
Cheking sequential orretness in shared-memory parallelprogramsGilbert Caplaine-mail: aplain�ermis.enp.frCERMICS Researh Report 99-181Otober 1999AbstratThis researh report brings a few omplements to a previous paper [4℄ we will heavily refer to.Most of the results we derive here have been presented in an invited leture at the Eighth Inter-national Colloquium on Numerial Analysis and Computer Siene with Appliations (Plovdiv,Bulgaria, Aug.1999) [3℄.1 IntrodutionWe are interested in a property of orretness of programs written in a parallel language. Thisproperty is a semanti equivalene between the parallel program and its sequential version, thatwe de�ne. In the framework we are onsidering, a parallel program is viewed as a parallelizationof some given sequential program � basially, this parallelization will onsist in parallelizing loopsand introduing event synhronizations � and we require that the results of any run of the parallelprogram be idential to those of the given sequential program. In this ontext, the improvementsought through the parallelization lies only in the ability to run the program faster, by allowingseveral parts of it to be exeuted simultaneously, on several available proessors. Considering thisproperty is relevant in many numerial analysis appliations.We onsider the shared-memory programming model, but programs written in our language maybe fruitfully ompiled towards distributed-memory mahines as well.The main result we have obtained is a theorem whih ensures this orretness property undersome hypotheses, mainly a ondition of preservation of data dependenes. These hypotheses involvethe semantis of the sequential version only: in other words, due to our result, heking the orret-ness of any run of some parallel program boils down to heking some properties of its sequentialversion only. This theorem is presented and derived in [4℄.This theorem ould be used in the design of a tool to statially hek the orretness of parallelprograms, i.e. perform a hek on the program soure. A preliminary appliation, dealing with asubset of our language, is developed in [5, 8℄.In some spei� ases, in whih a parallel program is dependent on input data in some way, aertain observation of one sequential run allows to derive whether the program is sequentially orretfor any values of the input data. This possibility of dynami heking is explained in Setion 3.1

In Setion 4, we present a possible extension of the event synhronizations onsidered previously.In Setion 5, we present an extension of our theorem, by introduing ritial setions, thenonsidering a weakened (i.e. generalized) version of our orretness property.2 The semanti equivalene theoremSome of the basi onepts we onsider have been introdued in [1℄. In the development of shared-memory parallel programs, the most di�ult hallenge is to avoid data raes, a irumstane orre-sponding to data dependenes. A data dependene links two aesses to the same variable (memoryloation) when at least one of these aesses is a write. In order to ensure that the parallelizedprogram meets the semanti equivalene requirement, it must be heked that every data depen-dene is preserved, i.e. that the two orresponding aesses operate in the right order (this is thedependene implies preedene requirement).This dependene preservation paradigm is fairly well-known, to the point that some of its in-triaies may esape at �rst sight. What does �dependene implies preedene� preisely mean?At �rst sight, it should be interpreted as �dependene (de�ned in the sequential version) impliespreedene (ensured during a run of the parallel version)�. But, what if some statements exeuted inthe sequential version are not exeuted in some parallel run? or if their exeution does not involvethe same variables (as input or output) in both runs? Suh irumstanes may arise sine, in thelanguage we are onsidering, loop bounds and subsript expressions in arrays may ontain variables:in other words, we do not limit ourselves to stati ontrol programs, a limitation adopted very oftenin the literature. As long as we have not proved the semanti equivalene we are onsidering, there-fore, suh intriaies imply that a �dependene implies preedene� requirement has no well-de�nedmeaning at this point.In order to deal with suh intriaies, in our searh for a stati orretness riterion, the seman-ti equivalene theorem we outline here states su�ient orretness onditions whih refer to thesemantis of the sequential version only, i.e. involve prediates that are de�ned on the sequentialversion. (For instane, we address the possibility of exeution faults in parallel runs. Only thesequential version is presupposed not to produe exeution faults.) Due to our theorem, hekingthe semanti equivalene between any run of some parallel program and the sequential run of thisprogram, boils down to heking some prediates de�ned on the sequential version of this program.Espeially, this opens the possibility to use all resoures of data�ow analysis � whih is inherentlyadapted to the study of sequential programs � in the proess of applying our theorem to hek theorretness of a parallel program.The languageThe language we onsider allows for parameters, i.e. �variables� that get a value �one and for all�when the program starts. Thus, in our framework, a program in fat represents a �lass of programs�di�ering from one another by the values of parameters. A program instane is obtained from aprogram by assigning onstant values to its parameters.Apart from usual sequential onstruts (IF-THEN-ELSE onditionals, stati DO and dynamiWHILE loops), the language we onsider provides for parallel loops (denoted PDO) and event POST/WAIT2

a0: A(0)=... A(0)=...p0: post(E(0)) ontinuepdo I=1,N do I=1,N... ...w: wait(E(I-1)) ontinueb: ...=A(I-1) ...=A(I-1): A(I)=... A(I)=...p: post(E(I)) ontinue... ...endpdo enddoFigure 1: An example of a parallel loop with synhronizations (left) and its sequential version (right)synhronizations1. Figure 1 shows an example of a parallel loop with event synhronizations. Thesequential version, on the right, sets the intended semantis: the output A(I-1) of statement in-stane (I-1) is used as input in statement instane b(I), as spei�ed by the sequential order ofexeution of the do loop. The synhronization statements w and p have been introdued in theparallel version, in order to preserve this exeution order one the do is parallelized into a pdo:the wait statement w at iteration I waits for the event E(I-1) to have reeived the value postedthrough the post statement p at iteration I-1 (or the statement p0 for I=1). This exempli�esthe semantis of synhronization statements: a variable type event is onsidered, with two values:leared (the initial value at type delaration) and posted. A post (resp. a lear, not exempli�edhere) sets value posted (resp. value leared) to the event variable it refers to. A wait reads the eventit refers to: if this event is posted, the wait ontinues; if this event is leared, the wait waits andtries again later. Thus, a wait is led to wait for the event to be posted by the exeution of somepost statement, as was intended2. Of ourse, the events E(I) must not have been posted beforethis loop without having been leared meanwhile, nor have been posted elsewhere in parallel, in asethis loop is nested in a larger parallel onstrut (More on this later).A waiting deadlok ours when a wait waits in vain for an event whih never gets posted. InFigure 1, for instane, omitting the statement p0 leads to a deadlok on statement instane w(1)beause E(0) does not get posted.The sequential version of a given parallel program is obtained by transforming pdo into do anddisabling the post, wait and lear statements: by �disabling�, we mean that, in the sequentialversion de�ned here, they are onverted into ontinue statements whih do nothing, but we retainthe possibility, in the following developments, to keep trak of event referenes, allowing ourselvesto onsider what ours to these referenes as though they were indeed addressed in a sequentialrun.Further developments about the language we onsider and about the exeution model are pro-vided in [4, Setion 2℄. Regarding the exeution model, let us just mention the fat that, due to1Our language also provides for parallel setions, a onstrut speifying that several setions of ode may exeutein parallel. We will not onsider them spei�ally here.2The exeution of posts and waits also involves variable updatings: variables shared in the parallel onstrut areupdated. In the example shown here, this makes sure that the output A(I-1) of (I-1) is indeed available as inputin b(I), in the loal memory of iteration I. We do not address this point here, for the sake of brevity; see [4, �2.2℄.3

resoure limitations, iterations of a parallel loop may not all exeute in parallel at one, but beloaded on parallel proesses, eah proess having possibly several iterations in harge (whih it thenexeutes sequentially). Moreover, within our framework, we will require that the sequential orret-ness be ensured independently of the number of proesses whih will turn out to be available forsome run of the program � and even in the extreme ase when there is only one proess available, inwhih ase the parallel program will, in fat, run sequentially (ordered single proess run). It is easyto derive that the ordered single proess run is idential to the run of the sequential version up to awaiting deadlok if any. This is why, in the theorem to follow, onsidering the no-waiting-deadlokhypothesis, the referene to the sequential version takes the form of a referene to the ordered singleproess run.Dependenes and preedenesLet us brie�y outline a few notions whih are further developed in [4℄.Notion of statement instane [4, �2.1℄.Classially (see e.g. [10℄), sine a statement within a loop may exeute several times, eah ofthese exeutions is termed as a statement instane. This usual point of view brings a di�ulty inour framework: sine our language allows for variables in do and pdo loop bounds and (obviously)in while test expressions, the set of instanes generated by one statement will generally not beknown statially. Thus, we have been led to introdue a di�erent de�nition of a statement instane.To every statement in the program, is assoiated a (possibly empty) index vetor, reursivelyde�ned as follows. Let a be a statement. If a is not ontained in a loop, its index vetor is empty:then, a generates one statement instane. Otherwise, we onsider the innermost loop ontaining a.Let be the header of this innermost loop, and i be the (possibly empty) index vetor of . Theindex vetor of a is then obtained as the onatenation of i and a omponent j, denoted i ::j. Every(exeuted or not) instane (i) generates an in�nity of instanes a(i ::j), as follows: j takes rationalinteger values if the loop is a do or pdo (j then orresponds to the iteration index of the loop3); jtakes positive integer values if the loop is a while.Through this formalism, a statement ontained in a loop generates a ountable in�nity of state-ment instanes but, in any given run not leading to an in�nite loop, only a �nite number of themwill ome to be exeuted.Sequential exeution prediate Exes.We introdue a prediate, denoted Exes, expressing the ondition for a statement instane tobe exeuted in the sequential version. Under the extra ondition that the sequential programterminates, i.e. does not enter an in�nite while loop, Exes is well-de�ned and its expression israther straightforward for the language we are onsidering.For a statement a and an index vetor i suh that the instane a(i) is exeuted in the sequentialversion, we may onsider the environment in whih the exeution of a(i) takes plae. For anyexpression exp whih happens to be evaluated through the exeution of a(i), its value is de�ned inthis environment: it will be denoted [[exp℄℄�a(i). We must emphasize that [[exp℄℄�a(i) is unde�nedwhenever a(i) is not exeuted. This leads us, in the expressions of Exes, to make use of the sequentialonjuntion, denoted &, whih di�ers from the logial onjuntion, denoted ^, as follows: if A and3In our language, do and pdo loops are normalized: the inrement is set to 1.4

B are boolean expressions (taking values true, false or unde�ned), A & B is false whenever A isfalse, even if B is unde�ned, whereas A ^B is unde�ned in this ase.Let a be a statement. Exes(a) essentially depends on the nesting of a in a loop or if onstrut.If a is not nested, Exes(a) = true. If a is nested, we onsider the innermost do, pdo, if or whilea is nested in.If the innermost nesting of a is in a do or pdo loop of header , with lower and upper boundexpressions :lb and :ub respetively, let i denote the (possibly empty) index vetor of and i ::jdenote the index vetor of a. We then have:Exes(a(i ::j)) = Exes((i)) & ([[:lb℄℄�(i) � j � [[:ub℄℄�(i))Expressions of Exes in the other ases � when the innermost nesting of a is in a while or in aif � are just as straightforward. They are provided in [4, �3.1℄.Dependene Dep [4, �3.2℄.Considering two statements a and b, indexed by i and j respetively, the prediate Dep(a(i); b(j))expresses that: �in ase a(i) and b(j) are both exeuted in the sequential version, in this order,then they both aess one same memory loation (not orresponding to an event variable � eventreferenes are dealt with di�erently), at least one of them writing it�.Let a(i) and b(j) be two statement instanes respetively involving referenes expa and expb,referring to variables (other than event variables), these two referenes not both being input refer-enes. In ase a(i) exeutes in the sequential version, [expa�a(i)℄S denotes the variable expa refersto during that exeution. The relation � between variables to whih two distint referenes aremade, means that they are the same variable. � denotes the sequential order. We an give anexpression of Dep:Dep(a(i); b(j)) = (a(i)� b(j)) ^ ([expa�a(i)℄S � [expb�b(j)℄S)This expression of Dep is not neessarily de�ned when a(i) and/or b(j) is not exeuted in thesequential version � it will then have boolean value unde�ned. This is why we will use Dep inexpressions suh as: Exes(a(i)) ^ Exes(b(j)) & Dep(a(i); b(j))making use of the sequential onjuntion & introdued above.Preedenes Pre0, Syns and Pres [4, �3.3 & 3.4℄.The prediate Pres expresses the preedene relations whih would apply in the parallel program,as a onsequene of the exeution model, assuming that the variables involved in the de�nition ofthese relations have their �sequential� values. Pres is obtained from a ontrol preedene Pre0 (theexpression of whih is rather straightforward, and independent of any variables [4, �3.3℄) and asynhronization preedene Syns (orresponding to the post/wait pairs). Synhronization pree-denes Syns are more intriate to onsider than ontrol preedenes Pre0. Espeially, in order forpost/wait pairs to indeed realize preedenes as required, there are some onditions to be met.For instane, we must avoid the ase that several non mutually exlusive post statement instanesare suseptible to trigger the exeution of one wait statement instane, in whih ase no synhro-nization would be warranted between any of these posts and this wait. Suh onditions translate5

into requirements about the use of post/wait/lear statements, whih are not detailed here forthe sake of brevity; they are explained and formally expressed in [4, �3.4℄. Let us just mention herethat these requirements presribe that some pairs of synhronization statement instanes be relatedby a ontrol preedene Pre0.The semanti equivalene theoremLet us outline, without proof, the semanti equivalene theorem derived in [4, Setion 5℄:Theorem 1 Under the following hypotheses:i. The requirements about synhronizations alluded to above [4, �3.4℄ ;ii. No waiting deadlok in the ordered single proess run [4, �4.4℄ ;iii. No in�nite loop in the ordered single proess run;iv. For all statement instanes a(i) and b(j),Exes(a(i)) ^ Exes(b(j)) & Dep(a(i); b(j))) Pres(a(i); b(j));the parallel program is semantially equivalent to its sequential version. Espeially, no parallel runan deadlok, nor in�nitely loop, nor produe an exeution fault.3 Dynami program hekingThe onept of dynami program heking we will introdue now stems from an important remarkabout the assumptions of Theorem 1. Let us onsider a parallel program instane (obtained by givingvalues to parameters). We assume that we know, by any means, that the ordered single proess runterminates (i.e. does not enter an in�nite while loop). Then, it would be easy to derive that theproblem of the sequential orretness of our program instane is deidable, by a proedure whihonsists in observing the ordered single proess run (a sequential program) �from outside�, in orderto hek the hypotheses of Theorem 1 (other than the termination, assumed here).Obviously, this observation onerning a program instane does not seem very interesting at�rst sight, sine we would like to hek the orretness of a parallel program instane through aproedure less ostly than running its sequential version ! However, this observation might revealinteresting in the following irumstane: it most often happens that a parallel program is designedto run a great number of times, with di�erent values of input data. These data are parameters in oursense. It is interesting to onsider ases when it may be statially derived (i.e. derived through ananalysis of the program soure) that the semanti equivalene property that we are onsidering heredoes not depend on the values of data. Intuitively, these are situations when the �ontrol variables�(loop bounds, tests in ifs and whiles, array subsripts) do not depend on data. Suh situationsan be viewed as a generalization of the notion of stati ontrol program (see e.g. [7℄)4. In suh4In [7℄, a stati ontrol program is a program in whih loop bounds depend only on onstants, indies of loopsthey are nested in, and struture parameters, a set of integer variables de�ned only one in the program, either asparameters in our sense, or from other struture parameters previously de�ned. Our situation is di�erent, in thesense that �our� ontrol variables may be modi�ed several times during a program run, even to the point of not beingknowable statially � indeed we are not onsidering a stati ontrol property, but rather a ontrol independent of dataone. 6

ases, it will be relevant to onsider one program instane and endeavour to hek the orretnessof the parallel program by observing a sequential run of this instane.We will provide su�ient onditions under whih the orretness of a parallel program doesnot depend on data; then, we will mention possible appliations; afterwards, we will outline thepriniples of a dynami veri�ation proedure.The independene of orretness with respet to dataWe onsider a parallel program written in our language. We will derive that, under a few assump-tions, the orretness (in our sense) of this program does not depend on the values of parameters.Theorem 2 We assume that there exists a set � of variables and parameters in the program, suhthat the following assumptions are met:i. All parameters belong to � ;The three assumptions to follow refer to the sequential version: we fous on variables the referenespoint to in statement instanes exeuted in the sequential version.ii. As soon as a referene to an element of � stands as input in a statement instane, the outputreferenes of this statement instane point to variables of � ;iii. There is no referene to an element of � in a do or pdo loop bound expression, nor in a testof an if or while ;iv. There is no referene to an element of � in an array subsript expression.Then the assumptions of Theorem 1 do not depend on the values of parameters. Therefore, if aprogram instane meets the assumptions of Theorem 1, any other instane of the program whosesequential version does not produe an exeution fault is semantially equivalent to its sequentialversion.Proof : We have to derive that, under the assumptions we have just mentioned, those of Theorem 1do not depend on the values of parameters. Let us �rst show that � ontains all variables the valuesof whih depend on those of parameters in the sequential run (ausal losure of �), by deriving thata variable not belonging to � annot be in�uened diretly by variables and parameters belongingto �.During the sequential run of a program instane, let x be a variable not belonging to �, writtenby a statement instane �. There are three ways in whih this omputation of x might be in�ueneddiretly by elements of �. (1) Suh elements might in�uene the exeution of �, i.e. be involved inExes(�): this is ruled out by (iii) [4, �3.1℄. (2) Elements of � might be involved in the referenesof �, i.e. in the designation of the variable x written by � and/or of the input variables used by �.This is ruled out by (iv). (3) At last, elements of � might be inputs of �. This is ruled out by (ii).The ausal losure of � is thus derived.As a onsequene, due to (iii), the prediate Exes does not depend on parameters, nor does theprogram termination [4, �3.1℄. Due to (iv), the prediate Dep does not depend on parameters either(Setion 2). We know that Pre0 is independent of any variable [4, �3.3℄. Due to (iv), the event7

referenes are independent of parameters; therefore, onsidering the fat that Exes is independentof parameters, all the mehanism of synhronizations (onsidered in the sequential semantis, asrequired by Theorem 1), is independent of parameters: so, the requirements about synhronizationsand the no-deadlok ondition, involved in Theorem 1, are independent of parameters as well. JLet us mention a weakness of this result: the fat that test expressions are required not todepend on data is ertainly a limitation in many ases.A few examplesThis �ontrol independent of data� property will often be present in numerial analysis appliations.For instane, let us onsider �nite-element programs. We wish to solve a system of equations on aertain physial domain, by an approximation making use of a mesh of this domain and omputinga disrete set of values assoiated to this mesh � for instane, values at the nodes. It will often ourthat the parameters de�ning the mesh (number of nodes, ontiguities...) are the ontrol parametersof the program, determining the number of loop iterations and interfering in the subsripts ofvetors and matries; whereas the quantities to be omputed at the nodes will be �data dependent�variables, elements of � in our sense: variables not involved in the ontrol struture of the program.Then, onsidering a �nite-element parallel program, in suh irumstanes, the sequential or-retness of this program will not depend (in the ase, say, of time evolution) on the initial onditionsnor the boundary ones, but only on the ontrol struture of the program, related to the de�nitionof the mesh.We ould even onsider a �nite-element parallel program allowing for a (ontinuous) deformationof the mesh, in order to adjust to physial domains of various shapes (but same topology). Under theondition that the deformation and adjustment parameters are �data-dependent� in our sense, thesequential orretness of the parallel program will be an invariant of these deformations. However,obviously, a hange in the equations, for instane in order to solve a di�erent physial problem usingthe same mesh, may modify the dependene relations Dep, thus reating a situation in whih thesequential orretness property is not invariant.Dynamially heking a program instaneIn light of the above onsiderations, in many ases, it may be relevant to try a dynami heking ofa program instane, through the observation of a sequential run (or, more aurately, of an orderedsingle proess run).Let us onsider a parallel program the sequential version of whih meets the assumptions ofTheorem 2 and is guaranteed to terminate. This is the situation when it may be relevant toendeavor a dynami heking proedure. This proedure an be desribed as follows.First, we make a stati analysis of the program soure, in order to try to hek the assumptionsof Theorem 1. We keep trak of those assumptions whih we do not sueed to hek at this point� e.g. possible dependenes whih do not seem to be preserved by preedenes, or an unertaintyabout the no-deadlok ondition.We then onsider �valid� values of parameters, i.e. values suh that the sequential version ofthe orresponding program instane does not produe an exeution fault; and we onsider theorresponding ordered single proess run. Or rather, alternatively, if we an, we will prefer to8

onsider an ordered single proess run with dummy parameters, i.e. a run during whih, in thesuession of exeuted instanes, the omputations of the variables belonging to� are not performed,in order to save time. This is possible in priniple, due to the assumptions of Theorem 2.For instane, let us onsider the statement:A(I,J+1) = B(I,J-N(I))*N(I-1)where A() and B() are variable arrays of �, N() is an array of �ontrol� variables, not belonging to�, and I and J are indies of the two loops this statement is nested in. If e.g. the instane I=2,J=3of this statement is exeuted, a partial evaluation, of the ontrol expressions, is performed. Firstthe values of the loop indies are onsidered, whih leads to instaniate the statement:A(2,3+1) = B(2,3-N(2))*N(2-1)Then, the ontrol variables are omputed � let us assume that, when this instane is exeuted,we have got for example: N(1)=3 and N(2)=6 ; omputing the subsript expressions, we get:A(2,4) = B(2,-3)*3At this point, we refrain from evaluating the variables of �, and we keep trak of the fat thatthis statement involves:� as output: A(2,4)� as input: B(2,-3), N(2), N(1)During this single proess run, the following observations are performed:� A deadlok situation on a wait is observable � the ordered single proess run just stops atthat point. (If we are rather observing the sequential version, in whih the synhronizationsare �disabled� but still examined, it is easy to hek, for every visited wait instane, that theinvolved event is �posted� at that point.)� Along the run, the event referenes appearing suessively are reorded, whih will permit todetermine the synhronizations pairs Syns as well as the pairs of synhronization instanesbetween whih a preedene Pre0 will have to be heked (Setion 2 and [4, �3.4℄). Thesearh for these pairs of instanes involves binary omparisons between referenes; therefore,its omplexity is polynomial in the number of instanes examined.� As the exeution proeeds through the parallel onstruts that the stati analysis did notsueed to �validate�, variable referenes (other than event ones) are reorded, as we haveseen in the example above, in order to reord the dependene relations Dep the preservationof whih ould not be derived statially. More preisely, the stati analysis deteted andreorded all statement pairs (a; b) possibly involved in a possibly unpreserved dependeneDep(a; b); then, the dynami analysis reords pairs (�; �) of instanes of a and b respetively,indeed involved in a dependene Dep(�; �). The searh for these pairs (�; �) involves binaryomparisons between referenes; therefore, its omplexity is polynomial in the number ofinstanes examined thus. 9

One these steps are performed, we have to solve two problems involving graphs.� hek whether the Dep edges reorded belong to the transitive losure of the graph formedwith the Syns edges reorded and the Pre0 edges (straightforwardly representable) (with therestrition that the paths onsidered do not end with Syns edges: for this tehniality, see [4,�3.3℄). This is a rather well-known graph problem, involving breadth-�rst searh algorithms.See e.g. [6, 9℄. The omplexity of these algorithms is polynomial in the number of nodes,whih is (in the worst ases) the number of exeuted statement instanes loated in theparallel onstruts that the stati analysis ould not �validate�.� onsidering the synhronization instane pairs (�;) for whih a ontrol preedene Pre0 isrequired, hek that we indeed get Pre0(�;) or Pre0(; �). This graph problem is easier thanthe previous one, due to the simpliity of the expressions of Pre0.The dynami veri�ation proedure outlined here has an algorithmi omplexity whih, in theworst ases, is polynomial in the number of exeuted statement instanes � hene, this omplexitywill be �big� in many interesting ases. This is why it will be important to perform stati analysis�rst, in order to fous the dynami heking proedure on the di�ult points; and to apply suh aproedure only to programs designed to run a su�ient number of times.4 Event synhronizations with guards lausesIn our exeution model [4, �2.2℄, we have mentioned that, whenever a post or a wait exeutes in aparallel onstrut, variables shared in this onstrut are updated. In order to avoid useless updates,it may be of interest to limit these updates to one or several referenes spei�ed in the post orwait statement (the spei�ation of suh referenes to be updated is lassially termed as a guardslause; suh referenes will be said to be guarded by the synhronization statement). Here we willadopt the following syntax:POST (<event>, <referene-list>)WAIT (<event>, <referene-list>)CLEAR (<event>)The referene-list following the event referene in the argument list of the post and waitstatements, ontains the guarded referenes: the referenes (in the exeution environment) of thevariables whih will be updated. Figure 2 shows an example.In this example, the synhronization aims at ensuring that the value of A(I-1) used as inputby statement instane b(I) is the value omputed by statement instane a(I-1) (or, for I=1, bystatement a0) ; this time, the preedene ensured thus will not involve any other variables. It ispossible to introdue suh synhronizations with guards lause in our formalism: our results remainbasially unhanged.In suh an extension, our prediates Dep, Syns and Pres would be modi�ed as follows.The dependenes Dep (Setion 2) will now involve three arguments: the two statement instanesas previously, and the variable referene involved in the dependene, in the sequential version:10

a0: A(0)=...p0: post (E(0),A(0))pdo I=1,N...w: wait (E(I-1),A(I-1))b: ...=A(I-1)a: A(I)=...p: post (E(I),A(I))...endpdoFigure 2: An example of post/wait synhronization with guards lauseDep(a(i); b(j); u) = (a(i)� b(j)) ^ ([expa�a(i)℄S � [expb�b(j)℄S � u)The prediate Syns, too, will involve three arguments: there again, the third argument is avariable referene involved (in the sequential version) in the guards lauses of the post and thewaitinstanes of the synhronization pair. The requirements about the use of synhronization statements(Setion 2 and [4, �3.4℄) remain unhanged (for instane, we must still rule out the possibility thattwo non mutually exlusive post statement instanes be able to trigger onewait statement instane,even though di�erent referenes would be guarded in these two instanes). Under these assumptions,a prediate Syns(�; ; u) expresses that we have Syns(�;) in the previous sense � i.e. assumingthe sequential semantis, the exeution of � triggers the exeution of : (�;) is a synhronizationpair � and furthermore, that u is a variable pointed to by a guarded referene of � and by a guardedreferene of , under the sequential semantis.The prediate Pres will be obtained from the ontrol preedene Pre0 (whih remains unhanged)and the �guarded� synhronizations Syns, by a transitive losure, as previously [4, �3.3℄, throughrelations suh as:Pre0(�; �1) ^ Syns(�1; !1; u) ^ Pre0(!1; �2)^: : : ^ Syns(�n; !n; u) ^ Pre0(!n; �)) Pres(�; �; u)Then, in Theorem 1, the dependene preservation assumption beomes:For all statement instanes a(i) and b(j) and for all variables u,Exes(a(i)) ^ Exes(b(j)) & Dep(a(i); b(j); u)) Pres(a(i); b(j); u)Adapting the proof of Theorem 1 [4, Setion 5℄ to suh extensions is rather straightforward(though tedious).
11

5 Introduing ritial setionsCritial setions are a parallel struture that we have not onsidered yet. Let us onsider the simpleexample of Figure 3.The sequential loop on the left is designed to ompute the A(I)'s and provide their sum, inT . Here A() has a numeri type (integer or real), the same as T . The sum T obtained at theend of the loop does not depend on the order in whih the A(I)'s are added5. Assuming thatthe omputations of A(I) are independent and an therefore be performed in parallel, it may beinteresting to parallelize the loop in suh a way that the order in whih the instanes of s exeute isnot onstrained. However we must ensure that these instanes do not exeute simultaneously, andthat the intermediate values obtained for T are transmitted between these onseutive instanes.This is the funtion of the ritial setion here introdued in the parallel version of the loop (rightof Figure 3).The variable V standing in the statement ritial setion is a lok, the possible values ofwhih are loked and unloked. One lok variable V must be shared by all ritial setion instaneswhih, preisely, should not exeute at the same time. The variables mentioned after V in theargument list of the ritial setion statement � in the example, variable T � are those variablesguarded in the ritial setionIn order to ensure the right behavior, the exeution model of ritial setions is as follows.� Initially, the value of the lok V is unloked.� Whenever a proess reahes a ritial setion instane, it tests the value of V . If thisvalue is loked, the proess waits and performs the same test again later (similarly to what await does when the involved event is leared) � presumably, another ritial setion instanesharing the same lok is running right at that moment. If this value is unloked, the proesssets value loked to V , inputs from the shared memory the value(s) of the guarded variable(s),and ontinues exeution (thus entering the ritial setion).� Whenever a proess reahes a end ritial setion instane, it outputs to the sharedmemory the value(s) of the guarded variable(s), then sets value unloked to V (whih hadvalue loked at that moment), then ontinues exeution (thus exiting the ritial setion).Introduing ritial setions here, onstitutes an enlargement of our previous framework, in thefollowing sense. Previously, we were interested in a property of semanti equivalene between aparallel program and its sequential version: a requirement that both programs perform the sameomputations, produing the same outputs, not neessarily in the same order. In the ontrary,onsidering ritial setions, the idea is not to require that some intermediate values (of T , in theabove example) be idential to those obtained in the sequential version, provided that the �nal valueof T , obtained at the end of the loop, is the same in both versions.Let us speify how the previous results ould be extended so as to allow the use of ritialsetions in the programs onsidered here.5Here, we neglet the well-known problems arising from the fat that e.g. addition of reals, as implemented, is notneessarily ommutative nor assoiative � due to approximations in the representation of reals.12

T=0 T=0do I=1,N pdo I=1,N... ...A(I)=... A(I)=...ritial setion(V,T)s: T=T+A(I) T=T+A(I)end ritial setion(V,T)... ...enddo endpdoFigure 3: An example of a ritial setion. The sequential version is shown on the left.We will not deal with ritial setions in their most general form, but we will study a fairlygeneral sheme, represented in Figure 4. The element of program displayed here may be itselfnested in a larger parallel onstrut.Here, A() and T have not neessarily a numerial type (integer or real), and may orrespond tomore omplex strutures. We will fous on variable T , whih is both an input and output variable inthe ritial setion. (Suh a variable is termed as a redution variable.) It would be straightforwardto show that this sheme an represent ases when there are several statements in the ritialsetion � in suh ases, these statements are ondensed into the funtion fun() � provided thatwe orrelatively ondense into variable T any memory loation whih is both read and written byfun(), and into variable A(I) any memory loation whih is just read by fun(). (The underlyingidea here, is that T must ontain everything whih is transmitted from a ritial setion instane tothe next.)Using this ritial setion pattern may reveal useful whenever the omputation of A(I) by a istime onsuming whereas the all to fun is relatively fast.Before mentioning the validity onditions of this parallelization, let us give an example: on-strained optimization. Every loop iteration I searhes for an admissible solution to some onstraintproblem, aompanied with a ost. Both the admissible solution (if any) and its ost are assigned toan adequately typed variable A(I). If iteration I �nds no solution, A(I) is assigned a value denoted? . The variable T , typed similarly to A(I), is initialized at ? . fun(;) is a funtion whose twoarguments have that same type, and whih returns as output the argument whih is �minimal� forthe ordering de�ned as follows: the order of the assoiated osts, ompleted by the data that ?is �greater� than the other values. At the end of the loop, T ontains ? whenever no admissiblesolution has been found, and a solution with minimal ost in the ontrary ase. In suh a situation,and provided that no two solutions have equal minimal osts (more on this in a moment), thisparallel loop returns the same result as its sequential ounterpart.In this ritial setion sheme, it is straightforward to see that the (weakened) semanti equiv-alene holds under the two following onditions:� All dependenes whih stand between iterations of this loop, or between any one of them andthe rest of the program, are preserved by preedenes, with the exeption of a dependeneDep(s; s) involving the variable T (the expression of whih is: Dep(s(i); s(j)) = (i < j) �13

T=eps...pdo I=1,N...a: A(I)=...ritial setion(V,T)s: T=fun(A(I),T)end ritial setion(V,T)...endpdoFigure 4: A ritial setion shemeremember the referene to the sequential version in the de�nition of dependenes). As aonsequene, in the loop, T is neither read nor written elsewhere than in statement s.� The funtion fun() has a property of iterative symmetry, whih means that the �nal result Tof the appliation of fun() to the N values A(I) (T being initialized at eps), does not dependon the order in whih these N values are dealt with.Indeed, due to the �rst ondition, the intermediate values of T , whih are not neessarily thesame in some parallel run P being onsidered, as in the sequential run S, are not used elsewherethat in the suessively exeuted instanes of s. The ritial setion ensures that, in P, the instanesof s exeute onseutively and that the intermediate values of T are duly transmitted from everyinstane to the next one exeuted. Finally, due to the seond ondition, these di�erent omputationsof T provide the same value at the loop exit.Weakening the semanti equivalene requirementIn the onstrained optimization problem we have just onsidered as an example, we have mentionedthe limitation that no two admissible solutions of minimal ost should exist. If this limitation doesnot stand, the funtion fun() has not the iterative symmetry property. This simple remark suggestssome possibilities to extend our framework a bit further.In [4℄ and in the previous setions of this paper, we have studied a semanti equivalene require-ment, aording to whih all variables should undergo the same omputations, and therefore reeivethe same values, in any parallel run P as in the sequential run S. We have just introdued ritialsetions, as a means to weaken our semanti equivalene requirement in the following way: someintermediate omputations are no longer required to be idential in the two runs S and P, providedthat, due to an iterative symmetry property, the ��nal� results of these intermediate omputationsare still the same in both runs.We ould onsider a further generalization of this semanti equivalene requirement, along thefollowing line: we still presribe that the sequential run S and any parallel runP share some propertypertaining to the omputations they make, this ommon property not neessarily being the semanti14

equivalene we have onsidered before (the �maximal� requirement whih may be presribed in thisontext).In the example previously mentioned, the onstrained optimisation with possibility of equal-ost solutions, we obtain some weakened semanti equivalene, whih an be expressed as follows:�whenever S �nds that there is no admissible solution, so does P; whenever S �nds an optimalsolution, P too �nds an optimal solution, whih is not neessarily the same.� It may be the asethat this weaker equivalene �ts the needs of the programmer. It ould be interesting to �ndout under whih onditions suh generalized properties of weakened semanti equivalene ould bederived through a proess of �reurrene along a parallel exeution� analogous to the one followedin the derivation of Theorem 1 [4, Setion 5℄.Referenes[1℄ D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synhronization in a parallelprogramming tool. In 2nd ACM SIGPLAN Symp. on Priniples and Pratie of Parallel Pro-gramming, pages 21�30, Seattle, marh 1990. ACM Press.[2℄ G. Caplain. Propriétés de orretion séquentielle dans un langage parallèle à mé-moire partagée. PhD thesis, Eole Nationale des Ponts et Chaussées, septembre 1998.http://ermis.enp.fr/theses/.[3℄ G. Caplain. Cheking sequential orretness in shared-memory parallel programs. In TheEighth International Colloquium on Numerial Analysis and Computer Siene with Applia-tions, Plovdiv, Bulgaria, August 1999. Proeedings to be published.[4℄ G. Caplain. Corretness properties in a shared-memory parallel language. Submitted for pub-liation, 1999. CERMICS researh report 99-180. http://ermis.enp.fr/reports/.[5℄ G. Caplain, R. Lalement, and T. Salset. Cheking the serial orretness of ontrol-parallelprograms. In Parallel Arhitetures and Languages Europe, pages 741�744, Athens, Greee,July 1994. Springer Verlag, LNCS 817.[6℄ T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introdution to Algorithms. MIT Press, 1991.[7℄ P. Feautrier. Data�ow analysis of array and salar referenes. Int. Journ. of Parallel Program-ming, 20(1):23�53, Feb. 1991.[8℄ T. Salset. Corretion séquentielle de programmes parallèles dans le modèle asynhroneet mémoire partagée. PhD thesis, Eole Nationale des Ponts et Chaussées, juillet 1997.http://ermis.enp.fr/theses/.[9℄ R. E. Tarjan. Fast algorithms for solving path problems. Journal of the ACM, 28(3):594�614,July 1981.[10℄ H. Zima and B. Chapman. Superompilers for Parallel and Vetor Computers. ACM Press,New York, 1990. 15

