
SOME PROPERTIES OF THE EXIT MEASURE FORSUPER-BROWNIAN MOTIONROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASAbstra
t. We 
onsider the exit measure of super-Brownian motion with a stable bran
hingme
hanism of a smooth domain D of Rd . We derive lower bounds for the hitting probabilityof small balls for the exit measure and upper bounds in the 
riti
al dimension. This 
ompletesthe results given by Sheu [20℄ and generalizes the results of Abraham and Le Gall [2℄. Wegive also the Hausdor� dimension of the exit measure and show it is totally dis
onne
ted inhigh dimension. Eventually we prove the exit measure is singular with respe
t to the surfa
emeasure on �D in the 
riti
al dimension. Our main tool is the subordinated Brownian snakeintrodu
ed by Bertoin, Le Gall and Le Jan [4℄.1. Presentation of the resultsFirst we introdu
e some notation. We denote by (Mf ;Mf ) the spa
e of all �nite nonneg-ative measures on Rd , endowed with the topology of weak 
onvergen
e. We denote by B(Rd )the set of all measurable fun
tions de�ned on Rd taking values in R. With a slight abuseof notation, we also denote by B(Rd ) the Borel �-�eld on Rd . For every measure � 2 Mf ,and every nonnegative fun
tion f 2 B(Rd ), we shall use both notations R f(y)�(dy) = (�; f).We also write �(A) = (�;1A) for A 2 B(Rd). We write supp � for the 
losed support of ameasure � 2Mf . If A 2 B(Rd ), then �A denotes the 
losure of A.Let d � 2. Let � 2 (1; 2℄. Let 
 be a Brownian motion in Rd started at x under Px.There exists a Markov pro
ess �(Xt; t � 0); �PX� ; � 2Mf�� de�ned on D ([0;1);Mf ), the setof all 
�adl�ag fun
tions de�ned on [0;1) with values inMf , 
alled the (
; �) superpro
ess (see[11℄) whi
h is 
hara
terized by X0 = � PX� -a.s. and for every nonnegative bounded fun
tionf 2 B(Rd ), t � s � 0, EX� he�(Xt;f) j �(Xu; 0 � u � s)i = e�(Xs;v(t�s;�));where v is the unique nonnegative measurable solution of the integral equationv(t; x) + Ex �Z t0 ds v(s; 
t�s)�� = Ex [f(
t)℄; t � 0; x 2 Rd :Let D be a bounded domain of Rd . There exists a random measure XD on �D, 
alled theexit measure of D for the (
; �)-superpro
ess (see [9℄) whose law is 
hara
terized by: forevery � 2Mf , su
h that supp � � D, for every nonnegative bounded measurable fun
tion fde�ned on Rd , EX� he�(XD ;f)i = e�(�;v);Date: January 13, 2000.1991 Mathemati
s Subje
t Classi�
ation. 35J60, 60G57, 60H30, 60J55, 60J80.Key words and phrases. Super-Brownian motion, Brownian snake, exit measure, subordinator, nonlinearPDE, hitting probabilities. 1



2 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASwhere v is the unique nonnegative measurable solution of the integral equationv(x) + Ex �Z �D0 ds v(
s)�� = Ex [f(
�D)℄; x 2 D:(1)The stopping time �D = inffs > 0; 
s 62 Dg, with the 
onvention inf ; = +1, is the �rst exittime of D for 
. The fun
tion v solves 12 �u = u� in D. If D is regular and if f is 
ontinuous,then v is 
ontinuous in �D and equal to f on �D.Let y0 2 �D be �xed. The set B�D(y0; ") = fy 2 �D; jy � y0j < "g is a ball on theboundary of D. We write Æx for the Dira
 mass at point x 2 Rd and B" for B�D(y0; "). From[12℄ (see also [10℄ theorem 1.4 and remark 4.3), the fun
tionu"(x) = � log PXÆx [XD(B") = 0℄; x 2 D;is the minimal nonnegative solution of(12 �u = u� in Dlimx!y;x2D u(x) =1 where y 2 B":Let RD be the range of the superpro
ess asso
iated to (
0; �), with 
0 the Brownian motionkilled in D
. From [13℄ theorem 2.5 (see also [10℄ theorem 2.1 and remark 4.3) the fun
tionv"(x) = � log PXÆx [RD \B" = ;℄ is the maximal solution of(12 �u = u� in Dlimx!y;x2D u(x) = 0 where y 2 �DnB":There is a natural way to build RD and XD on the same probability spa
e (see [10℄). Let(Fn; n � 1) be an in
reasing sequen
e of 
losed sets su
h that Fn � �DnB" and Sn�1 Fn =�DnB". Sin
e RD is a.s. a 
losed subset of D, we have for x 2 D, PXÆx -a.s.�RD � �DnB"	 � [n�1 fRD � Fng � [n�1 fXD(F 
n) = 0g � fXD(B") = 0g ;where we used lemma 2.1 of [10℄ with Q = R �D for the se
ond in
lusion. As a 
onsequen
ewe have u" � v" in D. And we dedu
e that u" is the minimal nonnegative solution of8><>:12 �u = u� in Dlimx!y;x2D u(x) = 0 where y 2 �DnB�D(y0; ")limx!y;x2D u(x) =1 where y 2 B�D(y0; "):(2)From now on we assume that D is of 
lass C2. We prove the following uniqueness result.Theorem 1.1. For " > 0, small enough, the fun
tion u" is the unique nonnegative measur-able solution of (2).Let d
 = (� + 1)=(� � 1) the 
riti
al dimension. We introdu
e the fun
tion 'd(") de�nedon (0;1) by: 'd(") = 8><>:1 if d < d
[log(1=")℄�1=(��1) if d = d
"d�d
 if d > d
:We �rst give a result on a lower bound of u".



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 3Theorem 1.2. Let K be a 
ompa
t subset of D. There exist positive 
onstants 
 and "0,su
h that for every " 2 (0; "0℄, x 2 K, we have
'd(") � u"(x):For d 6= d
, Sheu provided in lemma 4.2 and the following remark in [20℄ an upper boundfor v" and thus for u".Theorem 1.3 (Sheu). Let d 6= d
. Let K be a 
ompa
t subset of D. There exist positive
onstants C and "0, su
h that for every " 2 (0; "0℄, x 2 K, we haveu"(x) � C'd("):The 
riti
al dimension is more deli
ate. It was proved by Abraham and Le Gall in [2℄ forthe parti
ular 
ase � = 2. For the 
riti
al dimension, we get:Theorem 1.4. Let d = d
. Let K be a 
ompa
t subset of D. There exist positive 
onstantsC and "0, su
h that for every " 2 (0; "0℄, x 2 K, we haveu"(x) � C [log(1=")℄�1 :The proof of this theorem however suggests that the upper bound should be 'd
("). As a
onsequen
e, we 
an 
omplete theorems 3.3 and 4.3 from [20℄ to 
hara
terize the dimensionof the spa
e where the exit measure is absolutely 
ontinuous w.r.t. the surfa
e measure onD.Corollary 1.5. Let � 2 Mf with its support in D. PX� -a.s., the measure XD is singular(resp. absolutely 
ontinuous) with respe
t to the Lebesgue measure on �D if and only ifd � d
 (resp. d < d
).Proof. The 
ase d 6= d
 is from [20℄ theorems 3.3 and 4.3. Let us 
onsider the 
riti
al
ase. From the properties of the superpro
esses (see proposition 2.3 for example) we have fory0 2 �D, � 2Mf with its support in D,PX� [XD(B�D(y0; ")) > 0℄ = 1� e�(�;u") :Thanks to theorem 1.4, taking the limit as " goes to 0, we get PX� [y0 2 supp XD℄ = 0 for everyy0 2 �D. We get the result by integrating with respe
t to �(dy0), the Lebesgue measure on�D. �If A 2 B(Rd), we denote by dimA its Hausdor� dimension. An upper bound of theHausdor� dimension of the support of the exit measure was given in [20℄. We 
omplete thisresult with the following theorem.Theorem 1.6. Let � 2Mf with its support in D. PX� -a.s. on fXD 6= 0g, we havedim supp XD = 2�� 1 ^ (d� 1):On
e we have the result on the hitting probability of small balls of the boundary of �D,we 
an derive a result on the 
onne
ted 
omponents of XD (see [1℄ for more result in theparti
ular 
ase of � = 2).Theorem 1.7. If d > 2d
 � 1, then PX� -a.s. the support of XD is totally dis
onne
ted.The paper is organized as follows. In se
tion 2, we present the main tool: the Browniansnake with a subordination method from [4℄. We prove theorem 1.2 in se
tion 3 using theintegral equation (1) and bounds on the Poisson kernel and Green fun
tion in D. Se
tion 4



4 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASis devoted to some te
hni
al lemmas on the typi
al behavior of the snake paths. They aregeneralization of results from [19℄ and [2℄ where � = 2. The proof of theorem 1.1 is basedon the study of the �rst path of the Brownian snake whi
h hits B�D(y0; "). The proof oftheorem 1.4 in se
tion 5 follows the proof of theorem 4.1 in [2℄, but the arguments are moredeli
ate be
ause of the subordination method. The proof of the lower bound in theorem 1.6in se
tion 6 and of theorem 1.7 in se
tion 7 are the ellipti
 
ounterpart of se
tion 5.2 andtheorem 2.4 in [8℄. Eventually the appendix deals with the law of the time reversal of stablesubordinators.All the theorems where known for � = 2. From now on we assume that � 2 (1; 2). Wedenote by 
 a generi
 non trivial 
onstant whose value may vary from line to line.2. The subordination approa
h to superpro
esses2.1. The Brownian snake. Our main goal in this se
tion is to re
all from [4℄ how superpro-
esses with a general bran
hing me
hanism 
an be 
onstru
ted using the Brownian snake anda subordination method. Let S = (St; t � 0) be an �-stable subordinator, where � = � � 1.Its Lapla
e transform is: for � � 0, �E �e��St� = e�
��t�� , where 
�� = 2��=�(1 + �) is 
hosento �t the 
omputations. We denote by � the asso
iated residual lifetime pro
ess de�ned by�t = inf fSs � t;Ss > tg, and by L the right 
ontinuous inverse of S, Lt = inf fs;Ss > tg. Let
 = (
t; t � 0) be an independent Brownian motion in Rd . The pro
ess ��t = (�t; Lt; 
Lt) is aMarkov pro
ess with values in E = R+ � R+ � Rd . Let �Pz be the law of �� started at z 2 E.For simpli
ity we write �t = 
Lt , and �Px = �Pz when z = (0; 0; x).The Brownian snake is a Markov pro
ess taking values in the set W of all killed paths inE. By de�nition a killed path in E is a 
�adl�ag mapping w : [0; �) ! E where � = �w > 0 is
alled the lifetime of the path. By 
onvention we also agree that every point z 2 E is a killedpath with lifetime 0. (See [4℄ for the metri
 d on the Polish spa
e W.) Let us �x z 2 E anddenote by Wz the subset of W of all killed paths with initial point w(0) = z (in parti
ularz 2 Wz).Let w 2 Wz with lifetime � > 0. If 0 � a < �, and b � a, we let Qa;b(w; dw0) be the uniqueprobability measure on Wz su
h that:- � 0 = b, Qa;b(w; dw0)-a.s.,- w0(t) = w(t), 8t 2 [0; a℄, Qa;b(w; dw0)-a.s.,- the law under Qa;b(w; dw0) of (w0(a + t); 0 � t < b � a) is the law of (��; 0 � t < b� a)under �Pw(a).By 
onvention we set Q0;b(z; dw0) for the law of (��; 0 � t < b) under �Pz. Denote by ��s(dadb)the joint distribution of (inf [0;s℄Br; Bs) where B is a one dimensional re
e
ting Brownianmotion in R+ with initial value B0 = � � 0. From proposition 5 of [4℄, we know there existsa 
ontinuous strong Markov pro
ess in Wz, denoted by W = (Ws; s � 0), whose transitionkernels are given by the formulaQs(w; dw0) = Z[0;1)2 ��s(dadb)Qa;b(w; dw0):If �s denotes the lifetime of Ws, the pro
ess (�s; s � 0) is a re
e
ting Brownian motion in R+ .It is easy to 
he
k that a.s. for every s < s0, the two killed paths Ws and Ws0 
oin
ide fort < m(s; s0) := infr2[s;s0℄ �r. They also 
oin
ide at t = m(s; s0) if m(s; s0) < �s ^ �s0 . In thesequel, we shall refer to this property as the \snake property" of W .Denote by Ew the probability measure under whi
hW starts at w, and by E�w the probabilityunder whi
h W starts at w and is killed when � rea
hes zero. We introdu
e an obvious



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 5notation for the 
oordinates of a path w 2 W:w(t) = (�t(w); Lt(w);�t(w)) for 0 � t < �w:We set ŵ = limt"�w �t(w) (resp L̂(w) = limt"�w Lt(w)) if the limit exists, ŵ = � (resp.L̂(w) = �0) otherwise, where � (resp. �0) is a 
emetery point added to Rd (resp R). Wehave some 
ontinuity properties for the pro
ess W (see [4℄ lemma 10 and [8℄ lemma 5.3). Fixw0 2 Wz, su
h that the fun
tions t 7! Lt(w0) and t 7! �t(w0) are 
ontinuous on [0; �w0) andhave a 
ontinuous extension on [0; �w0 ℄. Then Ew0-a.s. the mappings s 7! (Lt^�s(Ws); t � 0)and s 7! (�t^�s(Ws); t � 0) are 
ontinuous with respe
t to the uniform topology on the setof 
ontinuous fun
tions de�ned on R+ . In parti
ular, the pro
esses Ŵs and L̂(Ws) are wellde�ned and 
ontinuous Ew0-a.s.It is 
lear that the trivial path z 2 Wz is a regular re
urrent point forW . We denote by Nzthe asso
iated ex
ursion measure (see [5℄). The law under Nz of (�s; s � 0) is the Itô measureof positive ex
ursions of linear Brownian motion. We assume that Nz is normalized so thatNz �sups�0 �s > "� = 12" :We also set � = inf fs > 0; �s = 0g, whi
h represents the duration of the ex
ursion. Then forany nonnegative measurable fun
tion G on Wz, we have:Nz Z �0 G(Ws) ds = Z 10 ds �E z �G ����t; 0 � t < s��� :(3)For simpli
ity we write Nx = Nz when z = (0; 0; x). The 
ontinuity properties mentionedabove under Ew0 also hold under Nz .Let C(R+ ;W) denote the set of 
ontinuous fun
tion from R+ to W. Let w 2 Wz. Wenow re
all the ex
ursion de
omposition of the Brownian snake under E�w. We de�ne theminimum pro
ess for the lifetime ~�s = inff�u; u 2 [0; s℄g. Let (�i; �i), i 2 I the ex
ursionintervals of � � ~� above 0 before time �. For every i 2 I, we set W is(t) =Ws+�i(t+ ��i), for0 � t < ��i+s���i , and s 2 (0; �i��i). Although the pro
ess �� is not 
ontinuous, proposition2.5 of [18℄ holds.Proposition 2.1. The random measure Pi2I Æ(�i;W i) is under E�w a Poisson point measureon [0; �w℄� C(R+ ;W) with intensity 2dtNw(t) (dW):2.2. Exit measures. Let Q be an open subset of E with z 2 Q (or w0(0) 2 Q). As in [4℄,we 
an de�ne the exit lo
al time from Q, denoted by �LQs ; s � 0�. Nz -a.e. (or Ew0-a.s.), theexit lo
al time LQ is a 
ontinuous in
reasing pro
ess given by the approximation: for everys � 0, LQs = lim"#0 1" Z s0 1f�Q(Wu)<�u<�Q(Wu)+"gdu;where �Q(w) = inf fr > 0;w(r) 62 Qg is the exit time of Q for w. We then de�ne under theex
ursion measure Nz a random measure YQ(W) on Rd by the formula: for every boundednonnegative fun
tion ' 2 B(Rd), (YQ; ') = Z �0 '(Ŵs)dLQs :



6 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASWe write YQ for YQ(W ) when there is no 
onfusion. The �rst moment of the random measure
an be derived by passing to the limit in (3) (see [18℄ proposition 3.3 for details). We havefor every nonnegative measurable fun
tion G on WzNz Z �0 G(Ws) dLQs = �EQz [G℄ ;(4)where �PQz is the sub-probability on Wz de�ned as the law of �� stopped at time �Q under�Pz(� \ f�Q <1g).We apply the 
onstru
tion of the exit measure with Q = QD = R+ � R+ �D, where D isa domain of Rd . For 
onvenien
e, we write YD = YQD , �D = �QD , �PDz = �PQDz and also �PDx for�PDz when z = (0; 0; x).Let ' be a nonnegative bounded measurable fun
tion on �D. Thanks to proposition 6 of[4℄ the fun
tion u(z) = Nz h1� e�(YD ;')i ; z 2 R+ � R+ �D;satis�es u(z) = �E z ['(��D )℄� 2�E z �Z �D0 ds u(��s)2� :(5)By arguing as in [18℄, theorem 4.1, we easily get a \Palm measure formula" for the randommeasure YD.Proposition 2.2. For every nonnegative measurable fun
tion F on Rd�Mf , for every t > 0and z 2 R+ � R+ �D, we haveNz �Z YD(dy)F (y; YD)� = Z �PDz (dw)E �F �ŵ;Z Nw(dW)YD(W)�� ;where for every w 2 Wz, Nw(dW) denotes under E , a Poisson measure on C (R+ ;W) withintensity 4Z �w0 du Nw(u) [dW℄:2.3. The subordinate superpro
ess. We introdu
ed the pro
ess YD be
ause its distri-bution under the ex
ursion measure Nx is the 
anoni
al measure of the (
; �)-superpro
essstarted at Æx.Proposition 2.3. Let � 2 Mf , su
h that supp � � D, and let Pi2I ÆW i be a Poissonmeasure on C(R+ ;W) with intensity R �(dx)Nx [dW℄. The random measureXi2I YD(W i)as the same distribution as XD under PX� .Let f 2 B(Rd) bounded and nonnegative. For z = (k; l; x) 2 QD, we set u(z) = Nz [1 �e�(YD ;f)℄ and v(x) = u(0; 0; x). To prove the proposition, it is enough to 
he
k that thenonnegative fun
tion v solves (1). From (5), we see we need to express u(k; l; x) in term ofv(x). The proof is then similar to the proof of theorem 8 in [4℄ and is not reprodu
ed here.Those 
omputations yield the exa
t value of the 
onstant 
��.



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 73. Lower bound of the hitting probability of small balls for XD and YDThanks to proposition 2.3, theorem 1.2 is equivalent to the following proposition.Proposition 3.1. Let K be a 
ompa
t subset of D. There exists a 
onstant 
K , su
h thatfor every x 2 K, for every y 2 �D, " 2 (0; 1=2),Nx [YD (B�D(y; ")) > 0℄ � 
K'd("):We �rst re
all that (1) 
an be rewritten asv(x) + ZD dy GD(x; y)v(y)1+� = Z�D PD(x; z)f(z)�(dz);(6)where � is the surfa
e measure on �D, PD is the Poisson kernel in D and GD the Greenfun
tion of D. We then give some useful bounds for the Poisson kernel and the Greenfun
tion. There exist positive 
onstants 
(D) and C(D) (see [15℄ formula (3.19)) su
h thatfor every (x; y) 2 D � �D,
(D)d(x; �D) jx� yj�d � PD(x; y) � C(D)d(x; �D) jx� yj�d;(7)where d(x; �D) = inffjx� yj; y 2 �Dg. There exists a positive 
onstant C(D) (see [23℄theorem 3 with q = 0) su
h that for every (x; y0) 2 D �D,GD(x; y0) � C(D) ��x� y0��1�d d(y0; �D):(8)Proof of proposition 3.1. Let a > 0. Let x 2 K; y 2 �D, " 2 (0; 1=2). We set hd(") ="�d+1'd("). We have:Nx [YD (B�D(y; ")) > 0℄ � v"(t; x) := Nx [1� exp [�ahd(")YD (B�D(y; "))℄℄ ;where, thanks to proposition 2.3, the fun
tion v" is the only nonnegative solution of (6) withf = ahd(")1B�D(y;"). As v"(x) � ahd(")ZB�D(y;") PD(x; z)�(dz);we dedu
e from (6) that(9) v"(x) � ahd(")ZB�D(y;") PD(x; z)�(dz)� [ahd(")℄1+� ZD dy GD(x; y)"ZB�D(y;") PD(y; z)�(dz)#1+� :We now bound the se
ond term of the right-hand side, whi
h we denote by I. We de
omposethe integration over D in an integration over D \ B(y; 2")
 (denoted by I1) and over D \B(y; 2") (denoted by I2), where B(x; r) is the ball in Rd 
entered at x with radius r. We



8 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASeasily get an upper bound on I1. We have for " > 0 small enough,I1 = ZD\B(y;2")
 dy0 GD(x; y0)"ZB�D(y;") PD(y0; z)�(dz)#1+�� 
ZD\B(y;2")
 dy0 ��x� y0��1�d d(y0; �D)2+� supz2B(y;") ��y0 � z���d(1+�) "ZB�D(y;") �(dz0)#1+�� 
"(d�1)(1+�) �
+ Zdiam D�r�2" rd�1r2+�r�d(1+�)dr�� 
"d�1hd(")��:We use the notation diam D = supfjz � z0j; (z; z0) 2 D2g. We also have for " > 0 smallenough, I2 = ZD\B(y;2") dy0 GD(x; y0)"ZB�D(y;") PD(y0; z)�(dz)#1+�� 
ZD\B(y;2") dy0 "ZB�D(y;") d(y0; �D)1+ 1[1+�℄ ��y0 � z���d �(dz)#1+�� 
ZD\B(y;2") dy0 "ZB�D(y;") ��y0 � z���d+1+ 1[1+�℄ �(dz)#1+�� 
ZD\B(y;2") dy0 h"1=[1+�℄i1+�= 
"d+1:Combining those results together, we get that there exists a positive 
onstant 
01 su
h thatfor every (x; y) 2 K � �D, " 2 (0; 1=2),I � 
01[ahd(")℄1+�"d�1hd(")��:On the other hand, there exists a 
onstant 
02 su
h that for every (x; y) 2 K��D, " 2 (0; 1=2):ZB�D(y;") PD(x; z)�(dz) � 
02"d�1:Plugging the previous inequalities into (9), we getv"(x) � a'd(") �
02 � 
01a�� :Sin
e the 
onstant a is arbitrary, we 
an take a = (
02=2
01)1=� to getNx [YD (B�D(y; ")) > 0℄ � v"(x) � 12 
02a'd("): �We 
an also derive another bound when the starting point x is near the boundary usingsimilar te
hniques.Lemma 3.2. Let A > a > 0. There exist two 
onstants 
(A; a) > 0 and "(D) > 0, su
h thatfor every y0 2 �D, " 2 (0; "(D)), y 2 B�D(y0; "), � 2 (0; "), x 2 D with d(x; y) < A� and



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 9d(x; �D) > a�, we haveNx [YD(B�D(y0; ") \B�D(y; �)) > 0℄ � 
(A; a)��2=�:Proof. We use the same te
hniques as in the proof of the previous proposition. We repla
ethe upper bound of the Green fun
tion by the following : there exists a 
onstant 
 su
h that,for every (x; y) 2 D �D, GD(x; y) � 
jy � xj2�d if d � 3:For d = 2, we bound GD(x; y) by the Green fun
tion of R2nB, where B is a ball outside Dtangent to D in y0. Sin
e D is bounded of 
lass C2, the \uniform exterior sphere" 
onditionholds, that is the radius of B 
an be 
hosen independently of y0. �4. Some te
hni
al lemmas and proof of uniqueness.For w 2 W, we de�ne �D(w) = L�D(w) if �D(w) <1, �D(w) =1 otherwise. We extendthis de�nition to the pro
ess ��. With the notations of se
tion 2.1, under �Px, x 2 D, �D is theexit time of D for 
, whereas �D is the exit time of D for � = 
L. Noti
e that �Px-a.s. we haveS�D� = �D. We also de�ne for w 2 W so that L̂(w) 2 [0;1), St(w) = inffu � 0; Lu(w) > tgand 
t(w) = �St(w) for t 2 [0; L̂(w)). The notations are 
onsistent with those from se
tion2.1.We write L̂s for L̂(Ws), and we set L̂s = L̂0 for s � �.Lemma 4.1. Let � > 0. There exist a 
onstant C(�) su
h that for every stopping time �with respe
t to the �ltration generated by �, for every a > 0, 
 > �, x 2 Rd , on f� <1g,Nx " supu2[�;�+a℄ ���L̂� � L̂u��� � 
a�=2�����# � C(�) e�
=� :Remark. Set E�(r) = R �Prx(dw)E�w, where �Prx is the law of �� under �Px killed at time r. Let� be a stopping time with respe
t to the �ltration generated by �. By the strong Markovproperty of the Brownian snake at time � , we see that under Nx [� < 1; �℄, 
onditionally on�� , (W�+s; s � 0) is distributed a

ording to E�(�� ).Proof. Let �p = 
0(p+ 1)2�p�=2 and 
0 su
h that Pp�0 �p = 1. Using the 
ontinuity of thepath (L̂s; s � 0), we have for r > 0,E�(r) �sups�a ���L̂s � L̂0��� � 
a�=2� �Xp�0 2pXl=1 E�(r) h���L̂(l�1)2�pa � L̂l2�pa��� � �p
a�=2i :Using the Brownian snake property, we see that 
onditionally on the lifetime pro
ess �,L̂(l�1)2�pa � L̂l2�pa is distributed as L(1)t1 � L(2)t2 where L(1) and L(2) are independent anddistributed a

ording to R �Pt0x (dw)�Pw(t0) where t0 = inff�u;u 2 [(l � 1)2�pa; l2�pa℄g, t1 =�(l�1)2�pa� t0 and t2 = �l2�pa� t0. Thus ���L(1)t1 � L(2)t2 ��� is sto
hasti
ally dominated by Lt1_t2(<Lt1+t2) under �P0. For h > 0; Æ > 0, we have�P0[Lt � h℄ = �P0[Sh � t℄ � �E 0 he�ÆSh+Æti = eÆt�
��Æ�h :(10)



10 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASWith t = t1 + t2 and h = ��
a�=2, we dedu
e that for Æ > 0,E�(r) h���L̂(l�1)2�pa � L̂l2�pa��� � �p
a�=2i � Pr heÆ(t1+t2)i e�
��Æ��p
a�=2= P0 heÆ��2�pai e�
��Æ��p
a�=2 ;where under Pu, � is a linear Brownian motion started at u and ��v = �v � 2 inff�u;u � vg isa 3-dimensional Bessel pro
ess started at 0 under P0. Take Æ = b(2�pa)�1=2. By s
aling, wehave P0 heÆ��2�pai e�
���p
a�=2Æ� = 
1(b) e�
���p
2p�=2b� ;where 
1(b) depends only on b. Thus we haveE�(r) " sups2[0;a℄ ���L̂s � L̂0��� � 
a�=2# � 1Xp=0 2pXl=1 
1(b) e�
���p
2p�=2b�� 
1(b) e�
��
0
b� 1Xp=0 2p e�
��
0
b�p = 
2(�) e�
=�;(11)where we take b = [
��
0�℄�1=� for the last equality. Sin
e the result is independent of r > 0,the lemma is then a 
onsequen
e of the remark before the beginning of this proof. �Let n � 1 be an integer. We de�ne indu
tively a sequen
e of stopping time (�i; i � 0) by�0 = 0 and �i+1 = inffv > �i; j�v � ��i j = 2�n=�g:Let N = inffi > 0; �i = 0g. Re
all that, 
onditionally on f�1 <1g, the sequen
e (��i ; i � 1)is a simple random walk on 2�n=�N stopped when it rea
hes 0. Therefore, we have for i0 > 1,1Xi=1 Nx h��i = i02�n=�i = Nx [�1 <1℄ Nx " 1Xi=1 1f��i=i02�n=�g ��� �1 <1#= Nx �sups�0 �s > 2�n=�� � 2 = 2n=�:Lemma 4.2. Let � > 0. There exist two 
onstants C� > 0, 
� > 0 su
h that for any integern � 1, for every M > m � 2�n=�, we haveNx "9i 2 f1; � � � ; N � 1g;m � ��i �M; sups2[�i;�i+1℄ ���Ŵs � Ŵ�i��� � 
�n1+ �4 2�n=2#� C�M22n=� e��n;Nx "9i 2 f1; � � � ; N � 1g;m � ��i �M; sups2[�i;�i+1℄ ���L̂s � L̂�i��� � 
�n1+ �2 2�n#� C�M22n=� e��n :



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 11Proof. Let 
1; 
� be two positive 
onstants whose value will be �xed later. We set a =
12�2n=� log(2n=�). Let k � 1. We haveNx "��i = k2�n=�; sups2[�i;�i+1℄ ���Ŵs � Ŵ�i��� � 
�n1+ �4 2�n=2#�Nx h��i = k2�n=�; �i+1 � �i > ai+ Nx "��i = k2�n=�; sups2[�i;�i+a℄ ���Ŵs � Ŵ�i��� � 
�n1+ �4 2�n=2# :The law of �i+1 � �i knowing fi < Ng is the law of the �rst exit time from [�2�n=�; 2�n=�℄for a standard linear Brownian motion started at 0. Thus there exist two positive 
onstantsa1; a2 (independent of n; 
1) su
h that:Nx h��i = k2�n=�; �i+1 � �i > ai � Nx h��i = k2�n=�i a12�a2
1n=�:Set �p = 
0(p+ 1)2�p�=4 for p � 0 and 
0 is so that P1p=0 �p = 1. For r > 0, we haveIn = E�(r) " sups2[0;a℄ ���Ŵs � Ŵa��� � 
�n1+ �4 2�n=2#� 1Xp=0 2pXl=1 E�(r) h���Ŵ(l�1)2�pa � Ŵl2�pa��� � �p
�n1+ �4 2�n=2i :Conditionally on (Lt(Ws); t 2 [0; �s); s � 0), Ŵ(l�1)2�pa � Ŵl2�pa is a 
entered Gaussianrandom variable with varian
eV 2 = L̂(l�1)2�pa + L̂l2�pa � 2 infs2[(l�1)2�pa;l2�pa℄ L̂s:If Z is a d-dimensional 
entered Gaussian random variable with varian
e V 2, thenP[jZj > b℄ � 2d=2 e�b2=4V 2 :Let V 20 = (p+ 1)n2�p�=2a�=2. We haveE�(r) h���Ŵ(l�1)2�pa � Ŵl2�pa��� � �p
�n1+ �4 2�n=2; V 2 < V 20 i � 2d=2 e�n(p+1)
2
2�
��=21 ;where 
2 depends only on �. From the proof of lemma 4.1 (see (11)), we dedu
e that for� 2 (0; 1),E�(r) �V 2 � V 20 � � E�(r) "E�(�(l�1)2�pa) " sups�2�pa ���L̂s � L̂0��� � V 20 =3## � 
3(�) e�(p+1)n=3� ;where 
3 depends only on �. Thus we haveIn � 2d=2 e�n(p+1)
2
2�
��=21 +
3(�) e�(p+1)n=3� :



12 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASLet � > 0 be �xed. We 
an 
hoose 
1; 
�; ��1 large enough so that for every n � 1, M > m �2�n=�,Nx "9i 2 f1; � � � ; N � 1g;m � ��i �M; sups2[�i;�i+1℄ ���Ŵs � Ŵ�i��� � 
�n1+ �4 2�n=2#� [M2n=�℄+1Xk=1 1Xi=1 Nx [��i = k2�n=�℄(a12�a2
1n=� + In)� C�M22n=� e��n;where C� is a 
onstant independent of n;M andm. This ends the proof of the �rst inequality.The se
ond inequality is proved in a similar way. �We are now going to give three lemmas whi
h des
ribe the behavior of the paths Ws fors � 0, near their end-point.For a path w 2 W, we set for A0 > 0 and integers n > n0 � 1,FA0n0;n(w) = 1fL̂(w)�2�n0+1g 1n� n0 n�1Xk=n0 1fsupt2[0;2�k�1℄ j
L̂(w)�t(w)�ŵj>A02�k=2g:We have the following lemma :Lemma 4.3. Let Æ 2 (0; 1℄. For every � > 0, we 
an 
hoose A0 > 0 su
h that there existsa 
onstant K1 and for every integers n � 3, n0 2 [1; n � pn℄, for every M > m � 2�n=�,x 2 Rd ,Nx h9s � 0; m � �s �M; L̂s > 2�n0+1; FA0n0;n(Ws) > Æi � K1M22n=�e��(n�n0):Proof. For A > 0, n > n0 � 1, w 2 W, we set~FAn0;n(w) = 1fL̂(w)�2�n0g 1n� n0 n�1Xk=n0 1fsupt2[0;2�k℄ j
L̂(w)�t(w)�ŵj>A2�k=2g:From the remark following lemma 4.1, we have for k > 0,I = Nx hL̂�i > 2�n0 ; ~FAn0;n(W�i) > Æ j ��i = k2�n=�i = E�(k2�n=�) hL̂�i > 2�n0 ; ~FAn0;n(W�i) > Æi :Conditionally on L̂�i , (
L̂�i�t(W�i) � 
L̂�i (W�i); t 2 [0; L̂�i ℄) is under E�(k2�n=�) a standardBrownian motion. Thanks to lemma 0 in [19℄ and a s
aling argument, we easily get I �e(d
0�ÆA)(n�n0), where 
0 is a universal 
onstant. Hen
e, summing over k 2 f1; � � � ; [M2n=�℄+1g and i � 1, we have for M > m � 2�n=�,(12) Nx h9i 2 f1; � � � ; N � 1g;m � ��i �M; L̂�i > 2�n0 ; ~FAn0;n(W�i) > Æi� 2M22n=� e(d
0�ÆA)(n�n0) :



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 13We will now interpolate between �i and �i+1. Let A0 > 1, � > 0. We 
onsider the two
onstants 
�; C� de�ned in lemma 4.2. We writeA1 = \i2f1;::: ;N�1g( supr2[�i;�i+1℄ ���Ŵr � Ŵ�i��� � 
�n1+ �4 2�n=2)A2 = \i2f1;::: ;N�1g( supr2[�i;�i+1℄ ���L̂r � L̂�i ��� � 
�n1+ �2 2�n) :Fix n > n0 � 1. Assume there is s0 > 0 su
h that L̂s0 � 2�n0+1 and m � �s0 � M . Thereis a unique i 2 f1; : : : ; N � 1g su
h that s0 2 [�i; �i+1). We want to 
ompare ~FAn0;n(W�i) andFA0n0;n(Ws0) on A1 \A2. Let s1 2 [�i; �i+1℄ su
h that �s � �s1 for s 2 [�i; �i+1℄. All the pathsWs for s 2 [�i; �i+1℄ 
oin
ide up to time �s1 . From the snake property, we have on A1,supt2[0;L̂s0�L̂s1 ℄ ���
L̂s0�t(Ws0)� Ŵ�i��� � sups2[�i;�i+1℄ ���Ŵs � Ŵ�i��� � 
�n1+ �4 2�n=2:Noti
e there exists 
1 (depending only on 
�) su
h that if n0 � k � n � 
1 log n, then2�k�1 � 
�n1+ �2 2�n and 2� k2�1 � 
�n1+ �4 2�n=2. For n0 � k � n � 
1 log n, we have on A2,L̂s0 � 2�k�1 � L̂�i � 2�k > 0. Sin
e the path (
t(Ws0); t � 0) and (
t(W�i); t � 0) 
oin
ideup to time L̂s1 , we get on A2,n
t(Ws0); L̂s0 � 2�k�1 � t � L̂s1o � n
t(W�i); L̂�i � 2�k � t � L̂�io :We dedu
e that for n0 � k � n� 
1 log n, on A1 \A2,supt2[0;2�k�1℄ ���
L̂s0�t(Ws0)� Ŵs0��� � sups2[�i;�i+1℄ ���Ŵs � Ŵ�i���+ supt2[0;L̂s0�L̂s1 ℄ ���
L̂s0�t(Ws0)� Ŵ�i���+ supt2[L̂s0�L̂s1 ;2�k�1℄ ���
L̂s0�t(Ws0)� Ŵ�i ���� 2
�n1+ �4 2�n=2 + supt2[0;2�k℄ ���
L̂�i�t(W�i)� Ŵ�i ��� :Therefore on A1 \ A2, we have FA0n0;n(Ws0) � ~FA0=2n0;n (W�i) + 
1 log nn�n0 . Let Æ > 0 be �xed. Forn large enough, and n0 2 [1; n �pn℄, we have 
1 log nn�n0 � 
1 log npn � Æ=2. De
omposing on thesets A1 \A2, A
1 and A
2, we getNx h9s � 0; m � �s �M; L̂s > 2�n0+1; FA0n0;n(Ws) > Æi� Nx �9i 2 f1; : : : ; N � 1g; m � ��i �M; L̂�i > 2�n0 ; ~FA0=2n0;n (W�i) > Æ2�+Nx "9i 2 f1; : : : ; N � 1g; m � ��i �M; supr2[�i;�i+1℄ ���Ŵr � Ŵ�i��� � 
�n1+ �4 2�n=2#+Nx "9i 2 f1; : : : ; N � 1g; m � ��i �M; supr2[�i;�i+1℄ ���L̂r � L̂�i��� � 
�n1+ �2 2�n#� 2M22n=�e�d
0� ÆA04 �(n�n0) + 2C�M22n=�e��nby formula (12) and lemma 4.2.



14 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASIt suÆ
es now to take A0 large enough so that ÆA04 � d
0 > � to get the right memberbounded from above by 2(C� + 1)M22n=�e��(n�n0): �Let 
[0;r℄ = (
t; t 2 [0; r℄) a path in Rd . For a0 > 0 and an integer k � 1, we setAa0k (
[0;r℄) = �9t 2 �r � 15162�k; r � 782�k� ; d(
t;D
) < a02�k=2�and �a0n0;n = 1fr�2�n0+1g 1n� n0 n�1Xk=n0 1Aa0k (
[0;r℄):We then have the following lemma :Lemma 4.4. For every � > 0, we 
an 
hoose a0 > 0 su
h that there exists a 
onstant K2and for every integers n � 3, n0 2 [1; n�pn℄, for every M > m � 2�n=�, x 2 D,Nx �9s � 0; m � �s �M; L̂s > 2�n0+1; �a0n0;n �
[0;L̂s℄(Ws)� > 16 ; �D(Ws) = �s�� K2M22n=�2n�n0e��(n�n0):Proof. Let us set~Aa0k (
[0;r℄) = �9t 2 �r � 2�k; r � 342�k� ; d(
(t);D
) < a02�k=2�and for n1 > n0 � 1, ~�a0n0;n1(
[0;r℄) = 1fr>2�n0g 1n1 � n0 n1�1Xk=n0 1 ~Aa0k (
[0;r℄):From [2℄ p.265, it is easy to see that for r > 2�n0 , x 2 D,Px hf
t 2 D; t 2 [0; r � 2�n1�1℄g \ f~�a0n0;n1(
[0;r℄) > 1=12gi � 2n1�n0g1(a0)n1�n0 ;where g1 is a nonde
reasing fun
tion (independent of r) su
h that lima#0 g1(a) = 0. Wetake a0 > 0 su
h that g1(a0) � e�2�. Conditionally on ��i , L̂�i , the pro
ess 
[0;L̂�i ℄(W�i) =�
t(W�i); t 2 [0; L̂�i ℄� is a standard Brownian motion started at x. Hen
e, we have for k � 1,Nx h��i = k2�n=�; L̂�i > 2�n0 ; ~�a0n0;n1(
[0;L̂�i ℄(W�i)) > 1=12; �D(W�i) > L̂�i � 2�n1�1i� Nx h��i = k2�n=�i 2n1�n0 e�2�(n1�n0) :Summing over i � 1 and k 2 f1; � � � ; [M2n=�℄ + 1g, we have for M � m � 2�n=�,Nx�9i 2 f1; � � � ; N � 1g;m � ��i �M; L̂�i > 2�n0 ;~�a0n0;n1(
[0;L̂�i ℄(W�i)) > 1=12; �D(W�i) > L̂�i � 2�n1�1�� 2M22n=�2n1�n0 e�2�(n1�n0) :



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 15We will now interpolate between �i and �i+1. We 
onsider the two 
onstants 
�; C� de�nedin lemma 4.2. We writeA2 = \i2f1;::: ;N�1g( supr2[�i;�i+1℄ ���L̂r � L̂�i��� � 
�n1+ �2 2�n) :Fix n > n0 � 1. Assume there is s0 > 0 su
h that L̂s0 � 2�n0+1 and m � �s0 �M . There isa unique i 2 f1; : : : ; N � 1g su
h that s0 2 [�i; �i+1). We want to 
ompare ~�An0;n1(W�i) and�A0n0;n(Ws0) on A2. Let s1 2 [�i; �i+1℄ su
h that �s � �s1 for s 2 [�i; �i+1℄. All the paths Ws fors 2 [�i; �i+1℄ 
oin
ide up to time �s1 .Noti
e there exists 
1 (depending only on 
�) su
h that if n0 � k � n � 
1 logn, then116 2�k � 
�n1+ �2 2�n. For n0 � k � n� 
1 log n, we have on A2,L̂�i � 2�k � L̂s0 � 15162�k � L̂s0 � 782�k � L̂�i � 342�k:And sin
e L̂�i � 342�k � L̂s1 , we have�
t(Ws0); t 2 [L̂s0 � 15162�k; L̂s0 � 782�k℄� � �
t(W�i); t 2 [L̂�i � 2�k; L̂�i � 342�k℄� :Noti
e we also have L̂�i > 2�n0 sin
e L̂s0 > 2�n0+1. Let n1 be the largest integer smaller thann� 
1 logn. From the snake property, sin
e �D(Ws0) = L̂s0 , we have that �D(Ws) � L̂s1 fors 2 [�i; �i+1℄. And thus we get on A2, �D(W�i) � L̂s1 � L̂�i � 2�n1�1. For n large enough,n1 > n0. The previous remarks lead to�a0n0;n �
[0;~Ls0 ℄(Ws0)� � n1 � n0n� n0 ~�a0n0;n1 �
[0;L̂�i ℄(W�i)�+ 
1 lnnn� n0� ~�a0n0;n1 �
[0;L̂�i ℄(W�i)�+ 112for n large enough. De
omposing on the sets A2 and A
2, we get for n large enough,Nx �9s � 0; m � �s �M; L̂s � 2�n0+1; �a0n0;n �
[0;L̂s℄(Ws)� > 16 ; �D(Ws) = �s�� Nx�9i 2 f1; : : : ; N � 1g; m � ��i �M; L̂�i � 2�n0 ;~�a0n0;n1 �
[0;L̂�i ℄(W�i)� > 112 ; �D(W�i) � L̂�i � 2�n1�1�+Nx "9i 2 f1; : : : ; N � 1g; m � ��i �M; supr2[�i;�i+1℄ ���L̂r � L̂�i��� � 
�n(1+ �2 )2�n#� 2M22n=�2n1�n0 e��(n1�n0)+C�M22n=�e��n� (2 + C�)M22n=�2n�n0e��(n�n0);where we use that pn � 2
1 log n implies 2(n1 � n0) � n� n0 for the last inequality. �Let S[0;r) = (St; t 2 [0; r)) be a 
�adl�ag path in R. We de�ne for a1 > 0 and n > n0 � 1, a1n0;n(S[0;r)) = 1fr>2�n0+1g 1n� n0 n�1Xk=n0 1�S(r� 78 2�k)��S(r� 1516 2�k)�<a12�k=��:



16 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASLemma 4.5. For every � > 0, we 
an 
hoose a1 large enough su
h that there exists a 
onstantK3 and for every integers n � 3, n0 2 [1; : : : n�pn℄, for every M > m � 2�n=�, x 2 Rd ,Nx �9s > 0; m � �s �M; L̂s > 2�n0+1; �a1n0;n �S[0;L̂s)(Ws)� > 16�� K3M22n=�2n�n0e��(n�n0):Proof : the same ideas of the proof of lemma 4.4 lead to de�ne~ a1n0;n(S[0;r)) = 1fr>2�n0g 1n� n0 n�1Xk=n0 1�S(r� 34 2�k)��S(r�2�k)�<a12�k=��:Using the strong Markov property at time �i for the Brownian snake, we getNx h��i = k2�n=�; L̂�i > 2�n0 ; ~ a0n0;n(S[0;L̂�i)(W�i)) > 1=12i= Nx h��i = k2�n=�i �Px hLk2�n=� > 2�n0 ; ~ a0n0;n(S[0;Lk2�n=� )) > 1=12i :From the lemma 8.1 in the appendix we know that for r > 0, (St; t 2 [0; Lr)) and (SLr� �S(Lr�t)�; t 2 [0; Lr)) are identi
ally distributed under �Px. Let q the integer part of (n�n0)=12.The set (Lk2�n=� > 2�n0 ; 1n�n0 Pn�1k=n0 1�S2�k�S 34 2�k<a12�k=�� > 1=12) is a subset of[n0�k1<���<kq<n q\j=1nS2�kj � S 34 2�kj < a12�kj=�o :Sin
e the in
rements of the pro
ess S are independent, we have by s
aling that the probabilityof the last event is g2(a1)n�n0 , where g2 is a fun
tion su
h that lima#0 g2(a) = 0. We takea1 > 0 so that g2(a1) � e��. Noti
e there are less than 2n�n0 possible 
hoi
es for k1; : : : ; kq.Thus we haveNx h��i = k2�n=�; L̂�i > 2�n0 ; ~ a0n0;n(S[0;L̂�i)(W�i)) > 1=12i� Nx h��i = k2�n=�i 2n�n0 e��(n�n0) :And summing over i � 1 and k 2 f1; � � � ; [M2n=�℄ + 1g, we have for M � m � 2�n=�,Nx h9i 2 f1; � � � ; N � 1g; m � ��i �M; L̂�i > 2�n0 ; ~ a0n0;n(S[0;L̂�i )(W�i)) > 1=12i� 2M22n=�2n�n0 e��(n�n0) :The end of the proof is similar to the one of lemma 4.4. �Thanks to these lemmas, we are now ready to prove theorem 1.1 
on
erning uniqueness ofnonnegative solution of (2).Proof of theorem 1.1. Let B" = B�D(y0; "), where y0 2 �D. We denote by v" the maximalnonnegative solution of (2) and u" the minimal nonnegative solution. In the �rst se
tionwe re
all a representation of those fun
tions in terms of the superpro
ess X. From the
hara
terization ofRD (this a proje
tion of the graph GD on Rd) in 2.2 C from [10℄, the Poissonrepresentation of proposition 2.1 and lemma 5.2 in [8℄, we get for x 2 D, v"(x) � Nx [T <1℄,where T = inffs > 0; �s = �D(Ws) and Ŵs 2 B"g:



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 17(In fa
t we will see the above inequality is an equality.) We also re
all that u"(x) =Nx [YD(B") > 0℄. The strong Markov property applied at the stopping time T givesu"(x) = Nx [T <1; YD(B") > 0℄ = Nx [T <1; E�WT (YD(B") > 0)℄:Thus, to prove the uniqueness, it is enough to prove that E�WT (YD(B") > 0)) = 1 Nx -a.e. onfT <1g. Using proposition 2.1 on fT <1g, we haveE�WT (YD(B") > 0) = 1� exp�Z �T0 NWT (t)(YD(B") > 0)dt:Thanks to the snake property, it is 
lear that Nx -a.e. for every s 2 (0; �), L(Ws) =(Lt(Ws); t 2 [0; �s℄) is 
ontinuous nonde
reasing and the path (�t(Ws); t 2 [0; �s℄) is 
on-stant on intervals where L(Ws) itself is 
onstant. Therefore the time 
hange Ss(WT ) = timplies E�WT (YD(B") > 0) = 1� exp�Z L̂T0 N
s (WT )(YD(B") > 0)dSs(WT ):Noti
e that 
s(WT ) 2 D for s 2 [0; L̂T ) and ŴT 2 B". Now, let A; a; a0 > 0. We setJ = J(A; a; a0) the set of integers k su
h that 2�k+1 � L̂T and��
s(WT )� ŴT �� � A2�k=2 for s 2 h0; L̂T � 2�ki ;d�
s(WT );D
) > a2�k=2 for s 2 �L̂T � 15162�k; L̂T � 782�k� ;and SL̂T� 1516 2�k(WT )� SL̂T� 782�k(WT ) � a02�k=�:Lemmas 4.3, 4.4 and 4.5 show that we 
an 
hoose A; a; a0 su
h that J is in�nite Nx -a.e.Moreover, lemma 3.2 gives for " > 0 small enough that there exists 
 > 0 su
h that if k 2 Jand if t 2 hL̂T � 15162�k; L̂T � 782�ki, then we haveN
t (WT )(YD(B") > 0) � 
2k=�:We dedu
e thatZ L̂T0 N
s (WT )(YD(B") > 0)dSs(WT ) �Xk2J Z L̂T� 782�kL̂T� 1516 2�k N
s (WT )(YD(B") > 0)dSs(WT )�Xk2J 
2k=�(SL̂T� 1516 2�k(WT )� SL̂T� 78 2�k(WT ))�Xk2J 
a02k=�2�k=� = +1:This implies that E�WT (YD(B") > 0) = 1 Nx -a.e., whi
h in turn implies v" = u" in D. �We end this se
tion with a lemma whi
h will be useful later. Let K � D be a 
ompa
t set.Lemma 4.6. Let � > 0. There exist Æ0 > 0, C > 0 su
h that for all x 2 K, Æ 2 (0; Æ0℄,Nx [9s 2 (0; �);�D(Ws) < Æ℄ � CÆ�;Nx h9s 2 (0; �); �s < Æ2=�; L̂s > Æi � CÆ�:



18 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASProof. Let G = f(L̂s; Ŵs); s 2 (0; �)g be the graph of the Brownian snake. Using theBrownian snake property on [s; inffu > s; �u = �D(Ws)g℄, we see that the set A1 = f9s 2(0; �);�D(Ws) < Æg is a subset of fG \ [0; Æ)�D
 6= ;g. Let O be a smooth domain su
h thatD
 � O and K � ( �O)
. Then we haveA1 � fG \ [0; Æ) �O 6= ;g � \t2[0;Æ)\Q fG \ ftg �O 6= ;g :We 
onsider the stopping time for the Brownian snakeTt = inf ns > 0; �s = �R+�[0;t)�Rd(Ws) and Ŵs 2 Oo ;where we use the notation of se
tion 2.2. Let Yt be the exit measure of the Brownian snakeof R+ � [0; t) � Rd . We have fYt(O) > 0g � fTt < 1g. Arguing as in the proof of theorem1.1 (mainly lemma 8.1 has to be repla
ed by the duality lemma p.45 of [3℄), we 
an provethat for x 2 Rd , Nx [Tt <1℄ = Nx [Yt(O) > 0℄:Therefore we have using theorem 8 of [4℄ and the right 
ontinuity of X for Æ > 0,Nx [A1℄ � Nx [G \ ftg �O 6= ; for some t 2 [0; Æ) \ Q ℄� Nx [Yt(O) > 0 for some t 2 [0; Æ) \ Q ℄� � log �1� PXÆx [Xt(O) 6= 0 for some t 2 [0; Æ)℄� :The �rst inequality of the lemma is then a 
onsequen
e of theorem 9.2.4. of [6℄.The proof of the se
ond inequality is more involved. We set m = Æ2=� and A2 = f9s 2(0; �); �s < m; L̂s > Æg. We haveNx [A2℄ � 1Xk=0 Nx h9s 2 (0; �); �s 2 (m2�k�1;m2�k℄; L̂s > Æi :For ea
h k 2 N, we de�ne indu
tively a sequen
e of stopping time (�ki ; i � 0) by�k0 = 0; and �ki+1 = inf nv > �ki ; ����v � ��ki ��� = m2�k�1o :Let Nk = inffi > 0; �ki =1g. Re
all that Nx [�k1 <1℄ = m�12k. Conditionally on f�k1 <1g,the sequen
e (��ki ; i � 1) is a simple random walk on m2�k�1N stopped when it rea
hed 0.We have for j0 � 1,Nx " 1Xi=1 1f��ki =j0m2�k�1g# = Nx h�k1 <1iNx " 1Xi=1 1f��ki =j0m2�k�1g�����k1 <1# = m�12k+1:(13)



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 19We haveNx h9s 2 (0; �); �s 2 (m2�k�1;m2�k℄ and L̂s > Æi� 2Xj=1 Nx h9i 2 f1; � � � ; Nk � 1g; ��ki = jm2�k�1 and 9s 2 [�ki ; �ki+1℄; s.t. L̂s > Æi� 2Xj=1 1Xi=1 Nx h��ki = jm2�k�1;9s 2 [�ki ; �ki+1℄ s.t. L̂s > Æi :We 
onsider only j 2 f1; 2g. Let 
1 > 0 be a 
onstant whose value will be 
hosen later. Weset a = 
1(m2�k�1)2 log(2k+1=m) and 
2 = 
�2=�1 2(k+1)3�=4m��=4. For Æ small enough, noti
ethat 
2a�=2 < Æ=2 for every k 2 N. We haveNx h��ki = jm2�k�1;9s 2 [�ki ; �ki+1℄ s.t. L̂s > Æi� Nx h��ki = jm2�k�1; �ki+1 � �ki > ai+ Nx "��ki = jm2�k�1; sups2[�ki ;�ki +a℄ ���L̂s � L̂�ki ��� > 
2a�=2#+ Nx h��ki = jm2�k�1; L̂�ki > Æ � 
2a�=2i :We write I(l)k for the l-th term of the right member. The distribution of �ki+1 � �ki knowingfi < Nkg is the law of the �rst exit time from [�m2�k�1;m2�k�1℄ for a standard linearBrownian motion started at 0. Thus there exist two positive 
onstants a1; a2 su
h thatI(1)k = Nx h��ki = jm2�k�1; �ki+1 � �ki > ai� Nx h��ki = jm2�k�1i a1 e�a2
1 log(m�12k+1) :For Æ < 1 and k � 0, we have 
2 > 
�2=�1 = �. We dedu
e from lemma 4.1 thatI(2)k = Nx "��ki = jm2�k�1; sups2[�ki ;�ki +a℄ ���L̂s � L̂�ki ��� > 
2a�=2#� Nx h��ki = jm2�k�1i 
3 e�m��=42(k+1)�=4 ;where 
3 depends only on 
1.Conditionally on ��ki = jm2�k�1, the path W�ki is distributed as �� under �Pjm2�k�1x . So, weget for b > 0, I(3)k = Nx h��ki = jm2�k�1; L̂�ki > Æ � 
2a�=2i� Nx h��ki = jm2�k�1i �Px[Ljm2�k�1 > Æ � 
2a�=2℄� Nx h��ki = jm2�k�1i ebjm2�k�1�
��b�(Æ�
2a�=2);



20 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASwhere we used (10). Now take b = (
��)�1=�m�12k+1 and use the fa
t that 
2a�=2 < Æ=2 =m�=2=2 to get I(3)k � Nx h��ki = jm2�k�1i 
4 e�m��=22(k+1)�=2 :We have Nx [A2℄ � 2Xj=1 1Xk=0 1Xi=1 [I(1)k + I(2)k + I(3)k ℄:We dedu
e from (13) and the upper bounds on I(1)k ; I(2)k and I(3)k , that for � > 0 given, we
an 
hoose 
1 and C large enough so that Nx [A2℄ � CÆ�. �5. An upper bound for the hitting probability of small balls for YD in the
riti
al dimension d
Proposition 5.1. Let d = d
, K � D be a 
ompa
t set. There exist two positive 
onstantsCK and "K su
h that for all x 2 K, y 2 �D, " 2 (0; "K ℄,Nx [YD(B�D(y; ")) > 0℄ � CK (log(1="))�1 :The theorem 1.4 is a dire
t 
onsequen
e of the above inequality and proposition 2.3.Proof of proposition 5.1. Let d = d
. Re
all the notation at the beginning of se
tion 3. Byformula (4), we have Nx [YD(B�D(y; "))℄ = �Ex �1B�D(y;")(��D)�= Ex �1B�D(y;")(
�D)�= ZB�D(y;") �(dz)PD(x; z);where � is the surfa
e measure on �D and PD is the Poisson kernel. From (7), we see thatif K is a 
ompa
t subset of D, there exist positive 
onstants CK and "K su
h that for everyx 2 K, y 2 �D, " 2 (0; "K ℄, Nx [YD(B�D(y; "))℄ � CK"d
�1:Then we 
onsider the stopping timeT = inffs > 0; �D(Ws) = �s and Ŵs 2 B�D(y; ")g:We have from the 
onstru
tion of YD,fYD(B�D(y; ")) > 0g � fT <1g :Consequently, using the strong Markov property at time T , we getNx [YD(B�D(y; "))℄ = Nx �T <1; E�WT [YD(B�D(y; "))℄� :Thus we see that a lower bound for E�WT [YD(B�D(y; "))℄ with the previous upper bound ofNx [YD(B�D(y; "))℄ yield an upper bound for Nx [T <1℄, that is for Nx [YD(B�D(y; ")) > 0℄.



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 21By proposition 2.1 and relation (4), we haveE�WT [YD(B�D(y; "))℄ = 2Z �T0 dt NWT (t) [YD(B�D(y; "))℄= 2Z �T0 dt �PWT (t) [��D 2 B�D(y; ")℄= 2Z �T0 dt P�t(WT ) [
�D 2 B�D(y; ")℄= 2Z �T0 dtZB�D(y;") �(dz)PD(�t(WT ); z):The time 
hange Sv(WT ) = t and (7) implyE�WT [YD(B�D(y; "))℄ = 2Z �D(WT )0 dSv(WT )ZB�D(y;") �(dz)PD(
v(WT ); z)� 2
Z �D(WT )0 dSv(WT ) d(
v(WT ); �D)ZB�D(y;") �(dz) j
v(WT )� zj�d :Let " be small, and 
onsider the integer n � 1 su
h that 2�n � "2 < 2�n+1. Let n0 be theinteger part of n=2. Let � > 0 be large enough. Let us assume that " is small enough sothat 
�n1+ �2 2�n < 2�n1 where 
� is de�ned in lemma 4.2 and n1 > n0 is the integer part of11n=12. Consider the set B = f�T � 2 � 2�n=�g \ fL̂T > 2 � 2�n0gLet Un be the set of integers k 2 fn0; � � � ; n1g su
h that for all v 2 [L̂T � 15162�k; L̂T � 782�k℄,we have ���
v(WT )� ŴT ��� < A02�k=2; d(
v(WT ); �D) > a02�k=2;(14)and S(L̂T� 78 2�k)�(WT )� S(L̂T� 1516 2�k)�(WT ) > a12�k=�, where A; a0; a1 are de�ned in lemma4.3, 4.4 and 4.5. On B, we then have for " > 0 small enough,E�WT [YD(B�D(y; "))℄� Xk2Un Z[L̂T� 1516 2�k;L̂T� 782�k) dSv(WT )a02�k=2 ZB�D(y;") �(dz)[A02�k=2 + 4 � 2�n=2℄�d� 
0"d
�1Card Un;where the 
onstant 
0 > 0 is independent of W , n and x 2 K. Noti
e that onB1 = B \ f�T � 2n=�g \ fFA0n0;n1(WT ) < 1=6g \ f�a0n0;n1(WT ) < 1=6g \ f a1n0;n1(WT ) < 1=6g;Card Un > n=3 � 
00 log(1="). Thus we dedu
e from the previous inequalities that there exista 
onstant C su
h that for any " small enough and x 2 K,C"d
�1 � Nx [T <1;B1℄"d
�1 log(1="):



22 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASThe set B
1 is a subset of [6i=1Hi, whereH1 =�sups�0 �s �M� with M = 2n=�;H2 =�9s 2 (0; �);�D(Ws) < 4:2�n0	 � nL̂T � 2 � 2�n0o ;H3 =n9s 2 (0; �); �s < 2 � 2�n=�; L̂s > 2�n0o � n�T < 2 � 2�2n=�o \ nL̂T > 2 � 2n0o ;H4 =n9s 2 (0; �); 2 � 2�n=� � �s �M;FA0n0;n1(Ws) > 1=6o ;H5 =n9s 2 (0; �); 2 � 2�n=� � �s �M;�a0n0;n1(Ws) > 1=6o ;H6 =n9s 2 (0; �); 2 � 2�n=� � �s �M; a0n0;n1(Ws) > 1=6o :Using the normalization of Nx for H1, lemma 4.6 for H2 and H3, lemmas 4.3, 4.4 and 4.5respe
tively for H4, H5 and H6, we see we 
an 
hoose A0; a0 and a1 so that Nx [B
1℄ � 
0"Æ forsome 
onstants 
0 > 0; Æ > 0. So we dedu
e that for x 2 K, " > 0 small enoughNx [YD(B�D(y; ")) > 0℄ � Nx [T <1℄ � C [log 1="℄�1 + 
0"Æ ;whi
h ends the proof. �Remark. In the above proof, in order to get a lower bound of E�WT [YD(B�D(y; "))℄, we 
an
onsider instead of Un, the set Vn of integers su
h that only (14) is satis�ed. And we getE�WT [YD(B�D(y; "))℄ � 
"d
�1 Xk2Vn Z[L̂T� 1516 2�k ;L̂T� 782�k) dSv(WT ) 2k(d
�1)=2:If S(WT ) was a subordinator of index � independent of Vn, then we would have by s
alingthe following lower bound 
"d
�1Card (Vn)1=�S1, where S1 is a subordinator of index �. Sin
eoutside a small set Card Vn � 
 log(1="), this suggests that we should have [log(1=")℄�1=�instead of [log(1=")℄�1 in theorem 1.4. Unfortunately, there is no reason for the law of S(WT )to be the law of a subordinator.6. Lower bound of dim supp XDThanks to proposition 2.3, we see that a lower bound for the Hausdor� dimension of thesupport of YD will provide a lower bound for the Hausdor� dimension of the support of XD.Proposition 6.1. Let d � 2. Let x 2 D. Nx -a.e. on fYD 6= 0g, we havedimsupp YD � 2�� 1 ^ (d� 1):Proof. We set d0 = 2��1 ^ (d � 1). Following the idea of [8℄, we will �rst prove that for" 2 (0; d0=3), Nx �Z YD(dz) Fd0�3" (z; YD)� = 0;where if � > 0, F� is the measurable fun
tion on Rd �Mf de�ned byF�(y; �) = 1�lim supn!1 �(B�D(y; 2�n))2n� > 0�:



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 23By proposition 2.2, we haveNx �Z YD(dy)F� (y; YD)� = Z �PDx (dw)E �F� �ŵ;Z Nw(dW) YD(W)�� :(15)In order to use the Borel-Cantelli lemma, we �rst bound R P(d!)1An(w;!), whereAn := �(w;!); 2n(d0�3")Z Nw(!)(dW) YD(W) �B�D(ŵ; 2�n)� � Cd02�n"�and Cd0 = Cd0(w) is a �nite positive 
onstant that does not depend on n and !, and dependsonly on w. Its value will be �xed later. Re
all that �D is the exit time of D for the pro
ess� and �D is the exit time of D for the pro
ess 
. Using the Markov inequality, we get for�PDx -a.e. paths w,E [1An ℄ � E �C�1d0 2n(d0�2") Z Nw(dW)YD(W) �B�D(ŵ; 2�n)��= 2n(d0�2")C�1d0 4Z �w0 dv Nw(v) �YD �B�D(y; 2�n)��y=ŵ= 4 2n(d0�2")C�1d0 Z �D(w)0 dv �PDw(v) �ŵ 2 B�D(y; 2�n)�y=ŵ= 4 2n(d0�2")C�1d0 Z[0;�D(w)) dSu(w) P
u(w) �
�D 2 B�D(y; 2�n)�y=
�D (w) ;(16)where 
 is under Px a Brownian motion in Rd started at x. In the �rst equality we usedthe form of the intensity of the Poisson measure Nw. In the se
ond one, we applied (4). Inthe third one, we made the formal 
hange of variable v = Su, using the spe
i�
 properties ofthe pro
ess � under �PDx , and in parti
ular the fa
t that � = 
L is 
onstant over ea
h interval(Su�; Su).Let r 2 (0; 1℄, we have for 0 � u < �DP
u [
�D 2 B�D(y; r)℄y=
�D = ZB�D(
�D ;r) PD(
u; y0)�(dy0):We dedu
e from (7) that for (y; y0) 2 D � �D,PD(y; y0) � 
1d(y; �D) ��y � y0���d � 
1d(y; �D)�(d0�") ��y � y0��(d0�")+1�d :Noti
e also there exists a positive 
onstant 
2 su
h that for all (y; y00) 2 D � �D, r 2 (0; 1℄,ZB�D(y00;r) ��y � y0��(d0�")+1�d �(dy0) � 
2rd0�":Thus we dedu
e that for every r 2 (0; 1℄,P
u [
�D 2 B�D(y; r)℄y=
�D � 
1
2 rd0�"d(
u; �D)�(d0�"):(17)The proof of the next lemma is postponed to the end of this se
tion.Lemma 6.2. Let � > 0, then �PDx -a.s. we havesupu2[0;�D) (�D � u)�+1=2d(
u; �D) <1:The proof of the following lemma relies on an integration by part and on the path propertiesof the subordinator S (see lemma 3.2.3 in [8℄).



24 ROMAIN ABRAHAM AND JEAN-FRANC�OIS DELMASLemma 6.3. Let d0 2 [0; 2=�), then �PDx (dw)-a.s. we haveZ[0;�D)(�D � u)�d0=2dSu <1:As a 
onsequen
e of those two lemmas, the variableCd0 = Z[0;�D) dSu d(
u; �D)�(d0�")is �nite �PDx -a.s. Thus plugging (17) into (16), we get that for every n � 1,E [1An ℄ � 4
1
2 2�n":Applying the Borel-Cantelli lemma to the sequen
e (An; n � 1), we get �PDx -a.s., P-a.s.lim supn!1 2n(d0�3") Z Nw(dW)YD(W) �B�D(ŵ; 2�n)� = 0:Hen
e by the de�nition of F� and (15), we getNx �Z YD(dy)Fd0�3" (y; YD)� = 0:We dedu
e from theorem 4.9 of [14℄, that Nx -a.e. on fYD 6= 0g,dim supp YD � d0 � 3":Sin
e " is arbitrary, the lower bound of the proposition follows. �Proof of lemma 6.2. It is enough to prove the result under Px. Let � 2 (0; 1=2) andD" = fy 2 D; d(y; �D) > "g. For simpli
ity we write � = �D and �" = �D" . We will �rstderive an upper bound for Px h�� �" � "2��i :For " > 0 small enough, we have using the Markov property at time �":Px h�� �" � "2��i � �1� e�1��1 h1� Ex he�"�2+�(���")ii� �1� e�1��1 supy2D; d(y;�D)=" h1� Ey he�"�2+��ii(18)Sin
e the domain D is bounded C2, we have the uniform exterior sphere 
ondition. Thereexists h > 0 su
h that for ea
h point y0 2 �D, we 
an �nd y1 2 D
 so that y0 2 �B(y1; h)and B(y1; h) � D
, where B(y; r) is the ball 
entered at y with radius r. For y 2 D thereexists y0 2 �D su
h that d(y; �D) = jy � y0j. Clearly, under Py, � � �B(y1;h), when y1 isde�ned as above. Thush1� Ey he�"�2+��ii � h1� E y he�"�2+��B(y1;h)ii :On the other hand, following [16℄ (p. 88) (see also [22℄), it is easy to prove that for y0 2 Rd ,jy0j > h, � � 0, Ey0 he���B(0;h)i = jy0j��K�(p2� jy0j)jhj��K�(p2�h) ;where � = (d=2) � 1 and K� is the se
ond modi�ed Bessel fun
tion. Sin
e K�(r) =p�=2r e�r[1 + O(1=r)℄ (see [21℄ p. 202), it easy to dedu
e from (18) and the previous



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 25inequality (take � = "�2+� and y0 = y � y1, where d(y; �D) = " and jy0j = h + ") that for "small enough, Px h�� �" � "2��i � 
"�=2;where the 
onstant 
 is independent of ". Now thanks to the Borel-Cantelli lemma we getthat Px-a.s. the sequen
e �2n(2��)(�� �2�n); n � 1� is bounded.On the other hand noti
e that for u 2 [�2�n+1 ; �2�n ℄ we have d(
u; �D) � 2�n and ��u ��� �2�n+1 . Thus we have �� ud(
u; �D)2�� � 4 2(n�1)(2��)(�� �2�n+1):Sin
e the right hand side is uniformly bounded in n, we get the lemma. �7. Proof of theorem 1.7The proof of theorem 1.7 mimi
 the proof of theorem 2.4 in [8℄. It relies on the next twolemmas. We only give the proof of lemma 7.2 be
ause it di�ers from its analogue in [8℄.Lemma 7.1. We 
onsider the produ
t measure Nx1 
 Nx2 on the spa
e C(R+ ;W)2. The
anoni
al pro
ess on this spa
e is denoted by (W 1;W 2). Assume d > 2d
� 1. Then for every(x1; x2) 2 D2, we have Nx1 
 Nx2 -a.e.supp YD(W 1) \ supp YD(W 2) = ;:Lemma 7.2. For " > 0, Æ > 0, setg"(Æ) = supNy [supp YD \ �DnB�D(z; ") 6= ;℄ ;where the supremum is taken over (y; z) 2 D � �D, su
h that d(y; �D) = jy � zj < Æ. Thenfor every " > 0, limÆ#0 g"(Æ) = 0.Proof. Sin
e the boundary of D is C2, we have the uniform exterior sphere 
ondition. Thereexists Æ0 2 (0; "=3), for every z 2 �D, we 
an �nd z0 2 D
 (unique) su
h that B(z0; Æ0) � D
and �B(z0; Æ0) \ �D = fzg. We de�ne Br = B(z0; rÆ0). We have for y 2 B2nB1, Ny -a.e.fsupp YD \ �DnB�D(z; ") 6= ;g� n9s 2 (0; �); �s = �D(Ws) and Ŵs 2 �DnB�D(z; ")o� n9s 2 (0; �); � �B
3 (Ws) <1; � �B
3(Ws) < �B1(Ws)o :The �rst in
lusion is a 
onsequen
e of the de�nition of LR+�R+�D and the se
ond is a 
on-sequen
e of the snake property. By the spe
ial Markov property (
f [4℄ proposition 7), ifN is the number of ex
ursions of the Brownian snake outside R+ � R+ � B2nB1 that rea
h
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3 before R+ � R+ �B1, then we haveNy h9s 2 (0; �); � �B
3 (Ws) <1; � �B
3(Ws) < �B1(Ws)i= Ny [N > 0℄� Ny [N ℄= Ny �Z YB2nB1(dy0)Ny0 [� �B
3(Ws) <1; � �B
3 < �B1 ℄�� Ny �Z�B2 YB2nB1(dy0)Ny0 [� �B
3 < +1℄� :We used the fa
t that if y0 2 �B1, then from the snake property, we have Ny0 -a.e. for alls 2 (0; �), �B1(Ws) = 0. By symmetry, we get that Ny0 [� �B
3 < +1℄ = 
0 is independent ofy0 2 �B2. It is also �nite sin
e (Ŵs; s � 0) is 
ontinuous under E(0;0;y0). We then dedu
e from(4) that Ny [supp YD \ �DnB�D(z; ") 6= ;℄ � 
0E y [�B2 < �B1 ℄:Thus we get that for Æ 2 (0; Æ0),g"(Æ) � 
0Ey [�B(0;2Æ0) < �B(0;Æ0)℄;where jyj = Æ0+ Æ. The lemma is then a 
onsequen
e of 
lassi
al results on Brownian motion.�Proof of theorem 1.7. Let (Dk; k � 0) be an in
reasing sequen
e of open subsets of D su
hthat �Dk � Dk+1 and d(y; �D) � 1=k for all y 2 �Dk. From the spe
ial Markov property (see[4℄ proposition 7) and proposition 2.3, we get that the law XD under PX� is the same as thelaw ofPi2I YD(W i), where 
onditionally on XDk , the random measurePi2I ÆW i is a Poissonmeasure on C(R+ ;W) with intensity R XDk(dy)Ny [�℄. With a slight abuse of notation, wemay assume that the point measure Pi2I YD(W i) is also de�ned under PX� . It follows fromlemma 7.1 and properties of Poisson measures that a.s. for every i 6= j,supp YD(W i) \ supp YD(W j) = ;:For " > 0, let U" denote the event \supp XD is 
ontained in a �nite union of disjoint
ompa
t sets of �D with diameter less than "". It is easy to 
he
k that U" is measurable.Let k be large enough. Furthermore, by the previous observations, and denoting by yi 2 Dkthe 
ommon starting point of the paths W is, and by zi the only point in �D su
h thatjyi � zij = d(yi; �D), we havePX� [U"℄ � PX� �8i 2 I;diam (supp YD(W i)) � "�� PX� �8i 2 I; supp YD(W i) � B�D(zi; "=2)�= EX� �exp�Z XDk(dy)Ny [supp YD \ �DnB�D(z; "=2) 6= ;℄�� EX� �exp�g"=2(1=k)(XDk ;1)� ;where for B 2 B(Rd ), diam (B) = supfjx� x0j; (x; x0) 2 B � Bg. We 
an now let k go to+1, using lemma 7.2, to 
on
lude that PX� [U"℄ = 1. Sin
e this holds for every " > 0, we
on
lude that supp XD is totally dis
onne
ted PX� -a.s. �



EXIT MEASURE FOR SUPER-BROWNIAN MOTION 278. AppendixLemma 8.1. Let (St; t � 0) be a stable subordinator. For r > 0, let Lr = inffu > 0; Su > rg.Then (St; t 2 [0; Lr)) and (SLr� � S(Lr�t)�; t 2 [0; Lr)) are identi
ally distributed.We write P for the law of the subordinator S = (St; t � 0) started at 0. We re
all that theLapla
e transform of S is given by �(�) = 
����, where 
�� = 2��=�(1 + �). Its L�evy measureis given by �(ds) = 1(0;1)(s)[2��(�)�(1� �)℄�1s�1��ds. Noti
e that Lr is the last exit timeof [0; r℄ for S. Let Q = (Qt; t � 0) be the transition kernel of S and U = R10 Qt dt itspotential. The transition kernels and the potential are absolutely 
ontinuous with respe
t tothe Lebesgue measure l on R. And we have Qt(x; dy) = qt(y�x)dy and U(x; dy) = u(y�x)dy,where u(y) = �2�y��11y�0. Let Q̂ = (Q̂t; t � 0) be the transition kernel of (�St; t � 0). Thisis the dual kernel of Q with respe
t to l. We 
onsider the pro
ess V de�ned byVt = (S(Lr�t)� if 0 � t < L;� if t � L;where � is a 
emetery point added to R. Noti
e the law of S0 is Æ0, the Dira
 mass at 0, andthus, the density of Æ0U w.r.t. the referen
e measure l is just u. Thanks to XVIII 45 and51 of [7℄, the pro
ess V is under P a Markov pro
ess with kernel ( ~Qt; t � 0) de�ned as theu-transform of Q̂, that is ~Qt(x; dy) = 1u(x) u(y)qt(x� y)dy:We de�ne the pro
ess Y by Yt = (V0 � Vt if 0 � t < L;� if t � L:Noti
e that Y0 = 0 P-a.s. and the pro
ess Y is right 
ontinuous and nonde
reasing up to itslifetime. We want to prove that Y and the pro
ess S killed at time Lr have the same law. Itwill be enough to 
he
k that for every integer n � 1, every sequen
e tn > � � � > t1 > 0, andf1; : : : ; fn, measurable nonnegative fun
tions on R,E [f1(Yt1) : : : fn(Ytn)℄ = E �f1(St1) : : : fn(Stn)1Stn<r� :Using the transition kernel of V , we getI = E [f1(Yt1) : : : fn(Ytn)℄= E [f1(V0 � Vt1) : : : fn(V0 � Vtn)℄= ZR �(dv0)ZR ~Qt1(v0; dv1)f1(v0 � v1) : : : ZR ~Qtn�tn1 (vn�1; dvn)fn(v0 � vn);where � is the law of V0 = SLr�. Thanks to [3℄ proposition 2 p.76, we have that�(dv0) = u(v0)1v0<rdv0 Z 1r�v0 �(ds) = 
0�u(v0)(r � v0)��1v0<rdv0:
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0� ZR dv0 u(v0)(r � v0)��1v0<r ZRn dv1 : : : dvn u(v1)u(v0)qt1(v0 � v1)f1(v0 � v1) : : :u(vn)u(vn�1)qtn�tn�1(vn�1 � vn)fn(v0 � vn)= 
0� ZR dv0 (r � v0)��1v0<r ZRn dv1 : : : dvn u(vn) qt1(v0 � v1)f1(v0 � v1) : : :qtn�tn�1(vn�1 � vn)fn(v0 � vn):We use the 
hange of variable z = v0, y1 = v0 � v1; � � � ; yn = v0 � vn, and the de�nition of uto get I = 
0� ZRn dy1 : : : dyn qt1(y1)f1(y1) : : : qtn�tn�1(yn � yn�1)fn(yn)ZR dz (r � z)���2�(z � yn)��11r>z>yn= E �f1(St1) : : : fn(Stn)1Stn<r� ;be
ause 
0� RR dz (r � z)���2�(z � yn)��11r>z>yn = 1r>yn . �Referen
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