
Che
king sequential
orre
tness in shared-memory parallelprogramsGilbert Caplaine-mail:
aplain�
ermi
s.enp
.frCERMICS Resear
h Report 99-181O
tober 1999Abstra
tThis resear
h report brings a few
omplements to a previous paper [4℄ we will heavily refer to.Most of the results we derive here have been presented in an invited le
ture at the Eighth Inter-national Colloquium on Numeri
al Analysis and Computer S
ien
e with Appli
ations (Plovdiv,Bulgaria, Aug.1999) [3℄.1 Introdu
tionWe are interested in a property of
orre
tness of programs written in a parallel language. Thisproperty is a semanti
 equivalen
e between the parallel program and its sequential version, thatwe de�ne. In the framework we are
onsidering, a parallel program is viewed as a parallelizationof some given sequential program � basi
ally, this parallelization will
onsist in parallelizing loopsand introdu
ing event syn
hronizations � and we require that the results of any run of the parallelprogram be identi
al to those of the given sequential program. In this
ontext, the improvementsought through the parallelization lies only in the ability to run the program faster, by allowingseveral parts of it to be exe
uted simultaneously, on several available pro
essors. Considering thisproperty is relevant in many numeri
al analysis appli
ations.We
onsider the shared-memory programming model, but programs written in our language maybe fruitfully
ompiled towards distributed-memory ma
hines as well.The main result we have obtained is a theorem whi
h ensures this
orre
tness property undersome hypotheses, mainly a
ondition of preservation of data dependen
es. These hypotheses involvethe semanti
s of the sequential version only: in other words, due to our result,
he
king the
orre
t-ness of any run of some parallel program boils down to
he
king some properties of its sequentialversion only. This theorem is presented and derived in [4℄.This theorem
ould be used in the design of a tool to stati
ally
he
k the
orre
tness of parallelprograms, i.e. perform a
he
k on the program sour
e. A preliminary appli
ation, dealing with asubset of our language, is developed in [5, 8℄.In some spe
i�

ases, in whi
h a parallel program is dependent on input data in some way, a
ertain observation of one sequential run allows to derive whether the program is sequentially
orre
tfor any values of the input data. This possibility of dynami

he
king is explained in Se
tion 3.1

In Se
tion 4, we present a possible extension of the event syn
hronizations
onsidered previously.In Se
tion 5, we present an extension of our theorem, by introdu
ing
riti
al se
tions, then
onsidering a weakened (i.e. generalized) version of our
orre
tness property.2 The semanti
 equivalen
e theoremSome of the basi

on
epts we
onsider have been introdu
ed in [1℄. In the development of shared-memory parallel programs, the most di�
ult
hallenge is to avoid data ra
es, a
ir
umstan
e
orre-sponding to data dependen
es. A data dependen
e links two a

esses to the same variable (memorylo
ation) when at least one of these a

esses is a write. In order to ensure that the parallelizedprogram meets the semanti
 equivalen
e requirement, it must be
he
ked that every data depen-den
e is preserved, i.e. that the two
orresponding a

esses operate in the right order (this is thedependen
e implies pre
eden
e requirement).This dependen
e preservation paradigm is fairly well-known, to the point that some of its in-tri
a
ies may es
ape at �rst sight. What does �dependen
e implies pre
eden
e� pre
isely mean?At �rst sight, it should be interpreted as �dependen
e (de�ned in the sequential version) impliespre
eden
e (ensured during a run of the parallel version)�. But, what if some statements exe
uted inthe sequential version are not exe
uted in some parallel run? or if their exe
ution does not involvethe same variables (as input or output) in both runs? Su
h
ir
umstan
es may arise sin
e, in thelanguage we are
onsidering, loop bounds and subs
ript expressions in arrays may
ontain variables:in other words, we do not limit ourselves to stati

ontrol programs, a limitation adopted very oftenin the literature. As long as we have not proved the semanti
 equivalen
e we are
onsidering, there-fore, su
h intri
a
ies imply that a �dependen
e implies pre
eden
e� requirement has no well-de�nedmeaning at this point.In order to deal with su
h intri
a
ies, in our sear
h for a stati

orre
tness
riterion, the seman-ti
 equivalen
e theorem we outline here states su�
ient
orre
tness
onditions whi
h refer to thesemanti
s of the sequential version only, i.e. involve predi
ates that are de�ned on the sequentialversion. (For instan
e, we address the possibility of exe
ution faults in parallel runs. Only thesequential version is presupposed not to produ
e exe
ution faults.) Due to our theorem,
he
kingthe semanti
 equivalen
e between any run of some parallel program and the sequential run of thisprogram, boils down to
he
king some predi
ates de�ned on the sequential version of this program.Espe
ially, this opens the possibility to use all resour
es of data�ow analysis � whi
h is inherentlyadapted to the study of sequential programs � in the pro
ess of applying our theorem to
he
k the
orre
tness of a parallel program.The languageThe language we
onsider allows for parameters, i.e. �variables� that get a value �on
e and for all�when the program starts. Thus, in our framework, a program in fa
t represents a �
lass of programs�di�ering from one another by the values of parameters. A program instan
e is obtained from aprogram by assigning
onstant values to its parameters.Apart from usual sequential
onstru
ts (IF-THEN-ELSE
onditionals, stati
 DO and dynami
WHILE loops), the language we
onsider provides for parallel loops (denoted PDO) and event POST/WAIT2

a0: A(0)=... A(0)=...p0: post(E(0))
ontinuepdo I=1,N do I=1,N... ...w: wait(E(I-1))
ontinueb: ...=A(I-1) ...=A(I-1)
: A(I)=... A(I)=...p: post(E(I))
ontinue... ...endpdo enddoFigure 1: An example of a parallel loop with syn
hronizations (left) and its sequential version (right)syn
hronizations1. Figure 1 shows an example of a parallel loop with event syn
hronizations. Thesequential version, on the right, sets the intended semanti
s: the output A(I-1) of statement in-stan
e
(I-1) is used as input in statement instan
e b(I), as spe
i�ed by the sequential order ofexe
ution of the do loop. The syn
hronization statements w and p have been introdu
ed in theparallel version, in order to preserve this exe
ution order on
e the do is parallelized into a pdo:the wait statement w at iteration I waits for the event E(I-1) to have re
eived the value postedthrough the post statement p at iteration I-1 (or the statement p0 for I=1). This exempli�esthe semanti
s of syn
hronization statements: a variable type event is
onsidered, with two values:
leared (the initial value at type de
laration) and posted. A post (resp. a
lear, not exempli�edhere) sets value posted (resp. value
leared) to the event variable it refers to. A wait reads the eventit refers to: if this event is posted, the wait
ontinues; if this event is
leared, the wait waits andtries again later. Thus, a wait is led to wait for the event to be posted by the exe
ution of somepost statement, as was intended2. Of
ourse, the events E(I) must not have been posted beforethis loop without having been
leared meanwhile, nor have been posted elsewhere in parallel, in
asethis loop is nested in a larger parallel
onstru
t (More on this later).A waiting deadlo
k o

urs when a wait waits in vain for an event whi
h never gets posted. InFigure 1, for instan
e, omitting the statement p0 leads to a deadlo
k on statement instan
e w(1)be
ause E(0) does not get posted.The sequential version of a given parallel program is obtained by transforming pdo into do anddisabling the post, wait and
lear statements: by �disabling�, we mean that, in the sequentialversion de�ned here, they are
onverted into
ontinue statements whi
h do nothing, but we retainthe possibility, in the following developments, to keep tra
k of event referen
es, allowing ourselvesto
onsider what o

urs to these referen
es as though they were indeed addressed in a sequentialrun.Further developments about the language we
onsider and about the exe
ution model are pro-vided in [4, Se
tion 2℄. Regarding the exe
ution model, let us just mention the fa
t that, due to1Our language also provides for parallel se
tions, a
onstru
t spe
ifying that several se
tions of
ode may exe
utein parallel. We will not
onsider them spe
i�
ally here.2The exe
ution of posts and waits also involves variable updatings: variables shared in the parallel
onstru
t areupdated. In the example shown here, this makes sure that the output A(I-1) of
(I-1) is indeed available as inputin b(I), in the lo
al memory of iteration I. We do not address this point here, for the sake of brevity; see [4, �2.2℄.3

resour
e limitations, iterations of a parallel loop may not all exe
ute in parallel at on
e, but beloaded on parallel pro
esses, ea
h pro
ess having possibly several iterations in
harge (whi
h it thenexe
utes sequentially). Moreover, within our framework, we will require that the sequential
orre
t-ness be ensured independently of the number of pro
esses whi
h will turn out to be available forsome run of the program � and even in the extreme
ase when there is only one pro
ess available, inwhi
h
ase the parallel program will, in fa
t, run sequentially (ordered single pro
ess run). It is easyto derive that the ordered single pro
ess run is identi
al to the run of the sequential version up to awaiting deadlo
k if any. This is why, in the theorem to follow,
onsidering the no-waiting-deadlo
khypothesis, the referen
e to the sequential version takes the form of a referen
e to the ordered singlepro
ess run.Dependen
es and pre
eden
esLet us brie�y outline a few notions whi
h are further developed in [4℄.Notion of statement instan
e [4, �2.1℄.Classi
ally (see e.g. [10℄), sin
e a statement within a loop may exe
ute several times, ea
h ofthese exe
utions is termed as a statement instan
e. This usual point of view brings a di�
ulty inour framework: sin
e our language allows for variables in do and pdo loop bounds and (obviously)in while test expressions, the set of instan
es generated by one statement will generally not beknown stati
ally. Thus, we have been led to introdu
e a di�erent de�nition of a statement instan
e.To every statement in the program, is asso
iated a (possibly empty) index ve
tor, re
ursivelyde�ned as follows. Let a be a statement. If a is not
ontained in a loop, its index ve
tor is empty:then, a generates one statement instan
e. Otherwise, we
onsider the innermost loop
ontaining a.Let
 be the header of this innermost loop, and i be the (possibly empty) index ve
tor of
. Theindex ve
tor of a is then obtained as the
on
atenation of i and a
omponent j, denoted i ::j. Every(exe
uted or not) instan
e
(i) generates an in�nity of instan
es a(i ::j), as follows: j takes rationalinteger values if the loop is a do or pdo (j then
orresponds to the iteration index of the loop3); jtakes positive integer values if the loop is a while.Through this formalism, a statement
ontained in a loop generates a
ountable in�nity of state-ment instan
es but, in any given run not leading to an in�nite loop, only a �nite number of themwill
ome to be exe
uted.Sequential exe
ution predi
ate Exes.We introdu
e a predi
ate, denoted Exes, expressing the
ondition for a statement instan
e tobe exe
uted in the sequential version. Under the extra
ondition that the sequential programterminates, i.e. does not enter an in�nite while loop, Exes is well-de�ned and its expression israther straightforward for the language we are
onsidering.For a statement a and an index ve
tor i su
h that the instan
e a(i) is exe
uted in the sequentialversion, we may
onsider the environment in whi
h the exe
ution of a(i) takes pla
e. For anyexpression exp whi
h happens to be evaluated through the exe
ution of a(i), its value is de�ned inthis environment: it will be denoted [[exp℄℄�a(i). We must emphasize that [[exp℄℄�a(i) is unde�nedwhenever a(i) is not exe
uted. This leads us, in the expressions of Exes, to make use of the sequential
onjun
tion, denoted &, whi
h di�ers from the logi
al
onjun
tion, denoted ^, as follows: if A and3In our language, do and pdo loops are normalized: the in
rement is set to 1.4

B are boolean expressions (taking values true, false or unde�ned), A & B is false whenever A isfalse, even if B is unde�ned, whereas A ^B is unde�ned in this
ase.Let a be a statement. Exes(a) essentially depends on the nesting of a in a loop or if
onstru
t.If a is not nested, Exes(a) = true. If a is nested, we
onsider the innermost do, pdo, if or whilea is nested in.If the innermost nesting of a is in a do or pdo loop of header
, with lower and upper boundexpressions
:lb and
:ub respe
tively, let i denote the (possibly empty) index ve
tor of
 and i ::jdenote the index ve
tor of a. We then have:Exes(a(i ::j)) = Exes(
(i)) & ([[
:lb℄℄�
(i) � j � [[
:ub℄℄�
(i))Expressions of Exes in the other
ases � when the innermost nesting of a is in a while or in aif � are just as straightforward. They are provided in [4, �3.1℄.Dependen
e Dep [4, �3.2℄.Considering two statements a and b, indexed by i and j respe
tively, the predi
ate Dep(a(i); b(j))expresses that: �in
ase a(i) and b(j) are both exe
uted in the sequential version, in this order,then they both a

ess one same memory lo
ation (not
orresponding to an event variable � eventreferen
es are dealt with di�erently), at least one of them writing it�.Let a(i) and b(j) be two statement instan
es respe
tively involving referen
es expa and expb,referring to variables (other than event variables), these two referen
es not both being input refer-en
es. In
ase a(i) exe
utes in the sequential version, [expa�a(i)℄S denotes the variable expa refersto during that exe
ution. The relation � between variables to whi
h two distin
t referen
es aremade, means that they are the same variable. � denotes the sequential order. We
an give anexpression of Dep:Dep(a(i); b(j)) = (a(i)� b(j)) ^ ([expa�a(i)℄S � [expb�b(j)℄S)This expression of Dep is not ne
essarily de�ned when a(i) and/or b(j) is not exe
uted in thesequential version � it will then have boolean value unde�ned. This is why we will use Dep inexpressions su
h as: Exes(a(i)) ^ Exes(b(j)) & Dep(a(i); b(j))making use of the sequential
onjun
tion & introdu
ed above.Pre
eden
es Pre0, Syn
s and Pres [4, �3.3 & 3.4℄.The predi
ate Pres expresses the pre
eden
e relations whi
h would apply in the parallel program,as a
onsequen
e of the exe
ution model, assuming that the variables involved in the de�nition ofthese relations have their �sequential� values. Pres is obtained from a
ontrol pre
eden
e Pre0 (theexpression of whi
h is rather straightforward, and independent of any variables [4, �3.3℄) and asyn
hronization pre
eden
e Syn
s (
orresponding to the post/wait pairs). Syn
hronization pre
e-den
es Syn
s are more intri
ate to
onsider than
ontrol pre
eden
es Pre0. Espe
ially, in order forpost/wait pairs to indeed realize pre
eden
es as required, there are some
onditions to be met.For instan
e, we must avoid the
ase that several non mutually ex
lusive post statement instan
esare sus
eptible to trigger the exe
ution of one wait statement instan
e, in whi
h
ase no syn
hro-nization would be warranted between any of these posts and this wait. Su
h
onditions translate5

into requirements about the use of post/wait/
lear statements, whi
h are not detailed here forthe sake of brevity; they are explained and formally expressed in [4, �3.4℄. Let us just mention herethat these requirements pres
ribe that some pairs of syn
hronization statement instan
es be relatedby a
ontrol pre
eden
e Pre0.The semanti
 equivalen
e theoremLet us outline, without proof, the semanti
 equivalen
e theorem derived in [4, Se
tion 5℄:Theorem 1 Under the following hypotheses:i. The requirements about syn
hronizations alluded to above [4, �3.4℄ ;ii. No waiting deadlo
k in the ordered single pro
ess run [4, �4.4℄ ;iii. No in�nite loop in the ordered single pro
ess run;iv. For all statement instan
es a(i) and b(j),Exes(a(i)) ^ Exes(b(j)) & Dep(a(i); b(j))) Pres(a(i); b(j));the parallel program is semanti
ally equivalent to its sequential version. Espe
ially, no parallel run
an deadlo
k, nor in�nitely loop, nor produ
e an exe
ution fault.3 Dynami
 program
he
kingThe
on
ept of dynami
 program
he
king we will introdu
e now stems from an important remarkabout the assumptions of Theorem 1. Let us
onsider a parallel program instan
e (obtained by givingvalues to parameters). We assume that we know, by any means, that the ordered single pro
ess runterminates (i.e. does not enter an in�nite while loop). Then, it would be easy to derive that theproblem of the sequential
orre
tness of our program instan
e is de
idable, by a pro
edure whi
h
onsists in observing the ordered single pro
ess run (a sequential program) �from outside�, in orderto
he
k the hypotheses of Theorem 1 (other than the termination, assumed here).Obviously, this observation
on
erning a program instan
e does not seem very interesting at�rst sight, sin
e we would like to
he
k the
orre
tness of a parallel program instan
e through apro
edure less
ostly than running its sequential version ! However, this observation might revealinteresting in the following
ir
umstan
e: it most often happens that a parallel program is designedto run a great number of times, with di�erent values of input data. These data are parameters in oursense. It is interesting to
onsider
ases when it may be stati
ally derived (i.e. derived through ananalysis of the program sour
e) that the semanti
 equivalen
e property that we are
onsidering heredoes not depend on the values of data. Intuitively, these are situations when the �
ontrol variables�(loop bounds, tests in ifs and whiles, array subs
ripts) do not depend on data. Su
h situations
an be viewed as a generalization of the notion of stati

ontrol program (see e.g. [7℄)4. In su
h4In [7℄, a stati

ontrol program is a program in whi
h loop bounds depend only on
onstants, indi
es of loopsthey are nested in, and stru
ture parameters, a set of integer variables de�ned only on
e in the program, either asparameters in our sense, or from other stru
ture parameters previously de�ned. Our situation is di�erent, in thesense that �our�
ontrol variables may be modi�ed several times during a program run, even to the point of not beingknowable stati
ally � indeed we are not
onsidering a stati

ontrol property, but rather a
ontrol independent of dataone. 6

ases, it will be relevant to
onsider one program instan
e and endeavour to
he
k the
orre
tnessof the parallel program by observing a sequential run of this instan
e.We will provide su�
ient
onditions under whi
h the
orre
tness of a parallel program doesnot depend on data; then, we will mention possible appli
ations; afterwards, we will outline theprin
iples of a dynami
 veri�
ation pro
edure.The independen
e of
orre
tness with respe
t to dataWe
onsider a parallel program written in our language. We will derive that, under a few assump-tions, the
orre
tness (in our sense) of this program does not depend on the values of parameters.Theorem 2 We assume that there exists a set � of variables and parameters in the program, su
hthat the following assumptions are met:i. All parameters belong to � ;The three assumptions to follow refer to the sequential version: we fo
us on variables the referen
espoint to in statement instan
es exe
uted in the sequential version.ii. As soon as a referen
e to an element of � stands as input in a statement instan
e, the outputreferen
es of this statement instan
e point to variables of � ;iii. There is no referen
e to an element of � in a do or pdo loop bound expression, nor in a testof an if or while ;iv. There is no referen
e to an element of � in an array subs
ript expression.Then the assumptions of Theorem 1 do not depend on the values of parameters. Therefore, if aprogram instan
e meets the assumptions of Theorem 1, any other instan
e of the program whosesequential version does not produ
e an exe
ution fault is semanti
ally equivalent to its sequentialversion.Proof : We have to derive that, under the assumptions we have just mentioned, those of Theorem 1do not depend on the values of parameters. Let us �rst show that �
ontains all variables the valuesof whi
h depend on those of parameters in the sequential run (
ausal
losure of �), by deriving thata variable not belonging to �
annot be in�uen
ed dire
tly by variables and parameters belongingto �.During the sequential run of a program instan
e, let x be a variable not belonging to �, writtenby a statement instan
e �. There are three ways in whi
h this
omputation of x might be in�uen
eddire
tly by elements of �. (1) Su
h elements might in�uen
e the exe
ution of �, i.e. be involved inExes(�): this is ruled out by (iii) [4, �3.1℄. (2) Elements of � might be involved in the referen
esof �, i.e. in the designation of the variable x written by � and/or of the input variables used by �.This is ruled out by (iv). (3) At last, elements of � might be inputs of �. This is ruled out by (ii).The
ausal
losure of � is thus derived.As a
onsequen
e, due to (iii), the predi
ate Exes does not depend on parameters, nor does theprogram termination [4, �3.1℄. Due to (iv), the predi
ate Dep does not depend on parameters either(Se
tion 2). We know that Pre0 is independent of any variable [4, �3.3℄. Due to (iv), the event7

referen
es are independent of parameters; therefore,
onsidering the fa
t that Exes is independentof parameters, all the me
hanism of syn
hronizations (
onsidered in the sequential semanti
s, asrequired by Theorem 1), is independent of parameters: so, the requirements about syn
hronizationsand the no-deadlo
k
ondition, involved in Theorem 1, are independent of parameters as well. JLet us mention a weakness of this result: the fa
t that test expressions are required not todepend on data is
ertainly a limitation in many
ases.A few examplesThis �
ontrol independent of data� property will often be present in numeri
al analysis appli
ations.For instan
e, let us
onsider �nite-element programs. We wish to solve a system of equations on a
ertain physi
al domain, by an approximation making use of a mesh of this domain and
omputinga dis
rete set of values asso
iated to this mesh � for instan
e, values at the nodes. It will often o

urthat the parameters de�ning the mesh (number of nodes,
ontiguities...) are the
ontrol parametersof the program, determining the number of loop iterations and interfering in the subs
ripts ofve
tors and matri
es; whereas the quantities to be
omputed at the nodes will be �data dependent�variables, elements of � in our sense: variables not involved in the
ontrol stru
ture of the program.Then,
onsidering a �nite-element parallel program, in su
h
ir
umstan
es, the sequential
or-re
tness of this program will not depend (in the
ase, say, of time evolution) on the initial
onditionsnor the boundary ones, but only on the
ontrol stru
ture of the program, related to the de�nitionof the mesh.We
ould even
onsider a �nite-element parallel program allowing for a (
ontinuous) deformationof the mesh, in order to adjust to physi
al domains of various shapes (but same topology). Under the
ondition that the deformation and adjustment parameters are �data-dependent� in our sense, thesequential
orre
tness of the parallel program will be an invariant of these deformations. However,obviously, a
hange in the equations, for instan
e in order to solve a di�erent physi
al problem usingthe same mesh, may modify the dependen
e relations Dep, thus
reating a situation in whi
h thesequential
orre
tness property is not invariant.Dynami
ally
he
king a program instan
eIn light of the above
onsiderations, in many
ases, it may be relevant to try a dynami

he
king ofa program instan
e, through the observation of a sequential run (or, more a

urately, of an orderedsingle pro
ess run).Let us
onsider a parallel program the sequential version of whi
h meets the assumptions ofTheorem 2 and is guaranteed to terminate. This is the situation when it may be relevant toendeavor a dynami

he
king pro
edure. This pro
edure
an be des
ribed as follows.First, we make a stati
 analysis of the program sour
e, in order to try to
he
k the assumptionsof Theorem 1. We keep tra
k of those assumptions whi
h we do not su

eed to
he
k at this point� e.g. possible dependen
es whi
h do not seem to be preserved by pre
eden
es, or an un
ertaintyabout the no-deadlo
k
ondition.We then
onsider �valid� values of parameters, i.e. values su
h that the sequential version ofthe
orresponding program instan
e does not produ
e an exe
ution fault; and we
onsider the
orresponding ordered single pro
ess run. Or rather, alternatively, if we
an, we will prefer to8

onsider an ordered single pro
ess run with dummy parameters, i.e. a run during whi
h, in thesu

ession of exe
uted instan
es, the
omputations of the variables belonging to� are not performed,in order to save time. This is possible in prin
iple, due to the assumptions of Theorem 2.For instan
e, let us
onsider the statement:A(I,J+1) = B(I,J-N(I))*N(I-1)where A() and B() are variable arrays of �, N() is an array of �
ontrol� variables, not belonging to�, and I and J are indi
es of the two loops this statement is nested in. If e.g. the instan
e I=2,J=3of this statement is exe
uted, a partial evaluation, of the
ontrol expressions, is performed. Firstthe values of the loop indi
es are
onsidered, whi
h leads to instan
iate the statement:A(2,3+1) = B(2,3-N(2))*N(2-1)Then, the
ontrol variables are
omputed � let us assume that, when this instan
e is exe
uted,we have got for example: N(1)=3 and N(2)=6 ;
omputing the subs
ript expressions, we get:A(2,4) = B(2,-3)*3At this point, we refrain from evaluating the variables of �, and we keep tra
k of the fa
t thatthis statement involves:� as output: A(2,4)� as input: B(2,-3), N(2), N(1)During this single pro
ess run, the following observations are performed:� A deadlo
k situation on a wait is observable � the ordered single pro
ess run just stops atthat point. (If we are rather observing the sequential version, in whi
h the syn
hronizationsare �disabled� but still examined, it is easy to
he
k, for every visited wait instan
e, that theinvolved event is �posted� at that point.)� Along the run, the event referen
es appearing su

essively are re
orded, whi
h will permit todetermine the syn
hronizations pairs Syn
s as well as the pairs of syn
hronization instan
esbetween whi
h a pre
eden
e Pre0 will have to be
he
ked (Se
tion 2 and [4, �3.4℄). Thesear
h for these pairs of instan
es involves binary
omparisons between referen
es; therefore,its
omplexity is polynomial in the number of instan
es examined.� As the exe
ution pro
eeds through the parallel
onstru
ts that the stati
 analysis did notsu

eed to �validate�, variable referen
es (other than event ones) are re
orded, as we haveseen in the example above, in order to re
ord the dependen
e relations Dep the preservationof whi
h
ould not be derived stati
ally. More pre
isely, the stati
 analysis dete
ted andre
orded all statement pairs (a; b) possibly involved in a possibly unpreserved dependen
eDep(a; b); then, the dynami
 analysis re
ords pairs (�; �) of instan
es of a and b respe
tively,indeed involved in a dependen
e Dep(�; �). The sear
h for these pairs (�; �) involves binary
omparisons between referen
es; therefore, its
omplexity is polynomial in the number ofinstan
es examined thus. 9

On
e these steps are performed, we have to solve two problems involving graphs.�
he
k whether the Dep edges re
orded belong to the transitive
losure of the graph formedwith the Syn
s edges re
orded and the Pre0 edges (straightforwardly representable) (with therestri
tion that the paths
onsidered do not end with Syn
s edges: for this te
hni
ality, see [4,�3.3℄). This is a rather well-known graph problem, involving breadth-�rst sear
h algorithms.See e.g. [6, 9℄. The
omplexity of these algorithms is polynomial in the number of nodes,whi
h is (in the worst
ases) the number of exe
uted statement instan
es lo
ated in theparallel
onstru
ts that the stati
 analysis
ould not �validate�.�
onsidering the syn
hronization instan
e pairs (�;
) for whi
h a
ontrol pre
eden
e Pre0 isrequired,
he
k that we indeed get Pre0(�;
) or Pre0(
; �). This graph problem is easier thanthe previous one, due to the simpli
ity of the expressions of Pre0.The dynami
 veri�
ation pro
edure outlined here has an algorithmi

omplexity whi
h, in theworst
ases, is polynomial in the number of exe
uted statement instan
es � hen
e, this
omplexitywill be �big� in many interesting
ases. This is why it will be important to perform stati
 analysis�rst, in order to fo
us the dynami

he
king pro
edure on the di�
ult points; and to apply su
h apro
edure only to programs designed to run a su�
ient number of times.4 Event syn
hronizations with guards
lausesIn our exe
ution model [4, �2.2℄, we have mentioned that, whenever a post or a wait exe
utes in aparallel
onstru
t, variables shared in this
onstru
t are updated. In order to avoid useless updates,it may be of interest to limit these updates to one or several referen
es spe
i�ed in the post orwait statement (the spe
i�
ation of su
h referen
es to be updated is
lassi
ally termed as a guards
lause; su
h referen
es will be said to be guarded by the syn
hronization statement). Here we willadopt the following syntax:POST (<event>, <referen
e-list>)WAIT (<event>, <referen
e-list>)CLEAR (<event>)The referen
e-list following the event referen
e in the argument list of the post and waitstatements,
ontains the guarded referen
es: the referen
es (in the exe
ution environment) of thevariables whi
h will be updated. Figure 2 shows an example.In this example, the syn
hronization aims at ensuring that the value of A(I-1) used as inputby statement instan
e b(I) is the value
omputed by statement instan
e a(I-1) (or, for I=1, bystatement a0) ; this time, the pre
eden
e ensured thus will not involve any other variables. It ispossible to introdu
e su
h syn
hronizations with guards
lause in our formalism: our results remainbasi
ally un
hanged.In su
h an extension, our predi
ates Dep, Syn
s and Pres would be modi�ed as follows.The dependen
es Dep (Se
tion 2) will now involve three arguments: the two statement instan
esas previously, and the variable referen
e involved in the dependen
e, in the sequential version:10

a0: A(0)=...p0: post (E(0),A(0))pdo I=1,N...w: wait (E(I-1),A(I-1))b: ...=A(I-1)a: A(I)=...p: post (E(I),A(I))...endpdoFigure 2: An example of post/wait syn
hronization with guards
lauseDep(a(i); b(j); u) = (a(i)� b(j)) ^ ([expa�a(i)℄S � [expb�b(j)℄S � u)The predi
ate Syn
s, too, will involve three arguments: there again, the third argument is avariable referen
e involved (in the sequential version) in the guards
lauses of the post and thewaitinstan
es of the syn
hronization pair. The requirements about the use of syn
hronization statements(Se
tion 2 and [4, �3.4℄) remain un
hanged (for instan
e, we must still rule out the possibility thattwo non mutually ex
lusive post statement instan
es be able to trigger onewait statement instan
e,even though di�erent referen
es would be guarded in these two instan
es). Under these assumptions,a predi
ate Syn
s(�;
; u) expresses that we have Syn
s(�;
) in the previous sense � i.e. assumingthe sequential semanti
s, the exe
ution of � triggers the exe
ution of
: (�;
) is a syn
hronizationpair � and furthermore, that u is a variable pointed to by a guarded referen
e of � and by a guardedreferen
e of
, under the sequential semanti
s.The predi
ate Pres will be obtained from the
ontrol pre
eden
e Pre0 (whi
h remains un
hanged)and the �guarded� syn
hronizations Syn
s, by a transitive
losure, as previously [4, �3.3℄, throughrelations su
h as:Pre0(�; �1) ^ Syn
s(�1; !1; u) ^ Pre0(!1; �2)^: : : ^ Syn
s(�n; !n; u) ^ Pre0(!n; �)) Pres(�; �; u)Then, in Theorem 1, the dependen
e preservation assumption be
omes:For all statement instan
es a(i) and b(j) and for all variables u,Exes(a(i)) ^ Exes(b(j)) & Dep(a(i); b(j); u)) Pres(a(i); b(j); u)Adapting the proof of Theorem 1 [4, Se
tion 5℄ to su
h extensions is rather straightforward(though tedious).
11

5 Introdu
ing
riti
al se
tionsCriti
al se
tions are a parallel stru
ture that we have not
onsidered yet. Let us
onsider the simpleexample of Figure 3.The sequential loop on the left is designed to
ompute the A(I)'s and provide their sum, inT . Here A() has a numeri
 type (integer or real), the same as T . The sum T obtained at theend of the loop does not depend on the order in whi
h the A(I)'s are added5. Assuming thatthe
omputations of A(I) are independent and
an therefore be performed in parallel, it may beinteresting to parallelize the loop in su
h a way that the order in whi
h the instan
es of s exe
ute isnot
onstrained. However we must ensure that these instan
es do not exe
ute simultaneously, andthat the intermediate values obtained for T are transmitted between these
onse
utive instan
es.This is the fun
tion of the
riti
al se
tion here introdu
ed in the parallel version of the loop (rightof Figure 3).The variable V standing in the statement
riti
al se
tion is a lo
k, the possible values ofwhi
h are lo
ked and unlo
ked. One lo
k variable V must be shared by all
riti
al se
tion instan
eswhi
h, pre
isely, should not exe
ute at the same time. The variables mentioned after V in theargument list of the
riti
al se
tion statement � in the example, variable T � are those variablesguarded in the
riti
al se
tionIn order to ensure the right behavior, the exe
ution model of
riti
al se
tions is as follows.� Initially, the value of the lo
k V is unlo
ked.� Whenever a pro
ess rea
hes a
riti
al se
tion instan
e, it tests the value of V . If thisvalue is lo
ked, the pro
ess waits and performs the same test again later (similarly to what await does when the involved event is
leared) � presumably, another
riti
al se
tion instan
esharing the same lo
k is running right at that moment. If this value is unlo
ked, the pro
esssets value lo
ked to V , inputs from the shared memory the value(s) of the guarded variable(s),and
ontinues exe
ution (thus entering the
riti
al se
tion).� Whenever a pro
ess rea
hes a end
riti
al se
tion instan
e, it outputs to the sharedmemory the value(s) of the guarded variable(s), then sets value unlo
ked to V (whi
h hadvalue lo
ked at that moment), then
ontinues exe
ution (thus exiting the
riti
al se
tion).Introdu
ing
riti
al se
tions here,
onstitutes an enlargement of our previous framework, in thefollowing sense. Previously, we were interested in a property of semanti
 equivalen
e between aparallel program and its sequential version: a requirement that both programs perform the same
omputations, produ
ing the same outputs, not ne
essarily in the same order. In the
ontrary,
onsidering
riti
al se
tions, the idea is not to require that some intermediate values (of T , in theabove example) be identi
al to those obtained in the sequential version, provided that the �nal valueof T , obtained at the end of the loop, is the same in both versions.Let us spe
ify how the previous results
ould be extended so as to allow the use of
riti
alse
tions in the programs
onsidered here.5Here, we negle
t the well-known problems arising from the fa
t that e.g. addition of reals, as implemented, is notne
essarily
ommutative nor asso
iative � due to approximations in the representation of reals.12

T=0 T=0do I=1,N pdo I=1,N... ...A(I)=... A(I)=...
riti
al se
tion(V,T)s: T=T+A(I) T=T+A(I)end
riti
al se
tion(V,T)... ...enddo endpdoFigure 3: An example of a
riti
al se
tion. The sequential version is shown on the left.We will not deal with
riti
al se
tions in their most general form, but we will study a fairlygeneral s
heme, represented in Figure 4. The element of program displayed here may be itselfnested in a larger parallel
onstru
t.Here, A() and T have not ne
essarily a numeri
al type (integer or real), and may
orrespond tomore
omplex stru
tures. We will fo
us on variable T , whi
h is both an input and output variable inthe
riti
al se
tion. (Su
h a variable is termed as a redu
tion variable.) It would be straightforwardto show that this s
heme
an represent
ases when there are several statements in the
riti
alse
tion � in su
h
ases, these statements are
ondensed into the fun
tion fun
() � provided thatwe
orrelatively
ondense into variable T any memory lo
ation whi
h is both read and written byfun
(), and into variable A(I) any memory lo
ation whi
h is just read by fun
(). (The underlyingidea here, is that T must
ontain everything whi
h is transmitted from a
riti
al se
tion instan
e tothe next.)Using this
riti
al se
tion pattern may reveal useful whenever the
omputation of A(I) by a istime
onsuming whereas the
all to fun
 is relatively fast.Before mentioning the validity
onditions of this parallelization, let us give an example:
on-strained optimization. Every loop iteration I sear
hes for an admissible solution to some
onstraintproblem, a

ompanied with a
ost. Both the admissible solution (if any) and its
ost are assigned toan adequately typed variable A(I). If iteration I �nds no solution, A(I) is assigned a value denoted? . The variable T , typed similarly to A(I), is initialized at ? . fun
(;) is a fun
tion whose twoarguments have that same type, and whi
h returns as output the argument whi
h is �minimal� forthe ordering de�ned as follows: the order of the asso
iated
osts,
ompleted by the data that ?is �greater� than the other values. At the end of the loop, T
ontains ? whenever no admissiblesolution has been found, and a solution with minimal
ost in the
ontrary
ase. In su
h a situation,and provided that no two solutions have equal minimal
osts (more on this in a moment), thisparallel loop returns the same result as its sequential
ounterpart.In this
riti
al se
tion s
heme, it is straightforward to see that the (weakened) semanti
 equiv-alen
e holds under the two following
onditions:� All dependen
es whi
h stand between iterations of this loop, or between any one of them andthe rest of the program, are preserved by pre
eden
es, with the ex
eption of a dependen
eDep(s; s) involving the variable T (the expression of whi
h is: Dep(s(i); s(j)) = (i < j) �13

T=eps...pdo I=1,N...a: A(I)=...
riti
al se
tion(V,T)s: T=fun
(A(I),T)end
riti
al se
tion(V,T)...endpdoFigure 4: A
riti
al se
tion s
hemeremember the referen
e to the sequential version in the de�nition of dependen
es). As a
onsequen
e, in the loop, T is neither read nor written elsewhere than in statement s.� The fun
tion fun
() has a property of iterative symmetry, whi
h means that the �nal result Tof the appli
ation of fun
() to the N values A(I) (T being initialized at eps), does not dependon the order in whi
h these N values are dealt with.Indeed, due to the �rst
ondition, the intermediate values of T , whi
h are not ne
essarily thesame in some parallel run P being
onsidered, as in the sequential run S, are not used elsewherethat in the su

essively exe
uted instan
es of s. The
riti
al se
tion ensures that, in P, the instan
esof s exe
ute
onse
utively and that the intermediate values of T are duly transmitted from everyinstan
e to the next one exe
uted. Finally, due to the se
ond
ondition, these di�erent
omputationsof T provide the same value at the loop exit.Weakening the semanti
 equivalen
e requirementIn the
onstrained optimization problem we have just
onsidered as an example, we have mentionedthe limitation that no two admissible solutions of minimal
ost should exist. If this limitation doesnot stand, the fun
tion fun
() has not the iterative symmetry property. This simple remark suggestssome possibilities to extend our framework a bit further.In [4℄ and in the previous se
tions of this paper, we have studied a semanti
 equivalen
e require-ment, a

ording to whi
h all variables should undergo the same
omputations, and therefore re
eivethe same values, in any parallel run P as in the sequential run S. We have just introdu
ed
riti
alse
tions, as a means to weaken our semanti
 equivalen
e requirement in the following way: someintermediate
omputations are no longer required to be identi
al in the two runs S and P, providedthat, due to an iterative symmetry property, the ��nal� results of these intermediate
omputationsare still the same in both runs.We
ould
onsider a further generalization of this semanti
 equivalen
e requirement, along thefollowing line: we still pres
ribe that the sequential run S and any parallel runP share some propertypertaining to the
omputations they make, this
ommon property not ne
essarily being the semanti
14

equivalen
e we have
onsidered before (the �maximal� requirement whi
h may be pres
ribed in this
ontext).In the example previously mentioned, the
onstrained optimisation with possibility of equal-
ost solutions, we obtain some weakened semanti
 equivalen
e, whi
h
an be expressed as follows:�whenever S �nds that there is no admissible solution, so does P; whenever S �nds an optimalsolution, P too �nds an optimal solution, whi
h is not ne
essarily the same.� It may be the
asethat this weaker equivalen
e �ts the needs of the programmer. It
ould be interesting to �ndout under whi
h
onditions su
h generalized properties of weakened semanti
 equivalen
e
ould bederived through a pro
ess of �re
urren
e along a parallel exe
ution� analogous to the one followedin the derivation of Theorem 1 [4, Se
tion 5℄.Referen
es[1℄ D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event syn
hronization in a parallelprogramming tool. In 2nd ACM SIGPLAN Symp. on Prin
iples and Pra
ti
e of Parallel Pro-gramming, pages 21�30, Seattle, mar
h 1990. ACM Press.[2℄ G. Caplain. Propriétés de
orre
tion séquentielle dans un langage parallèle à mé-moire partagée. PhD thesis, E
ole Nationale des Ponts et Chaussées, septembre 1998.http://
ermi
s.enp
.fr/theses/.[3℄ G. Caplain. Che
king sequential
orre
tness in shared-memory parallel programs. In TheEighth International Colloquium on Numeri
al Analysis and Computer S
ien
e with Appli
a-tions, Plovdiv, Bulgaria, August 1999. Pro
eedings to be published.[4℄ G. Caplain. Corre
tness properties in a shared-memory parallel language. Submitted for pub-li
ation, 1999. CERMICS resear
h report 99-180. http://
ermi
s.enp
.fr/reports/.[5℄ G. Caplain, R. Lalement, and T. Salset. Che
king the serial
orre
tness of
ontrol-parallelprograms. In Parallel Ar
hite
tures and Languages Europe, pages 741�744, Athens, Gree
e,July 1994. Springer Verlag, LNCS 817.[6℄ T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introdu
tion to Algorithms. MIT Press, 1991.[7℄ P. Feautrier. Data�ow analysis of array and s
alar referen
es. Int. Journ. of Parallel Program-ming, 20(1):23�53, Feb. 1991.[8℄ T. Salset. Corre
tion séquentielle de programmes parallèles dans le modèle asyn
hroneet mémoire partagée. PhD thesis, E
ole Nationale des Ponts et Chaussées, juillet 1997.http://
ermi
s.enp
.fr/theses/.[9℄ R. E. Tarjan. Fast algorithms for solving path problems. Journal of the ACM, 28(3):594�614,July 1981.[10℄ H. Zima and B. Chapman. Super
ompilers for Parallel and Ve
tor Computers. ACM Press,New York, 1990. 15

