
SOME PROPERTIES OF THE EXIT MEASURE FORSUPER-BROWNIAN MOTIONROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASAbstrat. We onsider the exit measure of super-Brownian motion with a stable branhingmehanism of a smooth domain D of Rd . We derive lower bounds for the hitting probabilityof small balls for the exit measure and upper bounds in the ritial dimension. This ompletesthe results given by Sheu [20℄ and generalizes the results of Abraham and Le Gall [2℄. Wegive also the Hausdor� dimension of the exit measure and show it is totally disonneted inhigh dimension. Eventually we prove the exit measure is singular with respet to the surfaemeasure on �D in the ritial dimension. Our main tool is the subordinated Brownian snakeintrodued by Bertoin, Le Gall and Le Jan [4℄.1. Presentation of the resultsFirst we introdue some notation. We denote by (Mf ;Mf ) the spae of all �nite nonneg-ative measures on Rd , endowed with the topology of weak onvergene. We denote by B(Rd )the set of all measurable funtions de�ned on Rd taking values in R. With a slight abuseof notation, we also denote by B(Rd ) the Borel �-�eld on Rd . For every measure � 2 Mf ,and every nonnegative funtion f 2 B(Rd ), we shall use both notations R f(y)�(dy) = (�; f).We also write �(A) = (�;1A) for A 2 B(Rd). We write supp � for the losed support of ameasure � 2Mf . If A 2 B(Rd ), then �A denotes the losure of A.Let d � 2. Let � 2 (1; 2℄. Let  be a Brownian motion in Rd started at x under Px.There exists a Markov proess �(Xt; t � 0); �PX� ; � 2Mf�� de�ned on D ([0;1);Mf ), the setof all �adl�ag funtions de�ned on [0;1) with values inMf , alled the (; �) superproess (see[11℄) whih is haraterized by X0 = � PX� -a.s. and for every nonnegative bounded funtionf 2 B(Rd ), t � s � 0, EX� he�(Xt;f) j �(Xu; 0 � u � s)i = e�(Xs;v(t�s;�));where v is the unique nonnegative measurable solution of the integral equationv(t; x) + Ex �Z t0 ds v(s; t�s)�� = Ex [f(t)℄; t � 0; x 2 Rd :Let D be a bounded domain of Rd . There exists a random measure XD on �D, alled theexit measure of D for the (; �)-superproess (see [9℄) whose law is haraterized by: forevery � 2Mf , suh that supp � � D, for every nonnegative bounded measurable funtion fde�ned on Rd , EX� he�(XD ;f)i = e�(�;v);Date: January 13, 2000.1991 Mathematis Subjet Classi�ation. 35J60, 60G57, 60H30, 60J55, 60J80.Key words and phrases. Super-Brownian motion, Brownian snake, exit measure, subordinator, nonlinearPDE, hitting probabilities. 1



2 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASwhere v is the unique nonnegative measurable solution of the integral equationv(x) + Ex �Z �D0 ds v(s)�� = Ex [f(�D)℄; x 2 D:(1)The stopping time �D = inffs > 0; s 62 Dg, with the onvention inf ; = +1, is the �rst exittime of D for . The funtion v solves 12 �u = u� in D. If D is regular and if f is ontinuous,then v is ontinuous in �D and equal to f on �D.Let y0 2 �D be �xed. The set B�D(y0; ") = fy 2 �D; jy � y0j < "g is a ball on theboundary of D. We write Æx for the Dira mass at point x 2 Rd and B" for B�D(y0; "). From[12℄ (see also [10℄ theorem 1.4 and remark 4.3), the funtionu"(x) = � log PXÆx [XD(B") = 0℄; x 2 D;is the minimal nonnegative solution of(12 �u = u� in Dlimx!y;x2D u(x) =1 where y 2 B":Let RD be the range of the superproess assoiated to (0; �), with 0 the Brownian motionkilled in D. From [13℄ theorem 2.5 (see also [10℄ theorem 2.1 and remark 4.3) the funtionv"(x) = � log PXÆx [RD \B" = ;℄ is the maximal solution of(12 �u = u� in Dlimx!y;x2D u(x) = 0 where y 2 �DnB":There is a natural way to build RD and XD on the same probability spae (see [10℄). Let(Fn; n � 1) be an inreasing sequene of losed sets suh that Fn � �DnB" and Sn�1 Fn =�DnB". Sine RD is a.s. a losed subset of D, we have for x 2 D, PXÆx -a.s.�RD � �DnB"	 � [n�1 fRD � Fng � [n�1 fXD(F n) = 0g � fXD(B") = 0g ;where we used lemma 2.1 of [10℄ with Q = R �D for the seond inlusion. As a onsequenewe have u" � v" in D. And we dedue that u" is the minimal nonnegative solution of8><>:12 �u = u� in Dlimx!y;x2D u(x) = 0 where y 2 �DnB�D(y0; ")limx!y;x2D u(x) =1 where y 2 B�D(y0; "):(2)From now on we assume that D is of lass C2. We prove the following uniqueness result.Theorem 1.1. For " > 0, small enough, the funtion u" is the unique nonnegative measur-able solution of (2).Let d = (� + 1)=(� � 1) the ritial dimension. We introdue the funtion 'd(") de�nedon (0;1) by: 'd(") = 8><>:1 if d < d[log(1=")℄�1=(��1) if d = d"d�d if d > d:We �rst give a result on a lower bound of u".



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 3Theorem 1.2. Let K be a ompat subset of D. There exist positive onstants  and "0,suh that for every " 2 (0; "0℄, x 2 K, we have'd(") � u"(x):For d 6= d, Sheu provided in lemma 4.2 and the following remark in [20℄ an upper boundfor v" and thus for u".Theorem 1.3 (Sheu). Let d 6= d. Let K be a ompat subset of D. There exist positiveonstants C and "0, suh that for every " 2 (0; "0℄, x 2 K, we haveu"(x) � C'd("):The ritial dimension is more deliate. It was proved by Abraham and Le Gall in [2℄ forthe partiular ase � = 2. For the ritial dimension, we get:Theorem 1.4. Let d = d. Let K be a ompat subset of D. There exist positive onstantsC and "0, suh that for every " 2 (0; "0℄, x 2 K, we haveu"(x) � C [log(1=")℄�1 :The proof of this theorem however suggests that the upper bound should be 'd("). As aonsequene, we an omplete theorems 3.3 and 4.3 from [20℄ to haraterize the dimensionof the spae where the exit measure is absolutely ontinuous w.r.t. the surfae measure onD.Corollary 1.5. Let � 2 Mf with its support in D. PX� -a.s., the measure XD is singular(resp. absolutely ontinuous) with respet to the Lebesgue measure on �D if and only ifd � d (resp. d < d).Proof. The ase d 6= d is from [20℄ theorems 3.3 and 4.3. Let us onsider the ritialase. From the properties of the superproesses (see proposition 2.3 for example) we have fory0 2 �D, � 2Mf with its support in D,PX� [XD(B�D(y0; ")) > 0℄ = 1� e�(�;u") :Thanks to theorem 1.4, taking the limit as " goes to 0, we get PX� [y0 2 supp XD℄ = 0 for everyy0 2 �D. We get the result by integrating with respet to �(dy0), the Lebesgue measure on�D. �If A 2 B(Rd), we denote by dimA its Hausdor� dimension. An upper bound of theHausdor� dimension of the support of the exit measure was given in [20℄. We omplete thisresult with the following theorem.Theorem 1.6. Let � 2Mf with its support in D. PX� -a.s. on fXD 6= 0g, we havedim supp XD = 2�� 1 ^ (d� 1):One we have the result on the hitting probability of small balls of the boundary of �D,we an derive a result on the onneted omponents of XD (see [1℄ for more result in thepartiular ase of � = 2).Theorem 1.7. If d > 2d � 1, then PX� -a.s. the support of XD is totally disonneted.The paper is organized as follows. In setion 2, we present the main tool: the Browniansnake with a subordination method from [4℄. We prove theorem 1.2 in setion 3 using theintegral equation (1) and bounds on the Poisson kernel and Green funtion in D. Setion 4



4 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASis devoted to some tehnial lemmas on the typial behavior of the snake paths. They aregeneralization of results from [19℄ and [2℄ where � = 2. The proof of theorem 1.1 is basedon the study of the �rst path of the Brownian snake whih hits B�D(y0; "). The proof oftheorem 1.4 in setion 5 follows the proof of theorem 4.1 in [2℄, but the arguments are moredeliate beause of the subordination method. The proof of the lower bound in theorem 1.6in setion 6 and of theorem 1.7 in setion 7 are the ellipti ounterpart of setion 5.2 andtheorem 2.4 in [8℄. Eventually the appendix deals with the law of the time reversal of stablesubordinators.All the theorems where known for � = 2. From now on we assume that � 2 (1; 2). Wedenote by  a generi non trivial onstant whose value may vary from line to line.2. The subordination approah to superproesses2.1. The Brownian snake. Our main goal in this setion is to reall from [4℄ how superpro-esses with a general branhing mehanism an be onstruted using the Brownian snake anda subordination method. Let S = (St; t � 0) be an �-stable subordinator, where � = � � 1.Its Laplae transform is: for � � 0, �E �e��St� = e���t�� , where �� = 2��=�(1 + �) is hosento �t the omputations. We denote by � the assoiated residual lifetime proess de�ned by�t = inf fSs � t;Ss > tg, and by L the right ontinuous inverse of S, Lt = inf fs;Ss > tg. Let = (t; t � 0) be an independent Brownian motion in Rd . The proess ��t = (�t; Lt; Lt) is aMarkov proess with values in E = R+ � R+ � Rd . Let �Pz be the law of �� started at z 2 E.For simpliity we write �t = Lt , and �Px = �Pz when z = (0; 0; x).The Brownian snake is a Markov proess taking values in the set W of all killed paths inE. By de�nition a killed path in E is a �adl�ag mapping w : [0; �) ! E where � = �w > 0 isalled the lifetime of the path. By onvention we also agree that every point z 2 E is a killedpath with lifetime 0. (See [4℄ for the metri d on the Polish spae W.) Let us �x z 2 E anddenote by Wz the subset of W of all killed paths with initial point w(0) = z (in partiularz 2 Wz).Let w 2 Wz with lifetime � > 0. If 0 � a < �, and b � a, we let Qa;b(w; dw0) be the uniqueprobability measure on Wz suh that:- � 0 = b, Qa;b(w; dw0)-a.s.,- w0(t) = w(t), 8t 2 [0; a℄, Qa;b(w; dw0)-a.s.,- the law under Qa;b(w; dw0) of (w0(a + t); 0 � t < b � a) is the law of (��; 0 � t < b� a)under �Pw(a).By onvention we set Q0;b(z; dw0) for the law of (��; 0 � t < b) under �Pz. Denote by ��s(dadb)the joint distribution of (inf [0;s℄Br; Bs) where B is a one dimensional reeting Brownianmotion in R+ with initial value B0 = � � 0. From proposition 5 of [4℄, we know there existsa ontinuous strong Markov proess in Wz, denoted by W = (Ws; s � 0), whose transitionkernels are given by the formulaQs(w; dw0) = Z[0;1)2 ��s(dadb)Qa;b(w; dw0):If �s denotes the lifetime of Ws, the proess (�s; s � 0) is a reeting Brownian motion in R+ .It is easy to hek that a.s. for every s < s0, the two killed paths Ws and Ws0 oinide fort < m(s; s0) := infr2[s;s0℄ �r. They also oinide at t = m(s; s0) if m(s; s0) < �s ^ �s0 . In thesequel, we shall refer to this property as the \snake property" of W .Denote by Ew the probability measure under whihW starts at w, and by E�w the probabilityunder whih W starts at w and is killed when � reahes zero. We introdue an obvious



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 5notation for the oordinates of a path w 2 W:w(t) = (�t(w); Lt(w);�t(w)) for 0 � t < �w:We set ŵ = limt"�w �t(w) (resp L̂(w) = limt"�w Lt(w)) if the limit exists, ŵ = � (resp.L̂(w) = �0) otherwise, where � (resp. �0) is a emetery point added to Rd (resp R). Wehave some ontinuity properties for the proess W (see [4℄ lemma 10 and [8℄ lemma 5.3). Fixw0 2 Wz, suh that the funtions t 7! Lt(w0) and t 7! �t(w0) are ontinuous on [0; �w0) andhave a ontinuous extension on [0; �w0 ℄. Then Ew0-a.s. the mappings s 7! (Lt^�s(Ws); t � 0)and s 7! (�t^�s(Ws); t � 0) are ontinuous with respet to the uniform topology on the setof ontinuous funtions de�ned on R+ . In partiular, the proesses Ŵs and L̂(Ws) are wellde�ned and ontinuous Ew0-a.s.It is lear that the trivial path z 2 Wz is a regular reurrent point forW . We denote by Nzthe assoiated exursion measure (see [5℄). The law under Nz of (�s; s � 0) is the Itô measureof positive exursions of linear Brownian motion. We assume that Nz is normalized so thatNz �sups�0 �s > "� = 12" :We also set � = inf fs > 0; �s = 0g, whih represents the duration of the exursion. Then forany nonnegative measurable funtion G on Wz, we have:Nz Z �0 G(Ws) ds = Z 10 ds �E z �G ����t; 0 � t < s��� :(3)For simpliity we write Nx = Nz when z = (0; 0; x). The ontinuity properties mentionedabove under Ew0 also hold under Nz .Let C(R+ ;W) denote the set of ontinuous funtion from R+ to W. Let w 2 Wz. Wenow reall the exursion deomposition of the Brownian snake under E�w. We de�ne theminimum proess for the lifetime ~�s = inff�u; u 2 [0; s℄g. Let (�i; �i), i 2 I the exursionintervals of � � ~� above 0 before time �. For every i 2 I, we set W is(t) =Ws+�i(t+ ��i), for0 � t < ��i+s���i , and s 2 (0; �i��i). Although the proess �� is not ontinuous, proposition2.5 of [18℄ holds.Proposition 2.1. The random measure Pi2I Æ(�i;W i) is under E�w a Poisson point measureon [0; �w℄� C(R+ ;W) with intensity 2dtNw(t) (dW):2.2. Exit measures. Let Q be an open subset of E with z 2 Q (or w0(0) 2 Q). As in [4℄,we an de�ne the exit loal time from Q, denoted by �LQs ; s � 0�. Nz -a.e. (or Ew0-a.s.), theexit loal time LQ is a ontinuous inreasing proess given by the approximation: for everys � 0, LQs = lim"#0 1" Z s0 1f�Q(Wu)<�u<�Q(Wu)+"gdu;where �Q(w) = inf fr > 0;w(r) 62 Qg is the exit time of Q for w. We then de�ne under theexursion measure Nz a random measure YQ(W) on Rd by the formula: for every boundednonnegative funtion ' 2 B(Rd), (YQ; ') = Z �0 '(Ŵs)dLQs :



6 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASWe write YQ for YQ(W ) when there is no onfusion. The �rst moment of the random measurean be derived by passing to the limit in (3) (see [18℄ proposition 3.3 for details). We havefor every nonnegative measurable funtion G on WzNz Z �0 G(Ws) dLQs = �EQz [G℄ ;(4)where �PQz is the sub-probability on Wz de�ned as the law of �� stopped at time �Q under�Pz(� \ f�Q <1g).We apply the onstrution of the exit measure with Q = QD = R+ � R+ �D, where D isa domain of Rd . For onveniene, we write YD = YQD , �D = �QD , �PDz = �PQDz and also �PDx for�PDz when z = (0; 0; x).Let ' be a nonnegative bounded measurable funtion on �D. Thanks to proposition 6 of[4℄ the funtion u(z) = Nz h1� e�(YD ;')i ; z 2 R+ � R+ �D;satis�es u(z) = �E z ['(��D )℄� 2�E z �Z �D0 ds u(��s)2� :(5)By arguing as in [18℄, theorem 4.1, we easily get a \Palm measure formula" for the randommeasure YD.Proposition 2.2. For every nonnegative measurable funtion F on Rd�Mf , for every t > 0and z 2 R+ � R+ �D, we haveNz �Z YD(dy)F (y; YD)� = Z �PDz (dw)E �F �ŵ;Z Nw(dW)YD(W)�� ;where for every w 2 Wz, Nw(dW) denotes under E , a Poisson measure on C (R+ ;W) withintensity 4Z �w0 du Nw(u) [dW℄:2.3. The subordinate superproess. We introdued the proess YD beause its distri-bution under the exursion measure Nx is the anonial measure of the (; �)-superproessstarted at Æx.Proposition 2.3. Let � 2 Mf , suh that supp � � D, and let Pi2I ÆW i be a Poissonmeasure on C(R+ ;W) with intensity R �(dx)Nx [dW℄. The random measureXi2I YD(W i)as the same distribution as XD under PX� .Let f 2 B(Rd) bounded and nonnegative. For z = (k; l; x) 2 QD, we set u(z) = Nz [1 �e�(YD ;f)℄ and v(x) = u(0; 0; x). To prove the proposition, it is enough to hek that thenonnegative funtion v solves (1). From (5), we see we need to express u(k; l; x) in term ofv(x). The proof is then similar to the proof of theorem 8 in [4℄ and is not reprodued here.Those omputations yield the exat value of the onstant ��.



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 73. Lower bound of the hitting probability of small balls for XD and YDThanks to proposition 2.3, theorem 1.2 is equivalent to the following proposition.Proposition 3.1. Let K be a ompat subset of D. There exists a onstant K , suh thatfor every x 2 K, for every y 2 �D, " 2 (0; 1=2),Nx [YD (B�D(y; ")) > 0℄ � K'd("):We �rst reall that (1) an be rewritten asv(x) + ZD dy GD(x; y)v(y)1+� = Z�D PD(x; z)f(z)�(dz);(6)where � is the surfae measure on �D, PD is the Poisson kernel in D and GD the Greenfuntion of D. We then give some useful bounds for the Poisson kernel and the Greenfuntion. There exist positive onstants (D) and C(D) (see [15℄ formula (3.19)) suh thatfor every (x; y) 2 D � �D,(D)d(x; �D) jx� yj�d � PD(x; y) � C(D)d(x; �D) jx� yj�d;(7)where d(x; �D) = inffjx� yj; y 2 �Dg. There exists a positive onstant C(D) (see [23℄theorem 3 with q = 0) suh that for every (x; y0) 2 D �D,GD(x; y0) � C(D) ��x� y0��1�d d(y0; �D):(8)Proof of proposition 3.1. Let a > 0. Let x 2 K; y 2 �D, " 2 (0; 1=2). We set hd(") ="�d+1'd("). We have:Nx [YD (B�D(y; ")) > 0℄ � v"(t; x) := Nx [1� exp [�ahd(")YD (B�D(y; "))℄℄ ;where, thanks to proposition 2.3, the funtion v" is the only nonnegative solution of (6) withf = ahd(")1B�D(y;"). As v"(x) � ahd(")ZB�D(y;") PD(x; z)�(dz);we dedue from (6) that(9) v"(x) � ahd(")ZB�D(y;") PD(x; z)�(dz)� [ahd(")℄1+� ZD dy GD(x; y)"ZB�D(y;") PD(y; z)�(dz)#1+� :We now bound the seond term of the right-hand side, whih we denote by I. We deomposethe integration over D in an integration over D \ B(y; 2") (denoted by I1) and over D \B(y; 2") (denoted by I2), where B(x; r) is the ball in Rd entered at x with radius r. We



8 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASeasily get an upper bound on I1. We have for " > 0 small enough,I1 = ZD\B(y;2") dy0 GD(x; y0)"ZB�D(y;") PD(y0; z)�(dz)#1+�� ZD\B(y;2") dy0 ��x� y0��1�d d(y0; �D)2+� supz2B(y;") ��y0 � z���d(1+�) "ZB�D(y;") �(dz0)#1+�� "(d�1)(1+�) �+ Zdiam D�r�2" rd�1r2+�r�d(1+�)dr�� "d�1hd(")��:We use the notation diam D = supfjz � z0j; (z; z0) 2 D2g. We also have for " > 0 smallenough, I2 = ZD\B(y;2") dy0 GD(x; y0)"ZB�D(y;") PD(y0; z)�(dz)#1+�� ZD\B(y;2") dy0 "ZB�D(y;") d(y0; �D)1+ 1[1+�℄ ��y0 � z���d �(dz)#1+�� ZD\B(y;2") dy0 "ZB�D(y;") ��y0 � z���d+1+ 1[1+�℄ �(dz)#1+�� ZD\B(y;2") dy0 h"1=[1+�℄i1+�= "d+1:Combining those results together, we get that there exists a positive onstant 01 suh thatfor every (x; y) 2 K � �D, " 2 (0; 1=2),I � 01[ahd(")℄1+�"d�1hd(")��:On the other hand, there exists a onstant 02 suh that for every (x; y) 2 K��D, " 2 (0; 1=2):ZB�D(y;") PD(x; z)�(dz) � 02"d�1:Plugging the previous inequalities into (9), we getv"(x) � a'd(") �02 � 01a�� :Sine the onstant a is arbitrary, we an take a = (02=201)1=� to getNx [YD (B�D(y; ")) > 0℄ � v"(x) � 12 02a'd("): �We an also derive another bound when the starting point x is near the boundary usingsimilar tehniques.Lemma 3.2. Let A > a > 0. There exist two onstants (A; a) > 0 and "(D) > 0, suh thatfor every y0 2 �D, " 2 (0; "(D)), y 2 B�D(y0; "), � 2 (0; "), x 2 D with d(x; y) < A� and



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 9d(x; �D) > a�, we haveNx [YD(B�D(y0; ") \B�D(y; �)) > 0℄ � (A; a)��2=�:Proof. We use the same tehniques as in the proof of the previous proposition. We replaethe upper bound of the Green funtion by the following : there exists a onstant  suh that,for every (x; y) 2 D �D, GD(x; y) � jy � xj2�d if d � 3:For d = 2, we bound GD(x; y) by the Green funtion of R2nB, where B is a ball outside Dtangent to D in y0. Sine D is bounded of lass C2, the \uniform exterior sphere" onditionholds, that is the radius of B an be hosen independently of y0. �4. Some tehnial lemmas and proof of uniqueness.For w 2 W, we de�ne �D(w) = L�D(w) if �D(w) <1, �D(w) =1 otherwise. We extendthis de�nition to the proess ��. With the notations of setion 2.1, under �Px, x 2 D, �D is theexit time of D for , whereas �D is the exit time of D for � = L. Notie that �Px-a.s. we haveS�D� = �D. We also de�ne for w 2 W so that L̂(w) 2 [0;1), St(w) = inffu � 0; Lu(w) > tgand t(w) = �St(w) for t 2 [0; L̂(w)). The notations are onsistent with those from setion2.1.We write L̂s for L̂(Ws), and we set L̂s = L̂0 for s � �.Lemma 4.1. Let � > 0. There exist a onstant C(�) suh that for every stopping time �with respet to the �ltration generated by �, for every a > 0,  > �, x 2 Rd , on f� <1g,Nx " supu2[�;�+a℄ ���L̂� � L̂u��� � a�=2�����# � C(�) e�=� :Remark. Set E�(r) = R �Prx(dw)E�w, where �Prx is the law of �� under �Px killed at time r. Let� be a stopping time with respet to the �ltration generated by �. By the strong Markovproperty of the Brownian snake at time � , we see that under Nx [� < 1; �℄, onditionally on�� , (W�+s; s � 0) is distributed aording to E�(�� ).Proof. Let �p = 0(p+ 1)2�p�=2 and 0 suh that Pp�0 �p = 1. Using the ontinuity of thepath (L̂s; s � 0), we have for r > 0,E�(r) �sups�a ���L̂s � L̂0��� � a�=2� �Xp�0 2pXl=1 E�(r) h���L̂(l�1)2�pa � L̂l2�pa��� � �pa�=2i :Using the Brownian snake property, we see that onditionally on the lifetime proess �,L̂(l�1)2�pa � L̂l2�pa is distributed as L(1)t1 � L(2)t2 where L(1) and L(2) are independent anddistributed aording to R �Pt0x (dw)�Pw(t0) where t0 = inff�u;u 2 [(l � 1)2�pa; l2�pa℄g, t1 =�(l�1)2�pa� t0 and t2 = �l2�pa� t0. Thus ���L(1)t1 � L(2)t2 ��� is stohastially dominated by Lt1_t2(<Lt1+t2) under �P0. For h > 0; Æ > 0, we have�P0[Lt � h℄ = �P0[Sh � t℄ � �E 0 he�ÆSh+Æti = eÆt���Æ�h :(10)



10 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASWith t = t1 + t2 and h = ��a�=2, we dedue that for Æ > 0,E�(r) h���L̂(l�1)2�pa � L̂l2�pa��� � �pa�=2i � Pr heÆ(t1+t2)i e���Æ��pa�=2= P0 heÆ��2�pai e���Æ��pa�=2 ;where under Pu, � is a linear Brownian motion started at u and ��v = �v � 2 inff�u;u � vg isa 3-dimensional Bessel proess started at 0 under P0. Take Æ = b(2�pa)�1=2. By saling, wehave P0 heÆ��2�pai e����pa�=2Æ� = 1(b) e����p2p�=2b� ;where 1(b) depends only on b. Thus we haveE�(r) " sups2[0;a℄ ���L̂s � L̂0��� � a�=2# � 1Xp=0 2pXl=1 1(b) e����p2p�=2b�� 1(b) e���0b� 1Xp=0 2p e���0b�p = 2(�) e�=�;(11)where we take b = [��0�℄�1=� for the last equality. Sine the result is independent of r > 0,the lemma is then a onsequene of the remark before the beginning of this proof. �Let n � 1 be an integer. We de�ne indutively a sequene of stopping time (�i; i � 0) by�0 = 0 and �i+1 = inffv > �i; j�v � ��i j = 2�n=�g:Let N = inffi > 0; �i = 0g. Reall that, onditionally on f�1 <1g, the sequene (��i ; i � 1)is a simple random walk on 2�n=�N stopped when it reahes 0. Therefore, we have for i0 > 1,1Xi=1 Nx h��i = i02�n=�i = Nx [�1 <1℄ Nx " 1Xi=1 1f��i=i02�n=�g ��� �1 <1#= Nx �sups�0 �s > 2�n=�� � 2 = 2n=�:Lemma 4.2. Let � > 0. There exist two onstants C� > 0, � > 0 suh that for any integern � 1, for every M > m � 2�n=�, we haveNx "9i 2 f1; � � � ; N � 1g;m � ��i �M; sups2[�i;�i+1℄ ���Ŵs � Ŵ�i��� � �n1+ �4 2�n=2#� C�M22n=� e��n;Nx "9i 2 f1; � � � ; N � 1g;m � ��i �M; sups2[�i;�i+1℄ ���L̂s � L̂�i��� � �n1+ �2 2�n#� C�M22n=� e��n :



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 11Proof. Let 1; � be two positive onstants whose value will be �xed later. We set a =12�2n=� log(2n=�). Let k � 1. We haveNx "��i = k2�n=�; sups2[�i;�i+1℄ ���Ŵs � Ŵ�i��� � �n1+ �4 2�n=2#�Nx h��i = k2�n=�; �i+1 � �i > ai+ Nx "��i = k2�n=�; sups2[�i;�i+a℄ ���Ŵs � Ŵ�i��� � �n1+ �4 2�n=2# :The law of �i+1 � �i knowing fi < Ng is the law of the �rst exit time from [�2�n=�; 2�n=�℄for a standard linear Brownian motion started at 0. Thus there exist two positive onstantsa1; a2 (independent of n; 1) suh that:Nx h��i = k2�n=�; �i+1 � �i > ai � Nx h��i = k2�n=�i a12�a21n=�:Set �p = 0(p+ 1)2�p�=4 for p � 0 and 0 is so that P1p=0 �p = 1. For r > 0, we haveIn = E�(r) " sups2[0;a℄ ���Ŵs � Ŵa��� � �n1+ �4 2�n=2#� 1Xp=0 2pXl=1 E�(r) h���Ŵ(l�1)2�pa � Ŵl2�pa��� � �p�n1+ �4 2�n=2i :Conditionally on (Lt(Ws); t 2 [0; �s); s � 0), Ŵ(l�1)2�pa � Ŵl2�pa is a entered Gaussianrandom variable with varianeV 2 = L̂(l�1)2�pa + L̂l2�pa � 2 infs2[(l�1)2�pa;l2�pa℄ L̂s:If Z is a d-dimensional entered Gaussian random variable with variane V 2, thenP[jZj > b℄ � 2d=2 e�b2=4V 2 :Let V 20 = (p+ 1)n2�p�=2a�=2. We haveE�(r) h���Ŵ(l�1)2�pa � Ŵl2�pa��� � �p�n1+ �4 2�n=2; V 2 < V 20 i � 2d=2 e�n(p+1)22���=21 ;where 2 depends only on �. From the proof of lemma 4.1 (see (11)), we dedue that for� 2 (0; 1),E�(r) �V 2 � V 20 � � E�(r) "E�(�(l�1)2�pa) " sups�2�pa ���L̂s � L̂0��� � V 20 =3## � 3(�) e�(p+1)n=3� ;where 3 depends only on �. Thus we haveIn � 2d=2 e�n(p+1)22���=21 +3(�) e�(p+1)n=3� :



12 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASLet � > 0 be �xed. We an hoose 1; �; ��1 large enough so that for every n � 1, M > m �2�n=�,Nx "9i 2 f1; � � � ; N � 1g;m � ��i �M; sups2[�i;�i+1℄ ���Ŵs � Ŵ�i��� � �n1+ �4 2�n=2#� [M2n=�℄+1Xk=1 1Xi=1 Nx [��i = k2�n=�℄(a12�a21n=� + In)� C�M22n=� e��n;where C� is a onstant independent of n;M andm. This ends the proof of the �rst inequality.The seond inequality is proved in a similar way. �We are now going to give three lemmas whih desribe the behavior of the paths Ws fors � 0, near their end-point.For a path w 2 W, we set for A0 > 0 and integers n > n0 � 1,FA0n0;n(w) = 1fL̂(w)�2�n0+1g 1n� n0 n�1Xk=n0 1fsupt2[0;2�k�1℄ jL̂(w)�t(w)�ŵj>A02�k=2g:We have the following lemma :Lemma 4.3. Let Æ 2 (0; 1℄. For every � > 0, we an hoose A0 > 0 suh that there existsa onstant K1 and for every integers n � 3, n0 2 [1; n � pn℄, for every M > m � 2�n=�,x 2 Rd ,Nx h9s � 0; m � �s �M; L̂s > 2�n0+1; FA0n0;n(Ws) > Æi � K1M22n=�e��(n�n0):Proof. For A > 0, n > n0 � 1, w 2 W, we set~FAn0;n(w) = 1fL̂(w)�2�n0g 1n� n0 n�1Xk=n0 1fsupt2[0;2�k℄ jL̂(w)�t(w)�ŵj>A2�k=2g:From the remark following lemma 4.1, we have for k > 0,I = Nx hL̂�i > 2�n0 ; ~FAn0;n(W�i) > Æ j ��i = k2�n=�i = E�(k2�n=�) hL̂�i > 2�n0 ; ~FAn0;n(W�i) > Æi :Conditionally on L̂�i , (L̂�i�t(W�i) � L̂�i (W�i); t 2 [0; L̂�i ℄) is under E�(k2�n=�) a standardBrownian motion. Thanks to lemma 0 in [19℄ and a saling argument, we easily get I �e(d0�ÆA)(n�n0), where 0 is a universal onstant. Hene, summing over k 2 f1; � � � ; [M2n=�℄+1g and i � 1, we have for M > m � 2�n=�,(12) Nx h9i 2 f1; � � � ; N � 1g;m � ��i �M; L̂�i > 2�n0 ; ~FAn0;n(W�i) > Æi� 2M22n=� e(d0�ÆA)(n�n0) :



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 13We will now interpolate between �i and �i+1. Let A0 > 1, � > 0. We onsider the twoonstants �; C� de�ned in lemma 4.2. We writeA1 = \i2f1;::: ;N�1g( supr2[�i;�i+1℄ ���Ŵr � Ŵ�i��� � �n1+ �4 2�n=2)A2 = \i2f1;::: ;N�1g( supr2[�i;�i+1℄ ���L̂r � L̂�i ��� � �n1+ �2 2�n) :Fix n > n0 � 1. Assume there is s0 > 0 suh that L̂s0 � 2�n0+1 and m � �s0 � M . Thereis a unique i 2 f1; : : : ; N � 1g suh that s0 2 [�i; �i+1). We want to ompare ~FAn0;n(W�i) andFA0n0;n(Ws0) on A1 \A2. Let s1 2 [�i; �i+1℄ suh that �s � �s1 for s 2 [�i; �i+1℄. All the pathsWs for s 2 [�i; �i+1℄ oinide up to time �s1 . From the snake property, we have on A1,supt2[0;L̂s0�L̂s1 ℄ ���L̂s0�t(Ws0)� Ŵ�i��� � sups2[�i;�i+1℄ ���Ŵs � Ŵ�i��� � �n1+ �4 2�n=2:Notie there exists 1 (depending only on �) suh that if n0 � k � n � 1 log n, then2�k�1 � �n1+ �2 2�n and 2� k2�1 � �n1+ �4 2�n=2. For n0 � k � n � 1 log n, we have on A2,L̂s0 � 2�k�1 � L̂�i � 2�k > 0. Sine the path (t(Ws0); t � 0) and (t(W�i); t � 0) oinideup to time L̂s1 , we get on A2,nt(Ws0); L̂s0 � 2�k�1 � t � L̂s1o � nt(W�i); L̂�i � 2�k � t � L̂�io :We dedue that for n0 � k � n� 1 log n, on A1 \A2,supt2[0;2�k�1℄ ���L̂s0�t(Ws0)� Ŵs0��� � sups2[�i;�i+1℄ ���Ŵs � Ŵ�i���+ supt2[0;L̂s0�L̂s1 ℄ ���L̂s0�t(Ws0)� Ŵ�i���+ supt2[L̂s0�L̂s1 ;2�k�1℄ ���L̂s0�t(Ws0)� Ŵ�i ���� 2�n1+ �4 2�n=2 + supt2[0;2�k℄ ���L̂�i�t(W�i)� Ŵ�i ��� :Therefore on A1 \ A2, we have FA0n0;n(Ws0) � ~FA0=2n0;n (W�i) + 1 log nn�n0 . Let Æ > 0 be �xed. Forn large enough, and n0 2 [1; n �pn℄, we have 1 log nn�n0 � 1 log npn � Æ=2. Deomposing on thesets A1 \A2, A1 and A2, we getNx h9s � 0; m � �s �M; L̂s > 2�n0+1; FA0n0;n(Ws) > Æi� Nx �9i 2 f1; : : : ; N � 1g; m � ��i �M; L̂�i > 2�n0 ; ~FA0=2n0;n (W�i) > Æ2�+Nx "9i 2 f1; : : : ; N � 1g; m � ��i �M; supr2[�i;�i+1℄ ���Ŵr � Ŵ�i��� � �n1+ �4 2�n=2#+Nx "9i 2 f1; : : : ; N � 1g; m � ��i �M; supr2[�i;�i+1℄ ���L̂r � L̂�i��� � �n1+ �2 2�n#� 2M22n=�e�d0� ÆA04 �(n�n0) + 2C�M22n=�e��nby formula (12) and lemma 4.2.



14 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASIt suÆes now to take A0 large enough so that ÆA04 � d0 > � to get the right memberbounded from above by 2(C� + 1)M22n=�e��(n�n0): �Let [0;r℄ = (t; t 2 [0; r℄) a path in Rd . For a0 > 0 and an integer k � 1, we setAa0k ([0;r℄) = �9t 2 �r � 15162�k; r � 782�k� ; d(t;D) < a02�k=2�and �a0n0;n = 1fr�2�n0+1g 1n� n0 n�1Xk=n0 1Aa0k ([0;r℄):We then have the following lemma :Lemma 4.4. For every � > 0, we an hoose a0 > 0 suh that there exists a onstant K2and for every integers n � 3, n0 2 [1; n�pn℄, for every M > m � 2�n=�, x 2 D,Nx �9s � 0; m � �s �M; L̂s > 2�n0+1; �a0n0;n �[0;L̂s℄(Ws)� > 16 ; �D(Ws) = �s�� K2M22n=�2n�n0e��(n�n0):Proof. Let us set~Aa0k ([0;r℄) = �9t 2 �r � 2�k; r � 342�k� ; d((t);D) < a02�k=2�and for n1 > n0 � 1, ~�a0n0;n1([0;r℄) = 1fr>2�n0g 1n1 � n0 n1�1Xk=n0 1 ~Aa0k ([0;r℄):From [2℄ p.265, it is easy to see that for r > 2�n0 , x 2 D,Px hft 2 D; t 2 [0; r � 2�n1�1℄g \ f~�a0n0;n1([0;r℄) > 1=12gi � 2n1�n0g1(a0)n1�n0 ;where g1 is a nondereasing funtion (independent of r) suh that lima#0 g1(a) = 0. Wetake a0 > 0 suh that g1(a0) � e�2�. Conditionally on ��i , L̂�i , the proess [0;L̂�i ℄(W�i) =�t(W�i); t 2 [0; L̂�i ℄� is a standard Brownian motion started at x. Hene, we have for k � 1,Nx h��i = k2�n=�; L̂�i > 2�n0 ; ~�a0n0;n1([0;L̂�i ℄(W�i)) > 1=12; �D(W�i) > L̂�i � 2�n1�1i� Nx h��i = k2�n=�i 2n1�n0 e�2�(n1�n0) :Summing over i � 1 and k 2 f1; � � � ; [M2n=�℄ + 1g, we have for M � m � 2�n=�,Nx�9i 2 f1; � � � ; N � 1g;m � ��i �M; L̂�i > 2�n0 ;~�a0n0;n1([0;L̂�i ℄(W�i)) > 1=12; �D(W�i) > L̂�i � 2�n1�1�� 2M22n=�2n1�n0 e�2�(n1�n0) :



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 15We will now interpolate between �i and �i+1. We onsider the two onstants �; C� de�nedin lemma 4.2. We writeA2 = \i2f1;::: ;N�1g( supr2[�i;�i+1℄ ���L̂r � L̂�i��� � �n1+ �2 2�n) :Fix n > n0 � 1. Assume there is s0 > 0 suh that L̂s0 � 2�n0+1 and m � �s0 �M . There isa unique i 2 f1; : : : ; N � 1g suh that s0 2 [�i; �i+1). We want to ompare ~�An0;n1(W�i) and�A0n0;n(Ws0) on A2. Let s1 2 [�i; �i+1℄ suh that �s � �s1 for s 2 [�i; �i+1℄. All the paths Ws fors 2 [�i; �i+1℄ oinide up to time �s1 .Notie there exists 1 (depending only on �) suh that if n0 � k � n � 1 logn, then116 2�k � �n1+ �2 2�n. For n0 � k � n� 1 log n, we have on A2,L̂�i � 2�k � L̂s0 � 15162�k � L̂s0 � 782�k � L̂�i � 342�k:And sine L̂�i � 342�k � L̂s1 , we have�t(Ws0); t 2 [L̂s0 � 15162�k; L̂s0 � 782�k℄� � �t(W�i); t 2 [L̂�i � 2�k; L̂�i � 342�k℄� :Notie we also have L̂�i > 2�n0 sine L̂s0 > 2�n0+1. Let n1 be the largest integer smaller thann� 1 logn. From the snake property, sine �D(Ws0) = L̂s0 , we have that �D(Ws) � L̂s1 fors 2 [�i; �i+1℄. And thus we get on A2, �D(W�i) � L̂s1 � L̂�i � 2�n1�1. For n large enough,n1 > n0. The previous remarks lead to�a0n0;n �[0;~Ls0 ℄(Ws0)� � n1 � n0n� n0 ~�a0n0;n1 �[0;L̂�i ℄(W�i)�+ 1 lnnn� n0� ~�a0n0;n1 �[0;L̂�i ℄(W�i)�+ 112for n large enough. Deomposing on the sets A2 and A2, we get for n large enough,Nx �9s � 0; m � �s �M; L̂s � 2�n0+1; �a0n0;n �[0;L̂s℄(Ws)� > 16 ; �D(Ws) = �s�� Nx�9i 2 f1; : : : ; N � 1g; m � ��i �M; L̂�i � 2�n0 ;~�a0n0;n1 �[0;L̂�i ℄(W�i)� > 112 ; �D(W�i) � L̂�i � 2�n1�1�+Nx "9i 2 f1; : : : ; N � 1g; m � ��i �M; supr2[�i;�i+1℄ ���L̂r � L̂�i��� � �n(1+ �2 )2�n#� 2M22n=�2n1�n0 e��(n1�n0)+C�M22n=�e��n� (2 + C�)M22n=�2n�n0e��(n�n0);where we use that pn � 21 log n implies 2(n1 � n0) � n� n0 for the last inequality. �Let S[0;r) = (St; t 2 [0; r)) be a �adl�ag path in R. We de�ne for a1 > 0 and n > n0 � 1, a1n0;n(S[0;r)) = 1fr>2�n0+1g 1n� n0 n�1Xk=n0 1�S(r� 78 2�k)��S(r� 1516 2�k)�<a12�k=��:



16 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASLemma 4.5. For every � > 0, we an hoose a1 large enough suh that there exists a onstantK3 and for every integers n � 3, n0 2 [1; : : : n�pn℄, for every M > m � 2�n=�, x 2 Rd ,Nx �9s > 0; m � �s �M; L̂s > 2�n0+1; �a1n0;n �S[0;L̂s)(Ws)� > 16�� K3M22n=�2n�n0e��(n�n0):Proof : the same ideas of the proof of lemma 4.4 lead to de�ne~ a1n0;n(S[0;r)) = 1fr>2�n0g 1n� n0 n�1Xk=n0 1�S(r� 34 2�k)��S(r�2�k)�<a12�k=��:Using the strong Markov property at time �i for the Brownian snake, we getNx h��i = k2�n=�; L̂�i > 2�n0 ; ~ a0n0;n(S[0;L̂�i)(W�i)) > 1=12i= Nx h��i = k2�n=�i �Px hLk2�n=� > 2�n0 ; ~ a0n0;n(S[0;Lk2�n=� )) > 1=12i :From the lemma 8.1 in the appendix we know that for r > 0, (St; t 2 [0; Lr)) and (SLr� �S(Lr�t)�; t 2 [0; Lr)) are identially distributed under �Px. Let q the integer part of (n�n0)=12.The set (Lk2�n=� > 2�n0 ; 1n�n0 Pn�1k=n0 1�S2�k�S 34 2�k<a12�k=�� > 1=12) is a subset of[n0�k1<���<kq<n q\j=1nS2�kj � S 34 2�kj < a12�kj=�o :Sine the inrements of the proess S are independent, we have by saling that the probabilityof the last event is g2(a1)n�n0 , where g2 is a funtion suh that lima#0 g2(a) = 0. We takea1 > 0 so that g2(a1) � e��. Notie there are less than 2n�n0 possible hoies for k1; : : : ; kq.Thus we haveNx h��i = k2�n=�; L̂�i > 2�n0 ; ~ a0n0;n(S[0;L̂�i)(W�i)) > 1=12i� Nx h��i = k2�n=�i 2n�n0 e��(n�n0) :And summing over i � 1 and k 2 f1; � � � ; [M2n=�℄ + 1g, we have for M � m � 2�n=�,Nx h9i 2 f1; � � � ; N � 1g; m � ��i �M; L̂�i > 2�n0 ; ~ a0n0;n(S[0;L̂�i )(W�i)) > 1=12i� 2M22n=�2n�n0 e��(n�n0) :The end of the proof is similar to the one of lemma 4.4. �Thanks to these lemmas, we are now ready to prove theorem 1.1 onerning uniqueness ofnonnegative solution of (2).Proof of theorem 1.1. Let B" = B�D(y0; "), where y0 2 �D. We denote by v" the maximalnonnegative solution of (2) and u" the minimal nonnegative solution. In the �rst setionwe reall a representation of those funtions in terms of the superproess X. From theharaterization ofRD (this a projetion of the graph GD on Rd) in 2.2 C from [10℄, the Poissonrepresentation of proposition 2.1 and lemma 5.2 in [8℄, we get for x 2 D, v"(x) � Nx [T <1℄,where T = inffs > 0; �s = �D(Ws) and Ŵs 2 B"g:



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 17(In fat we will see the above inequality is an equality.) We also reall that u"(x) =Nx [YD(B") > 0℄. The strong Markov property applied at the stopping time T givesu"(x) = Nx [T <1; YD(B") > 0℄ = Nx [T <1; E�WT (YD(B") > 0)℄:Thus, to prove the uniqueness, it is enough to prove that E�WT (YD(B") > 0)) = 1 Nx -a.e. onfT <1g. Using proposition 2.1 on fT <1g, we haveE�WT (YD(B") > 0) = 1� exp�Z �T0 NWT (t)(YD(B") > 0)dt:Thanks to the snake property, it is lear that Nx -a.e. for every s 2 (0; �), L(Ws) =(Lt(Ws); t 2 [0; �s℄) is ontinuous nondereasing and the path (�t(Ws); t 2 [0; �s℄) is on-stant on intervals where L(Ws) itself is onstant. Therefore the time hange Ss(WT ) = timplies E�WT (YD(B") > 0) = 1� exp�Z L̂T0 Ns (WT )(YD(B") > 0)dSs(WT ):Notie that s(WT ) 2 D for s 2 [0; L̂T ) and ŴT 2 B". Now, let A; a; a0 > 0. We setJ = J(A; a; a0) the set of integers k suh that 2�k+1 � L̂T and��s(WT )� ŴT �� � A2�k=2 for s 2 h0; L̂T � 2�ki ;d�s(WT );D) > a2�k=2 for s 2 �L̂T � 15162�k; L̂T � 782�k� ;and SL̂T� 1516 2�k(WT )� SL̂T� 782�k(WT ) � a02�k=�:Lemmas 4.3, 4.4 and 4.5 show that we an hoose A; a; a0 suh that J is in�nite Nx -a.e.Moreover, lemma 3.2 gives for " > 0 small enough that there exists  > 0 suh that if k 2 Jand if t 2 hL̂T � 15162�k; L̂T � 782�ki, then we haveNt (WT )(YD(B") > 0) � 2k=�:We dedue thatZ L̂T0 Ns (WT )(YD(B") > 0)dSs(WT ) �Xk2J Z L̂T� 782�kL̂T� 1516 2�k Ns (WT )(YD(B") > 0)dSs(WT )�Xk2J 2k=�(SL̂T� 1516 2�k(WT )� SL̂T� 78 2�k(WT ))�Xk2J a02k=�2�k=� = +1:This implies that E�WT (YD(B") > 0) = 1 Nx -a.e., whih in turn implies v" = u" in D. �We end this setion with a lemma whih will be useful later. Let K � D be a ompat set.Lemma 4.6. Let � > 0. There exist Æ0 > 0, C > 0 suh that for all x 2 K, Æ 2 (0; Æ0℄,Nx [9s 2 (0; �);�D(Ws) < Æ℄ � CÆ�;Nx h9s 2 (0; �); �s < Æ2=�; L̂s > Æi � CÆ�:



18 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASProof. Let G = f(L̂s; Ŵs); s 2 (0; �)g be the graph of the Brownian snake. Using theBrownian snake property on [s; inffu > s; �u = �D(Ws)g℄, we see that the set A1 = f9s 2(0; �);�D(Ws) < Æg is a subset of fG \ [0; Æ)�D 6= ;g. Let O be a smooth domain suh thatD � O and K � ( �O). Then we haveA1 � fG \ [0; Æ) �O 6= ;g � \t2[0;Æ)\Q fG \ ftg �O 6= ;g :We onsider the stopping time for the Brownian snakeTt = inf ns > 0; �s = �R+�[0;t)�Rd(Ws) and Ŵs 2 Oo ;where we use the notation of setion 2.2. Let Yt be the exit measure of the Brownian snakeof R+ � [0; t) � Rd . We have fYt(O) > 0g � fTt < 1g. Arguing as in the proof of theorem1.1 (mainly lemma 8.1 has to be replaed by the duality lemma p.45 of [3℄), we an provethat for x 2 Rd , Nx [Tt <1℄ = Nx [Yt(O) > 0℄:Therefore we have using theorem 8 of [4℄ and the right ontinuity of X for Æ > 0,Nx [A1℄ � Nx [G \ ftg �O 6= ; for some t 2 [0; Æ) \ Q ℄� Nx [Yt(O) > 0 for some t 2 [0; Æ) \ Q ℄� � log �1� PXÆx [Xt(O) 6= 0 for some t 2 [0; Æ)℄� :The �rst inequality of the lemma is then a onsequene of theorem 9.2.4. of [6℄.The proof of the seond inequality is more involved. We set m = Æ2=� and A2 = f9s 2(0; �); �s < m; L̂s > Æg. We haveNx [A2℄ � 1Xk=0 Nx h9s 2 (0; �); �s 2 (m2�k�1;m2�k℄; L̂s > Æi :For eah k 2 N, we de�ne indutively a sequene of stopping time (�ki ; i � 0) by�k0 = 0; and �ki+1 = inf nv > �ki ; ����v � ��ki ��� = m2�k�1o :Let Nk = inffi > 0; �ki =1g. Reall that Nx [�k1 <1℄ = m�12k. Conditionally on f�k1 <1g,the sequene (��ki ; i � 1) is a simple random walk on m2�k�1N stopped when it reahed 0.We have for j0 � 1,Nx " 1Xi=1 1f��ki =j0m2�k�1g# = Nx h�k1 <1iNx " 1Xi=1 1f��ki =j0m2�k�1g�����k1 <1# = m�12k+1:(13)



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 19We haveNx h9s 2 (0; �); �s 2 (m2�k�1;m2�k℄ and L̂s > Æi� 2Xj=1 Nx h9i 2 f1; � � � ; Nk � 1g; ��ki = jm2�k�1 and 9s 2 [�ki ; �ki+1℄; s.t. L̂s > Æi� 2Xj=1 1Xi=1 Nx h��ki = jm2�k�1;9s 2 [�ki ; �ki+1℄ s.t. L̂s > Æi :We onsider only j 2 f1; 2g. Let 1 > 0 be a onstant whose value will be hosen later. Weset a = 1(m2�k�1)2 log(2k+1=m) and 2 = �2=�1 2(k+1)3�=4m��=4. For Æ small enough, notiethat 2a�=2 < Æ=2 for every k 2 N. We haveNx h��ki = jm2�k�1;9s 2 [�ki ; �ki+1℄ s.t. L̂s > Æi� Nx h��ki = jm2�k�1; �ki+1 � �ki > ai+ Nx "��ki = jm2�k�1; sups2[�ki ;�ki +a℄ ���L̂s � L̂�ki ��� > 2a�=2#+ Nx h��ki = jm2�k�1; L̂�ki > Æ � 2a�=2i :We write I(l)k for the l-th term of the right member. The distribution of �ki+1 � �ki knowingfi < Nkg is the law of the �rst exit time from [�m2�k�1;m2�k�1℄ for a standard linearBrownian motion started at 0. Thus there exist two positive onstants a1; a2 suh thatI(1)k = Nx h��ki = jm2�k�1; �ki+1 � �ki > ai� Nx h��ki = jm2�k�1i a1 e�a21 log(m�12k+1) :For Æ < 1 and k � 0, we have 2 > �2=�1 = �. We dedue from lemma 4.1 thatI(2)k = Nx "��ki = jm2�k�1; sups2[�ki ;�ki +a℄ ���L̂s � L̂�ki ��� > 2a�=2#� Nx h��ki = jm2�k�1i 3 e�m��=42(k+1)�=4 ;where 3 depends only on 1.Conditionally on ��ki = jm2�k�1, the path W�ki is distributed as �� under �Pjm2�k�1x . So, weget for b > 0, I(3)k = Nx h��ki = jm2�k�1; L̂�ki > Æ � 2a�=2i� Nx h��ki = jm2�k�1i �Px[Ljm2�k�1 > Æ � 2a�=2℄� Nx h��ki = jm2�k�1i ebjm2�k�1���b�(Æ�2a�=2);



20 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASwhere we used (10). Now take b = (��)�1=�m�12k+1 and use the fat that 2a�=2 < Æ=2 =m�=2=2 to get I(3)k � Nx h��ki = jm2�k�1i 4 e�m��=22(k+1)�=2 :We have Nx [A2℄ � 2Xj=1 1Xk=0 1Xi=1 [I(1)k + I(2)k + I(3)k ℄:We dedue from (13) and the upper bounds on I(1)k ; I(2)k and I(3)k , that for � > 0 given, wean hoose 1 and C large enough so that Nx [A2℄ � CÆ�. �5. An upper bound for the hitting probability of small balls for YD in theritial dimension dProposition 5.1. Let d = d, K � D be a ompat set. There exist two positive onstantsCK and "K suh that for all x 2 K, y 2 �D, " 2 (0; "K ℄,Nx [YD(B�D(y; ")) > 0℄ � CK (log(1="))�1 :The theorem 1.4 is a diret onsequene of the above inequality and proposition 2.3.Proof of proposition 5.1. Let d = d. Reall the notation at the beginning of setion 3. Byformula (4), we have Nx [YD(B�D(y; "))℄ = �Ex �1B�D(y;")(��D)�= Ex �1B�D(y;")(�D)�= ZB�D(y;") �(dz)PD(x; z);where � is the surfae measure on �D and PD is the Poisson kernel. From (7), we see thatif K is a ompat subset of D, there exist positive onstants CK and "K suh that for everyx 2 K, y 2 �D, " 2 (0; "K ℄, Nx [YD(B�D(y; "))℄ � CK"d�1:Then we onsider the stopping timeT = inffs > 0; �D(Ws) = �s and Ŵs 2 B�D(y; ")g:We have from the onstrution of YD,fYD(B�D(y; ")) > 0g � fT <1g :Consequently, using the strong Markov property at time T , we getNx [YD(B�D(y; "))℄ = Nx �T <1; E�WT [YD(B�D(y; "))℄� :Thus we see that a lower bound for E�WT [YD(B�D(y; "))℄ with the previous upper bound ofNx [YD(B�D(y; "))℄ yield an upper bound for Nx [T <1℄, that is for Nx [YD(B�D(y; ")) > 0℄.



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 21By proposition 2.1 and relation (4), we haveE�WT [YD(B�D(y; "))℄ = 2Z �T0 dt NWT (t) [YD(B�D(y; "))℄= 2Z �T0 dt �PWT (t) [��D 2 B�D(y; ")℄= 2Z �T0 dt P�t(WT ) [�D 2 B�D(y; ")℄= 2Z �T0 dtZB�D(y;") �(dz)PD(�t(WT ); z):The time hange Sv(WT ) = t and (7) implyE�WT [YD(B�D(y; "))℄ = 2Z �D(WT )0 dSv(WT )ZB�D(y;") �(dz)PD(v(WT ); z)� 2Z �D(WT )0 dSv(WT ) d(v(WT ); �D)ZB�D(y;") �(dz) jv(WT )� zj�d :Let " be small, and onsider the integer n � 1 suh that 2�n � "2 < 2�n+1. Let n0 be theinteger part of n=2. Let � > 0 be large enough. Let us assume that " is small enough sothat �n1+ �2 2�n < 2�n1 where � is de�ned in lemma 4.2 and n1 > n0 is the integer part of11n=12. Consider the set B = f�T � 2 � 2�n=�g \ fL̂T > 2 � 2�n0gLet Un be the set of integers k 2 fn0; � � � ; n1g suh that for all v 2 [L̂T � 15162�k; L̂T � 782�k℄,we have ���v(WT )� ŴT ��� < A02�k=2; d(v(WT ); �D) > a02�k=2;(14)and S(L̂T� 78 2�k)�(WT )� S(L̂T� 1516 2�k)�(WT ) > a12�k=�, where A; a0; a1 are de�ned in lemma4.3, 4.4 and 4.5. On B, we then have for " > 0 small enough,E�WT [YD(B�D(y; "))℄� Xk2Un Z[L̂T� 1516 2�k;L̂T� 782�k) dSv(WT )a02�k=2 ZB�D(y;") �(dz)[A02�k=2 + 4 � 2�n=2℄�d� 0"d�1Card Un;where the onstant 0 > 0 is independent of W , n and x 2 K. Notie that onB1 = B \ f�T � 2n=�g \ fFA0n0;n1(WT ) < 1=6g \ f�a0n0;n1(WT ) < 1=6g \ f a1n0;n1(WT ) < 1=6g;Card Un > n=3 � 00 log(1="). Thus we dedue from the previous inequalities that there exista onstant C suh that for any " small enough and x 2 K,C"d�1 � Nx [T <1;B1℄"d�1 log(1="):



22 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASThe set B1 is a subset of [6i=1Hi, whereH1 =�sups�0 �s �M� with M = 2n=�;H2 =�9s 2 (0; �);�D(Ws) < 4:2�n0	 � nL̂T � 2 � 2�n0o ;H3 =n9s 2 (0; �); �s < 2 � 2�n=�; L̂s > 2�n0o � n�T < 2 � 2�2n=�o \ nL̂T > 2 � 2n0o ;H4 =n9s 2 (0; �); 2 � 2�n=� � �s �M;FA0n0;n1(Ws) > 1=6o ;H5 =n9s 2 (0; �); 2 � 2�n=� � �s �M;�a0n0;n1(Ws) > 1=6o ;H6 =n9s 2 (0; �); 2 � 2�n=� � �s �M; a0n0;n1(Ws) > 1=6o :Using the normalization of Nx for H1, lemma 4.6 for H2 and H3, lemmas 4.3, 4.4 and 4.5respetively for H4, H5 and H6, we see we an hoose A0; a0 and a1 so that Nx [B1℄ � 0"Æ forsome onstants 0 > 0; Æ > 0. So we dedue that for x 2 K, " > 0 small enoughNx [YD(B�D(y; ")) > 0℄ � Nx [T <1℄ � C [log 1="℄�1 + 0"Æ ;whih ends the proof. �Remark. In the above proof, in order to get a lower bound of E�WT [YD(B�D(y; "))℄, we anonsider instead of Un, the set Vn of integers suh that only (14) is satis�ed. And we getE�WT [YD(B�D(y; "))℄ � "d�1 Xk2Vn Z[L̂T� 1516 2�k ;L̂T� 782�k) dSv(WT ) 2k(d�1)=2:If S(WT ) was a subordinator of index � independent of Vn, then we would have by salingthe following lower bound "d�1Card (Vn)1=�S1, where S1 is a subordinator of index �. Sineoutside a small set Card Vn �  log(1="), this suggests that we should have [log(1=")℄�1=�instead of [log(1=")℄�1 in theorem 1.4. Unfortunately, there is no reason for the law of S(WT )to be the law of a subordinator.6. Lower bound of dim supp XDThanks to proposition 2.3, we see that a lower bound for the Hausdor� dimension of thesupport of YD will provide a lower bound for the Hausdor� dimension of the support of XD.Proposition 6.1. Let d � 2. Let x 2 D. Nx -a.e. on fYD 6= 0g, we havedimsupp YD � 2�� 1 ^ (d� 1):Proof. We set d0 = 2��1 ^ (d � 1). Following the idea of [8℄, we will �rst prove that for" 2 (0; d0=3), Nx �Z YD(dz) Fd0�3" (z; YD)� = 0;where if � > 0, F� is the measurable funtion on Rd �Mf de�ned byF�(y; �) = 1�lim supn!1 �(B�D(y; 2�n))2n� > 0�:



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 23By proposition 2.2, we haveNx �Z YD(dy)F� (y; YD)� = Z �PDx (dw)E �F� �ŵ;Z Nw(dW) YD(W)�� :(15)In order to use the Borel-Cantelli lemma, we �rst bound R P(d!)1An(w;!), whereAn := �(w;!); 2n(d0�3")Z Nw(!)(dW) YD(W) �B�D(ŵ; 2�n)� � Cd02�n"�and Cd0 = Cd0(w) is a �nite positive onstant that does not depend on n and !, and dependsonly on w. Its value will be �xed later. Reall that �D is the exit time of D for the proess� and �D is the exit time of D for the proess . Using the Markov inequality, we get for�PDx -a.e. paths w,E [1An ℄ � E �C�1d0 2n(d0�2") Z Nw(dW)YD(W) �B�D(ŵ; 2�n)��= 2n(d0�2")C�1d0 4Z �w0 dv Nw(v) �YD �B�D(y; 2�n)��y=ŵ= 4 2n(d0�2")C�1d0 Z �D(w)0 dv �PDw(v) �ŵ 2 B�D(y; 2�n)�y=ŵ= 4 2n(d0�2")C�1d0 Z[0;�D(w)) dSu(w) Pu(w) ��D 2 B�D(y; 2�n)�y=�D (w) ;(16)where  is under Px a Brownian motion in Rd started at x. In the �rst equality we usedthe form of the intensity of the Poisson measure Nw. In the seond one, we applied (4). Inthe third one, we made the formal hange of variable v = Su, using the spei� properties ofthe proess � under �PDx , and in partiular the fat that � = L is onstant over eah interval(Su�; Su).Let r 2 (0; 1℄, we have for 0 � u < �DPu [�D 2 B�D(y; r)℄y=�D = ZB�D(�D ;r) PD(u; y0)�(dy0):We dedue from (7) that for (y; y0) 2 D � �D,PD(y; y0) � 1d(y; �D) ��y � y0���d � 1d(y; �D)�(d0�") ��y � y0��(d0�")+1�d :Notie also there exists a positive onstant 2 suh that for all (y; y00) 2 D � �D, r 2 (0; 1℄,ZB�D(y00;r) ��y � y0��(d0�")+1�d �(dy0) � 2rd0�":Thus we dedue that for every r 2 (0; 1℄,Pu [�D 2 B�D(y; r)℄y=�D � 12 rd0�"d(u; �D)�(d0�"):(17)The proof of the next lemma is postponed to the end of this setion.Lemma 6.2. Let � > 0, then �PDx -a.s. we havesupu2[0;�D) (�D � u)�+1=2d(u; �D) <1:The proof of the following lemma relies on an integration by part and on the path propertiesof the subordinator S (see lemma 3.2.3 in [8℄).



24 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASLemma 6.3. Let d0 2 [0; 2=�), then �PDx (dw)-a.s. we haveZ[0;�D)(�D � u)�d0=2dSu <1:As a onsequene of those two lemmas, the variableCd0 = Z[0;�D) dSu d(u; �D)�(d0�")is �nite �PDx -a.s. Thus plugging (17) into (16), we get that for every n � 1,E [1An ℄ � 412 2�n":Applying the Borel-Cantelli lemma to the sequene (An; n � 1), we get �PDx -a.s., P-a.s.lim supn!1 2n(d0�3") Z Nw(dW)YD(W) �B�D(ŵ; 2�n)� = 0:Hene by the de�nition of F� and (15), we getNx �Z YD(dy)Fd0�3" (y; YD)� = 0:We dedue from theorem 4.9 of [14℄, that Nx -a.e. on fYD 6= 0g,dim supp YD � d0 � 3":Sine " is arbitrary, the lower bound of the proposition follows. �Proof of lemma 6.2. It is enough to prove the result under Px. Let � 2 (0; 1=2) andD" = fy 2 D; d(y; �D) > "g. For simpliity we write � = �D and �" = �D" . We will �rstderive an upper bound for Px h�� �" � "2��i :For " > 0 small enough, we have using the Markov property at time �":Px h�� �" � "2��i � �1� e�1��1 h1� Ex he�"�2+�(���")ii� �1� e�1��1 supy2D; d(y;�D)=" h1� Ey he�"�2+��ii(18)Sine the domain D is bounded C2, we have the uniform exterior sphere ondition. Thereexists h > 0 suh that for eah point y0 2 �D, we an �nd y1 2 D so that y0 2 �B(y1; h)and B(y1; h) � D, where B(y; r) is the ball entered at y with radius r. For y 2 D thereexists y0 2 �D suh that d(y; �D) = jy � y0j. Clearly, under Py, � � �B(y1;h), when y1 isde�ned as above. Thush1� Ey he�"�2+��ii � h1� E y he�"�2+��B(y1;h)ii :On the other hand, following [16℄ (p. 88) (see also [22℄), it is easy to prove that for y0 2 Rd ,jy0j > h, � � 0, Ey0 he���B(0;h)i = jy0j��K�(p2� jy0j)jhj��K�(p2�h) ;where � = (d=2) � 1 and K� is the seond modi�ed Bessel funtion. Sine K�(r) =p�=2r e�r[1 + O(1=r)℄ (see [21℄ p. 202), it easy to dedue from (18) and the previous



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 25inequality (take � = "�2+� and y0 = y � y1, where d(y; �D) = " and jy0j = h + ") that for "small enough, Px h�� �" � "2��i � "�=2;where the onstant  is independent of ". Now thanks to the Borel-Cantelli lemma we getthat Px-a.s. the sequene �2n(2��)(�� �2�n); n � 1� is bounded.On the other hand notie that for u 2 [�2�n+1 ; �2�n ℄ we have d(u; �D) � 2�n and ��u ��� �2�n+1 . Thus we have �� ud(u; �D)2�� � 4 2(n�1)(2��)(�� �2�n+1):Sine the right hand side is uniformly bounded in n, we get the lemma. �7. Proof of theorem 1.7The proof of theorem 1.7 mimi the proof of theorem 2.4 in [8℄. It relies on the next twolemmas. We only give the proof of lemma 7.2 beause it di�ers from its analogue in [8℄.Lemma 7.1. We onsider the produt measure Nx1 
 Nx2 on the spae C(R+ ;W)2. Theanonial proess on this spae is denoted by (W 1;W 2). Assume d > 2d� 1. Then for every(x1; x2) 2 D2, we have Nx1 
 Nx2 -a.e.supp YD(W 1) \ supp YD(W 2) = ;:Lemma 7.2. For " > 0, Æ > 0, setg"(Æ) = supNy [supp YD \ �DnB�D(z; ") 6= ;℄ ;where the supremum is taken over (y; z) 2 D � �D, suh that d(y; �D) = jy � zj < Æ. Thenfor every " > 0, limÆ#0 g"(Æ) = 0.Proof. Sine the boundary of D is C2, we have the uniform exterior sphere ondition. Thereexists Æ0 2 (0; "=3), for every z 2 �D, we an �nd z0 2 D (unique) suh that B(z0; Æ0) � Dand �B(z0; Æ0) \ �D = fzg. We de�ne Br = B(z0; rÆ0). We have for y 2 B2nB1, Ny -a.e.fsupp YD \ �DnB�D(z; ") 6= ;g� n9s 2 (0; �); �s = �D(Ws) and Ŵs 2 �DnB�D(z; ")o� n9s 2 (0; �); � �B3 (Ws) <1; � �B3(Ws) < �B1(Ws)o :The �rst inlusion is a onsequene of the de�nition of LR+�R+�D and the seond is a on-sequene of the snake property. By the speial Markov property (f [4℄ proposition 7), ifN is the number of exursions of the Brownian snake outside R+ � R+ � B2nB1 that reah



26 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASR+ � R+ �B3 before R+ � R+ �B1, then we haveNy h9s 2 (0; �); � �B3 (Ws) <1; � �B3(Ws) < �B1(Ws)i= Ny [N > 0℄� Ny [N ℄= Ny �Z YB2nB1(dy0)Ny0 [� �B3(Ws) <1; � �B3 < �B1 ℄�� Ny �Z�B2 YB2nB1(dy0)Ny0 [� �B3 < +1℄� :We used the fat that if y0 2 �B1, then from the snake property, we have Ny0 -a.e. for alls 2 (0; �), �B1(Ws) = 0. By symmetry, we get that Ny0 [� �B3 < +1℄ = 0 is independent ofy0 2 �B2. It is also �nite sine (Ŵs; s � 0) is ontinuous under E(0;0;y0). We then dedue from(4) that Ny [supp YD \ �DnB�D(z; ") 6= ;℄ � 0E y [�B2 < �B1 ℄:Thus we get that for Æ 2 (0; Æ0),g"(Æ) � 0Ey [�B(0;2Æ0) < �B(0;Æ0)℄;where jyj = Æ0+ Æ. The lemma is then a onsequene of lassial results on Brownian motion.�Proof of theorem 1.7. Let (Dk; k � 0) be an inreasing sequene of open subsets of D suhthat �Dk � Dk+1 and d(y; �D) � 1=k for all y 2 �Dk. From the speial Markov property (see[4℄ proposition 7) and proposition 2.3, we get that the law XD under PX� is the same as thelaw ofPi2I YD(W i), where onditionally on XDk , the random measurePi2I ÆW i is a Poissonmeasure on C(R+ ;W) with intensity R XDk(dy)Ny [�℄. With a slight abuse of notation, wemay assume that the point measure Pi2I YD(W i) is also de�ned under PX� . It follows fromlemma 7.1 and properties of Poisson measures that a.s. for every i 6= j,supp YD(W i) \ supp YD(W j) = ;:For " > 0, let U" denote the event \supp XD is ontained in a �nite union of disjointompat sets of �D with diameter less than "". It is easy to hek that U" is measurable.Let k be large enough. Furthermore, by the previous observations, and denoting by yi 2 Dkthe ommon starting point of the paths W is, and by zi the only point in �D suh thatjyi � zij = d(yi; �D), we havePX� [U"℄ � PX� �8i 2 I;diam (supp YD(W i)) � "�� PX� �8i 2 I; supp YD(W i) � B�D(zi; "=2)�= EX� �exp�Z XDk(dy)Ny [supp YD \ �DnB�D(z; "=2) 6= ;℄�� EX� �exp�g"=2(1=k)(XDk ;1)� ;where for B 2 B(Rd ), diam (B) = supfjx� x0j; (x; x0) 2 B � Bg. We an now let k go to+1, using lemma 7.2, to onlude that PX� [U"℄ = 1. Sine this holds for every " > 0, weonlude that supp XD is totally disonneted PX� -a.s. �



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 278. AppendixLemma 8.1. Let (St; t � 0) be a stable subordinator. For r > 0, let Lr = inffu > 0; Su > rg.Then (St; t 2 [0; Lr)) and (SLr� � S(Lr�t)�; t 2 [0; Lr)) are identially distributed.We write P for the law of the subordinator S = (St; t � 0) started at 0. We reall that theLaplae transform of S is given by �(�) = ����, where �� = 2��=�(1 + �). Its L�evy measureis given by �(ds) = 1(0;1)(s)[2��(�)�(1� �)℄�1s�1��ds. Notie that Lr is the last exit timeof [0; r℄ for S. Let Q = (Qt; t � 0) be the transition kernel of S and U = R10 Qt dt itspotential. The transition kernels and the potential are absolutely ontinuous with respet tothe Lebesgue measure l on R. And we have Qt(x; dy) = qt(y�x)dy and U(x; dy) = u(y�x)dy,where u(y) = �2�y��11y�0. Let Q̂ = (Q̂t; t � 0) be the transition kernel of (�St; t � 0). Thisis the dual kernel of Q with respet to l. We onsider the proess V de�ned byVt = (S(Lr�t)� if 0 � t < L;� if t � L;where � is a emetery point added to R. Notie the law of S0 is Æ0, the Dira mass at 0, andthus, the density of Æ0U w.r.t. the referene measure l is just u. Thanks to XVIII 45 and51 of [7℄, the proess V is under P a Markov proess with kernel ( ~Qt; t � 0) de�ned as theu-transform of Q̂, that is ~Qt(x; dy) = 1u(x) u(y)qt(x� y)dy:We de�ne the proess Y by Yt = (V0 � Vt if 0 � t < L;� if t � L:Notie that Y0 = 0 P-a.s. and the proess Y is right ontinuous and nondereasing up to itslifetime. We want to prove that Y and the proess S killed at time Lr have the same law. Itwill be enough to hek that for every integer n � 1, every sequene tn > � � � > t1 > 0, andf1; : : : ; fn, measurable nonnegative funtions on R,E [f1(Yt1) : : : fn(Ytn)℄ = E �f1(St1) : : : fn(Stn)1Stn<r� :Using the transition kernel of V , we getI = E [f1(Yt1) : : : fn(Ytn)℄= E [f1(V0 � Vt1) : : : fn(V0 � Vtn)℄= ZR �(dv0)ZR ~Qt1(v0; dv1)f1(v0 � v1) : : : ZR ~Qtn�tn1 (vn�1; dvn)fn(v0 � vn);where � is the law of V0 = SLr�. Thanks to [3℄ proposition 2 p.76, we have that�(dv0) = u(v0)1v0<rdv0 Z 1r�v0 �(ds) = 0�u(v0)(r � v0)��1v0<rdv0:
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