
Corretness properties in a shared-memory parallel languageGilbert Caplain�AbstratWe study a property of orretness of programs written in a shared-memory parallel language.This property is a semanti equivalene between the parallel program and its sequential version,that we de�ne. The language we onsider is a subset of a standard parallel language. Withinthis subset, this orretness property follows from the preservation of data dependenes by theontrol �ow and the synhronizations. Our result makes use of the semantis of the sequentialversion only. Hene, through our result, heking the orretness of some parallel program boilsdown to verifying properties of some sequential program.1 IntrodutionIn the �eld of parallel programming, an important trend has been to provide program designerswith automati parallelizers whih transform a sequential program soure into a parallel programsoure in suh a way that some orretness property remains true along the way. However, anotherpossible approah onsists in onsidering �diretly� a parallel program soure and wondering whetherit meets some orretness spei�ation. The latter approah may reveal interesting, for example,for a programmer who would design a program �diretly� in a parallel form, in order to get a betterperformane and/or a good understanding of the parallelization obtained.In view of this approah, it may be useful to provide a tool to statially verify parallel programs.In this paper, we present results whih ould be applied in the design of suh a veri�ation tool.The programming model we address in this paper is the shared-memory asynhronous model(MIMD-SM), as opposed to the distributed-memory one (MIMD-DM). However, some reent de-velopments allow to apply the shared-memory programming model on distributed message-passingarhitetures [15℄, through funtionalities whih allow to ompile a shared-memory program to-wards a network of interonneted workstations (i.e. a distributed-memory devie), hene an aessto extended resoures, without the extra programming burden lassially assoiated to distributed-memory programming. Moreover, there are a few hints of an inreasing interest in the shared-memory model these last years: let us mention the OpenMP standard [22℄, and some reent researhworks [27℄. Suh developments might ontribute to popularize the shared-memory programmingmodel whih we onsider here.We study a property of semanti orretness of programs written in a shared-memory parallellanguage. Various semanti orretness properties have been onsidered in the literature.�CERMICS, Eole Nationale des Ponts et Chaussées, 6 & 8 avenue Blaise Pasal, Cité Desartes, Champs-sur-Marne, F�77455 Marne-La-Vallée Cedex2, Frane. Email: aplain�ermis.enp.fr . This work was developed withina projet undertaken together with René Lalement and Thierry Salset (same address). I am grateful to both of themfor helpful omments. 1

Sequential onsisteny of a multiproess devie is the requirement that the result of any exe-ution of a parallel program should be the same as if all operations exeuted by the several proesseshad been exeuted sequentially in a ertain strit (unspei�ed) order ompatible with the exeutionorder of operations of every proess [18℄. Linearizability is a more stringent requirement, derivedfrom sequential onsisteny by adding the onstraint that the �equivalent� sequential exeution ofevery operation lie within a spei�ed time interval [14℄. Serializability is a orretness onditionroughly similar to sequential onsisteny, adapted to the study of database systems [24℄ liable to beaessed and modi�ed by several users in parallel.Sequential onsisteny and linearizability an be viewed as required properties of a memorymanagement system in a shared-memory parallel mahine. One may onsider testing of theseproperties through an experimental study of some run of a parallel program. The omplexity ofsuh a test has been thoroughly studied in [12℄: the general problem is NP-omplete. An analogousomplexity result has been obtained for the general problem of serializability [24℄.The sequential orretness requirement that we will onsider is di�erent from the propertieswe have just alluded to. In those properties, it was required that any parallel run of some program besimilar (in its observable e�ets) to some, unspei�ed, sequential run of this program. The propertywe will onsider is more stringent, in the following sense: in the framework we are onsidering, aparallel program is viewed as a parallelization of some given sequential program � basially, thisparallelization will onsist in parallelizing loops and introduing event synhronizations �, and werequire that the results of any run of the parallel program be idential to those of the sequentialprogram being onsidered, and not merely to the results of �some possible sequential run�. Theproperty we are onsidering is a semanti equivalene between the parallel program and its sequentialversion. The improvement sought through the parallelization, in this ontext, lies only in the abilityto run the program faster, by allowing several parts of it to be exeuted simultaneously, on severalavailable proessors. Considering this sequential orretness property seems relevant espeially inmany sienti� omputing appliations.The main purpose of this paper is to present and prove a theorem whih states su�ient ondi-tions for this semanti equivalene property. This result applies to a fairly general shared-memoryparallel language. Although the orresponding general orretness problem is undeidable, thereare prospets that our theorem may be applied through tools to verify a wide range of parallelprograms. A preliminary appliation, dealing with a subset of our language, is developed in [7, 26℄.Here we are interested in stati, i.e. ompile-time, orretness heking. Indeed, sine there is aninherent indeterminism in the behavior of a parallel program, we ould not rely on an observation ofone run of this parallel program: we seek a proof that any possible run of this program will deliverorret results, in our sense. Besides, this stati harater will allow us to onsider parameteredprograms, i.e. lasses of programs di�ering from one another by the values of parameters.For the sake of brevity, some extensions of our theorem (e.g. introduing ritial setions) arenot developed here; they are introdued in [4, 5℄.Some of the basi onepts we use have been introdued in [3℄. In the development of shared-memory parallel programs, the most di�ult hallenge is to avoid data raes, a irumstane whihorresponds to data dependenes. A data dependene links a pair of aesses to the same variable(memory loation) when at least one of these aesses is a write. In order to ensure that theparallelized program displays the same results as its sequential ounterpart, we must hek that2

every data dependene is preserved, i.e. that the two orresponding aesses operate in the suitableorder (this is the dependene implies preedene requirement).This dependene preservation paradigm is fairly well-known, to the point that some of its intria-ies may not be apparent at �rst sight. What does �dependene implies preedene� preisely mean?In �rst approximation, it should be interpreted as �dependene (de�ned in the sequential version)implies preedene (ensured during a run of the parallel version)�. But, what if some statementsexeuted in the sequential version are not exeuted in some parallel run? or if their exeution in thisparallel run does not involve the same variables as in the sequential run? We will not limit ourselvesto stati ontrol programs, a limitation adopted very often in the literature (see e.g. [11℄): in thelanguage we will onsider, loop bounds and subsript expressions in arrays may ontain variables,whih may in�uene the ondition for a statement to exeute and the designation of the inputsand outputs of that statement. As long as we have not proved the semanti equivalene we areinterested in, therefore, suh intriaies imply that a �dependene implies preedene� requirementhas no well-de�ned meaning at this point.As a way to deal with these intriaies, in our searh for a stati orretness riterion, thesemanti equivalene theorem we present here states su�ient onditions whih refer to the semantisof the sequential version only, i.e. involve prediates that are de�ned on the sequential version.This referene to the sequential version has an interesting onsequene regarding the possibilityto use data�ow analysis in the proess of applying our theorem. Data�ow analysis (see e.g. [20,30, 21, 1, 11, 8, 9℄) is inherently adapted to the study of data �ows in a sequential program; itannot be straightforwardly transposed within a parallel ontext, espeially due to the ruial useof the strit time ordering in sequential exeution, whih is not preserved in a parallel run (letus however mention that some reent works, e.g. [10℄, develop some kinds of data�ow analysesfor onurrent programs). However, due to our theorem, heking the semanti equivalene of aparallel program boils down to heking some properties of the sequential version of this program,i.e. verifying properties of some sequential program, hene the possibilities to use the resoures ofdata�ow analysis when applying our theorem.In Setion 2, we desribe the language we study � a standard imperative language with a fewparallel features � and its exeution model; then, we set up the orretness problem: a parallelprogram and its sequential version must have the same observable behavior (semanti equivalene).In Setion 3, we study data dependene and preedene relations. In Setion 4, we derive somepreliminary results.In Setion 5, we derive our theorem of semanti equivalene: assuming the preservation ofdependenes by the preedene relations as de�ned under the semantis of the sequential version, anda few other assumptions dealing with the sequential version too, we derive the semanti equivaleneproperty for any possible run of the parallel program being onsidered.Setion 6 illustrates an appliation of our theorem on a little example, together with highlightingan interesting inremental property of a hek-and-repair proedure making use of our theorem.
3

2 The language studied2.1 OutlineThe language we study is a parallel extension of a standard language1.On the sequential side, we have assignment, variables of integer, real, boolean types; variablearrays of these types (the subsript expressions in array referenes have type integer); usual arith-meti and logial operations. It would be straightforward to extend our results so as to inlude moreomplex, strutured variable types, and pointers as well (as in C++, for instane), but applying ourresults may reveal more intriate then, espeially when onsidering pointers. (The general onernhere, is that the input/output referenes in a statement should be rather �lear-ut�.)We inlude the following strutured statements:� Stati loops, denoted:DO <index>=<lower_bound>,<upper_bound> <statement_list> ENDDOThe bounds are evaluated at entry, and not reevaluated at every iteration. (It is in this sensethat the loop is said to be stati.) The index annot be written within the loop. For the sakeof onveniene, loops are normalized, i.e. their inrement is set to 1.� Conditionals, denoted:IF <test> THEN <statement_list> ELSE <statement_list> ENDIF� Dynami loops, denoted:WHILE <test> <statement_list> ENDWHILEThese strutured statements may be nested.We do not inlude gotos. It is a well-known result that any sequential algorithm an beimplemented without using gotos; therefore, ruling them out is not a restrition here.Our language ontains subroutine and funtion alls, however with three important restri-tions: all suh alls should terminate; outputs should be funtions only of inputs (determinay);input/output exhanges should our only at the all (for inputs) and at the return (for outputs)� in other words, the all must be omparable to a simple statement exeution as regards valueexhanges (More on this later).We introdue the following parallel features:� Parallel stati loops, denoted pdo, speify that iterations in the loop may exeute in parallel.PDO <index>=<lower_bound>,<upper_bound> <statement_list> ENDPDO1Our previous work ([6, 7℄) was developed in the framework of the Fortran X3H5 proposal [31, 23℄, but the resultpresented here is valid in a more general framework. 4

� Parallel setions, denoted:PSECTIONS SECTION <statement_list>SECTION <statement_list>........ENDPSECTIONSspeify that several setions of ode may exeute in parallel.� Expliit synhronizations: we onsider event variable synhronization through post/waitpairs. POST (<event_referene>)WAIT (<event_referene>)CLEAR (<event_referene>)These three statements are the only ones aessing the event variables. A post (resp. alear) sets value posted (resp. value leared) to the event variable it refers to. The eventvariables are initialized at leared. A wait reads the event it refers to: if this event is leared,the wait waits and tries again later; if this event is posted, the wait ontinues (only then, wewill say that the wait exeutes); and the exeution �ow omes to the next statement. Thus,a wait is led to wait for the event to be posted by the exeution of some post statement, aswas intended.Further explanations, on the behavior of synhronizations, will be provided later (�2.2), andan example will be desribed in �2.3 (�gure 3).We allow for parameters under the form of �variables� that get a value �one and for all�when the program starts, and are not written afterwards. Thus, in our framework, a program infat represents a �lass of programs�, di�ering from one another by the values of parameters. (Forinstane, in many appliations, dimensions of matries will be suh parameters. In a di�erent way,onsidering programs designed to run several times on di�erent data, these data will be parametersin our sense.)A program instane is obtained from a program by assigning onstant values to the parame-ters.In what follows, parameters and do or pdo loop indies within their loop, will not be termedas �variables�. A variable is a memory loation other than a loation assigned to a loop index or aparameter. A (variable) referene is a syntati element pointing to a variable. For instane, in theassignment:A = B(I)where B is not an array of parameters, �A� and �B(I)� are variable referenes; if I is a loop index andthis statement happens to be exeuted for I = 3, then, in this statement exeution, the referene�B(I)� points to the variable B(3). 5

Variables will be allowed in do and pdo loop bounds, test expressions in ifs and (obviously) inwhiles, and subsript expressions in arrays (dynami variable referene), inluding event arrays.The dynami variable referene feature makes it useful to introdue the notion of indiretionorder. A variable referene will be said to be of indiretion order 0 whenever it is a salar or anarray the subsript list of whih involves only loop indies and program parameters. A referenewill be said to be of indiretion order n > 0 whenever it is an array the subsript list of whihinvolves variable referenes whose indiretion orders are less than or equal to n � 1, with equalityfor at least one of them. (In everyday programs, the indiretion order is seldom greater than 2.)2Notion of statement instaneFor the sake of onveniene, in what follows, the statements we will onsider will be only simplestatements, not strutured ones, unless otherwise stated; orrelatively, we will onsider as statementsnot only exeutable statements in the usual sense, but also suh features as: heads and ends of dos,ifs, whiles and parallel onstruts; and the test expressions in whiles.Considering do, pdo and while loops leads us to de�ne a notion of statement instane.Classially (see e.g. [32℄), sine a statement within a loop may exeute several times, eah of theseexeutions is termed as a statement instane. Thus, in a loop iterating 10 times, eah statementgenerates 10 instanes. This usual point of view brings a di�ulty in our framework: sine ourlanguage allows for variables in stati loop bounds, and also for dynami loops, the set of instanesgenerated by one statements will generally not be known statially. Thus, we are led to introduea di�erent de�nition of a statement instane.To every statement in the program, we will assoiate a set of statement instanes, every instaneorresponding to a possible exeution of the statement, in suh a way that two onditions aremet: the set of statement instanes assoiated to every statement is de�ned statially; a statementinstane is exeuted at most one in a given run (obviously, whether it is exeuted or not is notde�ned statially).To every statement in the program, will be assoiated a (possibly empty) index vetor, everyomponent of whih takes its values in the set of rational integers. A statement instane will thenbe obtained by assigning an integer value to every omponent of the index vetor. The index vetoris reursively de�ned as follows. Let a be a statement:� If a is not ontained in a do, a pdo nor a while, its index vetor is empty: then, a generatesone statement instane.Otherwise, let us onsider the innermost loop ontaining a. Let be the header of thisinnermost loop, and i be the index vetor of .� If is a do or pdo header, the index vetor of a is obtained as the onatenation of i and aomponent j, denoted i ::j. j orresponds to the iteration index of the loop.� If is a while header, the index vetor of a is obtained as the onatenation of i and aomponent j. This time, j will take positive integer values, numbering the suessive whileiterations.2In ase our language would be extended to inlude pointers, this notion of indiretion order would apply topointer referenes as well. 6

Thus, through the two latter rules, every (exeuted or not) instane (i) generates an in�nite(on both sides for dos and pdos, on one side for whiles) sequene of instanes a(i ::j).Through this formalism, a statement ontained in a loop generates a ountable in�nity of state-ment instanes but, in any given run not leading to an in�nite loop, only a �nite number of themwill ome to be exeuted.2.2 Exeution modelIn order to obtain a good generality in our results, we must not speify the exeution model of ourlanguage entirely; we will only speify a few properties supposed to hold in what follows. Thesespei�ations are inspired by the X3H5 proposal [31℄.Two important notions will be introdued: the notions of proess and unit of work.� The program exeution begins, from the program start, with an initial proess.� A proess runs until one of these irumstanes ours:- it reahes the end of the program (normal termination � this may our only to the initialproess);- it enounters a parallel onstrut;- it enounters the end of a parallel onstrut;- it enounters a wait;- it enounters an exeution fault.� When a proess enounters a parallel onstrut, it beomes the base proess for this onstrut.This parallel onstrut spei�es a number of units of work: eah iteration of a pdo and eahsetion of a psetions is a unit of work. A team of proesses is reated. Every unit of workis then assigned to some proess in this team, in some order. Thus, from this point on, everyproess will have one or several units of work in harge3. (Sine nested parallelism is allowed,this de�nition of units of work and proess teams operates reursively: a unit of work maygive plae to subunits, a proess team member may beome itself a base proess, and so on.)As regards variables, when the base proess reates the team of proesses, repliates of variablesare made for every proess in the team; omputations are then performed loally in everyproess in the team.� When a proess has ompleted the exeution of a unit of work, the exeution passes to thenext unit of work this proess has in harge, if any (we will say that the next unit of work isloaded); if this proess has ompleted the exeution of all the units of work it had in harge,it waits for the other proesses in the team to omplete their work.� If and when all proesses in the team have ompleted their work, that means that all theunits of work in the parallel onstrut have been exeuted. Then, the proesses in the teamommuniate the values of the updated variables to the base proess; afterwards, the team is3As an alternative, we ould onsider the possibility that this assignment of units to proesses be dynami: everyunit of work still to be exeuted would be �waiting somewhere� till a proess gets ready to run it. Suh a variantould inrease e�ieny, but would not bring any essential hange in the results to follow.7

dissolved and its base proess ontinues exeution. (Only then, we will say that the endpdoor endpsetions is exeuted.)4� Suh a variable updating also ours when a proess exeutes a post or wait instane. Wehave outlined (�2.1) how a wait instane �waits for� a post instane to have �posted� themathing event, and exeutes only then. To be more spei�, when a proess enounters await, it evaluates the event this wait statement instane involves. If this event is not posted,the proess reiterates this step, till the event being onsidered gets posted, if at all5. Whenthis ondition is �lled, the proess realizes the variable updating and ontinues (only then, wewill say that the wait is exeuted). This spei�ation is onsistent with the fat that a waitinstane is aimed at waiting for the exeution of some post instane, presumably in orderto ensure that � for instane � some value omputed before the post in its proess is indeedavailable just after the wait in its proess.� Moreover, regarding the variable updatings we have mentioned, there may be memory on�its,hene an inherent indeterminism. The aim of our study will be to detet whether suh on�itsmay our (a irumstane whih is unwanted in our framework) or whether we will be ableto derive, from a stati study of the program soure, that suh on�its annot happen (airumstane whih is desirable in our framework). In order our results to be as omprehensiveas possible, we must not hypothesize exatly what happens, under our exeution model,whenever suh on�its arise. This is why our exeution model must not be spei�ed entirely:hene our results will be valid for several nonequivalent exeution models.Moreover, it is not assumed whether variable updatings our in other ases than those men-tioned above: termination of a parallel onstrut and event synhronization6. However, asregards the exeution of a single statement instane within a proess, we make the assumptionthat this instane gets its inputs if any, then performs its omputations if any, then produesits outputs if any, without interferene of variable updatings during these omputations.� As regards exeution faults, they will be examined below.It is important to point out the di�erene to be made between these two notions of proess andunit of work. During the running of the program, the proess generation is highly dependent on the4In our language, we ould introdue the notion of private variable (mentioned in the X3H5 proposal [31℄), atemporary variable designed to be used loally in eah proess of the team, without ommuniation among proesses,and therefore, not involved in the variable updatings. Suh variables would not be involved in the dependenepreservations we will onsider. Introduing suh variables would be straightforward, as soon as �private� referenesand �shared� ones (our �variables�) would be easily distinguishable. We have not done so, for the sake of brevity.However, the do and pdo loop indies are supposed to hold this �private� status, in relation to parallel onstrutsthe loop is nested in, if any.5In the exeution model of a wait instane involving a dynami referene, a point is not spei�ed here, regardingthe variables involved in the event referene: are they reevaluated at every attempt, or �one and for all�? (in thelatter ase, the wait instane keeps on waiting for the same event.) We do not need to deide between these twopossibilities: our results will be valid in both hypotheses.6However, we have to notie that an e�ient exeution model will keep suh variable updatings to a minimum, dueto the ost of data transfers (von Neumann bottlenek � see e.g. [32℄). Moreover, it would be possible to introduesynhronizations with guards lause, speifying the referenes to the variables to be updated, and thereby limitingthese updates. We have not done so here, for the sake of brevity; suh an extension, whih was mentioned in [4℄,would be rather straightforward within our framework. 8

Figure 1: Loading units of work on proessesresoures available at that moment: it is a mahine-dependent phenomenon. In the ontrary, theharaterization of the units of work depends solely on the semantis of the program being run, asthat semantis develops while the program is running; in ase the program is orret in our sense,this haraterization will be mahine independent.This is why we ould not realistially hypothesize that one proess per unit of work is reated:in the ontrary, we take are of the possibility that several units of work are assigned to oneproess, whih will run them sequentially. Moreover, within our framework, we will require that theorretness of our programs be ensured independently of the number of proesses whih will turn outto be available for some run. This orretness will have to be guaranteed even in the extreme asewhen there is only one proess available, or in the more ommon ase when some parallel onstrutwithin the program will �nd only one proess available for its exeution, during a �multiproess�run of the whole program.A unit of work whih is waiting for a proess to run it will be said to be pending. More preisely,as regards statement instanes, the �rst instane in suh a unit of work will be said to be pendingat that time (we will see later why only the �rst)7.As an example, Figure 1 depits a possible ase where a parallel loop reates 14 units of work(orresponding to 14 iterations) whih are assigned to 5 proesses (available at that point). Thearrows indiate the order of exeution, before the loop (upper part), within the loop (medium part:the 5 proesses exeute in parallel), and after the loop ends (lower part).7In ase suh an instane is a wait, we will say that it is pending as long as it is not loaded; it gets reahed assoon as it is loaded, and waiting if its event is not posted yet.9

Exeution faultsAn exeution fault ours whenever the exeution of a statement instane reates an operation whihis forbidden by the language and/or by the exeution environment, so that the exeution stops atthat point (fault deadlok).In our exeution model, we must address the possibility of exeution faults. Indeed, whereas wewill onsider that the sequential version of our program will not produe exeution faults, suh anassumption annot be made as regards our parallel program, beause we aim at deriving semantiequivalene properties, referring only to the sequential semantis.We will make the following assumption regarding exeution faults: onsidering a parallel pro-gram, and a statement instane oming to be exeuted in some run of this program, the ourreneof an exeution fault at the exeution of this instane depends only on the values of the inputs of thisinstane and the operations it attempts to perform using these inputs; it does not otherwise dependon the spei� run onsidered. As a onsequene, whenever there are proesses running in parallelto the one on whih the fault ours, we hypothesize that they are not stopped thereby � as long asthey do not produe an exeution fault themselves. This is a simplifying assumption whih is notrestritive in our framework: indeed, we will derive onditions under whih there is no exeutionfault meeting this assumption (primary exeution fault); therefore, under the same onditions, andsupposing that we do not make this simplifying assumption, there will not be indued-in-parallelfaults either.Deadloks and in�nite loopsIn our language, there are three ways in whih a program may not stop normally: it may ome toa fault deadlok, or to a waiting deadlok, or it may enter an in�nite loop.A waiting deadlok neessarily involves await statement the event of whih persistently remainsunposted. In the (usual) ase when this wait is loated within a parallel onstrut, a waitingdeadlok ondition may be desribed as follows:� one or several wait statement instanes are reahed but not exeuted; so, the orrespondingunits of work remain unompleted;� as a onsequene, the exeution of the parallel onstrut annot be ompleted;� as a possible onsequene too, some parallel units of work do not begin exeution beause theyare assigned to a proess after a deadloked unit of work, though they would be �exeutablein priniple�. The �rst statement instane in eah of these units of work is thus persistentlypending.� in ase of nested parallel onstruts, a deadlok in an inner onstrut brings a similar deadloksituation in an outer onstrut.A fault deadlok will indue e�ets quite similar to those of a waiting deadlok.An in�nite loop an our only due to a while onstrut (remember the absene of gotos andthe fat that do and pdo loop bounds are evaluated one at the loop entry). The orrespondingendwhile statement instane never gets exeuted: we will say that it is persistently pending. (Thus,10

W1

P2

W2

Figure 2: Parallel exeution: a few possible pathologiesthere are two di�erent ways in whih some statement instane may beome persistently pending; inspite of the di�erene in nature, we will notie some similarity between the two, hene the samename for these two features.)Whenever the while onstrut is nested in a parallel onstrut, an in�nite loop in this whilebrings a situation similar to the one brought by a deadlok, desribed previously.Figure 2 depits a situation whih is similar to the one represented previously (Figure 1) asregards units of work and proesses, but exhibits various pathologies leading the parallel loop todeadlok. The shaded parts represent the instanes unexeuted beause of the deadloks. Here, weget a deadloking wait instane W1 the event of whih never got posted. As a onsequene, the unitsof work loaded next to it on the same proess are prevented from exeuting: therefore, the postinstane P2 does not �post� towards the orresponding wait instane W2, whih therefore deadlokstoo (indued waiting deadlok). Independently of these waiting deadloks, an in�nite while loop isdepited on the right of the �gure: it too prevents the normal termination of the parallel loop.The sequential assignmentAbout the assignment of units of work to proesses, we will make an assumption as regards ourlanguage:Assumption SA (Sequential assignment) In all parallel onstruts ontaining synhroniza-tion statements (i.e. post, wait, lear statements), the assignment of units of work to available11

a0: A(0)=... A(0)=...p0: post(E(0)) ontinuepdo I=1,N do I=1,N... ...w: wait(E(I-1)) ontinueb: ...=A(I-1) ...=A(I-1)a: A(I)=... A(I)=...p: post(E(I)) ontinue... ...endpdo enddoFigure 3: An example of a parallel loop with synhronizations (left) and its sequential version (right)proesses is made in suh a way that the units of work assigned to every proess are assigned se-quentially: in the index ordering for a pdo, in the setion ordering for a psetions.Comment: Let us onsider a parallel onstrut, and a post/wait pair linking two units of work inthis onstrut. If there were no assignment requirement whatever, it ould randomly our that theunit of work ontaining the wait be assigned to the same proess as the unit of work ontainingthe orresponding post, and before it, hene a waiting deadlok situation. One possible way toavoid suh �spurious deadloks� is to state Assumption SA as a requirement in our exeution model:indeed, this requirement is onsistent with the following fat: in ase the parallelization is orretin our sense, in a post/wait pair, the post instane preedes the wait instane in the sequentialorder, beause suh a synhronization pair is designed to keep the sequential exeution order betweenstatement instanes whih would otherwise be allowed to exeute in parallel.2.3 Serial semantis. The notion of semanti equivaleneBy de�nition, the sequential version of a parallel program is the result of the transformation of pdointo do, the deletion of psetions, setion and endpsetions statements, and the disabling ofpost, wait and lear statements: by �disabling�, we mean that, in the sequential version de�nedhere, they are onverted into statements whih do nothing (here denoted ontinue), but we retainthe possibility, in the following developments, to keep trak of event referenes, allowing ourselvesto onsider what ours to these referenes as though they were indeed addressed in a sequentialrun.Figure 3 shows a typial example of a parallel loop with event synhronizations, together withthe sequential version of this loop, whih sets the intended semantis: the output of statementinstane a(I-1) is used as input in statement instane b(I), as spei�ed by the sequential order ofexeution of the do loop. The synhronization statements w and p have been introdued in theparallel version, in order to preserve this exeution order one the do is parallelized into a pdo:the wait statement w at iteration I waits for the event E(I-1) to have reeived the value postedthrough the post statement p at iteration I-1, or the statement p0 (for I=1). Of ourse, the eventsE(I) must not have been posted before this loop without having been leared meanwhile, nor havebeen posted elsewhere in parallel, in ase this loop is nested in a larger parallel onstrut.12

Our aim is to prove the orretness (or lak thereof) of a parallel program, in that sense. Wewould like to show that all variables oming to be omputed must, in both versions, undergo thesame omputations and, therefore, display the same values (semanti equivalene).In our language, we assume a determinay ondition, as a prerequisite for orretness of ourprogram: in the sequential version, any variable used as input in an exeuted statement instanehas been initialized previously; similarly, any do or pdo loop index used as input variable after theloop, has been initialized after the loop and before this use.Under this determinay ondition, we express the semanti equivalene requirement we areonsidering as follows: any statement instane exeuted in any parallel run is also exeuted inthe sequential version, and onversely; any variable referene used by that statement instane asinput points to the same variable, and that variable has been omputed by the same other statementinstane, in any parallel run as in the sequential version. (As a onsequene, that variable willindeed get the same value in both runs.)Cheking the semanti equivalene requires heking that the parallel program will not produea waiting deadlok, whatever the number of available proesses; and also that data raes will beavoided. Whenever two statement instanes involve the same variable loation in the sequentialversion, at least one of them modifying (i.e. writing) it, we will say that they are in a depen-dene relation (denoted Dep). Then, we will have to hek that these statement instanes are in apreedene relation (denoted Pre), i.e. that the program ontrol struture and the synhronizationspreserve the order in whih these statement instanes will be exeuted together with ensuring theupdating of variables meanwhile � along the well-known �dependene implies preedene� pattern [3℄mentioned above.For instane, under our exeution model outlined above, a post/wait synhronization is apreedene in that sense (remember the �variable updating� spei�ation in our exeution model,together with the suession in time).3 Dependenes and preedenesThe theorem we present here refers to the semantis of the sequential version only. The gist ofthis result is to show that heking �dependene implies preedene� under the sequential semantis(�sequential� values of variables, et.) indeed ensures the semanti equivalene between the parallelprogram and its sequential version. Under this theorem, we will be led to onsider the ondition fora statement instane to exeute in the sequential version (prediate Exes), whih is well-de�ned inour language; the dependene prediate Dep whih deals with the sequential version, by de�nition;and the preedene prediate Pres expressing the preedene relations whih would stand in theparallel program, as a onsequene of the exeution model, assuming that all variables involved inthe de�nition of these relations get their �sequential� values.8In the derivation of this theorem (Setions 4 and 5), we will be led to onsider the parallelounterparts of Exes and Pres � Exe and Pre respetively � whih, as long as we have not provedthe semanti equivalene, are de�ned only in referene to some spei� run of the parallel program(they may di�er for di�erent runs of the same parallel program). Considering suh a parallel run,8As a onsequene of this de�nition of Pres, the preedene relation expressed by Pres obviously holds in thesequential version. In other words, for any statement instanes � and � exeuted in the sequential version, Pres(�; �)implies that � is exeuted before � in the sequential version.13

the preedene prediate Pre assoiated to this run expresses the preedene relations whih stand inthis run, as a onsequene of the exeution model, onsidering the values in this run of the variablesinvolved in the de�nition of these relations. We will develop this point later (�3.4).3.1 Sequential exeution prediateLet Exes be the ondition for a statement instane to be exeuted in the sequential version, underthe extra ondition that the sequential program terminates, i.e. does not enter an in�nite whileloop. Then, Exes is well-de�ned (although it is generally not omputable!) and its expression israther straightforward for our language.For a statement a and an index vetor i suh that the instane a(i) is exeuted in the sequentialversion, we may onsider the environment in whih the exeution of a(i) takes plae. For anyexpression exp whih happens to be evaluated through the exeution of a(i), its value is de�nedin this environment: it will be denoted [[exp℄℄�a(i). (Due to our assumption that subroutine allsterminate, the evaluation of an expression always terminates, in our language.) We must emphasizethat [[exp℄℄�a(i) is unde�ned whenever a(i) is not exeuted. This leads us, in the expressions to follow,to make use of the sequential onjuntion, denoted &, whih di�ers from the logial onjuntion,denoted ^, as follows: if A and B are boolean expressions (taking values true, false or unde�ned),A & B is false whenever A is false, even if B is unde�ned, whereas A^B is unde�ned in this ase9.Let us give the expression of Exes(a(i)) when a is a statement of the parallel program, indexedby i. Several ases have to be onsidered, depending on the nesting of a in a loop or if struturedstatement. In ase a is nested, we onsider the innermost do, pdo, if or while a is nested in.� a is not ontained in a do, a pdo, a if nor a while onstrut: then, Exes(a) = true.� The innermost nesting of a is in a if onstrut of header , with boolean expression :bexp.Let i denote the index vetor of and a:� if a is in the then branh, Exes(a(i)) = Exes((i)) & [[:bexp℄℄�(i)� if a is in the else branh, Exes(a(i)) = Exes((i)) & :([[:bexp℄℄�(i))� The innermost nesting of a is in a do or pdo loop of header , with lower and upper boundexpressions :lb and :ub respetively. Let i denote the index vetor of and i :: j denotethe index vetor of a. We then have: Exes(a(i :: j)) = Exes((i)) & ([[:lb℄℄�(i) � j �[[:ub℄℄�(i))� The innermost nesting of a is in a while loop of header . Let i denote the index vetor of and i :: j denote the index vetor of a. Let b be the �rst statement in the while body, i.e.the test statement, of boolean expression b:bexp.� If a is not b: Exes(a(i ::j)) = Exes(b(i ::j)) & ([[b:bexp℄℄�b(i ::j))� If a is b: Exes(b(i ::1)) = Exes((i)) and, for the other iterations:Exes(b(i ::j)) = Exes(b(i :: (j � 1))) & ([[b:bexp℄℄�b(i :: (j � 1)))9Consistently with this sequential aspet, in what follows, onjuntions are left-assoiative: e.g. A ^ B & C ^ Dis interpreted as: ((A ^ B) & C) ^ D. Moreover, in all ases when some expression C may be unde�ned if someother expression A is false, we require that C appear only in expressions (::: ^ A ^ :::) & C:::, so that these resultingexpressions are always de�ned. 14

It is possible to extend the expression of Exes so as to inlude ases when the sequential programin�nitely loops, however in funtion of the expliit data of the looping while. Let (i) be theorresponding while header, and e(i) the mathing endwhile. For e(i) and all instanes a(j)standing after it in the sequential order, the above expression of Exes(a(j)), whih besides is notneessarily well-de�ned then, should be replaed by: Exes(a(j)) = false.The ondition that the sequential program terminates, whih is of ourse undeidable in general,an then be formally expressed here. Using the notations we have just introdued regarding whileloops, we get:Sequential termination ondition:For all while loops, of header and test b,Exes((i))) 9 j Exes(b(i ::j)) & :([[b:bexp℄℄�b(i ::j))In ase of in�nite loop, the above impliation is trespassed only for the while instane on whihthe in�nite loop ours.3.2 DependenesConsidering two statements a and b, indexed by i and j respetively, a prediate Dep(a(i); b(j)) willexpress that: �in ase a(i) and b(j) are both exeuted in the sequential version, in this order, thenthey both aess one same memory loation (not orresponding to an event variable), at least oneof them writing it�10.The referene to the sequential version is ruial here, beause we will always be interested inthe preservation, in the parallel version, of dependenes as they appear in the sequential version. Inother words, the �dependene implies preedene� ondition must be interpreted as: �dependene (asappears in the sequential version) implies preedene (ensured in the parallel version)�Let a(i) and b(j) be two statement instanes respetively involving referenes expa and expb,referring to variables (other than event variables), these two referenes not both being input refer-enes. In ase a(i) exeutes in the sequential version, [expa�a(i)℄S denotes the variable expa refersto during that exeution. The relation � between variables to whih two distint referenes aremade, means that they are the same variable. � denotes the sequential order. We an give anexpression of Dep:Dep(a(i); b(j)) = (a(i)� b(j)) ^ ([expa�a(i)℄S � [expb�b(j)℄S)This expression of Dep is not neessarily de�ned when a(i) and/or b(j) does not exeute in thesequential version. Therefore, in what follows, we will be led to use Dep in expressions suh as:Exes(a(i)) ^ Exes(b(j)) & Dep(a(i); b(j))making use of the sequential onjuntion & introdued previously (�3.1).10In the speial ase when a(i) and b(j) are the same instane aessing a variable, �rst as input, seond as output� e.g an instane of a statement suh as: �x=x+1� � suh a �re�exive� dependene will neessarily be preserved, inour sense, through the preedene �input preedes output� guaranteed during the exeution of one instane (�2.2).Therefore, we will not have to take are of suh re�exive dependenes Dep(a(i); a(i)).15

... ...ps: psetions ontinuesetion ontinue... ...a: A(N)=... A(N)=...setion ontinue... ...b: ...=A(N)+... ...=A(N)+...: ...=A(N+1)*... ...=A(N+1)*...setion ontinue... ...d: N=... N=...... ...endpsetions ontinue... ...Figure 4: Studying data dependenes: an exampleLet us study an example of a portion of program supposed to be exeuted (Figure 4). Thesequential version is shown on the right. We examine the dependenes dealing with variable arrayA(). Let us �rst onsider the ase when we an statially hek that the integer variable N isnot written between ps and on the sequential version. (Suh a hek may be quite easy in aFortran-like language without proedure alls, but more intriate, or even intratable, whenever e.g.pointers or proedure alls are used.) Then, statements a and b refer to the same memory loationin the sequential version (beause [[N℄℄�a = [[N℄℄�b), and a writes it. Hene we have a dependene:Dep(a; b) = true. On the other hand, we have no dependene (at least as regards referenes visiblehere) between a and .Now, onsidering the more di�ult ase when we annot statially know what may our to Nbetween ps and in the sequential version, we will have to assume (as a onservative approximation)that there is a dependene from a to b and from a to (unless otherwise proved, we may very wellhave [[N℄℄�a = [[N℄℄� + 1 !).On this example, let us now onsider the dependene relations regarding variable N . Thisvariable loation is an output of d and an input of a, b and , hene a dependene relation from ato d, from b to d and from to d. There is no mutual dependene among a, b and , regarding thevariable N , sine these statements refer to N as input.As this example shows, mainly due to the dynami variable referene feature, it will often beimpossible to speify exat dependene relations statially. Then, we will have to seek a onservativeapproximation of these dependenes, i.e. an approximation �from above� (More on this later: �4.1).3.3 PreedenesThe preedene prediate Pres expresses the preedene relations whih would apply in the parallelprogram, as a onsequene of the exeution model, assuming that the variables involved in thede�nition of these relations have their �sequential� values. We will haraterize Pres from a ontrolpreedene Pre0 and a synhronization preedene Syns (orresponding to the post/wait pairs). It16

may be of interest to notie that there may be several non equivalent prediates orretly expressinga preedene relation. This omes from the following fat: through a prediate Pre(�; �) involvingtwo statement instanes � and �, we wish to express that �in ase � and � are exeuted, the formeris exeuted before the latter (in suh a way that variable updatings happen meanwhile); but we arenot interested in what is expressed if these instanes are not both exeuted.� For any prediate Porretly expressing that � preedes � in ase both are exeuted, any other prediate Q suh that:Exe(�) ^ Exe(�) ^ P) Q) (Exe(�) ^ Exe(�) ^ P) _ (:Exe(�) _ :Exe(�))also orretly expresses this. This same multipliity of orret prediates also holds for dependenes;furthermore, it is straightforward to hek that the �dependene preservation� property we willonsider is (fortunately...) invariant by any hange of orret prediates.Let us now express ontrol preedenes through a prediate Pre0 independent of the spei� runof the program � in fat, a prediate independent of any variables and even parameters. Afterwards,we will be interested in the synhronization preedenes and the way they ombine with the ontrolpreedenes.Expression of ontrol preedenesCalulating preedenes on index vetorsIn order to express Pre0, we have to express the preedene order between index vetors, denoted�. Let i be the loop index vetor of a statement; let k be the innermost index in i; let j be the(possibly empty) �remaining� index vetor, suh that i is the onatenation of j with k, denotedi = j ::k.� If k indexes a do or while loop:(i1 � i2) = (j1 � j2) _ ((j1 = j2) ^ (k1 < k2))� If k indexes a pdo loop:(i1 � i2) = (j1 � j2)� (Starting the reurrene:) If j is empty � let us denote [℄ the empty index vetor �, then weset:([℄1 � [℄2) = false; ([℄1 = [℄2) = trueThis diretly leads to the expression of Pre0(a; a) for a statement a. Let i be the index vetorof a; let a(i1) and a(i2) be two instanes of a; we set:Pre0(a(i1); a(i2)) = (i1 � i2)Expression of Pre0 between di�erent statementsLet a and b be two statements suh that a omes before b in the text of the program. We willgive expressions of Pre0(a; b) in the di�erent ases. In what follows, we do not need to single outthe speial ase when a and b are in two alternative branhes of a if sine, due to the above remark(on multipliity of orret prediates), the part of Pre0(a; b) orresponding to mutually exlusiveinstanes of a and b will be super�uous. 17

Figure 5: Control preedenes in a DO (top) and a PDO (bottom). Only six iterations are shownhere, but loop instanes in fat extend in�nitely on both sides. The ontrol preedene links Pre0(arrows) are independent of the spei� run and the spei� iterations oming to exeute in thisrun (three iterations shaded in the example).In ase a and b are not in the same loop or psetions, we get:Pre0(a; b) = true ; Pre0(b; a) = falseOtherwise, we onsider the innermost loop or psetions ontaining both a and b. Let be theheader of this strutured statement, and i be the index vetor of .� If is a loop header, let j = i ::h be the index vetor ommon to a and b. (h denotes the loopindex; the index vetors of a and b are onatenations of j with possibly empty disjoint indexvetors k and l respetively.) We get:Pre0(a(ja ::ka); b(jb :: lb)) = (ja � jb) _ (ja = jb)Pre0(b(jb :: lb); a(ja ::ka)) = (jb � ja)In the two next ases, when is a psetions header, the index vetor ommon to a and b isi. Again, the index vetors of a and b are onatenations of i with possibly empty disjoint indexvetors k and l respetively.� If is a psetions header and a and b are in the same setion of this psetions:Pre0(a(ia ::ka); b(ib :: lb)) = (ia � ib) _ (ia = ib)Pre0(b(ib :: lb); a(ia ::ka)) = (ib � ia) 18

� If is a psetions header and a and b are in distint setions of this psetions:Pre0(a(ia ::ka); b(ib :: lb)) = (ia � ib)Pre0(b(ib :: lb); a(ia ::ka)) = (ib � ia)As an example, Figure 5 shows ontrol preedenes in a do and a pdo loops.Combining ontrol and synhronization preedenesTo obtain the overall preedene relation Pres, we have to ombine the ontrol preedene Pre0 andthe synhronization preedene relations Syns realized through post/wait pairs (we will onsiderthe latter in a moment; meanwhile, we onsider them as given). This omposition of Pre0 withSyns is not exatly a transitive losure, as might be expeted; Pres(a(i); b(j))^Pres(b(j); (k)) doesnot neessarily imply Pres(a(i); (k)) (onsider the ase when b(j) is not exeuted...). Instead, wehave �transitivity modulo Exes�:Pres(a(i); b(j)) ^ Exes(b(j)) ^ Pres(b(j); (k))) Pres(a(i); (k))Considering the direted preedene graph, whose verties are the statement instanes and edgesare the preedene links Pre0 and Syns, the relation Pres will be obtained, through this transitivelosure modulo Exes along paths, and by disjuntion between alternate paths, in a �onjuntion inseries, disjuntion in parallel� manner, from Pre0 and Syns. The transitive losure within Pre0is taken are of by the previously given expressions of Pre0. Therefore, the preedene paths toonsider in order to obtain Pres alternate Pre0 and Syns links, in the following way:�! �1 !1 ! �2 !2 ! : : :! �n !n ! �;where ! denotes the Pre0 relation, �i denotes a post, !i denotes a wait, and denotes thesynhronization relation Syns.The orresponding omputation of Pres will be realized through relations suh as:Pre0(�; �1) ^ Exes(�1) ^ Syns(�1; !1) ^ Exes(!1) ^ Pre0(!1; �2)^: : : ^ Syns(�n; !n) ^ Exes(!n) ^ Pre0(!n; �)) Pres(�; �)In fat, in what follows, we will be led to inlude the onditions of exeution of � and ! withinthe Syns(�; !) prediate. Hene, the above expression beomes:Pre0(�; �1) ^ Syns(�1; !1) ^ Pre0(!1; �2)^: : : ^ Syns(�n; !n) ^ Pre0(!n; �)) Pres(�; �)Let us onsider again the preedene paths shown above, alternating the ! and links. Inase � is a post, we must also inlude preedene paths where �� ! �1� is replaed by �� = �1�.In other words, a preedene path expressed through Pres may begin with a synhronization. Inthe ontrary, in ase � is a wait, we do not allow ourselves to onsider paths in whih �!n ! ��19

n1: N=1psetionssetion...n2: N=2p: post E(N)...setion...w: wait E(N)...endpsetionsFigure 6: A ase of dynami event referene in a waitis replaed by �!n = ��. In other words, a preedene path expressed through Pres may begin, butnot end, with a synhronization link. Why do we introdue this di�erene? We have been led to doso in onsideration of the spei� behavior of the wait statements.The problem of the dynami referenes in the waitsIn our language, we allow dynami referenes in waits. This ability triggers spei� problems,illustrated through the example of Figure 6.In this example, we assume that N is not present elsewhere than indiated. The underlyingintention is to ensure a synhronization from p to w, involving event E(2). Indeed, following thesequential semantis, N has got value 2 at p and w. However, in a parallel exeution, N may havevalue 1 when the ontrol gets to w, whih will then wait for the event E(1) (whereas p will stillpost E(2)). Therefore, the dependene relation Dep(n2; w) involving variable N is not preservedthrough the preedene path n2 ! p w. This is the reason why we have de�ned Pres so as toexlude suh preedene paths ending with a synhronization link. Considering the exeution model(�2.2), this restrition we bring here allows us to ensure the following property for the preedeneprediate Pres: if � is an exeuted instane and w is a waiting wait instane, Pres(�;w) implies that� exeutes before w begins waiting (and in suh a way that variable updatings happen meanwhile).Thus, in our example, if Pres(n2; w) omes to be ensured, through a preedene path not apparenthere, then the output of N at n2 preedes (in the sense of our preedenes) its input when w beginswaiting: w will then wait for E(2) (unless N is written meanwhile).3.4 The synhronization preedene SynsThe elementary synhronization preedene relation between a post and a orresponding wait ismuh less straightforward to onsider than the above ontrol preedene Pre0.The �rst di�ulty stems from the fat that we allow dynami variable referene in post, waitand lear statements. This possibility, together with the fat that Exe is de�ned only in refereneto a given run of the parallel program, implies that the post/wait synhronizations whih show upduring some spei� run of the program, and the preedene brought by them as a onsequene ofthe exeution model (�2.2 and 2.3), essentially depend upon the run being onsidered. Considering20

suh a run, let ! be an exeuted wait instane. Then, there is at least one post instane �(and possibly several of them) whih set value posted to the involved event, and thus made possiblethe exeution of ! together with ensuring the orresponding preedene from � to !. We denoteSyn(�; !) the prediate, essentially dependent on the spei� run of the program, expressing thesynhronization preedene thus realized.The preedene prediate Pre for a spei� run of the parallel program, is then obtained fromPre0 and Syn, exatly along the same lines as Pres is obtained from Pre0 and Syns (�3.3).Sine Syn, and therefore Pre, thus essentially depend on some spei� run of the parallelprogram, we are led to onsider, instead of Syn, a prediate Syns desribing the synhronizationswhih arise under the assumption that the variables involved in these synhronizations (throughthe exeution prediate and/or the dynami event referenes) get their �sequential� values. Let usremember that, when we onsider the sequential version of our program, the synhronizations aredisabled, but we keep trak of the event referenes they involve (�2.3). This will allow us to onsider�the exeution of synhronizations in the sequential version�.The seond di�ulty is of a di�erent nature � and it will lead us to speify some properties we willpresribe regarding synhronizations. Through a prediate Syns(�; !), between a post instaneand a orresponding wait instane, we wish to express that �supposing the sequential semantis, if� and ! are both exeuted, then neessarily � is exeuted before !.�. This supposes that no otherpost instane is suseptible to trigger the exeution of !, by posting the same event. Indeed, inase several non mutually exlusive post statement instanes will seem able to trigger the exeutionof one wait statement instane, no preedene relation will be guaranteed between any one of theseposts and this wait � in suh a ase, we will not have a Syns relation from any of these poststo this wait � and the ase will be intratable within our �preedene� framework. (Notie that,onversely, one post may very well post to several waits: this brings no problem in our framework.)To the extent that one and only one post statement instane should be able to trigger a waitstatement instane, it is suitable to require that two post instanes involving the same event notexeute in parallel. Moreover, a lear statement instane, dealing with the same event, should notbe in a data rae ondition with this post, nor with this wait.We will express these restritions through two assumptions dealing with the use of synhroniza-tions. These assumptions will allow us to haraterize the synhronization prediate Syns. Let usremind a few notations (�3.2). For any post, wait or lear statement instane exeuted inthe sequential version, we denote [" ℄S the event variable referene that involves in the sequentialversion. The relation � between variable referenes means that they refer to the same variable.Assumption S1 (No rae ondition involving synhronizations) Let � and ! be two in-stanes of synhronizations post, wait or lear. Exept in the ase when one of these twoinstanes is a post and the other is a wait, and in the ase when both are waits, we have:Exes(�) ^ Exes(!) & (["�℄S � ["!℄S)) Pre0(�; !) _ Pre0(!; �)For a post instane � and a wait instane , let us de�ne a prediate Syn? as follows:Syn?(�;) = Exes(�) ^ Exes() & (["�℄S � [" ℄S) ^ :Pre0(; �) ^21

(8lear instane �;Exes() ^ Exes(�) & (["�℄S � [" ℄S)) :(Pre0(�; �) ^ Pre0(�;)))Syn?(�;) expresses that, under the sequential semantis, � is suseptible to trigger the exe-ution of , in the sense that � and both exeute, and involve the same event referene, in thesequential version; that does not preede � Pre0-wise; and that no lear instane involving thesame event is bound to interfere between the two, Pre0-wise.Notie that, under Assumption S1, the term :(Pre0(�; �) ^ Pre0(�;)) in the de�nition ofSyn?(�;), is equivalent to (Pre0(�; �) _ Pre0(; �)).Now we an express Assumption S2.Assumption S2 (Ensured preedene from post to wait) . For any post instanes �i andany wait instane : Syn?(�1;) ^ Syn?(�2;)) �1 = �2in whih ase Syn? indeed expresses the synhronization relation Syns we were looking for.Comment This expresses that, under the sequential semantis, at most one post statementinstane is suseptible to trigger the exeution of the wait instane, in our sense, in the givenprogram instane. However, that post instane may depend on the program instane onsidered,i.e. on values of parameters; for example, it will often our that two posts posting the same eventlie in two alternative branhes of a if: this is not ontrary to our assumption beause these twoposts are mutually exlusive.In the derivation of the theorem to follow, Assumptions S1 and S2 will be used through thefollowing onsequene, dealing with the ase when a post instane � and a wait instane do notform a synhronization pair:Exes(�) ^ Exes() & (["�℄S � [" ℄S) & :Syns(�;)) (Pre0(; �) _(9lear instane �;Exes() ^ Exes(�) & (["�℄S � [" ℄S) ^ Pre0(�; �) ^ Pre0(�;)))It would be possible to extend assumptions S1 and S2, by replaing the ontrol preedenes Pre0with generalized preedenes Pres, however under the ondition that the synhronization relationsSyns involved in Pres are given a priori; suh a generalization (whih we mentioned in [4℄, andunder whih the theorem to follow still holds) does not allow to derive Syns. In other words, suh anextension of S1 and S2 brings a irularity, in the sense that it presupposes that the synhronizationrelations Syns are given, whereas these two assumptions ontribute to the very existene of thesesynhronization relations.It is important to keep in mind that assumptions S1 and S2 refer to the semantis of thesequential version only, and do not depend on some spei� parallel run.Figure 7 shows an example of ontrol and synhronization preedenes in a parallel loop.22

Figure 7: Control preedenes in a PDO (straight arrows, again) and synhronization preedenesSyns (dashed arrows). Contrarily to the former, the latter preedenes are de�ned referring to thesequential semantis. These synhronization preedenes might not be ensured in some spei� runof this parallel loop. In the example, the three iterations shaded are those whih should be exeuted,aording to the sequential semantis.4 Some preliminary resultsBefore proving our theorem in the next setion, we will derive some preliminary results.4.1 Conservative approximations of prediatesIn light of the theorem we will prove in the next setion, heking the semanti equivalene propertywill mainly require heking the following impliation:Exes(a(i)) ^ Exes(b(j)) & Dep(a(i); b(j))) Pres(a(i); b(j))for all statement instanes a(i) and b(j) in the given program.In many ases, it will be impossible (even in priniple, sometimes) to statially produe exatexpressions of the prediates involved here. This is mainly due to the dynami variable refereneand loop bound spei�ations. Then, we will have to seek onservative approximations of theseprediates, i.e. approximations suh that the use of them, instead of the unknown exat prediates,will never lead us to give a positive onlusion when the preservation property is not met � but maylead to a �don't know� answer in some ases when the property is indeed true.The diretion of the above impliation makes lear the kinds of approximations whih will beonservative: these will be approximations from above for Exes and Dep, from below for Pres: wewill then onsider prediates Exes?, Dep? and Pres? suh that Exes) Exes?, Dep) Dep? andPres?) Pres, respetively meaning that �a statement instane may be exeuted�, �a dependenemay exist� and �a preedene must exist�.The omputation of a Pres relation involves prediates Pre0, Syns and Exes, through �transitivelosure modulo Exes along paths�, as we have seen before. Pre0 will be rather easily omputable;Syns may be more intriate. So, approximating Pres from below may involve approximating Exesfrom below, by a prediate Exes? suh that Exes?) Exes; and onsidering only some of the preedenepaths. 23

4.2 A lemma about exeution prediatesIt will be useful to derive in whih ases, and in what sense, the exeution of some statementinstane � in a parallel run, stritly depends on the exeution of some statement instanes � suhthat Pre0(�; �). This will be the objet of the following lemma.Considering a parallel run, let (�) denote the ondition for � to be exeuted or persistentlywaiting or persistently pending (let us remind that � is said to be reahed in the two �rst ases).If � is the (only) instane of the �rst statement in the program, (�) = true. For all the otherinstanes, we have the following lemma:Lemma 1 Considering a parallel program, for any run of this program, and for any statementinstane � of any statement exept the �rst one, (�) is fully determined by the exeution of oneor several statement instanes � suh that Pre0(�; �). All or some of these instanes � are spei�edindependently of the run onsidered; the other ones, if any, are spei�ed by the exeution of theformer. If at least one of these � produes an exeution fault, this implies (�) = false.We have Exe(�) = (�) exept in the three following ases:� � is an instane of a wait w: then, (�) expresses the ondition for � to be reahed (or theondition for � to be reahed or persistently pending, in ase w is both a wait and the �rststatement in a parallel onstrut body). Under this ondition, however, � may be persistentlywaiting (or persistently pending), instead of �nally exeuting, in a deadlok situation (or inan in�nite loop situation in the latter ase).� � is an instane of the �rst statement in a pdo body or in a setion of a psetions,without being an instane of a wait: then, (�) expresses the ondition for � to be exeutedor persistently pending; the latter possibility ours in ase of a deadlok or in�nite loop.� � is an instane of a endwhile: then, (�) expresses the ondition for � to be exeuted orpersistently pending; the latter possibility ours in ase the while in�nitely loops, or in aseof a deadlok or in�nite loop within an iteration.The proof of this lemma is tedious but not di�ult. It is provided in Appendix A.This lemma derives its main interest from the previously mentioned fat that Pre0 is independentof the spei� parallel run onsidered. Its meaning an be summarized as follows: with the exeptionof the wait statements and some other ones suseptible to be pending, the fat that some statementinstane is exeuted in some run of the program depends upon statement instanes whih are boundto exeute before it (by the ontrol struture of the program), and not just upon statement instaneswhih merely happen to exeute before it in some run being onsidered, as implied by plain ausality.4.3 A notion of exeution dateIn order to derive our main result in the next setion, we need to introdue a notion of exeutiondate. This will be the objet of the following result:Disretized time lemma: For any run of a parallel program, we onsider the preedenes Pre andSyn assoiated to this run (de�ned in Setion 3). We assume the four following properties:24

i. To any statement instane � exeuted in this run, is assoiated a time lag [t�; t0�℄ (of physialtime), with t0� � t�, alled the exeution time lag of �.ii. Whenever the exeution time lags of two statement instanes � and � overlap and � outputsa variable x whih is an input of �, the value written by � is not available as input for �.iii. As a onsequene of (ii), for any statement instanes � and � exeuted in this run, if Pre(�; �)or Syn(�; �), then t� > t0�.iv. For any time t, only a �nite number of instanes � have begun exeution before t.To every statement instane � exeuted in this run, may be assoiated a positive integer �(�),alled the exeution date of �, with the following properties:1. �(�) nondereasingly depends on t�.2. Computational ausality: for any statement instanes � and �, a value output by � annot beused as input by � unless �(�) > �(�).3. As a onsequene, for any two statement instanes � and � exeuted, whenever Pre(�; �) orSyn(�; �), we have �(�) > �(�).4. � is ausally de�ned, i.e. �(�) depends only on the exeution time lags of � and the instanesbeginning exeution before �.Comment: Hypotheses (i) and (ii) an be interpreted thus: for any instane � oming to be exeutedin some run, � gets its input (if any) at or shortly before some time t�, then exeutes without anyinput/output exhange, till some time t0� when � or shortly after whih � � provides its output (ifany). (We allow ourselves to set t� = t0� when � performs no omputation.) Hypothesis (iii) is aonsequene of the variable updating feature embedded in the relations Pre and Syn. Hypothesis(iv) is, obviously, meaningful only when the run is endless, a ase we have to onsider too; thishypothesis is then justi�ed by the �niteness of available resoures (espeially the �nite number ofproesses).Let us also mention that, onsistently with our de�nition of the �exeution� in ase of a waitinstane, the exeution time lag of suh an instane does not ontain the waiting time; it does notbegin before the involved event has been deteted to be posted.Proof : Considering a run of the parallel program, let us rank the (ountable) set of statementinstanes � exeuted in this run, in the inreasing order of the initial times t�. In ase several initialtimes are equal, we rank the orresponding instanes arbitrarily. Even in ase the run is endless,this ordering of statement instanes is well-founded, due to (iv): these instanes are then orderedinto a sequene.The (�nite or in�nite) sequene of instanes obtained thus will be denoted �1; �2; : : : �N ; : : : .For onveniene, the exeution time lag for �i will be denoted [ti; t0i℄.The date � will be de�ned by the following proedure:1. Set �(�1) = 1 and i = 1 25

2. For integers j following i, if any, suh that �j exists and tj � min(t0k j i � k < j), set�(�j) = �(�i)3. If the sequene of instanes � is not exhausted yet, let j be the index of the �rst remaining�. Set �(�j) = �(�i) + 1; set i = j and go to [2.℄It is straightforward to hek that the funtion � thus de�ned meets the required properties: wenotie that instanes assoiated to the same date have exeution time lags whih mutually overlap:hene, (ii) implies the omputational ausality feature; moreover, any two instanes the exeutiontime lags of whih are disjoint � espeially, any two instanes whih are in a preedene relation Preor Syn � have di�erent dates. JLet us emphasize that we will make use of the mere fat that a date funtion exists; we will notneed to be able to e�etively ompute it. Besides, the date funtion depends on the spei� runbeing onsidered, even if the parallel program is semantially equivalent to its sequential version.As far as program semantis will be onerned, statement instanes assoiated to the same datewill be onsidered as though they exeuted �at the same time�. Thus, for onveniene, we willsay that �some statement instane exeutes at some date�. The omputational ausality feature(property 2) is ruial here: it ensures that the result of a omputation �made at some date� isnot available before the next date. (The ausal de�nition feature (property 4) will not be usedhere: it is a byprodut.) So to speak, what we are onsidering here is a ausality-preserving timedisretization.The reiproal of property 2 is not true: having �(�) > �(�) does not imply that an output of �an be used as input by � (besides, the exeution time lags of � and � may overlap). But we mustpoint out that this availability will stand if Pre(�; �) (provided, of ourse, that the variable is notwritten again meanwhile); or Syn(�; �) (in whih ase, besides, � writes an event variable read by�). The need to introdue a notion of exeution date is the main reason why we onsider simplestatements rather than strutured ones: very often, a strutured statement instane extends onseveral dates, in our sense. This is not due to the time length of exeution of this struturedstatement, but rather to the existene of input/output exhanges within the exeution time lag.Thus, a subroutine or funtion all is attributed a single date in our framework, however longits exeution time may be, provided that it follows the spei�ation we mentioned above: thatinputs/outputs our only at the beginning and at the end of the subroutine or funtion11.Other notions of dateThe notion of exeution date we introdue here displays some similarities, and some di�erenes, withthe well-known notion of linear time proposed by Lamport [17, 25℄. Lamport onsiders sequentialproesses, ommuniating with one another by sending and reeiving messages. Events ourringon every proess are assigned dates by a loal lok; every message inludes the date when it is sent(for the loal time of the emitting proess), and triggers an update of the loal time of the reeiving11In the same �avor, in some languages � suh as C � where several operations may be ondensed into one seemingly�simple� statement, suh a statement may have to be onsidered as strutured in our sense, and will then extend onseveral dates. 26

proess, if neessary, so that, so to speak, the message is reeived �after� it is sent. This mehanismpermits to e�etively express ausality through a global lok, realized only from loal loks �without a need for a ommon time devie with whih all proesses would have to ommuniate.This ausality feature of linear time is obviously what makes it somewhat similar to �our�exeution date. An important di�erene between our sheme and linear time (or more omplextime shemes outlined in [25℄) is that the latter aim at e�etively omputing dates allowing to orderevents, whereas, as we mentioned before, it is su�ient for us to know the existene of a datefuntion �() endowed with some interesting properties; we will have no need whatever to e�etivelyompute it.4.4 The ordered single proess runA single proess run is a run of the parallel program, obtained when there is only one proessavailable. As mentioned before, it will be required that a parallel program not produe a waitingdeadlok whatever the number of available proesses. Therefore, a single proess run should notprodue a waiting deadlok.We will be interested in the ordered single proess run, de�ned as the single proess runin whih Assumption SA (sequential assignment) above (�2.2) extends to all parallel onstruts,and not only to those ontaining synhronizations. Under the assumption that this ordered singleproess run does not produe a waiting deadlok � an assumption in the theorem below � itsbehavior mathes the one of the sequential version exatly, not only from the point of view ofsemanti equivalene, but also referring to the exeution order of the statement instanes. (Asa onsequene of the semanti equivalene, the ordered single proess run produes no exeutionfault.)On the other hand, if the ordered single proess run deadloks, its behavior mathes the one ofthe sequential version exatly, in the same sense, up to the wait statement instane on whih thedeadlok ours.It may be of interest to express the ondition that the ordered single proess run does notdeadlok. Due to the above remark, we have to express that any wait instane exeuted in thesequential version is not a deadloking wait, assuming that the ordered single proess run proeededup to that point, with semanti equivalene to the sequential run up to that point. Consideringthis semanti equivalene, we an express the no-deadlok ondition (� expresses the sequentialexeution order):No-deadlok ondition for an ordered single proess run:128 wait instane ; Exes()) 9 post instane �;Exes() ^ Exes(�)^(� �) & (["�℄S � [" ℄S)^(8 lear instane �;Exes() ^ Exes(�) & (["�℄S � [" ℄S)) (� � � _ � �))12Aording to what we have mentioned above (�3.1) about the expression of Exes, this ondition is formally moresatisfatory under the hypothesis that the ordered single proess run terminates (an assumption in our theorem),sine otherwise, the expression of Exes expliitly depends on the loation of the in�nite loop.27

5 The theorem of semanti equivaleneWe will now derive our theorem of semanti equivalene. We onsider a parallel program writtenin the language we have previously de�ned (Setion 2). We onsider the sequential version of thisprogram, whih is supposed to onform to the rules of our language regarding sequential programs(among others, determinay, and absene of exeution faults). Considering a few properties ofthe ordered single proess run (�4.4), we will derive the semanti equivalene between our parallelprogram and its sequential version.Theorem 1 Under the following hypotheses:i. Assumptions S1 and S2 (�3.4);ii. No waiting deadlok in the ordered single proess run;iii. No in�nite loop in the ordered single proess run;iv. For all statement instanes a(i) and b(j),Exes(a(i)) ^ Exes(b(j)) & Dep(a(i); b(j))) Pres(a(i); b(j));the parallel program is semantially equivalent to its sequential version. Espeially, no parallel runan deadlok (in waiting or in fault), nor in�nitely loop.Proof : We onsider a program instane, obtained by giving values to the parameters. Then,there is only one ordered single proess run of this program, whih will be denoted S, whereas thereare generally many possible runs of the parallel version. We onsider one of them, whih will bedenoted P. In what follows, the prediates Exe and Pre, de�ned in Setion 3, are the exeution andpreedene prediates assoiated to this parallel exeution P.We will �rst derive the semanti equivalene extended to all statement instanes exeuted inthis parallel run P and all variables involved in them (points 1 to 4); �nally, we will prove that,onversely, all instanes exeuted in the ordered single proess run S are exeuted in this parallelrun P (point 5).Point 1 : We will onsider the exeution date funtion (�4.3) assoiated to the parallel run P weare onsidering.Let � be a date suh that the following reurrene assumption holds:Semanti equivalene up to date � � 1: for any statement instane � exeuted stritlybefore � in P, � is also exeuted in S; moreover, any variable referene involved in � asinput (inluding the event referenes) points to the same variable in both runs, and thatvariable has been written by the same other instane in both runs. Correlatively, allvariables written, in P, before date � (inluding event variables), underwent the sameomputations, due to the same instanes, in the same order, in S.This hypothesis indeed expresses a semanti equivalene between P and S as regards all theinputs and outputs of all statement instanes exeuting before � in P. (As a onsequene, espeially,P does not produe any exeution fault before � .)28

We wish to prove that this semanti equivalene extends to date � . Considering that it obviouslyapplies to the program start, that will ensure the semanti equivalene along all the parallel run P.First of all, we have to introdue a lemma.Lemma 2 We assume the hypothesis of semanti equivalene up to date � � 1, and a statementinstane exeuted at � in P. For any statement instane � suh that Exes(�) and Pres(�;), wehave Exe(�) and Pre(�;).This result also holds if we replae here by any statement instane exeuted before � in P.The proof of this lemma is provided in Appendix B.We have to show that, for any statement instane whih happens to be exeuted at date �in P, the semanti equivalene propagates to . First, we will prove that the semanti equivaleneextends to the inputs of . We will be led to onsider separately the ase when suh an input is notan event (point 2), and the ase when it is (point 3). Then, we will notie that this exeutionof does not produe any exeution fault; afterwards we will show that the semanti equivaleneextends to the outputs of , by deriving that there is no rae ondition between instanes exeutingat date � (point 4). Thus, the semanti equivalene up to date � will be derived.We onsider a statement instane oming to be exeuted at date � in P. Aording to Lemma 1(�4.2), the fat that is reahed or persistently pending (not implying that it is exeuted) is fullydetermined by some statement instane(s) � suh that Pre0(�;), and whih have all been exeuted(therefore, before � , sine Pre0 is ommon to all runs). Due to the reurrene hypothesis of semantiequivalene up to date ��1, these same statement instanes � exeute in S, and identially determinethat is reahed or persistently pending in S. Therefore, is exeuted in S (due to hypotheses (ii)and (iii), no instane remains waiting nor pending in S): we have Exes().Let us onsider some variable referene � used by as input. In order to ensure the semantiequivalene for this input, sine we assume the semanti equivalene up to date � � 1, we just needto rule out two possibilities:1. the possibility that the referene � in does not point to the same variable in S; or, in aseit does (let then x be the variable � points to in both runs),2. the possibility that the value of x used by as input is not obtained by the same omputationsin both runs.We will �rst show, by a reurrene on the indiretion order (�2.1) of �, that ruling out Possibility 1redues to ruling out Possibility 2. Possibility 1 annot arise if � is of indiretion order 0, sine suha referene statially points to the same variable in any run. Now, if � is of indiretion order n > 0,let us suppose that possibilities 1 and 2 have been ruled out for all inputs of of indiretion orderless than n. Then, the semanti equivalene extends to all suh inputs, and espeially to all variablereferenes ontained in the subsript list of �. Therefore, � points to the same variable x in bothruns, and it is then su�ient to rule out Possibility 2 for this input x.So, onsidering a variable referene � pointing to the same variable x in both runs, we have torule out Possibility 2 by making sure that the value of x used by as input has been similarlyomputed in both runs. 29

Point 2 : Let us �rst onsider the ase when x is not an event variable.Let � be the statement instane whih omputes the value of x used by as input in S. � exists,due to the determinay ondition (�2.3). We will �rst show that Exe(�) and Pre(�;), whih willimply that � is exeuted in P before � . The reurrene hypothesis of semanti equivalene will thenimply that x is similarly omputed by � in both runs, and the preedene thus obtained will implythat this value of x is available as input for in P, unless some other omputation of x interferesbetween � and , a irumstane that we will rule out afterwards.We have Exes(�) beause it is � whih omputes x for in S; we have Exes() as we have seen;we have Dep(�;) beause � omputes a variable (whih is not an event) used by in S, the runin referene to whih Dep is de�ned. Therefore, aording to (iv), we get Pres(�;). Aording toLemma 2, having Exes(�) and Pres(�;) implies Exe(�) and Pre(�;). Now, in order to on�rmthat the semanti equivalene extends to the input x of , we need to prove that, in P, the statementinstane whih omputes x for is indeed �, and not some other statement instane Æ interferingbetween � and .Suh an instane Æ would exeute before � , so that its output x ould be available for ; so, dueto the reurrene hypothesis, Æ would exeute in S too, and ompute the same variable x. Therefore,there would be a dependene Dep between � and Æ, whih, together with Exes(�) and Exes(Æ), wouldimply a preedene Pres between � and Æ, aording to (iv). In what diretion would this preedenestand? If we had Pres(Æ; �), Lemma 2 applied to � would then imply Pre(Æ; �), whih, together withPre(�;), would prevent the value of x omputed by Æ from being read by . Therefore, we wouldget Pres(�; Æ): Æ would indeed exeute after � in S. Sine � indeed omputes x for in S, this wouldimply that Æ exeutes after in S. If this were the ase, we would have Dep(; Æ), whih, togetherwith Exes(Æ) and Exes(), would imply Pres(; Æ). Æ would exeute in P before � , so Lemma 2would apply to Æ: Exes() ^Pres(; Æ) would imply Pre(; Æ), whih would ontradit the fat thatÆ exeutes before � in P. Therefore, there is no suh instane Æ.Point 3 : Let us now onsider the ase when x is an event variable. This implies that is a wait.Aording to the reurrene hypothesis, all omputations of x before � are idential in bothruns. Let � be the statement instane whih last modi�ed the event x in this past ommon history.Sine is exeuted at date � in P, � exists and is a post (and not a lear).Let � be the statement instane whih writes x for in S. Sine is exeuted in S, � is a postand (�;) is a synhronization pair: we have Syns(�;).We have to show that � is �. This will end our Point 3. If this were not the ase, AssumptionsS1 and S2 (�3.4) would imply that, either Pre0(; �) (then, � would exeute after in S), or therewould be a lear instane � involving event x in S, suh that Pre0(�; �) ^ Pre0(�;). Let ussuessively rule out these two ases.The ase Pre0(; �). Sine � exeutes before � in P, Lemma 2 applies: Exes() ^ Pre0(; �)would imply Pre(; �), whih would ontradit the fat that � exeutes before in P.The ase Pre0(�; �)^Pre0(�;). Aording to Lemma 2, having Exes(�) and Pre0(�;) wouldimply Pre(�;): � would exeute before � in P. Then, the fat that Pre0(�; �) would imply asimilar preedene in P (due to Lemma 2 applied to �): x would be leared by � between �and in P, whih would ontradit the fat that � is the last statement instane writing xbefore � . 30

Point 4 : At this point, we have proved that, given the reurrene hypothesis of semanti equiv-alene up to date � � 1 and a statement instane exeuted at � in the parallel run P beingonsidered, is also exeuted in S and the semanti equivalene extends to all the input referenesof : any suh referene � points to the same variable (denoted x) in both runs, and x ontains thesame value, similarly omputed, at the exeution of , in P and S.This input equivalene implies that any output referene � of points to the same variable(denoted y) in both runs. Thus, in both runs, performs the same omputations, on the sameinputs, produing the same outputs. Therefore, the exeution of in P produes no exeutionfault. To make sure that the semanti equivalene extends to the outputs of at date � , it issu�ient to hek that there is no on�it, i.e. no dependene relation, among the statementinstanes i, say 1 and 2, oming to be exeuted at date � in P. Due to the semanti equivaleneof all input referenes, input variables and output referenes of 1 and 2, suh a on�it would alsoshow up in S.In ase the on�iting referenes would not be event referenes, suh a on�it would translateinto a dependene relation Dep, e.g. Dep(1; 2), whih, aording to (iv), would imply Pres(1; 2).Lemma 2 applies: having Exes(1) and Pres(1; 2) would imply Pre(1; 2), whih ontradits thefat that 1 and 2 exeute at date � .In ase the on�iting referenes refer to an event variable, �rst of all, 1 and 2 would not bothbe wait instanes: at least one of them has to output an event (so that there is a on�it), i.e. bea lear or a post. Two ases have to be onsidered.� The ase when 1 and 2 are a post and a wait, say in that order, involving an event variable" (in both runs S and P). Let � be the post instane whih writes " for 2 in S. We haveSyns(�; 2). We have notied (point 3) that � exeutes before � in P. � is therefore di�erentfrom 1. We will show that this leads to a ontradition. Aording to assumptions S1 andS2 (�3.4), either we would get Pre0(2; 1), or there would exist a lear instane � involvingthe event variable " in S, suh that Pre0(1; �) ^ Pre0(�; 2). Let us rule out these two ases.The ase Pre0(2; 1). Sine 1 would exeute at date � inP, Lemma 2 applies: Exes(2)^Pre0(2; 1) would imply Pre(2; 1), whih would ontradit the fat that 2 wouldexeute at date � , like 1, in P.The ase Pre0(1; �)^Pre0(�; 2). Aording to lemma 2, having Exes(�) and Pre0(�; 2)would imply that � would exeute before � in P. Then, however, Pre0(1; �) would implya similar preedene in P (lemma 2 applied to �): 1 would exeute before � in P, whihontradits the assumption that 1 would exeute at � .� In the other ases, let us apply Assumption S1. We have a preedene Pre0 between 1 and2, e.g. Pre0(1; 2). Aording to lemma 2, having Exes(1) and Pre0(1; 2) would implyPre(1; 2), whih would ontradit the fat that 1 and 2 both exeute at date � .Point 5 : We have thus proved that any statement instane exeuted in some parallel run P isalso exeuted in S, and that any variable involved in this statement instane undergoes the sameomputations (and therefore reeives the same values) in both runs up to the last point reahed inP. 31

As an immediate onsequene, this parallel run P annot enter an in�nite loop: indeed, if somewhile onstrut looped inde�nitely in P, the semanti equivalene along P would imply a similarin�nite loop in S, whih is ruled out by (iii). That same semanti equivalene along P also ensuresthat P produes no exeution fault.There remains to prove that, onversely, any statement instane exeuted in S is also exeutedin any parallel run P. Let us suppose by ontradition that there are statement instanes whih areexeuted in S and not in some parallel run P we are onsidering, and let be the earliest one, inthe sequential order.Let us apply Lemma 1 to the exeution of is S. Aording to hypotheses (ii) et (iii), there is nopersistently waiting nor persistently pending statement instane in S. Therefore, Lemma 1 impliesthat Exes() is dependent on statement instanes � whih preede Pre0-wise and are all exeutedin S, before . By de�nition of , these � are exeuted in P, with semanti equivalene, as shownpreviously. Therefore, Lemma 1 and the non exeution of in P imply that, in P, either ispersistently pending, or is a persistently waiting wait. Let us examine these two possibilities.In the absene of in�nite loops and exeution faults in P, the sequential assignment assumption(�2.2) implies that a statement instane an be persistently pending only if some wait instane !,ranking before it in the sequential order, is reahed and deadloks in P. Being reahed in P, ! isreahed too, and exeutes, in S. Its deadlok in P, and its preeding in S, would ontradit thede�nition of .Finally, there remains the ase when is a reahed and deadloking wait. Let " be the event involves in S. First of all, we must show that involves the same event in P.Let x be a variable other than " , if any, involved as an input of in S (x exists in ase ofdynami referene). By de�nition of , all instanes preeding in S are exeuted, with semantiequivalene, in P. It is therefore the ase for the instane �x whih omputes x for in S (for anysuh x, �x exists, due to the determinay ondition (�2.3)).Is there a possibility that, in P, x is rewritten after �x ? If this were so, it would be throughan instane denoted Æx. Then, Æx exeutes in S, with semanti equivalene, therefore after . Wewould then get Dep(; Æx) (dependene assoiated to x), Exes(), Exes(Æx), therefore Pres(; Æx)by (iv). Aording to Lemma 2 applied to Æx, having Exes() and Pres(; Æx) would imply Exe(),whih would ontradit the deadlok on in P. Hene, x is not written again after �x in P.Here we will use a lemma:Lemma 3 We assume the semanti equivalene along P. Let be a wait instane, deadloking inP. For any statement instane � suh that Exes(�) and Pres(�;), we have Exe(�) and Pre(�;).The proof of this lemma is provided in Appendix B, after the proof of Lemma 2.For any suh variable x, we have Exes(�x) and Dep(�x;). We have Exes(). So, aording to(iv), we have Pres(�x;). Then, lemma 3 gives Pre(�x;).Together with the fat that x is not rewritten in P after �x, this preedene Pre(�x;), froman exeuted instane to a deadloking wait, implies (�3.3) that, if x is an input of in P (whihwe do not know yet, at this point!), the value of x input by is (and remains) the one omputedby �x in P as well as in S. Cheking that x is indeed an input of in P is performed through a32

reurrene on the indiretion order of x, similar to the one we used in Point 1. It therefore turnsout that the event involved in in P indeed is (and remains) " , the same as in S.By de�nition of , all instanes previous to in S are exeuted, with semanti equivalene, inP. This is the ase, therefore, for the post instane � whih sets value posted to " for in S. So,the deadlok on would imply that, in P, some lear statement instane � exeutes and lears" after �, and before used it. � also exeutes in S and lears the same event (as shown above,about the semanti equivalene extended to all instanes exeuted in P).Assumption S1 (�3.4) implies that there is a relation Pre0 between � and �, and between � and. We annot have Pre0(�; �) beause this would imply (Lemma 2 applied to �) that � exeutesbefore � in P. So, we have Pre0(�; �). We annot have Pre0(�;) beause, together with Pre0(�; �),this would imply an exeution order in S: � before � before , and � would not post for , as it issupposed to. So, we have Pre0(; �).� exeutes in P, so Lemma 2 applies to �: exeutes in S and we have Pre0(; �); so, exeutesin P before �, whih ontradits the deadlok on .This ends the derivation of our theorem. JDeadloks and in�nite loopsAlong the lines of the above derivation, it is straightforward to see what may happen whenever theordered single proess run S produes a waiting deadlok, ontrarily to hypothesis (ii), or in�nitelyloops, ontrarily to hypothesis (iii) � keeping in mind that both irumstanes are unwanted in ourframework.In ase S is endless, the statement instanes exeuting in S exeute too in any parallel run P� hene an in�nite loop in P � but, in ase the in�nite loop is nested in a parallel onstrut, someunits of work in this parallel onstrut may exeute in P, although they are not reahed in S.In ase S produes a waiting deadlok, the statement instanes exeuting in S exeute too in anyparallel run P, but, in the (usual) ase when the deadloking wait instane is loated in a parallelonstrut, it may happen that some units of work in this parallel onstrut exeute in P, althoughthey are not reahed in S. It may even our that the event orresponding to the deadloking waitinstane happen to get posted thus, due to a post instane loated after the wait instane in thesequential order. Suh an ourrene will then arise randomly, essentially depending on the numberof available proesses and the loading of units of work on these proesses, two aspets of the programexeution the user is not supposed to have any ontrol on.6 An example; an inrementality propertyWe will illustrate the possible appliations of our theorem on a little example, together with high-lighting an interesting property of inrementality of a hek-and-repair proedure inspired by ourresult.Let us onsider a parallel program instane in whih two statement instanes � and �, both exe-uted and in a dependene relation Dep(�; �), happen not to be in a preedene relation Pres(�; �).We onsider a hek-and-repair proedure whih, in presene of suh an unpreserved dependene,aims at reinforing the preedene Pres so that the dependene being onsidered beomes preserved33

by the preedene thus reinfored. We must indeed obtain a reinforement, in the sense that,for the whole program, we must get Presbefore) Presafter where Presbefore and Presafter denote thepreedenes Pres before and after the repair, respetively. (If this reinforement of Pres is performedby adding or displaing synhronizations, it must be heked that assumptions S1 and S2 dealingwith synhronizations (�3.4) remain true after the repair.) Thus, the impliations Dep) Presalready heked at this point, will remain afterwards.Here, the important point to notie is that this repair of this lak of dependene preservationdoes not ompromise the other veri�ations already performed at this point; the dependenes whihhave already been heked to be preserved at this point will remain preserved after the repair:there is no need to revisit the whole program soure at this point. This inremental aspet of thehek-and-repair proedure is a diret onsequene of the referene of our theorem to the sequentialsemantis; it would not be ensured if our theorem had referred to the parallel semantis in someessential way (beause suh a reinforement of the preedene may indeed radially hange thebehavior of the parallel program).Let us study an example. Figure 8 shows a portion of program. The sequential version (whihprovides the referene for the required semantis) is on the right.On this portion of program, we assume that the undisplayed statements (represented by � : : :�)do not ontain referenes A() or P , nor synhronizations. Besides, we assume that this portion ofprogram is not itself nested within another parallel onstrut.This program is inorret in our sense, sine it exhibits memory on�its involving variable P :dependenes from 1 and 2, to d1, a and p, are not preserved. This will have to be �xed, but,due to the inrementality property, this must not prevent us from heking whether dependenesinvolving variables A() are preserved.Let us fous our attention on the dependene between statements b and a, involving referenesA(). We notie that this dependene, as well as the orresponding preedenes that we will �nd,depend on variable P . Sine the sequential version sets the semanti referene here (in virtue ofour theorem), we have not to bother (at this point) with the memory on�its mentioned aboveinvolving P , and we onsider the �sequential� value of P (whih equals 2 or 3) at b and a. SineP > 0, we have a dependene from a to b involving the variable array A(), whih will have to bepreserved so that the values of A() omputed by a be, in ase of need, those used by b, P iterationslater.We hoose to inlude the exeution onditions Exes in our prediates Dep. We obtain:Dep(ax; by) = (1 � x � N) ^ (1 � y � N) ^ (y > x) ^ (y = x+ [[P℄℄�ax)Let us explain this relation. ax (resp. by) denotes the instane of a (resp. b) orrespondingto iteration x (resp. y). The four terms of this onjuntion denote, respetively: the ondition ofexeution of a; the ondition of exeution of b; the ondition for ax to exeute before by in thesequential version; and the ondition that the two instanes ax and by aess to the same variablein the sequential version. Let us remind that [[P℄℄�ax denotes the value of P read by instane ax inthe sequential version13.13As a simpli�ation, we assumed here that N is a parameter. In ase it is a variable, in the expressions displayedhere, �N � should be replaed by �[[N℄℄�d2�. 34

B=... B=...... ...psetionssetion... ...if(B) then if(B) then1: P=2 P=2else else2: P=3 P=3endif endiff:setiond1: do J=1,Pq: post E(J)enddo... ...d2: pdo I=1,N do I=1,N... ...w: wait E(I)b: ...=A(I) ...=A(I)a: A(I+P)=... A(I+P)=...p: post E(I+P)endpdo enddoendpsetions... ...Figure 8: An example of program heking. The sequential version is on the right.

35

B=......CLEAR F addendumpsetionssetion...if(B) then1: P=2else2: P=3endifPOST F addendumf: ...setionWAIT F addendumd1: do J=1,Pq: post E(J)enddo...d2: pdo I=1,N...w: wait E(I)b: ...=A(I)a: A(I+P)=...p: post E(I+P)endpdoendpsetionsCLEAR F addendum... Figure 9: The previous example, with addenda
36

Let us now look for preedenes whih may stand from a to b. It is easy to detet that the ontrolpreedene Pre0 is not su�ient, and that synhronization relations Syns have to be involved. Morepreisely, let us onsider a path: ax ! pu wz ! by(We use notations introdued in �3.3). Let us express the orresponding preedene relation:Pres(ax; by) = Pre0(ax; pu) ^ Syns(pu; wz) ^ Pre0(wz; by)As regards the synhronization Syns, we assume that it has been heked that a synhronizationindeed stands from p to w, in the sense that, under the sequential semantis, the events E() are notposted yet when the ontrol enters the portion of program onsidered here.We get:Pres(ax; by) = (x = u) ^ (1 � u � N) ^ (u+ [[P℄℄�pu = z) ^ (1 � z � N) ^ (z = y)We have to hek whether there is a preedene path of this form suh that Dep(ax; by))Pres(ax; by), i.e. whether there is an instane pu of p and an instane wz of w suh that we get thisimpliation. In the above expression of Pres, we try to eliminate u and z14:� Eliminate u by (x = u):Pres(ax; by) = (1 � x � N) ^ (x+ [[P℄℄�px = z) ^ (1 � z � N) ^ (z = y)� Eliminate z by (z = y):Pres(ax; by) = (1 � x � N) ^ (x+ [[P℄℄�px = y) ^ (1 � y � N)to be ompared with:Dep(ax; by) = (1 � x � N) ^ (1 � y � N) ^ (y > x) ^ (y = x+ [[P℄℄�ax)We indeed get Dep(ax; by)) Pres(ax; by), provided that [[P℄℄�px = [[P℄℄�ax, whih is veri�ed assoon as we hek that P is not rewritten between the two readings in the sequential version, whihis what we have assumed.Now we must take are of variable P . We have mentioned that dependenes involving P , from1 and 2 to d1, a and p are not preserved. A somewhat radial way to �x this problem, is to�resequentialize� the psetions � but this may be ostly if the exeution of statements f is time-onsuming. Rather, a more subtle �x onsists in introduing a new synhronization from the end ofP 's omputation to the beginning of P 's use. This synhronization should not involve an event E()already in use in loops d1 and d2. A possibility is to use another event (here F), duly reinitializedbefore and after this use in ase it already exists in the rest of the program. Under this ondition,all the previously heked dependene preservations (e.g. those involving A() here) still stand. Apossible �x of our portion of program is shown in Figure 9.14These priniples of algorithmi treatment of dependenes and preedenes are explained in [26, 6, 7℄.37

7 ConlusionWe have studied a property of orretness of parallel programs in the shared-memory programmingmodel. This model is widely used in sienti� omputing and implementable on many parallelmahines, inluding distributed-memory ones.We have onsidered a parallel language obtained by adding a few parallel onstruts (parallelloops, parallel setions and event synhronizations) within a fairly standard sequential imperativelanguage (we do not make stati ontrol assumptions often onsidered in the literature). We areinterested in a property of sequential orretness de�ned as a semanti equivalene between aparallel program and its sequential version, that we de�ne. In this framework, a parallel programis viewed as the result of a parallelization of some given sequential program, and it is required thatthe results of any run of the parallel program be idential to those of this sequential program; theimprovement sought through the parallelization lies only in the ability to obtain these results faster.The main objet of this paper is to present and derive a theorem whih states su�ient onditionsfor this sequential orretness property. The important aspet of this result is the fat that thesesu�ient onditions (mainly preservation of dependenes) refer to the semantis of the sequentialversion only: they do not refer in any way to presupposed properties of some spei� parallel runof the program. In other words, due to this result, heking that any possible run of some parallelprogram being onsidered will meet the desired orretness requirements boils down to hekingsome prediates pertaining to some sequential program. Espeially, this referene to a sequentialsemantis allows to use all resoures of data�ow analysis usually applied to the study of sequentialprograms, in the proess of heking these prediates.The derivation of the theorem makes use of a notion of exeution date. In a run of a parallelprogram, every exeution of a statement is attributed a date, suh that the outputs of omputationsmade �at some date� are not available as inputs before �the next date�. This exeution date featurean be desribed as a ausality-preserving time disretization. The main part of the proof makesuse of a reurrene on the date, in order to derive that the semanti equivalene between theparallel program being onsidered and its sequential version, propagates along any possible parallelexeution. The requirement to refer to the sequential semantis, whereas the reurrene proeedsalong a parallel run, explains the intriay of the proof.A preliminary appliation of this theorem, dealing with a subset of our language, is developedin [7, 26℄. There are prospets that this result ould be applied through tools to verify a wide rangeof programs.Appendix A: Proof of Lemma 1Lemma 1, introdued in �4.2, spei�es in whih ases, and in what sense, the exeution of somestatement instane � in a parallel run, stritly depends on the exeution of some statement instanes� suh that Pre0(�; �). (Let us remind that (�) denotes the ondition for � to be exeuted orpersistently waiting or persistently pending.)Lemma 1 Considering a parallel program, for any run of this program, and for any statementinstane � of any statement exept the �rst one, (�) is fully determined by the exeution of oneor several statement instanes � suh that Pre0(�; �). All or some of these instanes � are spei�ed38

independently of the run onsidered; the other ones, if any, are spei�ed by the exeution of theformer. If at least one of these � produes an exeution fault, this implies (�) = false.We have Exe(�) = (�) exept in the three following ases:� � is an instane of a wait w: then, (�) expresses the ondition for � to be reahed (or theondition for � to be reahed or persistently pending, in ase w is both a wait and the �rststatement in a parallel onstrut body). Under this ondition, however, � may be persistentlywaiting (or persistently pending), instead of �nally exeuting, in a deadlok situation (or inan in�nite loop situation in the latter ase).� � is an instane of the �rst statement in a pdo body or in a setion of a psetions,without being an instane of a wait: then, (�) expresses the ondition for � to be exeutedor persistently pending; the latter possibility ours in ase of a deadlok or in�nite loop.� � is an instane of a endwhile: then, (�) expresses the ondition for � to be exeuted orpersistently pending; the latter possibility ours in ase the while in�nitely loops, or in aseof a deadlok or in�nite loop within an iteration.Proof : We will refer to the previously spei�ed exeution model (�2.2). We will suessivelyexamine all possible ases in our language.We onsider some statement instane �, an instane of a statement a other than the �rst one.� a is a wait: then, in all interesting ases, it is not true that the exeution of � depends oninstanes preeding � Pre0-wise. But the ondition for � to be reahed � not meaning that itis exeuted � will onform to everything we will derive now, as shown by �tively inserting aontinue statement just before the wait statement, and onsidering whih of the followingases this ontinue statement �ts in. In the following ases, we assume that a is not a wait.� a is the �rst statement in a pdo body: then, let be the loop header; let j be the (possiblyempty) index vetor of and j ::k be the index vetor of a. For any instane � = a(j ::k) tobe exeuted, it is neessary that the orresponding instane (j) be exeuted without fault;onversely, the exeution of (j), through the evaluation of its loop bounds, fully haraterizeswhih instanes a(j ::k) are reahed or persistently pending. Thus, (a(j ::k)) is fully hara-terized by the exeution of (j); and we have Pre0((j); a(j ::k)). However, an instane a(j ::k)suh that (a(j ::k)) may be persistently pending instead of �nally exeuting, in deadlok orin�nite loop situations.� a is the �rst statement in a setion body, within a psetions onstrut: then, let be thepsetions header; let j be the (possibly empty) index vetor of a and . For any instane� = a(j) to be reahed or persistently pending, it is neessary and su�ient that (j) beexeuted. So, (�) fully depends on another statement instane whih preedes it Pre0-wise.However, there again, � may be persistently pending, in deadlok or in�nite loop situations.� a is a endwhile: then, let be the orresponding while header; let j be the (possibly empty)index vetor of a and . For any instane � = a(j) to be reahed or persistently pending, itis neessary and su�ient that (j) be exeuted. So, (�) fully depends on the exeution39

of (j), whih preedes a(j) Pre0-wise. However, there again, � may be persistently pendingwhenever, either the while onstrut in�nitely loops, or there is a deadlok or in�nite loopwithin an iteration.At this point, we have just examined the four ases when the exeution of a statement instane isnot fully determined by the exeution of statement instanes whih preede it Pre0-wise. However,suh a full determination will stand for a wait instane to be reahed � not meaning that it willbe exeuted �; for an initial instane in a unit of work to be exeuted or persistently pending � notmeaning that it will �nally be exeuted �; for an initial instane in a unit of work whih happensto be a wait, to be persistently pending or reahed � not meaning that it will �nally get reahed,or exeuted; and for a endwhile to be exeuted or persistently pending.Now, let us examine the other ases.� a is a endpsetions. Then, let be the orresponding head of the psetions, and j theindex vetor ommon to and a. The exeution of a(j) is fully determined by the exeution(without fault) of the orresponding statement instanes whih end all the units of work inthis psetions. All these instanes preede a(j) Pre0-wise. They are spei�ed independentlyof the run.� a is a endpdo. Then, let be the orresponding loop head and j be the index vetor ommonto and a. Then, the ondition for a(j) to be exeuted is that (j) be exeuted without faultand that, in ase the index range is not empty (a irumstane determined by the exeutionof (j)), the statement instanes whih end all the parallel units of work be exeuted withoutfault. All these instanes preede a(j) Pre0-wise, and are spei�ed by the exeution of (j).� a is the �rst statement in a do loop body. Let be the loop head, j be the index vetorof and j :: k be the index vetor of a. Then, the exeution without fault of (j) fullydetermines the range of values of k whih will be onsidered, and for any of these values k,the ondition for a(j :: k) to be exeuted is the exeution without fault of (j) and (for theiterations other than the �rst) of the last statement instane in the loop body orrespondingto the previous iteration. Both statement instanes preede a(j :: k) Pre0-wise; the former isspei�ed independently of the run, and spei�es whether the latter is involved.� a is a enddo. Then, let be the orresponding loop head and j be the index vetor ommonto and a. Then, the ondition for a(j) to be exeuted is that (j) be exeuted without faultand that, in ase the index range is not empty (a irumstane determined by the exeutionof (j)), the last loop body instane (spei�ed by the exeution of (j)) be exeuted withoutfault. Both statement instanes preede a(j) Pre0-wise.� a is the �rst statement in the then or else part of a if. Let be this if. The exeution of aninstane of a is fully determined by the exeution without fault of the orresponding instaneof .� a is a endif. Let be the orresponding if, and j be the index vetor ommon to a and. The ondition for a(j) to be exeuted is the exeution without fault of (j) and of someinstane � ending the then part or the else part � spei�ed by the exeution of (j). Thesetwo instanes preede a(j) Pre0-wise. 40

� a is the �rst statement in a while body, i.e. the test of the boolean ondition. Let j bethe index vetor of the while head and j :: k be the index vetor of a. The ondition fora(j ::k) to be exeuted is the exeution of (j) and (for the iterations other than the �rst) theexeution without fault of the last statement instane in the while body orresponding to theprevious iteration. Both instanes preede a(j ::k) Pre0-wise, and are spei�ed independentlyof the run.� a is the seond statement in a while body, i.e. the statement following the test statement wehave just onsidered, here denoted b. Let i be the index vetor of b and a. The exeution ofa(i) is fully determined by the exeution without fault of b(i) (and the result of the test doneby b(i))� The remaining ase is the most straightforward: a has an immediate predeessor b, of sameindex vetor j, and the ondition for a(j) to be exeuted is exatly that b(j) be exeutedwithout fault. JAppendix B: Proofs of Lemmas 2 and 3Proof of Lemma 2Lemma 2 is involved in the proof of Theorem 1 (Setion 5), in point 1. We assume the hypothesesof Theorem 1.Lemma 2 We assume the hypothesis of semanti equivalene up to date � � 1, and a statementinstane exeuted at � in P. For any statement instane � suh that Exes(�) and Pres(�;), wehave Exe(�) and Pre(�;).This result also holds if we replae here by any statement instane exeuted before � in P.Proof : We will prove the result involving ; the latter extension will be straightforward. Aftergiving a preliminary remark, we will prove the result in the restrited ase when we have Pre0(�;);afterwards, we will derive the extension to the ase when we have Pres(�;) and not Pre0(�;).Preliminary remark. In a deadlok or in�nite loop situation, let � be a persistently waiting or pend-ing statement instane. No instane � suh that Pre0(�; �) an be exeuted. This straightforwardlyresults from the exeution model and the de�nition of Pre0. (In other words, the exeution �owannot by-pass a deadlok nor an in�nite loop.)Considering Pre0. So we have Exes(�) and Pre0(�;). We straightforwardly have Pre(�;), beausethe ontrol preedene Pre0 is ommon to all runs (�3.3). Suppose that some instane � exeutedin S and suh that Pre0(�;), is not exeuted in P. (then, � is learly not the �rst statement inthe program: Lemma 1 applies to �). We will derive that, in this ase, some other instane �1 suhthat Pre0(�1; �) is also exeuted in S but not in P, whih will then lead to a ontradition.Let us apply Lemma 1 to the exeution of � in S. Aording to hypotheses (ii) and (iii) ofTheorem 1, there is no persistently waiting or pending statement instane in S. Therefore, aordingto Lemma 1, Exes(�) depends on some instane(s) �i exeuted in S, and suh that Pre0(�i; �), henePre0(�i;). Therefore, if all these �i were exeuted in P, they would be exeuted before date � ,41

hene the semanti equivalene, whih would imply that � be reahed or persistently pending in P.So, in P, the non exeution of � would imply one of two things. Either all �i are indeed exeuted inthis parallel run but � is persistently waiting or pending, thus partiipating in a deadlok or in�niteloop situation. This possibility is ruled out by the above preliminary remark: having Pre0(�;)would prevent from being exeuted, as it is assumed to. There remains the possibility that atleast one of these �i is not exeuted in this run: let it be denoted �1.Thus, assuming that � is not exeuted in P implies that some other instane, �1, preeding �Pre0-wise, is not exeuted either in P, though it is in S.This argument may be repeated for �1: thus, we would �nd an in�nite sequene (�0 = �, �1,�2,...) suh that every �i would be exeuted in S and preeded (Pre0-wise) by the next one in thesequene. This ontradits the simple fat that there are a �nite number of exeution dates betweenthe program start and any step it reahes, in any run15.Extending to Pres. Suppose that some instane � suh that Pres(�;) and not Pre0(�;) is exeutedin S. Pres(�;) is realized through synhronizations, i.e., as previously explained, through one orseveral paths of the form: �! �1 or � = �1�1 !1 ! �2 !2 ! � � � ! �n !n!n ! where, again, ! denotes a Pre0 relation, �i denotes a post, !i denotes a wait, and denotes asynhronization link Syns; moreover, all the �i and !i are exeuted in S (remember the �transitivelosure modulo Exes� involved in Pres). We have !n ! and not !n = beause of the restritionwe have introdued (�3.3) in the de�nition of Pres.We have !n ! , i.e. Pre0(!n;); therefore, aording to the �rst part of this lemma, !n isexeuted before date � in P. By upward reurrene, we will prove that all �i and !i, and �nally�, are exeuted before � in P. Let us assume that !i is exeuted before � . Then, the reurrenehypothesis applies to !i and any variable involved in !i, i.e. to the event involved in !i, "!i : allomputations of "!i performed before the exeution of !i are idential in both runs and ourred inthe same order. So, sine we have Syns(�i; !i), �i was exeuted in P before !i and its exeutionmade possible the exeution of !i, in P as well as in S: we have Syn(�i; !i) (�3.4).Let us now onsider the ase i > 1 and derive the exeution of !i�1. Sine we have Pre0(!i�1; �i)and Exes(!i�1), aording to the �rst part of the lemma, !i�1 is exeuted before �i, hene beforedate � , in P. Thus, we onlude that !1 is exeuted before � in P. The above reasoning then ensuresthat �1 too is exeuted before � in P. Now, we have either Pre0(�; �1) (and Exes(�)), or � = �1,whih implies that � is indeed exeuted before � in P; furthermore, we have Pre(�;), by transitivelosure modulo Exe. J15In this reasoning, it is ruial to have Exes(�i), together with Pre0(�i+1; �i), to obtain the ontradition, sinethe ordering Pre0 is not well-founded (beause of the way do and pdo loops generate sequenes of statement instaneswhih are in�nite on both sides).
42

Proof of Lemma 3Lemma 3 is involved in the proof of Theorem 1 (Setion 5), in point 5. We assume the hypothesesof Theorem 1.Lemma 3 We assume the semanti equivalene along P. Let be a wait instane, deadloking inP. For any statement instane � suh that Exes(�) and Pres(�;), we have Exe(�) and Pre(�;).Proof : The derivation is quite similar to the one of Lemma 2 above. First, we bring an addendumto the preliminary remark in the proof of Lemma 2. We had observed this: � being a persistentlywaiting or pending statement instane, no instane � suh that Pre0(�; �) an be exeuted. Now,suh an instane � annot be a reahed and deadlokingwait instane either. This straightforwardlyresults from the exeution model and the de�nition of Pre0.Considering this preliminary remark, the proof of lemma 2 an be easily adapted here. JReferenes[1℄ A. Aho, R. Sethi, and J. D. Ullman. Compilers. Addison-Wesley, 1986.[2℄ L. Bougé. Sémantiques du parallélisme : un tour d'horizon. Juillet 1988. http://www.ens-lyon.fr/~bouge/Researh.[3℄ D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synhronization in a parallelprogramming tool. In 2nd ACM SIGPLAN Symp. on Priniples and Pratie of Parallel Pro-gramming, pages 21�30, Seattle, marh 1990. ACM Press.[4℄ G. Caplain. Propriétés de orretion séquentielle dans un langage parallèle à mé-moire partagée. PhD thesis, Eole Nationale des Ponts et Chaussées, septembre 1998.http://ermis.enp.fr/theses/.[5℄ G. Caplain. Cheking sequential orretness in shared-memory parallel programs. In TheEighth International Colloquium on Numerial Analysis and Computer Siene with Applia-tions, Plovdiv, Bulgaria, August 1999. Proeedings to be published.[6℄ G. Caplain, R. Lalement, and T. Salset. Semanti analysis of a ontrol-parallel extension ofFortran. Tehnial Report 93-18, CERMICS, 1993.[7℄ G. Caplain, R. Lalement, and T. Salset. Cheking the serial orretness of ontrol-parallelprograms. In Parallel Arhitetures and Languages Europe, pages 741�744, Athens, Greee,July 1994. Springer Verlag, LNCS 817.[8℄ J.F. Collard, D. Barthou, and P. Feautrier. Fuzzy array data�ow analysis. ACM SIGPLANSymp. on Priniples and Pratie of Parallel Programming, July 1995.[9℄ R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadek. E�iently omputing statisingle assignment form and the ontrol dependene graph. ACM Transations on ProgrammingLanguages and Systems, 13(4):451�490, Otober 1991.43

[10℄ M.B. Dwyer. Data Flow Analysis for Verifying Corretness Properties of Conurrent Programs.PhD thesis, University of Massahusetts, Amherst, MA, September 1995.[11℄ P. Feautrier. Data�ow analysis of array and salar referenes. Int. Journ. of Parallel Program-ming, 20(1):23�53, Feb. 1991.[12℄ P. B. Gibbons and E. Korah. Testing shared memories. SIAM Journal on Computing,26(4):1208�1244, 1997.[13℄ C.A. Gunter. Semantis of Programming Languages. MIT Press, 1992.[14℄ M. P. Herlihy and J. M. Wing. Linearizability: A orretness ondition for onurrent objets.ACM Transations on Programming Languages and Systems, 12(3):463�492, 1990.[15℄ K.L. Johnson, M.F. Kaashoek, and D.A. Wallah. CRL: High-performane all-software dis-tributed shared memory. In ACM Symposium on Operating Systems Priniples (SOSP'95),pages 213�228. ACM Press, Deember 1995.[16℄ R. Lalement. Logique, rédution, résolution. Masson, 1990.[17℄ L. Lamport. Time, loks and the ordering of events in a distributed system. Comm. ACM,21:558�564, 1978.[18℄ L. Lamport. How to make a multiproessor omputer that orretly exeutes multiproessprograms. IEEE Trans. Comput., C�28:690�691, 1979.[19℄ S.P. Mastiola. Stati detetion of deadloks in polynomial time. PhD thesis, Rutgers University,May 1993.[20℄ S. Muhnik. Advaned Compiler Design Implementation. Morgan & Kaufman, 1998.[21℄ S. Muhnik and N. Jones. Program Flow Analysis: Theory and Appliations. Prentie-Hall,1981.[22℄ OpenMP. A proposed industry standard API for shared memory programming. Tehnialreport, Otober 1997. http://www.openmp.org/.[23℄ C. Panake. Parallel Proessing Model for High Level Programming Languages. ANSI, Marh1992. (Proposed Standard).[24℄ C.H. Papadimitriou. The serializability of onurrent database updates. J.ACM, 26:631�653,1979.[25℄ M. Raynal. About logial loks for distributed systems. Publiation interne IRISA no 607,otobre 1991.[26℄ T. Salset. Corretion séquentielle de programmes parallèles dans le modèle asynhroneet mémoire partagée. PhD thesis, Eole Nationale des Ponts et Chaussées, juillet 1997.http://ermis.enp.fr/theses/.[27℄ J. Subhlok. Analysis of Synhronization in a Parallel Programming Environment. PhD thesis,Rie University, April 1998. 44

[28℄ G. Winskel. The Formal Semantis of Programming Languages. MIT Press, Cambridge, Mass.,1993.[29℄ M. Wolfe. Optimizing Superompilers for Superomputers. MIT Press, Cambridge, Mass., 1989.[30℄ M. Wolfe. High Performane Compilers for Parallel Computing. Addison-Wesley, 1996.[31℄ X3H5. FORTRAN 77 Binding of X3H5 Model for Parallel Programming Construts. ANSI,September 1992. (draft version).[32℄ H. Zima and B. Chapman. Superompilers for Parallel and Vetor Computers. ACM Press,New York, 1990.

45

