
Corre
tness properties in a shared-memory parallel languageGilbert Caplain�Abstra
tWe study a property of 
orre
tness of programs written in a shared-memory parallel language.This property is a semanti
 equivalen
e between the parallel program and its sequential version,that we de�ne. The language we 
onsider is a subset of a standard parallel language. Withinthis subset, this 
orre
tness property follows from the preservation of data dependen
es by the
ontrol �ow and the syn
hronizations. Our result makes use of the semanti
s of the sequentialversion only. Hen
e, through our result, 
he
king the 
orre
tness of some parallel program boilsdown to verifying properties of some sequential program.1 Introdu
tionIn the �eld of parallel programming, an important trend has been to provide program designerswith automati
 parallelizers whi
h transform a sequential program sour
e into a parallel programsour
e in su
h a way that some 
orre
tness property remains true along the way. However, anotherpossible approa
h 
onsists in 
onsidering �dire
tly� a parallel program sour
e and wondering whetherit meets some 
orre
tness spe
i�
ation. The latter approa
h may reveal interesting, for example,for a programmer who would design a program �dire
tly� in a parallel form, in order to get a betterperforman
e and/or a good understanding of the parallelization obtained.In view of this approa
h, it may be useful to provide a tool to stati
ally verify parallel programs.In this paper, we present results whi
h 
ould be applied in the design of su
h a veri�
ation tool.The programming model we address in this paper is the shared-memory asyn
hronous model(MIMD-SM), as opposed to the distributed-memory one (MIMD-DM). However, some re
ent de-velopments allow to apply the shared-memory programming model on distributed message-passingar
hite
tures [15℄, through fun
tionalities whi
h allow to 
ompile a shared-memory program to-wards a network of inter
onne
ted workstations (i.e. a distributed-memory devi
e), hen
e an a

essto extended resour
es, without the extra programming burden 
lassi
ally asso
iated to distributed-memory programming. Moreover, there are a few hints of an in
reasing interest in the shared-memory model these last years: let us mention the OpenMP standard [22℄, and some re
ent resear
hworks [27℄. Su
h developments might 
ontribute to popularize the shared-memory programmingmodel whi
h we 
onsider here.We study a property of semanti
 
orre
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Sequential 
onsisten
y of a multipro
ess devi
e is the requirement that the result of any exe-
ution of a parallel program should be the same as if all operations exe
uted by the several pro
esseshad been exe
uted sequentially in a 
ertain stri
t (unspe
i�ed) order 
ompatible with the exe
utionorder of operations of every pro
ess [18℄. Linearizability is a more stringent requirement, derivedfrom sequential 
onsisten
y by adding the 
onstraint that the �equivalent� sequential exe
ution ofevery operation lie within a spe
i�ed time interval [14℄. Serializability is a 
orre
tness 
onditionroughly similar to sequential 
onsisten
y, adapted to the study of database systems [24℄ liable to bea

essed and modi�ed by several users in parallel.Sequential 
onsisten
y and linearizability 
an be viewed as required properties of a memorymanagement system in a shared-memory parallel ma
hine. One may 
onsider testing of theseproperties through an experimental study of some run of a parallel program. The 
omplexity ofsu
h a test has been thoroughly studied in [12℄: the general problem is NP-
omplete. An analogous
omplexity result has been obtained for the general problem of serializability [24℄.The sequential 
orre
tness requirement that we will 
onsider is di�erent from the propertieswe have just alluded to. In those properties, it was required that any parallel run of some program besimilar (in its observable e�e
ts) to some, unspe
i�ed, sequential run of this program. The propertywe will 
onsider is more stringent, in the following sense: in the framework we are 
onsidering, aparallel program is viewed as a parallelization of some given sequential program � basi
ally, thisparallelization will 
onsist in parallelizing loops and introdu
ing event syn
hronizations �, and werequire that the results of any run of the parallel program be identi
al to those of the sequentialprogram being 
onsidered, and not merely to the results of �some possible sequential run�. Theproperty we are 
onsidering is a semanti
 equivalen
e between the parallel program and its sequentialversion. The improvement sought through the parallelization, in this 
ontext, lies only in the abilityto run the program faster, by allowing several parts of it to be exe
uted simultaneously, on severalavailable pro
essors. Considering this sequential 
orre
tness property seems relevant espe
ially inmany s
ienti�
 
omputing appli
ations.The main purpose of this paper is to present and prove a theorem whi
h states su�
ient 
ondi-tions for this semanti
 equivalen
e property. This result applies to a fairly general shared-memoryparallel language. Although the 
orresponding general 
orre
tness problem is unde
idable, thereare prospe
ts that our theorem may be applied through tools to verify a wide range of parallelprograms. A preliminary appli
ation, dealing with a subset of our language, is developed in [7, 26℄.Here we are interested in stati
, i.e. 
ompile-time, 
orre
tness 
he
king. Indeed, sin
e there is aninherent indeterminism in the behavior of a parallel program, we 
ould not rely on an observation ofone run of this parallel program: we seek a proof that any possible run of this program will deliver
orre
t results, in our sense. Besides, this stati
 
hara
ter will allow us to 
onsider parameteredprograms, i.e. 
lasses of programs di�ering from one another by the values of parameters.For the sake of brevity, some extensions of our theorem (e.g. introdu
ing 
riti
al se
tions) arenot developed here; they are introdu
ed in [4, 5℄.Some of the basi
 
on
epts we use have been introdu
ed in [3℄. In the development of shared-memory parallel programs, the most di�
ult 
hallenge is to avoid data ra
es, a 
ir
umstan
e whi
h
orresponds to data dependen
es. A data dependen
e links a pair of a

esses to the same variable(memory lo
ation) when at least one of these a

esses is a write. In order to ensure that theparallelized program displays the same results as its sequential 
ounterpart, we must 
he
k that2



every data dependen
e is preserved, i.e. that the two 
orresponding a

esses operate in the suitableorder (this is the dependen
e implies pre
eden
e requirement).This dependen
e preservation paradigm is fairly well-known, to the point that some of its intri
a-
ies may not be apparent at �rst sight. What does �dependen
e implies pre
eden
e� pre
isely mean?In �rst approximation, it should be interpreted as �dependen
e (de�ned in the sequential version)implies pre
eden
e (ensured during a run of the parallel version)�. But, what if some statementsexe
uted in the sequential version are not exe
uted in some parallel run? or if their exe
ution in thisparallel run does not involve the same variables as in the sequential run? We will not limit ourselvesto stati
 
ontrol programs, a limitation adopted very often in the literature (see e.g. [11℄): in thelanguage we will 
onsider, loop bounds and subs
ript expressions in arrays may 
ontain variables,whi
h may in�uen
e the 
ondition for a statement to exe
ute and the designation of the inputsand outputs of that statement. As long as we have not proved the semanti
 equivalen
e we areinterested in, therefore, su
h intri
a
ies imply that a �dependen
e implies pre
eden
e� requirementhas no well-de�ned meaning at this point.As a way to deal with these intri
a
ies, in our sear
h for a stati
 
orre
tness 
riterion, thesemanti
 equivalen
e theorem we present here states su�
ient 
onditions whi
h refer to the semanti
sof the sequential version only, i.e. involve predi
ates that are de�ned on the sequential version.This referen
e to the sequential version has an interesting 
onsequen
e regarding the possibilityto use data�ow analysis in the pro
ess of applying our theorem. Data�ow analysis (see e.g. [20,30, 21, 1, 11, 8, 9℄) is inherently adapted to the study of data �ows in a sequential program; it
annot be straightforwardly transposed within a parallel 
ontext, espe
ially due to the 
ru
ial useof the stri
t time ordering in sequential exe
ution, whi
h is not preserved in a parallel run (letus however mention that some re
ent works, e.g. [10℄, develop some kinds of data�ow analysesfor 
on
urrent programs). However, due to our theorem, 
he
king the semanti
 equivalen
e of aparallel program boils down to 
he
king some properties of the sequential version of this program,i.e. verifying properties of some sequential program, hen
e the possibilities to use the resour
es ofdata�ow analysis when applying our theorem.In Se
tion 2, we des
ribe the language we study � a standard imperative language with a fewparallel features � and its exe
ution model; then, we set up the 
orre
tness problem: a parallelprogram and its sequential version must have the same observable behavior (semanti
 equivalen
e).In Se
tion 3, we study data dependen
e and pre
eden
e relations. In Se
tion 4, we derive somepreliminary results.In Se
tion 5, we derive our theorem of semanti
 equivalen
e: assuming the preservation ofdependen
es by the pre
eden
e relations as de�ned under the semanti
s of the sequential version, anda few other assumptions dealing with the sequential version too, we derive the semanti
 equivalen
eproperty for any possible run of the parallel program being 
onsidered.Se
tion 6 illustrates an appli
ation of our theorem on a little example, together with highlightingan interesting in
remental property of a 
he
k-and-repair pro
edure making use of our theorem.
3



2 The language studied2.1 OutlineThe language we study is a parallel extension of a standard language1.On the sequential side, we have assignment, variables of integer, real, boolean types; variablearrays of these types (the subs
ript expressions in array referen
es have type integer); usual arith-meti
 and logi
al operations. It would be straightforward to extend our results so as to in
lude more
omplex, stru
tured variable types, and pointers as well (as in C++, for instan
e), but applying ourresults may reveal more intri
ate then, espe
ially when 
onsidering pointers. (The general 
on
ernhere, is that the input/output referen
es in a statement should be rather �
lear-
ut�.)We in
lude the following stru
tured statements:� Stati
 loops, denoted:DO <index>=<lower_bound>,<upper_bound> <statement_list> ENDDOThe bounds are evaluated at entry, and not reevaluated at every iteration. (It is in this sensethat the loop is said to be stati
.) The index 
annot be written within the loop. For the sakeof 
onvenien
e, loops are normalized, i.e. their in
rement is set to 1.� Conditionals, denoted:IF <test> THEN <statement_list> ELSE <statement_list> ENDIF� Dynami
 loops, denoted:WHILE <test> <statement_list> ENDWHILEThese stru
tured statements may be nested.We do not in
lude gotos. It is a well-known result that any sequential algorithm 
an beimplemented without using gotos; therefore, ruling them out is not a restri
tion here.Our language 
ontains subroutine and fun
tion 
alls, however with three important restri
-tions: all su
h 
alls should terminate; outputs should be fun
tions only of inputs (determina
y);input/output ex
hanges should o

ur only at the 
all (for inputs) and at the return (for outputs)� in other words, the 
all must be 
omparable to a simple statement exe
ution as regards valueex
hanges (More on this later).We introdu
e the following parallel features:� Parallel stati
 loops, denoted pdo, spe
ify that iterations in the loop may exe
ute in parallel.PDO <index>=<lower_bound>,<upper_bound> <statement_list> ENDPDO1Our previous work ([6, 7℄) was developed in the framework of the Fortran X3H5 proposal [31, 23℄, but the resultpresented here is valid in a more general framework. 4



� Parallel se
tions, denoted:PSECTIONS SECTION <statement_list>SECTION <statement_list>........ENDPSECTIONSspe
ify that several se
tions of 
ode may exe
ute in parallel.� Expli
it syn
hronizations: we 
onsider event variable syn
hronization through post/waitpairs. POST ( <event_referen
e> )WAIT ( <event_referen
e> )CLEAR ( <event_referen
e> )These three statements are the only ones a

essing the event variables. A post (resp. a
lear) sets value posted (resp. value 
leared) to the event variable it refers to. The eventvariables are initialized at 
leared. A wait reads the event it refers to: if this event is 
leared,the wait waits and tries again later; if this event is posted, the wait 
ontinues (only then, wewill say that the wait exe
utes); and the exe
ution �ow 
omes to the next statement. Thus,a wait is led to wait for the event to be posted by the exe
ution of some post statement, aswas intended.Further explanations, on the behavior of syn
hronizations, will be provided later (�2.2), andan example will be des
ribed in �2.3 (�gure 3).We allow for parameters under the form of �variables� that get a value �on
e and for all�when the program starts, and are not written afterwards. Thus, in our framework, a program infa
t represents a �
lass of programs�, di�ering from one another by the values of parameters. (Forinstan
e, in many appli
ations, dimensions of matri
es will be su
h parameters. In a di�erent way,
onsidering programs designed to run several times on di�erent data, these data will be parametersin our sense.)A program instan
e is obtained from a program by assigning 
onstant values to the parame-ters.In what follows, parameters and do or pdo loop indi
es within their loop, will not be termedas �variables�. A variable is a memory lo
ation other than a lo
ation assigned to a loop index or aparameter. A (variable) referen
e is a synta
ti
 element pointing to a variable. For instan
e, in theassignment:A = B(I)where B is not an array of parameters, �A� and �B(I)� are variable referen
es; if I is a loop index andthis statement happens to be exe
uted for I = 3, then, in this statement exe
ution, the referen
e�B(I)� points to the variable B(3). 5



Variables will be allowed in do and pdo loop bounds, test expressions in ifs and (obviously) inwhiles, and subs
ript expressions in arrays (dynami
 variable referen
e), in
luding event arrays.The dynami
 variable referen
e feature makes it useful to introdu
e the notion of indire
tionorder. A variable referen
e will be said to be of indire
tion order 0 whenever it is a s
alar or anarray the subs
ript list of whi
h involves only loop indi
es and program parameters. A referen
ewill be said to be of indire
tion order n > 0 whenever it is an array the subs
ript list of whi
hinvolves variable referen
es whose indire
tion orders are less than or equal to n � 1, with equalityfor at least one of them. (In everyday programs, the indire
tion order is seldom greater than 2.)2Notion of statement instan
eFor the sake of 
onvenien
e, in what follows, the statements we will 
onsider will be only simplestatements, not stru
tured ones, unless otherwise stated; 
orrelatively, we will 
onsider as statementsnot only exe
utable statements in the usual sense, but also su
h features as: heads and ends of dos,ifs, whiles and parallel 
onstru
ts; and the test expressions in whiles.Considering do, pdo and while loops leads us to de�ne a notion of statement instan
e.Classi
ally (see e.g. [32℄), sin
e a statement within a loop may exe
ute several times, ea
h of theseexe
utions is termed as a statement instan
e. Thus, in a loop iterating 10 times, ea
h statementgenerates 10 instan
es. This usual point of view brings a di�
ulty in our framework: sin
e ourlanguage allows for variables in stati
 loop bounds, and also for dynami
 loops, the set of instan
esgenerated by one statements will generally not be known stati
ally. Thus, we are led to introdu
ea di�erent de�nition of a statement instan
e.To every statement in the program, we will asso
iate a set of statement instan
es, every instan
e
orresponding to a possible exe
ution of the statement, in su
h a way that two 
onditions aremet: the set of statement instan
es asso
iated to every statement is de�ned stati
ally; a statementinstan
e is exe
uted at most on
e in a given run (obviously, whether it is exe
uted or not is notde�ned stati
ally).To every statement in the program, will be asso
iated a (possibly empty) index ve
tor, every
omponent of whi
h takes its values in the set of rational integers. A statement instan
e will thenbe obtained by assigning an integer value to every 
omponent of the index ve
tor. The index ve
toris re
ursively de�ned as follows. Let a be a statement:� If a is not 
ontained in a do, a pdo nor a while, its index ve
tor is empty: then, a generatesone statement instan
e.Otherwise, let us 
onsider the innermost loop 
ontaining a. Let 
 be the header of thisinnermost loop, and i be the index ve
tor of 
.� If 
 is a do or pdo header, the index ve
tor of a is obtained as the 
on
atenation of i and a
omponent j, denoted i ::j. j 
orresponds to the iteration index of the loop.� If 
 is a while header, the index ve
tor of a is obtained as the 
on
atenation of i and a
omponent j. This time, j will take positive integer values, numbering the su

essive whileiterations.2In 
ase our language would be extended to in
lude pointers, this notion of indire
tion order would apply topointer referen
es as well. 6



Thus, through the two latter rules, every (exe
uted or not) instan
e 
(i) generates an in�nite(on both sides for dos and pdos, on one side for whiles) sequen
e of instan
es a(i ::j).Through this formalism, a statement 
ontained in a loop generates a 
ountable in�nity of state-ment instan
es but, in any given run not leading to an in�nite loop, only a �nite number of themwill 
ome to be exe
uted.2.2 Exe
ution modelIn order to obtain a good generality in our results, we must not spe
ify the exe
ution model of ourlanguage entirely; we will only spe
ify a few properties supposed to hold in what follows. Thesespe
i�
ations are inspired by the X3H5 proposal [31℄.Two important notions will be introdu
ed: the notions of pro
ess and unit of work.� The program exe
ution begins, from the program start, with an initial pro
ess.� A pro
ess runs until one of these 
ir
umstan
es o

urs:- it rea
hes the end of the program (normal termination � this may o

ur only to the initialpro
ess);- it en
ounters a parallel 
onstru
t;- it en
ounters the end of a parallel 
onstru
t;- it en
ounters a wait;- it en
ounters an exe
ution fault.� When a pro
ess en
ounters a parallel 
onstru
t, it be
omes the base pro
ess for this 
onstru
t.This parallel 
onstru
t spe
i�es a number of units of work: ea
h iteration of a pdo and ea
hse
tion of a pse
tions is a unit of work. A team of pro
esses is 
reated. Every unit of workis then assigned to some pro
ess in this team, in some order. Thus, from this point on, everypro
ess will have one or several units of work in 
harge3. (Sin
e nested parallelism is allowed,this de�nition of units of work and pro
ess teams operates re
ursively: a unit of work maygive pla
e to subunits, a pro
ess team member may be
ome itself a base pro
ess, and so on.)As regards variables, when the base pro
ess 
reates the team of pro
esses, repli
ates of variablesare made for every pro
ess in the team; 
omputations are then performed lo
ally in everypro
ess in the team.� When a pro
ess has 
ompleted the exe
ution of a unit of work, the exe
ution passes to thenext unit of work this pro
ess has in 
harge, if any (we will say that the next unit of work isloaded); if this pro
ess has 
ompleted the exe
ution of all the units of work it had in 
harge,it waits for the other pro
esses in the team to 
omplete their work.� If and when all pro
esses in the team have 
ompleted their work, that means that all theunits of work in the parallel 
onstru
t have been exe
uted. Then, the pro
esses in the team
ommuni
ate the values of the updated variables to the base pro
ess; afterwards, the team is3As an alternative, we 
ould 
onsider the possibility that this assignment of units to pro
esses be dynami
: everyunit of work still to be exe
uted would be �waiting somewhere� till a pro
ess gets ready to run it. Su
h a variant
ould in
rease e�
ien
y, but would not bring any essential 
hange in the results to follow.7



dissolved and its base pro
ess 
ontinues exe
ution. (Only then, we will say that the endpdoor endpse
tions is exe
uted.)4� Su
h a variable updating also o

urs when a pro
ess exe
utes a post or wait instan
e. Wehave outlined (�2.1) how a wait instan
e �waits for� a post instan
e to have �posted� themat
hing event, and exe
utes only then. To be more spe
i�
, when a pro
ess en
ounters await, it evaluates the event this wait statement instan
e involves. If this event is not posted,the pro
ess reiterates this step, till the event being 
onsidered gets posted, if at all5. Whenthis 
ondition is �lled, the pro
ess realizes the variable updating and 
ontinues (only then, wewill say that the wait is exe
uted). This spe
i�
ation is 
onsistent with the fa
t that a waitinstan
e is aimed at waiting for the exe
ution of some post instan
e, presumably in orderto ensure that � for instan
e � some value 
omputed before the post in its pro
ess is indeedavailable just after the wait in its pro
ess.� Moreover, regarding the variable updatings we have mentioned, there may be memory 
on�i
ts,hen
e an inherent indeterminism. The aim of our study will be to dete
t whether su
h 
on�i
tsmay o

ur (a 
ir
umstan
e whi
h is unwanted in our framework) or whether we will be ableto derive, from a stati
 study of the program sour
e, that su
h 
on�i
ts 
annot happen (a
ir
umstan
e whi
h is desirable in our framework). In order our results to be as 
omprehensiveas possible, we must not hypothesize exa
tly what happens, under our exe
ution model,whenever su
h 
on�i
ts arise. This is why our exe
ution model must not be spe
i�ed entirely:hen
e our results will be valid for several nonequivalent exe
ution models.Moreover, it is not assumed whether variable updatings o

ur in other 
ases than those men-tioned above: termination of a parallel 
onstru
t and event syn
hronization6. However, asregards the exe
ution of a single statement instan
e within a pro
ess, we make the assumptionthat this instan
e gets its inputs if any, then performs its 
omputations if any, then produ
esits outputs if any, without interferen
e of variable updatings during these 
omputations.� As regards exe
ution faults, they will be examined below.It is important to point out the di�eren
e to be made between these two notions of pro
ess andunit of work. During the running of the program, the pro
ess generation is highly dependent on the4In our language, we 
ould introdu
e the notion of private variable (mentioned in the X3H5 proposal [31℄), atemporary variable designed to be used lo
ally in ea
h pro
ess of the team, without 
ommuni
ation among pro
esses,and therefore, not involved in the variable updatings. Su
h variables would not be involved in the dependen
epreservations we will 
onsider. Introdu
ing su
h variables would be straightforward, as soon as �private� referen
esand �shared� ones (our �variables�) would be easily distinguishable. We have not done so, for the sake of brevity.However, the do and pdo loop indi
es are supposed to hold this �private� status, in relation to parallel 
onstru
tsthe loop is nested in, if any.5In the exe
ution model of a wait instan
e involving a dynami
 referen
e, a point is not spe
i�ed here, regardingthe variables involved in the event referen
e: are they reevaluated at every attempt, or �on
e and for all�? (in thelatter 
ase, the wait instan
e keeps on waiting for the same event.) We do not need to de
ide between these twopossibilities: our results will be valid in both hypotheses.6However, we have to noti
e that an e�
ient exe
ution model will keep su
h variable updatings to a minimum, dueto the 
ost of data transfers (von Neumann bottlene
k � see e.g. [32℄). Moreover, it would be possible to introdu
esyn
hronizations with guards 
lause, spe
ifying the referen
es to the variables to be updated, and thereby limitingthese updates. We have not done so here, for the sake of brevity; su
h an extension, whi
h was mentioned in [4℄,would be rather straightforward within our framework. 8



Figure 1: Loading units of work on pro
essesresour
es available at that moment: it is a ma
hine-dependent phenomenon. In the 
ontrary, the
hara
terization of the units of work depends solely on the semanti
s of the program being run, asthat semanti
s develops while the program is running; in 
ase the program is 
orre
t in our sense,this 
hara
terization will be ma
hine independent.This is why we 
ould not realisti
ally hypothesize that one pro
ess per unit of work is 
reated:in the 
ontrary, we take 
are of the possibility that several units of work are assigned to onepro
ess, whi
h will run them sequentially. Moreover, within our framework, we will require that the
orre
tness of our programs be ensured independently of the number of pro
esses whi
h will turn outto be available for some run. This 
orre
tness will have to be guaranteed even in the extreme 
asewhen there is only one pro
ess available, or in the more 
ommon 
ase when some parallel 
onstru
twithin the program will �nd only one pro
ess available for its exe
ution, during a �multipro
ess�run of the whole program.A unit of work whi
h is waiting for a pro
ess to run it will be said to be pending. More pre
isely,as regards statement instan
es, the �rst instan
e in su
h a unit of work will be said to be pendingat that time (we will see later why only the �rst)7.As an example, Figure 1 depi
ts a possible 
ase where a parallel loop 
reates 14 units of work(
orresponding to 14 iterations) whi
h are assigned to 5 pro
esses (available at that point). Thearrows indi
ate the order of exe
ution, before the loop (upper part), within the loop (medium part:the 5 pro
esses exe
ute in parallel), and after the loop ends (lower part).7In 
ase su
h an instan
e is a wait, we will say that it is pending as long as it is not loaded; it gets rea
hed assoon as it is loaded, and waiting if its event is not posted yet.9



Exe
ution faultsAn exe
ution fault o

urs whenever the exe
ution of a statement instan
e 
reates an operation whi
his forbidden by the language and/or by the exe
ution environment, so that the exe
ution stops atthat point (fault deadlo
k).In our exe
ution model, we must address the possibility of exe
ution faults. Indeed, whereas wewill 
onsider that the sequential version of our program will not produ
e exe
ution faults, su
h anassumption 
annot be made as regards our parallel program, be
ause we aim at deriving semanti
equivalen
e properties, referring only to the sequential semanti
s.We will make the following assumption regarding exe
ution faults: 
onsidering a parallel pro-gram, and a statement instan
e 
oming to be exe
uted in some run of this program, the o

urren
eof an exe
ution fault at the exe
ution of this instan
e depends only on the values of the inputs of thisinstan
e and the operations it attempts to perform using these inputs; it does not otherwise dependon the spe
i�
 run 
onsidered. As a 
onsequen
e, whenever there are pro
esses running in parallelto the one on whi
h the fault o

urs, we hypothesize that they are not stopped thereby � as long asthey do not produ
e an exe
ution fault themselves. This is a simplifying assumption whi
h is notrestri
tive in our framework: indeed, we will derive 
onditions under whi
h there is no exe
utionfault meeting this assumption (primary exe
ution fault); therefore, under the same 
onditions, andsupposing that we do not make this simplifying assumption, there will not be indu
ed-in-parallelfaults either.Deadlo
ks and in�nite loopsIn our language, there are three ways in whi
h a program may not stop normally: it may 
ome toa fault deadlo
k, or to a waiting deadlo
k, or it may enter an in�nite loop.A waiting deadlo
k ne
essarily involves await statement the event of whi
h persistently remainsunposted. In the (usual) 
ase when this wait is lo
ated within a parallel 
onstru
t, a waitingdeadlo
k 
ondition may be des
ribed as follows:� one or several wait statement instan
es are rea
hed but not exe
uted; so, the 
orrespondingunits of work remain un
ompleted;� as a 
onsequen
e, the exe
ution of the parallel 
onstru
t 
annot be 
ompleted;� as a possible 
onsequen
e too, some parallel units of work do not begin exe
ution be
ause theyare assigned to a pro
ess after a deadlo
ked unit of work, though they would be �exe
utablein prin
iple�. The �rst statement instan
e in ea
h of these units of work is thus persistentlypending.� in 
ase of nested parallel 
onstru
ts, a deadlo
k in an inner 
onstru
t brings a similar deadlo
ksituation in an outer 
onstru
t.A fault deadlo
k will indu
e e�e
ts quite similar to those of a waiting deadlo
k.An in�nite loop 
an o

ur only due to a while 
onstru
t (remember the absen
e of gotos andthe fa
t that do and pdo loop bounds are evaluated on
e at the loop entry). The 
orrespondingendwhile statement instan
e never gets exe
uted: we will say that it is persistently pending. (Thus,10



W1

P2

W2

Figure 2: Parallel exe
ution: a few possible pathologiesthere are two di�erent ways in whi
h some statement instan
e may be
ome persistently pending; inspite of the di�eren
e in nature, we will noti
e some similarity between the two, hen
e the samename for these two features.)Whenever the while 
onstru
t is nested in a parallel 
onstru
t, an in�nite loop in this whilebrings a situation similar to the one brought by a deadlo
k, des
ribed previously.Figure 2 depi
ts a situation whi
h is similar to the one represented previously (Figure 1) asregards units of work and pro
esses, but exhibits various pathologies leading the parallel loop todeadlo
k. The shaded parts represent the instan
es unexe
uted be
ause of the deadlo
ks. Here, weget a deadlo
king wait instan
e W1 the event of whi
h never got posted. As a 
onsequen
e, the unitsof work loaded next to it on the same pro
ess are prevented from exe
uting: therefore, the postinstan
e P2 does not �post� towards the 
orresponding wait instan
e W2, whi
h therefore deadlo
kstoo (indu
ed waiting deadlo
k). Independently of these waiting deadlo
ks, an in�nite while loop isdepi
ted on the right of the �gure: it too prevents the normal termination of the parallel loop.The sequential assignmentAbout the assignment of units of work to pro
esses, we will make an assumption as regards ourlanguage:Assumption SA (Sequential assignment) In all parallel 
onstru
ts 
ontaining syn
hroniza-tion statements (i.e. post, wait, 
lear statements), the assignment of units of work to available11



a0: A(0)=... A(0)=...p0: post(E(0)) 
ontinuepdo I=1,N do I=1,N... ...w: wait(E(I-1)) 
ontinueb: ...=A(I-1) ...=A(I-1)a: A(I)=... A(I)=...p: post(E(I)) 
ontinue... ...endpdo enddoFigure 3: An example of a parallel loop with syn
hronizations (left) and its sequential version (right)pro
esses is made in su
h a way that the units of work assigned to every pro
ess are assigned se-quentially: in the index ordering for a pdo, in the se
tion ordering for a pse
tions.Comment: Let us 
onsider a parallel 
onstru
t, and a post/wait pair linking two units of work inthis 
onstru
t. If there were no assignment requirement whatever, it 
ould randomly o

ur that theunit of work 
ontaining the wait be assigned to the same pro
ess as the unit of work 
ontainingthe 
orresponding post, and before it, hen
e a waiting deadlo
k situation. One possible way toavoid su
h �spurious deadlo
ks� is to state Assumption SA as a requirement in our exe
ution model:indeed, this requirement is 
onsistent with the following fa
t: in 
ase the parallelization is 
orre
tin our sense, in a post/wait pair, the post instan
e pre
edes the wait instan
e in the sequentialorder, be
ause su
h a syn
hronization pair is designed to keep the sequential exe
ution order betweenstatement instan
es whi
h would otherwise be allowed to exe
ute in parallel.2.3 Serial semanti
s. The notion of semanti
 equivalen
eBy de�nition, the sequential version of a parallel program is the result of the transformation of pdointo do, the deletion of pse
tions, se
tion and endpse
tions statements, and the disabling ofpost, wait and 
lear statements: by �disabling�, we mean that, in the sequential version de�nedhere, they are 
onverted into statements whi
h do nothing (here denoted 
ontinue), but we retainthe possibility, in the following developments, to keep tra
k of event referen
es, allowing ourselvesto 
onsider what o

urs to these referen
es as though they were indeed addressed in a sequentialrun.Figure 3 shows a typi
al example of a parallel loop with event syn
hronizations, together withthe sequential version of this loop, whi
h sets the intended semanti
s: the output of statementinstan
e a(I-1) is used as input in statement instan
e b(I), as spe
i�ed by the sequential order ofexe
ution of the do loop. The syn
hronization statements w and p have been introdu
ed in theparallel version, in order to preserve this exe
ution order on
e the do is parallelized into a pdo:the wait statement w at iteration I waits for the event E(I-1) to have re
eived the value postedthrough the post statement p at iteration I-1, or the statement p0 (for I=1). Of 
ourse, the eventsE(I) must not have been posted before this loop without having been 
leared meanwhile, nor havebeen posted elsewhere in parallel, in 
ase this loop is nested in a larger parallel 
onstru
t.12



Our aim is to prove the 
orre
tness (or la
k thereof) of a parallel program, in that sense. Wewould like to show that all variables 
oming to be 
omputed must, in both versions, undergo thesame 
omputations and, therefore, display the same values (semanti
 equivalen
e).In our language, we assume a determina
y 
ondition, as a prerequisite for 
orre
tness of ourprogram: in the sequential version, any variable used as input in an exe
uted statement instan
ehas been initialized previously; similarly, any do or pdo loop index used as input variable after theloop, has been initialized after the loop and before this use.Under this determina
y 
ondition, we express the semanti
 equivalen
e requirement we are
onsidering as follows: any statement instan
e exe
uted in any parallel run is also exe
uted inthe sequential version, and 
onversely; any variable referen
e used by that statement instan
e asinput points to the same variable, and that variable has been 
omputed by the same other statementinstan
e, in any parallel run as in the sequential version. (As a 
onsequen
e, that variable willindeed get the same value in both runs.)Che
king the semanti
 equivalen
e requires 
he
king that the parallel program will not produ
ea waiting deadlo
k, whatever the number of available pro
esses; and also that data ra
es will beavoided. Whenever two statement instan
es involve the same variable lo
ation in the sequentialversion, at least one of them modifying (i.e. writing) it, we will say that they are in a depen-den
e relation (denoted Dep). Then, we will have to 
he
k that these statement instan
es are in apre
eden
e relation (denoted Pre), i.e. that the program 
ontrol stru
ture and the syn
hronizationspreserve the order in whi
h these statement instan
es will be exe
uted together with ensuring theupdating of variables meanwhile � along the well-known �dependen
e implies pre
eden
e� pattern [3℄mentioned above.For instan
e, under our exe
ution model outlined above, a post/wait syn
hronization is apre
eden
e in that sense (remember the �variable updating� spe
i�
ation in our exe
ution model,together with the su

ession in time).3 Dependen
es and pre
eden
esThe theorem we present here refers to the semanti
s of the sequential version only. The gist ofthis result is to show that 
he
king �dependen
e implies pre
eden
e� under the sequential semanti
s(�sequential� values of variables, et
.) indeed ensures the semanti
 equivalen
e between the parallelprogram and its sequential version. Under this theorem, we will be led to 
onsider the 
ondition fora statement instan
e to exe
ute in the sequential version (predi
ate Exes), whi
h is well-de�ned inour language; the dependen
e predi
ate Dep whi
h deals with the sequential version, by de�nition;and the pre
eden
e predi
ate Pres expressing the pre
eden
e relations whi
h would stand in theparallel program, as a 
onsequen
e of the exe
ution model, assuming that all variables involved inthe de�nition of these relations get their �sequential� values.8In the derivation of this theorem (Se
tions 4 and 5), we will be led to 
onsider the parallel
ounterparts of Exes and Pres � Exe and Pre respe
tively � whi
h, as long as we have not provedthe semanti
 equivalen
e, are de�ned only in referen
e to some spe
i�
 run of the parallel program(they may di�er for di�erent runs of the same parallel program). Considering su
h a parallel run,8As a 
onsequen
e of this de�nition of Pres, the pre
eden
e relation expressed by Pres obviously holds in thesequential version. In other words, for any statement instan
es � and � exe
uted in the sequential version, Pres(�; �)implies that � is exe
uted before � in the sequential version.13



the pre
eden
e predi
ate Pre asso
iated to this run expresses the pre
eden
e relations whi
h stand inthis run, as a 
onsequen
e of the exe
ution model, 
onsidering the values in this run of the variablesinvolved in the de�nition of these relations. We will develop this point later (�3.4).3.1 Sequential exe
ution predi
ateLet Exes be the 
ondition for a statement instan
e to be exe
uted in the sequential version, underthe extra 
ondition that the sequential program terminates, i.e. does not enter an in�nite whileloop. Then, Exes is well-de�ned (although it is generally not 
omputable!) and its expression israther straightforward for our language.For a statement a and an index ve
tor i su
h that the instan
e a(i) is exe
uted in the sequentialversion, we may 
onsider the environment in whi
h the exe
ution of a(i) takes pla
e. For anyexpression exp whi
h happens to be evaluated through the exe
ution of a(i), its value is de�nedin this environment: it will be denoted [[exp℄℄�a(i). (Due to our assumption that subroutine 
allsterminate, the evaluation of an expression always terminates, in our language.) We must emphasizethat [[exp℄℄�a(i) is unde�ned whenever a(i) is not exe
uted. This leads us, in the expressions to follow,to make use of the sequential 
onjun
tion, denoted &, whi
h di�ers from the logi
al 
onjun
tion,denoted ^, as follows: if A and B are boolean expressions (taking values true, false or unde�ned),A & B is false whenever A is false, even if B is unde�ned, whereas A^B is unde�ned in this 
ase9.Let us give the expression of Exes(a(i)) when a is a statement of the parallel program, indexedby i. Several 
ases have to be 
onsidered, depending on the nesting of a in a loop or if stru
turedstatement. In 
ase a is nested, we 
onsider the innermost do, pdo, if or while a is nested in.� a is not 
ontained in a do, a pdo, a if nor a while 
onstru
t: then, Exes(a) = true.� The innermost nesting of a is in a if 
onstru
t of header 
, with boolean expression 
:bexp.Let i denote the index ve
tor of 
 and a:� if a is in the then bran
h, Exes(a(i)) = Exes(
(i)) & [[
:bexp℄℄�
(i)� if a is in the else bran
h, Exes(a(i)) = Exes(
(i)) & :([[
:bexp℄℄�
(i))� The innermost nesting of a is in a do or pdo loop of header 
, with lower and upper boundexpressions 
:lb and 
:ub respe
tively. Let i denote the index ve
tor of 
 and i :: j denotethe index ve
tor of a. We then have: Exes(a(i :: j)) = Exes(
(i)) & ([[
:lb℄℄�
(i) � j �[[
:ub℄℄�
(i))� The innermost nesting of a is in a while loop of header 
. Let i denote the index ve
tor of
 and i :: j denote the index ve
tor of a. Let b be the �rst statement in the while body, i.e.the test statement, of boolean expression b:bexp.� If a is not b: Exes(a(i ::j)) = Exes(b(i ::j)) & ([[b:bexp℄℄�b(i ::j))� If a is b: Exes(b(i ::1)) = Exes(
(i)) and, for the other iterations:Exes(b(i ::j)) = Exes(b(i :: (j � 1))) & ([[b:bexp℄℄�b(i :: (j � 1)))9Consistently with this sequential aspe
t, in what follows, 
onjun
tions are left-asso
iative: e.g. A ^ B & C ^ Dis interpreted as: ((A ^ B) & C) ^ D. Moreover, in all 
ases when some expression C may be unde�ned if someother expression A is false, we require that C appear only in expressions (::: ^ A ^ :::) & C:::, so that these resultingexpressions are always de�ned. 14



It is possible to extend the expression of Exes so as to in
lude 
ases when the sequential programin�nitely loops, however in fun
tion of the expli
it data of the looping while. Let 
(i) be the
orresponding while header, and e(i) the mat
hing endwhile. For e(i) and all instan
es a(j)standing after it in the sequential order, the above expression of Exes(a(j)), whi
h besides is notne
essarily well-de�ned then, should be repla
ed by: Exes(a(j)) = false.The 
ondition that the sequential program terminates, whi
h is of 
ourse unde
idable in general,
an then be formally expressed here. Using the notations we have just introdu
ed regarding whileloops, we get:Sequential termination 
ondition:For all while loops, of header 
 and test b,Exes(
(i))) 9 j Exes(b(i ::j)) & :([[b:bexp℄℄�b(i ::j))In 
ase of in�nite loop, the above impli
ation is trespassed only for the while instan
e on whi
hthe in�nite loop o

urs.3.2 Dependen
esConsidering two statements a and b, indexed by i and j respe
tively, a predi
ate Dep(a(i); b(j)) willexpress that: �in 
ase a(i) and b(j) are both exe
uted in the sequential version, in this order, thenthey both a

ess one same memory lo
ation (not 
orresponding to an event variable), at least oneof them writing it�10.The referen
e to the sequential version is 
ru
ial here, be
ause we will always be interested inthe preservation, in the parallel version, of dependen
es as they appear in the sequential version. Inother words, the �dependen
e implies pre
eden
e� 
ondition must be interpreted as: �dependen
e (asappears in the sequential version) implies pre
eden
e (ensured in the parallel version)�Let a(i) and b(j) be two statement instan
es respe
tively involving referen
es expa and expb,referring to variables (other than event variables), these two referen
es not both being input refer-en
es. In 
ase a(i) exe
utes in the sequential version, [expa�a(i)℄S denotes the variable expa refersto during that exe
ution. The relation � between variables to whi
h two distin
t referen
es aremade, means that they are the same variable. � denotes the sequential order. We 
an give anexpression of Dep:Dep(a(i); b(j)) = (a(i)� b(j)) ^ ([expa�a(i)℄S � [expb�b(j)℄S)This expression of Dep is not ne
essarily de�ned when a(i) and/or b(j) does not exe
ute in thesequential version. Therefore, in what follows, we will be led to use Dep in expressions su
h as:Exes(a(i)) ^ Exes(b(j)) & Dep(a(i); b(j))making use of the sequential 
onjun
tion & introdu
ed previously (�3.1).10In the spe
ial 
ase when a(i) and b(j) are the same instan
e a

essing a variable, �rst as input, se
ond as output� e.g an instan
e of a statement su
h as: �x=x+1� � su
h a �re�exive� dependen
e will ne
essarily be preserved, inour sense, through the pre
eden
e �input pre
edes output� guaranteed during the exe
ution of one instan
e (�2.2).Therefore, we will not have to take 
are of su
h re�exive dependen
es Dep(a(i); a(i)).15



... ...ps: pse
tions 
ontinuese
tion 
ontinue... ...a: A(N)=... A(N)=...se
tion 
ontinue... ...b: ...=A(N)+... ...=A(N)+...
: ...=A(N+1)*... ...=A(N+1)*...se
tion 
ontinue... ...d: N=... N=...... ...endpse
tions 
ontinue... ...Figure 4: Studying data dependen
es: an exampleLet us study an example of a portion of program supposed to be exe
uted (Figure 4). Thesequential version is shown on the right. We examine the dependen
es dealing with variable arrayA(). Let us �rst 
onsider the 
ase when we 
an stati
ally 
he
k that the integer variable N isnot written between ps and 
 on the sequential version. (Su
h a 
he
k may be quite easy in aFortran-like language without pro
edure 
alls, but more intri
ate, or even intra
table, whenever e.g.pointers or pro
edure 
alls are used.) Then, statements a and b refer to the same memory lo
ationin the sequential version (be
ause [[N℄℄�a = [[N℄℄�b), and a writes it. Hen
e we have a dependen
e:Dep(a; b) = true. On the other hand, we have no dependen
e (at least as regards referen
es visiblehere) between a and 
.Now, 
onsidering the more di�
ult 
ase when we 
annot stati
ally know what may o

ur to Nbetween ps and 
 in the sequential version, we will have to assume (as a 
onservative approximation)that there is a dependen
e from a to b and from a to 
 (unless otherwise proved, we may very wellhave [[N℄℄�a = [[N℄℄�
 + 1 !).On this example, let us now 
onsider the dependen
e relations regarding variable N . Thisvariable lo
ation is an output of d and an input of a, b and 
, hen
e a dependen
e relation from ato d, from b to d and from 
 to d. There is no mutual dependen
e among a, b and 
, regarding thevariable N , sin
e these statements refer to N as input.As this example shows, mainly due to the dynami
 variable referen
e feature, it will often beimpossible to spe
ify exa
t dependen
e relations stati
ally. Then, we will have to seek a 
onservativeapproximation of these dependen
es, i.e. an approximation �from above� (More on this later: �4.1).3.3 Pre
eden
esThe pre
eden
e predi
ate Pres expresses the pre
eden
e relations whi
h would apply in the parallelprogram, as a 
onsequen
e of the exe
ution model, assuming that the variables involved in thede�nition of these relations have their �sequential� values. We will 
hara
terize Pres from a 
ontrolpre
eden
e Pre0 and a syn
hronization pre
eden
e Syn
s (
orresponding to the post/wait pairs). It16



may be of interest to noti
e that there may be several non equivalent predi
ates 
orre
tly expressinga pre
eden
e relation. This 
omes from the following fa
t: through a predi
ate Pre(�; �) involvingtwo statement instan
es � and �, we wish to express that �in 
ase � and � are exe
uted, the formeris exe
uted before the latter (in su
h a way that variable updatings happen meanwhile); but we arenot interested in what is expressed if these instan
es are not both exe
uted.� For any predi
ate P
orre
tly expressing that � pre
edes � in 
ase both are exe
uted, any other predi
ate Q su
h that:Exe(�) ^ Exe(�) ^ P ) Q) (Exe(�) ^ Exe(�) ^ P ) _ (:Exe(�) _ :Exe(�))also 
orre
tly expresses this. This same multipli
ity of 
orre
t predi
ates also holds for dependen
es;furthermore, it is straightforward to 
he
k that the �dependen
e preservation� property we will
onsider is (fortunately...) invariant by any 
hange of 
orre
t predi
ates.Let us now express 
ontrol pre
eden
es through a predi
ate Pre0 independent of the spe
i�
 runof the program � in fa
t, a predi
ate independent of any variables and even parameters. Afterwards,we will be interested in the syn
hronization pre
eden
es and the way they 
ombine with the 
ontrolpre
eden
es.Expression of 
ontrol pre
eden
esCal
ulating pre
eden
es on index ve
torsIn order to express Pre0, we have to express the pre
eden
e order between index ve
tors, denoted�. Let i be the loop index ve
tor of a statement; let k be the innermost index in i; let j be the(possibly empty) �remaining� index ve
tor, su
h that i is the 
on
atenation of j with k, denotedi = j ::k.� If k indexes a do or while loop:(i1 � i2) = (j1 � j2) _ ((j1 = j2) ^ (k1 < k2))� If k indexes a pdo loop:(i1 � i2) = (j1 � j2)� (Starting the re
urren
e:) If j is empty � let us denote [ ℄ the empty index ve
tor �, then weset:([ ℄1 � [ ℄2) = false; ([ ℄1 = [ ℄2) = trueThis dire
tly leads to the expression of Pre0(a; a) for a statement a. Let i be the index ve
torof a; let a(i1) and a(i2) be two instan
es of a; we set:Pre0(a(i1); a(i2)) = (i1 � i2)Expression of Pre0 between di�erent statementsLet a and b be two statements su
h that a 
omes before b in the text of the program. We willgive expressions of Pre0(a; b) in the di�erent 
ases. In what follows, we do not need to single outthe spe
ial 
ase when a and b are in two alternative bran
hes of a if sin
e, due to the above remark(on multipli
ity of 
orre
t predi
ates), the part of Pre0(a; b) 
orresponding to mutually ex
lusiveinstan
es of a and b will be super�uous. 17



Figure 5: Control pre
eden
es in a DO (top) and a PDO (bottom). Only six iterations are shownhere, but loop instan
es in fa
t extend in�nitely on both sides. The 
ontrol pre
eden
e links Pre0(arrows) are independent of the spe
i�
 run and the spe
i�
 iterations 
oming to exe
ute in thisrun (three iterations shaded in the example).In 
ase a and b are not in the same loop or pse
tions, we get:Pre0(a; b) = true ; Pre0(b; a) = falseOtherwise, we 
onsider the innermost loop or pse
tions 
ontaining both a and b. Let 
 be theheader of this stru
tured statement, and i be the index ve
tor of 
.� If 
 is a loop header, let j = i ::h be the index ve
tor 
ommon to a and b. (h denotes the loopindex; the index ve
tors of a and b are 
on
atenations of j with possibly empty disjoint indexve
tors k and l respe
tively.) We get:Pre0(a(ja ::ka); b(jb :: lb)) = (ja � jb) _ (ja = jb)Pre0(b(jb :: lb); a(ja ::ka)) = (jb � ja)In the two next 
ases, when 
 is a pse
tions header, the index ve
tor 
ommon to a and b isi. Again, the index ve
tors of a and b are 
on
atenations of i with possibly empty disjoint indexve
tors k and l respe
tively.� If 
 is a pse
tions header and a and b are in the same se
tion of this pse
tions:Pre0(a(ia ::ka); b(ib :: lb)) = (ia � ib) _ (ia = ib)Pre0(b(ib :: lb); a(ia ::ka)) = (ib � ia) 18



� If 
 is a pse
tions header and a and b are in distin
t se
tions of this pse
tions:Pre0(a(ia ::ka); b(ib :: lb)) = (ia � ib)Pre0(b(ib :: lb); a(ia ::ka)) = (ib � ia)As an example, Figure 5 shows 
ontrol pre
eden
es in a do and a pdo loops.Combining 
ontrol and syn
hronization pre
eden
esTo obtain the overall pre
eden
e relation Pres, we have to 
ombine the 
ontrol pre
eden
e Pre0 andthe syn
hronization pre
eden
e relations Syn
s realized through post/wait pairs (we will 
onsiderthe latter in a moment; meanwhile, we 
onsider them as given). This 
omposition of Pre0 withSyn
s is not exa
tly a transitive 
losure, as might be expe
ted; Pres(a(i); b(j))^Pres(b(j); 
(k)) doesnot ne
essarily imply Pres(a(i); 
(k)) (
onsider the 
ase when b(j) is not exe
uted...). Instead, wehave �transitivity modulo Exes�:Pres(a(i); b(j)) ^ Exes(b(j)) ^ Pres(b(j); 
(k)) ) Pres(a(i); 
(k))Considering the dire
ted pre
eden
e graph, whose verti
es are the statement instan
es and edgesare the pre
eden
e links Pre0 and Syn
s, the relation Pres will be obtained, through this transitive
losure modulo Exes along paths, and by disjun
tion between alternate paths, in a �
onjun
tion inseries, disjun
tion in parallel� manner, from Pre0 and Syn
s. The transitive 
losure within Pre0is taken 
are of by the previously given expressions of Pre0. Therefore, the pre
eden
e paths to
onsider in order to obtain Pres alternate Pre0 and Syn
s links, in the following way:�! �1  !1 ! �2  !2 ! : : :! �n  !n ! �;where ! denotes the Pre0 relation, �i denotes a post, !i denotes a wait, and  denotes thesyn
hronization relation Syn
s.The 
orresponding 
omputation of Pres will be realized through relations su
h as:Pre0(�; �1) ^ Exes(�1) ^ Syn
s(�1; !1) ^ Exes(!1) ^ Pre0(!1; �2)^: : : ^ Syn
s(�n; !n) ^ Exes(!n) ^ Pre0(!n; �) ) Pres(�; �)In fa
t, in what follows, we will be led to in
lude the 
onditions of exe
ution of � and ! withinthe Syn
s(�; !) predi
ate. Hen
e, the above expression be
omes:Pre0(�; �1) ^ Syn
s(�1; !1) ^ Pre0(!1; �2)^: : : ^ Syn
s(�n; !n) ^ Pre0(!n; �) ) Pres(�; �)Let us 
onsider again the pre
eden
e paths shown above, alternating the ! and  links. In
ase � is a post, we must also in
lude pre
eden
e paths where �� ! �1� is repla
ed by �� = �1�.In other words, a pre
eden
e path expressed through Pres may begin with a syn
hronization. Inthe 
ontrary, in 
ase � is a wait, we do not allow ourselves to 
onsider paths in whi
h �!n ! ��19



n1: N=1pse
tionsse
tion...n2: N=2p: post E(N)...se
tion...w: wait E(N)...endpse
tionsFigure 6: A 
ase of dynami
 event referen
e in a waitis repla
ed by �!n = ��. In other words, a pre
eden
e path expressed through Pres may begin, butnot end, with a syn
hronization link. Why do we introdu
e this di�eren
e? We have been led to doso in 
onsideration of the spe
i�
 behavior of the wait statements.The problem of the dynami
 referen
es in the waitsIn our language, we allow dynami
 referen
es in waits. This ability triggers spe
i�
 problems,illustrated through the example of Figure 6.In this example, we assume that N is not present elsewhere than indi
ated. The underlyingintention is to ensure a syn
hronization from p to w, involving event E(2). Indeed, following thesequential semanti
s, N has got value 2 at p and w. However, in a parallel exe
ution, N may havevalue 1 when the 
ontrol gets to w, whi
h will then wait for the event E(1) (whereas p will stillpost E(2)). Therefore, the dependen
e relation Dep(n2; w) involving variable N is not preservedthrough the pre
eden
e path n2 ! p  w. This is the reason why we have de�ned Pres so as toex
lude su
h pre
eden
e paths ending with a syn
hronization link. Considering the exe
ution model(�2.2), this restri
tion we bring here allows us to ensure the following property for the pre
eden
epredi
ate Pres: if � is an exe
uted instan
e and w is a waiting wait instan
e, Pres(�;w) implies that� exe
utes before w begins waiting (and in su
h a way that variable updatings happen meanwhile).Thus, in our example, if Pres(n2; w) 
omes to be ensured, through a pre
eden
e path not apparenthere, then the output of N at n2 pre
edes (in the sense of our pre
eden
es) its input when w beginswaiting: w will then wait for E(2) (unless N is written meanwhile).3.4 The syn
hronization pre
eden
e Syn
sThe elementary syn
hronization pre
eden
e relation between a post and a 
orresponding wait ismu
h less straightforward to 
onsider than the above 
ontrol pre
eden
e Pre0.The �rst di�
ulty stems from the fa
t that we allow dynami
 variable referen
e in post, waitand 
lear statements. This possibility, together with the fa
t that Exe is de�ned only in referen
eto a given run of the parallel program, implies that the post/wait syn
hronizations whi
h show upduring some spe
i�
 run of the program, and the pre
eden
e brought by them as a 
onsequen
e ofthe exe
ution model (�2.2 and 2.3), essentially depend upon the run being 
onsidered. Considering20



su
h a run, let ! be an exe
uted wait instan
e. Then, there is at least one post instan
e �(and possibly several of them) whi
h set value posted to the involved event, and thus made possiblethe exe
ution of ! together with ensuring the 
orresponding pre
eden
e from � to !. We denoteSyn
(�; !) the predi
ate, essentially dependent on the spe
i�
 run of the program, expressing thesyn
hronization pre
eden
e thus realized.The pre
eden
e predi
ate Pre for a spe
i�
 run of the parallel program, is then obtained fromPre0 and Syn
, exa
tly along the same lines as Pres is obtained from Pre0 and Syn
s (�3.3).Sin
e Syn
, and therefore Pre, thus essentially depend on some spe
i�
 run of the parallelprogram, we are led to 
onsider, instead of Syn
, a predi
ate Syn
s des
ribing the syn
hronizationswhi
h arise under the assumption that the variables involved in these syn
hronizations (throughthe exe
ution predi
ate and/or the dynami
 event referen
es) get their �sequential� values. Let usremember that, when we 
onsider the sequential version of our program, the syn
hronizations aredisabled, but we keep tra
k of the event referen
es they involve (�2.3). This will allow us to 
onsider�the exe
ution of syn
hronizations in the sequential version�.The se
ond di�
ulty is of a di�erent nature � and it will lead us to spe
ify some properties we willpres
ribe regarding syn
hronizations. Through a predi
ate Syn
s(�; !), between a post instan
eand a 
orresponding wait instan
e, we wish to express that �supposing the sequential semanti
s, if� and ! are both exe
uted, then ne
essarily � is exe
uted before !.�. This supposes that no otherpost instan
e is sus
eptible to trigger the exe
ution of !, by posting the same event. Indeed, in
ase several non mutually ex
lusive post statement instan
es will seem able to trigger the exe
utionof one wait statement instan
e, no pre
eden
e relation will be guaranteed between any one of theseposts and this wait � in su
h a 
ase, we will not have a Syn
s relation from any of these poststo this wait � and the 
ase will be intra
table within our �pre
eden
e� framework. (Noti
e that,
onversely, one post may very well post to several waits: this brings no problem in our framework.)To the extent that one and only one post statement instan
e should be able to trigger a waitstatement instan
e, it is suitable to require that two post instan
es involving the same event notexe
ute in parallel. Moreover, a 
lear statement instan
e, dealing with the same event, should notbe in a data ra
e 
ondition with this post, nor with this wait.We will express these restri
tions through two assumptions dealing with the use of syn
hroniza-tions. These assumptions will allow us to 
hara
terize the syn
hronization predi
ate Syn
s. Let usremind a few notations (�3.2). For any post, wait or 
lear statement instan
e 
 exe
uted inthe sequential version, we denote ["
 ℄S the event variable referen
e that 
 involves in the sequentialversion. The relation � between variable referen
es means that they refer to the same variable.Assumption S1 (No ra
e 
ondition involving syn
hronizations) Let � and ! be two in-stan
es of syn
hronizations post, wait or 
lear. Ex
ept in the 
ase when one of these twoinstan
es is a post and the other is a wait, and in the 
ase when both are waits, we have:Exes(�) ^ Exes(!) & (["�℄S � ["!℄S)) Pre0(�; !) _ Pre0(!; �)For a post instan
e � and a wait instan
e 
, let us de�ne a predi
ate Syn
? as follows:Syn
?(�; 
) = Exes(�) ^ Exes(
) & (["�℄S � ["
 ℄S) ^ :Pre0(
; �) ^21



(8
lear instan
e �;Exes(
) ^ Exes(�) & (["�℄S � ["
 ℄S)) :(Pre0(�; �) ^ Pre0(�; 
)) )Syn
?(�; 
) expresses that, under the sequential semanti
s, � is sus
eptible to trigger the exe-
ution of 
, in the sense that � and 
 both exe
ute, and involve the same event referen
e, in thesequential version; that 
 does not pre
ede � Pre0-wise; and that no 
lear instan
e involving thesame event is bound to interfere between the two, Pre0-wise.Noti
e that, under Assumption S1, the term :(Pre0(�; �) ^ Pre0(�; 
)) in the de�nition ofSyn
?(�; 
), is equivalent to (Pre0(�; �) _ Pre0(
; �)).Now we 
an express Assumption S2.Assumption S2 (Ensured pre
eden
e from post to wait) . For any post instan
es �i andany wait instan
e 
: Syn
?(�1; 
) ^ Syn
?(�2; 
)) �1 = �2in whi
h 
ase Syn
? indeed expresses the syn
hronization relation Syn
s we were looking for.Comment This expresses that, under the sequential semanti
s, at most one post statementinstan
e is sus
eptible to trigger the exe
ution of the wait instan
e, in our sense, in the givenprogram instan
e. However, that post instan
e may depend on the program instan
e 
onsidered,i.e. on values of parameters; for example, it will often o

ur that two posts posting the same eventlie in two alternative bran
hes of a if: this is not 
ontrary to our assumption be
ause these twoposts are mutually ex
lusive.In the derivation of the theorem to follow, Assumptions S1 and S2 will be used through thefollowing 
onsequen
e, dealing with the 
ase when a post instan
e � and a wait instan
e 
 do notform a syn
hronization pair:Exes(�) ^ Exes(
) & (["�℄S � ["
 ℄S) & :Syn
s(�; 
) ) (Pre0(
; �) _(9
lear instan
e �;Exes(
) ^ Exes(�) & (["�℄S � ["
 ℄S) ^ Pre0(�; �) ^ Pre0(�; 
) ) )It would be possible to extend assumptions S1 and S2, by repla
ing the 
ontrol pre
eden
es Pre0with generalized pre
eden
es Pres, however under the 
ondition that the syn
hronization relationsSyn
s involved in Pres are given a priori; su
h a generalization (whi
h we mentioned in [4℄, andunder whi
h the theorem to follow still holds) does not allow to derive Syn
s. In other words, su
h anextension of S1 and S2 brings a 
ir
ularity, in the sense that it presupposes that the syn
hronizationrelations Syn
s are given, whereas these two assumptions 
ontribute to the very existen
e of thesesyn
hronization relations.It is important to keep in mind that assumptions S1 and S2 refer to the semanti
s of thesequential version only, and do not depend on some spe
i�
 parallel run.Figure 7 shows an example of 
ontrol and syn
hronization pre
eden
es in a parallel loop.22



Figure 7: Control pre
eden
es in a PDO (straight arrows, again) and syn
hronization pre
eden
esSyn
s (dashed arrows). Contrarily to the former, the latter pre
eden
es are de�ned referring to thesequential semanti
s. These syn
hronization pre
eden
es might not be ensured in some spe
i�
 runof this parallel loop. In the example, the three iterations shaded are those whi
h should be exe
uted,a

ording to the sequential semanti
s.4 Some preliminary resultsBefore proving our theorem in the next se
tion, we will derive some preliminary results.4.1 Conservative approximations of predi
atesIn light of the theorem we will prove in the next se
tion, 
he
king the semanti
 equivalen
e propertywill mainly require 
he
king the following impli
ation:Exes(a(i)) ^ Exes(b(j)) & Dep(a(i); b(j)) ) Pres(a(i); b(j))for all statement instan
es a(i) and b(j) in the given program.In many 
ases, it will be impossible (even in prin
iple, sometimes) to stati
ally produ
e exa
texpressions of the predi
ates involved here. This is mainly due to the dynami
 variable referen
eand loop bound spe
i�
ations. Then, we will have to seek 
onservative approximations of thesepredi
ates, i.e. approximations su
h that the use of them, instead of the unknown exa
t predi
ates,will never lead us to give a positive 
on
lusion when the preservation property is not met � but maylead to a �don't know� answer in some 
ases when the property is indeed true.The dire
tion of the above impli
ation makes 
lear the kinds of approximations whi
h will be
onservative: these will be approximations from above for Exes and Dep, from below for Pres: wewill then 
onsider predi
ates Exes?, Dep? and Pres? su
h that Exes ) Exes?, Dep ) Dep? andPres? ) Pres, respe
tively meaning that �a statement instan
e may be exe
uted�, �a dependen
emay exist� and �a pre
eden
e must exist�.The 
omputation of a Pres relation involves predi
ates Pre0, Syn
s and Exes, through �transitive
losure modulo Exes along paths�, as we have seen before. Pre0 will be rather easily 
omputable;Syn
s may be more intri
ate. So, approximating Pres from below may involve approximating Exesfrom below, by a predi
ate Exes? su
h that Exes? ) Exes; and 
onsidering only some of the pre
eden
epaths. 23



4.2 A lemma about exe
ution predi
atesIt will be useful to derive in whi
h 
ases, and in what sense, the exe
ution of some statementinstan
e � in a parallel run, stri
tly depends on the exe
ution of some statement instan
es � su
hthat Pre0(�; �). This will be the obje
t of the following lemma.Considering a parallel run, let  (�) denote the 
ondition for � to be exe
uted or persistentlywaiting or persistently pending (let us remind that � is said to be rea
hed in the two �rst 
ases).If � is the (only) instan
e of the �rst statement in the program,  (�) = true. For all the otherinstan
es, we have the following lemma:Lemma 1 Considering a parallel program, for any run of this program, and for any statementinstan
e � of any statement ex
ept the �rst one,  (�) is fully determined by the exe
ution of oneor several statement instan
es � su
h that Pre0(�; �). All or some of these instan
es � are spe
i�edindependently of the run 
onsidered; the other ones, if any, are spe
i�ed by the exe
ution of theformer. If at least one of these � produ
es an exe
ution fault, this implies  (�) = false.We have Exe(�) =  (�) ex
ept in the three following 
ases:� � is an instan
e of a wait w: then,  (�) expresses the 
ondition for � to be rea
hed (or the
ondition for � to be rea
hed or persistently pending, in 
ase w is both a wait and the �rststatement in a parallel 
onstru
t body). Under this 
ondition, however, � may be persistentlywaiting (or persistently pending), instead of �nally exe
uting, in a deadlo
k situation (or inan in�nite loop situation in the latter 
ase).� � is an instan
e of the �rst statement in a pdo body or in a se
tion of a pse
tions,without being an instan
e of a wait: then,  (�) expresses the 
ondition for � to be exe
utedor persistently pending; the latter possibility o

urs in 
ase of a deadlo
k or in�nite loop.� � is an instan
e of a endwhile: then,  (�) expresses the 
ondition for � to be exe
uted orpersistently pending; the latter possibility o

urs in 
ase the while in�nitely loops, or in 
aseof a deadlo
k or in�nite loop within an iteration.The proof of this lemma is tedious but not di�
ult. It is provided in Appendix A.This lemma derives its main interest from the previously mentioned fa
t that Pre0 is independentof the spe
i�
 parallel run 
onsidered. Its meaning 
an be summarized as follows: with the ex
eptionof the wait statements and some other ones sus
eptible to be pending, the fa
t that some statementinstan
e is exe
uted in some run of the program depends upon statement instan
es whi
h are boundto exe
ute before it (by the 
ontrol stru
ture of the program), and not just upon statement instan
eswhi
h merely happen to exe
ute before it in some run being 
onsidered, as implied by plain 
ausality.4.3 A notion of exe
ution dateIn order to derive our main result in the next se
tion, we need to introdu
e a notion of exe
utiondate. This will be the obje
t of the following result:Dis
retized time lemma: For any run of a parallel program, we 
onsider the pre
eden
es Pre andSyn
 asso
iated to this run (de�ned in Se
tion 3). We assume the four following properties:24



i. To any statement instan
e � exe
uted in this run, is asso
iated a time lag [t�; t0�℄ (of physi
altime), with t0� � t�, 
alled the exe
ution time lag of �.ii. Whenever the exe
ution time lags of two statement instan
es � and � overlap and � outputsa variable x whi
h is an input of �, the value written by � is not available as input for �.iii. As a 
onsequen
e of (ii), for any statement instan
es � and � exe
uted in this run, if Pre(�; �)or Syn
(�; �), then t� > t0�.iv. For any time t, only a �nite number of instan
es � have begun exe
ution before t.To every statement instan
e � exe
uted in this run, may be asso
iated a positive integer �(�),
alled the exe
ution date of �, with the following properties:1. �(�) nonde
reasingly depends on t�.2. Computational 
ausality: for any statement instan
es � and �, a value output by � 
annot beused as input by � unless �(�) > �(�).3. As a 
onsequen
e, for any two statement instan
es � and � exe
uted, whenever Pre(�; �) orSyn
(�; �), we have �(�) > �(�).4. � is 
ausally de�ned, i.e. �(�) depends only on the exe
ution time lags of � and the instan
esbeginning exe
ution before �.Comment: Hypotheses (i) and (ii) 
an be interpreted thus: for any instan
e � 
oming to be exe
utedin some run, � gets its input (if any) at or shortly before some time t�, then exe
utes without anyinput/output ex
hange, till some time t0� when � or shortly after whi
h � � provides its output (ifany). (We allow ourselves to set t� = t0� when � performs no 
omputation.) Hypothesis (iii) is a
onsequen
e of the variable updating feature embedded in the relations Pre and Syn
. Hypothesis(iv) is, obviously, meaningful only when the run is endless, a 
ase we have to 
onsider too; thishypothesis is then justi�ed by the �niteness of available resour
es (espe
ially the �nite number ofpro
esses).Let us also mention that, 
onsistently with our de�nition of the �exe
ution� in 
ase of a waitinstan
e, the exe
ution time lag of su
h an instan
e does not 
ontain the waiting time; it does notbegin before the involved event has been dete
ted to be posted.Proof : Considering a run of the parallel program, let us rank the (
ountable) set of statementinstan
es � exe
uted in this run, in the in
reasing order of the initial times t�. In 
ase several initialtimes are equal, we rank the 
orresponding instan
es arbitrarily. Even in 
ase the run is endless,this ordering of statement instan
es is well-founded, due to (iv): these instan
es are then orderedinto a sequen
e.The (�nite or in�nite) sequen
e of instan
es obtained thus will be denoted �1; �2; : : : �N ; : : : .For 
onvenien
e, the exe
ution time lag for �i will be denoted [ti; t0i℄.The date � will be de�ned by the following pro
edure:1. Set �(�1) = 1 and i = 1 25



2. For integers j following i, if any, su
h that �j exists and tj � min(t0k j i � k < j), set�(�j) = �(�i)3. If the sequen
e of instan
es � is not exhausted yet, let j be the index of the �rst remaining�. Set �(�j) = �(�i) + 1; set i = j and go to [2.℄It is straightforward to 
he
k that the fun
tion � thus de�ned meets the required properties: wenoti
e that instan
es asso
iated to the same date have exe
ution time lags whi
h mutually overlap:hen
e, (ii) implies the 
omputational 
ausality feature; moreover, any two instan
es the exe
utiontime lags of whi
h are disjoint � espe
ially, any two instan
es whi
h are in a pre
eden
e relation Preor Syn
 � have di�erent dates. JLet us emphasize that we will make use of the mere fa
t that a date fun
tion exists; we will notneed to be able to e�e
tively 
ompute it. Besides, the date fun
tion depends on the spe
i�
 runbeing 
onsidered, even if the parallel program is semanti
ally equivalent to its sequential version.As far as program semanti
s will be 
on
erned, statement instan
es asso
iated to the same datewill be 
onsidered as though they exe
uted �at the same time�. Thus, for 
onvenien
e, we willsay that �some statement instan
e exe
utes at some date�. The 
omputational 
ausality feature(property 2) is 
ru
ial here: it ensures that the result of a 
omputation �made at some date� isnot available before the next date. (The 
ausal de�nition feature (property 4) will not be usedhere: it is a byprodu
t.) So to speak, what we are 
onsidering here is a 
ausality-preserving timedis
retization.The re
ipro
al of property 2 is not true: having �(�) > �(�) does not imply that an output of �
an be used as input by � (besides, the exe
ution time lags of � and � may overlap). But we mustpoint out that this availability will stand if Pre(�; �) (provided, of 
ourse, that the variable is notwritten again meanwhile); or Syn
(�; �) (in whi
h 
ase, besides, � writes an event variable read by�). The need to introdu
e a notion of exe
ution date is the main reason why we 
onsider simplestatements rather than stru
tured ones: very often, a stru
tured statement instan
e extends onseveral dates, in our sense. This is not due to the time length of exe
ution of this stru
turedstatement, but rather to the existen
e of input/output ex
hanges within the exe
ution time lag.Thus, a subroutine or fun
tion 
all is attributed a single date in our framework, however longits exe
ution time may be, provided that it follows the spe
i�
ation we mentioned above: thatinputs/outputs o

ur only at the beginning and at the end of the subroutine or fun
tion11.Other notions of dateThe notion of exe
ution date we introdu
e here displays some similarities, and some di�eren
es, withthe well-known notion of linear time proposed by Lamport [17, 25℄. Lamport 
onsiders sequentialpro
esses, 
ommuni
ating with one another by sending and re
eiving messages. Events o

urringon every pro
ess are assigned dates by a lo
al 
lo
k; every message in
ludes the date when it is sent(for the lo
al time of the emitting pro
ess), and triggers an update of the lo
al time of the re
eiving11In the same �avor, in some languages � su
h as C � where several operations may be 
ondensed into one seemingly�simple� statement, su
h a statement may have to be 
onsidered as stru
tured in our sense, and will then extend onseveral dates. 26



pro
ess, if ne
essary, so that, so to speak, the message is re
eived �after� it is sent. This me
hanismpermits to e�e
tively express 
ausality through a global 
lo
k, realized only from lo
al 
lo
ks �without a need for a 
ommon time devi
e with whi
h all pro
esses would have to 
ommuni
ate.This 
ausality feature of linear time is obviously what makes it somewhat similar to �our�exe
ution date. An important di�eren
e between our s
heme and linear time (or more 
omplextime s
hemes outlined in [25℄) is that the latter aim at e�e
tively 
omputing dates allowing to orderevents, whereas, as we mentioned before, it is su�
ient for us to know the existen
e of a datefun
tion �() endowed with some interesting properties; we will have no need whatever to e�e
tively
ompute it.4.4 The ordered single pro
ess runA single pro
ess run is a run of the parallel program, obtained when there is only one pro
essavailable. As mentioned before, it will be required that a parallel program not produ
e a waitingdeadlo
k whatever the number of available pro
esses. Therefore, a single pro
ess run should notprodu
e a waiting deadlo
k.We will be interested in the ordered single pro
ess run, de�ned as the single pro
ess runin whi
h Assumption SA (sequential assignment) above (�2.2) extends to all parallel 
onstru
ts,and not only to those 
ontaining syn
hronizations. Under the assumption that this ordered singlepro
ess run does not produ
e a waiting deadlo
k � an assumption in the theorem below � itsbehavior mat
hes the one of the sequential version exa
tly, not only from the point of view ofsemanti
 equivalen
e, but also referring to the exe
ution order of the statement instan
es. (Asa 
onsequen
e of the semanti
 equivalen
e, the ordered single pro
ess run produ
es no exe
utionfault.)On the other hand, if the ordered single pro
ess run deadlo
ks, its behavior mat
hes the one ofthe sequential version exa
tly, in the same sense, up to the wait statement instan
e on whi
h thedeadlo
k o

urs.It may be of interest to express the 
ondition that the ordered single pro
ess run does notdeadlo
k. Due to the above remark, we have to express that any wait instan
e exe
uted in thesequential version is not a deadlo
king wait, assuming that the ordered single pro
ess run pro
eededup to that point, with semanti
 equivalen
e to the sequential run up to that point. Consideringthis semanti
 equivalen
e, we 
an express the no-deadlo
k 
ondition (� expresses the sequentialexe
ution order):No-deadlo
k 
ondition for an ordered single pro
ess run:128 wait instan
e 
; Exes(
) ) 9 post instan
e �;Exes(
) ^ Exes(�)^(� � 
) & (["�℄S � ["
 ℄S)^( 8 
lear instan
e �;Exes(
) ^ Exes(�) & (["�℄S � ["
 ℄S)) (� � � _ 
 � � ) )12A

ording to what we have mentioned above (�3.1) about the expression of Exes, this 
ondition is formally moresatisfa
tory under the hypothesis that the ordered single pro
ess run terminates (an assumption in our theorem),sin
e otherwise, the expression of Exes expli
itly depends on the lo
ation of the in�nite loop.27



5 The theorem of semanti
 equivalen
eWe will now derive our theorem of semanti
 equivalen
e. We 
onsider a parallel program writtenin the language we have previously de�ned (Se
tion 2). We 
onsider the sequential version of thisprogram, whi
h is supposed to 
onform to the rules of our language regarding sequential programs(among others, determina
y, and absen
e of exe
ution faults). Considering a few properties ofthe ordered single pro
ess run (�4.4), we will derive the semanti
 equivalen
e between our parallelprogram and its sequential version.Theorem 1 Under the following hypotheses:i. Assumptions S1 and S2 (�3.4);ii. No waiting deadlo
k in the ordered single pro
ess run;iii. No in�nite loop in the ordered single pro
ess run;iv. For all statement instan
es a(i) and b(j),Exes(a(i)) ^ Exes(b(j)) & Dep(a(i); b(j))) Pres(a(i); b(j));the parallel program is semanti
ally equivalent to its sequential version. Espe
ially, no parallel run
an deadlo
k (in waiting or in fault), nor in�nitely loop.Proof : We 
onsider a program instan
e, obtained by giving values to the parameters. Then,there is only one ordered single pro
ess run of this program, whi
h will be denoted S, whereas thereare generally many possible runs of the parallel version. We 
onsider one of them, whi
h will bedenoted P. In what follows, the predi
ates Exe and Pre, de�ned in Se
tion 3, are the exe
ution andpre
eden
e predi
ates asso
iated to this parallel exe
ution P.We will �rst derive the semanti
 equivalen
e extended to all statement instan
es exe
uted inthis parallel run P and all variables involved in them (points 1 to 4); �nally, we will prove that,
onversely, all instan
es exe
uted in the ordered single pro
ess run S are exe
uted in this parallelrun P (point 5).Point 1 : We will 
onsider the exe
ution date fun
tion (�4.3) asso
iated to the parallel run P weare 
onsidering.Let � be a date su
h that the following re
urren
e assumption holds:Semanti
 equivalen
e up to date � � 1: for any statement instan
e � exe
uted stri
tlybefore � in P, � is also exe
uted in S; moreover, any variable referen
e involved in � asinput (in
luding the event referen
es) points to the same variable in both runs, and thatvariable has been written by the same other instan
e in both runs. Correlatively, allvariables written, in P, before date � (in
luding event variables), underwent the same
omputations, due to the same instan
es, in the same order, in S.This hypothesis indeed expresses a semanti
 equivalen
e between P and S as regards all theinputs and outputs of all statement instan
es exe
uting before � in P. (As a 
onsequen
e, espe
ially,P does not produ
e any exe
ution fault before � .)28



We wish to prove that this semanti
 equivalen
e extends to date � . Considering that it obviouslyapplies to the program start, that will ensure the semanti
 equivalen
e along all the parallel run P.First of all, we have to introdu
e a lemma.Lemma 2 We assume the hypothesis of semanti
 equivalen
e up to date � � 1, and a statementinstan
e 
 exe
uted at � in P. For any statement instan
e � su
h that Exes(�) and Pres(�; 
), wehave Exe(�) and Pre(�; 
).This result also holds if we repla
e 
 here by any statement instan
e exe
uted before � in P.The proof of this lemma is provided in Appendix B.We have to show that, for any statement instan
e 
 whi
h happens to be exe
uted at date �in P, the semanti
 equivalen
e propagates to 
. First, we will prove that the semanti
 equivalen
eextends to the inputs of 
. We will be led to 
onsider separately the 
ase when su
h an input is notan event (point 2), and the 
ase when it is (point 3). Then, we will noti
e that this exe
utionof 
 does not produ
e any exe
ution fault; afterwards we will show that the semanti
 equivalen
eextends to the outputs of 
, by deriving that there is no ra
e 
ondition between instan
es exe
utingat date � (point 4). Thus, the semanti
 equivalen
e up to date � will be derived.We 
onsider a statement instan
e 
 
oming to be exe
uted at date � in P. A

ording to Lemma 1(�4.2), the fa
t that 
 is rea
hed or persistently pending (not implying that it is exe
uted) is fullydetermined by some statement instan
e(s) � su
h that Pre0(�; 
), and whi
h have all been exe
uted(therefore, before � , sin
e Pre0 is 
ommon to all runs). Due to the re
urren
e hypothesis of semanti
equivalen
e up to date ��1, these same statement instan
es � exe
ute in S, and identi
ally determinethat 
 is rea
hed or persistently pending in S. Therefore, 
 is exe
uted in S (due to hypotheses (ii)and (iii), no instan
e remains waiting nor pending in S): we have Exes(
).Let us 
onsider some variable referen
e � used by 
 as input. In order to ensure the semanti
equivalen
e for this input, sin
e we assume the semanti
 equivalen
e up to date � � 1, we just needto rule out two possibilities:1. the possibility that the referen
e � in 
 does not point to the same variable in S; or, in 
aseit does (let then x be the variable � points to in both runs),2. the possibility that the value of x used by 
 as input is not obtained by the same 
omputationsin both runs.We will �rst show, by a re
urren
e on the indire
tion order (�2.1) of �, that ruling out Possibility 1redu
es to ruling out Possibility 2. Possibility 1 
annot arise if � is of indire
tion order 0, sin
e su
ha referen
e stati
ally points to the same variable in any run. Now, if � is of indire
tion order n > 0,let us suppose that possibilities 1 and 2 have been ruled out for all inputs of 
 of indire
tion orderless than n. Then, the semanti
 equivalen
e extends to all su
h inputs, and espe
ially to all variablereferen
es 
ontained in the subs
ript list of �. Therefore, � points to the same variable x in bothruns, and it is then su�
ient to rule out Possibility 2 for this input x.So, 
onsidering a variable referen
e � pointing to the same variable x in both runs, we have torule out Possibility 2 by making sure that the value of x used by 
 as input has been similarly
omputed in both runs. 29



Point 2 : Let us �rst 
onsider the 
ase when x is not an event variable.Let � be the statement instan
e whi
h 
omputes the value of x used by 
 as input in S. � exists,due to the determina
y 
ondition (�2.3). We will �rst show that Exe(�) and Pre(�; 
), whi
h willimply that � is exe
uted in P before � . The re
urren
e hypothesis of semanti
 equivalen
e will thenimply that x is similarly 
omputed by � in both runs, and the pre
eden
e thus obtained will implythat this value of x is available as input for 
 in P, unless some other 
omputation of x interferesbetween � and 
, a 
ir
umstan
e that we will rule out afterwards.We have Exes(�) be
ause it is � whi
h 
omputes x for 
 in S; we have Exes(
) as we have seen;we have Dep(�; 
) be
ause � 
omputes a variable (whi
h is not an event) used by 
 in S, the runin referen
e to whi
h Dep is de�ned. Therefore, a

ording to (iv), we get Pres(�; 
). A

ording toLemma 2, having Exes(�) and Pres(�; 
) implies Exe(�) and Pre(�; 
). Now, in order to 
on�rmthat the semanti
 equivalen
e extends to the input x of 
, we need to prove that, in P, the statementinstan
e whi
h 
omputes x for 
 is indeed �, and not some other statement instan
e Æ interferingbetween � and 
.Su
h an instan
e Æ would exe
ute before � , so that its output x 
ould be available for 
; so, dueto the re
urren
e hypothesis, Æ would exe
ute in S too, and 
ompute the same variable x. Therefore,there would be a dependen
e Dep between � and Æ, whi
h, together with Exes(�) and Exes(Æ), wouldimply a pre
eden
e Pres between � and Æ, a

ording to (iv). In what dire
tion would this pre
eden
estand? If we had Pres(Æ; �), Lemma 2 applied to � would then imply Pre(Æ; �), whi
h, together withPre(�; 
), would prevent the value of x 
omputed by Æ from being read by 
. Therefore, we wouldget Pres(�; Æ): Æ would indeed exe
ute after � in S. Sin
e � indeed 
omputes x for 
 in S, this wouldimply that Æ exe
utes after 
 in S. If this were the 
ase, we would have Dep(
; Æ), whi
h, togetherwith Exes(Æ) and Exes(
), would imply Pres(
; Æ). Æ would exe
ute in P before � , so Lemma 2would apply to Æ: Exes(
) ^Pres(
; Æ) would imply Pre(
; Æ), whi
h would 
ontradi
t the fa
t thatÆ exe
utes before � in P. Therefore, there is no su
h instan
e Æ.Point 3 : Let us now 
onsider the 
ase when x is an event variable. This implies that 
 is a wait.A

ording to the re
urren
e hypothesis, all 
omputations of x before � are identi
al in bothruns. Let � be the statement instan
e whi
h last modi�ed the event x in this past 
ommon history.Sin
e 
 is exe
uted at date � in P, � exists and is a post (and not a 
lear).Let � be the statement instan
e whi
h writes x for 
 in S. Sin
e 
 is exe
uted in S, � is a postand (�; 
) is a syn
hronization pair: we have Syn
s(�; 
).We have to show that � is �. This will end our Point 3. If this were not the 
ase, AssumptionsS1 and S2 (�3.4) would imply that, either Pre0(
; �) (then, � would exe
ute after 
 in S), or therewould be a 
lear instan
e � involving event x in S, su
h that Pre0(�; �) ^ Pre0(�; 
). Let ussu

essively rule out these two 
ases.The 
ase Pre0(
; �). Sin
e � exe
utes before � in P, Lemma 2 applies: Exes(
) ^ Pre0(
; �)would imply Pre(
; �), whi
h would 
ontradi
t the fa
t that � exe
utes before 
 in P.The 
ase Pre0(�; �)^Pre0(�; 
). A

ording to Lemma 2, having Exes(�) and Pre0(�; 
) wouldimply Pre(�; 
): � would exe
ute before � in P. Then, the fa
t that Pre0(�; �) would imply asimilar pre
eden
e in P (due to Lemma 2 applied to �): x would be 
leared by � between �and 
 in P, whi
h would 
ontradi
t the fa
t that � is the last statement instan
e writing xbefore � . 30



Point 4 : At this point, we have proved that, given the re
urren
e hypothesis of semanti
 equiv-alen
e up to date � � 1 and a statement instan
e 
 exe
uted at � in the parallel run P being
onsidered, 
 is also exe
uted in S and the semanti
 equivalen
e extends to all the input referen
esof 
: any su
h referen
e � points to the same variable (denoted x) in both runs, and x 
ontains thesame value, similarly 
omputed, at the exe
ution of 
, in P and S.This input equivalen
e implies that any output referen
e � of 
 points to the same variable(denoted y) in both runs. Thus, in both runs, 
 performs the same 
omputations, on the sameinputs, produ
ing the same outputs. Therefore, the exe
ution of 
 in P produ
es no exe
utionfault. To make sure that the semanti
 equivalen
e extends to the outputs of 
 at date � , it issu�
ient to 
he
k that there is no 
on�i
t, i.e. no dependen
e relation, among the statementinstan
es 
i, say 
1 and 
2, 
oming to be exe
uted at date � in P. Due to the semanti
 equivalen
eof all input referen
es, input variables and output referen
es of 
1 and 
2, su
h a 
on�i
t would alsoshow up in S.In 
ase the 
on�i
ting referen
es would not be event referen
es, su
h a 
on�i
t would translateinto a dependen
e relation Dep, e.g. Dep(
1; 
2), whi
h, a

ording to (iv), would imply Pres(
1; 
2).Lemma 2 applies: having Exes(
1) and Pres(
1; 
2) would imply Pre(
1; 
2), whi
h 
ontradi
ts thefa
t that 
1 and 
2 exe
ute at date � .In 
ase the 
on�i
ting referen
es refer to an event variable, �rst of all, 
1 and 
2 would not bothbe wait instan
es: at least one of them has to output an event (so that there is a 
on�i
t), i.e. bea 
lear or a post. Two 
ases have to be 
onsidered.� The 
ase when 
1 and 
2 are a post and a wait, say in that order, involving an event variable" (in both runs S and P). Let � be the post instan
e whi
h writes " for 
2 in S. We haveSyn
s(�; 
2). We have noti
ed (point 3) that � exe
utes before � in P. � is therefore di�erentfrom 
1. We will show that this leads to a 
ontradi
tion. A

ording to assumptions S1 andS2 (�3.4), either we would get Pre0(
2; 
1), or there would exist a 
lear instan
e � involvingthe event variable " in S, su
h that Pre0(
1; �) ^ Pre0(�; 
2). Let us rule out these two 
ases.The 
ase Pre0(
2; 
1). Sin
e 
1 would exe
ute at date � inP, Lemma 2 applies: Exes(
2)^Pre0(
2; 
1) would imply Pre(
2; 
1), whi
h would 
ontradi
t the fa
t that 
2 wouldexe
ute at date � , like 
1, in P.The 
ase Pre0(
1; �)^Pre0(�; 
2). A

ording to lemma 2, having Exes(�) and Pre0(�; 
2)would imply that � would exe
ute before � in P. Then, however, Pre0(
1; �) would implya similar pre
eden
e in P (lemma 2 applied to �): 
1 would exe
ute before � in P, whi
h
ontradi
ts the assumption that 
1 would exe
ute at � .� In the other 
ases, let us apply Assumption S1. We have a pre
eden
e Pre0 between 
1 and
2, e.g. Pre0(
1; 
2). A

ording to lemma 2, having Exes(
1) and Pre0(
1; 
2) would implyPre(
1; 
2), whi
h would 
ontradi
t the fa
t that 
1 and 
2 both exe
ute at date � .Point 5 : We have thus proved that any statement instan
e exe
uted in some parallel run P isalso exe
uted in S, and that any variable involved in this statement instan
e undergoes the same
omputations (and therefore re
eives the same values) in both runs up to the last point rea
hed inP. 31



As an immediate 
onsequen
e, this parallel run P 
annot enter an in�nite loop: indeed, if somewhile 
onstru
t looped inde�nitely in P, the semanti
 equivalen
e along P would imply a similarin�nite loop in S, whi
h is ruled out by (iii). That same semanti
 equivalen
e along P also ensuresthat P produ
es no exe
ution fault.There remains to prove that, 
onversely, any statement instan
e exe
uted in S is also exe
utedin any parallel run P. Let us suppose by 
ontradi
tion that there are statement instan
es whi
h areexe
uted in S and not in some parallel run P we are 
onsidering, and let 
 be the earliest one, inthe sequential order.Let us apply Lemma 1 to the exe
ution of 
 is S. A

ording to hypotheses (ii) et (iii), there is nopersistently waiting nor persistently pending statement instan
e in S. Therefore, Lemma 1 impliesthat Exes(
) is dependent on statement instan
es � whi
h pre
ede 
 Pre0-wise and are all exe
utedin S, before 
. By de�nition of 
, these � are exe
uted in P, with semanti
 equivalen
e, as shownpreviously. Therefore, Lemma 1 and the non exe
ution of 
 in P imply that, in P, either 
 ispersistently pending, or 
 is a persistently waiting wait. Let us examine these two possibilities.In the absen
e of in�nite loops and exe
ution faults in P, the sequential assignment assumption(�2.2) implies that a statement instan
e 
an be persistently pending only if some wait instan
e !,ranking before it in the sequential order, is rea
hed and deadlo
ks in P. Being rea
hed in P, ! isrea
hed too, and exe
utes, in S. Its deadlo
k in P, and its pre
eding 
 in S, would 
ontradi
t thede�nition of 
.Finally, there remains the 
ase when 
 is a rea
hed and deadlo
king wait. Let "
 be the event
 involves in S. First of all, we must show that 
 involves the same event in P.Let x be a variable other than "
 , if any, involved as an input of 
 in S (x exists in 
ase ofdynami
 referen
e). By de�nition of 
, all instan
es pre
eding 
 in S are exe
uted, with semanti
equivalen
e, in P. It is therefore the 
ase for the instan
e �x whi
h 
omputes x for 
 in S (for anysu
h x, �x exists, due to the determina
y 
ondition (�2.3)).Is there a possibility that, in P, x is rewritten after �x ? If this were so, it would be throughan instan
e denoted Æx. Then, Æx exe
utes in S, with semanti
 equivalen
e, therefore after 
. Wewould then get Dep(
; Æx) (dependen
e asso
iated to x), Exes(
), Exes(Æx), therefore Pres(
; Æx)by (iv). A

ording to Lemma 2 applied to Æx, having Exes(
) and Pres(
; Æx) would imply Exe(
),whi
h would 
ontradi
t the deadlo
k on 
 in P. Hen
e, x is not written again after �x in P.Here we will use a lemma:Lemma 3 We assume the semanti
 equivalen
e along P. Let 
 be a wait instan
e, deadlo
king inP. For any statement instan
e � su
h that Exes(�) and Pres(�; 
), we have Exe(�) and Pre(�; 
).The proof of this lemma is provided in Appendix B, after the proof of Lemma 2.For any su
h variable x, we have Exes(�x) and Dep(�x; 
). We have Exes(
). So, a

ording to(iv), we have Pres(�x; 
). Then, lemma 3 gives Pre(�x; 
).Together with the fa
t that x is not rewritten in P after �x, this pre
eden
e Pre(�x; 
), froman exe
uted instan
e to a deadlo
king wait, implies (�3.3) that, if x is an input of 
 in P (whi
hwe do not know yet, at this point!), the value of x input by 
 is (and remains) the one 
omputedby �x in P as well as in S. Che
king that x is indeed an input of 
 in P is performed through a32



re
urren
e on the indire
tion order of x, similar to the one we used in Point 1. It therefore turnsout that the event involved in 
 in P indeed is (and remains) "
 , the same as in S.By de�nition of 
, all instan
es previous to 
 in S are exe
uted, with semanti
 equivalen
e, inP. This is the 
ase, therefore, for the post instan
e � whi
h sets value posted to "
 for 
 in S. So,the deadlo
k on 
 would imply that, in P, some 
lear statement instan
e � exe
utes and 
lears"
 after �, and before 
 used it. � also exe
utes in S and 
lears the same event (as shown above,about the semanti
 equivalen
e extended to all instan
es exe
uted in P).Assumption S1 (�3.4) implies that there is a relation Pre0 between � and �, and between � and
. We 
annot have Pre0(�; �) be
ause this would imply (Lemma 2 applied to �) that � exe
utesbefore � in P. So, we have Pre0(�; �). We 
annot have Pre0(�; 
) be
ause, together with Pre0(�; �),this would imply an exe
ution order in S: � before � before 
, and � would not post for 
, as it issupposed to. So, we have Pre0(
; �).� exe
utes in P, so Lemma 2 applies to �: 
 exe
utes in S and we have Pre0(
; �); so, 
 exe
utesin P before �, whi
h 
ontradi
ts the deadlo
k on 
.This ends the derivation of our theorem. JDeadlo
ks and in�nite loopsAlong the lines of the above derivation, it is straightforward to see what may happen whenever theordered single pro
ess run S produ
es a waiting deadlo
k, 
ontrarily to hypothesis (ii), or in�nitelyloops, 
ontrarily to hypothesis (iii) � keeping in mind that both 
ir
umstan
es are unwanted in ourframework.In 
ase S is endless, the statement instan
es exe
uting in S exe
ute too in any parallel run P� hen
e an in�nite loop in P � but, in 
ase the in�nite loop is nested in a parallel 
onstru
t, someunits of work in this parallel 
onstru
t may exe
ute in P, although they are not rea
hed in S.In 
ase S produ
es a waiting deadlo
k, the statement instan
es exe
uting in S exe
ute too in anyparallel run P, but, in the (usual) 
ase when the deadlo
king wait instan
e is lo
ated in a parallel
onstru
t, it may happen that some units of work in this parallel 
onstru
t exe
ute in P, althoughthey are not rea
hed in S. It may even o

ur that the event 
orresponding to the deadlo
king waitinstan
e happen to get posted thus, due to a post instan
e lo
ated after the wait instan
e in thesequential order. Su
h an o

urren
e will then arise randomly, essentially depending on the numberof available pro
esses and the loading of units of work on these pro
esses, two aspe
ts of the programexe
ution the user is not supposed to have any 
ontrol on.6 An example; an in
rementality propertyWe will illustrate the possible appli
ations of our theorem on a little example, together with high-lighting an interesting property of in
rementality of a 
he
k-and-repair pro
edure inspired by ourresult.Let us 
onsider a parallel program instan
e in whi
h two statement instan
es � and �, both exe-
uted and in a dependen
e relation Dep(�; �), happen not to be in a pre
eden
e relation Pres(�; �).We 
onsider a 
he
k-and-repair pro
edure whi
h, in presen
e of su
h an unpreserved dependen
e,aims at reinfor
ing the pre
eden
e Pres so that the dependen
e being 
onsidered be
omes preserved33



by the pre
eden
e thus reinfor
ed. We must indeed obtain a reinfor
ement, in the sense that,for the whole program, we must get Presbefore ) Presafter where Presbefore and Presafter denote thepre
eden
es Pres before and after the repair, respe
tively. (If this reinfor
ement of Pres is performedby adding or displa
ing syn
hronizations, it must be 
he
ked that assumptions S1 and S2 dealingwith syn
hronizations (�3.4) remain true after the repair.) Thus, the impli
ations Dep ) Presalready 
he
ked at this point, will remain afterwards.Here, the important point to noti
e is that this repair of this la
k of dependen
e preservationdoes not 
ompromise the other veri�
ations already performed at this point; the dependen
es whi
hhave already been 
he
ked to be preserved at this point will remain preserved after the repair:there is no need to revisit the whole program sour
e at this point. This in
remental aspe
t of the
he
k-and-repair pro
edure is a dire
t 
onsequen
e of the referen
e of our theorem to the sequentialsemanti
s; it would not be ensured if our theorem had referred to the parallel semanti
s in someessential way (be
ause su
h a reinfor
ement of the pre
eden
e may indeed radi
ally 
hange thebehavior of the parallel program).Let us study an example. Figure 8 shows a portion of program. The sequential version (whi
hprovides the referen
e for the required semanti
s) is on the right.On this portion of program, we assume that the undisplayed statements (represented by � : : :�)do not 
ontain referen
es A() or P , nor syn
hronizations. Besides, we assume that this portion ofprogram is not itself nested within another parallel 
onstru
t.This program is in
orre
t in our sense, sin
e it exhibits memory 
on�i
ts involving variable P :dependen
es from 
1 and 
2, to d1, a and p, are not preserved. This will have to be �xed, but,due to the in
rementality property, this must not prevent us from 
he
king whether dependen
esinvolving variables A() are preserved.Let us fo
us our attention on the dependen
e between statements b and a, involving referen
esA(). We noti
e that this dependen
e, as well as the 
orresponding pre
eden
es that we will �nd,depend on variable P . Sin
e the sequential version sets the semanti
 referen
e here (in virtue ofour theorem), we have not to bother (at this point) with the memory 
on�i
ts mentioned aboveinvolving P , and we 
onsider the �sequential� value of P (whi
h equals 2 or 3) at b and a. Sin
eP > 0, we have a dependen
e from a to b involving the variable array A(), whi
h will have to bepreserved so that the values of A() 
omputed by a be, in 
ase of need, those used by b, P iterationslater.We 
hoose to in
lude the exe
ution 
onditions Exes in our predi
ates Dep. We obtain:Dep(ax; by) = (1 � x � N) ^ (1 � y � N) ^ (y > x) ^ (y = x+ [[P℄℄�ax)Let us explain this relation. ax (resp. by) denotes the instan
e of a (resp. b) 
orrespondingto iteration x (resp. y). The four terms of this 
onjun
tion denote, respe
tively: the 
ondition ofexe
ution of a; the 
ondition of exe
ution of b; the 
ondition for ax to exe
ute before by in thesequential version; and the 
ondition that the two instan
es ax and by a

ess to the same variablein the sequential version. Let us remind that [[P℄℄�ax denotes the value of P read by instan
e ax inthe sequential version13.13As a simpli�
ation, we assumed here that N is a parameter. In 
ase it is a variable, in the expressions displayedhere, �N � should be repla
ed by �[[N℄℄�d2�. 34



B=... B=...... ...pse
tionsse
tion... ...if(B) then if(B) then
1: P=2 P=2else else
2: P=3 P=3endif endiff: ... ...se
tiond1: do J=1,Pq: post E(J)enddo... ...d2: pdo I=1,N do I=1,N... ...w: wait E(I)b: ...=A(I) ...=A(I)a: A(I+P)=... A(I+P)=...p: post E(I+P)endpdo enddoendpse
tions... ...Figure 8: An example of program 
he
king. The sequential version is on the right.
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B=......CLEAR F addendumpse
tionsse
tion...if(B) then
1: P=2else
2: P=3endifPOST F addendumf: ...se
tionWAIT F addendumd1: do J=1,Pq: post E(J)enddo...d2: pdo I=1,N...w: wait E(I)b: ...=A(I)a: A(I+P)=...p: post E(I+P)endpdoendpse
tionsCLEAR F addendum... Figure 9: The previous example, with addenda
36



Let us now look for pre
eden
es whi
h may stand from a to b. It is easy to dete
t that the 
ontrolpre
eden
e Pre0 is not su�
ient, and that syn
hronization relations Syn
s have to be involved. Morepre
isely, let us 
onsider a path: ax ! pu  wz ! by(We use notations introdu
ed in �3.3). Let us express the 
orresponding pre
eden
e relation:Pres(ax; by) = Pre0(ax; pu) ^ Syn
s(pu; wz) ^ Pre0(wz; by)As regards the syn
hronization Syn
s, we assume that it has been 
he
ked that a syn
hronizationindeed stands from p to w, in the sense that, under the sequential semanti
s, the events E() are notposted yet when the 
ontrol enters the portion of program 
onsidered here.We get:Pres(ax; by) = (x = u) ^ (1 � u � N) ^ (u+ [[P℄℄�pu = z) ^ (1 � z � N) ^ (z = y)We have to 
he
k whether there is a pre
eden
e path of this form su
h that Dep(ax; by) )Pres(ax; by), i.e. whether there is an instan
e pu of p and an instan
e wz of w su
h that we get thisimpli
ation. In the above expression of Pres, we try to eliminate u and z14:� Eliminate u by (x = u):Pres(ax; by) = (1 � x � N) ^ (x+ [[P℄℄�px = z) ^ (1 � z � N) ^ (z = y)� Eliminate z by (z = y):Pres(ax; by) = (1 � x � N) ^ (x+ [[P℄℄�px = y) ^ (1 � y � N)to be 
ompared with:Dep(ax; by) = (1 � x � N) ^ (1 � y � N) ^ (y > x) ^ (y = x+ [[P℄℄�ax)We indeed get Dep(ax; by)) Pres(ax; by), provided that [[P℄℄�px = [[P℄℄�ax, whi
h is veri�ed assoon as we 
he
k that P is not rewritten between the two readings in the sequential version, whi
his what we have assumed.Now we must take 
are of variable P . We have mentioned that dependen
es involving P , from
1 and 
2 to d1, a and p are not preserved. A somewhat radi
al way to �x this problem, is to�resequentialize� the pse
tions � but this may be 
ostly if the exe
ution of statements f is time-
onsuming. Rather, a more subtle �x 
onsists in introdu
ing a new syn
hronization from the end ofP 's 
omputation to the beginning of P 's use. This syn
hronization should not involve an event E()already in use in loops d1 and d2. A possibility is to use another event (here F ), duly reinitializedbefore and after this use in 
ase it already exists in the rest of the program. Under this 
ondition,all the previously 
he
ked dependen
e preservations (e.g. those involving A() here) still stand. Apossible �x of our portion of program is shown in Figure 9.14These prin
iples of algorithmi
 treatment of dependen
es and pre
eden
es are explained in [26, 6, 7℄.37



7 Con
lusionWe have studied a property of 
orre
tness of parallel programs in the shared-memory programmingmodel. This model is widely used in s
ienti�
 
omputing and implementable on many parallelma
hines, in
luding distributed-memory ones.We have 
onsidered a parallel language obtained by adding a few parallel 
onstru
ts (parallelloops, parallel se
tions and event syn
hronizations) within a fairly standard sequential imperativelanguage (we do not make stati
 
ontrol assumptions often 
onsidered in the literature). We areinterested in a property of sequential 
orre
tness de�ned as a semanti
 equivalen
e between aparallel program and its sequential version, that we de�ne. In this framework, a parallel programis viewed as the result of a parallelization of some given sequential program, and it is required thatthe results of any run of the parallel program be identi
al to those of this sequential program; theimprovement sought through the parallelization lies only in the ability to obtain these results faster.The main obje
t of this paper is to present and derive a theorem whi
h states su�
ient 
onditionsfor this sequential 
orre
tness property. The important aspe
t of this result is the fa
t that thesesu�
ient 
onditions (mainly preservation of dependen
es) refer to the semanti
s of the sequentialversion only: they do not refer in any way to presupposed properties of some spe
i�
 parallel runof the program. In other words, due to this result, 
he
king that any possible run of some parallelprogram being 
onsidered will meet the desired 
orre
tness requirements boils down to 
he
kingsome predi
ates pertaining to some sequential program. Espe
ially, this referen
e to a sequentialsemanti
s allows to use all resour
es of data�ow analysis usually applied to the study of sequentialprograms, in the pro
ess of 
he
king these predi
ates.The derivation of the theorem makes use of a notion of exe
ution date. In a run of a parallelprogram, every exe
ution of a statement is attributed a date, su
h that the outputs of 
omputationsmade �at some date� are not available as inputs before �the next date�. This exe
ution date feature
an be des
ribed as a 
ausality-preserving time dis
retization. The main part of the proof makesuse of a re
urren
e on the date, in order to derive that the semanti
 equivalen
e between theparallel program being 
onsidered and its sequential version, propagates along any possible parallelexe
ution. The requirement to refer to the sequential semanti
s, whereas the re
urren
e pro
eedsalong a parallel run, explains the intri
a
y of the proof.A preliminary appli
ation of this theorem, dealing with a subset of our language, is developedin [7, 26℄. There are prospe
ts that this result 
ould be applied through tools to verify a wide rangeof programs.Appendix A: Proof of Lemma 1Lemma 1, introdu
ed in �4.2, spe
i�es in whi
h 
ases, and in what sense, the exe
ution of somestatement instan
e � in a parallel run, stri
tly depends on the exe
ution of some statement instan
es� su
h that Pre0(�; �). (Let us remind that  (�) denotes the 
ondition for � to be exe
uted orpersistently waiting or persistently pending.)Lemma 1 Considering a parallel program, for any run of this program, and for any statementinstan
e � of any statement ex
ept the �rst one,  (�) is fully determined by the exe
ution of oneor several statement instan
es � su
h that Pre0(�; �). All or some of these instan
es � are spe
i�ed38



independently of the run 
onsidered; the other ones, if any, are spe
i�ed by the exe
ution of theformer. If at least one of these � produ
es an exe
ution fault, this implies  (�) = false.We have Exe(�) =  (�) ex
ept in the three following 
ases:� � is an instan
e of a wait w: then,  (�) expresses the 
ondition for � to be rea
hed (or the
ondition for � to be rea
hed or persistently pending, in 
ase w is both a wait and the �rststatement in a parallel 
onstru
t body). Under this 
ondition, however, � may be persistentlywaiting (or persistently pending), instead of �nally exe
uting, in a deadlo
k situation (or inan in�nite loop situation in the latter 
ase).� � is an instan
e of the �rst statement in a pdo body or in a se
tion of a pse
tions,without being an instan
e of a wait: then,  (�) expresses the 
ondition for � to be exe
utedor persistently pending; the latter possibility o

urs in 
ase of a deadlo
k or in�nite loop.� � is an instan
e of a endwhile: then,  (�) expresses the 
ondition for � to be exe
uted orpersistently pending; the latter possibility o

urs in 
ase the while in�nitely loops, or in 
aseof a deadlo
k or in�nite loop within an iteration.Proof : We will refer to the previously spe
i�ed exe
ution model (�2.2). We will su

essivelyexamine all possible 
ases in our language.We 
onsider some statement instan
e �, an instan
e of a statement a other than the �rst one.� a is a wait: then, in all interesting 
ases, it is not true that the exe
ution of � depends oninstan
es pre
eding � Pre0-wise. But the 
ondition for � to be rea
hed � not meaning that itis exe
uted � will 
onform to everything we will derive now, as shown by �
tively inserting a
ontinue statement just before the wait statement, and 
onsidering whi
h of the following
ases this 
ontinue statement �ts in. In the following 
ases, we assume that a is not a wait.� a is the �rst statement in a pdo body: then, let 
 be the loop header; let j be the (possiblyempty) index ve
tor of 
 and j ::k be the index ve
tor of a. For any instan
e � = a(j ::k) tobe exe
uted, it is ne
essary that the 
orresponding instan
e 
(j) be exe
uted without fault;
onversely, the exe
ution of 
(j), through the evaluation of its loop bounds, fully 
hara
terizeswhi
h instan
es a(j ::k) are rea
hed or persistently pending. Thus,  (a(j ::k)) is fully 
hara
-terized by the exe
ution of 
(j); and we have Pre0(
(j); a(j ::k)). However, an instan
e a(j ::k)su
h that  (a(j ::k)) may be persistently pending instead of �nally exe
uting, in deadlo
k orin�nite loop situations.� a is the �rst statement in a se
tion body, within a pse
tions 
onstru
t: then, let 
 be thepse
tions header; let j be the (possibly empty) index ve
tor of a and 
. For any instan
e� = a(j) to be rea
hed or persistently pending, it is ne
essary and su�
ient that 
(j) beexe
uted. So,  (�) fully depends on another statement instan
e whi
h pre
edes it Pre0-wise.However, there again, � may be persistently pending, in deadlo
k or in�nite loop situations.� a is a endwhile: then, let 
 be the 
orresponding while header; let j be the (possibly empty)index ve
tor of a and 
. For any instan
e � = a(j) to be rea
hed or persistently pending, itis ne
essary and su�
ient that 
(j) be exe
uted. So,  (�) fully depends on the exe
ution39



of 
(j), whi
h pre
edes a(j) Pre0-wise. However, there again, � may be persistently pendingwhenever, either the while 
onstru
t in�nitely loops, or there is a deadlo
k or in�nite loopwithin an iteration.At this point, we have just examined the four 
ases when the exe
ution of a statement instan
e isnot fully determined by the exe
ution of statement instan
es whi
h pre
ede it Pre0-wise. However,su
h a full determination will stand for a wait instan
e to be rea
hed � not meaning that it willbe exe
uted �; for an initial instan
e in a unit of work to be exe
uted or persistently pending � notmeaning that it will �nally be exe
uted �; for an initial instan
e in a unit of work whi
h happensto be a wait, to be persistently pending or rea
hed � not meaning that it will �nally get rea
hed,or exe
uted; and for a endwhile to be exe
uted or persistently pending.Now, let us examine the other 
ases.� a is a endpse
tions. Then, let 
 be the 
orresponding head of the pse
tions, and j theindex ve
tor 
ommon to 
 and a. The exe
ution of a(j) is fully determined by the exe
ution(without fault) of the 
orresponding statement instan
es whi
h end all the units of work inthis pse
tions. All these instan
es pre
ede a(j) Pre0-wise. They are spe
i�ed independentlyof the run.� a is a endpdo. Then, let 
 be the 
orresponding loop head and j be the index ve
tor 
ommonto 
 and a. Then, the 
ondition for a(j) to be exe
uted is that 
(j) be exe
uted without faultand that, in 
ase the index range is not empty (a 
ir
umstan
e determined by the exe
utionof 
(j)), the statement instan
es whi
h end all the parallel units of work be exe
uted withoutfault. All these instan
es pre
ede a(j) Pre0-wise, and are spe
i�ed by the exe
ution of 
(j).� a is the �rst statement in a do loop body. Let 
 be the loop head, j be the index ve
torof 
 and j :: k be the index ve
tor of a. Then, the exe
ution without fault of 
(j) fullydetermines the range of values of k whi
h will be 
onsidered, and for any of these values k,the 
ondition for a(j :: k) to be exe
uted is the exe
ution without fault of 
(j) and (for theiterations other than the �rst) of the last statement instan
e in the loop body 
orrespondingto the previous iteration. Both statement instan
es pre
ede a(j :: k) Pre0-wise; the former isspe
i�ed independently of the run, and spe
i�es whether the latter is involved.� a is a enddo. Then, let 
 be the 
orresponding loop head and j be the index ve
tor 
ommonto 
 and a. Then, the 
ondition for a(j) to be exe
uted is that 
(j) be exe
uted without faultand that, in 
ase the index range is not empty (a 
ir
umstan
e determined by the exe
utionof 
(j)), the last loop body instan
e (spe
i�ed by the exe
ution of 
(j)) be exe
uted withoutfault. Both statement instan
es pre
ede a(j) Pre0-wise.� a is the �rst statement in the then or else part of a if. Let 
 be this if. The exe
ution of aninstan
e of a is fully determined by the exe
ution without fault of the 
orresponding instan
eof 
.� a is a endif. Let 
 be the 
orresponding if, and j be the index ve
tor 
ommon to a and
. The 
ondition for a(j) to be exe
uted is the exe
ution without fault of 
(j) and of someinstan
e � ending the then part or the else part � spe
i�ed by the exe
ution of 
(j). Thesetwo instan
es pre
ede a(j) Pre0-wise. 40



� a is the �rst statement in a while body, i.e. the test of the boolean 
ondition. Let j bethe index ve
tor of the while head 
 and j :: k be the index ve
tor of a. The 
ondition fora(j ::k) to be exe
uted is the exe
ution of 
(j) and (for the iterations other than the �rst) theexe
ution without fault of the last statement instan
e in the while body 
orresponding to theprevious iteration. Both instan
es pre
ede a(j ::k) Pre0-wise, and are spe
i�ed independentlyof the run.� a is the se
ond statement in a while body, i.e. the statement following the test statement wehave just 
onsidered, here denoted b. Let i be the index ve
tor of b and a. The exe
ution ofa(i) is fully determined by the exe
ution without fault of b(i) (and the result of the test doneby b(i))� The remaining 
ase is the most straightforward: a has an immediate prede
essor b, of sameindex ve
tor j, and the 
ondition for a(j) to be exe
uted is exa
tly that b(j) be exe
utedwithout fault. JAppendix B: Proofs of Lemmas 2 and 3Proof of Lemma 2Lemma 2 is involved in the proof of Theorem 1 (Se
tion 5), in point 1. We assume the hypothesesof Theorem 1.Lemma 2 We assume the hypothesis of semanti
 equivalen
e up to date � � 1, and a statementinstan
e 
 exe
uted at � in P. For any statement instan
e � su
h that Exes(�) and Pres(�; 
), wehave Exe(�) and Pre(�; 
).This result also holds if we repla
e 
 here by any statement instan
e exe
uted before � in P.Proof : We will prove the result involving 
; the latter extension will be straightforward. Aftergiving a preliminary remark, we will prove the result in the restri
ted 
ase when we have Pre0(�; 
);afterwards, we will derive the extension to the 
ase when we have Pres(�; 
) and not Pre0(�; 
).Preliminary remark. In a deadlo
k or in�nite loop situation, let � be a persistently waiting or pend-ing statement instan
e. No instan
e � su
h that Pre0(�; �) 
an be exe
uted. This straightforwardlyresults from the exe
ution model and the de�nition of Pre0. (In other words, the exe
ution �ow
annot by-pass a deadlo
k nor an in�nite loop.)Considering Pre0. So we have Exes(�) and Pre0(�; 
). We straightforwardly have Pre(�; 
), be
ausethe 
ontrol pre
eden
e Pre0 is 
ommon to all runs (�3.3). Suppose that some instan
e � exe
utedin S and su
h that Pre0(�; 
), is not exe
uted in P. (then, � is 
learly not the �rst statement inthe program: Lemma 1 applies to �). We will derive that, in this 
ase, some other instan
e �1 su
hthat Pre0(�1; �) is also exe
uted in S but not in P, whi
h will then lead to a 
ontradi
tion.Let us apply Lemma 1 to the exe
ution of � in S. A

ording to hypotheses (ii) and (iii) ofTheorem 1, there is no persistently waiting or pending statement instan
e in S. Therefore, a

ordingto Lemma 1, Exes(�) depends on some instan
e(s) �i exe
uted in S, and su
h that Pre0(�i; �), hen
ePre0(�i; 
). Therefore, if all these �i were exe
uted in P, they would be exe
uted before date � ,41



hen
e the semanti
 equivalen
e, whi
h would imply that � be rea
hed or persistently pending in P.So, in P, the non exe
ution of � would imply one of two things. Either all �i are indeed exe
uted inthis parallel run but � is persistently waiting or pending, thus parti
ipating in a deadlo
k or in�niteloop situation. This possibility is ruled out by the above preliminary remark: having Pre0(�; 
)would prevent 
 from being exe
uted, as it is assumed to. There remains the possibility that atleast one of these �i is not exe
uted in this run: let it be denoted �1.Thus, assuming that � is not exe
uted in P implies that some other instan
e, �1, pre
eding �Pre0-wise, is not exe
uted either in P, though it is in S.This argument may be repeated for �1: thus, we would �nd an in�nite sequen
e (�0 = �, �1,�2,...) su
h that every �i would be exe
uted in S and pre
eded (Pre0-wise) by the next one in thesequen
e. This 
ontradi
ts the simple fa
t that there are a �nite number of exe
ution dates betweenthe program start and any step it rea
hes, in any run15.Extending to Pres. Suppose that some instan
e � su
h that Pres(�; 
) and not Pre0(�; 
) is exe
utedin S. Pres(�; 
) is realized through syn
hronizations, i.e., as previously explained, through one orseveral paths of the form: �! �1 or � = �1�1  !1 ! �2  !2 ! � � � ! �n  !n!n ! 
where, again, ! denotes a Pre0 relation, �i denotes a post, !i denotes a wait, and  denotes asyn
hronization link Syn
s; moreover, all the �i and !i are exe
uted in S (remember the �transitive
losure modulo Exes� involved in Pres). We have !n ! 
 and not !n = 
 be
ause of the restri
tionwe have introdu
ed (�3.3) in the de�nition of Pres.We have !n ! 
, i.e. Pre0(!n; 
); therefore, a

ording to the �rst part of this lemma, !n isexe
uted before date � in P. By upward re
urren
e, we will prove that all �i and !i, and �nally�, are exe
uted before � in P. Let us assume that !i is exe
uted before � . Then, the re
urren
ehypothesis applies to !i and any variable involved in !i, i.e. to the event involved in !i, "!i : all
omputations of "!i performed before the exe
ution of !i are identi
al in both runs and o

urred inthe same order. So, sin
e we have Syn
s(�i; !i), �i was exe
uted in P before !i and its exe
utionmade possible the exe
ution of !i, in P as well as in S: we have Syn
(�i; !i) (�3.4).Let us now 
onsider the 
ase i > 1 and derive the exe
ution of !i�1. Sin
e we have Pre0(!i�1; �i)and Exes(!i�1), a

ording to the �rst part of the lemma, !i�1 is exe
uted before �i, hen
e beforedate � , in P. Thus, we 
on
lude that !1 is exe
uted before � in P. The above reasoning then ensuresthat �1 too is exe
uted before � in P. Now, we have either Pre0(�; �1) (and Exes(�)), or � = �1,whi
h implies that � is indeed exe
uted before � in P; furthermore, we have Pre(�; 
), by transitive
losure modulo Exe. J15In this reasoning, it is 
ru
ial to have Exes(�i), together with Pre0(�i+1; �i), to obtain the 
ontradi
tion, sin
ethe ordering Pre0 is not well-founded (be
ause of the way do and pdo loops generate sequen
es of statement instan
eswhi
h are in�nite on both sides).
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Proof of Lemma 3Lemma 3 is involved in the proof of Theorem 1 (Se
tion 5), in point 5. We assume the hypothesesof Theorem 1.Lemma 3 We assume the semanti
 equivalen
e along P. Let 
 be a wait instan
e, deadlo
king inP. For any statement instan
e � su
h that Exes(�) and Pres(�; 
), we have Exe(�) and Pre(�; 
).Proof : The derivation is quite similar to the one of Lemma 2 above. First, we bring an addendumto the preliminary remark in the proof of Lemma 2. We had observed this: � being a persistentlywaiting or pending statement instan
e, no instan
e � su
h that Pre0(�; �) 
an be exe
uted. Now,su
h an instan
e � 
annot be a rea
hed and deadlo
kingwait instan
e either. This straightforwardlyresults from the exe
ution model and the de�nition of Pre0.Considering this preliminary remark, the proof of lemma 2 
an be easily adapted here. JReferen
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