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IntroductionConsider the classical Black-Scholes modeldXxt = �Xxt dt+ �Xxt dBt (1)Xx0 = x > 0� 2 Rwhere B is a standard Brownian motion, � the instantaneous interest rateand � the volatility of X and denote byAf(x) = �2x22 f 00(x) + �xf 0(x)� �f(x)the corresponding in�nitesimal generator. Given a continuous function  :R�+ ! R+ satisfying some growth assumptions, the price of the so-calledAmerican option with payo�  , time to maturity t > 0 and spot x is givenby the expression vam (t; x) = sup�2T (0;t) E �e��� (Xx� )� (2)where � runs across the set of stopping times of the Brownian �ltrationsuch that � � t almost surely. For x > 0, the function t ! vam (t; x) isnon-decreasing. Moreover, it is greater than  (x) and typically the space]0;1[ � R�+ splits into two regions, the so-called Exercice region whereby de�nition vam =  and its complement the Continuation region wherevam >  .In this paper, we are interested in the price vamPut(t; x) of the American Putoption given by  (x) = (K � x)+ where K is some positive constant (thestrike of the option). In case � � 0, it is obvious by a convexity argumentthat the optimal stopping price is � = t and vamPut(t; x) is equal to the priceof the European Put option. From now on, we suppose that � > 0. Evenif there is no closed-form expression for vamPut(t; x), its limit as t ! +1, theprice of the so-called perpetual Put option, can be computed explicitly as:vamPut(1; x) = (K �K�)� xK���� 1fx�K�g + (K � x)1fx<K�g (3)where � = 2��2 and K� = �K1 + �:2



K� is called the perpetual strike. Moreover there is a continuous non-increasing function ~t :]0;+1[! [0;+1] with ~t(x) = +1 if x � K� and~t(x) = 0 if x � K such that the Exercice region of the American Put optionis given by f(t; x) : 0 < t � ~t(x)g. In the (t; x) plane the situation is thusthe following:
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The purpose of the paper is to construct an approximation of vamPut(t; x)thanks to the following embedding result obtained in a previous work [1]:let ' : R�+ ! R+ be a continuous function such that supx>0 '(x)=(x+ x�) <+1 and v' (t; x) = E [e��t' (Xxt )] denote the price of the European optionwith payo� '. If the function x! b'(x) = inft�0 v' (t; x) is continuous and ifthere is a continuous function bt :]0;+1[! [0;+1] such that 8x > 0; b'(x) =v'(bt(x); x) (Convention : v'(1; x) = lim inft!+1 v'(t; x)), then the price ofthe American option with payo� b' is embedded in the function v'(t; x) inthe following sense :8(t; x) 2 [0;+1[�]0;+1[; vamb' (t; x) = v'(t _ bt(x); x):As an easy consequence, the set f(t; x) : 0 < t � bt(x)g is included in theExercice region of the American option.The main drawback of the above result is that we do not know, at themoment, how to design a function ' such that b' matches a given targetpayo� of interest. Even in the special Put case, despite many attempts,we could not �nd any European payo� ' with associated American payo�3



b'(x) = (K � x)+. Nevertheless we rely on the above theoretical result todesign closed-form prices for a large class of payo�s very close to the Putpayo�. This is done in three steps.First we design (section 1) a family of European payo�s which verify verycrude necessary conditions for b'(x) = (K � x)+ to have any chance to hold.This is the main step, it relies on the parameterization of ' by a measure hrelated to A'. Then we focus on the Continuation region. Amid our familywe �nd out necessary and su�cient conditions which grant that the equationinft�0 v' (t; x) = v'(bt(x); x) de�nes a curve which displays the same featuresas the free boundary of the American Put (section 2).Unfortunately, it is easy to see that for any function amid our family b'(x) =(K�K�) � xK���� 1fx�K�g below K�, which is not satisfactory. The third step,which is easy making use of the fact that K� is the perpetual Put strike, isto prove that the price of the American option with modi�ed payo� (K �x)+1fx�K�g+b'(x)1fx>K�g, denoted by b'h to emphasize the dependence on theparameter h, and matching (K � x)+ both for x � K and for x � K� is stillembedded in v'(t; x) : vamb'h (t; x) = (K � x)+1fx�K�g + v'(t _ bt(x); x)1fx>K�g.This is done in section 3.Since we show that b'h cannot be equal to the Put payo� everywhere(indeed b'00h(K�+) > 0), we believe that at this stage there is little to get fromfurther calculations. The last stage is to select amid our family the point h�so that, in some sense, b'h� is the closest payo� to (K � x)+. We choose thecriterion supx ��b'h (x)� (K � x)+��This is done in a numerical manner which is explained in detail in the lastsection (section 4): choosing ' in a peculiar low-dimensional subclass, wecompute a discretized version of b' and then minimize the above criterion.The numerical results seem very good.1 A �rst set of tentative payo�s 'Let us now look for a class of initial payo�s ' for which there is some hopethat b' (x) = (K � x)+ holds, at least for x between K� and K.Notice �rst that the European price of ' should match the American Putprice in the Continuation region. In particular it should increase from 0 to(K�K�) � xK���� as t goes from 0 to1 for x � K. This gives at once '(x) = 04



for x � K. Another condition is that the European price of ' decreases tob' (x), for x between K� and K, as t goes from 0 to bt(x) (the tentative freeboundary). This should also hold for x below K� with bt(x) =1. Note thatthese conditions are necessary only if we restrict ourselves to the simple caseof a single curve where inft�0 v' (t; x) is attained which splits the (t; x) planein two regions where respectively @tv' � 0 and @tv' � 0. Thanks to theBlack-Scholes PDE this gives that A'(x) (de�ned in any reasonable sense)should be non-positive between 0 and K. Now a natural way to proceed isto parameterize ' by A', or in other words to solve the ODEA' = m:The solutions of A' = 0 are the functions x ! ax + bx�� for 2 reals (a; b).By a straightforward integration this gives'(x) = ax + bx�� � 2�2x�� Z x0 y� Z 1y m(dr)r2 (4)or yet by Fubini's theorem, since m should be supported in ]0; K] to ensure' = 0 above K:'(x) = ax + bx�� � 2�2(�+ 1)x�� Z K0 (r ^ x)�+1m(dr)r2 (5)as soon as the measure m satis�es R K0 r��1jmj(dr) <1.Now by the Lebesgue theorem, it is easy to see that a = limx!1 '(x)x whichgives for us a = 0. Then '(x) = 0 for x � K gives the condition:b = 2�2(�+ 1) Z K0 r��1m(dr) (6)Observe next that since limx!1 '(x)x = a = 0 and by Lebesgue Theoremlimx!0+ '(x)x�� = b, according to Appendix B, limt!1 v'(t; x) = ax + bx�� =bx��: This gives the value of b: b = K�K�K���We have not yet used the fact that m should be non-positive on ]0; K[.Obviously for (6) to hold, since b is positive, m should be of the form:m(dr) = c�K(dr)� 1]0;K[(r)�2(� + 1)K�2 h(dr)5



where h is a positive measure on ]0; K[ (we wrote the indicator function forclarity's sake. Also the factor �2(�+1)K�2 before h will lead to easier calcula-tions later on) and c a strictly positive number.By the way, c is related to the left derivative of ' at K: by (4) ('(x)x�)0 =� 2�2x� R Kx m(dr)r2 whence by '(K) = 0:c = ��2'0(K�)K22As soon as ' has a few regularity properties on the left of K, since bt(x) goesto 0 as x goes to K from below, b'0(x) should go to '0(K�). But b'0(x) shouldbe �1, so we get the value of c: c = �2K22 .The last point to check is that this is compatible with (6). This rewritesnow:K� Z K0 r��1h (dr) = K2(� + 1)K��1 � (K �K�)K�� = K�K� �K���In particular this is a positive quantity.So far we have reached the following:Lemma 1 Let '(x) be a continuous payo� satisfying A' = m where m is ameasure on ]0;+1[ such that R +10 r��1jmj(dr) < +1.Then the four conditions(i) '(x) = 0 for x � K(ii) For every x � K, v'(t; x)! (K �K�)( xK� )�� as t!1(iii) In a weak sense A' � 0 below K(iv) '0(K�) = �1hold if and only if m(dr) = �2K22 �K(dr)� �2(�+1)K�2 h(dr) where h is a positivemeasure on ]0; K[ such that R K0 r��1h(dr) = (K� �K��)=� and'(x) = (K�K�)( xK� )���x�� (K ^ x)�+1� + 1 +K� Z K0 x�� (r ^ x)�+1r2 h(dr) (7)An additional calculation (cf Appendix A) gives also:Lemma 2 The function ' in (7) is non-negative.
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1.1 Computing the corresponding price>From now on we suppose that ' is given by (7). Leter (x) = x�� (r ^ x)�+1= r�+1x��1 (x > r) + x1 (x � r)Then after (7), since the function x 7! x�� is invariant, also using KK� = 1+ 1� :v' (t; x)K� = ( xK� )��� � 1�KveK (t; x) + Z K0 ver (t; x) h (dr)r2where ver (t; x) = e��tE �er �x exp���� �22 � t+ �Bt���which gives after straightforward calculations (cf Appendix C):Lemma 3 One hasver (t; x) = r�+1x��N  � ln � rx�+ ��+12 ��2tp�2t !!+xN  ln � rx�� ��+12 ��2tp�2t !where N(z) = R z�1 e�y2=2 dyp2� denotes the cumulative distribution function ofthe Normal law.Setting a = ln(K�), b = ln(K), y = ln(x), u = ln(r), also � = 1�2t anddenoting the image of the measure h(dr) by the function r ! ln(r) by dh(eu),we thus gete�av' (�; y) = e�(a�y)� � e�(b�y)� N �� (b� y)p�� ��+ 12 � 1p���e(y�b)� N �(b� y)p�� �� + 12 � 1p��+e��y Z b�1 e�udh (eu)eu N �� (u� y)p�� �� + 12 � 1p��+ey Z b�1 e�udh (eu)eu N �(u� y)p�� �� + 12 � 1p��In terms of the measure eh (du) = �e (��1)(u�b)2 dh(eu)eu , we get7



Lemma 4 Let a = ln(K�), b = ln(K), y = ln(x), u = ln(r), � = 1�2t , alsoeh (du) = �e (��1)(u�b)2 dh (eu)euThen one has:�e�av' (�; y) = e�(a�y) � e�(b�y)N �� (b� y)p�� �� + 12 � 1p���e(y�b)N �(b� y)p�� �� + 12 � 1p��+e (��1)(b�y)2 Z b�1 e (�+1)(u�y)2 eh (du)N �� (u� y)p�� �� + 12 � 1p��+e (��1)(b�y)2 Z b�1 e� (�+1)(u�y)2 eh (du)N �(u� y)p�� �� + 12 � 1p��2 Tentative ''s with good-looking theta-zerocurveAs we are interested in bt(x) such that inft�0 v'(t; x) = v'(bt(x); x), we aregoing to study the so-called theta-zero points solution of @tv'(t; x) = 0.More precisely we look for conditions on the measure h which ensure thatbt(x) is continuous; bt�1(0) = [K;+1[; bt�1(+1) =]0; K�]: (8)2.1 The theta-zero curveSince the price of the European option with payo� ' satis�es the Black-Scholes partial di�erential equation @tv'(t; x) = Av'(t; x) for t; x > 0, inorder to �nd the theta-zero points, we compute Av'(t; x).One main advantage of our parameterization of ' by A' = m is thesimplicity of the following computations. Indeed by the semi-group propertyAv'(t; x) = vA'(t; x). Since vA' solves the Black-Scholes Partial Di�erentialEquation 8t; x > 0; @tvA'(t; x) = AvA'(t; x); vA'(0; :) = m;8



by the Feynman-Kacs representation formula,8t; x > 0; vA'(t; x) = e��t Z K0 pXt (x; r)m(dr)where pXt (x; r) is the transition density of the Black-Scholes process. Ifn�2 (z) = e� z22�2 =p2��2 denotes the Gaussian density, an easy calculationyields pXt (x; r) = xrn�2t �ln � rx�� ��� �22 � t�.As a conclusion,Lemma 5 We haveAv' (t; x) = e��t Z K0 n�2t�ln� rx�� ��� �22 � t� m (dr)r :We recall that m(dr) = �2K22 �K(dr) � �2(�+1)K�2 h(dr). Changing notationsby settingy = ln (x) ; u = ln (r) ; � = 1�2t ; a = ln(K�); b = ln (K) :we obtain that @tv' (t; x) = Av'(t; x) = C (�; y)F (�; y)where C(�; y) = �2p�e�(1+�)2=8�e(��1)(b�y)=2eb=(2p2�) > 0 for � > 0 andF (�; y) = e��2 (b�y)2 � Z b�1 e��2 (u�y)2~h(du) (9)Thus we are interested in the solutions ofF (�; y) = 0 (10)>From now on, we suppose that8x < K; h(]x;K[) > 0 and Z K0 ln2(r)r ��32 h(dr) < +1 (11)Lemma 6 The function F is C1 on [0;+1) � R. Moreover, for y 2 Rthe function � � 0 ! F (�; y) vanishes at most twice. Lastly, 8y � b (respy < b), F (�; y) is positive (resp. negative) for � big enough.9



Proof. The integrability assumption in (11) is equivalent to the convergenceof R b�1 u2~h(du). By Lebesgue theorem, we easily deduce that F is C1.Equation (10) writes��2 (b� y)2 = ln�Z b�1 e��2 (u�y)2~h(du)� :Hence for �xed y 2 R, the solutions are given by the intersection of a straightline and the Log-Laplace transform of a positive measure which is strictlyconvex under (11). We conclude that � � 0 ! F (�; y) vanishes at mosttwice. The last assertion is a consequence of the �rst part of (11).Let us now derive necessary conditions on h for (8) to hold.If (8) holds then t ! v'(t _ bt(x); x) is non-decreasing. As a consequence,when x 2]K�; K[; @tv'(t; x) � 0 for t � bt(x) i.e. when y 2]a; b[; F (�; y) � 0for � positive and small. For x � K�, bt(x) = +1 i.e. inft�0 v'(t; x) =lim inft!+1 v'(t; x). Since � � 0 ! F (�; y) vanishes at most twice, so doest > 0 ! @tv'(t; x). Hence when x � K�, @tv'(t; x) < 0 for t big enough i.e.when y � a, F (�; y) < 0 for � positive and small.Since F is continuous, to get the previous sign conditions, we need F (0; a) = 0e.g. ~h is a probability measureZ b�1 ~h(du) = 1 (12)As F (0; y) is independent of y, the sign conditions then imply respectively@�F (0; y) � 0 for y 2]a; b[ and @�F (0; y) � 0 for y � a. Since F is C1,@�F (a; 0) = 0 e.g. Z b�1(u� a)2~h(du) = (b� a)2 (13)The necessary conditions (12) and (13) will turn out to be su�cient for (8)to hold:Proposition 7 If 8y < b; eh(]y; b[) > 0 and (12) and (13) hold then8y 2 ]a; b[ ; 9!�� (y) > 0 such that F (�� (y) ; y) = 0F (�; y) > 0 for � 2]0; �� (y) [F (�; y) < 0 for � > �� (y) (14)8y � b; 8� > 0; F (�; y) > 0 (15)8y � a; 8� > 0; F (�; y) < 0 (16)10



Proof. By (12), 8y 2 R; F (0; y) = 0. It is easy then to deduce (15) from(9).Next, 8y 2 R, writing (u � y)2 = (u � a)2 + (a � y)2 � 2(y � a)(u � a),developing (b� y)2 in a similar way and using (12) and (13) we get@�F (0; y) = 12 Z b�1 (u� y)2 ~h(du)� 12 (b� y)2 = (y � a) Z b�1(b� u)~h(du):Hence @�F (0; y) is positive (resp. negative) for y > a (resp. y < a), whichimplies that F (�; y) is positive (resp. negative) for � positive and small wheny > a (resp. y < a). By Lemma 6, when y < b, F (�; y) is negative for �big enough. Moreover, as � ! F (�; y) vanishes at � = 0, this functionvanishes at most for at most one �(y) > 0 and then @�F (�(y); y) 6= 0. Bythe intermediate value property, we deduce (14) and (16) for y < a. AsF (0; a) = @�F (0; a) = 0, the function F (�; a) does not vanish for � > 0 and(16) also holds for y = a.Setting ��(y) = 0 for y � a and ��(y) = +1 for y � b, then 8y 2R; b'(ey) = v'(��(y); y). It is enough to check that b' is continuous and that�� is continuous and non-decreasing to conclude that (8) holds. Let us nowturn to a detailed study of �� and b'.2.2 Behaviour of ��(y) for y 2]a; b[Proposition 8 Under the assumptions of Proposition 7, the function �� isanalytic and increasing from ]a; b[ to R�+ and satis�eslimy!a+ �� (y) = 0; limy!b� �� (y) =1:More precisely, �� (y) (b� y)2 !y!b� 1: (17)If we suppose moreover that d~h is absolutely continuous in a neighborhood ofb i.e. for some b� 2]a; b[ ~h(du) = ~h(u)du on ]b�; b[ and that limu!b� ~h(u) =~h(b�) > 0 exists, then limy!b� ln (b� y)�� (y) (b� y)2 = �12 : (18)11



Lastly, the following equivalent holds for ��(y) as y ! a+ :��(y) �y!a+ 8(y�a) Z b�1(b�u)eh(du)=�Z b�1(u�a)4eh (du)�(b�a)4�: (19)In case, R b�1(u � a)4~h(du) = +1 (, R K0 ln4(r)r ��32 m(dr) = +1), (19)means that ��(y) = o(y � a).Before coming to the proof of the proposition let us notice that (18) is equiv-alent to the equivalent of Barles&Alii [2] and Lamberton [3]:Lemma 9 Let �� (y)!1 as y ! b�. Then (18) holds if and only iflimy!b� �� (y) (b� y)2ln (�� (y)) = 1 (20)Proof. If (20) holds then ln(��) + 2 ln(b� y)� ln(ln(��))! 0. By dividingby ��(b � y)2, which is far from zero since it goes to in�nity by (20) we getln(��)��(b�y)2 + 2 ln(b�y)��(b�y)2 � ln(ln(��))��(b�y)2 ! 0 which gives (18) since ln(ln(��)ln(��)) ! 0.Conversely we get from (18) ln(� ln(b� y))� ln(��) + 2 ln(b� y)! � ln(2)whence if (18) holds ln(� ln(b�y))��(b�y)2 � ln(��)��(b�y)2 � 2 ln(b�y)��(b�y)2 ! 0 then (20) sinceln(� ln(b�y))ln(b�y) ! 0.Let us now prove the proposition:Proof. We �rst compute the �rst order derivatives of F :@yF (�; y) = ��(b� y)e��2 (b�y)2 � Z b�1(u� y)e��2 (u�y)2~h(du)�@�F (�; y) = �12(b� y)2e��2 (b�y)2 + 12 Z b�1(u� y)2e��2 (u�y)2~h(du):Let y 2]a; b[. Applying Jensen inequality to the strictly convex functionz ln(z) and the moment equality F (��(y); y) = 0, we get @�F (��(y); y) < 0.Moreover, using F (��(y); y) = 0, we get@yF (��(y); y) = ��(y) Z b�1(b� u)e���(y)2 (u�y)2~h(du) > 0:12



Now the price v'(t; x) of the European option is analytic on R�+ �R�+ , there-fore @tv'(�; y) is analytic on R�+ � R. Since for y 2]a; b[, ��(y) is the unique� > 0 solution of @tv'(�; y) = 0 and@� (@tv'(��(y); y)) = C(��(y); y)@�F (��(y); y) < 0; @y (@tv'(��(y); y)) > 0;by the implicit functions theorem for analytic functions �� is analytic with apositive derivative on ]a; b[.We deduce that ��(y) has a limit when y ! a+. Since F is continuous,F (limy!a+ ��(y); a) = 0. Now the unique � � 0 such that F (�; a) = 0is 0. Hence limy!a+ ��(y) = 0. By a similar reasoning, we check thatlimy!b� ��(y) = +1.To precise the speed of convergence, we recall that ��(y) is given bye���(y)2 (b�y)2 = Z b�1 e���(y)2 (u�y)2eh(du): (21)As y ! b�, ��(y)! +1 and 8u < b; e���(y)2 (u�y)2 ! 0. Hence by Lebesguetheorem the right-hand-side of (21) goes to 0 and ��(y)(b� y)2 ! +1.Let us now turn to (18). By Lebesgue theorem,e��(y)2 (b�y)2 Z 2y�b�1 e���(y)2 (u�y)2eh(du) = Z 2y�b�1 e���(y)2 (b�u)(2y�b�u)eh(du)!y!b� 0:We now suppose that ~h(du) has a density ~h on ]b�; b[ and that limu!b� ~h(u) =~h(b�) > 0. Setting u = y + � (b� y) we get from the above remark:1 �y!b� Z b2y�b e���(y)2 ((u�y)2�(b�y)2)eh(du)= (b� y) Z 1�1 e���(y)2 (b�y)2(�2�1)eh (y + � (b� y)) d�� (b� y)eh(b�) Z 1�1 e���(y)2 (b�y)2(�2�1)d�Therefore, by the Laplace method,� 1b� y� 2��(y)(b�y)2 � �eh(b�) Z 1�1 e���(y)2 (b�y)2(�2�1)d�� 2��(y)(b�y)2 ! sup�2]�1;1[ e�(�2�1) = e13



which gives (18).To precise the behaviour of ��(y) as y ! a+, we make Taylor expansionsin (21):1 � ��(y)2 (b� y)2 + ��(y)28 (b� y)4 + o(��(y)2)= Z b�1�1� ��(y)2 (u� y)2 + ��(y)24 (u� y)4 Z 10 (1� �)e� ���(y)2 (u�y)2d��eh (du)which simpli�es after (12) and (13), writing (b� y)2 = (b� a)2 + (y � a)2 +2(b� a)(a� y), developing (u� y)2 and also (b� y)4 in a similar way, to��(y) (y � a) Z b�1(b� u)eh(du) + ��(y)2(b� a)48 + o(��(y)2)= ��(y)2 Z 10 1� �4 �Z b�1(u� y)4e� ���(y)2 (u�y)2~h(du)� d�In case R b�1(u� a)4~h(du) < +1 the r.h.s. is equivalent to��(y)2 Z b�1(u� a)4~h(du)=8:Since eh is not a Dirac mass, by Jensen inequalityZ b�1(u� a)4eh(du) > �Z b�1(u� a)2eh(du)�2 = (b� a)4 according to (13)and we deduce (19).This assertion still holds in case R b�1(u� a)4~h(du) = +1: indeed by Fatoulemma Z 10 1� �4 �Z b�1(u� y)4e� ���(y)2 (u�y)2~h(du)� d�! +1:
2.3 The price along the theta-zero curveThe interesting price is obtained by setting � = �� (y) :14



Proposition 10 Under the assumptions of Proposition 7, the payo� b' isgiven for x between K� and K (y between a and b) by�e�a b' (ey) = e�(a�y) � e�(b�y)N �� (b� y)p�� �� + 12 � 1p���e(y�b)N �(b� y)p�� ��+ 12 � 1p��+e (��1)(b�y)2 Z b�1 e (�+1)(u�y)2 eh (du)N �� (u� y)p�� ��+ 12 � 1p��+e (��1)(b�y)2 Z b�1 e� (�+1)(u�y)2 eh (du)N �(u� y)p�� �� + 12 � 1p��where � = �� (y) > 0 is given by F (��(y); y) = 0.2.4 Computation of b'0 for K� < x < K:By derivation of b'(ey) with respect to y (see Appendix D), we obtain :Lemma 11 For y 2]a; b[,e�a b'0(ey) = �e�ye�(a�y) + e�ye�(b�y)N �� (b� y)p�� �� + 12 � 1p���e�b� N �(b� y)p�� �� + 12 � 1p���e�(�+1)ye (��1)b2 Z b�1 e (�+1)u2 eh (du)N �� (u� y)p�� ��+ 12 � 1p��+e (��1)b2� Z b�1 e� (�+1)u2 eh (du)N �(u� y)p�� �� + 12 � 1p�� (22)where � = �� (y) > 0 is given by F (��(y); y) = 0.2.5 Behaviour of b' as x! K�+:Proposition 12 Under the assumptions of Proposition 7 ,limx!K�+ b'(x) = K �K�:15



Moreover, limx!K�+ b'0(x) = �1 andlimx!K�+ b'0(x) + 1x�K� = �+ 1K� > 0:i.e. the behaviour of b'(x) when x! K�+ is similar to the one of the perpetualPut price and b' cannot be equal to K � x on [K�; K].Proof. We recall that limy!a+ ��(y) = 0. Hence, in the expression ofe�a b'(ey) given by Proposition 10, when y ! a+, the �rst term has a limitequal to 1=� and the second and third terms go to 0. The fourth and the�fth term also vanish according to Lebesgue theorem and the following upper-bounds: 8u � b; 8y � a,e (�+1)(u�y)2 N �� (u� y)p�� �� + 12 � 1p��� e� (�+1)28� 1fu�y��(�+1)=4�g + e (�+1)(b�a)2 N ��� + 14p� � 1fu�y��(�+1)=4�g� e� (�+1)28� + e (�+1)(b�a)2 N ��� + 14p� �e� (�+1)(u�y)2 N �(u� y)p�� �� + 12 � 1p��� e� (�+1)(�+1�2p�)4� 1f(u�y)p��(�+12 ) 1p���1g+ 1p2�e� (�+1)(u�y)2 e� 12�(u�y)p��(�+12 ) 1p��21f(u�y)p��(�+12 ) 1p���1g� e� (�+1)(�+1�2p�)4� + e� (�+1)28�Hence limx!K�+ b'(x) = ea=� = K�=� = K �K�.Denoting by Ti(y); 1 � i � 5 the terms of the right-hand-side of (22), wehave T1(a) = �e�a and T 01(a) = (� + 1)e�a. We conclude the proof bychecking that 82 � i � 5, 8n 2 N , limy!a+ Ti(y)=(y� a)n = 0 thanks to (19)and the previous upper-bounds.2.6 Behaviour of b' as x! K�:Proposition 13 If the assumptions of Proposition 7 are satis�ed andZ K0 r��1h(dr) = K� �K���16



which is equivalent toZ b�1 e (�+1)u2 ~h(du) = e (1��)b2 (e�b � e�a);where eh (du) = �e (��1)(u�b)2 dh (eu)euthen limx!K� b'(x) = 0 and limx!K� b'0(x) = �1:Proof. Since limy!b� p�(b � y) = +1, taking the limit y ! b� in theexpression of e�a b'(ey) given by Proposition 10,limy!b� e�a b'(ey) = e�(a�b)� + 0� 1� + 1� Z b�1 e (�+1)(u�b)2 ~h(du) + 0= �e�(a�b) � 1 + e��b(e�b � e�a)� =� = 0Taking the limit in (22), we obtainlimy!b� e�a b'0(ey) = �e�(a�b)e�b + 0� e�b� � e�(�+1)be (��1)b2 Z b�1 e (�+1)u2 eh(du) + 0= �e�(a�b)e�b � e�b� � e�(�+1)b(e�b � e�a) = �e�b�1 + 1��= �e�a:Remark 14 � In case d~h is absolutely continuous in a neighborhood ofb with a density ~h such that limu!b� ~h(u) = ~h(b�) > 0 exists, it ispossible to prove that the second order derivative of b' at K� dependson ~h(b�) : limx!K� b'0(x) + 1x�K = e�b limy!b� b'0(ey) + 1y � b = �� eh(b�)K� Under the assumptions of the Proposition, we have '0(K�) = �1 =b'0(K�). If moreover, the above assumption on d~h is satis�ed, we cancheck that '00(K�) = ��eh(b�)K = b'00(K�). The equality of the �rst andsecond derivatives of ' and b' at K� is not surprising since for y 2]a; b[,b'(ey) = v' � 1�2��(y) ; ey� and 1�2��(y) = o((b� y)2) as y ! b�.17



3 The main resultWe are now ready to summarize all the properties of bt(x) = 1=(�2��(ln(x))and b' and to apply the embedding result of [1]. First we state a theoremwhich is a direct application of [1], then a modi�cation well-suited to the Putcase.Note that (12) and (13) rewrites into the two last conditions on h in thefollowing theorem.Theorem 15 Assume that'(x) = (K �K�)( xK� )�� � x�� (K ^ x)�+1� + 1 +K� Z K0 x�� (r ^ x)�+1r2 h(dr)where h is a positive measure on ]0; K[ such that 8x < K; h(]x;K[) > 0 andZ K0 r��1h(dr) = (K� �K��)=�Z K0 r ��32 h(dr) = K ��12 =�Z K0 ln2(r=K�)r ��32 h(dr) = K ��12 ln2(K=K�)=�then b'(x) = inft�0 v'(t; x) is continuous equal to 0 for x � K, equal to (K�K�) � xK���� if x � K�, satis�es b'0(K�+) = b'0(K�) = �1 and b'00(K�+) =(�+1)=K�. Moreover b'(x) = v'(bt(x); x) where bt is continuous, non-increasing,analytic on ]K�; K[, equal to 0 for x � K and to +1 for x � K�. The priceof the American option with payo� b' is vamb' (t; x) = v'(t _ bt(x); x).Here is now the main result:Theorem 16 Under the assumptions of the previous theorem, the payo�b'h(x) = (K � x)+1fx�K�g + b'(x)1fx>K�g is continuous and its Americanprice is given by(K � x)+ 1fx�K�g + v' �t _ bt (x) ; x� 1fx>K�g:Proof. It is easily seen that b'h(x) = (K � x)+ � (K � K�)(x=K�)�� =b'(x) for x � K�, therefore the American price vamb'h (t; x) is smaller than18



vamb' (t; x). Now in the region x > K�; the American price of b'h is greaterthan v' �t _ bt (x) ; x�: indeed the latter may be written as E [e��� b'h (Xx� )]where � is the entrance time in the region �t � bt (x)	 (convention � = 0 ift � bt(x)) and b'h(Xx� ) = b'(Xx� ). Therefore vamb'h (t; x) = v' �t _ bt (x) ; x� forx > K� and also x � K� by continuity. In particular the line x = K� iscontained in the Exercice region.Take now a point (t; x) with x < K�: By the optimal stopping represen-tation of the American price, one hasvamb'h (t; x) = sup�<�� E �e��� b'h (Xx� )�where � runs across the set of stopping times of the Brownian �ltration lessthan the crossing time � � of the boundary f(0; x) ; x < K�g[f(t;K�) ; t � 0g.In this area b'h is equal to the Put payo�, therefore this quantity is less thanthe American price of the Put. But by de�nition of K� we lie in the Exerciceregion of the American Put, so vamb'h (t; x) � (K � x)+ and on another hand(K � x)+ = b'h (x) � vamb'h (t; x) :Remark 17 The same result holds for any continuous payo� obtained byreplacing b'(x) under K� by a continuous function  (x) smaller than (K �K�) � xK���� with  (K�) = (K �K�) and such that the region fx � K�g liesin the Exercice region of the modi�ed payo�. For instance in case k � K� it iseasy to check by comparison with the Put option that the region fx � K�g isincluded in the exercise region of the American Put-Spread option with payo�(K�x)+� (k�x)+ = (K� k)^ (K�x)+. Hence the price of the Americanoption with modi�ed payo� b'k(x) = (K�k)^(K�x)+1fx�K�g+ b'(x)1fx>K�gis (K � k) ^ (K � x)+1fx�K�g + v'(t _ bt(x); x)1fx>K�g:It is natural to wonder whether the payo� b'h is non-increasing like the Putpayo�. The answer is positive at least for values of � of practical interestsince :Lemma 18 There is a constant �0 < 1=2, such that when � � �0, underthe assumptions of Theorem 15, both b' and b'h are non-increasing.The proof of this Lemma is postponed to Appendix E.19



4 DiscretizationIn this section we solve a discretized version of the program:infh2H supx ��b'h (x)� (K � x)+��where H is a low-dimensional subspace of the set of measures h which verifythe moment conditions of the theorems.4.1 NormalizationFor practical purposes, it would be interesting to get a measure h� whichdepend on as few parameters as possible. It will certainly depend on �, butwe can design an approximation which will work for every value of K in thefollowing way: we normalize the situation so that K� = 1; (any other valuewould work!), therefore K = k def= 1 + 1� .This does not matter in the following sense: to emphasize the dependence onthe strike K, we denote by vamPut(t; x;K) the American Put price for the matu-rity t and the underlying value x. If we manage to design an approximationsuch that, for a given value of t :supx jvamPut (t; x; k)� Approx (t; x; k)j < "then since obviously vamPut (t; x; k) = Kk vamPut �t; kKx; k� ; the approximation byKk Approx �t; kK ; x; k� will satisfysupx ����vamPut (t; x;K)� Kk Approx�t; kK x; k����� < Kk "In other words, the error we face in term of a percentage of the strike K isgiven by "k :>From now on we work thus with:K� = 1; k def= K = 1 + 1�; (K � k)K��� = K �K� = 1�and with the variables y = ln(x) and � = 1=(�2t)20



4.2 Choice of a peculiar class of ehWe further restrict ourselves to a peculiar class of measures eh which lead toeasy implementation. Whatever the measure eh at hand there is a priori twosteps to obtain vamb'h (�; y) for given values of y 2]a = 0; b = ln(k)[ and � > 0 :�rst compute the value of the theta-zero curve i.e. �nd �� (y) 2]0;+1[solving F (��(y); y) = 0 then compute the price v' (� ^ ��(y); y) = vamb'h (�; y).In general both steps require numerical procedures, a dichotomy to �nd thezero of the time derivative (there is exactly one for every y 2]a; b[ after theabove calculations), next a numerical (one-dimensional) integration (withrespect to eh) to get the price. In case y � b, only the second step is requiredsince ��(y) = +1 and in case y � 0, vamb'h = (k � ey).We choose to work with a low-dimensional family of combination of pointmeasures. This allows the direct computation of the price at the second step.Notice that the condition eh(]y; b[) > 0 for y < b is not satis�ed yet:so we add a uniform measure "1]0;b[du, for which it is easily seen that thecorresponding contribution to the price may be computed explicitly. We haveimplemented the case of 3-points measures, which gives already astonishingresults. Our family may be parametrized in the following way:eh (du) = "1]0;b[du+� �log(r1) (du) + �log(r2) (du)+ (1� "b� � � ) �log(r3) (du)with " > 0; "b < 1; � > 0;  > 0 and � +  < 1� "b:By convention we choose log (r1) < log (r2) < log (r3) :Remember that the support of eh should lie below b; so we further setlog (r3) = � band also log (r1) = x1 � blog (r2) = x2 � bTherefore the parameter ("; �; x1; x2) should live in: 0 < " < b; � � 1; x1 �x2 � 1: 21



For a given value of ("; �; x1; x2) we compute the values of � and  which�t the two remaining moment conditions:Z b�1 u2eh (du) = b2Z b�1 e (�+1)u2 eh (du) = e�b � 1e (��1)b2This translates in the 2x2 linear system(1� x21)� + (1� x22) = �b� 13�2 � 1�+ 1� 1�2�1� e (�+1)(x1�1)� b2 � � + �1� e (�+1)(x2�1)� b2 � = � 2e� (�+1)� b2(� + 1) �e (�+1)b2 � 1�� b! + 1� e (�+1) (1��) b2 �1� e��b�which gives close-formula for � and : In case one of the conditions � >0;  > 0 and �+ < 1�"b is not satis�ed the point ("; �; x1; x2) is rejected,otherwise we sample the range ]0; b[ with n points, say yi = inb with 0 < i < nand for every yi we proceed as follows.4.3 Calculation of �� (y)We �nd �� (yi) by a dichotomy algorithm making use of the closed formulafor F (�; y) : This is obviously very fast, altough a little care is required whenyi is near 0 or b to deal with possibly very high or small values of �� (yi) :4.4 Computation of the priceThis is also very fast since no numerical integration is required. We make useof the standard approximation of the normal cumulative distribution whichrelies on the classical series expansion.4.5 Selection of the optimal pointThen for a given value of ("; �; x1; x2) we compute the error quantityerr ("; �; x1; x2) = supi ��b' (eyi)� (k � eyi)+��22



and next after a clever or systematic scan of the domain we pick the pointwhich minimizes this criteria, with a value err� = err ("�; ��; x�1; x�2). Thecorresponding American payo� is denoted by b'�.4.6 Archiving the resultsThe optimal point will depend on �. In practice we maintain an archive with100 values of � equally sampled between 0:5 and 50:0 (for an annual interestrate of 5%, � = 0:4 is � = 50%, � = 25:6 is � = 6:25%). The computation ofthe archive is done once for all, the practical usage for the ambient value of� consists in picking up the closest value of the table or performing a linearinterpolation since the optimal point, for our choice of the domain at least,depends �continuously� on �:Therefore the computation time is that of the dichotomy (typically teniterations. . . ) and of the price, which is very fast.4.7 Numerical ResultsLet us �rst plot err� as a function of �; expressed in percentage of the strikeK :
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The fact that this plot is decreasing corresponds to the fact that thesize of the range ]K�; K[ increases as � decreases, whereas our family of23



approximating payo�s does not get richer as � decreases. It seems that atleast for values of � not too small, this error is relevant in practice.Here are now the di�erence D(x) = b'�(x) � (k � x)+ for � = 1, inpercentage of the strike k = 2 and next of the premium at maturity (i.e.(k � x)+):
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The price error will be much smaller since err� is the maximal errorover the underlying and since it will be smoothed by the probability law24



of the spot value at the time the free boundary is reached and reduced bythe corresponding discounting factor. More precisely, if �opt and �� denoterespectively the entrance times in the exercise regions of the American Putoption and of the American option with payo� b'�, thenvamPut(t; x) = E he���opt(k �Xx�opt)+i and vamb'� (t; x) = E �e���� b'�(Xx��)�and as �opt and �� are optimal stopping times, we easily check thatvamb'� (t; x)�E �e����D(Xx��)� � vamPut(t; x) � vamb'� (t; x)+E he���opt(�D(Xx�opt))i :The larger the maturity, the more e�ective the smoothing of the error. Thenext plots show the comparison with a heavy �nite-di�erence method (PSORalgorithm) with a large number of steps (500), so that the yielded price maybe considered as the right one, for di�erent values of �.
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5 Conclusion: practical considerationsIn this paper, we apply the theoretical result in [1] to the pricing of theAmerican Put in the Black-Scholes model. We get a closed-formula for apayo� which is very close to the Put payo�. Let us insist on some remark-able features of our approximation: unlike many other kind of numericalapproximation methods there is a hedge ratio associated to our price, whichcan be computed through the same type of almost-closed formula. Moreover,the YAAAP prices and deltas are the exact Black-Scholes American pricesand deltas of a contingent claim the payo� of which matches the Put payo�below K� and above K; is analytic within the range ]K�; K[, has the right�rst derivative �1 at K�+ and K�; and lastly which deviates at most of err�from the Put payo� within ]K�; K[ : Therefore a safe way of making use ofour approximation method is to trade the corresponding sub- and super-strategies with the YAAAP deltas and the selling price YAAAP price+err�;buying price price-err�; which leaving aside discrete-time hedging and modelerrors considerations will allways yield a non-negative Pro�t&Loss. Remem-ber that err� is less than 0:15% of the strike as soon as 2��2 is greater than2: Because of the oscillating behavior of the di�erence b'(x)� (K � x)+; incase of the trading of a portfolio of Puts spread across di�erent strikes it is26



likely that the YAAAP prices may be used directly since the Pro�t&Loss forthe di�erent strikes will compensate eachother.A Proof of lemma 2Indeed by (4):'(x) = bx�� � 2�2(� + 1)x�� Z K0 (r ^ x)�+1m(dr)r2where by (6) b = 2�2(�+1) R K0 r��1m(dr). Therefore'(x) = 2�2(�+ 1)x�� Z K0 [r��1 � (r ^ x)�+1r2 ]m(dr)Now m = �2K22 �K(dr)� 1]0;K[(r)�2(�+1)K�2 h, whence'(x) = x��(�+ 1)[K�+1 � (K ^ x)�+1]� x��K� Z K0 [r��1 � (r ^ x)�+1r2 ]h(dr)For x < K x�'(x)K�+1 � (K ^ x)�+1 = 1(�+ 1) �K� Z K0 r�+1 � (r ^ x)�+1K�+1 � (K ^ x)�+1 h(dr)r2Now r�+1�(r^x)�+1K�+1�(K^x)�+1 � r�+1K�+1 , plugging R K0 r��1h(dr) = (K� �K��)=� we getx�'(x)K�+1 � (K ^ x)�+1 � 1(�+ 1)( �� + 1)� > 0and ' is non-negative.B Behaviour of the European price as the ma-turity goes to +1We prove here the following: 27



Proposition 19 Let ' : R�+ ! R a measurable function such thatsupx>0 j'j(x)=(x+ x�) < +1If a = limx!1 '(x)x and b = limx!0+ '(x)x�� exist and are �nite, thenlimt!1 v'(t; x) = ax+ bx��Proof.v' (t; x) = e��tE [' (Xxt )]= e��tE � ' (Xxt )Xxt + (Xxt )�� �Xxt + (Xxt )����= xE � ' (Xxt )Xxt + (Xxt )�� e��tX1t �+ x��E � ' (Xxt )Xxt + (Xxt )�� e��t �X1t ����Since e��tX1t = e�Bt��22 t, by Girsanov theorem the �rst term is equal toxE eP h '(Y xt )Y xt +(Y xt )�� i where Y xt = xe�t+�(Bt��t)+�2t��22 t = xe�t+� eBt+�22 t and eB isa eP Brownian motion. In particular eP a.s., e�t+� eBt+�22 t ! 1 as t ! 1:Therefore by Lebesgue theorem limt!1 E eP h '(Y xt )Y xt +(Y xt )�� i = limy!1 '(y)y :In the same way e��t (X1t )�� = e���Bt��2�22 t is a martingale and thesecond term is equal tox��E eP 24 '�(Zxt )� 1��Zxt + (Zxt )� 1� 35 where Zxt = x��e�t+�� eBt+�2�22 t:Therefore it goes to x�� limy!1 '�y� 1� �y+y� 1� = x�� limy!0 '(y)y�� :C Proof of lemma 3One hase�tver (t; x) = r�+1x��e������22 �tE �exp (���Bt) 1f��Bt>�l(x)g�+xe����22 �tE �exp (�Bt) 1f�Bt<l(x)g�28



where l (x) = ln� rx�� ��� �22 � tSince ��22 = � and �� = (��)22 ,ver (t; x) = r�+1x��e (��)22 tE �exp (���Bt) 1f��Bt>�l(x)g�+xe��22 tE �exp (�Bt) 1f�Bt<l(x)g�Now, e� 22 tE �exp (�Bt) 1fBt>�g� = e� 22 t Z 1� e�ze� z222t dzp2�2t= Z 1� e�(z+2t)222t dzp2�2t= N  � � + 2tp2t !!In the same waye� 22 tE �exp (Bt) 1fBt<�g� = N  � � 2tp2t !Whencever (t; x) = r�+1x��N 0@�0@��l (x) + (��)2 tq(��)2 t 1A1A+ xN ��l (x)� �2tp�2t �
where l (x) = ln � rx�� ��� �22 � t = ln � rx�� ���12 � (�2t) so thatver (t; x) = r�+1x��N  � � ln � rx�� � ���12 � (�2t) + �2(�2t)p�2(�2t) !!

+xN  ln � rx�� ���12 � (�2t)� (�2t)p�2t !
29



= r�+1x��N  � ln � rx�+ ��+12 ��2tp�2t !!
+xN  ln � rx�� ��+12 ��2tp�2t !

D Computation of b'0 for K� < x < KFor y 2]a; b[, b'(ey) = P'(��(y); y) is given in Proposition 10. Since @�v'(��(y); y) =� 1(���(y))2 @tv'(��(y); y) = 0, derivation with respect to y yields :e�a b'0(ey) = �e�ye�(a�y) + e�ye�(b�y)N �� (b� y)p�� �� + 12 � 1p���e�ye�(b�y)� p�N 0�� (b� y)p�� ��+ 12 � 1p���e�b� N �(b� y)p�� �� + 12 � 1p��+e�b� p�N 0 �(b� y)p�� �� + 12 � 1p���e�(�+1)ye (��1)b2 Z b�1 e (�+1)u2 eh (du)N �� (u� y)p�� ��+ 12 � 1p��+e�(�+1)y� e (��1)b2 Z b�1 e (�+1)u2 eh (du)p�N 0 �� (u� y)p�� �� + 12 � 1p��+e (��1)b2� Z b�1 e� (�+1)u2 eh (du)N �(u� y)p�� �� + 12 � 1p���e (��1)b2� Z b�1 e� (�+1)u2 eh (du)p�N 0�(u� y)p�� �� + 12 � 1p��where for notation simplicity � stands for ��(y).Sincep2�N 0�� (z � y)p�� ��+ 12 � 1p�� = e (�+1)(y�z)2 e� 12��+12p��2e��2 (z�y)2 ;using the de�nition of ��(y), we obtain that the sum of the third and theseventh terms of the r.h.s. is nil. Similarly the sum of the �fth and the ninth30



terms is nil.E Proof of lemma 18If ' is non-increasing then 8t � 0, x ! v'(t; x) is non-increasing. Sinceb'(x) = inft�0 v'(t; x), the same property holds for b' and for the modi�edpayo� b'h.Therefore, we are going to study the monotony of '. Let x < K. We recallthat (x�'(x))0 = � 2�2x� R Kx m(dr)r2 = �x� + x��K R Kx h(dr)r2 . As'(x) = (K�K�)�K�x ��� x�+ 1+K��x Z Kx h(dr)r2 + x�� Z x0 r��1h(dr)� ;and 1=(� + 1) = (K �K�)=K, we deduce thatx�'0(x) = (K �K�)�x�� Z Kx h(dr)r2 � x�K � �K��x �� �K�x Z x0 r��1h(dr):We upper-bound R Kx h(dr)r2 thanks to the second moment assumption on h :Z Kx h(dr)r2 � x��+12 Z K0 r ��32 h(dr) = x��+12 K ��12� :Combining this inequality with x�=K + �K��=x � 2x��12 p�K��=K we ob-tain x�'0(x) � (K �K�)x��12 K ��12 �1� 2p�(K�=K)�� :Hence ' is non-increasing as soon as 4� � ��+1�� � 1. It is easy to check thatthe function � 2]0;+1[! f(�) = 4� � ��+1�� is increasing. Since f(1=2) =p4=3 > 1 and lim�!0 f(�) = 0, the equation f(�) = 1 has a unique solution�0. Moreover �0 � 1=2 and 8� � �0, ' is non-increasing.References[1] B.Jourdain, C.Martini, �American prices embedded in European prices�,preprint CERMICS no 99-182 and INRIA no 3799, 199931
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