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AbstractIn this paper, we are interested in American option prices in the Black-Scholes model.For a large class of payo�s, we show that in the region where the European price increaseswith the time to maturity, this price is equal to the American price of another claim. Wegive examples in which we explicit the corresponding claims. The characterization of theAmerican claims obtained in this way remains an open question.Keywords : optimal stopping, free boundary problems, martingales, Black-Scholes model, Europeanoptions, American options.AMS Classi�cation (1991): 60G40, 60G46, 90A09.IntroductionConsider the classical Black-Scholes model:dXxt = �Xxt dt+ �Xxt dBt (0.1)Xx0 = x > 0� 2 R ; � > 0where B is a standard Brownian motion, � the instantaneous interest rate and � the volatilityof X and denote by Af(x) = �2x22 f 00(x) + �xf 0(x)� �f(x)the corresponding in�nitesimal generator. Given a continuous function  : R�+ ! R+ satisfyingsome growth assumptions, the price of the so-called American option with payo�  , maturityt > 0 and spot x is given by the expressionvam (t; x) = sup�2T (0;t) E �e��� (Xx� )� (0.2)where � runs across the set of stopping times of the Brownian �ltration such that � � talmost surely. Except for some very particular class of payo�s  (e.g. payo�s satisfying 8x >�ENPC-CERMICS, 6-8 av Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne la Vallée Cedex 2,France, e-mail : jourdain@cermics.enpc.fryINRIA Projet Math�, Domaine de Voluceau, Rocquencourt, BP105, 78153 Le Chesnay Cedex, France, e-mail:Claude.Martini@inria.fr 1



0;A (x) � 0 or 8x > 0;A (x) � 0), in general, there is no closed-form expressions for vam (t; x) :The computation of vam (t; x) usually relies either on �nite-di�erence type methods or Markov-chain approximation methods to solve the corresponding optimal stopping problem in a discretetime-space framework. There is also a huge literature on special approximation methods designedfor some particular payo�s, among which the case of the Put option, given by  (x) = (K � x)+where K is some positive constant (the strike of the option) has received much attention.The purpose of this paper is to exhibit a new class of payo�s  for which a closed-form expressionfor vam (t; x) is available. The idea originates from the analytic properties of the function vam :this function is greater than  by (0:2) and typically the space ]0;1[�R�+ splits into two regions,the so-called Exercise region where by de�nition vam =  and its complement the Continuationregion where vam >  . It is known that vam solves the evolution equation associated with (0:1)@tvam = Avam in the Continuation region (at least in the distribution sense). Moreover, as from (0:2) t 7!vam (t; x) is non-decreasing, @tvam � 0 holds. In fact, since vam is a continuous function, itmay be remarked that the knowledge of vam in the Continuation region is enough to get vam everywhere.This leads to the natural idea to build American prices (i.e. functions vam for some  ) by pickingup the classical solution v'(t; x) of the evolution equation :(8t; x > 0; @tv'(t; x) = Av'(t; x)8x > 0; v'(0; x) = '(x)in the region where it increases with time. From a �nancial point of view, v'(t; x) is the Black-Scholes price of the European option with payo� ' and maturity t i.e. v'(t; x) = E �e��t' (Xxt )�.This embedding idea has been worked out in [2] in case � = 0: A similar approach has also beendevelopped in the di�erent context of the free boundary arising in a two-phases problem (see [1]1). Trying to generalize things to the case � 6= 0, we ran across a probabilistic proof which allowsa very compact statement of the embedding result.The �rst section of the paper is devoted to some basic properties of European and Americanprices within the Black-Scholes model. Next we state and prove our embedding theorem (section2). Then we give some examples (section 3). Lastly, we discuss some properties of the mapwhich takes a payo� ' to the payo� b' the American price of which is embedded in its Europeanprice (section 4). The characterization of the payo�s b' obtained in this way remains an openquestion.1 European and American prices in the Black-Scholes modelIn this section we recall the very few properties of European and American Black-Scholes priceswe shall need in the next section.Let � = 2��2 . The invariant functions of the semigroup associated with (0.1) are easily seen tobe the vector space generated by x and x��: We shall consider payo�s ' such thatx 2 R�+ 7! ' (x) 2 R+ is continuous and supx>0 ' (x)x+ x�� <1 (H0)1We thank Régis Monneau (CERMICS) for bringing out this work to our attention.2



The growth assumption is only there to grant the existence of the various expectations involved.It seems that the continuity assumption could be removed, but the connection with Americanoptions would be more intricate, so we keep this hypothesis.Proposition 1 [3] Under (H0) the price of the European option with maturity t � 0 and payo�' is given by v' (t; x) = E �e��t' (Xxt )�In particular v' (0; x) = ' (x) :The function v' is continuous from [0;1[� R�+ into R, and for any t > 0; the process(e��uv' (t� u;Xxu ))0�u�t is a continuous square-integrable martingale.Let us now turn to American options:Proposition 2 [3] If  satis�es (H0), the price of the American option with maturity t � 0 andpayo�  is given by vam (t; x) = sup�2T (0;t) E �e��� (Xx� )�where � runs across the set of stopping times of the Brownian �ltration such that � � t almostsurely. In particular vam (0; x) =  (x) :The function vam is continuous from [0;1[ � R�+ into R; and for any x 2 R�+ the map t 7!vam (t; x) is non-decreasing.2 Embedding American prices in European pricesOur main results relates the price v' (t; x) of the European option with payo� ' to the pricevamb' (t; x) of the American option with payo� b'(x) = inft�0 v' (t; x):Theorem 3 Under (H0) let b'(x) = inft�0 v' (t; x)Then 8(t; x) 2 [0;+1)� R�+ ; sup�2T (0;t) E �e��� b'(Xx� )� � v' (t; x) (2.1)where the supremum is taken over all the stopping times � of the �ltration of the Brownian motionsmaller than t.Moreover, if there exists a continuous function bt : R�+ ! [0;+1] such that8x > 0; inft�0 v' (t; x) = v' �bt(x); x�(where v' (1; x) is de�ned as lim inft!+1 v' (t; x)) and either:8x > 0; bt(x) < +13



or: 9C > 0;8x; y > 0; j'(x) � '(y)j � C(jx� yj+ jx�� � y��j)then the function b' satis�es (H0) and8(t; x) 2 [0;+1)� R�+ ; vamb' (t; x) = v' �t _ bt(x); x� (2.2)
Proof : Let (t; x) 2 R+�R�+ . According to Proposition 1, the process (e��uv' (t� u;Xxu ))u2[0;t]is a martingale. If � � t is a stopping time, by Doob optional sampling theoremv' (t; x) = E �e���v' (t� �;Xx� )� � E �e��� b'(Xx� )� :Since � is arbitrary, we deduce that (2.1) holds.To prove the other statements, we suppose the existence of bt : R�+ ! [0;+1] continuous suchthat 8x > 0; b'(x) = v' �bt(x); x� :If 8x > 0; bt(x) < +1 then the continuity of b' is a consequence of the continuity of (t; x) 2[0;+1)� R�+ ! v' (t; x). If 8x; y > 0; j'(x)� '(y)j � C(jx� yj+ jx�� � y��j), then8t � 0; jv' (t; x)� v' (t; y) j � E �e��tj'(Xxt )� '(Xyt )j�� C �jx� yjE �e��tX1t �+ jx�� � y��jE �e��t(X1t )����� C(jx� yj+ jx�� � y��j)Hence the functions x ! v' (t; x) indexed by t � 0 are equicontinuous, which ensures thecontinuity of x! inft�0 v' (t; x) = b'(x).To show (2.2), we make a distinction between the two following situations :� case bt(x) = +1 : since s! vamb' (s; x) is increasing, for u � tb'(x) = vamb' (0; x) � vamb' (t; x) � vamb' (u; x) � v' (u; x) by (2.1):Letting u! +1, we deduce that8t � 0; vamb' (t; x) = b'(x) = v' (1; x) = v' �t _ bt(x); x� :� case bt(x) < +1 : let t � bt(x) and �0 = inffu : t � u � bt(Xxu ) � 0g. Since bt(Xxt ) � 0, thestopping time �0 is smaller than t. By continuity of u! t� u� bt(Xxu ), t� �0 = bt(Xx�0). Hencev' (t; x) = E �e���0v' �t� �0;Xx�0�� = E �e���0v' �bt(Xx�0);Xx�0��= E �e���0 b'(Xx�0)� � vamb' (t; x):The converse inequality (2.1) is already proved. Hence 8t � bt(x), vamb' (t; x) = v' (t; x) and �0 isan optimal stopping time. Since t ! vamb' (t; x) is increasing, for t � bt(x), b'(x) � vamb' (t; x) �vamb' (bt(x); x) = v' �bt(x); x� = b'(x), which ends the proof.4



Remark 4 The continuity of the argument of the in�mum is granted in the following uniquenesssituation: suppose that 8x > 0; 9!bt(x) � T (x); b'(x) = v' �bt(x); x� where T : R�+ ! R+ iscontinuous. Then by the continuity of T and v', it is easy to see that b'(x) = inft2[0;T (x)] v' (t; x)is continuous. Moreover, since bt(x) = infft � 0 : b'(x) = v' (t; x)g (resp. bt(x) = supft � T (x) :b'(x) = v' (t; x)g), bt is lower semi-continuous (resp. upper semi-continuous) i.e. bt is continuousand (2.2) holds.In the above theorem it may happen that the function b' is nil: in case lim supx!0 x�'(x) = 0and lim supx!+1 '(x)=x = 0, we easily check that8x > 0; limt!+1 v' (t; x) = 0:In such a situation, the following localized version of our main result is far more interestingthan Theorem 3. It is proved by the same arguments, after noticing that the continuity of(t; x) 2 [0;+1)� R�+ ! v' (t; x) implies the continuity of x! b'T (x) = inf0�t�T v' (t; x) whereT > 0.Theorem 5 Let T > 0. The function b'T (x) = inf0�t�T v' (t; x) satis�es (H0) and8(t; x) 2 [0; T ] � R�+ ; vamb'T (t; x) � v' (t; x) :Moreover, if there exists a continuous function bt : R�+ ! [0; T ] such that8x > 0; inf0�t�T v' (t; x) = v' �bt(x); x� ;then 8(t; x) 2 [0; T ]� R�+ ; vamb'T (t; x) = v' �t _ bt(x); x� :Remark 6 The only feature of the Black-Scholes model which is required in the above results istime-homogeneity. In fact, Propositions 1 and 2 and Theorems 3 and 5 can be adapted to theso-called generalized Black-Scholes model :Xxt = x exp ��Bt + (�� � � �2=2)t�v' (t; x) = E �e��t'(Xxt )� and vam (t; x) = sup�2T (0;t) E �e��� (Xx� )� ;or to the more general time-homogeneous model :Xx0 = x; dXxt = Xxt (�(Xxt )dBt + (�(Xxt )� �(Xxt ))dt)v' (t; x) = E he� R t0 �(Xxs )ds'(Xxt )i and vam (t; x) = sup�2T (0;t) E he� R �0 �(Xxs )ds (Xx� )iand also to the multidimensional versions of these models.Of course it would be of great interest to give conditions on ' which ensure the existence of acontinuous curve in the argument of the in�mum. One way is to perform explicit computations,since the Black-Scholes semigroup is explicit. Nevertheless this is not very illuminating. We ranacross the following statement, for the local embedding result, which is maybe the simplest inthis direction: 5



Proposition 7 Let ' be a C4 function which satis�es (H0) and 9xc 2 R�+ such that(i) A'(xc) = 0 and either 8x > 0; (x� xc)A'(x) � 0 or 8x > 0; (x� xc)A'(x) � 0(ii) A2' (xc) > 0 and A@x' (xc) 6= 0Then there exists a constant T > 0 such that the assumptions of Theorem 5 are satis�ed.Proof : Since ' is C4, the function v'(t; x) belongs to C2;4(R+ � R�+) (C2 in t, C4 in x) andsatis�es the Black-Scholes partial di�erential equation @tv' = Av' for t � 0 and not only t > 0.Consider the equation @tv' (t; x) = 0 in a neighbourhood of (0; xc) in f(t; x) ; t � 0g. By deriva-tion of the Black-Scholes evolution equation, @2txv' (0; xc) = A@x' (xc) 6= 0. Hence, by theimplicit functions theorem, there is for some " > 0 a curve bx:bx : [0; "] ! R�+continuous on [0; "] ; with bx (0) = xc; such that @tv' (t; bx (t)) = 0; and C1 on ]0; "[ with@2t2v' (t; bx (t)) + @2txv' (t; bx (t)) bx0 (t) = 0Moreover by taking " small enough we can assume that bx0 (t) does not vanish and keeps the samesign as bx0 (0+) = � A2'(xc)A@x'(xc) . We deduce that there exists a continuous function bt : [xc; bx(")] ![0; "] such that bx �bt (x)� = x:Assume bx0 (0+) > 0. Then the function bt is increasing. Moreover, A@x'(x) < 0 which ensures8x < xc; A'(x) � 0 and 8x > xc; A'(x) � 0. We set T = " and extend bt to R�+ by settingbt (x) = T for x > xc + " and bt (x) = 0 for x < xc: The obtained function is continuous and thewhole point is to show that for every x; the in�mum of t 7�! v' (t; x) on [0; T ] is reached atbt (x) : This amounts to show that @tv'(t; x) = Av' (t; x) is non-positive for (t; x) above bx (i.e.for t � T and x � bx(t)) and non-negative below. If (Pt)t�0 denotes the semigroup associatedwith (0.1), Av'(t; x) = APt'(x) = PtA'(x):Let (t; x) belong to the above (resp. below) region. By the optimal stopping theorem, Av' (t; x)is equal to the expectation of the value of the martingale (e��uPt�uA' (Xxu))0�u�t stopped atthe border of the above (resp. below) region f(u; bx(u)); u 2 [0; �]g [ f(0; x); x � xcg (resp.f(u; bx(u)); u 2 [0; �]g [ f(0; x); x � xcg) which is non-positive (resp. non-negative) since8t 2]0; �]; PuA'(bx(u)) = @uv'(bx(u)) = 0 and 8x � xc; A'(x) � 0 (resp. 8x � xc; A'(x) � 0).The case bx0 (0+) < 0 is handled in the same way.
Example 8 As an application, consider the family of payo�s'a;b (x) = x�� + xa � xbwhere 1 > a > b > ��: Then for x � 1; xa � xb; for x < 1; x�� > xb so that 'a;b is non-negative.Moreover limx!0 'a;b (x)x+ x�� = 1; limx!+1 'a;b (x)x+ x�� = 06



and 'a;b satis�es (H0) : Let � (y) = ��22 y + �� (y � 1) : ThenA'a;b (x) = � (a) xa � � (b)xbwhich gives, since � (a) < 0 and � (b) < 0; A'a;b (x) < 0 for x > xc and A'a;b (x) > 0 for x < xcwith � (a)xac = � (b)xbc: Moreover A2'a;b (xc) = � (a)2 xac � � (b)2 xbc = (� (a)� � (b))� (b)xbcand A2'a;b (xc) > 0 as soon as � (b) > � (a) : Lastly A@x'a;b (xc) = � (a) axa�1c � � (b) bxb�1c =� axc � bxc� � (a) xac 6= 0:Of course, in this example, since v' (t; x) = x��+xaet�(a)�xbet�(b), everything can be computedexplicitely and it is even possible to check the hypotheses of the global embedding result:�x _ xcxc �a�b = ebt(x)(�(b)��(a)) and b'a;b (x) = x�� + xa�x _ xcxc ��(a)(a�b)�(b)��(a) � xb�x _ xcxc � �(b)(a�b)�(b)��(a) :Similarly the hypothesis of Proposition 7 are satis�ed by the payo� x + xb � xa where 1 > a >b > �� in case �(a) > �(b).In the global case, we could not �nd any simple condition on ' ensuring the existence of acontinuous curve in the argument of inft�0 v'(t; x). Nevertheless, it is worth mentioning thefollowing interesting class of European payo�s : if ' is a non-negative function equal to aninvariant function ax + bx�� with a; b � 0; a+ b > 0; less a non-negative function � satisfyinglim supx!0 x��(x) = lim supx!+1 �(x)=x = 0, then8x > 0; 8t � 0; v'(t; x) � ax+ bx�� and limt!+1 v'(t; x) = ax+ bx��;which implies that b'(x) = inft�0 v'(t; x) is not trivial and that 8x 2 R; 9bt(x) < +1; b'(x) =v'(bt(x); x). The only assumption missing to apply Theorem 3 is the continuity of bt.The next section is dedicated to a family of payo�s ' included in the above class. In theseexamples, we explicit some American prices with a non-trivial Exercise region thanks to Theorem3. We also check that the above-mentioned continuity of bt is not always satis�ed.3 Case study: '(x) = x(1fx<K1g + 1fx>K2g)This payo� is equal to the invariant function x less the bounded function �(x) = x1fK1�x�K2g.Since 8x > 0; 8t > 0; 0 < v' (t; x) < x and limt!+1 v' (t; x) = x:the function t ! v' (t; x) is likely to be increasing for K1 < x < K2 and decreasing thenincreasing otherwise. This remark together with the easiness of computations motivate the choiceof this example. The function ' satis�es the growth assumption in (H0) but is not continuous.Therefore, even if we make the computations for ', we shall after all apply our results to asuitable regularization of '.3.1 The case K1 = 0To simplify notations, we replace K2 by K and write '(x) = x1fx>Kg. This payo� correspondsto the sum of one Call and K Digit options with common strike K. Its simplicity allows tocompute explicitely b' and bt. 7



Proposition 9 Let '(x) = x1fx>Kg. Thenv' (t; x) = xN(d1(t; x)) where d1(t; x) = ln( xK ) + (�+ �22 )t�ptand N(d) = R d�1 e� y22 dyp2� is the cumulative distribution function of the normal law.Moreover,b'(x) = x1fx>KgN  2�s��+ �22 � ln� xK�! = v' �bt(x); x� and bt(x) = ln(x=K)1fx�Kg�+ �22and 8x > 0, t! v' (t; x) is strictly decreasing on [0;bt(x)] and strictly increasing on [bt(x);+1).Proof : Using Girsanov theorem, we getv' (t; x) = E "xe�Bt��22 t1�xe�Bt+(���22 )t�K�# = xP �xe�Bt+(�+�22 )t � K� = xN(d1(t; x))By the chain rule, @tv'(t; x) = xN 0(d1(t; x))@td1(t; x). Since 8x; t > 0; xN 0(d1(t; x)) > 0 and@td1(t; x) = (�+ �22 )t� ln( xK )2�t 32 ;we obtain that 8x > 0;(8t 2 �0;bt(x)� ; @tv' (t; x) < 08t > bt(x); @tv' (t; x) > 0Hence inft�0 v' (t; x) = v' �bt(x); x� and the explicit expression of this function is easily computed.Let us now regularize things in order to apply our Theorem. Let u > 0. The functionx ! v' (u; x) is continuous. Let (Pt)t�0 denote the semigroup associated with (0.1). By thesemigroup property, the price of the European option with payo� v' (u; x) is Pt(Pu') = Pt+u'.If we set b'u = inft�0 Pt(Pu'), then by the previous Proposition, b'u(x) = v' �u _ bt(x); x� =P0_(bt(x)�u)(Pu')(x). Since bt is a continuous function with values in [0;+1), so is btu(x) =0_ (bt(x)� u). Applying Theorem 3, we obtain the price of the American option with payo� b'u:Corollary 10 Let u > 0. The price of the American option with payo� b'u(x) = v' �u _ bt(x); x�is vamb'u (t; x) = v' �(t+ u) _ bt(x); x�= x�N  2�s��+ �22 � ln� xK�! 1ft+u�ln(x=K)=(�+�2=2)g+N  ln( xK ) + (�+ �22 )(t+ u)�pt+ u ! 1ft+u>ln(x=K)=(�+�2=2)g�and the Exercise region is given by f(t; x) : t+ u � ln(x=K)=(� + �2=2)g.8



Remark 11 Although the payo� b'u has no �nancial meaning, this example provides a veryinteresting benchmark for numerical procedures devoted to American options since the price andthe Exercise boundary are explicit. Let us also notice that this is a two-parameter (K and u)family of closed-formula. The payo� is of course obtained by setting t to zero in vamb'u (t; x).3.2 The case K1 > 0The main purpose of this subsection is to design an example where there is no continuous curvein the argument of the in�mum (Proposition 13). By a slight modi�cation of the computationsmade in the proof of Proposition 9, we getv' (t; x) = x(N(�d1(t; x)) +N(d2(t; x))); where for i = 1; 2 di(t; x) = ln(x=Ki) + ��+ �22 � t�pt :It is not possible to compute b' explicitely but using the implicit functions theorem, we can studythe sign of @tv' (t; x) to obtain :Lemma 12 There exist two di�erentiable functions t 2 R�+ ! �1(t) < �2(t) satisfying1. limt!0 �i(t) = Ki (i = 1; 2)2. 8t > 0; �02(t) > 0 and 9(�; T ); 0 < � < T � 1+lnpK2=K12�+�2 , 8t < �; �01(t) > 0 and8t > T; �01(t) < 03. 8t > 0; �2(t) > K2e��+�22 �t and �1(t) < K1e��+�22 �t ^pK1K2e���+�22 �tand such that8t > 0; 8x 2 ]�1(t); �2(t)[ ; @tv' (t; x) > 0 and 8x =2 [�1(t); �2(t)]; @tv' (t; x) < 0:
Proof : An easy computation yields that @tv' (t; x) is equal to the product of a strictly positivefunction with f(t; lnx) wheref(t; y) = (y � a1)eb1y+c1 + (a2 � y)eb2y+c2 where for i = 1; 2ai(t) = lnKi +��+ �22 � t; bi(t) = lnKi�2t ; ci(t) = � ��2 + 12� lnKi � ln2Ki2�2tSince a1 < a2, f(t; a2) = (a2 � a1)eb1a2+c1 > 0. Hence the function y ! f(t; y) vanishes at thesame points as y ! g(t; y) = e(b2�b1)y+(c2�c1) � y � a1y � a2As a1 < a2 and b1 < b2, the function y ! g(t; y) is strictly increasing from �1 to +1 on ]�1; a2[and from �1 to +1 on ]a2;+1[, so it vanishes exactly twice. Let y1 < a2 < y2 denote thecorresponding points. Since e(b2�b1)y1+(c2�c1) > 0 and y1�a1y1�a2 < 1, we obtain respectively y1 < a1and (b2 � b1)y1 < c1 � c2. We combine these upper-bounds to gety1(t) < a1(t) ^�lnpK1K2 ���+ �22 � t� (3.1)9



We deduce that x ! @tv' (t; x) vanishes exactly twice, at the points �1(t) = ey1(t) and �2(t) =ey2(t) which satisfy statement 3.. As f(t; a2) > 0, @tv' (t; x) is strictly positive for x 2 (�1(t); �2(t)).Moreover as b1 < b2, f(t; y) < 0 for jyj large and @tv' (t; x) is strictly negative for 0 < x < �1(t)and for x > �2(t).Let us study more precisely the functions y1(t) and y2(t). Since 8t > 0; 8y 6= a2(t); @yg(t; y) > 0,by the implicit function theorem, for i = 1; 2, yi(t) is continuously di�erentiable and y0i(t) hasthe same sign as �@tg(t; yi(t)). Expliciting the dependence of g on the time variable, we getg(t; y) = exp� ln(K2=K1)�2t �y +��+ �22 � t� lnpK1K2��� 1 + ln(K1=K2)y � ln(K2)� (�+ �22 )t@tg(t; y) =ln(K1=K2)�2t2 (y � lnpK1K2) exp� ln(K2=K1)�2t �y +��+ �22 � t� lnpK1K2��+ (�+ �22 ) ln(K1=K2)(y � lnK2 � (�+ �22 )t)2Since y2(t) > a2(t) > lnpK1K2, @tg(t; y2(t)) is strictly negative and 8t > 0; y02(t) > 0.Moreover, when t ! 0 the �rst term in g(t; y2(t)) has a limit equal to +1 and the equa-tion g(t; y2(t)) = 0 implies that the second term goes also to1 which gives limt!0 y2(t) = lnK2.By (3.1), y1(t) < a1(t) = lnK1 + (� + �22 )t. Hence when t ! 0 the �rst term in g(t; y1(t))has a limit equal to 0. By considering the other terms we deduce that limt!0 y1(t) = lnK1.Hence the �rst term in @tg(t; y1(t)) goes to 0 and limt!0 @tg(t; y1(t)) < 0. Therefore 9� > 0,8t 2 ]0; �[ ; y01(t) > 0.Using the equality g(t; y1(t)) = 0 to replace the exponential in @tg(t; y1(t)) and multiplying by(y1(t)� lnK2 � (�+ �22 )t)2= ln(K2=K1), we obtain that @tg(t; y1(t)) has the same sign as�1�2t2 (y1(t)�lnpK1K2)�y1(t)�lnK1���+ �22 � t��y1(t)�lnK2���+ �22 � t����+ �22 � :As by (3.1), y1(t) < lnpK1K2 � ��+ �22 � t, we conclude that for some T � 1+lnpK2=K12�+�2 ,8t > T; @tg(t; y1(t)) > 0 and y01(t) < 0:So the situation looks like:

K1
K2

0 � T
x (spot)

t (time to maturity)

�1(t)�2(t)
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Let u > 0. The payo� v' (u; x) satis�es (H0). Let b'u(x) = inft�0 v' (t+ u; x). Since (t; x) !v' (t+ u; x) is continuous and t! v' (t; x) is increasing for t � t(x) where t(x) is locally bounded(see Lemma 12), the function b'u(x) is continuous. According to Lemma 12, there exist 0 < � <T < +1 such that t ! �1(t) is strictly increasing on [0; �] and strictly decreasing on [T;+1).Concerning the existence of a continuous function btu such that b'u(x) = v' �btu(x) + u; x� thesituation depends on whether u < � or u � T .Proposition 13 � If u � T , then b'u(x) = v' �btu(x) + u; x� for the continuous functionbtu(x) = 1fx��1(u)g(��11 (x)� u) + 1fx��2(u)g(��12 (x)� u)where ��11 denotes the inverse of the restriction of �1 to [T;+1) and the price of theAmerican option with payo� b'u isvamb'u (t; x) = v' �(t _ btu(x)) + u; x�= v' �(t+ u) _ ��11 (x); x� 1fx��1(u)g + v' (u; x) 1f�1(u)<x<�2(u)g+ v' �(t+ u) _ ��12 (x); x� 1fx��2(u)g� If u < �, there is no continuous function btu such that b'u(x) = v' �btu(x) + u; x�. Moreover,8t > 0; 8x 2 ]�1(t+ u); �2(t+ u)[ ; v' (t+ u; x) > vamb'u (t; x)Proof : We �rst suppose that u � T . According to Lemma 12, t 2 [0;+1) ! �1(t + u)(resp. t 2 [0;+1) ! �2(t + u)) is decreasing (resp. increasing), and 8x 2 �0; ��11 (u)� (resp8x 2 ���12 (u);+1�) t ! v' (t+ u; x) is decreasing on [0; ��11 (x) � u] (resp. [0; ��12 (x) � u])and increasing on [��11 (x) � u;+1[ (resp. [��12 (x) � u;+1[). Moreover 8x 2 [�1(u); �2(u)],t! v' (t+ u; x) is increasing. Hence b'u(x) = v' �btu(x) + u; x� for the continuous functionbtu(x) = 1fx��1(u)g(��11 (x)� u) + 1fx��2(u)g(��12 (x)� u);and we deduce the price of the American option with payo� b'u by Theorem 3.We turn to the case u < �. Let F = f(t; x) : v' (t+ u; x) = b'u(x)g. According to Lemma 12,t ! �1(t) is increasing on [0; �]. We deduce that 8t 2 ]u; �[ ; v' (t; �1(t)) > v' (u; �1(t)) and(t� u; �1(t)) =2 F . HenceF � F1 [ F2 where F1 = f(t� u; �1(t)); t � �gand F2 = f(t� u; �2(t)); t � ug [ f(0; x); x 2 [�1(u); �2(u)]gLet btu be such that 8x > 0; b'u(x) = v' �btu(x) + u; x� i.e. (btu(x); x) 2 F . For x small enough(btu(x); x) 2 F1 and for x big enough (btu(x); x) 2 F2. Since F1 and F2 are not connected, thefunction btu is discontinuous.Let t > 0 and x 2 (�1(t+ u); �2(t+ u)). The positive continuous functionw 2W ! �(w) = infs2[0;t] e��s�v'�t+ u� s; xe�ws+(���22 )s�� b'u�xe�ws+(���22 )s��where W = fw 2 C([0; t];R); w(0) = 0g, is not constantly equal to 0. Indeed, when8s � 0 _ (t+ u� �); �1(t+ u� s) < xe�ws+(���22 )s; xe�wt+(���22 )t < �1(u)and 8s � t; xe�ws+(���22 )s < �2(t+ u� s);11



then 8s 2 [0; t]; (t�s; xe�ws+(���22 )s) =2 F and �(w) > 0. As the support of the Wiener measureis W , E [� ((Bs)s�t)] > 0: Let � be a stopping time smaller than t. Thenv' (t+ u; x) = E �e���v' (t+ u� �;Xx� )� � E �e��� b'u(Xx� )�+ E [� ((Bs)s�t)]Since � is arbitrary, we conclude that v' (t+ u; x)� vamb'u (t; x) � E [� ((Bs)s�t)] > 0Remark 14 1. For any x > 0, t! v' (t+ u; x) is continuous and increasing for t big enough.Hence ~tu(x) = supft : v' (t+ u; x) = b'u(x)g is �nite. When u < �, 8t � ~tu(x),b'u(x) � vamb'u (t; x) � vamb'u (~tu(x); x) � v' �~tu(x) + u; x� i.e. vamb'u (t; x) = b'u(x)but 9T (x) such that for t � T (x); x 2 ]�1(t+ u); �2(t+ u)[ and we cannot deduce vamb'u (t; x)from the price of the European option with payo� '.2. Let u < � and x� = supfx : (t; x) 2 F1 \ Fg where F; F1 are de�ned in the previous proof.Since F1 and F are closed and limt!+1 �1(t) = 0, 9t� � ��u such that (t�; x�) 2 F1\F i.e.v' (t� + u; x�) = b'u(x�). Since x� = supfx : (t; x) 2 F1 \ Fg, 8x 2]x�; �2(u)], v' (u; x) =b'u(x) and by continuity, v' (u; x�) = b'u(x�). Hence ft � 0; v' (t+ u; x�) = b'u(x�)gcontains at least two elements which is not surprising with regard to Remark 4.4 A one-to-one property of the map ' 7! b'In this section we shall show the following property:Proposition 15 Let '1 and '2 satisfy the assumptions of Theorem 3 and assume:For i = 1; 2 there are continuous curve bti with values in [0;1[ such that for every xinft v'i (t; x) = v'i �bti(x); x�Then b'1 = b'2 ) '1 = '2.We shall need the following which is a straightforward consequence of the analyticity w.r.t. t ofthe solution of the heat equation [4].Lemma 16 Under (H0), for every x 2 R�+ the function t 7! v' (t; x) is analytic from ]0;1[ toR:Proof of Proposition 15: Pick x 2 R�+ : By Theorem 3, for i = 1; 2, the American price ofb'i is given by the European price of 'i for t � bti(x). Hence the European prices of '1 and '2coincide for t � bt1 (x)_bt2 (x) : By the lemma this entails v'1 (t; x) = v'2 (t; x) for t > 0 and alsofor t = 0 by continuity, which gives '1 (x) = '2 (x) :
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5 ConclusionIn this paper, for a fairly general class of payo�s ', we deduce from the European price v'(t; x)the American price of the claim with payo� b'(x) = inft�0 v'(t; x). We give examples of explicitcomputations. The characterization of the payo�s b' obtained in this way remains an openquestion. A work devoted to design new approximations of the American Put price relying onour approach is in progress.References[1] J. Crank,�Free and moving boundary problems�, Oxford University Press 1984[2] C. Martini, �The UVMmodel and American Options�, Rapport de Recherche no 3697, INRIA1999[3] M. Musiela and M. Rutkowski, �Martingale Methods In Financial Modelling�, Springer-Verlag1998[4] A. Pazy,� Semigroups of linear operators and applications to partial di�erential equations",Springer-Verlag 1983[5] D. Revuz and M. Yor, �Continuous martingales and Brownian motion�, Springer-Verlag 1991
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