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Abstract

In this paper, we are interested in American option prices in the Black-Scholes model.
For a large class of payoffs, we show that in the region where the European price increases
with the time to maturity, this price is equal to the American price of another claim. We
give examples in which we explicit the corresponding claims. The characterization of the
American claims obtained in this way remains an open question.
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Introduction

Consider the classical Black-Scholes model:

dX{ = pX{dt+oX/dB; (0.1)
Xg = >0
peER |, o>0

where B is a standard Brownian motion, p the instantaneous interest rate and o the volatility

of X and denote by

o?x?

Af(z) = ——f"(@) + paf'(z) — pf(2)
the corresponding infinitesimal generator. Given a continuous function % : R} — Ry satisfying
some growth assumptions, the price of the so-called American option with payoff 1, maturity
t > 0 and spot z is given by the expression

vi™ (t,z) = sup E[e "¢ (X7)] (0.2)
T€T(0,t)

where 7 runs across the set of stopping times of the Brownian filtration such that 7 < ¢
almost surely. Except for some very particular class of payoffs ¢ (e.g. payoffs satisfying Vz >
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0, Ayp(z) > 0 or Vo > 0, Ayp(x) < 0), in general, there is no closed-form expressions for v4™ (¢, x) .
The computation of vq‘zm (t,z) usually relies either on finite-difference type methods or Markov-
chain approximation methods to solve the corresponding optimal stopping problem in a discrete
time-space framework. There is also a huge literature on special approximation methods designed
for some particular payoffs, among which the case of the Put option, given by 1 (z) = (K — z)"
where K is some positive constant (the strike of the option) has received much attention.

The purpose of this paper is to exhibit a new class of payoffs 1 for which a closed-form expression
for vy (t,z) is available. The idea originates from the analytic properties of the function vy
this function is greater than ) by (0.2) and typically the space ]0, oo[ x R’ splits into two regions,
the so-called Exercise region where by definition vf})m = 1) and its complement the Continuation
region where v™ > 1. It is known that vj™ solves the evolution equation associated with (0.1)

vy = Avy™

in the Continuation region (at least in the distribution sense). Moreover, as from (0.2) ¢t +—
vy (t,z) is non-decreasing, dvy™ > 0 holds. In fact, since vy™ is a continuous function, it
may be remarked that the knowledge of vq‘zm in the Continuation region is enough to get vf})m
everywhere.

This leads to the natural idea to build American prices (i.e. functions v&m for some 1)) by picking
up the classical solution v, (¢, ) of the evolution equation :

Vt,z > 0, Oy(t,z) = Avy(t, )
Vo >0, v,(0,2) = ¢(x)

in the region where it increases with time. From a financial point of view, v, (¢, ) is the Black-
Scholes price of the European option with payoff ¢ and maturity ¢ i.e. v,(t,z) = E[e "o (XF)].
This embedding idea has been worked out in [2] in case p = 0. A similar approach has also been
developped in the different context of the free boundary arising in a two-phases problem (see [1]
). Trying to generalize things to the case p # 0, we ran across a probabilistic proof which allows
a very compact statement of the embedding result.

The first section of the paper is devoted to some basic properties of European and American
prices within the Black-Scholes model. Next we state and prove our embedding theorem (section
2). Then we give some examples (section 3). Lastly, we discuss some properties of the map
which takes a payoff ¢ to the payoff @ the American price of which is embedded in its European
price (section 4). The characterization of the payoffs @ obtained in this way remains an open
question.

1 European and American prices in the Black-Scholes model

In this section we recall the very few properties of European and American Black-Scholes prices
we shall need in the next section.

Let a = % . The invariant functions of the semigroup associated with (0.1) are easily seen to
be the vector space generated by z and z=%. We shall consider payoffs ¢ such that

z € R} — ¢ () € Ry is continuous and sup _pl@) < 0 (HO)
>0 T+ ¢

We thank Régis Monneau (CERMICS) for bringing out this work to our attention.



The growth assumption is only there to grant the existence of the various expectations involved.
It seems that the continuity assumption could be removed, but the connection with American
options would be more intricate, so we keep this hypothesis.

Proposition 1 [3/ Under (HO) the price of the European option with maturity t > 0 and payoff
@ 1s given by

vy (t,7) =E[e "o (X])]
In particular v, (0,z) = ¢ (x).

The function vy, is continuous from [0,00[ x R into R, and for any t > 0, the process
(e P vy (t —u, Xi))) geyey 5 @ continuous square-integrable martingale.

Let us now turn to American options:

Proposition 2 /3] If i satisfies (HO), the price of the American option with maturity t > 0 and
payoff ¥ is given by

vi™ (t,z) = sup E[e "¢ (X7)]
TET(0,t)

where T runs across the set of stopping times of the Brownian filtration such that 1 <t almost
surely. In particular vg™ (0,z) = 1 (z) .

The function v%m is continuous from [0,00[ X R into R, and for any x € R the map t —
vy™ (¢, ) is non-decreasing.

2 Embedding American prices in European prices

Our main results relates the price vy, (¢,2) of the European option with payoff ¢ to the price
v3" (t,x) of the American option with payoff o(z) = infi> v, (¢, 7):

Theorem 3 Under (HO) let

P(z) = inf v, (t,z)

Then

V(t,z) € [0,+00) x R}, sup E[e " H(XT)] <w, (L, z) (2.1)
TET(0,t)

where the supremum is taken over all the stopping times T of the filtration of the Brownian motion
smaller than t.
Moreover, if there exists a continuous function t : RY — [0, 4-00] such that

~

Vo >0, %gg v, (¢, 2) = v, (Hz), 2)

where vy, (00, x) @s defined as liminf, oo v, (¢, z)) and either:
® + Y

Vo > 0, Hx) < +oo



or.
3C > 0,Vz,y > 0, |p(z) —p(y)| < C(lz —y| + |z * —y %)

then the function @ satisfies (HO) and

~

V(t,z) € [0,+00) x R, vz"(t,z) = v, (tVi(z),z) (2.2)

Proof : Let (t,7) € Ry xR} . According to Proposition 1, the process (e™"“v,, (t — u, Xii))ueo,
is a martingale. If 7 <t is a stopping time, by Doob optional sampling theorem

v, (t,z) =E[e v, (t — 7, XF)] > E[e " p(XT)].
Since 7 is arbitrary, we deduce that (2.1) holds.

To prove the other statements, we suppose the existence of t: R% — [0,+00] continuous such
that
vz >0, §(z) = v, (Hz),z) .

If Vo > 0, t(z) < +oo then the continuity of @ is a consequence of the continuity of (¢,z) €
[0,+00) X Ry = v, (£,2). If Y,y >0, [p(z) —¢(y)| < C(lz —y[ + |27 —y~?), then

Vt 20, v, (t,2) — v, (ty) | < E[e™[p(XT) — p(X7)]]
<C(lz —ylE[e " X/] + a7 —y *|E[e7"(X})"])
SOz =yl + ] =y~

Hence the functions z — v, (¢,z) indexed by ¢ > 0 are equicontinuous, which ensures the
continuity of x — inf;>o v, (¢, 2) = o(x).

To show (2.2), we make a distinction between the two following situations :
o case f(z) = 400 : since 5 — vg™ (s, ) is increasing, for u > ¢
p(z) = vz"(0,z) <vz"(t, ) <vz"(u,z) < vy (u,z) by (2.1).
Letting u — 400, we deduce that
Vt >0, vg"(t,z) = D(z) = vy (00,7) = vy (t \/i/t\(x),x) .

e case t(x) < 400 : let t > t(x) and 79 = inf{u : t —u — H(X?) <
stopping time 7y is smaller than ¢. By continuity of v — ¢t —u — t(X¥

vy (t,z) =E[e v, (t — 70, X2 )] =E[e " Pu, (?(X"B ), X3 )]
=E[e "p(X})] < vg" (t, z).

The converse inequality (2.1) is already proved. Hence V¢ > {(z), v&™(t,z) = v, (t,x) and 79 is

|/\'G)
=

8
ﬁ\)

8

IN

an optimal stopping time. Since t — v%m(t,:c) is increasing, for ¢ v%m(t,:c) <
vg" (t(z),z) = v, (H(z),z) = §(z), which ends the proof. ||



Remark 4 The continuity of the argument of the infimum is granted in the following uniqueness
situation: suppose that ¥z > 0, M(z) < T(z), P(z) = Vg (;f\(x),x) where T : R} — Ry s
continuous. Then by the continuity of T' and vy, it is easy to see that () = inf,c(o (4 vy (L, 7)
is continuous. Moreover, since t(x) = inf{t > 0: @(x) = v, (t,x)} (resp. t(z) = sup{t < T(z) :
P(x) = v, (t,2)}), t is lower semi-continuous (resp. upper semi-continuous) i.e. ¢ is continuous

and (2.2) holds.

In the above theorem it may happen that the function @ is nil: in case limsup,_,,z%p(z) = 0
and limsup,_,, ., ¢(z)/xz = 0, we easily check that

Vz >0, tlim vy (t,x) = 0.

—+00

In such a situation, the following localized version of our main result is far more interesting
than Theorem 3. It is proved by the same arguments, after noticing that the continuity of
(t,z) € [0,400) x R} — v, (¢,z) implies the continuity of z — @' (z) = info<i<7 v, (¢, z) where
T >0.

Theorem 5 Let T > 0. The function p'(z) = info<i<r vy (£, 2) satisfies (HO) and
V(t,z) € [0,T] x Ry, vZ#(t,2) < vy (F, 7).
Moreover, if there exists a continuous function t : R* — [0,T7] such that

. f — oy
Vo >0, ogslgva (t,z) = v, (Hz), ),

then

~

V(t,z) € [0,T] x Ry, v37'(t,2) = vy (tVi(z),z).

Remark 6 The only feature of the Black-Scholes model which is required in the above results is
time-homogeneity. In fact, Propositions 1 and 2 and Theorems 8 and 5 can be adapted to the
so-called generalized Black-Scholes model :

XF =wzexp (0B + (p— 6 — 0?/2)t)
vy (t,2) = E[e " o(X})] and vy " (t,z) = sup E [e7PTp(XT)] ,
TET(0,t)
or to the more general time-homogeneous model :
Xg =, dX{ = X{(o(X{)dB; + (p(X}) — 0(X())dt)
vy (t,x) =E [e_ Is p(st)dsgo(Xf)] and vy"(t,z) = sup E [e_ Is p(Xf)dSQﬁ(Xf)]
TET(0,t)

and also to the multidimensional versions of these models.

Of course it would be of great interest to give conditions on ¢ which ensure the existence of a
continuous curve in the argument of the infimum. One way is to perform explicit computations,
since the Black-Scholes semigroup is explicit. Nevertheless this is not very illuminating. We ran
across the following statement, for the local embedding result, which is maybe the simplest in
this direction:



Proposition 7 Let ¢ be a C* function which satisfies (HO) and 3z, € R such that
(1) Ap(ze) = 0 and either Yz > 0, (z — z:)Ap(z) >0 or Vo > 0, (z — z.)Ap(z) <0
(ii) A%2p (2¢) > 0 and Adyp (zc) #0

Then there exists a constant T > 0 such that the assumptions of Theorem 5 are satisfied.

Proof : Since ¢ is C*, the function v, (¢, z) belongs to C**(Ry x RY) (C% in ¢, C* in z) and
satisfies the Black-Scholes partial differential equation dyv, = Av,, for t > 0 and not only ¢ > 0.
Consider the equation dyv, (t,2) = 0 in a neighbourhood of (0,z.) in {(¢,z), t > 0}. By deriva-
tion of the Black-Scholes evolution equation, 9%v, (0,z.) = Adyp (z.) # 0. Hence, by the
implicit functions theorem, there is for some € > 0 a curve T:

z:[0,e] = R}
continuous on [0, ¢, with Z (0) = ., such that dyv,, (¢, 7 (t)) =0, and C' on 0, e[ with
O%v, (8,7 (1) + 0fvy (6,2 (1) 2 (1) =0

Moreover by taking ¢ small enough we can assume that 7’ (¢) does not vanish and keeps the same

2 -~
sign as 7’ (0") = _ngi(écc))' We deduce that there exists a continuous function ¢ : [z.,Z(g)] —

[0, €] such that = (?(x)) =uz.

Assume 77 (07) > 0. Then the function 7 is increasing. Moreover, Ad,p(z) < 0 which ensures
Vo < e, Ap(z) > 0 and Vi >z, Ap(z) < 0. We set T = ¢ and extend ¢ to R% by setting
t(x) =T for ¢ > z.+¢ and ¢t (x) = 0 for x < z.. The obtained function is continuous and the
whole point is to show that for every z, the infimum of ¢ —— vy, (t,2) on [0,77] is reached at
t(x). This amounts to show that dw,(t,x) = Av, (t,2) is non-positive for (t,z) above T (i.e.
for t < T and x > 2(t)) and non-negative below. If (F;);>o denotes the semigroup associated
with (0.1),
Avy(t,z) = APp(x) = PrAp(z).

Let (¢, x) belong to the above (resp. below) region. By the optimal stopping theorem, Awv,, (¢, )
is equal to the expectation of the value of the martingale (e " P_yAp (X[))g<,<; Stopped at
the border of the above (resp. below) region {(u,Z(u)), v € [0,€]} U {(0,z), = > z.} (resp.
{(u,z(u)), v € [0,e]} U{(0,z), = < z.}) which is non-positive (resp. non-negative) since
Vt €]0,€], Py Ap(Z(u)) = 0yv,(Z(u)) = 0 and Vo > z., Ap(z) <0 (resp. Vo > z., Ap(z) > 0).

The case 7’ (01) < 0 is handled in the same way. |

Example 8 As an application, consider the family of payoffs

Pap (2) =27+ 2% — 2°
where 1 > a > b > —a. Then forz > 1, 2% > z°, forz <1, z=% > 2P so that Pq b 1S nON-Negative.
Moreover

=0 x + ¢ P g5t +



and @qp satisfies (HO). Let A (y) = (%Zy + p) (y —1). Then

Agap () = A(a) 2 = A (b) 2"

which gives, since A (a) <0 and A (b) <0, Apqp (z) <0 for z >z, and Apgyp (x) > 0 forz < z,
with X (a) ¢ = \(b) 2. Moreover A%pqp (zc) = A(a)®z% — A (D)2l = (A (a) — X (b)) X (b) b
and A%pqp (zc) > 0 as soon as A (b) > A (a). Lastly Adypap () = >\( ) =l X (b) bzt =
(x% — %) A(a) z¢ #0.
Of course, in this example, since vy, (t,z) = =% + 2%etMa) — gbelAO) eperything can be computed
explicitely and it is even possible to check the hypotheses of the global embedding result:

- st s
(“" m) = FDOOXD) gnd 5, () = 27 + o7 (w v ) R (&> 7

L Tc Tc

Similarly the hypothesis of Proposition 7 are satisfied by the payoff = + x* — z® where 1 > a >
b > —a« in case A(a) > A(b).

In the global case, we could not find any simple condition on ¢ ensuring the existence of a
continuous curve in the argument of inf;>owv,(t,2). Nevertheless, it is worth mentioning the
following interesting class of European payoffs : if ¢ is a non-negative function equal to an
invariant function az + bx~% with a,b > 0, a + b > 0, less a non-negative function ¢ satisfying
lim sup,,_,o z%¢(x) = limsup,_,, ., #(x)/xz = 0, then

Vo >0, Vt >0, vy(t,z) <azx +bz™® and lim v,(t,z) = ax + bz~ ",

t—+o0

which implies that @(x) = inf;>q v, (¢, 2) is not trivial and that Vo € R, Jt(x) < +o0, p(r) =
vw(?(x) z). The only assumption missing to apply Theorem 3 is the continuity of .

The next section is dedicated to a family of payoffs ¢ included in the above class. In these
examples, we explicit some American prices with a non-trivial Exercise region thanks to Theorem
3. We also check that the above-mentioned continuity of # is not always satisfied.

3 Case study: ¢(z) = 2(1<ry + Lo>ky))

This payoff is equal to the invariant function z less the bounded function ¢(7) = 21{x, <a<r,)-
Since
Vo >0, Vt>0,0<v,(t,z) <z and lim v, (t,z) = z.

t——+o00
the function t — v, (¢,z) is likely to be increasing for K1 < z < Kj and decreasing then
increasing otherwise. This remark together with the easiness of computations motivate the choice
of this example. The function ¢ satisfies the growth assumption in (HO) but is not continuous.
Therefore, even if we make the computations for ¢, we shall after all apply our results to a
suitable regularization of ¢.

3.1 The case K; =0

To simplify notations, we replace Ko by K and write ¢(z) = z1 {z>K}- This payoff corresponds
to the sum of one Call and K Digit options with common strike K. Its simplicity allows to
compute explicitely @ and ¢.



Proposition 9 Let p(z) = 21,5y Then

(L) + (p+ )t

vy (t,x) =N (di(t,x)) where di(t,z) = p

2
and N(d) = filoo 67%% s the cumulative distribution function of the normal law.

Moreover,

A e (g\/ (045 )m (%) — v, (flo)0) and o) = 2N ezr)

2
P+ 5

and ¥z > 0, t — vy, (t,x) is strictly decreasing on [0,(x)] and strictly increasing on [t(z), +00).

Proof : Using Girsanov theorem, we get

0_2
v, (t,2) =E |ze’P 711

o2
{xeaBt+(P—§)t>K} =zP (xe‘TBH—([H‘T)t > K) — $N(d1(t,$))

By the chain rule, Oy, (t,2) = xN'(di(t,x))0d1 (¢, ). Since Vz,t > 0, N'(d1(¢,z)) > 0 and

2
(p+ %)t —In(%)
ZO't%

8tdl (ta LE) =

?

we obtain that

~

Vi > 0, vt €10,t(z)], Gy, (t,z) <0
Vt > t(x), O, (t,2) >0

Hence inf;>q vy, (¢, 7) = v, (?(x), x) and the explicit expression of this function is easily computed.

Let us now regularize things in order to apply our Theorem. Let w > 0. The function
& — vy (u,x) is continuous. Let (P;);>0 denote the semigroup associated with (0.1). By the
semigroup property, the price of the European option with payoff v, (u, ) is Pi(Pyp) = Pituep.
If we set , = inf;>o P;(Py¢p), then by the previous Proposition, @,(z) = v, (uVt(z),z) =
Pov itz)—u) (P,p)(z). Since % is a continuous function with values in [0, 4+00), so is fy(z) =

~

0V (t(z) —u). Applying Theorem 3, we obtain the price of the American option with payoff @,

~

Corollary 10 Let u > 0. The price of the American option with payoff ¢, (x) = v, (u Vit(z), x)
18

v&™ (¢, z) = v, ((E+ u) Vit(z), )

Pu
2 02 T
=z (N (; p+ 7) In (E)) Ltu<in(a/ )/ (p+02/2)}

Ly [PE e+ 2
Vit {t+u>In(z/K)/(p+02/2)}

and the Exercise region is given by {(t,z) : t+u < In(z/K)/(p + 0?/2)}.




Remark 11 Although the payoff Py has no financial meaning, this example provides a very
interesting benchmark for numerical procedures devoted to American options since the price and
the Ezxercise boundary are explicit. Let us also notice that this is a two-parameter (K and u)
family of closed-formula. The payoff is of course obtained by setting t to zero in U%T(t,x).

3.2 The case K; >0

The main purpose of this subsection is to design an example where there is no continuous curve
in the argument of the infimum (Proposition 13). By a slight modification of the computations
made in the proof of Proposition 9, we get

In(zx/K;) + (p + %2> t
oVt '

It is not possible to compute @ explicitely but using the implicit functions theorem, we can study
the sign of dyv,, (t,z) to obtain :

vy (t,2) = o(N(=di(t,z)) + N(d2(t,z))), where for i =1,2 d;(t,z) =

Lemma 12 There ezist two differentiable functions t € R — & (1) < & () satisfying
1. limg0 &(t) = K; (i=1,2)

2.t > 0, &(t) > 0 and I(B,T),0 < f < T < “VIE i < g £(t) > 0 and
Vit >T, £(t) <0

2

3.Vt >0, &(t) > K26(p+%)t and & (t) < K1e(p+072)t A \/mg(ﬁﬁ)t

and such that
Vt >0, Vo € )¢1(t),&(8)], 0w, (t,z) >0 and Yo & [&1(t),&2(E)], O, () <O.

Proof : An easy computation yields that dv,, (¢, ) is equal to the product of a strictly positive
function with f(¢,lnz) where

fty) = (y — a1)e¥ e 4 (ag — y)e?2Y T2 where for i = 1,2

2 InK; 1
a;(t) =InK; + p—i—a— t, bi(t):%, ¢i(t) = %—i—— InK; —
2 ot o 2

In® K;
202t

Since a1 < ag, f(t,a2) = (a2 — a1)e?®+1 > 0. Hence the function y — f(t,y) vanishes at the
same points as

y—a

Yy—az

As a; < ag and by < be, the function y — ¢(¢,y) is strictly increasing from —1 to 400 on |—00, ag[
and from —oo to 400 on Jag, +0oo[, so it vanishes exactly twice. Let y; < as < yo denote the
corresponding points. Since elb2=b)yrt(c2—c1) > () and ggﬁ:—z; < 1, we obtain respectively y; < a1
and (by — b1)y; < ¢; — co. We combine these upper-bounds to get

n(t) <ao) r (VR — (04 5 )1) (1)

y = g(t,y) = el a)

2



))-
t)

We deduce that  — 0yv,, (t,z) vanishes exactly twice, at the points & (£) = e¥*(® and &(t)
e¥2(!) which satisfy statement 3.. As f(t, az) > 0, Oyvy, (t, ) is strictly positive for z € (£1(¢), & (t
Moreover as by < b, f(t,y) <0 for |y| large and v, (¢, x) is strictly negative for 0 < z < & (
and for z > &(1).

Let us study more precisely the functions y; (¢) and y» (). Since V¢ > 0, Yy # ax(t), Oyg(t,y) > 0,
by the implicit function theorem, for ¢ = 1,2, y;(¢) is continuously differentiable and y.(¢) has
the same sign as —0g(t,y;(t)). Expliciting the dependence of g on the time variable, we get

g(t,y) =exp (M <y+ <p+%2>t—ln\/m>> gy In(K/K)

o’t y—In(Ks) — (p+ %2)15

dug(t,y) =2EVED (R exp (M (y + <p+ U;) t—In \/m> )

o212 o?t
(p+ %) In(K1/K>)
(y —InKo — (p+ %5)t)?

Since ya(t) > a2(t) > Inv/K1 Ko, 0ig(t,y2(t)) is strictly negative and V¢ > 0, yh(t) > 0.
Moreover, when ¢ — 0 the first term in g(¢,y2(¢)) has a limit equal to +oo and the equa-
tion g(t,y2(t)) = 0 implies that the second term goes also to oo which gives lim;_, y2(t) = In K.
By (3.1), y1(t) < a1(t) = n Ky + (p + ”72)15 Hence when ¢ — 0 the first term in g(¢,y1(¢))
has a limit equal to 0. By considering the other terms we deduce that lim; o y;(f) = In K;.
Hence the first term in 9yg(t,y1(t)) goes to 0 and limy_ 94g(t,y1(t)) < 0. Therefore 35 > 0,
vVt €]0,0[, vi(t) > 0.

Using the equality g(t,y1(t)) = 0 to replace the exponential in 9;g(t,y1(¢)) and multiplying by
(y1(t) —In Ky — (p + %2)t)2/ln(K2/K1), we obtain that d.g(t,y1(t)) has the same sign as

i(yl(t)—ln\/R)@l(t)_anl_(p+%2> t) (yl(t)—an2—</0+%2> t>—<p+%2>.

o2t2

2P+0'2 ’
Vi > T, 0ug(t,y1(t)) >0 and yi(t) <O. | |

As by (3.1), y1(t) < InvVEK1 Ky — (p + ‘772) t, we conclude that for some T' < Liin VI /K

So the situation looks like:

o

x (spot)

K1 -

0p T
t (time to maturity)

10



Let u > 0. The payoff v, (u, ) satisfies (H0). Let @y (x) = inf;>0 v, (t + u, ). Since (¢, ) —
vy (t + u, ) is continuous and ¢ — v, (¢, z) is increasing for ¢ > ¢(x) where ¢(x) is locally bounded
(see Lemma 12), the function @, (z) is continuous. According to Lemma 12, there exist 0 < 8 <
T < +o0 such that ¢t — & (t) is strictly increasing on [0, 8] and strictly decreasing on [T, 4+00).
Concerning the existence of a continuous function #, such that @,(z) = v, (tu(z) + u,z) the
situation depends on whether v < B or u >T.

Proposition 13 o Ifu>T, then py(z) = vy, (fu(x) + u,z) for the continuous function

tu(@) = La<e ) (67 (2) = 0) + Lazewy (& (@) — u)
where 51_1 denotes the inverse of the restriction of & to [T,+00) and the price of the
American option with payoff @, is
vgl (t, w) = vy ((tVtu(2) +u,z)
= ((t+u) V& (2),2) Loz ) + v (%) Le, (w)<o<taw)
+vp ((t+u) V& (2),7) Laseywy

o Ifu < 3, there is no continuous function ty, such that Pu() = vy (;f\u(x) + u, x) Moreover,

Vt >0, Vo € &1t +u), St +u)], vy (t+u,z) > 07" (¢, z)

Proof : We first suppose that v > T. According to Lemma 12, ¢t € [0, +00) — & (t + u)
(resp. t € [0,400) — &(t + u)) is decreasing (vesp. increasing), and Yz € [0,& ' (u)[ (resp
Vo € |& ' (u), +o0]) t = vy, (t+ u,z) is decreasing on [0,¢] " (z) — u] (resp. [0,&; " (z) — u)
and increasing on [¢; !(z) — u,+oo[ (resp. [& ' (x) — u,+o00[). Moreover Yz € [£1(u), & (u)],
t = v, (t + u, ) is increasing. Hence @, () = v, (fu(x) + u, z) for the continuous function

tu(@) = Liae (€0 (8) = 0) + Lazgy (& (2) — ),
and we deduce the price of the American option with payoff ¢, by Theorem 3.
We turn to the case u < 5. Let F = {(t,z) : v, (t + u,2) = Py(z)}. According to Lemma 12,
t — &1(t) is increasing on [0,8]. We deduce that Vt € Ju, B[, v, (t,&1(t) > v, (u,&1(t)) and
(t —u,&i(t)) ¢ F. Hence
F C FyUF, where F| = {(t — ’U/,fl(t)), t> ﬁ}
and Fp = {(t - u7£2(t))a > ’LL} U {(O,LU), T € [gl(u)aéL?(u)]}

Let 1, be such that Yz > 0, () = v, (tAu(:L‘) +u,z) ie. (tu(x),z) € F. For  small enough
(tu(z),z) € F, and for & big enough (t,(x),z) € F,. Since Fy and F are not connected, the

~

function ¢, is discontinuous.
Let t > 0 and x € (&1 (t + u),&2(t + u)). The positive continuous function

weW — o(w) = sér[})ft] e P? (Utp (t +u— S,xe”ws"'(p_T)s) — Qu (xe‘ms"'(p_T)s))

where W = {w € C([0,¢t],R), w(0) = 0}, is not constantly equal to 0. Indeed, when

2

o 0'2
Vs <OV (E+u—0), &t +u—s) <ae?@ P78 geowetle=5)t < ¢ (4)
2

and Vs < t, 2”75 < &t +u —s),
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0_2
then Vs € [0, 1], (t—s,ze”@sT(P=%)%) ¢ F and ®(w) > 0. As the support of the Wiener measure
is W, E[® ((Bs)s<¢)] > 0. Let 7 be a stopping time smaller than ¢. Then

vy (t+u,z) =E [e*mv@ (t+u—T, X;’?)] >R [eif’T{ﬁu(Xf)] + E[® ((Bs)s<t)]

Since 7 is arbitrary, we conclude that v, (t + u,z) — vg"(t,2) > E[® ((Bs)s<t)] > 0 |

Remark 14 1. Foranyx > 0,t — v, (t + u,x) is continuous and increasing for t big enough.
Hence t,(z) = sup{t : v, (t + u,z) = @y(x)} is finite. When u < 8, Vt < t,(z),

Pu(z) <vFl(t,z) < U%T(fu(x),x) <y (tulz) +u,z) e vg (t, 7) = Pu()

but 3T (x) such that fort > T(z), = € ]&i(t + u), &2(t + w)[ and we cannot deduce v3" (¢, z)
from the price of the European option with payoff .

2. Let u < B and x* = sup{z : (t,z) € F1 N F} where F, Fy are defined in the previous proof.
Since Fy and F are closed and limy_, o &1(t) = 0, It* > f—u such that (t*,2*) € FINF i.e.
vy (t* +u,z%) = pu(x*). Since z* =sup{z : (t,z) € F1 N F}, Vo €|z, &(u)], vy (u,2) =
Pu(z) and by continuity, v, (u,z*) = @y(z*). Hence {t > 0, v, (t +u,z*) = Py(z*)}
contains at least two elements which is not surprising with regard to Remark 4.

4 A one-to-one property of the map ¢ — @
In this section we shall show the following property:

Proposition 15 Let p1 and w2 satisfy the assumptions of Theorem 3 and assume:

For i = 1,2 there are continuous curve t; with values in [0, 0o[ such that for every x
ilgf vy, (t,2) = vy, (ti(z), z)

Then o1 = g2 = p1 = 2.

We shall need the following which is a straightforward consequence of the analyticity w.r.t. ¢ of
the solution of the heat equation [4].

Lemma 16 Under (HO), for every x € RY the function t — v, (t,z) is analytic from ]0, 00| to
R.

Proof of Proposition 15: Pick z € R},. By/’\I'heorem 3, for 1 = 1,2, the American price of
@; is given by the European price of ¢; for ¢ > t;(x). Hence the European prices of p; and 9
coincide for ¢t > 11 () V2 (z) . By the lemma this entails vy, (£, ) = vy, (t,z) for t > 0 and also
for ¢ = 0 by continuity, which gives ¢1 () = @2 (). ||
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5 Conclusion

In this paper, for a fairly general class of payoffs ¢, we deduce from the European price v,(t, )
the American price of the claim with payoff ¢(z) = inf;>¢ v, (t,2). We give examples of explicit
computations. The characterization of the payoffs ¢ obtained in this way remains an open
question. A work devoted to design new approximations of the American Put price relying on
our approach is in progress.
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