SOME PROPERTIES OF THE EXIT MEASURE FOR
SUPER-BROWNIAN MOTION

ROMAIN ABRAHAM AND JEAN-FRANCOIS DELMAS

ABSTRACT. We consider the exit measure of super-Brownian motion with a stable branching
mechanism of a smooth domain D of R¢. We derive lower bounds for the hitting probability
of small balls for the exit measure and upper bounds in the critical dimension. This completes
the results given by Sheu [20] and generalizes the results of Abraham and Le Gall [2]. We
give also the Hausdorff dimension of the exit measure and show it is totally disconnected in
high dimension. Eventually we prove the exit measure is singular with respect to the surface
measure on 0D in the critical dimension. Our main tool is the subordinated Brownian snake
introduced by Bertoin, Le Gall and Le Jan [4].

1. PRESENTATION OF THE RESULTS

First we introduce some notation. We denote by (M, M) the space of all finite nonneg-
ative measures on R?, endowed with the topology of weak convergence. We denote by B(R%)
the set of all measurable functions defined on R? taking values in R. With a slight abuse
of notation, we also denote by B(R?) the Borel o-field on R?. For every measure v € M i
and every nonnegative function f € B(R?), we shall use both notations [ f(y)v(dy) = (v, f).
We also write v(A) = (v,14) for A € B(R?). We write supp v for the closed support of a
measure v € M. If A € B(R?), then A denotes the closure of A.

Let d > 2. Let a € (1,2]. Let v be a Brownian motion in R? started at z under P,.
There exists a Markov process ((Xt, t >0), (]P’i(, vE Mf)) defined on D ([0, 00), M), the set
of all cadlag functions defined on [0, 0o) with values in My, called the (v, ) superprocess (see
[11]) which is characterized by X¢ = v P:X-a.s. and for every nonnegative bounded function
feBRY), t>s>0,

]El)/( [e_(Xt;f) | O'(Xu,o S u S S)] — e_(Xsyv(t—S,-))7

where v is the unique nonnegative measurable solution of the integral equation

v(t,z) + E, [/Ot ds v(s,%s)o‘] = E.[f(1)], t>0,z€R

Let D be a bounded domain of R?. There exists a random measure Xp on 0D, called the
exit measure of D for the (v, a)-superprocess (see [9]) whose law is characterized by: for
every v € My, such that supp v C D, for every nonnegative bounded measurable function f
defined on R,

EX [ef(XD,f)} — o)
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where v is the unique nonnegative measurable solution of the integral equation

1) o(z) +E, [ [ v(vs)a] —E,[f(p)l, ©ED.

The stopping time kp = inf{s > 0;s; ¢ D}, with the convention inf () = +oo0, is the first exit
time of D for 7. The function v solves % Au = u%in D. If D is regular and if f is continuous,
then v is continuous in D and equal to f on dD.

Let yo € 0D be fixed. The set Byp(yo,e) = {y € 0D;|y —yo| < €} is a ball on the
boundary of D. We write &, for the Dirac mass at point 2 € R? and B, for Byp(yo,e). From
[12] (see also [10] theorem 1.4 and remark 4.3), the function

u.(z) = —log Py [Xp(B.) =0], z€ D,
is the minimal nonnegative solution of

% Ay = u® in D

limy .y zep u(z) = 00 where y € B..

Let Rp be the range of the superprocess associated to (v, «), with o' the Brownian motion
killed in D¢. From [13] theorem 2.5 (see also [10] theorem 2.1 and remark 4.3) the function

ve(z) = —log Py [Rp N Be = (] is the maximal solution of
% Au = u® in D
limg_yy zep u(z) =0 where y € OD\B..

There is a natural way to build Rp and Xp on the same probability space (see [10]). Let
(Fp,n > 1) be an increasing sequence of closed sets such that F,, C D\B. and |J,,~ F, =

D\B.. Since Rp is a.s. a closed subset of D, we have for z € D, ]P’gi—a.s.
{Rp c D\B:} C | J{Rp C F.} € |J {Xp(Fy) =0} C {Xp(B.) =0},
n>1 n>1

where we used lemma 2.1 of [10] with () = R x D for the second inclusion. As a consequence
we have u, < v, in D. And we deduce that u, is the minimal nonnegative solution of

(2) limy .y zepu(z) =0 where y € 0D\Byp(yo,¢)
limy sy »ep u(z) = 00 where y € Bap(yo,e).

From now on we assume that D is of class C2. We prove the following uniqueness result.

Theorem 1.1. For € > 0, small enough, the function u. is the unique nonnegative measur-

able solution of (2).

Let d. = (v + 1) /(v — 1) the critical dimension. We introduce the function ¢g4(e) defined
on (0,00) by:

1 if d < d,
pale) = { Nlog(1/e)] "=V if g =4,
gd—de if d> d.

We first give a result on a lower bound of w..
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Theorem 1.2. Let K be a compact subset of D. There exist positive constants ¢ and €g,
such that for every e € (0,e0], x € K, we have

cpa(e) < ue().

For d # d., Sheu provided in lemma 4.2 and the following remark in [20] an upper bound
for v, and thus for wu..

Theorem 1.3 (Sheu). Let d # d.. Let K be a compact subset of D. There exist positive
constants C' and €y, such that for every € € (0,¢9], z € K, we have

ue () < Crpa(e).

The critical dimension is more delicate. It was proved by Abraham and Le Gall in [2] for
the particular case a = 2. For the critical dimension, we get:

Theorem 1.4. Let d = d.. Let K be a compact subset of D. There exist positive constants
C and €y, such that for every e € (0,¢9], z € K, we have

ue(z) < C[log(L/e)] ™"

The proof of this theorem however suggests that the upper bound should be ¢g4, (g). As a
consequence, we can complete theorems 3.3 and 4.3 from [20] to characterize the dimension
of the space where the exit measure is absolutely continuous w.r.t. the surface measure on

D.

Corollary 1.5. Let v € My with its support in D. PX-a.s., the measure Xp is singular
(resp. absolutely continuous) with respect to the Lebesque measure on 0D if and only if

d>d. (resp. d <d.).

Proof. The case d # d. is from [20] theorems 3.3 and 4.3. Let us consider the critical
case. From the properties of the superprocesses (see proposition 2.3 for example) we have for
yo € 0D, v € My with its support in D,

P> [Xp(Bap(yo,€)) > 0] =1 — e~ (Wue)

Thanks to theorem 1.4, taking the limit as € goes to 0, we get P\ [yo € supp Xp] = 0 for every
yo € 0D. We get the result by integrating with respect to o(dyp), the Lebesgue measure on
oD. U

If A € B(RY), we denote by dim A its Hausdorff dimension. An upper bound of the
Hausdorff dimension of the support of the exit measure was given in [20]. We complete this
result with the following theorem.

Theorem 1.6. Let v € My with its support in D. PX-a.s. on {Xp # 0}, we have
2
dimsupp Xp = —— A (d —1).
a—1

Once we have the result on the hitting probability of small balls of the boundary of 9D,
we can derive a result on the connected components of Xp (see [1] for more result in the
particular case of o = 2).

Theorem 1.7. If d > 2d. — 1, then P\ -a.s. the support of Xp is totally disconnected.

The paper is organized as follows. In section 2, we present the main tool: the Brownian
snake with a subordination method from [4]. We prove theorem 1.2 in section 3 using the
integral equation (1) and bounds on the Poisson kernel and Green function in D. Section 4
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is devoted to some technical lemmas on the typical behavior of the snake paths. They are
generalization of results from [19] and [2] where o = 2. The proof of theorem 1.1 is based
on the study of the first path of the Brownian snake which hits Bsp(yo,e). The proof of
theorem 1.4 in section 5 follows the proof of theorem 4.1 in [2], but the arguments are more
delicate because of the subordination method. The proof of the lower bound in theorem 1.6
in section 6 and of theorem 1.7 in section 7 are the elliptic counterpart of section 5.2 and
theorem 2.4 in [8]. Eventually the appendix deals with the law of the time reversal of stable
subordinators.

All the theorems where known for & = 2. From now on we assume that o € (1,2). We
denote by ¢ a generic non trivial constant whose value may vary from line to line.

2. THE SUBORDINATION APPROACH TO SUPERPROCESSES

2.1. The Brownian snake. Our main goal in this section is to recall from [4] how superpro-
cesses with a general branching mechanism can be constructed using the Brownian snake and
a subordination method. Let S = (S;,t > 0) be an p-stable subordinator, where p = o — 1.
Its Laplace transform is: for A > 0, E [e*’\st] = e %" where c, =27 7/T(1 + p) is chosen
to fit the computations. We denote by £ the associated residual lifetime process defined by
& = inf {Ss; — t; S5 > t}, and by L the right continuous inverse of S, L; = inf {s; S5 > t}. Let
v = (y,t > 0) be an independent Brownian motion in R?. The process & = (&, Ly, vz,) is a
Markov process with values in F = Rt x Rt x R?. Let P, be the law of £ started at z € E.
For simplicity we write 'y = 7,, and P, = P, when z = (0,0, ).

The Brownian snake is a Markov process taking values in the set W of all killed paths in
E. By definition a killed path in F is a cadlag mapping w : [0,{) — E where { = (,, > 0 is
called the lifetime of the path. By convention we also agree that every point z € E is a killed
path with lifetime 0. (See [4] for the metric d on the Polish space W.) Let us fix z € E and
denote by W, the subset of W of all killed paths with initial point w(0) = z (in particular
z €W,).

Let w € W, with lifetime ¢ > 0. If 0 < a < {, and b > a, we let Q4 (w, dw’) be the unique
probability measure on W, such that:

- (' =b, Qup(w,du')-as.,

- W/ (t) = w(t), Vt € [0,a), Qup(w, dur)-as.,

- the law under Q, p(w,dw’) of (w'(a +t),0 < t < b—a) is the law of (£,0 <t < b — a)
under I@’w(a).

By convention we set Qo (2, dw'’) for the law of (£,0 < ¢ < b) under P,. Denote by 05 (dadb)
the joint distribution of (infjy ;) By, Bs) where B is a one dimensional reflecting Brownian
motion in RT with initial value By = ¢ > 0. From proposition 5 of [4], we know there exists
a continuous strong Markov process in W,, denoted by W = (W, s > 0), whose transition
kernels are given by the formula

Qs(w,dw') = /[0 . 05 (dadb)Qq.p(w, dw').

If {5 denotes the lifetime of Wy, the process ({5, s > 0) is a reflecting Brownian motion in Ry .
It is easy to check that a.s. for every s < s, the two killed paths Wy and Wy coincide for
t < mf(s,s') := inf.c[; o1 (- They also coincide at t = m(s,s') if m(s,s") < (s A(y. In the
sequel, we shall refer to this property as the “snake property” of W.
Denote by &,, the probability measure under which W starts at w, and by £, the probability
under which W starts at w and is killed when ( reaches zero. We introduce an obvious
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notation for the coordinates of a path w € W:
U)(t) = (st(w)aLt(w)aFt(’w)) for 0 S t < C’w-

We set w = limy¢, I'i(w) (resp L(w) = limyye, Li(w)) if the limit exists, @ = 0 (resp.
L(w) = &) otherwise, where 9 (resp. &) is a cemetery point added to R? (resp R). We
have some continuity properties for the process W (see [4] lemma 10 and [8] lemma 5.3). Fix
wy € W,, such that the functions ¢ — Ly(wp) and ¢ — T'y(wp) are continuous on [0, (y,) and
have a continuous extension on [0, (y,]. Then Eyy-a.s. the mappings s — (Liac, (W), t > 0)
and s — (I'iag, (Ws),t > 0) are continuous with respect to the uniform topology on the set
of continuous functions defined on R™. In particular, the processes W, and f/(Ws) are well
defined and continuous &,,-a.s.

It is clear that the trivial path z € W, is a regular recurrent point for W. We denote by N,
the associated excursion measure (see [5]). The law under N, of ({5, s > 0) is the It6 measure
of positive excursions of linear Brownian motion. We assume that N, is normalized so that

1
N, |:SupCs > 5:| = 5.
5>0 2¢
We also set o = inf {s > 0,(; = 0}, which represents the duration of the excursion. Then for
any nonnegative measurable function G on W,, we have:

3) /G ds—/ ds B, [G (.0 <t <s))].

For simplicity we write N, = N, when z = (0,0,2). The continuity properties mentioned
above under &, also hold under N, .

Let C(R",W) denote the set of continuous function from R* to W. Let w € W,. We
now recall the excursion decomposition of the Brownian snake under &;. We define the
minimum process for the lifetime ; = inf{Cy,u € [0,s]}. Let (o4, (), i € I the excursion
intervals of ¢ — ¢ above 0 before time o. For every i € I, we set Wi(t) = Wiy, (t + Ca,), for
0 <t < Cats—Cayrand s € (0, 8; — ;). Although the process £ is not continuous, proposition
2.5 of [18] holds.

Proposition 2.1. The random measure ) ;.1 6(q, wiy is under &, a Poisson point measure
on [0,Cy] X C(RT, W) with intensity

Zdth(t) (dW).

2.2. Exit measures. Let ) be an open subset of E with z € @ (or wy(0) € Q). As in [4],
we can define the exit local time from @, denoted by (LSQ, s> 0). N,-a.e. (or &y,-a.s.), the
exit local time L% is a continuous increasing process given by the approximation: for every
s >0,

S

1
LQ = lim —

cl0 € l{TQ (W) <Cu<1@(Wu) —I—e}du

where 7o (w) = inf {r > 0;w(r) € Q} is the exit time of () for w. We then define under the
excursion measure N, a random measure Yo(W) on R? by the formula: for every bounded
nonnegative function ¢ € B(R?),

(Vo) = /0 " o(W,)dLS.
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We write Yg for Yo (W) when there is no confusion. The first moment of the random measure
can be derived by passing to the limit in (3) (see [18] proposition 3.3 for details). We have
for every nonnegative measurable function G on W,

(4) N, /0 " G(w,) 4L = B9 [G].

where PY is the sub-probability on W, defined as the law of ¢ stopped at time T under
P,(-N{rg < oo}).

We apply the construction of the exit measure with Q = Qp = R™ x RT x D, where D is
a domain of R?. For convenience, we write Yp = Yg,, 7p = 7¢,,, PY = PYP and also PP for
PP when z = (0,0, ).

Let ¢ be a nonnegative bounded measurable function on dD. Thanks to proposition 6 of
[4] the function

u(z) =N, [1 - e*(YDW)] , z€R" xR x D,
satisfies
) ) =B (T, )] - 25, | [ as ).
0
By arguing as in [18], theorem 4.1, we easily get a “Palm measure formula” for the random
measure Yp.

Proposition 2.2. For every nonnegative measurable function F' on R% x My, for everyt >0
and z € RT x Rt x D, we have

| [ Yottnr )| = [#2a0s | # (0. [ Nutawrow))].

where for every w € W,, Nyw(dW) denotes under E, a Poisson measure on C (RT, W) with
intensity

Cw
4 / du Ny () [AW].
0

2.3. The subordinate superprocess. We introduced the process Yp because its distri-
bution under the excursion measure N, is the canonical measure of the (7, «)-superprocess
started at 0.

Proposition 2.3. Let v € My, such that supp v C D, and let Y ;. ; 0y be a Poisson
measure on C(R", W) with intensity [ v(dz)N,[dW]. The random measure

2 Yo(W?)
el
as the same distribution as Xp under P;r .

Let f € B(RY) bounded and nonnegative. For z = (k,l,z) € Qp, we set u(z) = N,[1 —
e=("0:N] and v(z) = u(0,0,z). To prove the proposition, it is enough to check that the
nonnegative function v solves (1). From (5), we see we need to express u(k,l,z) in term of
v(x). The proof is then similar to the proof of theorem 8 in [4] and is not reproduced here.
Those computations yield the exact value of the constant cj,.
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3. LOWER BOUND OF THE HITTING PROBABILITY OF SMALL BALLS FOR Xp AND Yp

Thanks to proposition 2.3, theorem 1.2 is equivalent to the following proposition.

Proposition 3.1. Let K be a compact subset of D. There exists a constant cx, such that
for every x € K, for every y € 0D, € € (0,1/2),

Na: [YD (BaD(yvg)) > 0] > CK‘Pd(‘E)'

We first recall that (1) can be rewritten as

(6) o(z) + /D iy Gola)o) ™ = [ Po(e2)f()02),

where 6 is the surface measure on dD, Pp is the Poisson kernel in D and G the Green
function of D. We then give some useful bounds for the Poisson kernel and the Green
function. There exist positive constants ¢(D) and C(D) (see [15] formula (3.19)) such that
for every (z,y) € D x 0D,

(7) ¢(D)d(z,0D) |z —y|~* < Pp(z,y) < C(D)d(x,0D) |z — y|~*,

where d(z,0D) = inf{|z —y|;y € 0D}. There exists a positive constant C(D) (see [23]
theorem 3 with ¢ = 0) such that for every (z,y’) € D x D,

(8) Gp(a,y') < O(D) |z —y'|' “d(y',oD).

Proof of proposition 3.1. Let a > 0. Let z € K,y € 9D, € € (0,1/2). We set hqy(e) =
e~ 1p4(c). We have:

N [Yp (Bap(y,€)) > 0] > ve(t,z) := N; [1 — exp [~ahq(e)YDp (Bap(y,€))]],
where, thanks to proposition 2.3, the function v, is the only nonnegative solution of (6) with

f = ahd(‘g)lB@D(y,s)- AS

vlo) S ahale) [ Po(e,2)ldz),
B@D(yas)
we deduce from (6) that

9) v.(z) > ahg(e) /B L Po(e20)
oD\Y,€

1+p
_ laha(2)]" /D dy Gp(z,y) [ /B ( )PD(y,z)H(dz)] .
oD \Y,€

We now bound the second term of the right-hand side, which we denote by I. We decompose
the integration over D in an integration over D N B(y,2¢)¢ (denoted by I;) and over D N
B(y,2¢) (denoted by I), where B(z,r) is the ball in R¢ centered at = with radius r. We
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easily get an upper bound on I;. We have for € > 0 small enough,

14p
I z/ dy' Gp(z,y) [/ PD(y’,Z)f?(dz)]
DNB(y,2)c Bap (y:¢)

1+p
< c/ dy' ‘x — y"l_d d(y',0D)*™" sup ‘y' — z‘_d(H—p) / 0(dz")
DNB(y,2¢)° z€B(y.e) Bop(y.€)

< celd=1)(1+p) [c +/ rd_1r2+pr_d(1+p)dr]
diam D>r>2¢

< e hy(e) 7.

We use the notation diam D = sup{|z — 2'|; (z,2") € D?}. We also have for ¢ > 0 small
enough,

1+p
I z/ dy' Gp(x,y') [/ PD(y',Z)f?(dz)]
DNB(y,2) Bap (y,¢)

1+p
< c/ dy' / d(y', D) T [y — Z‘de(dz)]
DNB(y,2¢) Bsp(y.€)

1 1+p
oot | [y o
DNB(y,2¢) Bsp(y.e)

<e / dy [e0]
~ JDnB(y,2) L

d+1

IN

= c¢e

Combining those results together, we get that there exists a positive constant ¢| such that
for every (z,y) € K x 9D, ¢ € (0,1/2),

I < di[ahg(e)]*Pe? Thy(e) 7.

On the other hand, there exists a constant ¢, such that for every (z,y) € K xdD, e € (0,1/2):
/ Pp(z,2)0(dz) > ched=L.
Bap (yaE)

Plugging the previous inequalities into (9), we get
ve (@) > apq(e) [y — cla?].

Since the constant a is arbitrary, we can take a = (c}/2¢})'/*? to get
1
N [Yp (Bap(y,€)) > 0] 2 v=(2) 2 5 chapa(e).
|

We can also derive another bound when the starting point z is near the boundary using
similar techniques.

Lemma 3.2. Let A > a > 0. There exist two constants c(A,a) > 0 and (D) > 0, such that
for every yo € 0D, € € (0,e(D)), y € Bap(yo,€), n € (0,¢), x € D with d(x,y) < An and
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d(xz,0D) > an, we have
N, [Yn(Ban(yo,£) N Ban(y,n) > 0] > c(A, a)n~>/".

Proof. We use the same techniques as in the proof of the previous proposition. We replace
the upper bound of the Green function by the following: there exists a constant ¢ such that,
for every (z,y) € D x D,

Gp(z,y) <cly—z*>¢ if d>3.

For d = 2, we bound G p(z,y) by the Green function of R?\B, where B is a ball outside D
tangent to D in 1. Since D is bounded of class C2, the “uniform exterior sphere” condition
holds, that is the radius of B can be chosen independently of . O

4. SOME TECHNICAL LEMMAS AND PROOF OF UNIQUENESS.

For w € W, we define kp(w) = L, (w) if 7p(w) < 00, kp(w) = oo otherwise. We extend
this definition to the process . With the notations of section 2.1, under P, x € D, kp is the
exit time of D for 7, whereas 7p is the exit time of D for I' = ;. Notice that Pz-a.s. we have
Sxp— = Tp. We also define for w € W so that L(w) € [0,00), Si(w) = inf{u >0, L, (w) > t}
and v;(w) = Ig, (w) for t € [0, L(w)). The notations are consistent with those from section
2.1.

We write L, for ﬁ(Ws), and we set Ly = Lg for s > o.

Lemma 4.1. Let 0 > 0. There ezist a constant C(0) such that for every stopping time T
with respect to the filtration generated by ¢, for every a >0, ¢ > 0, z € R, on {1 < oo},

N, | <C@)e /.

sup
w€[T,7+al

Remark. Set 5* =/ P" (dw)&, where P” is the law of £ under P, killed at time 7. Let

7 be a stopping tlme with respect to the filtration generated by (. By the strong Markov
property of the Brownian snake at time 7, we see that under N [7 < o0, -], conditionally on
Cry (Wigs, s > 0) is distributed according to 5( )

Proof. Let o, = co(p 4+ 1)27P?/2 and ¢y such that >_p>0 @ = 1. Using the continuity of the
path (f,s, s > 0), we have for r > 0,

op
L, — flo‘ > ca"/z] < Z Z Er) Hfl(z—nrpa — Lip-»q

p>0 1=1

EE‘;) [sup > apcap/ﬂ .

s<a

Us1ng the Brownian snake property, we see that conditionally on the lifetime process (,
L(l 1)2-Pa — Ll2 »g 18 distributed as L( ) L,gz) where L(!) and L® are independent and
distributed according to [ PY (dw)Py(,) where ty = inf{C,;u € [(I — 1)27Pa,127Pa]}, t; =

C(l—l)Q*Pa —1p and to = Cl27pa —1p. Thus ‘Lg) - Lg)
Ly, +1,) under Py. For h > 0,6 > 0, we have

is stochastically dominated by Ly, vy, (<

(10) EDO[Lt > h] — EDO[S}L < t] < ]EO |:e*55h+5t:| — eétfc;‘,éph )
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With ¢t =¢; +to and h = apcaf’/2, we deduce that for § > 0,

& [

~ ~ * 2
L(l—l)?*pa - LlQ*Pa > OlpCap/ﬂ <P, [ea(tlthQ)} e—cpaﬂapcaﬂ/

Py 66 ] e
where under P, ¢ is a linear Brownian motion started at u and (, = ¢, — 2 inf{(,;u < v} is
a 3-dimensional Bessel process started at 0 under Py. Take § = b(2?a) /2. By scaling, we
have

Pg [e‘sc_?’pa} e—c;;apcap/26p — Cl(b) e—c;apCQPP/ZbP

)

where ¢ (b) depends only on b. Thus we have

oo 2P
g(*r) [ sup Ly - flo‘ > ca?!? < Z c1(b) o= Chapc2P?/ 7
s€[0,a] o
00
(11) < c1(b) e~ Chcoch” Z 9P o—Cpcoch?p () e—c/G’

p=0

where we take b = [c;‘,coﬂ]*l/ P for the last equality. Since the result is independent of r > 0,
the lemma is then a consequence of the remark before the beginning of this proof. U

Let n > 1 be an integer. We define inductively a sequence of stopping time (7,7 > 0) by
=0 and 7y =inf{v > 7|0 — (| = 27"/’)}.

Let N = inf{i > 0;7; = 0}. Recall that, conditionally on {r; < oo}, the sequence ({,,7 > 1)
is a simple random walk on 2~"/”N stopped when it reaches 0. Therefore, we have for 7y > 1,

o o
YN, [gn - iOQ—n/p} =N [ <00 Ny | D Ly igo-nin} ‘ < oo]
=1 =1

=N, [sup Co > 2"/P] %2 =2MP,
§>0

Lemma 4.2. Let A > 0. There exist two constants C, > 0, ¢, > 0 such that for any integer
n > 1, for every M >m > 2""? we have

N [Fie{l,--- ,N—-1},m <, <M, sup |W,—W,|>cm'tia /2
sE[Ti,TiJrl]
< C*M22n/p ef)\n,
N [Fie{l,--- ,N—1},m <, <M, sup |Ls—Ly|>cn!tz2"
sE[Ti,TiJrl]

< O, M22P A
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Proof. Let c¢1,c, be two positive constants whose value will be fixed later. We set a =

12727 log(27/P). Let k > 1. We have

Ny |G =277, sup

SE[T,Tit1]

I/i/s - W’Fi > C*n1+%2_n/2]

<N |:<Tz = k27n/pa7-i+1 —T; > a]

Cn = kan/p’ sup
s€[Ti,Ti+al

+ N, Wy — W,

> c*nH% 2n/2] )

The law of 73,1 — 7; knowing {i < N} is the law of the first exit time from [-2~"/7 27"//]
for a standard linear Brownian motion started at 0. Thus there exist two positive constants
a1, az (independent of n, c;) such that:

N, [Cq—z = k27”/P,Ti+1 —T; > a} <N, [Cﬁ = kQ*"/P} a12*a261n/p‘

Set ap, = co(p + 1)27P7/4 for p > 0 and cg is so that > oo @p = 1. For r > 0, we have

I, = &, [ sup W, — Wa| > C*n“%z_nﬂ]
s€[0,a]
oo 2P
* I T P
< Z g(r) HW(lfl)2—pa — Wig-pa| > apc*n1+42 n/2|
p=0 (=1

Conditionally on (Li(Ws),t € [0,(5),s > 0), W(l_l)?pa — Wig-», is a centered Gaussian
random variable with variance

V2 =Ly 1yp-ra + Lig-rg — 2 inf Ls:
T L W

If Z is a d-dimensional centered Gaussian random variable with variance V2, then
P[|Z| > b] < 29/2 ¢ V°/4V7

Let Vi = (p + 1)n2 P/2qP/2. We have

p/2

£ HW(l—l)Tpa — Wig-va| = apeentTi27 2 v2 < Voz} < 94/2 g=nlp+1)eacie; "

where ¢y depends only on p. From the proof of lemma 4.1 (see (11)), we deduce that for
0 € (0,1),

Ey V22 V5] <& < c5(0) 0 PHLN/30,

i—ls - i—JO‘ > VO2/3
s<27Pq

*
8(4(1—1)27“1) [ sup

where c3 depends only on 8. Thus we have

/

I, < 24/2 g=n(p+1)ezcie” ’ +c3(0) e~ (PR30
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Let A > 0 be fixed. We can choose ci, c,, 0! large enough so that for every n > 1, M > m >

2-n/p,

Ny |[Fe{l,--- ,N-1},m<{, <M, sup

sE[Ti,TiJrl]

> ¢, 1+4 2n/2]

[M27/P]4+1 oo

S X Dl = R )
< C*M22n/p ef)\n,

where C, is a constant independent of n, M and m. This ends the proof of the first inequality.
The second inequality is proved in a similar way. O

We are now going to give three lemmas which describe the behavior of the paths W, for
s > 0, near their end-point.
For a path w € W, we set for Ay > 0 and integers n > ng > 1,

1 n—1

Ag _ R
Fno’ ( ) - l{L(w)ZZ_n0+l} n — ng Z l{supte[o,g—kz—l] |7]:(w),t(w)_w|>A027k/2}'
k=ng

We have the following lemma :

Lemma 4.3. Let § € (0,1]. For every A > 0, we can choose Ay > 0 such that there exists
a constant Ky and for every integers n > 3, ng € [1,n — \/n], for every M > m > 2-n/p,
€ RY,

Ny [33 >0; m < (s <M, Ly >27"F Filo (W) > 5] < Ky M2/ e=A(n=n0)

no,n

Proof. For A>0,n>ng > 1, w € W, we set

{L(w)>2"" O}n Z {supero,2-k7 V2 ()¢ (W)~ w|>A27H/2}
k; no

From the remark following lemma 4.1, we have for & > 0,

I=N, [L > 270 FA (Wr) >0 |G = szn/ﬂ} = &l yuin) [ﬁn S22 FA (W) > 5] .
Conditionally on L., (Vi _t(W ) — Vi, (W,,),t € [0,L,]) is under 5(k2 nio)
Brownian motion. Thanks to lemma 0 in [19] and a scaling argument, we easily get I <

eldeo—04)(n=n0) "where ¢ is a universal constant. Hence, summing over k € {1,--- , [M2"/°] +
1} and 7 > 1, we have for M > m > 2-n/p,

a standard

(12) N, [Fie{l,--- ,N—-1}ym<(, <M,L;, >2 ™ F* (W,)>4

n0,n

< 2M22n/p e(dcofﬁA)(nfno) )
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We will now interpolate between 7; and 7;4;. Let Ag > 1, A > 0. We consider the two
constants c,, C, defined in lemma 4.2. We write

A = ﬂ { sup |W, — Wn < c*n1+22"/2}
ie{l,..,N—1} r€[Ti,Ti41]
Ay = m { sup |L, — ﬁTi < c*n1+§2_n} .
ie{l,...,N—1} (r€lTiTiti]

Fix n > ng > 1. Assume there is sy > 0 such that ﬁsO > 270+l and m < (s < M. There
is a unique i € {1,... ,N — 1} such that sy € [r;, 7;+1). We want to compare F (W) and

no,N

FAo (Ws,) on Ay N Ay. Let sy € [, Tiy1] such that (s > (s, for s € [1;, 7541]. All the paths

no,n
W, for s € [1;, Tiy1] coincide up to time (s,. From the snake property, we have on A;,
< C*n1+§2—n/2‘

S sup I/i/s - W’ri

SE[Ti,TiJrﬂ

sup 'Y]jso_t(WSO) - W
t€[0,Lsy—Ls, ]
Notice there exists ¢; (depending only on c¢,) such that if ng < k < n — ¢;logn, then
2 k-1 > c*n1+§2*” and 2_§_1 > c*n1+%2*"/2. For ng < k < n — ¢ logn, we have on Aj,
Lgy—27% 1> L, —27% > 0. Since the path (7,(Ws,),t > 0) and (v,(Wy,),t > 0) coincide
up to time f/sl, we get on Aj,

(W Wi Loy =27 <t < L} < {nWa)il -2 <t < L}

We deduce that for ng <k <n —c¢ylogn, on A; N As,

sup Vi, _t(WSO) — WSO < sup W, — Wn + sup ‘71“,5 _t(WSO) - W
tef0,2-k-1) 1 %0 s€[Ti,Ti1] te[0,Lsg—Loy]
+  sup iyt (Wso) = Wr,
te[Lso_legikil]
< 2¢,n'tion/2 4 sup |vi_ (W) — Wn .
tejo,2-k] 1 T
Therefore on A; N Ay, we have Fii0, (Wy,) < ﬁ'ﬁ)%Q(Wn) + clrllo%z). Let § > 0 be fixed. For
n large enough, and ng € [1,n — /n], we have 017110%% <c logn” < 6/2. Decomposing on the

sets A1 N Ay, Af and AS, we get
N, [33 >0, m< (<M, Ly >2 ™+ o () > 5]

no,n

R . b}
<N, [ai e{l,... ,N—1}, m< (. <M, L, >27", F22(W, ) > _]

no,n 2

+N, [Fie{l,...,N-1}, m<(, <M, sup |W,—W,

r€[Ti,Ti41]

+N, [Fie{l,...,N—1}, m< (¢, <M, sup |L,— L,

r€[Ti,Ti41]

> contts 2_n]

< angg?nlo (%0 5) () o prganlogn
by formula (12) and lemma 4.2.
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It suffices now to take Ay large enough so that ¢§ % —dcp > X to get the right member
bounded from above by

2(C, + 1) M2/ pe=Mn=no),

Let v0,,) = (7, € [0,7]) a path in R?. For ag > 0 and an integer k > 1, we set
15 7
A (1o,1) = {Ht € [7" - 1_62_k77“ - gQ_k] , (v, D) < GOQ_k/Q}

and

n—1

a 1 nptl L g 1 a0

no,n {r227mothy A’ (o)
k=ng

We then have the following lemma:
Lemma 4.4. For every A > 0, we can choose ag > 0 such that there exists a constant Ko
and for every integers n > 3, ng € [1,n — \/n], for every M >m > 27"°P z € D,

) no,n 6

< K2M22n/p2n7n067)\(n7n0) )

) 1
N, (35> 05 m < G < M, Ly > 2704, gio (v, 5 (W) > <, mp(Ws) = gs]

Proof. Let us set
Ao = {3 e [r-2tr = St a0 < vz}

and for ny > ng > 1,
- _, 1 ny—1 )
ng,n1 (7[0,7"}) - {r>2*"0}n1 —np Z flzo('y[o,r])'

k=ngo

From [2] p.265, it is easy to see that for r > 270 z € D,
Py [{% € Dyt € [0,r =27 F N {00, (v0.0) > 1/12}} < 2™M70g1(ag)™ T,

no,n1

where g; is a nondecreasing function (independent of r) such that limgjogi(a) = 0. We
take ag > 0 such that g;(ag) < e~?*. Conditionally on (,,, L., the process Yo zr_](WTi) =

(q/t(WT,), t €0, fm]> is a standard Brownian motion started at . Hence, we have for k > 1,

12

Na [Cﬁ = k27n/pvﬁﬁ‘ > 27", ~2%,n1(7[0,f1r¢](Wn)) > 1/12,kp (W) > i’n —2md

1, G = 2] g A

Summing over i > 1 and k € {1,--- ,[M2"/?] + 1}, we have for M > m > 27"/?,

N, [m' e{l,- ,N—1}ym <, <M, L, >27"

gggb?),nl(f)l[O,fmi](W/Ti)) >1/12,5p(Wr;) > ﬁﬁ' N 2‘”1_1]

< 2M22n/p2n17n0 672/\(7117710) )
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We will now interpolate between 7; and 7;4;. We consider the two constants c,,C, defined
in lemma 4.2. We write

Ay = ﬂ {re[sup

ie{l,...,N—1} TisTit1]

L, — IAITI. < c*nH'gQ_"} .

Fix n > ng > 1. Assume there is sy > 0 such that ﬁsO > 270t and m < Cso < M. There is
a unique 7 € {1,... ,N — 1} such that sy € [r;,7i+1). We want to compare gg,fo,m(Wn) and
¢§?§7n(Wso) on Ag. Let s1 € [1;, Ti41] such that (s > (s, for s € [, 7i41]. All the paths W for
s € [14, Ti41] coincide up to time (g, .

Notice there exists ¢; (depending only on c¢,) such that if ng < k < n — ¢qlogn, then

1—16 27k > c,nit22-". For nog < k <n—clogn, we have on A,

. ks B . T . 3
LTi—2k§LSO—1—62’“gLsO—gQ’“gLTi—ZQ’“.

And since ﬁn — %2*’“ < ﬁsl, we have

N 15 . - 7 N o2 3 _
(Wit € g = 52 By = 241} © Wit € e =27 B = G271

Notice we also have I:Ti > 270 since f/SO > 27"0FL Let n; be the largest integer smaller than
n — ¢ logn. From the snake property, since rp(Ws,) = Ls,, we have that xp(W;) > L, for
s € [7i,Ti+1). And thus we get on Ag, kp(W,,) > f,sl > ﬁn — 2 ™~ For n large enough,
ny > ng. The previous remarks lead to

1 — N0 74, Inn

%%,n (7[0,ESO](WSO)) < — no,n1 (7[07f,Ti}(Wn)) tc

n —no
~ 1
< ¢gb?),n1 (7[0,zri](WTi)> + E

for n large enough. Decomposing on the sets Ay and AS, we get for n large enough,
2 g g g

n—mng

T -n a 1
e [38 205 m< QS M, Ly =27, non (V[O,ES}(WSO > 6’ p(Ws) = Cs]

ng[Elie{l,...,N—l}; m < Cp, <M, Ly, > 27,

~ 1 - gy —
¢gb?),m (7[0,fmi}(WTi)> > ﬁa”D(WTi) > Ly, —27™ 1]

4N, (Fief{l,... , N=1}; m<(, <M, sup |Ly— Lr| > con(tt8)2n
TE[Ti,Ti+1]
< 2M22n/p2n17n0 ef)\(nlfno) +C*M22n/pef)\n
< (2 + C*)M22n/p2n7noef)\(nfno),
where we use that \/n > 2¢; logn implies 2(ny — ng) > n — ng for the last inequality. O

Let Sjo,) = (St,t € [0,7)) be a cadlag path in R. We define for a; > 0 and n > ng > 1,

n—1

1
a1 S - 1 —ng+1 1 .
non (S0n) = Lrsamnony o — ;7;0 {S(T_§2_k)_,S(T_%Q_k)_@lz_k/p}
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Lemma 4.5. For every A > 0, we can choose a; large enough such that there exists a constant
K3 and for every integers n > 3, ng € [1,...n — /n], for every M > m > 2P e RY,

) 1
N, (35> 0 m <G <M, B> 2700 gu (85 (W) > _]

’ no,n 6
< K3M22n/p2n7noef)\(nfno) )

Proof: the same ideas of the proof of lemma, 4.4 lead to define

n—1

~ 1
a1 - 1 —n
wno,n(S[O,r)) {r>2-70} n—ng ];n:o

1 .
{Shf%27k)*_S(T—Q—k)_<a12*k/p}

Using the strong Markov property at time 7; for the Brownian snake, we get

Ny |G = k270 Ly, > 2770 % (S5 (W) > 1/12
[0,r;)

? Fno,n

=N, [Gr = B27°| By | Lygmnso > 270,458 (S0, ) > 1/12]

From the lemma 8.1 in the appendix we know that for v > 0, (S;,t € [0, L;)) and (Sg,- —
S(L,—t)—,t € [0, Ly)) are identically distributed under ;. Let g the integer part of (n—ng)/12.

The set { L, oon/, > 2770 1 n-l 4 > 1/12 3 is a subset of
k2—n/p ' n—ng Ekfno {52,k75%2_k<a12*k/ﬁ’} /

q
U ﬂ {SQ—k]- — S;Z—k]- < a12*’“j/ﬂ}.
no<ki<--<kg<n j=1 ‘
Since the increments of the process S are independent, we have by scaling that the probability
of the last event is go(a1)" ™", where g2 is a function such that lim, ) g2(a) = 0. We take
a1 > 0 so that go(a;) < e™*. Notice there are less than 2"~ possible choices for ki, ... kg
Thus we have
N, [gﬁ = k2P Ly > 270 00 (S (W) > 1/12}

7 Fno,n
<N |:CT = k2—n/p] on—"no e—)\(n—no) ‘
And summing over i > 1 and k € {1,--- ,[M2"/?] 4+ 1}, we have for M > m > 2-"/?,

N, [31 € {1, N =1l m< G < M, Ly, > 270,900 (S (W) > 1/12}

? Fno,n
< 2M22n/p2n—n0 e—)\(n—no) ]

The end of the proof is similar to the one of lemma 4.4. O

Thanks to these lemmas, we are now ready to prove theorem 1.1 concerning uniqueness of
nonnegative solution of (2).
Proof of theorem 1.1. Let B. = Byp(yo,¢), where yg € dD. We denote by v, the maximal
nonnegative solution of (2) and w. the minimal nonnegative solution. In the first section
we recall a representation of those functions in terms of the superprocess X. From the
characterization of R p (this a projection of the graph Gp on R?) in 2.2 C from [10], the Poisson
representation of proposition 2.1 and lemma 5.2 in [8], we get for z € D, v.(z) < N, [T < o0],
where

T = inf{s > 0, ¢, = 7p(W,) and W, € B.}.
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(In fact we will see the above inequality is an equality.) We also recall that u.(z) =
Nz [Yp(B:) > 0]. The strong Markov property applied at the stopping time 7' gives
Us(x) =N [T < OO,YD(BE) > 0] =N, [T < OO,E;VT (YD(BE) > 0)]

Thus, to prove the uniqueness, it is enough to prove that &, (Yp(Be) > 0)) = 1 Ny-a.e. on
{T < oo}. Using proposition 2.1 on {T' < oo}, we have

Cr
€, (0(B2) > 0) =1 exp— [ Ny (Vo (.) > 0)
0

Thanks to the snake property, it is clear that N,-a.e. for every s € (0 o), L(Wy) =
(L¢(Ws),t € [0,(s]) is continuous nondecreasing and the path (I';(Ws),t € [0,(s]) is con-
stant on intervals where L(W) itself is constant. Therefore the time change Ss(Wr) = ¢
implies

Ly
E;VT (YD(BE) > 0) =1—exp —/ N’Ys(WT)(YD(Bg) > O)dSs(WT)
0

Notice that s(Wr) € D for s € [O,f/T) and Wr € B.. Now, let A,a,a’ > 0. We set
J = J(A,a,ad') the set of integers k such that 27%+! < L1 and

‘%(WT) — WT‘ < A2 k/2 for se [0, Ly — Z_k} ,

15 7
d(ys(Wy), D) > a27%2  for s¢ [LT — 1—62—’f Ly — 52 ]
—k
and SﬁT—%Q—k(WT) — Sf,T—%Q—k(WT) > a'2 /p.
Lemmas 4.3, 4.4 and 4.5 show that we can choose A,a,a’ such that J is infinite Nj-a.e.
Moreover, lemma, 3.2 gives for € > 0 small enough that there exists ¢ > 0 such that if k € J

and if t € [ﬁT — %2_’“, Ly — %2_’“], then we have

N, () (YD(B:) > 0) > c2k/7
We deduce that

Ly —Zo~k
| (Vo (B2) > 0)ds. (W) >Z/ N (Yp(Be) > 0)dS, (W)
0 kes ’Lr—1627"
Z ZCZk/P SET7%2_’€(WT) — SET7’§72_]€(WT))
keJ
> an'2k/p27k/’) = +4o0.
keJ
This implies that &y, (Yp(B:) > 0) =1 N-a.e., which in turn implies v, = u, in D. O

We end this section with a lemma which will be useful later. Let K C D be a compact set.
Lemma 4.6. Let A > 0. There ezist 69 > 0, C > 0 such that for all z € K, § € (0, do],
N, [3s € (0,0); 6p (W) < 0] < O,

N, [33 € (0,0); ¢ < 827, 1y > 5] < O
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Proof. Let G = {(Ls,W),s € (0,0)} be the graph of the Brownian snake. Using the
Brownian snake property on [s,inf{u > s;(, = 7p(W5s)}], we see that the set A; = {3s €
(0,0); kp(Ws) < d} is a subset of {GN[0,d) x D¢ # 0}. Let O be a smooth domain such that
D¢ C O and K C (0)¢. Then we have

A1 c{gn[0,0)x O£ 0y C (] {GNn{t}xO#0}.

t€[0,0)NQ
We consider the stopping time for the Brownian snake
T, = inf{s > 0;(s = TR*X[O,t)XRd(WS) and Ws € O} ,
where we use the notation of section 2.2. Let Y; be the exit measure of the Brownian snake
of Rt x [0,t) x RY. We have {Y;(O) > 0} C {T}; < oo}. Arguing as in the proof of theorem
1.1 (mainly lemma 8.1 has to be replaced by the duality lemma p.45 of [3]), we can prove
that for z € RY,

N, [T, < 0] = N, [Y;(0) > 0].

Therefore we have using theorem 8 of [4] and the right continuity of X for 6 > 0,

Ny [A1] SNG[GN{t} x O #D for some te[0,0)NQ]
<N, [Y2(O) >0 for some te€[0,6)NQ]

IN

—log (1 —P; [X4(0) #0 for some ¢ € [0,4)]).

The first inequality of the lemma is then a consequence of theorem 9.2.4. of [6].
The proof of the second inequality is more involved. We set m = 6%/¢ and Ay = {3s €
(0,0);¢s <m,Lgs > d}. We have

o
N, [Ag] < ZNQ; {Els € (0,0);¢ € (m27F 1 m27k) L, > 5} .
k=0
For each k € N, we define inductively a sequence of stopping time (7F,i > 0) by

7w =0, and Ti’fH = inf {v > 7k

Co— G| = mQ*H} .

Let Ny = inf{i > 0;7F = oo}. Recall that N, [rf < co] = m~12¥. Conditionally on {7 < oo},

the sequence ({ x,i > 1) is a simple random walk on m2 *~IN stopped when it reached 0.
We have for jp > 1,

(13)

F < oo| = mT12kF

[o 0]
D L —iomat1

=1

N, —N, [T{“ < oo] N,

[o 0]
D L —iomat1
=1 ¢
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We have

N, {33 € (0,0);¢ € (m27 ¥ m27* and L, > 6}

2
<> N, [3@ e{l,--- Ny —1};¢x =gm27 %1 and Ise[7F,7F], st Lg> 5]
j=1

2 oo
< ZZN’” |:C7_[c =jm2 * 1 3s e [rF, k] st Ly > 6} .
j=1i=1

We consider only j € {1,2}. Let ¢; > 0 be a constant whose value will be chosen later. We
set a = ¢ (m27F"1)21og(2¥*! /m) and ¢, = 01_2/p2(k+1)3p/4m*p/4. For ¢ small enough, notice
that cpa?/? < §/2 for every k € N. We have

N [Cx = gm27F "t Is e [7F,7F ] st Lg> 5]

< N, [CTZ;C = jm2_k_1,7f+1 — Tik > a]

+Ng

k-1
sE[Tik,Tik—l—a}

Ly— L,

> Cgap/2]

+ N [g}k = jm27k71,f1rk >0 — czap/ﬂ .

We write [ ,(gl) for the I-th term of the right member. The distribution of Tfﬂ — Tf knowing

{i < Ng} is the law of the first exit time from [-m27%~1 m27*~1] for a standard linear
Brownian motion started at 0. Thus there exist two positive constants a,as such that

IIE;I) = Nx |:CTZk = jm2_k_177—ik+1 - Tik > a:|
<N, [C k= jm27k71] aj e ©?4 log(m™12"+1)
< Tk .

For § < 1 and k& > 0, we have ¢y > 0;2/’) = 0. We deduce from lemma 4.1 that

=N, G = jm2 71 sup

sE[Tik,Tik—l—a}

. —k— _m—r/49(k+1)p/4
<N [CTk:]m2 F 1]C3em 2

Ly~ 1L,

> Cgap/2]

?

where c3 depends only on ¢;.
— — —k—1
Conditionally on (_ = §m2~F=1 the path W_i is distributed as { under PIm2 . So, we
get for b > 0,

I,(cg) =N, [CT,k = jm2_k_1,f17k >0 — CQaP/2
S Nx |:C7—k = jm27k71:| EDQE[ijQ—k—l >0 — CQCLP/2]

?

SN, (¢ = jma 1] elgma T e 6meaa)
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where we used (10). Now take b = (cz)*l/f’ﬂflTkJrl and use the fact that cpa?/? < §/2 =
mP2/2 to get

[P SN, G = jmah Y eqenm T

We have

o0

N o) < SO S + 12 4 1),

j=1k=0 i=1

We deduce from (13) and the upper bounds on I,El),I,(f) and I,E3), that for A > 0 given, we
can choose ¢; and C large enough so that N, [As] < C6*. a

5. AN UPPER BOUND FOR THE HITTING PROBABILITY OF SMALL BALLS FOR Y IN THE
CRITICAL DIMENSION d,

Proposition 5.1. Let d = d., K C D be a compact set. There exist two positive constants
Ck and €i such that for all z € K, y € 0D, ¢ € (0,ex],

N; [Yn(Ban (y,¢)) > 0] < Cx (log(1/e) ™" .

The theorem 1.4 is a direct consequence of the above inequality and proposition 2.3.
Proof of proposition 5.1. Let d = d.. Recall the notation at the beginning of section 3. By
formula (4), we have

N [YD(BaD(yaE))] = E’IJ []-Bap(y,s) (FTD)]
Ey [1Bap(y,e)(7fsp)]

— / 6(dz)Pp (s, 2),
BBD(:'/:E)

where 0 is the surface measure on 9D and Pp is the Poisson kernel. From (7), we see that
if K is a compact subset of D, there exist positive constants Cx and i such that for every
z€K,ye oD, e e (0,ex],

Ne [Yp(Bap(y,€))] < Cxe®".
Then we consider the stopping time
T = inf{s > 0;7p(Ws) = (s and W, € Bap(y,€)}.
We have from the construction of Yp,
{Yp(Bap(y,€)) > 0} C{T < oo}.
Consequently, using the strong Markov property at time 7', we get
Ne [YD(Bop(y,€))] = Ny [T < 00; Eyr,, [YD(Boap (y,€))]] -

Thus we see that a lower bound for &y, [Yp(Bap(y,€))] with the previous upper bound of
N [Yp(Bap(y,€))] yield an upper bound for N, [T" < oo}, that is for N, [Yp(Bap(y,¢€)) > 0].
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By proposition 2.1 and relation (4), we have
. ¢r
€ty Vo Ban(a. )] =2 [ dt By, ) Vo (Bon 1))

r _

¢r
2/0 dt PFt(WT) [’YHD € B(‘?D(ya 8)]
Cr
i / dt / 0(dz)Pp(To(Wr), 2).
0 Bap (y,¢)

The time change S,(Wr) =t and (7) imply
kp(Wr)
Eive Vb (Bop(y, )] = 2 / a5, (Wr) / 0(dz) Pp (s (Wr), 2)
0 BBD(y’E)

kp(Wr) 4
> 2 / dS,(Wr) d(ve(Wr), D) / 0(dz) |yo (W) — 2|2
0 Bop (y,¢)

Let ¢ be small, and consider the integer n > 1 such that 27" < g2 < 27" Let ng be the
integer part of n/2. Let A > 0 be large enough. Let us assume that ¢ is small enough so

that c*n1+§2*” < 27™ where ¢, is defined in lemma 4.2 and n; > ng is the integer part of
11n/12. Consider the set

B={Cr>2x2""°}yn{Ly>2%27"}

Let U,, be the set of integers k € {nyg,--- ,n1} such that for all v € [ﬁT — %2_’“, Lp— %2_’“],
we have
(14) vo(Wr) — Wr| < Ag27%2, d(v,(Wr), D) > ag27"/2,

and S(iT—§2—k)—(WT) — S@T_%Z_k)_(WT) > a127k/? where A, ag,a; are defined in lemma
4.3, 4.4 and 4.5. On B, we then have for € > 0 small enough,

Evy [YD(Bap(y,¢€))]

> / ) dSv(WT)GOQ_k/Q/ 0(dz)[Ag27F/? 4+ 4 5 277/2] 74
keu,  lr=1527F Lr—527F) Bop (y:e)

> e Card U,
where the constant ¢’ > 0 is independent of W, n and z € K. Notice that on

By =Bn{{r <2"P}n{F, (Wr) <1/6} N {$ ., (Wr) < 1/6} N {y% . (Wr) < 1/6},

no,n1 no,n1 no,n1

Card U,, > n/3 > " log(1/e). Thus we deduce from the previous inequalities that there exist
a constant C' such that for any ¢ small enough and = € K,

Cete™! > N, [T < oo; Byle®~tlog(1/e).



22 ROMAIN ABRAHAM AND JEAN-FRANGCOIS DELMAS

The set Bf is a subset of US_,H,;, where
Hi = {supCs > M} with M =2V/°;
§>0

Ho = {33 € (0,0);kp (W) < 4.27"0} D {f,T <2 *27”0};
Hs :{Els € (0,0);¢s < 2*2_n/p,ﬁs > 2_"0} D {CT < 2*2_2n/p} N {ﬁT > 2*2”0};

Ho={3s € (0,0), 24270 < < M, Fl, (W) > 1/6};

no,n1

Hy = {Els €(0,0),2%2°°P < ¢y < M,d% (W) > 1/6};

10,71

He = {33 € (0,0),2 %2 P < ¢y < M98 (W) > 1/6} .

no,n1

Using the normalization of N, for H;, lemma 4.6 for Hy and Hs, lemmas 4.3, 4.4 and 4.5
respectively for H4, Hs and Hg, we see we can choose A, ag and a; so that N, [Bf] < e for
some constants ¢’ > 0,5 > 0. So we deduce that for x € K, € > 0 small enough

No [Yp(Bon(y,e)) > 0] < No[T' < o0] < C[log 1/¢] 7! + ¢,
which ends the proof. O

Remark. In the above proof, in order to get a lower bound of &y, [Yn(Bap(y, €))], we can
consider instead of Uy, the set V;, of integers such that only (14) is satisfied. And we get

Elvp (YD (Bon (y,€)) 2 e 1 Y
keVn

/ dS,(Wy) 2kde=1)/2,
[ET7%2_IC,I:T7%2_I‘7)

If S(Wy) was a subordinator of index p independent of V,, then we would have by scaling
the following lower bound ce%~Card (V;,)'/?S}, where S| is a subordinator of index p. Since
outside a small set Card V;, > clog(1/e), this suggests that we should have [log(1/e)]~/*
instead of [log(1/¢)]~! in theorem 1.4. Unfortunately, there is no reason for the law of S(Wr)
to be the law of a subordinator.

6. LOWER BOUND OF dimsupp Xp

Thanks to proposition 2.3, we see that a lower bound for the Hausdorff dimension of the
support of Yp will provide a lower bound for the Hausdorff dimension of the support of Xp.

Proposition 6.1. Let d > 2. Let x € D. Ny-a.e. on {Yp # 0}, we have
2
dimsupp Yp > —— A (d —1).
a-—1

Proof. We set dy = =% A (d — 1). Following the idea of [8], we will first prove that for
€€ (Oa d0/3)7

N, [ [ Yoldz) Fapa. (z,YD)] 0,

where if @ > 0, Fj is the measurable function on R? x M 7 defined by

Fe(ya V) =1 :
{limsup v(Bap(y,27))2" > 0}

n—0o0
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By proposition 2.2, we have

) N | [ Yol 0 ¥0)| = [#2(a0)s | £ (o, [ Mutaw) o) |

In order to use the Borel-Cantelli lemma, we first bound [ P(dw)1 4, (w,w), where
A, = {(w,w); 2"<d03€>/Nw(w)(dW) Yp(W) (Bap(w,27")) > CdOQ’w}

and Cy, = Cy,(w) is a finite positive constant that does not depend on n and w, and depends
only on w. Its value will be fixed later. Recall that 7p is the exit time of D for the process
I' and kp is the exit time of D for the process . Using the Markov inequality, we get for

PP-a.e. paths w,

Bl <E[C72 ) [ XL @W)¥o(W) (Ba(2 )

Cw
=220, 44 [ du Nygy) [¥o (Ban (s 27)]

0 y=w

7D (w)
0 y=w

=4 2n(d02€)0d—1/
0

(16) =4 2n(d072€)0,z)1 dSy(w) [P)%(w) [’YHD € Bap(y, 27”)]
[0,k (w))
where « is under P, a Brownian motion in R? started at z. In the first equality we used
the form of the intensity of the Poisson measure N,,. In the second one, we applied (4). In
the third one, we made the formal change of variable v = S, using the specific properties of
the process £ under ]P’al? , and in particular the fact that I' = v, is constant over each interval
(Su—, Su).
Let r € (0, 1], we have for 0 <u < kp

Py, Dep € Bon(y:r)],—, = /B ( )Pp(vu,y’)H(dy’)-
oD\ Ve p T

Y="Yrp (W)’

We deduce from (7) that for (y,y’) € D x 9D,
—d —(do—
Pp(y,y') < c1d(y,0D) ly —y'|™" < crd(y, 9D)~(0=4) |y —
Notice also there exists a positive constant ¢y such that for all (y,y") € D x 9D, r € (0,1],

Bsp(y",r)

Thus we deduce that for every r € (0, 1],
(17) P"/u [7ﬁD S BaD(y,r)]y:%D < c1c9 ,rdofsd(,yu’ 8D)7(d075)'

y/ ‘ (d0—8)+1—d .

The proof of the next lemma, is postponed to the end of this section.
Lemma 6.2. Let 0 > 0, then PP-a.s. we have
(HD _ u)0+1/2

sup —————— < Q.
u€[0,kp) d(yu, 0D)

The proof of the following lemma relies on an integration by part and on the path properties
of the subordinator S (see lemma 3.2.3 in [8]).
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Lemma 6.3. Let d' € [0,2/p), then PP (dw)-a.s. we have
/ (kp —u)~%/%dS, < 0.
[Ovl’iD)
As a consequence of those two lemmas, the variable

Cyy = / dSy d(yy, D) (4o~
[0,6p)

is finite PP-a.s. Thus plugging (17) into (16), we get that for every n > 1,
]E[]-An] S 46102 2—n5‘

Applying the Borel-Cantelli lemma to the sequence (A4,,n > 1), we get PP-a.s., P-a.s.

lim sup on(do—3e) /Nw(dW)YD(W) (BaD(waQ_n)) =0.

n— 00

Hence by the definition of Fj and (15), we get

N, [/YD(dy)Fdo—3e (y,YD)| = 0.

We deduce from theorem 4.9 of [14], that Ny-a.e. on {Yp # 0},

dim supp Yp > dy — 3e.
Since € is arbitrary, the lower bound of the proposition follows. O
Proof of lemma 6.2. It is enough to prove the result under P,. Let 6 € (0,1/2) and

D. = {y € D;d(y,0D) > e}. For simplicity we write K = kp and k. = kp_. We will first
derive an upper bound for

P, [n — Ke > 62_0} .
For € > 0 small enough, we have using the Markov property at time &.:
IP)I |:I§ — K Z 62—0] S (1 _ e—l)fl |:1 _ ]E:E |:e—5_2+0(f€—f€5):|:|
(18) <(1- efl)_1 sup [1 -E, [efﬁi%g”““
yeD, d(y,0D)=¢

Since the domain D is bounded C?, we have the uniform exterior sphere condition. There
exists h > 0 such that for each point yy € 9D, we can find y; € D¢ so that yo € 0B(y1,h)
and B(yi,h) C D¢ where B(y,r) is the ball centered at y with radius . For y € D there
exists yo € 9D such that d(y,dD) = |y —yo|. Clearly, under Py, k < Kp(y, »), when y; is
defined as above. Thus

(1= [ ]| < [1- By [ moam]].
On the other hand, following [16] (p. 88) (see also [22]), it is easy to prove that for y' € R,
ly'| > h, B 20,
ey [o-srmon] - WL K31
[BI™" K., (v28h)

where v = (d/2) — 1 and K, is the second modified Bessel function. Since K,(r) =
Vr/2re [l + O(1/r)] (see [21] p. 202), it easy to deduce from (18) and the previous
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inequality (take B = ¢ 2% and 3y = y — y1, where d(y,0D) = € and |y'| = h + ) that for ¢
small enough,

P, [n — Ke > 52_0} < 06‘9/2,

where the constant ¢ is independent of e. Now thanks to the Borel-Cantelli lemma we get
that P,-a.s. the sequence (22~%(k — ky-2),n > 1) is bounded.

On the other hand notice that for u € [Kg9-n+1, K9-n] we have d(7y,,0D) > 27" and kK —u <
K — Ko—nt1. Thus we have

k—u n—1)(2—6
W §42( ) )(K}—K/Q—n-H).
Since the right hand side is uniformly bounded in n, we get the lemma. g

7. PROOF OF THEOREM 1.7

The proof of theorem 1.7 mimic the proof of theorem 2.4 in [8]. It relies on the next two
lemmas. We only give the proof of lemma 7.2 because it differs from its analogue in [8].

Lemma 7.1. We consider the product measure Ny, ® Ny, on the space C(RY,W)2. The
canonical process on this space is denoted by (W', W?). Assume d > 2d.—1. Then for every
(71, 22) € D?, we have Ny, ® N, -a.e.

supp Yp (W) Nsupp Yp(W?) = 0.
Lemma 7.2. Fore >0, >0, set
g:(0) = supN, [supp Yp N OD\Bysp(z,¢) # 0],

where the supremum is taken over (y,z) € D x 0D, such that d(y,0D) = |y — z| < . Then
for every e >0, lims g-(9) = 0.

Proof. Since the boundary of D is C2, we have the uniform exterior sphere condition. There
exists dy € (0,¢/3), for every z € 9D, we can find zy € D¢ (unique) such that B(zp,dp) C D¢
and 0B(z,00) N 0D = {z}. We define B, = B(z,rdy). We have for y € By\B, Ny-a.e.

{supp Yp N OD\Byp(z,¢) # 0}
c {33 € (0,0);¢; = 7p(Ws) and W, € BD\BaD(z,s)}
c {33 € (0,0); 7 (W) < 00,75 (W) < TBl(Ws)}.
The first inclusion is a consequence of the definition of LRTXRTXD and the second is a con-

sequence of the snake property. By the special Markov property (cf [4] proposition T7), if
N is the number of excursions of the Brownian snake outside R™ x RT x By\Bj that reach
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RT x RT x B before Rt x Rt x By, then we have

Ny |3s € (0,0); 7 (W) < 00,75, (W) < TBl(Ws)}
=N, [N > 0]
<Ny [NV]

=Ny [/ Yo\, (dy' )Ny [Tég(Ws) <00, Tje < TB1]]

S Ny |:/8B }/32\31 (dy,)Ny/ [TBg < +OO]:| .
2

We used the fact that if y' € 9By, then from the snake property, we have Ny -a.e. for all
s € (0,0), 7B, (w,) = 0. By symmetry, we get that N, [ng < +00] = ¢y is independent of

y' € 0B>. It is also finite since (WS, s > 0) is continuous under £ g,). We then deduce from
(4) that

Ny [supp Yp N OD\Byp(z,€) # 0] < coEy[kB, < KB, ).
Thus we get that for § € (0, dp),

9:(0) < CoEg[“B(o,zao) < ”B(O,(So)]a

where |y| = dp+ 6. The lemma is then a consequence of classical results on Brownian motion.
U

Proof of theorem 1.7. Let (Dg,k > 0) be an increasing sequence of open subsets of D such
that Dy C D1 and d(y,0D) < 1/k for all y € ODy. From the special Markov property (see
[4] proposition 7) and proposition 2.3, we get that the law Xp under P is the same as the
law of >°,c; Yp(W?"), where conditionally on Xp,, the random measure Y, oy is a Poisson
measure on C(R",W) with intensity [ Xp, (dy)N,[-]. With a slight abuse of notation, we
may assume that the point measure Y, ; Yp(W') is also defined under P;X. It follows from
lemma 7.1 and properties of Poisson measures that a.s. for every i # 7,

supp Yp(W*) Nsupp Yp(W7) = 0.

For ¢ > 0, let U, denote the event “supp Xp is contained in a finite union of disjoint
compact sets of 0D with diameter less than ¢”. It is easy to check that U, is measurable.
Let k be large enough. Furthermore, by the previous observations, and denoting by y; € Dy
the common starting point of the paths W/, and by z; the only point in dD such that
lyi — 2i| = d(yi, D), we have

P [U:] > Py [Vi € I,diam (supp Yp(W")) < €]

> P2 [Vi € I,supp Yp(W') C Bap(zi,e/2)]
= ]Ei{ [exp — / Xp, (dy)Ny [supp Yp N OD\Byp(z,£/2) # (]

> ]EVX [eXP _96/2(1/k)(XDk’ 1)] ’

where for B € B(R?Y), diam (B) = sup{|z — '|; (z,2') € B x B}. We can now let k go to
+00, using lemma 7.2, to conclude that PX[U.] = 1. Since this holds for every £ > 0, we
conclude that supp Xp is totally disconnected P -a.s. O
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8. APPENDIX

Lemma 8.1. Let (S¢,t > 0) be a stable subordinator. Forr > 0, let L, = inf{u > 0,5, > r}.
Then (St,t €0, Ly)) and (SL,— — S(z,—1)—,t € [0, L;)) are identically distributed.

We write P for the law of the subordinator S = (S;,t > 0) started at 0. We recall that the
Laplace transform of S is given by n(A) = ¢;A?, where ¢ = 277/I'(1 + p). Its Lévy measure
is given by TI(ds) = 1(g ) (5)[2°T (p)T'(1 — p)] *s ' Pds. Notice that L, is the last exit time
of [0,r] for S. Let Q = (Q:,t > 0) be the transition kernel of S and U = fooo Q. dt its
potential. The transition kernels and the potential are absolutely continuous with respect to
the Lebesgue measure [ on R. And we have Q;(z,dy) = q;(y—=z)dy and U(z, dy) = u(y—=z)dy,
where u(y) = p2°y?~'1,>¢. Let Q = (Qy,t > 0) be the transition kernel of (—S;,¢ > 0). This
is the dual kernel of ) with respect to [. We consider the process V' defined by

v — S(Lr—t)— if 0<t<L,
A if t>1L,

where A is a cemetery point added to R. Notice the law of S is dp, the Dirac mass at 0, and
thus, the density of doU w.r.t. the reference measure [ is just u. Thanks to XVIII 45 and
51 of [7], the process V is under P a Markov process with kernel (Q¢,¢ > 0) defined as the

u-transform of @), that is

Qu(er, dy) = ﬁ u(y)a( — y)dy.

We define the process Y by

v [w-vi it osi<i,
R VN if t> L.

Notice that Yy = 0 P-a.s. and the process Y is right continuous and nondecreasing up to its
lifetime. We want to prove that Y and the process S killed at time L, have the same law. It
will be enough to check that for every integer n > 1, every sequence t, > --- > t; > 0, and
fi,---, fn, measurable nonnegative functions on R,

E[fl(}/h) . fn(}/tn)] = ]E[fl(Sh) e 'fn(Stn)lstn<T] .

Using the transition kernel of V', we get

I=E[fi(Ysy,) ... fu(Ys,)]
=E[fi(Vo— Vi) ... fu(Vo — Vi)l

= [ vldun) [ Quutwosdon)ion = 0)-. [ Guomt, Gamrsdon) fuloo = v0),
R R R

where v is the law of V) = Sy, . Thanks to [3] proposition 2 p.76, we have that

o0

v(dvy) = U(’Ug)lvo<rd’l)0/ II(ds) = c;,u(vo)(r —vg) P1yy<rdup.

r—ug
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Thus we have

I= c;/Rdvg u(vo)(r —vo) Plyg<r /n dvy ...dv, %qtl (vo —wv1)fi(vg —wv1)...
%Qtntn_l ('Unfl - 'Un)fn('UO - 'Un)

= c;/Rdvg (r— vo)plvo<r/ dvy ... dvy, u(vy) q (vo —v1) f1(ve —v1) ...

qtn*tn—l (,U'n/*1 - 'Un)fn('UO - ,Un)'

We use the change of variable z = vy, y; = v9 — vy, - ,yn = vo — vy, and the definition of u
to get

I= CIp/R dyi ... dyn q, (Y1) 1) -+ Gty —tny (Yn = Yn—1) fn(yn)

/ dz (r —z) Pp2P(z — yn)p_11r>z>yn
R

=E[f1(St) - fa(St) 151, <r]

because c’p fR dz (r—2z) Pp2P(z — yn)f’*ll,«>z>yn =1,5y,. O
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