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Abstract

The present paper regroups various results on SCF algorithms for computing
electronic structures of molecular systems. The first part of the article deals
with the convergence properties of the “conventional” Roothaan algorithm and
of the level-shifting algorithm. In the second part, a new class of algorithms is
introduced, for which convergence is guaranteed by mathematical arguments.
Computational performance on various test problems is reported; advantages
of this new approach are demonstrated.
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1 Introduction

The purpose of this article is twofold. On the one hand, convergence properties of
some classical self-consistent field (SCF) algorithms which are implemented in Quan-
tum Chemistry codes are investigated. The focus is in particular on the Roothaan [1],
the level-shifting [2|, and the DIIS [3] algorithms. On the other hand, a new class of
SCF procedures is presented, for which

1. convergence towards a critical point of the energy functional can be mathemat-
ically proved (and is experimentally observed), whatever the initial guess,

2. preliminary numerical tests are very promising: all the calculations performed
so far (RHF only) show that computational efficiency is comparable and some-
times better than for the DIIS procedure in terms of both CPU time and
memory occupation.

For reasons that will be made clear below, the algorithms introduced in the present
article will be referred to as Relaxed Constraints Algorithms (RCA in short). Al-
though RCA can be applied in the Kohn-Sham setting also, they are particularly well
adapted to Hartree-Fock (HF) problems. We limit our analysis to this latter setting;
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we also limit ourselves to closed shell models; extensions to open shell models on the
one hand and to DFT models of Kohn-Sham type on the other hand are discussed
in the conclusion.

This paper is organized as follows.

The basic tools of the density matrix formalism [4], which is very fruitful for the
study of SCF algorithms, are briefly presented in section 2.

Section 3 deals with the convergence properties of the Roothaan algorithm, which
is the most “natural” algorithm for solving the HF equations. It is proved that
the Roothaan algorithm either converges towards a solution to the HF equations
or oscillates between two states which are not solutions to the HF equations. Any
different behavior (oscillations between more than two states, “chaotic” behavior, ...)
is excluded. The method used to establish this result suggests a simple strategy for
forcing convergence; the so-obtained algorithm happens to coincide with the well-
known level-shifting algorithm. For brevity, the details of the mathematical proofs
are not enclosed here and can be found in |5, 6].

The Relaxed Constraints Algorithms are introduced in section 4. Briefly speaking,
the essence of RCA consists in minimizing the HF energy without worrying about sat-
isfying at each step the nonlinear constraints of idempotency that define admissible
density matrices; thanks to a nice mathematical property of the RCA, the contraints
will be automatically recovered once convergence is reached. The simplest RCA is
detailed in section 4.1. This algorithm has the same structure as the standard damp-
ing algorithm [7], except, and this is a crucial point, that the damping parameter is
optimized at each step. For this reason, we have named this algorithm the Optimal
Damping Algorithm (ODA). The numerical tests performed so far seem to indicate
that the ODA has very good convergence properties. Some representative results on
various molecular systems are reported on in section 4.2. Other RCA are variations
on the basic ODA whose goals are to accelerate convergence. Two of them, whose
implementations are in progress, are presented as examples in section 4.3. We em-
phasize in particular in section 4.3.1. that iterative subspace methods that underlie
the DIIS algorithm can be applied in the context of RCA: the algorithms obtained
in this way seem to outperform the DIIS algorithm in the sense that they always
converge towards a solution to the HF equations and that the cost of one iteration
is a little weaker in terms of CPU time.

The mathematical proof of the convergence of the ODA is not given here. The reader
interested in these theoretical aspects is referred to [5].

2 Density matrix formulation of the RHF problem

The density matrix formalism [4] turns out to be a very helpful tool for studying
SCF algorithms. Let us recall that within this formalism, the Restricted Hartree-
Fock (RHF) problem for a 2N-electron close shell molecular system reads

inf { ERF (D), D € Py} (1)
where

Py ={D e M(n,n), D*=D, Tr(SD)=N, DSD =D},



denotes the set of density matrices and where the HF energy is given by
ERIE(D) = 2Ty (hD) 4 Tr (G(D)D).

As usual, the n xn matrices S and h denote respectively the overlap and one-electron
matrices associated with the basis {xx}, <<, of atomic orbitals:

1
Sk :/ X5 X1 hy, = 5/ Vxi - Vxi +/ VXkXi-
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In the latter expression, V is the electrostatic potential generated by the nuclei. The
linear map G is defined by

G(D)ij = (A:D)ij =Y AyuDri,  Aijir = 2(ij|kl) — (il|kj),
K

where (ij|kl) denotes the bielectronic integral

(i]kl) = /R3 B xi(@)x; (@) xk (@ ala)"

|z — ']

The Euler-Lagrange equations associated with the minimization problem (1), namely
the HF equations, read
F(D)C=SCE
Cc*SC =1y (2)
D=CC*

where F (D) = h+ G(D) denotes the Fock matrix, Iy the identity matrix of rank N,
and where F is a N X N hermitan matrix which can be chosen diagonal without
loss of generality (see [4]). In this case, C = (®1,---,Px) is a n x N matrix putting
together N eigenvectors ®; of the (generalized) eigenvalue problem

F(D) @ =¢8-®; (3)

and E = Diag(e;,---,€en). A necessary condition for D being a local minimum of
the minimization problem (1) is that the (€;)1<;<n are the N smallest eigenvalues
of problem (3), including multiplicity. A mathematical proof of this statement can
be read in [8]. It is not rigorously known whether this necessary condition is also
sufficient or not.

3 Analysis of the Roothaan algorithm

Let us briefly recall that the Roothaan algorithm is the simplest fixed point procedure
associated with the nonlinear eigenvalue problem (2). It consists in generating a
sequence (Df") in Py satisfying

F(DfM)Cryy = SCry1Bry

Ciy15Ck11=1In

D,’jﬂ} = Cret1C0k 1
with Egiq = Diag(e’f“,---,eﬁvﬂ), where e’f“ < 6’2€+1 < ... < e’f\,ﬂ are the N
smallest eigenvalues of the linear eigenvalue problem

F(D{) - @ t! = it g . pht!



including multiplicity. From a general viewpoint, the procedure consisting in building
a new density matrix D by populating the N molecular orbitals of lowest energies
of the Fock matrix F' computed at the previous iteration, is usually referred to as
the aufbau principle. It is convenient to characterize the density matrix generated
by the aufbau principle as (see [5]):

D =arg inf{Tr (FD'), D'€Pn}.
Here and in the sequel, we denote by arg inf M'P one of the minimizer of the mini-

mization problem MP.

Unfortunately, the Roothaan algorithm has bad convergence properties: numerical
experiments show that either it converges towards a stationary point of the HF energy
(in favorable cases), or oscillates between two states, none of them being solution to
the HF equations. This behavior of the Roothaan algorithm has been theoretically
explained by the authors in [6] by introducing the auxiliary function

E(D,D') = Tr (kD) + Tr (hD') + Tr (G(D) D'),

defined on Py x Pn, which is symmetric since Tr (G(D) D") = Tr (G(D') D), and
which satisfies E(D,D) = E®1F(D). Let us indeed minimize E by relazation, a
standard numerical procedure which consists in minimizing alternatively with respect
to each of the two arguments D and D’:

D, = arg lnf{E(Do,D), D EPN},

Dy = arg 1nf{E’(D,D1), DEPN},
D3 = arg inf{E(D9,D), D € Py},

For the first two steps, we obtain

D, = arginf{E(Dy,D), DePn}
arg inf {Tr (hDy) + Tr (hD) + Tr (G(Dy)D), D € Pn}

arg inf {Tr (F(Dy)D), D € Pn}
D{%th

and, since E is symmetric on Py X Py,

Dy = arginf{E(D,DI"™"), DePy}
= arg mf{E(DRth D), De PN}
= arg inf {Tr (kD) + Tr (hD{") +Tx (G(D{*")D), D € Py}
= arg mf{ F(Df™ D), DEPN}

— D%%th.

By induction, it can be shown that the sequences generated by the relaxation al-

gorithm on the one hand, and by the Roothaan algorithm on the other hand, are

the same. As F decreases at each step by the relaxation procedure, it is possible to
prove (under some generically satisfied assumptions, see |5, 6] for details) that the



sequence (Do, Dogy1) converges towards a critical point (D, D') of E, for which the
first order stationarity conditions read

( F(D')C = SCE
F(D)C' = SC'E'
C*SC = Iy
C*SC" = Iy
D =CC*

L Dl — CICI*‘

We face therefore the following alternative:

e cither the point (D, D’) lays on the diagonal of Py x Py (i.e. D = D') and the
Roothaan algorithm converges towards a critical point of the HF problem (1);

e or D # D’ and the sequence (Dy) oscillates between the two states D and D',
none of them being solution to the HF equations (2).

Both situations are illustrated on Figure 1.

D’ D'

D =D

(Do, D1)
(D2, D1)
— (D2, D3)

(R0, P1) (D2, D1)

Figure 1: A case of convergence (on the left hand side) and of a case of oscillation
(on the right hand side) of the Roothaan algorithm.

Let us emphasize that oscillations do not only occur in pathological situations: the
Roothaan algorithm may oscillate even for very simple molecular systems such as
atoms or diatomic molecules [5].

It is interesting to remark that the above analysis suggests to cure convergence
problems experienced by the Roothaan algorithm by adding a penalization term of
off-diagonal pairs in order to force convergence towards a point of the diagonal of
Pn X Pn. A natural penalized energy fonctional can be for instance

E'(D,D) = E(D,D')+0b|D—D'|?
= Tr (kD) +Tr (hD') + Tr (G(D) D') + b||D — D'||?
where b is a positive constant and where || - || denotes the Hilbert-Schmidt norm

defined for any A € M(n,n) by ||A| = Tr (AA*)Y/2. The relaxation algorithm
associated with the minimization problem

inf {E*(D,D'),  (D,D') € Py x Py}



generates the sequence (D?) defined by

(F(D}) — bD})Cy1 = SCy1Epyy
Cry1SCki1 = In
Dll;-l—l = Cr1C5 14

which can be identified with the sequence generated by the so-called level-shifting
algorithm with level-shift parameter b. This latter algorithm has been proposed
almost three decades ago by Hillier and Saunders [2] on the basis of a very different
argument: the level-shift parameter has been introduced in order to prevent occupied
and virtual orbitals from mixing together. The use of the level-shifting algorithm is
still recommended in cases of failure of the DIIS algorithm [9]. The local convergence
of the level-shifting algorithm is proved in the original article [2] by a perturbation
argument: if the initial guess Dy is close enough to a solution D of the HF equations,
and if the level-shift parameter b is large enough, the sequence EFHF(DP) converges
towards EfH1E (D). We have improved in [5, 6] the theoretical results of [2] and
proved using the auxiliary function E°, which is a Lyapunov function of the algorithm
(i.e. a function which decreases at each iteration), the global convergence of the level-
shifting algorithm: for any initial guess Dy, there exists by > 0 such that for level-shift
parameters b > by, the HF energy decreases at each step and converges towards a
stationary value.

4 Relaxed constraints algorithms (RCA)

To the best of the authors’ knowledge, the algorithms presented in this section are
new. They are not the result of an empirical study for forcing convergence; neither
are they founded on arguments of physical nature; they are stemming from the
mathematical analysis of the Hartree-Fock problem.

RCA can be seen as direct minimization procedures of the HF energy on the set
Py = {f) € M(n,n), D*=D, Tr(SD)=N, DSD< ﬁ},

obtained from Py by relaxing the nonlinear constraints DSD = D. The set 75N
is convex (see [5]); this key property will be used below. Convergence of RCA is a
consequence of the two following properties:

1. The HF energy decreases at each step since a direct minimization procedure is
used.

2. The contraints DSD = D are automatically recovered at convergence (this
property, which is not obviously satisfied, is proved in [5]).

4.1 The Optimal Damping Algorithm

The Optimal Damping Algorithm (ODA) is the simplest representative of RCA.
Other RCA described below are nothing but variations on this basic algorithm de-
signed for accelerating convergence.

To start with the description of the ODA, let us consider DePyand D' € Pn, and
let us compute the derivative of ERHF in the direction pointing towards D’. One
obtains after a simple calculation:

d ~ R O
Sh = ﬁ131%“?(1)“(1) — D)) L =Tr (F(D) (D' — D)).



The “steepest descent” direction, i.e. the density matrix D for which the slope s Bob
is minimum, is given by the solution to the minimization problem

D =arg inf {Tx (F(D)- (D' - D)), D'€Py},
which also reads
D =arg inf {Tx (F(D)-D'), D'€Py}.

This is precisely the direction generated by the aufbau principle. It is not difficult
to see that s5_, ) is non positive. Let us now consider the algorithm defined by the
two-step iteration procedure

a Assemble F(Dy), diagonalize it, and obtain the matrix Dy, 1 € Py by the aufbau
principle;

b Set Dy, = arg inf{ERHF(f)), D € Seg[Dy, Dk-i—l]} where
Seg[Dy, Dy41] = {(1 —MDy 4+ ADpy1, A€, 1]}

denotes the line segment linking together l~)k and Dgy.

The algorithm is initialized with Dy = Dy, the initial guess Dy being obtained
for instance by the diagonalization of the core hamiltonian or by the result of any
semiempirical method. Notice that as Py is convex, the line segment Seg[D D Tisa
subset of Py as soon as D and D’ belong to Py Consequently Dy, is in Py for any

k € IN. It is possible to prove that the slope S B Dyt is in fact negative unless the

algorithm has converged at Dy, in which case Dy = Dk =Dy = l~)k+1 = .... This
algorithm therefore ensures that the HF energy strictly decreases at each iteration
(until convergence).

The second step of the iteration, which consists in minimizing the energy functional
on the line segment Seg[Dy, Diy1], is particularly easy to perform in the Hartree-
Fock setting because the energy is quadratic with respect to the density matrix: for
any A € [0, 1]
ERIE(1 = N)Dy, + ADj11) = E"F(Dy + N(Dy41 — Dy))
= E"YMT(Dy) + NTx (F(Dy) - (Dis1 — D))
+ATr ((F(Dgyr) = F(D) - (Diyr = Dy)) -

Denoting by

$ =Tr (F(Dy)-(Dg41—Dy))  and  c=Tr ((F(Dk+1) — F(Dy)) - (Dgy1 — 5k)) )

the analytical expression of the parameter A, € [0, 1] which minimizes the HF energy
is given by
1 if c < —s/2

Am = ‘ —s/2c otherwise.

The Optimal Damping Algorithm (ODA) can now be stated as follows

e Initialization. Choose an initial guess Dy € Py, assemble Fy = F(Dy), and
compute Ej¢ = 2Tr (hDO) E3¢ = Tr (FyDy) — 3E(¢, Ey = E{° + E3°. Set
k=0, Dy = Dy, Fy = Fy, E}¢ = E}¢, B3¢ = E2¢, Ey = E.



o Iterations.

1. Diagonalize ﬁ'k and assemble Dy 1 by the aufbau principle.
2. If Dyy1 — Dy, is “small enough” then goto termination.

3. Assemble the Fock matrix Fj,1 = F(Dgy1) and compute

1
B, =2Tr (hDy1), ERS ) =Tr (Fyp1Dgy1) — iEli?Ha

By = By + By
4. Compute
s =T (Fy(Dyyr = Dp)),  e="Tr ((Fipr — Fy) - (D1 — Dy)).
5. Set Ay, = 1if ¢ < —5/2, A,y = —s/2c otherwise, and
Diy1 = (1 = M) Dy + A D1, Fir1 = (1= M) B + A Frp,
EkJrl = Ek + Ams + )\%%C, El%il = (1 - Am)Elie + AmElEH?
El%eﬂ - Ek+1 - EIEH
6. Set k =k + 1 and goto 1.
e Termination. Set Dy = Djy;. Assemble the Fock matrix Fy = F'(Dy) and
compute

1
E'*=2Tv (hD;),  E* =Tr (F;Dy) — 5Ele, ERHE — gle | pPe,

In terms of memory occupation, the ODA requires the simultaneous storage of two
density matrices and two Fock matrices, instead of one density matrix and one Fock
matrix for the basic Roothaan algorithm. In terms of CPU time, the only (significant)
additional cost is induced by the O(n?) operations performed at step 5; step 4 can
indeed be performed in O(N) operations only:

~ 1~ 1~
szt_E%_EE,ge andc:Ek+1+§E,38—2t,

with ¢ = Zf\il efﬂ, e’f"'l < <L e’fvﬂ denoting the smallest N eigenvalues of E},
(including multiplicity) which have already been computed at step 1.

Remark. By construction, the ODA ensures that E(ﬁk) decreases at each iteration.
Convergence of the sequence (Dy) towards a solution to the HF equations, which is
a much stronger result, is proved in [5].

4.2 Numerical tests

Figures 2-4 report comparisons between the ODA and the DIIS approaches for com-
puting the RHF groung state of various molecular systems of moderate sizes. For
each of them, two initial guesses are considered: the first one (graph of the left hand
side) is obtained by a semiempirical method [9], the second one (graph of the right
hand side) by diagonalization of the core hamiltonian. The calculations have been



performed with Gaussian 98 [10]. The speed of convergence is estimated by com-
puting at each iteration the logarithm of the difference between the energy of the
current density matrix and the (presumed) RHF ground state energy.

The first system under consideration is the acetaldehyde molecule CH3COOH. The
RHF ground state is computed with the gaussian basis set 6-31G(d) [9]. On this
example, ODA and DIIS have comparable convergence properties. The DIIS is more
efficient in the latest iterations of the SCF procedure, but it is outperformed by the
ODA for the earliest iterations in particular when the initial guess is far from the
RHF ground state.

Error on the energy (log)
Error on the energy (log)

o || : [ %]

DiIs | ]

0 05 1 0 0.5

CPU time (s) CPU time(s)

Figure 2: Search of the RHF ground state of acetaldehyde.

The second example concerns the calculation of the RHF ground state of Crg in
o

the basis 6-31G. The iteratomic distance has been fixed to 1.8 A. In this case
both the ODA and the DIIS numerically converge towards aufbau solutions to the
HF equations, but in this particular example, the energy obtained with the ODA (-
2085.805 Ha) is lower than the energy obtained with the DIIS algorithm (-2085.553 Ha
We do not know if any general conclusion can be drawn from this observation.

).

Error on the energy (log)
Error on the energy (log)

10 ODA || B ODA ||
DIIS t DIIS |4

0 1 2 3 4 5 0 1 2 3 4

CPU time(s) CPU time(s)

Figure 3: Search of the RHF ground state of Crs.

The third molecular system that we have chosen is the E form of n-methyl-2-
nitrovinylamine CH3-NH-CH=CH-NO; (this example is drawn from [11]). The basis
is 6-31G(d). With a semiempirical initial guess, both algorithms converge but the
speed of convergence of the DIIS algorithm is higher. From a general viewpoint,
numerical tests performed until now demonstrate that the ODA is mostly efficient
for performing the early iterations of the SCF procedure; when the sequence (Dy)



has reached a neighbourhood of a critical point of the HF problem, convergence can
be accelerate by various methods (see the next section). On the other hand, only the
ODA converges for the more crude initial guess obtained by diagonalizing the core
hamiltonian, which illustrates the robustness of this algorithm.

—— ODA |+
DIIS

Error on the energy (log)
&
Error on the energy (log)

10 4

[ ODA | |
-10 - DIIS |4
1 1 1 1 1 1 1
0 05 1 15 0 1 2 3 5 6

-

CPU time (s) CPU time(s)

Figure 4: Search of the RHF ground state of n-methyl-2-nitrovinylamine.

4.3 Convergence acceleration

All the standard techniques for accelerating convergence can be used in the context
of RCA in order to improve the ODA. Let us give here two significant examples on
which work is in progress.

4.3.1 Iterative subspace methods

Iterative subspace methods consist in keeping in memory all (or some of) the density
matrices computed at the previous steps and in choosing the updated density matrix
in the vector subspace generated by all the density matrices stored in memory, in
such a way that some criterion is minimized.

In the context of RCA, an iterative subspace method can be implemented as follows:

a Assemble F(D},), diagonalize it, and obtain the density matrix Dy41 € Py by the
aufbau principle.

k+1 k+1
b Set D4y = arg inf{ERHF(D), D= ZCiDi, 0<¢ <1, Zci = 1}.
) 1=0

The second step of the iteration procedure consists in minimizing the quadratic
criterion

k1
% o, - eppr) = ERHE (Z CiDi>

i:ko-i-l k+1 k+1
k+1 = 1 k+1 = =
= > E"™F(D;) - 3 > cicjTr ((F(D;) — F(D;)) - (D; — Dy))
i=0 ij=1

10



under the constraints 0 < ¢; < 1, Efiol ci=1. As Py is convex, any convex linear
combination of the D; belongs to Py. The updated density matrix Dy is therefore
also in Py.

The reader will notice the formal analogy with the DIIS algorithm. The main dif-
ference between the two approaches is that the criterion ff4 which is minimized
in RCA is in fact the HF energy itself whereas in the DIIS procedure, the criterion

reads

k+1 2

> GlF(Dy), Dj
i=0

where [.,.] denotes the “commutator” [A4, B] = ABS — SBA, and where || - || denotes
the Hilbert-Schmidt norm (]|A|| = Tr (AA*)'/?). Minimizing the latter criterion
does not force convergence: mathematically, it is absolutely not clear why the DIIS
algorithm should converge and it is indeed experimentally observed that the DIIS
algorithm may diverge (an example is provided in the previous section). Besides,
computing the coefficients of the quadratic function f#¢4 requires a computational
effort in O(n?) only (the computational effort is in O(n?) for DIIS since commutators
have to be computed).

fDIIS(CU7 Tt 7ck+1) =

?

Remark. As for the DIIS algorithm, it is generally not possible to store a large
number of density matrices in memory. For this reason, the dimension of the iterative
subspace is generally limited to a few units. Different strategies can be applied to
choose which of the D; will be kept for the next iteration. The existence of an
optimal strategy will be examined in a future work.

4.3.2 Quadratic convergence

In order to accelerate the final steps of the minimization procedure, it may be in-
teresting to switch from the present algorithm to a quadratically convergent scheme
such as the one described in [12] as soon as some convergence criterion becomes
smaller than a given threshold. Such improvements are under study.

5 Conclusion and future works

We have reviewed here an analysis of the mathematical properties of the Roothaan
and of the level-shifting algorithms and presented a new class of algorithms that we
have called RCA. Although definite conclusions about the superiority of RCA upon
DIIS and Roothaan type algorithms are yet to be obtained, the present mathematical
analysis (complemented by [5]) and the numerical experiments performed so far show
that this type of approach taking benefit of the HF energy itself is a Lyapunov
function for the algorithm is most promising. We would like to conclude this article
with two remarks.

The first one concerns the extension of RCA to open shell models on the one hand
and to DFT models on the other hand. The ODA has been implemented and tested
with success within the UHF setting. In accordance with the theoretical results, the
ODA is observed to converge in all cases tested so far. The speed of convergence of
the ODA can still be significantly improved once the neighbourhood of a critical point
has been reached by an iterative subspace method or by switching to a quadratically
convergent algorithm. Let us now turn to DFT models. As pointed out in section 4,
RCA are particularly adapted to HF models for the HF energy is quadratic in the

11



density matrix: the minimum of the energy on the line segment Seg[Dy, Dy1] can
thus be found analytically. RCA can however be extended to Kohn-Sham models by
modifying the iteration procedure in the following way:

a Assemble the Kohn-Sham hamiltonian K (Dy), diagonalize it, and obtain Dj1 by
the aufbau principle;

EKS

b Use a line search algorithm to minimize the Kohn-Sham energy on the line

segment Seg[D,,, Dy, 11] and set

Dyt = arg inf{EKS(D), De Seg[f)n,DnH]} :

The Kohn-Sham energy EX9 can be of various types. It generally consists of a

quadratic term E9(D) plus a non-quadratic term EV?(D), the latter being a local
function of the density (and possibly of its derivatives) computed in practice by
summing on a grid. The computational effort necessary for determining the value
of EXS((1 — A\)Dy 4+ ADj4,) for a given A € [0,1] reduces to performing a sum on
the grid to compute EN?((1 — A)Dy + ADjy1) since EQ((1 — \)Dy, + ADjpy1) is a
second degree polynomial in A. The computational cost of the line search is therefore
moderate.

The second remark is related to the so-called linear scaling algorithms. Until now,
we have focused our attention on the difficulties generated by the nonlinearity of the
SCF equations. On purpose, we have left aside the optimization of the computational
effort required by each step of the SCF loop. In standard SCF procedures two
bottlenecks are identified: the computation of the Fock matrix on the one hand and
its diagonalization on the other hand. For each of these two steps, various linear
scaling algorithms have been proposed recently (see for instance [13, 14]). These
solutions can be directly applied to RCA. The formalism of the RCA suggests however
another track for searching for efficient linear scaling algorithms: the computation
and the diagonalization of the Fock matrix F (519) are here only used to obtain the
“steepest descent” direction at IN)k; any other way to obtain a “good” descent direction
should also lead to an algorithm which converges. This basic observation might serve
as a starting point for further research.
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