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Abstract

This paper presents some mathematical results on SCF algorithms for solv-
ing the Hartree-Fock problem. In the first part of the article the focus is on two
classical SCF procedures, namely the Roothaan algorithm and the level-shifting
algorithm. It is demonstrated that the Roothaan algorithm either converges to-
wards a solution to the Hartree-Fock equations or oscillates between two states
which are not solution to the Hartree-Fock equations, any other behavior (os-
cillations between more than two states, “chaotic” behavior, ...) being excluded.
The level-shifting algorithm is then proved to converge for large enough shift
parameter, whatever the initial guess. The second part of the article details the
convergence properties of a new algorithm recently introduced by Le Bris and
the author, the so-called Optimal Damping Algorithm (ODA). Basic numerical
simulations pointing out the principal features of the various algorithms under
study are also provided.

1 Introduction

The Hartree-Fock (HF) model is a standard tool for computing an approximation of
the ground state of a molecular system within the Born-Oppenheimer setting. From
a mathematical viewpoint, the HF model gives rise to a nonquadratic constrained
minimization problem for the numerical solution of which iterative procedures are
needed; such procedures are referred to as Self-Consistent Field (SCF) algorithms.
The solution to the HF problem can be obtained either by directly minimizing the
HF energy functional [7, 12, 18, 26] or by solving the associated Euler-Lagrange
equations, the so-called Hartree-Fock equations |21, 22, 23|.

SCF algorithms for solving the HF equations are in general much more efficient
than direct energy minimization techniques. However, these algorithms do not a
priori ensure the decrease of the energy and they may lead to convergence problems
|24|. For instance, the famous Roothaan algorithm (see [22] and section 4) is known
to sometimes lead to stable oscillations between two states, none of them being a
solution to the HF problem. This situation may occur even for simple chemical
systems (see section 4).

Many articles have been devoted to the important issue of the SCF convergence.
The behavior of the Roothaan algorithm is notably investigated in |2, 13| and in
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[27, 28]. In [2, 13| convergence difficulties are demonstrated for elementary two-
dimensional models; in |27, 28|, a stability condition of the Roothaan algorithm in the
neighbourhood of a minimum of the HF energy is given for closed-shell systems. More
sophisticated SCF algorithms for solving the HF equations have also been proposed to
improve the convergence using various techniques like for instance damping [11, 29|
or level-shifting [23]. Damping (as implemented in [29]|) cures some convergence
problems but many other remain. Numerical tests confirm that the level-shifting
algorithm converges towards a solution to the HF equations for large enough shift
parameters; a perturbation argument is provided in [23] to prove this convergence in
the neighborhood of a stationary point. Unfortunately there is no guarantee that the
so-obtained critical point of the HF energy functional is actually a minimum (even
local); in addition, the level-shifting algorithm is known to only offer a slow speed of
convergence. In practice, the most commonly used SCF algorithm is at the present
time the Direct Inversion in the Iteration Space (DIIS) algorithm [21]. Numerical
tests show that this algorithm is very efficient in most cases, but that it sometimes
fails.

The present article belongs to a series of articles |3, 4, 5] devoted to the SCF algo-
rithms.

Our first purpose here is to report on recent mathematical results on the convergence
properties of the Roothaan and of the level-shifting algorithms. Section 4 concerns
the Roothaan algorithm, which is the most “natural” algorithm for solving the HF
equations. Itsis demonstrated that the Roothaan algorithm either converges towards
a solution to the HF equations or oscillates between two states which are not solution
to the HF equations, any other behavior being excluded. This theoretical result is
in accordance with the numerical experiments. It is then explained in Section 5 why
the introduction of a “level-shift” makes the algorithm converge. The mathematical
proofs are presented in the context of the finite dimension approximations of the HF
problem obtained by a Galerkin method with a finite basis of atomic orbitals or plane
waves, typically. They are consequently much simpler from a technical viewpoint
than the proofs detailed in [3] which concern the original infinite dimension HF
problem.

Recently, new SCF algorithms has been introduced in [4] by Le Bris and the author.
They seem to exhibit good convergence properties at least for the chemical systems
computed so far. These algorithms have been called Relaxed Contraints Algorithms
(RCA) for they can be interpretated as direct minimization procedure of the HF
energy which do not care about satisfying at each iteration the nonlinear constraints
D? = D that characterize admissible density matrices. The second purpose of this
article (section 6) is to detail the mathematical proof of the convergence of the
basic RCA, namely the Optimal Damping Algorithm (ODA). Section 6 also contains
some comments on the connexions between RCA and other algorithms like the level-
shifting and the DIIS algorithms.

Before coming up to our main topic, we devote section 2 to a brief presentation
of the HF model for readers (especially mathematicians) who are not familiar with
Quantum Chemistry. Section 3 collects various general comments that apply to all
the SCF algorithms considered in the sequel.

2 A brief presentation of the Hartree-Fock model

The problem under consideration consists in computing ab initio, that is to say
without using any empirical parameter, the ground state energy of a molecular system



made of M nuclei and N electons. Tackling directly the M + N-body Schrédinger
equation is today, and will probably remain, out of the scope of brute force numerical
methods. Various approximations are therefore to be resorted to.

The first approximation that is common to most models of Quantum Chemistry is the
so-called Born-Oppenheimer approzimation. To make short, it consists in considering
the nuclei as classical point particles. The Born-Oppenheimer approximation, which
has been mathematically founded by Combes and al. [6], lays on the fact that nuclei
are much heavier than electrons. The Born-Oppenheimer approximation is almost
always valid in Chemistry (except for instance for studying specifically quantum
phenomena involving nuclei as proton transfer by tunnel effect) and is therefore
almost always used.

Within the Born-Oppenheimer approximation, the searching for the ground state
takes the form of two nested minimization problems:

inf {W(z1,--,Zum), (1, -+, zm) € R*M} (1)
with s
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In the above expressions, #;, denotes the current position in R? of the k-th nucleus
and zj, its charge. The N electrons are described by a wave function ¢ (x1,01;---;2n,0N),
where z; and o; are respectively the position in R and the spin coordinate of the
i-th electron. Each spin coordinate o; can take two values here denoted by |+) (spin
up) and |—) (spin down). The wave function 1 is a normalized vector of the fermionic
Hilbert space H, and therefore satisfies on the one hand the antisymmetry condition

D(Tp(1), Tp(1); 3 Tp(w) Op(ny) = (—1) D@1, 005+ s an, o)

for any permutation p of |[1, N]| (e(p) denoting the signature of p), and on the other
hand the normalization condition

Z / $1,01;---;$N,UN)|2d$1"'dwNZI.

01,0N

The operator Hyz, ) is the so-called electronic hamiltonian. It acts on H; the z play
the role of parameters. It is made of three terms, the first term accounting for the
kinetic energy of the electrons, the second and the third terms accounting for nuclei-
electrons and electrons-electrons interactions respectively. All physical quantities are
expressed in atomic units [19].

Searching for the ground-state of the molecular system thus consists in minimizing
the potential energy W (%1, --,Zy) by solving the so-called geometry optimization
problem (1). From the mathematical point of view, problem (1) is an unconstrained
minimization problem of finite dimension. We refer the reader to [20, 25| for an
overview of the various numerical methods dedicated to geometry optimization.



The specificity of problem (1) is that the function to be minimized, namely the poten-
tial energy W, is itself the result (up to the internuclear repulsion term ) zp2;/|Z) —
Z;|) of the minimization problem (2) which is usally referred to as the electronic prob-
lem. We face this time a constrained minimization problem on the infinite dimension
space H.

In the sequel, we focus on the electronic problem, which is rewritten (in order to
simplify the notations)

inf {(p, HY), ¢ €H, |y =1} (3)
with

H= /\L2 Px {]+),1-)},C)
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the Z;, being now fixed parameters in IR3.

The Hartree-Fock approximation is of variational nature. It consists in restricting
the set {1 € H, ||¢| = 1} on which the energy functional (1, H1)) is minimized to
the set of the Slater determinants, i.e. to the set of the wave functions ¢ of the form

1
P = N det(¢i(z5,05)) (4)

where the ¢;, which are called molecular orbitals, satisfy the orthonormality condi-
tions

Z/ di(z,0)pj(x,0)" dr = 6;;.
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A classical calculation (see [19] for instance) gives for any 1 of the form (4)
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The HF problem thus reads

inf{EHF({¢i}), ¢i € L*(R® x {|+),]-)},C), Z/R3 ¢i(x, 0)¢j(x,0)" dx = 5ij}-

The mathematical properties of the HF problem have been studied by Lieb and
Simon [15] and by P.-L. Lions [16]. The existence of a HF electronic ground state is
guaranteed for positive ions (Z := Z,]gvil z, > N) and neutral systems (Z = N). We
are not aware of any general existence result for negative ions (the available existence
proofs only work for N < Z+1). On the other hand, there is a non-existence results
for negative ions such that N > 2Z + M [14] (this inequality holds for instance for
the ion H?7). As far as we know, uniqueness (of the density p at least) is an open
problem, probably of outstanding difficulty.

The last step of the approximation procedure consists in approaching the infinite
dimensional HF problem by a finite dimensional HF problem by means of a Galerkin
approximation: the HF energy is minimized over the set of molecular orbitals that
can be expanded on a given finite basis {xp}, <,

n
¢i = Crixk-
k=1

Denoting by S = [Sk;] with

Sk=Y / Xk X1
o R3
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or in matricial form

C*SC = Iy,

where Iy denotes the identity matrix of rank N. In addition,
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where h denotes the matrix of the core hamiltonian —1A + V' in the basis {x}:

1
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the interelectronic repulsion term reads

po(z / |Tq> z,z') .
/l:{3 /l:{:,’ |$_$/| d dx /l:{3 /l:{3 |$_$,| d dm = Z Z Azjklcla Ckﬁclﬂ
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The above expressions incite one to introduce the so-called density matriz
D =CcCr,
which permits to write the HF energy under the compact form

ETF(D) = Tx (hD) + %Tr (G(D)D),

where G(D) denotes the contracted product of the 4-index tensor A by D
G(D)ij = (A: D)y = Z Ak Dy
kl

It is easy to see that the matrices D which read D = CC* with C € M(n, N) and
C*SC = Iy are those which satisfy Tr (SD) = N and DSD = D. The so-obtained
finite dimension HF problem then reads

inf {E?¥ (D), De€ M(n,n), D*=D, Tr(SD)=N, DSD=D}.

For the sake of simplicity, we assume in the sequel that the overlap matrix S equals
identity, that is to say that the basis {x,}, <p<n is orthonormal. The general case is

recovered by the transformation rules D — S12pSy? 5 §1/2p8-1/2 G(D) —
S—12G(S'/2DS'/?)S~1/2. The HF problem then reads:
inf {E¥F(D), DeP}, (5)
with
P={DeM(n,n), D*=D, TtrD=N, D*=D}.

The following lemma provides a characterization of the critical points of the HF
minimization problem (5).

Lemma 1. For any D, let us denote by F(D) = h+G(D) the Fock matriz associated
with D.

1. A density matriz D € P is a critical point of the HF problem (5) if and only if

F(D)C=CE
C*C =1y (6)
D=CcC*
where E = Diag(ey, €2, ,€n) is a N x N diagonal matriz collecting N eigen-
values of the linear eigenvalue problem
F(D)-¢=¢€op.
and where C' is a n X N matriz containing N orthonormal eigenvectors asso-
ciated with €1, €2, ..., ex. The condition (6) is equivalent to the condition
[F(D),D] =0,
where [, -] denotes the matriz commutator defined for any A and B in M(n,n)

by [A, B] = AB — BA.



2. For D € P being a local minimum of the HF problem, it is necessary that €1,
€2, ..., €y are the smallest N eigenvalues of F(D) including multiplicity.

This result is classical; its proof can be read in any textbook of Quantum Chemistry
(see [19] for instance).

Remark. The model described above is the so-called General Hartree-Fock (GHF)
model. Most often in practice, Quantum Chemistry calculations are performed with
spin constraints models like the Restricted Hartree-Fock (RHF), the Unrestricted
Hartree-Fock (UHF) or the Restricted Open-shell Hartree-Fock (ROHF) models.
The convergence results stated below can be adapted without difficulties to these
models. $

3 General remarks on SCF algorithms

Various SCF algorithms are studied in the following three sections. All of them
consist in generating a sequence (Dy) defined by

F.Cry1 = Cr1Erin
Crs1C0kt1 = In (7)

_ *
Dy = Cr1Cr

where By ) = Diag(ef ™, .- bFh) it < bl <.

of the linear elgenvalue problem

k 1 . .
- < e¢t! being the eigenvalues

Fk ¢: €¢a
k+1  k+1

and where Cj collects N orthonormal elgenvectors associated with €], €57, ...,
k“ The expression of the current Fock matrix Fk characterizes the algorithm. We

have for instance
e F}, = F(D},) for the Roothaan algorithm;
. ﬁk = F(Dy)—bDy, where b is a positive constant for the level-shifting algorithm;

° ﬁk = (Dk) for the ODA, where Dk is a pseudo-density matrix which satisfies
the relazed constraints Dk < Dy, and is defined so that the HF energy EX¥ (Dy)
decreases at each iteration (see section 6).

The procedure consisting in assembling the matrix Dy, € P by populating the N
molecular orbitals of lowest energies of the current Fock matrix Fj is referred to as
the aufbau principle. It is justified by the results stated in Lemma 1. For the matrix
Dy being defined in a unique way, it suffices that ekH < elfvtrll Degeneracies in the
spectrum are in general related to the symmetries of the system: in the cases when
the system does not exhibit any symmetry, numerical experiments show that the
eigenvalues of Fj are generically non-degenerate for any k, whereas it may not be the
case when the system does exhibit symmetries (consider for instance the spherical
symmetry of the hamiltonian in the atomic case). Degeneracies create technical
difficulties which complicate the theoretical studies on SCF convergence. For the
sake of simplicity, we therefore assume from now on that the uniform well-posedness
(UWP) property introduced in [3] is satisfied:

UWP property: a SCF algorithm of the form (7) with initial guess Dy will be said to
be uniformly well-posed if there exists some positive constant v such that

k+1 k+1
Eni1 =€y T



The consequences of the UWP assumption which will be useful below have been
collected in the following lemma, whose proof is postponed until the end of the
present section.

Lemma 2. Let us consider a SCF algorithm of the form (7) with initial guess Dy
which satisfies the UWP property. Then

1. The updated density matriz D41 is defined in a unique way at each iteration;
this matriz can be characterized as the minimizer of the variational problem

inf {Tr (D), DeP}.

2. For any D € M(n,n) such that D = D*, Tr (D) = N and D? < D,
Tr (F,D) > Tr (FyDg11) + %“D — Dy,

||| denoting the Hilbert-Schmidt norm defined for any A € M(n,n) by ||A| =
Tr (AA*)'/2,

In the sequel, we denote by arg inf MP the minimizer of the minimization problem
MP. We can therefore write

Djs1 = arg inf {Tr (F.D), D¢ P}.

Remark. Let us point out that some convergence results can be obtained without
resorting to the UWP assumption. In particular, it turns out that the level-shifting
algorithm is automatically UWP as soon as the shift parameter is large enough (see [3]
for details). It can also be proved that the ODA numerically converges towards an
aufbau solution to the HF equations within the GHF setting and provided the basis is
“large enough”. We do not detail here the rather technical proof of this assertion. Let
us just mention that it is based on a mathematical result by P.-L. Lions [17] related
to finite-temperature HF models. Unfortunately, so far as we know, the arguments
used in [17] cannot be extended to the RHF, UHF or ROHF models. ¢

Before turning to the study of SCF algorithms, the notion of convergence has to be
made precise. We are in fact not able to prove mathematical convergence results of
the form “the sequence (Dy) converges towards a minimizer D of the HF problem
(5)” for at least two reasons. First, we are solving the Euler-Lagrange equations
associated with the HF minimization problem (5), namely the HF equations (6);
even in case of convergence we have no argument to conclude that the so-obtained
critical point is actually a minimum (even local) of the HF energy. Second, we have
no precise description of the topology of the set of the critical points of (5); this lack
of information prevents us from proving the convergence of the whole sequence (Dy,)
towards a solution D to the HF equations. We can at best obtain that Dy41 — Dy
goes to zero, and that for “large” k, Dy is “close to” a solution to the HF equations
(6) satisfying the aufbau principle. For instance, it may happen that the HF problem
admits a connected manifold of minima; this phenomenon is observed in particular
for open-shell atoms because the spherical symmetry of the problem is broken by the
HF approximation (this can be related to a mathematical result by Bach, Lieb, Loss
and Solovej [1] stating that “there are no unfilled shell” in the HF ground states).
We cannot then discriminate between the case when the sequence (D) converges
towards a point of the manifold and the case when the sequence (D) is attracted
by the manifold together with a slow drift parallel to the manifold.



We shall consequently adopt here the following two convergence criteria, which are
sufficient in practice. We shall say that a SCF algorithm of the form (7) numerically
converges towards a solution to the HF equations if the sequence (Dy) satisfies

1. Dysy — Dy —s 0;
2. [F(Dg), Dg] — 0;

and that it numerically converges towards an aufbau solution to the HF equations if
the sequence (Dy) satisfies

1. Dk—i—l — Dy — 0
2. Tr (F(Dy)Dy) — inf {Tr (F(D)D), D € P} —» 0.

As all norms are equivalent in finite dimension, we do not need to specify the matrix
norm in which the variations are evaluated. Let us remark that the latter convergence
criterion is stronger than the former one for

(Tr (F(Dg)Dy) —inf {Tr (F(Dg)D), De€P}—0) = ([F(Dg),Dr]—0).

Let us conclude this section with the

Proof of Lemma 2. Let us denote by D a current matrix such that D = D*, Tr (Q) =
N, D> < D and by D;; its coefficients in an orthonormal basis in which Fy =
Dlag( k1 Leh Tl ety with P < kP < Lo < bt In such a basis Dy =
Dlag(l . ,1, 0,---,0). As in addition Tr (D) =Y. | D;j = N, we get first
IDkt1 = DII* = Tr (Dgt1 — D) - (D1 — D))
= Tr (Diy4)+Tr (D?) —2Tr (DDjy1)
< Tr (Dgta) +Tr (D) = 2Tr (DDpya)

N
2N — 2 Z Dj;
=1

Besides Tr (FyDjy1) = S0, ekt Tr (F,D) = 31, ¥+1D;; and
0<D; <1, forany 1 <i<n
for D? < D = D* implies |D;;|? + E#i |Dij|> < Dj;. Putting together the above

results, we obtain

n
Tr (F,D) = Zef“Dii

Z Z k+1D”—|— Z k—l—l ”
i=N+1
N n
- LADad 3 Dty 3 Dy
i=N+1 i=N+1
N
D SLERSI oY
i=1 = i=N+1
N N
— Z€+1+ k+1 k+1 I—D” +’Y Z D”
i=1 = 1 1=N+1



Asforany 1 <i: < N,0< Dy <1 and elfvﬂ > ef"'l, we finally obtain
Tr (FyD) > Tr (FyDys1) + %HD — Dy |-

The two statements of Lemma 2 follow. {

4 The Roothaan algorithm: why and how it fails

The Roothaan algorithm (also called simple SCF or pure SCF or conventional SCF
in the literature) is the simplest fixed point procedure associated with the nonlinear
eigenvalue problem (6). It consists in generating a sequence (DF) in P satisfying

F(DEMCliy = Cry1Brsn

Ci 1O = In

Dy = Gk Gy
where By i) = Diag(ef ™ ... htl) Tt < hH1 < ..o < ekH heing the N smallest
eigenvalues of the linear eigenvalue problem

F(D™) = e

and where the n x N matrix Cj1 collects N orthonormal eigenvectors of F(Dfth)
associated with e’f“ e’2°+1 elfv"'l. The iteration procedure of the Roothaan algo-
rithm can therefore be summarized by the diagram

) ) eeey

Dfh —y  F, = F(Dpfthy Aubau pren

The convergence properties of the Roothaan algorithm are not satisfactory: although
the Roothaan algorithm sometimes numerically converges towards a solution to the
HF equations, it frequently numerically oscillates between two states, none of them
being solution to the HF equations. Numerical oscillation between two states means
here that

Dl — D™ — 0, but D — Df* —4 0.

The behavior of the Roothaan algorithm can be explained by introducing the auxil-
iary function

E(D,D') = Tr (hD) + Tr (hD') + Tr (G(D) D),

which is symmetric since Tr (G(D) D') = Tr (G(D') D), and which satisfies E(D, D) =
2 E1F(D). Let us indeed minimize E alternatively with respect to each of the two
arguments D and D’

D, = arg lnf{E(Do,D), D e P},
Dy = arg inf{E(D,D;), D€ P},
D3 = arg inf{E(D9,D), D€ P},

This minimization procedure is usually called relazation in the mathematical litera-
ture. For the first two steps, we obtain

D, = arg 1nf{E(D0, D), D e P}
— arg f {Tr (hDy) + Tr (kD) + Tr (G(Dy)D), D € P}
= arg inf{Tr (F(Dy)D), D €P}
— D{%th

10



and, since E is symmetric on P x P,
Dy, = arg inf{E(D DIty Dep

— arg inf{ E(D", D), DeP}

= arg inf{ (hD) + Tr (hDE"Y + Tr (G(DE™)D), D e 73}
= arg inf{

DIty D)y, DEP}
Dlth,

It follows by induction that the sequences generated by the relaxation algorithm on
the one hand, and by the Roothaan algorithm on the other hand, are the same.
The functional E, which decreases at each iteration of the relaxation procedure can
therefore be interpreted as a Lyapunov functional of the Roothaan algorithm. This
basic remark is the foundation of the proof of the following result.

Theorem 1. Let Dy € P such that the Roothaan algorithm with initial guess Dy is
UWP. Then the sequence (D,fth) generated by the Roothaan algorithm satisfies one
of the following two properties

e cither (Dlljth) numerically converges towards an aufbau solution to the HF equa-
tions

® or (Dlljth) numerically oscillates between two states, none of them being an
aufbau solution to the HF equations.

Proof. For any k € IN, we deduce from Lemma 2 that
Tr (F(Df}) D) + SIDHY, — D™ < Tx (F(D) D).
Adding Tr (hD,?_itfi) to both terms of the above inequality, we obtain
E(D, D) + SIDf — D™ < B(DE™, D).

We then sum up the above inequalities for k € IN and we get >, | D — D2 <

400, which involves in particular that

D Rth D Rth

k+2 — 0.

ow, either — converges to zero or it does not. In the former case, we
Now, either Dft" — Dftth ges t td t. In the f ,
deduce from the characterization of D,f_ffi by

Te (F(Df") D) = int {Tr (F(DJ")D), D e P}

that
Te (F(D") D) — int { Tr (F(Df")D), D e P} — 0.

Convergence towards an aufbau solution to the HF equations is thus established. In
the latter case

Tr (F(DEM) Dlithy — inf{Tr (F(DE™M D), DeP} = Tr (F(DEM DIy — v (F(DEM D

v

h h
—||DRt D3t ||* — 0.

11

Rth
2k+1

)



Convergence of (D) towards an aufbau solution to the HF equations is therefore
excluded; the same argument holds for (Dog11). ¢

Mimicking the proof of Theorem 2 (see section 5), it is easy to establish in addition
that (Dag, Dok+1) converges up to an extraction to a critical point (D, D’) € P x P
of the functional £ which satisfies

( F(D')C =CE
C*C = Iy
D=CC*
F(D)C' = C'E
Ol = Iy

\ D =C'C™

where F and E' are diagonal matrices collecting the smallest N eigenvalues of F(D’)
amd F(D) respectively. Besides, as E(Dgg, Dogy1) is decreasing, the whole sequence
(D, Dog+1) converges to (D, D') if this critical point is a strict (local) minimum.
In this case, the alternatives are

e either (D, D’) is on the diagonal of P x P (i.e. D = D') and (D) converges
towards an aufbau solution to the HF equations;

e or (D, D') is not on the diagonal of P x P (i.e. D # D') and (DJ") oscillates
between two states which are not aufbau solutions to the HF equations.

Both situations are represented on Figure 1.

! !
D D=D D D=D'
(Do, D1)
(D2, D)
(D2, D3)
D D
(Do, D1) <1 S T
(D 7D1)
(D2yD3)

Figure 1: Minimization of E by relaxation: convergence towards a strict local mini-
mum located on (resp. off) the “diagonal” leads to the convergence (resp. oscillations)
of the Roothaan algorithm.

Oscillations can be observed even for simple chemical systems. As a matter of exam-
ple, we have tested the Roothaan algorithm in the UHF setting for the atoms of the
peridic table and for two sets of atomic orbitals, namely the gaussian basis sets 3-21G
and 6-311++G(3df,3pd) (see [10]). The initial guess is obtained by diagonalization
of the core hamiltonian. Calculations have been performed with Gaussian 98 [9].
The results are reported in Figure 2; they indicate that

1. Both alternatives (convergence wvs oscillation) are met in practice.
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2. Convergence towards a critical point of the HF problem which is not a global
minimum can sometimes be observed.

3. For the same system, we can get convergence for one basis set and oscillation
for another basis set.

Base = 3-21G Base = 6-311++ G(3df,3pd)

. Conver gence towar ds a solution to the HF equations which may be the HF ground state
D Conver gence towar ds a solution to the HF equations which isnot the HF ground state
. Oscillation between two states

D Basis not availablein Gaussian 98

Figure 2: Searching the ground state of atoms with the Roothaan algorithm. Results
are shown on the periodic table of the elements.

5 Level-shifting

The analysis developed in the previous section suggests to add to the functional
a penalization term E, of the off-diagonal pairs (D,D') with D # D’ in order to
enforce the critical points of the functional E + E, to lie on the diagonal of P x P,
which should ensure convergence towards a critical point of (5).

A simple penalization fonctional reads E, = b||D—D'||?, where b is a positive constant
and where || - || denotes as above the Hilbert-Schmidt norm. Let us therefore set

E’(D,D') = Tr (hD) + Tr (hD') + Tr (G(D) D') + b ||D — D'||2.
The relaxation algorithm associated with the minimization problem
inf { B(D, D), (D,D')€PxP}

generates the sequence (D?) defined by

aufbau

D! — F,=F(D})—bD} DY,

The sequence (Dz) can be identified with the sequence generated by the so-called
level-shifting algorithm [23] with level-shift parameter b. The convergence of the

13



level-shifting algorithm towards a (non necessarily aufbau) solution to the HF equa-
tions is mathematically guaranteed:

Theorem 2. There exists a positive constant by such that for any Dy € P and for
any level-shift parameter b > by,

1. The sequence of the energies EMF (DY) decreases towards some stationary value
£ of EHE.

2. The sequence (Dg) numerically converges towards a solution to the HF equa-

tions.

Proof. Let by be a positive constant such that
¥(D,D') € M(n,n) x M(n,n), Tr (G(D—D')-(D— D)) <b||D—D'||% (8)
Such a by exists since (d,d') — Tr (G(d)d') is a bilinear form on M(n,n). As E? is
symmetric on P x P, we have for any k € N,
ED},D},y) = t{E'D},D), DeP}
< E'(Dy,Dj).
A simple calculation shows that this inequality can be rewritten as

1
E"(D}4y) — g I (G(D{sy — D) - (Dyy — D})) + I DRy, — DYII? < BRF(DR).

Therefore, for any b > by,
b
BUF(DY, ) + 21Dy, — DY < B (D)), @

It follows that (EfF'(D?)) is a decreasing sequence and that

+00

> _IDkyy = DRI < +oo.
k=0

The latter statement, which has been obtained by summing the inequalities (9) for
k > 0, implies in particular that
D)., —Dp — 0.
As for any k € IN,
[F(Dy) —bD}, Di 4] =0,
it follows that

[F(Dy), Dy] = [F(D}) — bDy, Dy 4y — Dy 0
—+00
This concludes the proof of statement 2. As P is compact, we can extract from
(D?)ken a subsequence (Dz,)leN which converges towards some D € P, such that
ERTF(DY) | EHF(D) and [F(D), D] = 0; € = lim E¥F(Dy,) = E"F(D) is therefore
a stationary value of the HF energy.

The level-shift parameter by implicitely defined by (8) is far from being optimal.
Explicit and more refined estimates of shift parameters that garantee convergence
are given in |3]. From a numerical viewpoint, it is important to choose not too large
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a shift parameter; otherwise the speed of convergence is very slow and the risk of
converging towards a critical point whose energy is above that of the HF ground state
is enhanced. This point, on which we will come back in the course of section 6, is
illustrated by the numerical example reported on Figure 3 in which the level-shifting
algorithm with various shift parameters has been used to compute the (doublet)
UHF ground state of the Bromine atom in the gaussian basis 6-311++G(3df,3pd)
(see [10]). In each case, the initial guess is computed by diagonalizing the core
hamiltonian. Calculations have been performed with Gaussian 98 [9]. The algorithm
oscillates for small shift parameters. For larger shift parameters, damped oscillations
leading to convergence are observed. For very large shift parameter, the energy
decreases at each iteration. Too large shift parameters have however to be excluded
because they slow down the convergence (for b = 30.0 Ha, convergence towards the
ground state is obtained after more than 200 iterations).

Roothaan algorithm I —— LSwithb=11Ha | ]
HF ground state E HF ground state 4

2450 |- 2450 |-
& 3
5 5 ool
w2500 - o 2500 -
T I
-2550 - - -2550 -
! ! ! ! ! ! ! ! | !
0 10 20 30 40 50 60 0 10 20 30 40 50
Iterations Iterations

LSwithb=12Ha r I

I HF ground state HF ground state

LSwithb=15Ha | 7

-2450 |- 4 -2450 |-
& 3
8 8 ool
O 2500 - B S 2500 -
I I L
-2550 - - -2550 |-
P S S RS S R ER P S S S H R
0 10 20 30 40 50 60 0 10 20 30 40 50
Iterations Iterations

T T T T
LSwithb=30.0Ha | 7
HF ground state

LSwithb=50Ha [
HF ground state F

-2450 |-| - 2450 |-

-2500 |- -

HF energy
HF energy

-2500

-2550 - — -2550

- Lo A
0 10 20 30 40 50 60 0 10 20 30 40 50

Iterations Iterations

Figure 3: Calculation of the UHF ground state of the Bromine atom.
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6 The Optimal Damping Algorithm

The present section is devoted to the mathematical study of the Optimal Damp-
ing Algorithm (ODA) which is the simplest representative of the class of Relaxed
Constraints Algorithms (RCA) introduced in [4].

The ODA is defined by the following two-step iteration procedure

1. Diagonalize the current Fock matrix F, = F(D}) and assemble the matrix
D1 € P by the aufbau principle;

2. Set Dy, = arg inf{E(ﬁ), De Seg[ﬁk,Dk+1]} where

Seg[Di, Dy1] = { (1 = N) Dy + ADjs, A€ [0,1]}

denotes the line segment linking 519 and Dg41.
The procedure is initialized with 150 = Dy, Dy € P being a given initial guess.
The ODA thus generates two sequences of matrices:

e The principal sequence of density matrices (Dg)ren which will be proved to
numerically converge towards an aufbau solution to the HF equations;

e A secondary sequence (5;9);921 of pseudo-density matrices which belong to the
set

P = {IND € M(n,n), D* =D, Tr(ﬁ) =N, D? gf)}
obtained from P by relaxing the nonlinear constraints D? = D,
The latter statement is a direct consequence of

Lemma 3. The set P is conver,

whose proof is postponed until the end of the present section. Indeed, Do =Dy €
PCP and, by induction, if Dy € P then by convexity Dk+1 € Seg[Dk, Dy CP
since Diy1 € P C P.

The properties of the ODA are put together in the following theorem.
Theorem 3. For any initial guess Dy for which the ODA is UWP,

1. The sequence E(ﬁk) decreases towards a stationary value of the HF energy.

2. The sequence (Dy)ren converges towards an aufbau solution to the HF equa-
tions.

As a first step towards the understanding of the ODA, let us consider 13k € P and
D’ € P, and let us compute the variation of the HF energy on the line segment

Seg[Dy, D'] = {(1 ~NDp+AD', A€o, 1]} .

We obtain for any A € [0, 1],

)\2

B (1=N)Di+AD') = E""(D)+XTx (F(D)-(D'=Dy))+ 3 Tx (G(D' —Dy)- (D' — ﬁk)) :

The “steepest descent” direction, i.e. the density matrix D for which the slope

Sp,sp = 1T (F(Dy) - (D — Dy,)) is minimum, is given by the solution to the mini-
mization problem

D = arg inf{Tr (F(Dy) - (D' — Dy)), D¢ P} ,
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which also reads
D = arg inf{Tr (F(Dy)-D'), D'e P} .

This is precisely the direction Dy, obtained by the aufbau principle. The ODA
can therefore be interpretated as a steepest descent algorithm in P. The practical
implementation of the ODA is detailed in [4] for the RHF setting. The cost of
one ODA iteration is approximatively the same as the cost of one iteration of the
Roothaan algorithm (see [4] for details).

Figure 4 reports on a comparison between the ODA and the DIIS approaches for
the calculation of the RHF ground state of the E form of n-methyl-2-nitrovinylamine
(CH3-NH-CH=CH-NOy) in the basis 6-31G(d) (see [8]). The speed of convergence
is estimated by computing the logarithm of the difference between the HF energy of
the current density matrix and the (presumed) HF ground state energy. Calculations
have been performed within Gaussian 98 |9]. The graph on the left hand side corre-
sponds to an initial guess computed by a semiempirical method. In this case, both
algorithms converge but the speed of convergence of the DIIS algorithm is higher.
From a general viewpoint, numerical tests performed until now demonstrate that the
ODA is efficient for performing the early iterations of the SCF procedure; when the
sequence (Dy) has reached a neighbourhood of a critical point of the HF problem,
convergence can be accelerated either by resorting to iterative subspace techniques
or by switching to a quadratically convergent algorithm [4]. On the other hand, only
the ODA converges for a more crude initial guess obtained by diagonalizing the core
hamiltonian, as illustrated by the graph on the right hand side.

—— ODA |+
DIIS

Error on the energy (log)
&
Error on the energy (log)

10 4

]

[ oD,
-10 DIIS |H

0 05 1 15 0 1 2 3 4 5

CPU time (s) CPU time(s)

Figure 4: A comparison between the ODA and the DIIS algorithms: search for the
RHF ground state of the E form of n-methyl-2-nitrovinylamine with an initial guess
obtained by a semiempirical method (on the left hand side) and with the initial guess
obtained by diagonalizing the core hamiltonian (on the right hand side).

Let us now detail the

Proof of Theorem 3. Let us denote by F, = F(ﬁk) and by sgi1 = Tr (ﬁk(DkH -
Dy)). In view of Lemma 2,

Sp41 = Tr (ﬁkaH) —Tr (ﬁkﬁk) < —%HD/@H — Dy?

As above, let us denote by by a positive constant such that

¥(D,D') € M(n,n) x M(n,n), Tt (G(f)' ~D)-(D' - f))) < bo||D — D'|I%.
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For any A € [0,1],
E"F((1 = N Dy + ADy41) < E"F (D) — %HDk—i—l — Dil’X + %HD/’H—I — DA%,
Therefore
EHY(Dyyy) = iﬂf{EHF((l — A)Dg + ADgr1), A€, 1]}
< iﬂf{EHF(ﬁk) - %HDkJrl — DplPx+ %HDkJrl —DilPX%, A€o, 1]}
= E"F(Dy) — || Dy — Dl

with o = 7?/8bg if v < 2by, @ = (y — by)/2 otherwise. We then add up the above
inequalities for k € N, and we get > ||Dpy1 — Dg||* < 400, which implies that

Dys1 — Dy — 0. (10)
As Dy € [Dy, Diy1], it follows that
Dgy1 — D — 0,

and then that
Dk+1 — D — 0.

Besides
Tv (F(Dy)Dyy1) = inf{Tr (F(Dy)D), D¢ 73} . (11)

Putting together (10) and (11), we finally obtain

Tr (F(Dpy1)Dpy1) — inf {Tr (F(Dp1)D), D€P}—0. &

The following two points discuss the links between RCA and other algorithms like
the level-shifting and the DIIS algorihms.

The first point concern the level-shifting algorithm. Let us use the ODA to minimize
the penalized energy functional

E"(D) = E"F(D) — gTr (D?).

As for any D € P, Tr (D?) = Tr (D) = N, the critical points of the minimization
problem
inf { (D), DeP} (12)

are the same as those of the HF problem (5). On the other hand, for any D E~73 \ P,
Tr (D?) < N: “interior” points are penalized. Let us denote by (D?) and (D?) the
sequences generated by the ODA algorithm applied to (12):

1. Diagonalize the current Fock matrix ﬁ,i’ = F(ﬁ,’;) - bﬁz and assemble the
matrix Dg 41 € Py by the aufbau principle;

2. Set 52“ = arg inf{E(f)), De Seg[ﬁz,Dzﬂ]}-
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As for any A € [0,1]

E'(1= XD} +AD},,) = E"(D})+ATr (Ef - (Dgy1 — Dy))
L T (G(DY,, — DY) - (Dt,, — DY) —b||Db., — D?|?
+2 (Dkiq k) - (Diaq k) | Dk1 A
we obtain

~ ~ ’)l ~
St1 =T (Ff - (D = Di)) € =21 Dfy — DY
and for b > by
T (G(Dhyy = Dp) - (Dhyy = DP)) = blIDjy = DRI <0,

For b > by, the function A — E°((1 — A)ﬁz + AD} ) is therefore decreasing and

concave on [0, 1]; it follows that lN),(; = D! 41 Which means that the ODA for min-
imizing (12) coincides with the level-shifing algorithm. This provides in particular
another proof of the convergence of the level-shifting algorithm for large shift pa-
rameters b. Now, if D’ is an accumulation point of the sequence (DZ), we obtain by
passing to the limit

so0 = inf {Tr ((F(D") = bD") - (D~ D")), DeP}=0.
This implies that
D" = arg inf { Tx ((F(D") —bD") - D), DeP},

and therefore that
[F(D") —bD", D] = [F(D"), D*] =0,

but not necessarily that D = arg inf {Tr (F(D°)D), D € P}: D’ is a solution to
the HF equations that may not satisfy the aufbau principle. In addition, as G(D) > 0
for any D € P, we obtain

sky1 = Tr (Fp- (D4, — Dp))
b
= Tr (F(D})- (Dpyy — DY) + §“DZ+1 — DyJ?
) b
> —2|inf {Tr (hD), D € P} + §“DIZ+1 — Dy

It results that

1D,y — DyII? < 2 |imf {Tx (hD), D € P}|.

SN

The level-shifting algorithm can then also be interpreted as a trust region algorithm
on the manifold P for which the radius of the trust region is bounded by ¢ =
2linf {Tr (hD), D € P}|. The larger the shift parameter b, the smaller the step
D,’; 41— DZ; this induces for large b a slow motion along a steepest descent path.

The second point is related to the DIIS algorithm. An attempt of improvement of the
ODA consists, in the spirit of iterative subspace methods, in keeping in memory all
(or some of) the density matrices computed at the previous steps and in minimizing
the HF energy in the convex set generated by all the density matrices stored in
memory:

1. Diagonalize F(ﬁk) and assemble the density matrix Dg,q € P by the aufbau
principle .
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k+1 k+1
2. Set Dy = arg inf{EHF(D), D:ZCiDi, 0<¢ <1, ZCi:l}'
i=0 1=0

This algorithm is similar to Pulay’s DIIS algorithm [21] except that in the DIIS

algorithm, step 2 consists in minimizing the residual

2
, (13)

k+1

> alF(D;), Dy]

1=0

where [.,.] denotes the commutator [A, B] = AB — BA, and where || - || denotes the
Hilbert-Schmidt norm. Contrary to the RCA presented here, the DIIS algorithm
may diverge: the residual (13) actually decreases at each step but it may vanish
without the convergence is met.

Let us conclude this section with the

Proof of Lemma 8. Let 131 € P and l~72 € P. For any 0 < ¢1,co < 1 such that
c1+c=1,

D? = (cll~71 + 0252)2
= D} + 3D} + cica(D1 Dy + Dy D)
= aDi+eDy+ 61(5% - 51) + 02(53 - 52)
+(c — ¢1)D} + (3 — ¢2) D3 + cica(D1 Do + DDy
= D+ci(D} — Dy) + c2(D§ — D2) — c12(Dy — Dy)?

since ¢? —¢; = ¢1(1 —¢1) = —cica = ¢ — ¢o. Now, 13% Dy < 0, 13% — Dy <0 and
(D1 — D3)? > 0. Consequently, D? < D. The other two constraints (D = D* and

Tr (D) = N) being linear, it is clear that D € P.
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