
Can we outperform the DIIS approachfor electronic structure calculations?�Eric Cancès and Claude Le BrisCERMICS, Ecole Nationale des Ponts et Chaussées,6 & 8 avenue Blaise Pascal, Cité Descartes,F-77455 Marne-la-Vallée Cedex 2, France.cances@cermics.enpc.fr, lebris@cermics.enpc.frNovember 22, 1999AbstractThe present paper regroups various results on SCF algorithms for computingelectronic structures of molecular systems. The �rst part of the article dealswith the convergence properties of the �conventional� Roothaan algorithm andof the level-shifting algorithm. In the second part, a new class of algorithms isintroduced, for which convergence is guaranteed by mathematical arguments.Computational performance on various test problems is reported; advantagesof this new approach are demonstrated.Keywords: Electronic structure calculations, Hartree-Fock, SCF algorithms,Convergence acceleration, DIIS.1 IntroductionThe purpose of this article is twofold. On the one hand, convergence properties ofsome classical self-consistent �eld (SCF) algorithms which are implemented in Quan-tum Chemistry codes are investigated. The focus is in particular on the Roothaan [1],the level-shifting [2], and the DIIS [3] algorithms. On the other hand, a new class ofSCF procedures is presented, for which1. convergence towards a critical point of the energy functional can be mathemat-ically proved (and is experimentally observed), whatever the initial guess,2. preliminary numerical tests are very promising: all the calculations performedso far (RHF only) show that computational e�ciency is comparable and some-times better than for the DIIS procedure in terms of both CPU time andmemory occupation.For reasons that will be made clear below, the algorithms introduced in the presentarticle will be referred to as Relaxed Constraints Algorithms (RCA in short). Al-though RCA can be applied in the Kohn-Sham setting also, they are particularly welladapted to Hartree-Fock (HF) problems. We limit our analysis to this latter setting;�International Journal of Quantum Chemistry, submitted.1



we also limit ourselves to closed shell models; extensions to open shell models on theone hand and to DFT models of Kohn-Sham type on the other hand are discussedin the conclusion.This paper is organized as follows.The basic tools of the density matrix formalism [4], which is very fruitful for thestudy of SCF algorithms, are brie�y presented in section 2.Section 3 deals with the convergence properties of the Roothaan algorithm, whichis the most �natural� algorithm for solving the HF equations. It is proved thatthe Roothaan algorithm either converges towards a solution to the HF equationsor oscillates between two states which are not solutions to the HF equations. Anydi�erent behavior (oscillations between more than two states, �chaotic� behavior, ...)is excluded. The method used to establish this result suggests a simple strategy forforcing convergence; the so-obtained algorithm happens to coincide with the well-known level-shifting algorithm. For brevity, the details of the mathematical proofsare not enclosed here and can be found in [5, 6].The Relaxed Constraints Algorithms are introduced in section 4. Brie�y speaking,the essence of RCA consists in minimizing the HF energy without worrying about sat-isfying at each step the nonlinear constraints of idempotency that de�ne admissibledensity matrices; thanks to a nice mathematical property of the RCA, the contraintswill be automatically recovered once convergence is reached. The simplest RCA isdetailed in section 4.1. This algorithm has the same structure as the standard damp-ing algorithm [7], except, and this is a crucial point, that the damping parameter isoptimized at each step. For this reason, we have named this algorithm the OptimalDamping Algorithm (ODA). The numerical tests performed so far seem to indicatethat the ODA has very good convergence properties. Some representative results onvarious molecular systems are reported on in section 4.2. Other RCA are variationson the basic ODA whose goals are to accelerate convergence. Two of them, whoseimplementations are in progress, are presented as examples in section 4.3. We em-phasize in particular in section 4.3.1. that iterative subspace methods that underliethe DIIS algorithm can be applied in the context of RCA: the algorithms obtainedin this way seem to outperform the DIIS algorithm in the sense that they alwaysconverge towards a solution to the HF equations and that the cost of one iterationis a little weaker in terms of CPU time.The mathematical proof of the convergence of the ODA is not given here. The readerinterested in these theoretical aspects is referred to [5].2 Density matrix formulation of the RHF problemThe density matrix formalism [4] turns out to be a very helpful tool for studyingSCF algorithms. Let us recall that within this formalism, the Restricted Hartree-Fock (RHF) problem for a 2N -electron close shell molecular system readsinf nERHF (D); D 2 PNo (1)where PN = fD 2M(n; n); D� = D; Tr (SD) = N; DSD = Dg ;2



denotes the set of density matrices and where the HF energy is given byERHF (D) = 2Tr (hD) + Tr (G(D)D):As usual, the n�nmatrices S and h denote respectively the overlap and one-electronmatrices associated with the basis f�kg1�k�n of atomic orbitals:Skl = ZIR3 ��k�l; hkl = 12 ZIR3 r��k � r�l + ZIR3 V ��k�l:In the latter expression, V is the electrostatic potential generated by the nuclei. Thelinear map G is de�ned byG(D)ij = (A : D)ij =Xkl AijklDkl; Aijkl = 2(ijjkl) � (iljkj);where (ijjkl) denotes the bielectronic integral(ijjkl) = ZIR3 ZIR3 �i(x)�j(x)��k(x0)�l(x0)�jx� x0j dx dx0:The Euler-Lagrange equations associated with the minimization problem (1), namelythe HF equations, read 8><>: F (D)C = SCEC�SC = IND = CC� (2)where F (D) = h+G(D) denotes the Fock matrix, IN the identity matrix of rank N ,and where E is a N � N hermitan matrix which can be chosen diagonal withoutloss of generality (see [4]). In this case, C = (�1; � � � ;�N ) is a n�N matrix puttingtogether N eigenvectors �i of the (generalized) eigenvalue problemF (D) � �i = �i S � �i (3)and E = Diag(�1; � � � ; �N ). A necessary condition for D being a local minimum ofthe minimization problem (1) is that the (�i)1�i�N are the N smallest eigenvaluesof problem (3), including multiplicity. A mathematical proof of this statement canbe read in [8]. It is not rigorously known whether this necessary condition is alsosu�cient or not.3 Analysis of the Roothaan algorithmLet us brie�y recall that the Roothaan algorithm is the simplest �xed point procedureassociated with the nonlinear eigenvalue problem (2). It consists in generating asequence (DRthk ) in PN satisfying8><>: F (DRthk )Ck+1 = SCk+1Ek+1C�k+1SCk+1 = INDRthk+1 = Ck+1C�k+1with Ek+1 = Diag(�k+11 ; � � � ; �k+1N ), where �k+11 � �k+12 � � � � � �k+1N are the Nsmallest eigenvalues of the linear eigenvalue problemF (DRthk ) � �k+1i = �k+1i S � �k+1i3



including multiplicity. From a general viewpoint, the procedure consisting in buildinga new density matrix D by populating the N molecular orbitals of lowest energiesof the Fock matrix F computed at the previous iteration, is usually referred to asthe aufbau principle. It is convenient to characterize the density matrix generatedby the aufbau principle as (see [5]):D = arg inf �Tr (FD0); D0 2 PN	 :Here and in the sequel, we denote by arg infMP one of the minimizer of the mini-mization problem MP .Unfortunately, the Roothaan algorithm has bad convergence properties: numericalexperiments show that either it converges towards a stationary point of the HF energy(in favorable cases), or oscillates between two states, none of them being solution tothe HF equations. This behavior of the Roothaan algorithm has been theoreticallyexplained by the authors in [6] by introducing the auxiliary functionE(D;D0) = Tr (hD) + Tr (hD0) + Tr (G(D)D0);de�ned on PN � PN , which is symmetric since Tr (G(D)D0) = Tr (G(D0)D), andwhich satis�es E(D;D) = ERHF (D). Let us indeed minimize E by relaxation, astandard numerical procedure which consists in minimizing alternatively with respectto each of the two arguments D and D0:D1 = arg inf fE(D0;D); D 2 PNg ;D2 = arg inf fE(D;D1); D 2 PNg ;D3 = arg inf fE(D2;D); D 2 PNg ;� � �For the �rst two steps, we obtainD1 = arg inf fE(D0;D); D 2 PNg= arg inf fTr (hD0) + Tr (hD) + Tr (G(D0)D); D 2 PNg= arg inf fTr (F (D0)D); D 2 PNg= DRth1 ;and, since E is symmetric on PN �PN ,D2 = arg infnE(D;DRth1 ); D 2 PNo= arg infnE(DRth1 ;D); D 2 PNo= arg infnTr (hD) + Tr (hDRth1 ) + Tr (G(DRth1 )D); D 2 PNo= arg infnTr (F (DRth1 )D); D 2 PNo= DRth2 :By induction, it can be shown that the sequences generated by the relaxation al-gorithm on the one hand, and by the Roothaan algorithm on the other hand, arethe same. As E decreases at each step by the relaxation procedure, it is possible toprove (under some generically satis�ed assumptions, see [5, 6] for details) that the4



sequence (D2k;D2k+1) converges towards a critical point (D;D0) of E, for which the�rst order stationarity conditions read8>>>>>>><>>>>>>>:
F (D0)C = SCEF (D)C 0 = SC 0E0C�SC = INC 0�SC 0 = IND = CC�D0 = C 0C 0�:We face therefore the following alternative:� either the point (D;D0) lays on the diagonal of PN �PN (i.e. D = D0) and theRoothaan algorithm converges towards a critical point of the HF problem (1);� or D 6= D0 and the sequence (Dk) oscillates between the two states D and D0,none of them being solution to the HF equations (2).Both situations are illustrated on Figure 1.D0 D = D0D(D0; D1) (D2;D1)(D2;D3)

D0 D = D0(D0;D1) (D2;D1)(D2;D3)D
Figure 1: A case of convergence (on the left hand side) and of a case of oscillation(on the right hand side) of the Roothaan algorithm.Let us emphasize that oscillations do not only occur in pathological situations: theRoothaan algorithm may oscillate even for very simple molecular systems such asatoms or diatomic molecules [5].It is interesting to remark that the above analysis suggests to cure convergenceproblems experienced by the Roothaan algorithm by adding a penalization term ofo�-diagonal pairs in order to force convergence towards a point of the diagonal ofPN �PN . A natural penalized energy fonctional can be for instanceEb(D;D) = E(D;D0) + b kD �D0k2= Tr (hD) + Tr (hD0) + Tr (G(D)D0) + b kD �D0k2where b is a positive constant and where k � k denotes the Hilbert-Schmidt normde�ned for any A 2 M(n; n) by kAk = Tr (AA�)1=2. The relaxation algorithmassociated with the minimization probleminf nEb(D;D0); (D;D0) 2 PN �PNo5



generates the sequence (Dbk) de�ned by8><>: (F (Dbk)� bDbk)Ck+1 = SCk+1Ek+1C�k+1SCk+1 = INDbk+1 = Ck+1C�k+1which can be identi�ed with the sequence generated by the so-called level-shiftingalgorithm with level-shift parameter b. This latter algorithm has been proposedalmost three decades ago by Hillier and Saunders [2] on the basis of a very di�erentargument: the level-shift parameter has been introduced in order to prevent occupiedand virtual orbitals from mixing together. The use of the level-shifting algorithm isstill recommended in cases of failure of the DIIS algorithm [9]. The local convergenceof the level-shifting algorithm is proved in the original article [2] by a perturbationargument: if the initial guess D0 is close enough to a solution D of the HF equations,and if the level-shift parameter b is large enough, the sequence ERHF (Dbn) convergestowards ERHF (D). We have improved in [5, 6] the theoretical results of [2] andproved using the auxiliary function Eb, which is a Lyapunov function of the algorithm(i.e. a function which decreases at each iteration), the global convergence of the level-shifting algorithm: for any initial guessD0, there exists b0 > 0 such that for level-shiftparameters b � b0, the HF energy decreases at each step and converges towards astationary value.4 Relaxed constraints algorithms (RCA)To the best of the authors' knowledge, the algorithms presented in this section arenew. They are not the result of an empirical study for forcing convergence; neitherare they founded on arguments of physical nature; they are stemming from themathematical analysis of the Hartree-Fock problem.RCA can be seen as direct minimization procedures of the HF energy on the setePN = n eD 2M(n; n); eD� = eD; Tr (S eD) = N; eDS eD � eDo ;obtained from PN by relaxing the nonlinear constraints DSD = D. The set ePNis convex (see [5]); this key property will be used below. Convergence of RCA is aconsequence of the two following properties:1. The HF energy decreases at each step since a direct minimization procedure isused.2. The contraints DSD = D are automatically recovered at convergence (thisproperty, which is not obviously satis�ed, is proved in [5]).4.1 The Optimal Damping AlgorithmThe Optimal Damping Algorithm (ODA) is the simplest representative of RCA.Other RCA described below are nothing but variations on this basic algorithm de-signed for accelerating convergence.To start with the description of the ODA, let us consider eD 2 ePN and D0 2 PN , andlet us compute the derivative of ERHF in the direction pointing towards D0. Oneobtains after a simple calculation:seD!D0 = dd�ERHF ( eD + �(D0 � eD))�����=0 = Tr (F ( eD) (D0 � eD)):6



The �steepest descent� direction, i.e. the density matrix D for which the slope seD!Dis minimum, is given by the solution to the minimization problemD = arg infnTr (F ( eD) � (D0 � eD)); D0 2 PNo ;which also reads D = arg infnTr (F ( eD) �D0); D0 2 PNo :This is precisely the direction generated by the aufbau principle. It is not di�cultto see that seD!D is non positive. Let us now consider the algorithm de�ned by thetwo-step iteration procedurea Assemble F ( eDk), diagonalize it, and obtain the matrix Dk+1 2 PN by the aufbauprinciple;b Set eDk+1 = arg infnERHF ( eD); eD 2 Seg[ eDk;Dk+1]o whereSeg[ eDk;Dk+1] = n(1� �) eDk + �Dk+1; � 2 [0; 1]odenotes the line segment linking together eDk and Dk+1.The algorithm is initialized with eD0 = D0, the initial guess D0 being obtainedfor instance by the diagonalization of the core hamiltonian or by the result of anysemiempirical method. Notice that as ePN is convex, the line segment Seg[ eD; eD0] is asubset of ePN as soon as eD and eD0 belong to ePN . Consequently eDk is in ePN for anyk 2 IN. It is possible to prove that the slope seDk!Dk+1 is in fact negative unless thealgorithm has converged at Dk, in which case Dk = eDk = Dk+1 = eDk+1 = :::. Thisalgorithm therefore ensures that the HF energy strictly decreases at each iteration(until convergence).The second step of the iteration, which consists in minimizing the energy functionalon the line segment Seg[ eDk;Dk+1], is particularly easy to perform in the Hartree-Fock setting because the energy is quadratic with respect to the density matrix: forany � 2 [0; 1]ERHF ((1� �) eDk + �Dk+1) = ERHF ( eDk + �(Dk+1 � eDk))= ERHF ( eDk) + �Tr (F ( eDk) � (Dk+1 � eDk))+�2Tr �(F (Dk+1)� F ( eDk)) � (Dk+1 � eDk)� :Denoting bys = Tr (F ( eDk)�(Dk+1� eDk)) and c = Tr �(F (Dk+1)� F ( eDk)) � (Dk+1 � eDk)� ;the analytical expression of the parameter �m 2 [0; 1] which minimizes the HF energyis given by �m = ����� 1 if c � �s=2�s=2c otherwise:The Optimal Damping Algorithm (ODA) can now be stated as follows� Initialization. Choose an initial guess D0 2 PN , assemble F0 = F (D0), andcompute E1e0 = 2Tr (hD0), E2e0 = Tr (F0D0) � 12E1e0 , E0 = E1e0 + E2e0 . Setk = 0, eD0 = D0, eF0 = F0, eE1e0 = E1e0 , eE2e0 = E2e0 , eE0 = E0.7



� Iterations.1. Diagonalize eFk and assemble Dk+1 by the aufbau principle.2. If Dk+1 �Dk is �small enough� then goto termination.3. Assemble the Fock matrix Fk+1 = F (Dk+1) and computeE1ek+1 = 2Tr (hDk+1); E2ek+1 = Tr (Fk+1Dk+1)� 12E1ek+1;Ek+1 = E1ek+1 +E2ek+1:4. Computes = Tr ( eFk(Dk+1 � eDk)); c = Tr �(Fk+1 � eFk) � (Dk+1 � eDk)� :5. Set �m = 1 if c � �s=2, �m = �s=2c otherwise, andeDk+1 = (1� �m) eDk + �mDk+1; eFk+1 = (1� �m) eFk + �mFk+1;eEk+1 = eEk + �ms+ �2mc; eE1ek+1 = (1� �m) eE1ek + �mE1ek+1;eE2ek+1 = eEk+1 � eE1ek+1:6. Set k = k + 1 and goto 1.� Termination. Set Df = Dk+1. Assemble the Fock matrix Ff = F (Df ) andcomputeE1e = 2Tr (hDf ); E2e = Tr (FfDf )� 12E1e; ERHF = E1e +E2e:In terms of memory occupation, the ODA requires the simultaneous storage of twodensity matrices and two Fock matrices, instead of one density matrix and one Fockmatrix for the basic Roothaan algorithm. In terms of CPU time, the only (signi�cant)additional cost is induced by the O(n2) operations performed at step 5; step 4 canindeed be performed in O(N) operations only:s = t� eE2ek � 12 eE1ek and c = Ek+1 + 12 eE2ek � 2t;with t = PNi=1 �k+1i , �k+11 � � � � � �k+1N denoting the smallest N eigenvalues of eFk(including multiplicity) which have already been computed at step 1.Remark. By construction, the ODA ensures that E( eDk) decreases at each iteration.Convergence of the sequence (Dk) towards a solution to the HF equations, which isa much stronger result, is proved in [5].4.2 Numerical testsFigures 2-4 report comparisons between the ODA and the DIIS approaches for com-puting the RHF groung state of various molecular systems of moderate sizes. Foreach of them, two initial guesses are considered: the �rst one (graph of the left handside) is obtained by a semiempirical method [9], the second one (graph of the righthand side) by diagonalization of the core hamiltonian. The calculations have been8



performed with Gaussian 98 [10]. The speed of convergence is estimated by com-puting at each iteration the logarithm of the di�erence between the energy of thecurrent density matrix and the (presumed) RHF ground state energy.The �rst system under consideration is the acetaldehyde molecule CH3COOH. TheRHF ground state is computed with the gaussian basis set 6-31G(d) [9]. On thisexample, ODA and DIIS have comparable convergence properties. The DIIS is moree�cient in the latest iterations of the SCF procedure, but it is outperformed by theODA for the earliest iterations in particular when the initial guess is far from theRHF ground state.
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Figure 2: Search of the RHF ground state of acetaldehyde.The second example concerns the calculation of the RHF ground state of Cr2 inthe basis 6-31G. The iteratomic distance has been �xed to 1:8 �A. In this caseboth the ODA and the DIIS numerically converge towards aufbau solutions to theHF equations, but in this particular example, the energy obtained with the ODA (-2085.805 Ha) is lower than the energy obtained with the DIIS algorithm (-2085.553 Ha).We do not know if any general conclusion can be drawn from this observation.
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has reached a neighbourhood of a critical point of the HF problem, convergence canbe accelerate by various methods (see the next section). On the other hand, only theODA converges for the more crude initial guess obtained by diagonalizing the corehamiltonian, which illustrates the robustness of this algorithm.
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DIISFigure 4: Search of the RHF ground state of n-methyl-2-nitrovinylamine.4.3 Convergence accelerationAll the standard techniques for accelerating convergence can be used in the contextof RCA in order to improve the ODA. Let us give here two signi�cant examples onwhich work is in progress.4.3.1 Iterative subspace methodsIterative subspace methods consist in keeping in memory all (or some of) the densitymatrices computed at the previous steps and in choosing the updated density matrixin the vector subspace generated by all the density matrices stored in memory, insuch a way that some criterion is minimized.In the context of RCA, an iterative subspace method can be implemented as follows:a Assemble F ( eDk), diagonalize it, and obtain the density matrix Dk+1 2 PN by theaufbau principle.b Set eDk+1 = arg inf(ERHF ( eD); eD = k+1Xi=0 ciDi; 0 � ci � 1; k+1Xi=0 ci = 1).The second step of the iteration procedure consists in minimizing the quadraticcriterionfRCA(c0; � � � ; ck+1) = ERHF  k+1Xi=0 ciDi!= 2Tr  h k+1Xi=0 ciDi!!+Tr  G k+1Xi=0 ciDi! �  k+1Xi=0 ciDi!!= k+1Xi=0 ciERHF (Di)� 12 k+1Xi;j=1 cicjTr ((F (Di)� F (Dj)) � (Di �Dj))
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under the constraints 0 � ci � 1, Pk+1i=0 ci = 1. As ePN is convex, any convex linearcombination of the Di belongs to ePN . The updated density matrix eDk+1 is thereforealso in ePN .The reader will notice the formal analogy with the DIIS algorithm. The main dif-ference between the two approaches is that the criterion fRCA which is minimizedin RCA is in fact the HF energy itself whereas in the DIIS procedure, the criterionreads fDIIS(c0; � � � ; ck+1) = 




k+1Xi=0 ci[F (Di);Di]




2 ;where [:; :] denotes the �commutator� [A;B] = ABS �SBA, and where k � k denotesthe Hilbert-Schmidt norm (kAk = Tr (AA�)1=2). Minimizing the latter criteriondoes not force convergence: mathematically, it is absolutely not clear why the DIISalgorithm should converge and it is indeed experimentally observed that the DIISalgorithm may diverge (an example is provided in the previous section). Besides,computing the coe�cients of the quadratic function fRCA requires a computationale�ort in O(n2) only (the computational e�ort is in O(n3) for DIIS since commutatorshave to be computed).Remark. As for the DIIS algorithm, it is generally not possible to store a largenumber of density matrices in memory. For this reason, the dimension of the iterativesubspace is generally limited to a few units. Di�erent strategies can be applied tochoose which of the Di will be kept for the next iteration. The existence of anoptimal strategy will be examined in a future work.4.3.2 Quadratic convergenceIn order to accelerate the �nal steps of the minimization procedure, it may be in-teresting to switch from the present algorithm to a quadratically convergent schemesuch as the one described in [12] as soon as some convergence criterion becomessmaller than a given threshold. Such improvements are under study.5 Conclusion and future worksWe have reviewed here an analysis of the mathematical properties of the Roothaanand of the level-shifting algorithms and presented a new class of algorithms that wehave called RCA. Although de�nite conclusions about the superiority of RCA uponDIIS and Roothaan type algorithms are yet to be obtained, the present mathematicalanalysis (complemented by [5]) and the numerical experiments performed so far showthat this type of approach taking bene�t of the HF energy itself is a Lyapunovfunction for the algorithm is most promising. We would like to conclude this articlewith two remarks.The �rst one concerns the extension of RCA to open shell models on the one handand to DFT models on the other hand. The ODA has been implemented and testedwith success within the UHF setting. In accordance with the theoretical results, theODA is observed to converge in all cases tested so far. The speed of convergence ofthe ODA can still be signi�cantly improved once the neighbourhood of a critical pointhas been reached by an iterative subspace method or by switching to a quadraticallyconvergent algorithm. Let us now turn to DFT models. As pointed out in section 4,RCA are particularly adapted to HF models for the HF energy is quadratic in the11



density matrix: the minimum of the energy on the line segment Seg[ eDk;Dk+1] canthus be found analytically. RCA can however be extended to Kohn-Sham models bymodifying the iteration procedure in the following way:a Assemble the Kohn-Sham hamiltonian K( eDk), diagonalize it, and obtain Dk+1 bythe aufbau principle;b Use a line search algorithm to minimize the Kohn-Sham energy EKS on the linesegment Seg[ eDn;Dn+1] and seteDn+1 = arg infnEKS(D); D 2 Seg[ eDn;Dn+1]o :The Kohn-Sham energy EKS can be of various types. It generally consists of aquadratic term EQ(D) plus a non-quadratic term ENQ(D), the latter being a localfunction of the density (and possibly of its derivatives) computed in practice bysumming on a grid. The computational e�ort necessary for determining the valueof EKS((1 � �) eDk + �Dk+1) for a given � 2 [0; 1] reduces to performing a sum onthe grid to compute ENQ((1 � �) eDk + �Dk+1) since EQ((1 � �) eDk + �Dk+1) is asecond degree polynomial in �. The computational cost of the line search is thereforemoderate.The second remark is related to the so-called linear scaling algorithms. Until now,we have focused our attention on the di�culties generated by the nonlinearity of theSCF equations. On purpose, we have left aside the optimization of the computationale�ort required by each step of the SCF loop. In standard SCF procedures twobottlenecks are identi�ed: the computation of the Fock matrix on the one hand andits diagonalization on the other hand. For each of these two steps, various linearscaling algorithms have been proposed recently (see for instance [13, 14]). Thesesolutions can be directly applied to RCA. The formalism of the RCA suggests howeveranother track for searching for e�cient linear scaling algorithms: the computationand the diagonalization of the Fock matrix F ( eDk) are here only used to obtain the�steepest descent� direction at eDk; any other way to obtain a �good� descent directionshould also lead to an algorithm which converges. This basic observation might serveas a starting point for further research.References[1] C.C.J. Roothaan, New developments in molecular orbital theory, Rev. Mod.Phys. 23 (1951) 69-89.[2] V.R. Saunders and I.H. Hillier, A "level-shifting" method for converging closedshell Hartree-Fock wave functions, Int. J. Quantum Chem. 7 (1973) 699-705.[3] P. Pulay, Improved SCF convergence acceleration, J. Comp. Chem. 3 (1982)556-560.[4] R. McWenny, Methods of molecular Quantum Mechanics, Academic Press 1992.[5] E. Cancès, SCF algorithms for Hartree-Fock electronic calculations, in Mathe-matical models and methods for ab initio Quantum Chemistry, M. Defranceschiand C. Le Bris (Eds.), Lecture Notes in Chemistry, Springer, to appear.12
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