre(3,7), would prevent the value of x computed by § from being read by «. Therefore, we would
get Pre®(f3,6): § would indeed execute after (3 in S. Since  indeed computes z for v in S, this would
imply that 0 executes after v in S. If this were the case, we would have Dep(v, ), which, together
with Exe®(d) and Exe®*(y), would imply Pre®(vy,d). 0 would execute in P before 7, so Lemma 2
would apply to d: Exe®(y) A Pre®(v,d) would imply Pre(+y, §), which would contradict the fact that
¢ executes before 7 in P. Therefore, there is no such instance 9.

Point 3 : Let us now consider the case when x is an event variable. This implies that ~ is a WAIT.

According to the recurrence hypothesis, all computations of x before 7 are identical in both
runs. Let p be the statement instance which last modified the event x in this past common history.
Since 7 is executed at date 7 in P, p exists and is a POST (and not a CLEAR).

Let 7 be the statement instance which writes « for v in S. Since 7y is executed in S, 7 is a POST
and (7,y) is a synchronization pair: we have Sync®(m, ).

We have to show that 7 is p. This will end our Point 3. If this were not the case, Assumptions
S1 and S2 (§3.4) would imply that, either Pre®(v, p) (then, p would execute after v in S), or there
would be a CLEAR instance @ involving event z in S, such that Pre’(p,0) A Pre®(#,7). Let us
successively rule out these two cases.

The case Pre’(v, p). Since p executes before 7 in P, Lemma 2 applies: Exe®(y) A Pre?(v, p)
would imply Pre(v, p), which would contradict the fact that p executes before y in P.

The case Pre(p,0) APre® (6, v). According to Lemma 2, having Exe®() and Pre’(6,~) would
imply Pre(f,v): @ would execute before 7 in P. Then, the fact that Pre’(p,6) would imply a
similar precedence in P (due to Lemma 2 applied to #): x would be cleared by 6 between p
and v in P, which would contradict the fact that p is the last statement instance writing x
before 7.
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Point 4 : At this point, we have proved that, given the recurrence hypothesis of semantic equiv-
alence up to date 7 — 1 and a statement instance 7y executed at 7 in the parallel run P being
considered, -y is also executed in S and the semantic equivalence extends to all the input references
of y: any such reference ¢ points to the same variable (denoted x) in both runs, and x contains the
same value, similarly computed, at the execution of v, in P and S.

This input equivalence implies that any output reference 1 of v points to the same variable
(denoted y) in both runs. Thus, in both runs, v performs the same computations, on the same
inputs, producing the same outputs. Therefore, the execution of v in P produces no execution
fault. To make sure that the semantic equivalence extends to the outputs of vy at date 7, it is
sufficient to check that there is no conflict, i.e. no dependence relation, among the statement
instances ;, say 71 and -y, coming to be executed at date 7 in P. Due to the semantic equivalence
of all input references, input variables and output references of y; and 9, such a conflict would also
show up in S.

In case the conflicting references would not be event references, such a conflict would translate
into a dependence relation Dep, e.g. Dep(~1,y2), which, according to (iv), would imply Pre®(vyy,7y2).
Lemma 2 applies: having Exe®*(y1) and Pre®(vy1,72) would imply Pre(y1,72), which contradicts the
fact that v; and -5 execute at date 7.

In case the conflicting references refer to an event variable, first of all, 7y; and 2 would not both
be WAIT instances: at least one of them has to output an event (so that there is a conflict), i.e. be
a CLEAR or a POST. Two cases have to be considered.

e The case when ; and 3 are a POST and a WAIT, say in that order, involving an event variable
¢ (in both runs S and P). Let m be the POST instance which writes ¢ for v, in S. We have
Sync®(m,y2). We have noticed (point 3) that 7 executes before 7 in P. 7 is therefore different
from ~y;. We will show that this leads to a contradiction. According to assumptions S1 and
S2 (§3.4), either we would get Pre®(7y2,71), or there would exist a CLEAR instance @ involving
the event variable ¢ in S, such that Pre®(y;,0) A Pre(0,72). Let us rule out these two cases.

The case Pre® (yo,71). Since v, would execute at date 7 in P, Lemma 2 applies: Exe®(y2)A
Pre®(y2,v1) would imply Pre(7ys,71), which would contradict the fact that v, would
execute at date 7, like ;, in P.

The case Pre’ (v, 0) APre®(0,72). According to lemma 2, having Exe’(#) and Pre®(6,vo)
would imply that 6 would execute before 7 in P. Then, however, Pre®(y;,#) would imply
a similar precedence in P (lemma 2 applied to 6): ; would execute before 7 in P, which
contradicts the assumption that y; would execute at 7.

e In the other cases, let us apply Assumption S1. We have a precedence Pre® between 7; and
¥, e.g. Pre’(y1,72). According to lemma 2, having Exe®(y;) and Pre®(y;, ) would imply
Pre(v1,72), which would contradict the fact that v; and 2 both execute at date 7.

Point 5 : We have thus proved that any statement instance executed in some parallel run P is
also executed in S, and that any variable involved in this statement instance undergoes the same
computations (and therefore receives the same values) in both runs up to the last point reached in
P.
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As an immediate consequence, this parallel run P cannot enter an infinite loop: indeed, if some
WHILE construct looped indefinitely in P, the semantic equivalence along P would imply a similar
infinite loop in S, which is ruled out by (i7). That same semantic equivalence along P also ensures
that P produces no execution fault.

There remains to prove that, conversely, any statement instance executed in S is also executed
in any parallel run P. Let us suppose by contradiction that there are statement instances which are
executed in S and not in some parallel run P we are considering, and let v be the earliest one, in
the sequential order.

Let us apply Lemma 1 to the execution of 7y is S. According to hypotheses (u1) et (%ii), there is no
persistently waiting nor persistently pending statement instance in S. Therefore, Lemma 1 implies
that Exe®(vy) is dependent on statement instances 3 which precede v Pre’-wise and are all executed
in S, before v. By definition of «y, these 8 are executed in P, with semantic equivalence, as shown
previously. Therefore, Lemma 1 and the non execution of « in P imply that, in P, either ~ is
persistently pending, or v is a persistently waiting WAIT. Let us examine these two possibilities.

In the absence of infinite loops and execution faults in P, the sequential assignment assumption
(§2.2) implies that a statement instance can be persistently pending only if some WAIT instance w,
ranking before it in the sequential order, is reached and deadlocks in P. Being reached in P, w is
reached too, and executes, in S. Its deadlock in P, and its preceding v in S, would contradict the
definition of ~.

Finally, there remains the case when < is a reached and deadlocking WAIT. Let €, be the event
v involves in S. First of all, we must show that - involves the same event in P.

Let x be a variable other than e,, if any, involved as an input of v in S (z exists in case of
dynamic reference). By definition of +, all instances preceding 7 in S are executed, with semantic
equivalence, in P. It is therefore the case for the instance (3, which computes z for v in S (for any
such z, B, exists, due to the determinacy condition (§2.3)).

Is there a possibility that, in P, « is rewritten after G, 7 If this were so, it would be through
an instance denoted §,. Then, §, executes in S, with semantic equivalence, therefore after yv. We
would then get Dep(y,d,) (dependence associated to x), Exe®(y), Exe®(d;), therefore Pre®(vy,d;)
by (iv). According to Lemma 2 applied to d,, having Exe®*(y) and Pre®(y, d,) would imply Exe(y),
which would contradict the deadlock on 7 in P. Hence, x is not written again after 8, in P.

Here we will use a lemma:

Lemma 3 We assume the semantic equivalence along P. Let v be a WAIT instance, deadlocking in
P. For any statement instance o such that Exe®(a) and Pre®(a, ), we have Exe(a) and Pre(c, 7).

The proof of this lemma is provided in Appendix B, after the proof of Lemma 2.

For any such variable x, we have Exe®(f3;) and Dep(G,vy). We have Exe®(y). So, according to
(iv), we have Pre’(03;,~). Then, lemma 3 gives Pre(f,,7).

Together with the fact that x is not rewritten in P after (3., this precedence Pre(f;,), from
an executed instance to a deadlocking WAIT, implies (§3.3) that, if x is an input of  in P (which
we do not know yet, at this point!), the value of z input by 7 is (and remains) the one computed
by By in P as well as in S. Checking that z is indeed an input of « in P is performed through a
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recurrence on the indirection order of z, similar to the one we used in Point 1. It therefore turns
out that the event involved in y in P indeed is (and remains) €,, the same as in S.

By definition of «, all instances previous to v in S are executed, with semantic equivalence, in
P. This is the case, therefore, for the POST instance 7 which sets value posted to e for -y in S. So,
the deadlock on v would imply that, in P, some CLEAR statement instance € executes and clears
e, after 7, and before v used it. 6 also executes in S and clears the same event (as shown above,
about the semantic equivalence extended to all instances executed in P).

Assumption S1 (§3.4) implies that there is a relation Pre® between 6 and 7, and between 6 and
v. We cannot have Pre’ (6, 7) because this would imply (Lemma 2 applied to 7) that § executes
before 7 in P. So, we have Pre’(m,#). We cannot have Pre®(6,v) because, together with Pre’(r, 6),
this would imply an execution order in S: 7 before 6 before v, and © would not post for v, as it is
supposed to. So, we have Preo(v, 0).

6 executes in P, so Lemma 2 applies to #: -y executes in S and we have Pre®(y, 6); so, v executes
in P before 6, which contradicts the deadlock on 7.

This ends the derivation of our theorem.

Deadlocks and infinite loops

Along the lines of the above derivation, it is straightforward to see what may happen whenever the
ordered single process run S produces a waiting deadlock, contrarily to hypothesis (7i), or infinitely
loops, contrarily to hypothesis (i) — keeping in mind that both circumstances are unwanted in our
framework.

In case S is endless, the statement instances executing in S execute too in any parallel run P
— hence an infinite loop in P — but, in case the infinite loop is nested in a parallel construct, some
units of work in this parallel construct may execute in P, although they are not reached in S.

In case S produces a waiting deadlock, the statement instances executing in S execute too in any
parallel run P, but, in the (usual) case when the deadlocking WAIT instance is located in a parallel
construct, it may happen that some units of work in this parallel construct execute in P, although
they are not reached in S. It may even occur that the event corresponding to the deadlocking WAIT
instance happen to get posted thus, due to a POST instance located after the WAIT instance in the
sequential order. Such an occurrence will then arise randomly, essentially depending on the number
of available processes and the loading of units of work on these processes, two aspects of the program
execution the user is not supposed to have any control on.

6 An example; an incrementality property

We will illustrate the possible applications of our theorem on a little example, together with high-
lighting an interesting property of incrementality of a check-and-repair procedure inspired by our
result.

Let us consider a parallel program instance in which two statement instances a and (3, both exe-
cuted and in a dependence relation Dep(a, 3), happen not to be in a precedence relation Pre®(a, 3).
We consider a check-and-repair procedure which, in presence of such an unpreserved dependence,
aims at reinforcing the precedence Pre® so that the dependence being considered becomes preserved
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by the precedence thus reinforced. We must indeed obtain a reinforcement, in the sense that,
S S S S
for the whole program, we must get Prebefore = Preafter where Prebefore and Preafter denote the

precedences Pre® before and after the repair, respectively. (If this reinforcement of Pre® is performed
by adding or displacing synchronizations, it must be checked that assumptions S1 and S2 dealing
with synchronizations (§3.4) remain true after the repair.) Thus, the implications Dep = Pre®
already checked at this point, will remain afterwards.

Here, the important point to notice is that this repair of this lack of dependence preservation
does not compromise the other verifications already performed at this point; the dependences which
have already been checked to be preserved at this point will remain preserved after the repair:
there is no need to rewvisit the whole program source at this point. This incremental aspect of the
check-and-repair procedure is a direct consequence of the reference of our theorem to the sequential
semantics; it would not be ensured if our theorem had referred to the parallel semantics in some
essential way (because such a reinforcement of the precedence may indeed radically change the
behavior of the parallel program).

Let us study an example. Figure 8 shows a portion of program. The sequential version (which
provides the reference for the required semantics) is on the right.

On this portion of program, we assume that the undisplayed statements (represented by “...”)
do not contain references A() or P, nor synchronizations. Besides, we assume that this portion of
program is not itself nested within another parallel construct.

This program is incorrect in our sense, since it exhibits memory conflicts involving variable P:
dependences from c1 and c2, to d1, a and p, are not preserved. This will have to be fixed, but,
due to the incrementality property, this must not prevent us from checking whether dependences
involving variables A() are preserved.

Let us focus our attention on the dependence between statements b and a, involving references
A(). We notice that this dependence, as well as the corresponding precedences that we will find,
depend on variable P. Since the sequential version sets the semantic reference here (in virtue of
our theorem), we have not to bother (at this point) with the memory conflicts mentioned above
involving P, and we consider the “sequential” value of P (which equals 2 or 3) at b and a. Since
P > 0, we have a dependence from a to b involving the variable array A(), which will have to be
preserved so that the values of A() computed by a be, in case of need, those used by b, P iterations
later.

We choose to include the execution conditions Exe® in our predicates Dep. We obtain:

Dep(az,by) = (1 <z < N)A(1<y<N)A(y>2z)A(y =2+ [P]Qay)

Let us explain this relation. a, (resp. b,) denotes the instance of a (resp. b) corresponding
to iteration x (resp. y). The four terms of this conjunction denote, respectively: the condition of
execution of a; the condition of execution of b; the condition for a, to execute before b, in the
sequential version; and the condition that the two instances a, and b, access to the same variable
in the sequential version. Let us remind that [P]@a, denotes the value of P read by instance a, in

the sequential version'3.

13 As a simplification, we assumed here that N is a parameter. In case it is a variable, in the expressions displayed
here, “N” should be replaced by “[N]@d2”.
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psections
section
if(B) then if(B) then
cl: P=2 P=2
else else
c2: P=3 P=3
endif endif
f:
section
di: do J=1,P
q: post E(J)
enddo
d2: pdo I=1,N do I=1,N
W wait E(I)
b: ...=A(I) ...=A(T)
a: A(I+P)=... A(I+P)=...
p: post E(I+P)
endpdo enddo
endpsections

Figure 8: An example of program checking. The sequential version is on the right.
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cl:

c2:

O o T o=

B=...

CLEAR F

psections
section

if (B) then
pP=2
else
P=3
endif
POST F

section
WAIT F
do J=1,P
post E(J)
enddo

pdo I=1,N
wait E(I)
...=A(I)
A(I+P)=...
post E(I+P)

endpdo

endpsections
CLEAR F

Figure 9: The previous

addendum

addendum

addendum

addendum

example, with addenda
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Let us now look for precedences which may stand from a to b. It is easy to detect that the control
precedence Pre? is not sufficient, and that synchronization relations Sync® have to be involved. More
precisely, let us consider a path:

Qg — Py ~> Wy — by

(We use notations introduced in §3.3). Let us express the corresponding precedence relation:
Pre®(ay, by) = Pre(az, pu) A Sync® (pu, w,) A Pre®(w,, by)

As regards the synchronization Sync®, we assume that it has been checked that a synchronization
indeed stands from p to w, in the sense that, under the sequential semantics, the events E() are not
posted yet when the control enters the portion of program considered here.

We get:

Pre*(ag,by) = (z=u)A(1<u<N)A(u+[PlQp, =2)A (1 <2< N)A(2=y)

We have to check whether there is a precedence path of this form such that Dep(a.,b,) =
Pre*(ay, by), i.e. whether there is an instance p, of p and an instance w, of w such that we get this
implication. In the above expression of Pre®, we try to eliminate u and z'4:

e Eliminate u by (z = u):
Pref(az,by,) = (1 S o S N) A (2 + [Plap, = 2) A (1 < 2 < N) A (2 = p)
e Eliminate z by (z = y):
Pre’(ag,by) = (1 <z < N)A(z+ [P]@p, =y) A (L <y < N)
to be compared with:

Dep(az,by) = (1 <z < N)AQ<y<N)A(y>2z)A(y =2+ [P]Qay)

We indeed get Dep(as, by) = Pre®(ay,by), provided that [P]Qp, = [P]@a,, which is verified as
soon as we check that P is not rewritten between the two readings in the sequential version, which
is what we have assumed.

Now we must take care of variable P. We have mentioned that dependences involving P, from
cl and c2 to d1, a and p are not preserved. A somewhat radical way to fix this problem, is to
“resequentialize” the PSECTIONS — but this may be costly if the execution of statements f is time-
consuming. Rather, a more subtle fix consists in introducing a new synchronization from the end of
P’s computation to the beginning of P’s use. This synchronization should not involve an event E()
already in use in loops d1 and d2. A possibility is to use another event (here F'), duly reinitialized
before and after this use in case it already exists in the rest of the program. Under this condition,
all the previously checked dependence preservations (e.g. those involving A() here) still stand. A
possible fix of our portion of program is shown in Figure 9.

Y4 hese principles of algorithmic treatment of dependences and precedences are explained in [26, 6, 7].

37



7 Conclusion

We have studied a property of correctness of parallel programs in the shared-memory programming
model. This model is widely used in scientific computing and implementable on many parallel
machines, including distributed-memory ones.

We have considered a parallel language obtained by adding a few parallel constructs (parallel
loops, parallel sections and event synchronizations) within a fairly standard sequential imperative
language (we do not make static control assumptions often considered in the literature). We are
interested in a property of sequential correctness defined as a semantic equivalence between a
parallel program and its sequential version, that we define. In this framework, a parallel program
is viewed as the result of a parallelization of some given sequential program, and it is required that
the results of any run of the parallel program be identical to those of this sequential program; the
improvement sought through the parallelization lies only in the ability to obtain these results faster.

The main object of this paper is to present and derive a theorem which states sufficient conditions
for this sequential correctness property. The important aspect of this result is the fact that these
sufficient conditions (mainly preservation of dependences) refer to the semantics of the sequential
version only: they do not refer in any way to presupposed properties of some specific parallel run
of the program. In other words, due to this result, checking that any possible run of some parallel
program being considered will meet the desired correctness requirements boils down to checking
some predicates pertaining to some sequential program. Especially, this reference to a sequential
semantics allows to use all resources of dataflow analysis usually applied to the study of sequential
programs, in the process of checking these predicates.

The derivation of the theorem makes use of a notion of ezecution date. In a run of a parallel
program, every execution of a statement is attributed a date, such that the outputs of computations
made “at some date” are not available as inputs before “the next date”. This execution date feature
can be described as a causality-preserving time discretization. The main part of the proof makes
use of a recurrence on the date, in order to derive that the semantic equivalence between the
parallel program being considered and its sequential version, propagates along any possible parallel
execution. The requirement to refer to the sequential semantics, whereas the recurrence proceeds
along a parallel run, explains the intricacy of the proof.

A preliminary application of this theorem, dealing with a subset of our language, is developed
in [7, 26]. There are prospects that this result could be applied through tools to verify a wide range
of programs.

Appendix A: Proof of Lemma 1

Lemma 1, introduced in §4.2, specifies in which cases, and in what sense, the execution of some
statement instance « in a parallel run, strictly depends on the execution of some statement instances
3 such that Pre(, ). (Let us remind that () denotes the condition for a to be executed or
persistently waiting or persistently pending.)

Lemma 1 Considering a parallel program, for any run of this program, and for any statement
instance « of any statement except the first one, () is fully determined by the execution of one
or several statement instances 3 such that Pre® (8, ). All or some of these instances 3 are specified
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independently of the run considered; the other ones, if any, are specified by the execution of the
former. If at least one of these B produces an execution fault, this implies (a) = false.
We have Exe(a) = 1(a) except in the three following cases:

e « is an instance of a WAIT w: then, ¥ (a) expresses the condition for «a to be reached (or the
condition for a to be reached or persistently pending, in case w s both a WAIT and the first
statement in a parallel construct body). Under this condition, however, a may be persistently
waiting (or persistently pending), instead of finally executing, in a deadlock situation (or in
an infinite loop situation in the latter case).

e « is an instance of the first statement in o PDO body or in a SECTION of a PSECTIONS,
without being an instance of a WAIT: then, () expresses the condition for « to be executed
or persistently pending; the latter possibility occurs in case of a deadlock or infinite loop.

e « is an instance of a ENDWHILE: then, ¢(a) expresses the condition for a to be executed or
persistently pending; the latter possibility occurs in case the WHILE infinitely loops, or in case
of a deadlock or infinite loop within an iteration.

Proof : ~ We will refer to the previously specified execution model (§2.2). We will successively
examine all possible cases in our language.
We consider some statement instance «, an instance of a statement a other than the first one.

e ¢ is a WAIT: then, in all interesting cases, it is not true that the execution of a depends on
instances preceding a Pre’-wise. But the condition for « to be reached — not meaning that it
is executed — will conform to everything we will derive now, as shown by fictively inserting a
CONTINUE statement just before the WAIT statement, and considering which of the following
cases this CONTINUE statement fits in. In the following cases, we assume that a is not a WAIT.

e a is the first statement in a PDO body: then, let ¢ be the loop header; let j be the (possibly
empty) index vector of ¢ and j:: k be the index vector of a. For any instance a = a(j:: k) to
be executed, it is necessary that the corresponding instance ¢(j) be executed without fault;
conversely, the execution of ¢(j), through the evaluation of its loop bounds, fully characterizes
which instances a(j:: k) are reached or persistently pending. Thus, ¥ (a(j::k)) is fully charac-
terized by the execution of ¢(j); and we have Pre’(c(j), a(j::k)). However, an instance a(j:: k)
such that 1 (a(j::k)) may be persistently pending instead of finally executing, in deadlock or
infinite loop situations.

e ¢ is the first statement in a SECTION body, within a PSECTIONS construct: then, let ¢ be the
PSECTIONS header; let j be the (possibly empty) index vector of a and ¢. For any instance
a = a(j) to be reached or persistently pending, it is necessary and sufficient that c¢(j) be
executed. So, 1(c) fully depends on another statement instance which precedes it Pre%-wise.
However, there again, o may be persistently pending, in deadlock or infinite loop situations.

e ¢ is a ENDWHILE: then, let ¢ be the corresponding WHILE header; let j be the (possibly empty)
index vector of a and ¢. For any instance a = a(j) to be reached or persistently pending, it
is necessary and sufficient that ¢(j) be executed. So, 1(a) fully depends on the execution
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of ¢(j), which precedes a(j) Pre’-wise. However, there again, o may be persistently pending
whenever, either the WHILE construct infinitely loops, or there is a deadlock or infinite loop
within an iteration.

At this point, we have just examined the four cases when the execution of a statement instance is
not fully determined by the execution of statement instances which precede it Pre’-wise. However,
such a full determination will stand for a WAIT instance to be reached — not meaning that it will
be executed —; for an initial instance in a unit of work to be executed or persistently pending — not
meaning that it will finally be executed —; for an initial instance in a unit of work which happens
to be a WAIT, to be persistently pending or reached — not meaning that it will finally get reached,
or executed; and for a ENDWHILE to be executed or persistently pending.

Now, let us examine the other cases.

e ¢ is a ENDPSECTIONS. Then, let ¢ be the corresponding head of the PSECTIONS, and j the
index vector common to ¢ and a. The execution of a(j) is fully determined by the execution
(without fault) of the corresponding statement instances which end all the units of work in
this PSECTIONS. All these instances precede a(j) Pre’-wise. They are specified independently
of the run.

e ¢ is a ENDPDO. Then, let ¢ be the corresponding loop head and j be the index vector common
to ¢ and a. Then, the condition for a(j) to be executed is that ¢(j) be executed without fault
and that, in case the index range is not empty (a circumstance determined by the execution
of ¢(j)), the statement instances which end all the parallel units of work be executed without
fault. All these instances precede a(j) Pre’-wise, and are specified by the execution of c(j).

e ¢ is the first statement in a DO loop body. Let ¢ be the loop head, j be the index vector
of ¢ and j :: k be the index vector of a. Then, the execution without fault of ¢(j) fully
determines the range of values of k£ which will be considered, and for any of these values k,
the condition for a(j:: k) to be executed is the execution without fault of ¢(j) and (for the
iterations other than the first) of the last statement instance in the loop body corresponding
to the previous iteration. Both statement instances precede a(j:: k) Pre’-wise; the former is
specified independently of the run, and specifies whether the latter is involved.

e a is a ENDDO. Then, let ¢ be the corresponding loop head and j be the index vector common
to ¢ and a. Then, the condition for a(j) to be executed is that ¢(j) be executed without fault
and that, in case the index range is not empty (a circumstance determined by the execution
of ¢(j)), the last loop body instance (specified by the execution of ¢(j)) be executed without
fault. Both statement instances precede a(j) Pre’-wise.

e ¢ is the first statement in the THEN or ELSE part of a IF. Let ¢ be this IF. The execution of an
instance of ¢ is fully determined by the execution without fault of the corresponding instance
of c.

e ¢ is a ENDIF. Let ¢ be the corresponding IF, and j be the index vector common to a and
c. The condition for a(j) to be executed is the execution without fault of ¢(j) and of some
instance — ending the THEN part or the ELSE part — specified by the execution of ¢(j). These
two instances precede a(j) Pre’-wise.
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e ¢ is the first statement in a WHILE body, i.e. the test of the boolean condition. Let j be
the index vector of the WHILE head ¢ and j:: k be the index vector of a. The condition for
a(j::k) to be executed is the execution of ¢(j) and (for the iterations other than the first) the
execution without fault of the last statement instance in the WHILE body corresponding to the
previous iteration. Both instances precede a(j::k) Pre’-wise, and are specified independently
of the run.

e a is the second statement in a WHILE body, i.e. the statement following the test statement we
have just considered, here denoted b. Let i be the index vector of b and a. The execution of
a(i) is fully determined by the execution without fault of b(i) (and the result of the test done

by b(i))

e The remaining case is the most straightforward: @ has an immediate predecessor b, of same
index vector j, and the condition for a(j) to be executed is exactly that b(j) be executed
without fault.

Appendix B: Proofs of Lemmas 2 and 3

Proof of Lemma 2

Lemma 2 is involved in the proof of Theorem 1 (Section 5), in point 1. We assume the hypotheses
of Theorem 1.

Lemma 2 We assume the hypothesis of semantic equivalence up to date T — 1, and a statement
instance vy executed at T in P. For any statement instance « such that Exe®(a) and Pre*(«, ), we
have Exe(c) and Pre(a, ).

This result also holds if we replace v here by any statement instance executed before T in P.

Proof :  We will prove the result involving «y; the latter extension will be straightforward. After
giving a preliminary remark, we will prove the result in the restricted case when we have Pre’(a, );
afterwards, we will derive the extension to the case when we have Pre®(c,y) and not Pre®(c, 7).

Preliminary remark. In a deadlock or infinite loop situation, let « be a persistently waiting or pend-
ing statement instance. No instance 3 such that Pre’(c, 8) can be executed. This straightforwardly
results from the execution model and the definition of Pre®. (In other words, the execution flow
cannot by-pass a deadlock nor an infinite loop.)

Considering Pre’. So we have Exe®(«) and Pre(«, ). We straightforwardly have Pre(c, ), because
the control precedence Pre? is common to all runs (§3.3). Suppose that some instance o executed
in S and such that Pre’(«,7), is not executed in P. (then, « is clearly not the first statement in
the program: Lemma 1 applies to «). We will derive that, in this case, some other instance oy such
that Pre’(a, ) is also executed in S but not in P, which will then lead to a contradiction.

Let us apply Lemma 1 to the execution of « in S. According to hypotheses (ii) and (%ii) of
Theorem 1, there is no persistently waiting or pending statement instance in S. Therefore, according
to Lemma 1, Exe®(a) depends on some instance(s) §; executed in S, and such that Pre®(8;, ), hence
Pre®(B;,y). Therefore, if all these 3; were executed in P, they would be executed before date 7,
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hence the semantic equivalence, which would imply that « be reached or persistently pending in P.
So, in P, the non execution of & would imply one of two things. Either all §; are indeed executed in
this parallel run but « is persistently waiting or pending, thus participating in a deadlock or infinite
loop situation. This possibility is ruled out by the above preliminary remark: having Pre®(c, )
would prevent v from being executed, as it is assumed to. There remains the possibility that at
least one of these [3; is not executed in this run: let it be denoted «;.

Thus, assuming that « is not executed in P implies that some other instance, a;, preceding «
Pre’-wise, is not executed either in P, though it is in S.

This argument may be repeated for aq: thus, we would find an infinite sequence (g = «, a7,
vg,...) such that every «; would be executed in S and preceded (Pre’-wise) by the next one in the
sequence. This contradicts the simple fact that there are a finite number of execution dates between

the program start and any step it reaches, in any run'®.

Extending to Pre®. Suppose that some instance « such that Pre®(c,y) and not Pre®(c, ) is executed
in S. Pre®(a,7y) is realized through synchronizations, i.e., as previously explained, through one or
several paths of the form:

o — ] Or ¢ = T

T M W] —> T~ Wy —> -+ — Ty VM Wy
wp —

where, again, — denotes a Pre’ relation, m; denotes a POST, w; denotes a WAIT, and ~ denotes a
synchronization link Sync®; moreover, all the m; and w; are executed in S (remember the “transitive
closure modulo Exe®” involved in Pre®). We have w,, — v and not w,, = y because of the restriction
we have introduced (§3.3) in the definition of Pre®.

We have w, — 7, i.e. Pre’(wy,,7); therefore, according to the first part of this lemma, wy, is
executed before date 7 in P. By upward recurrence, we will prove that all m; and w;, and finally
«, are executed before 7 in P. Let us assume that w; is executed before 7. Then, the recurrence
hypothesis applies to w; and any variable involved in w;, i.e. to the event involved in wj, €,,: all
computations of €,, performed before the execution of w; are identical in both runs and occurred in
the same order. So, since we have Sync®(7;,w;), m; was executed in P before w; and its execution
made possible the execution of w;, in P as well as in S: we have Sync(m;,w;) (§3.4).

Let us now consider the case 7 > 1 and derive the execution of w;_;. Since we have Pre® (wi—1,m;)
and Exe®(w;_1), according to the first part of the lemma, w;_1 is executed before 7;, hence before
date 7, in P. Thus, we conclude that w; is executed before 7 in P. The above reasoning then ensures
that 7 too is executed before 7 in P. Now, we have either Pre®(a, 1) (and Exe®(«)), or o = 7y,
which implies that « is indeed executed before 7 in P; furthermore, we have Pre(a, ), by transitive
closure modulo Exe.

<

15Tn this reasoning, it is crucial to have Exe®(c;), together with Pre®(ait1, ), to obtain the contradiction, since
the ordering Pre® is not well-founded (because of the way DO and PDO loops generate sequences of statement instances
which are infinite on both sides).
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Proof of Lemma 3

Lemma 3 is involved in the proof of Theorem 1 (Section 5), in point 5. We assume the hypotheses
of Theorem 1.

Lemma 3 We assume the semantic equivalence along P. Let v be a WAIT instance, deadlocking in
P. For any statement instance o such that Exe®(a) and Pre®(a, ), we have Exe(a) and Pre(a,7y).

Proof :  The derivation is quite similar to the one of Lemma 2 above. First, we bring an addendum
to the preliminary remark in the proof of Lemma 2. We had observed this: « being a persistently
waiting or pending statement instance, no instance 8 such that Pre®(c, 3) can be executed. Now,
such an instance 3 cannot be a reached and deadlocking WAIT instance either. This straightforwardly
results from the execution model and the definition of Pre’.

Considering this preliminary remark, the proof of lemma 2 can be easily adapted here.
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