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Abstract

The aim of this paper is to compute the quadratic error of a discrete time hedging strategy
in a complete multidimensional model. This results generalizes that of [3] and [9]. More
precisely, our basic assumption is that the asset prices satify the d—dimensional stochastic
differential equation dX; = X} (b"(X;)dt 4 0:;(X¢)dW7)X;. We wish to analyse the risk of
this strategy w.r.t. n, the number of discrete times of re-balancinga and we show that the
error decreases as 1/y/n for any options with lipschitz payoff and 1/ ni for digital options.

KeEy WorDs:  Discrete time hedging, approximation of stochastic integral, rate of con-
vergence, Malliavin calculus.

1 Introduction

Our model of the market is the following: let S denote the price of a non risky asset. It is subject
to the ordinary differential equation

ds? = rSdt.

Here (W;)¢>o stands for a d—dimensional Brownian motion, and X/, i =1,...,d for the d risky
assets prices at time t. They fullfil the stochastic differential equation

) ) ) d .
dX; = X} (lu’(Xt)dt + > Um(Xt)dB{) ,i1=1,...,d,
i=1
Xé = '

Let ¢ be the C*° diffeomorphism from R? to R ¢ given by (2!, ... ,z?%) = (exp(z!) , ... ,exp(z?)).
The requirements on u and o are

(H1) For all j = 1,...,d, let o/ be the jth column of the matrix o. If 6 (z) = o/ (¢p(x)) and
fi(z) = p((x)) then i and 67 belongs to Cj(R?, R?).

(H2) The matrix a = go* is uniformly elliptic, i.e. there exists o9 > 0 such that, for all z € R?,
we have

o(z)o* (x) > 0f Inagpa-
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The assumption (H2) now allow us to apply the Girsanov theorem. Consequently, we are able to
find an equivalent probability such that the discounted prices are matingales. It is call the neutral
risk probability and denoted by P. Under it, the process

Wi = By —/0 o(X,) (I — u(X,))du,

is a Brownian motion and the assets prices satisfy
. . t .
Xt’:x’+/rX;ds+/Za” HAWI i=1,... d. (1)
0

In the following, we consider European vanilla options with payoff function f € L?(X7). Mathe-
matically, the prices of these options are given by

h(f) = E(exp (=rT)f(X71)).

If we set
u(t,z) = E, (e*r<T*t> f(XT,t)), 2)

note that h(f) is equal to u(0,x) and that u solves the Cauchy problem:

0 1 & .. p2 .9
_au(t x) = 3 i]z:l a; j(z)x' s’ SriGa] u(t,z)+ r ;azz &Ciu(t, x) —ru(t,x) (3)
| with (t,z) € [0,T) x (0,00)*
lim u(t,z) = f(x) for z € (0,00).

t—T

It is well known that
T
T fXn) =) + [ ao)
0

where )’E = e "X, is the discounted price of the risky asset. Itd’s formula implies that the delta
hedging strategy ¢ is given by

Ou
6 i

In other words, to have a perfect hedging, the seller of the option must trade at each time ¢ € [0, 7]
and hold & units of the asset X/. In practice, this is impossible.

An alternative solution is to hedge only at discrete times. In fact, assume that the investor will trade
at n fixed times in the period [0,T]. At each trading times defined by ¢, = kT /n (k € {0,... ,n}),
the trader holds fgk units of the asset X;. Hence, at maturity the seller of the option will be left
with the difference:

E=—(tX) i=1,...,d

T d ~
An(f) = eirTf(XT) - ( (0, ) / 53;1 <P(t))dXti>
T ou =
[ Z O (0, X)X} - / g (0 X)X ).

where p(t) = sup{t; | t; < t}.
Our purpose is to study the convergence of A, (f) to 0 when n goes to infinity, in different as-
sumptions on f.




2 Results

We will study the risk incurred by the trader in evaluating the variance of A, (f) when the time
number of re-balancing goes to infinity. It would be desirable to study other criterion of conver-
gence, but the choice of the variance makes computations easier. Nevertheless, we also give a result
about weak convergence.

Zhang ([9]) has found the rate of convergence for C? functions in a general model or for the
European call and put in the Black and Scholes model. Here, we prove the exact rate of convergence
in the generalized Black and Scholes model described by (1) in the two following cases

e Let f satisfy the assumption
(H3) f is lipschitz. f belongs to H; the space of Lipschitz functions which is a Banach space

with the norm

flh=  sup @GN @

(z,z")ER, A |$ - ZL“'| z€RY |$| +1

The theorem below ensures that the quadratic error vanishes when n goes to infinity at rate

1/v/n.
Theorem 2.1. Under the assumptions (H1), (H2) and (H3),

)= o [ r (mone e s ) i) o (1),

where

u azu
JU(t, x) = (W(t’$)>m:17...,d'

e A Furopean call digital option with strike K > 0 and maturity 7" is a contingent claim which
pays 1 if the price of the underlying risky asset lies above K at maturity and which pays
nothing otherwise. If the underlying asset is an index, i.e. a linear combination of the X},
the rate of convergence is 1 /n%. Mathematically, we assume that

(H4) f(z) = 1y argk>i where Yo, AF =T and Vk € {1,...,d}, A\¥ > 0.

Theorem 2.2. Case Cj
Let assumptions (H1), (H2) and (H4) hold. Then,

EAZ (f) = \/g CoDe™ T 40 (%)

where D is a constant defined in equation (25) depending only on the density of log(Xr) and
MNeok=1,...,d and K.

Remark 2.1. Some remarks on these theorems:

— The constant D represents the probability for the process ), NeXF to be near the strike
at maturity.

— The theorem 2.2 is still true if f can be written as f(z) = C 1y xrpr>i + g(2), for
some constants C and K, and for some function g of class C:

pots €-9- for the digital put



— The assumption (H3) can be weakened: f can be Holder with coefficient strictly over
2 — /2. But, we conjecture that the theorem 2.1 can be extended to all Holder functions
of coefficient strictly over 1/2.

— The above results still hold under the historical probability.

It is interest to study the weak convergence of A, (f). By a result of Rootzen ([8]), it is painfully
seen that:

Theorem 2.3. Let X; be a d—dimensional diffusion, which satisfies dX} = Ui7jXZde. Then if
u is defined as in (2), it follows that

\/ﬁAn(f) —*d WT; n — oo, (4)

where T = % fOT tr ((a(Xt)IXt JU(t, Xt)IXt)Z) dt, and W is an extra Brownian motion independent
of T.

d
In the sequel, S, is the set {0, ... ,n}d. If « is a multi-index which belongs to Sy, |a| = > «; and
i=1

ifa=0,|al =0. If F is a smooth function 0%F (¢, z,y) means that the multi-index « concerns
the derivation w.r.t. the coordinates z, ¢t and y being fixed. K (-) will always stands for a positive,
finite and non decreasing map, independent of n and which can change throughout the calculus.
For two integers i and j, &;; is 1 if i = j and 0 if not. For any vector z € RY, 20 =
(Zl,... 3 Ri—15 %441y~ - - 7Zn)-

3 A general decomposition of the error

We begin by studying

Tl Tl ou -~ ’
E[A, ( / U X)X — / 3mi<w<t),X@<t>>dXz> -

Using the It6 formula and the stochastic differential equation (1), we obtain the following propo-
sition whose proof is postponed in Appendix A.

Proposition 3.1. Let assumptions (H1) and (H2) hold. Then, the quadractic error E[A, (f)]?
can be written as

E[A, () = A1 + Az + 43,

where
T t d ]
A :/ dt/ dse™®* | Y XeXIXIXFa; 1 (X,)aa,s(X,)
0 (1) ik,a,f=1




d

T t
Azz/ dt/ ds ezrsl > (:ﬂ“wﬁwiaaﬁ(ﬂ?)m,j(ﬂ?)
o Jo

.5,k 0, =1

o n k 0%u ; 0%u
(e (2)) <Du(s) oo (5,2) +2D(s) 5 (s,7) ) )
d

- Z zieba; g ()

ik,o,0=1

0, . 0?u
J%; (z xﬁaa,ﬁ(fv))Dz(S)W(Sa@>]

T t d
Ag = / dt/ ds 62”[ Z DY (s)Di (s)x'z*a; p(x) + Z D (s)D¥(s)z“a"
0 7 i,

k=1 ik,j,ar,B=1

10,5(0) (5 s (1015 ()) 525 (701 2)) + 015 () 5o (o (w)))]

=X,

Remark 3.1. It is immediate that 2% (z0; ; (7)) = z'z® %‘r' 1 (z) +2%6; 00,5 (x). Consequently,
in the above expression of As and As, each term which includes a derivative of u w.r.t. z* for an

integer 1, includes also z'.

Our next goal is to show that A4; is the main term in the decomposition of E[A,, (f)]* whereas A,
and A3 are negligible. We set now Y; = ¢»~!(X;). This process satisfies the following stochastic
differential system

t
Ytizlog(:ni)—l—/o <r—;a“( >d3+2/ gij ( NdWI, i=1,...,d. (5)

We also put

y=v¢ H(2); s(y) =c@®)); Sy) =sy)s(y)*; bly) =r— %am(w(y))-

As 0, s is uniformly elliptic. Assumption (H1) yields that the functions b and s belongs to C; (R?).
Let us first prove the theorem 2.1.

4 Proof of theorem 2.1

4.1 Preliminary estimates

We first recall some properties of the transition density of elliptic process.

Proposition 4.1. (Friedman, [2], Chapter 6) Under the assumptions (H1) and (H2), for
t > 0, the process Y;(y) has a smooth transition density p(y, ) w.r.t. the Lebesgue measure on R?,
which fullfil:

e Vt >0, pi(-,-) belongs to C*(R? x R?,R)

e Vo, € S such as |a| + |3| < 4, there exist a function K(T) and a constant ¢ > 0, such
that:

olol+181p, , ‘ K(T) cly=y'1?

d d _cly—v I
V(t,y,y') € (O,T] X R X R ‘W < We t . (6)



If v(t,y) is the function defined on [0,7] x R? by v(t,y) = u(t,(y)), it is the solution of the
Cauchy problem

1< 02 o
—5v(ty) =5 Hz_:l Si.iW) gyiggr V(B V)T ; b'() 5 B9) — ot y) (7)
with (t,y) € [0,T) x R?
o(T,y) = f(¥(y)) fory e R

4.2 Main estimates in the case of Lipschitz function

Proposition 4.2. Suppose (H1), (H2) and (H3) hold. Then, there exists K(-) such as for all
integers i,j € {1,...,d}, for all (t,y) € (0,T] x R%, it holds that

it < K@D, ®
and,
82v > K(T)e*wl
Eyo <6yi6yﬂ' (t;Yt)> < VIV 1 (9)

Proof. Our proof starts with the observation that f(v(y))dy: [zapr—¢(y,y")dy’ = 0. From this and
(6), it follows that

‘5—”.(t,y>‘

o [ 56 - £ i

Oy’
(w'*—y*)?

ﬂ - eiczk T—t U
T -0 /Rdliﬂ(y) b(y)l dy'.

Since |1(y') — ¥(y)| < |y’ — yle!¥!, inequality (8) is proved. The same proof still goes for (9) when
t < T/2 (note that - < v2_ ip this case). If t > T'/2, starting as above, we get

T—t = \/T(T—t)
621} _ ! 62pT—t / /
s )] = | [ )~ 1) GE= i
Let us introduce the C* functions f; defined by
_=z12 dz
)= flz+yle” 2 —. (10)
R (2n)>

Here are some elementary properties of these functions. The proof of this lemma is postponed in
appendix Appendix B.

Lemma 4.1. The functions f, are C*, and under (H3)

o 1fn = fllv < v,
0% fn_ A
Y70y || o = 53



We divide the above expression of the second partial derivative of v in two terms:
0%v
Oyioy’

| < | [ = 2w - ¢ - £)wen)

Dyiags VY)W

71

?pr_
#| [ g
Rd
Lemma 4.1 and estimate (6) implies

ly' —yl clow?
< - e T
’Yl_“fn f”l\/Rd (T_t)d-é-z

1
Hulgy' < K(T)elvl 1

EDE
To estimate the term o, we write v, (t,y) = E(f,(Y7—¢)). Since f, is C?, we are now in position
to differentiate underneath the expectation. Hence,

o2 f, elvl
y < K(T)el! || —2L K(T)—.
v < KM | 5| < k()
Therefore, it is easy to check that
0%v 2 n 1
E,, | ———(t,Y;) ] < K(T)elvel [ ——L— +=.
Yo <ayzay](7 t)) = ( )6 <T—t+’l]>

We choose of n = VTVT = t, and the lemma follows.

4.3 Terms A, to As

To prove that A, and Az are negligible w.r.t. the expected rate of convergence, we begin by proving

Vie{l,...,d}, E[XIDi(s)]”< K(T)

. 11

n(T —s) (11)
Combining It6’s formula, applied between p(s) and s, inequalities (21), (22) and standard expo-
can assert that

nential estimates to upper bound E(| X |? + |X,|7P) gives (11). Thus, by (22) and again (11) we

T t

|A2|§/ dt/ dsLTg:O< L )
0 oty (T'—s)i

To deal with As, applying (21) and (11) yields

\/ﬁ —3
T t

|A3|§/ dt/ g K@)
0 ¥

log(n)
=0 .
@ nl—s) ( n? >
consider the function g defined by

Having shown that A, and Aj are negligable, we can now return to the study of A;. To this end,

d
g(t)zezrtEyo[ Y sin(Y)sas(Y)

ik,a,0=1

nz2

9% v
U (4Y)) = G (t,
<8y’8y°‘ (ta t) 4 ) ayz (t t)

82'U av
) (W“’Yt) - 5j,ﬁa—yj(t,n)> .




We claim that g is integrable on [0,T] and continous on [0,7[. Indeed, the first property is an
immediae consequence of estimates (8) and (9). The second one is due to the proposition 4.1. The
proof of theorem 2.1 is complete by showing the lemma below. [l

Lemma 4.2. Letg: [0,T] = R be a continous function on [0, T[ and such that fOT lg(t)|dt < 400,

then
T s T T
lim n /ds/ g(t) dt :—/gtdt.
Jm o » (t) 3, (t)

Proof. The property is obvious when g is piece wise constant function. Therefore, since all piece
wise continous functions are limits of a sequence of piece wise constant functions, the proof is
complete. O

5 Proof of theorem 2.2

5.1 Malliavin Calculus

We begin with general results on Malliavin Calculus. For a thorought treatment we refer the
reader to Nualart ([1, 7]) or Ikeda-Watanabe ([4]). We will use Malliavin Calculus with the elliptic
diffusion Y;. This is well known and we refer to Kusuoka and Stroock ([5]) for more details and
proofs.

Proposition 5.1. Let b(-) a vector in R? which belongs to C°(RY,R?) and o(-) a matriz (d x d)
which belongs to Cs°(RY, R @ RY), we define the diffusion X; which is solution of

t t
X;==x +/ b(Xs)ds +/ o(Xs)dWs
0 0

where (Wy)s>0 is a d—dimensional Brownian motion, then for all t > 0, X; € D and for all
p>1, all k € N*, there ezists a non decreasing map K(T) such that

sup ||X¢(2) | < K(T)(L+[J2ll), sup || Xi(2) —2llkp < VT. (12)
te[0,T] te[0,T]

Under the assumption of uniform ellipticity of o, the Malliavin matriz of X¢(x) denoted by v¢(x)
is invertible a.s. and %—1 € Np>1LP spaces. Moreover, we have

K(T)

by (13)

Iy (@)l <

For all multi-index o of length positive, for all p > 1, for all function f which belongs to C,‘)al(R‘i, R),
and for all random variable G € D>, there exist a random variable H,(X;,G) € LP, a map K(T)
and integers k and m which only depend on |a| and p, such that

E; (0o f(Xt)G) = E, (f(X¢) Ho(Xe, G)), (14)
with
K(T)

lo]
2

[By |[Ho(Xe, G)[]? <

||G||k,m- (15)

The proposition 4.1 and Malliavin Calculus will now enable us to control the derivative of v. To
get precise control we need to show first the following proposition which compare the derivative of
the density of the process Y; w.r.t. forward variable with the one w.r.t. backward variable.



Proposition 5.2. Under the assumptions (H1) and (H2), there exists K(-) such as for any multi-
index o € S* and |a| > 0, one has

AUpe(y,y') — (=D)I0Y pe(y,y") = g (y,y") (16)
with
K(T y—y'|?
979" < Sty exp (252 ). 17)

Proof. Let pp be a smooth and symmetric probability density function with a compact support in
(=1,1). For 6 > 0, and ¢ € R?, we define:

(18)

Hp (5)

Since p(+,-) is a smooth function,
Y pe(y,y') = (}ig})/pa(f)ai’[pt(y,y’ + &)dg.
Thus, integrating by parts and noting that 831 pe(y,y" + &) vanish when £ goes to infinity, one has
O pi(y, ') = (=1)*! lim B, [(aps) (Y — o)
But |a| > 0 now leads to

d 4 ¢i ¢
Ps,yy' €)= H 3 {PO (E) 1[yn’_yi>o] + [po (E) — 11| l[yri_yiso]} . (19)

i=1

Hence,
O ey y') = (= 1)1 lim By (Do ps.y0)(Ye = 9)].

ps is smooth, which implies that, for the term with a derivative w.r.t. y, it is allowed to differentiate
underneath the expectation (see for instance [5]). From this, we deduce that

dpe(y,y') = lim {Ey > (Bvps) (Vi —y)R(Ly)

d—0
0<|B|<|af -1

'

9t,6(¥,y')
d

[ 5
+ E, Z (Opps)(Ye — H Yt }

LIBI=]a] i=1

where R(t,y) is a polynomial function depending only on the flow of Y;(y) (remember that Y;(y)
can be chosen as a C* diffeomorphism w.r.t. y). Therefore, combining the definition of ps ., and
with |a| > 0, we have

ey, y') — (= 1)'“‘5Z'pt(y,y’)Zggrg)gt,a(y,y’)

d

%Y,
+ lim E, > (989540 (H ayalt Héma,)

18]=a] =1




Define 7° as the multi-index of length d such that Vi € {1,...,d} 70 = 1, and set ®5, , as

'S I3
By (€) = /0 /0 Py ()G, (20)

the Malliavin integration by parts formula (14) yields

Oupe(y,y') — (—1)1I0Y pi(y,y') = gg%{ ST By [®syy (Vi — y) Hpio (Ve R(Ey))]
0<|81<al-1

d . d
9",
s,y (Ve = ) Hpip0 (Y (H 5 1l @a))] }
i=1

i=1

+ > E,

1Bl=le|

Thus, making ¢ tends to 0, we can rewrite the above expression as
ape(y,y') — (=D10Y pi(y, ')

d
= gta(y:yl) = Ly l(H 1(0,400) (Y = y”)l[y”'—yi>0] + 1(—o0,0] (Y - y”)l[y”'—yiéo]}>

i=1

d .
%y,
| Heo B+ Y Hae (YH( ayaf—am» ]

0<|BI< e —1 18l=la| i=1

Noting that %22;0 = 08,a;, and applying (12), (15) and standard computations for P[|Y; — y| >

ly — y'|], we obtain the expression below wich is the desired conclusion.

K(T) y— yl 2
|gf(y:yl)| < —arra=T €XP (—c% .
t— =2 t

5.2 Main estimates in digital case

Proposition 5.3. Under the assumptions (H1) and (H2), there exists K(-) such that for all inte-
gersi,j € {1,...,d}, for all (t,y) € (0,T] x R?, it holds that

A K(T)
| < S @
and
82v ? K(T)
E?JO [5y18y1 (taift):| S (T—t)%\/T (22)

Proof. Inequality (21) is clear from (6) and from

ov o (T— Opr—¢
—.t,y‘ge r(T t)/ : , ! dyl
‘6]/1( ) S, )\keylkZK 6yz ( )
y—y'1?
< K(T?H / el o K(T)
(T — )" Jra T—t

10



The same proof remains valid for the estimate (22), since ¢ < T/2. We now turn to the case
t > T/2. Proposition 5.2 gives

OV () = e / O )y
Oy'oy’ = sk akert > Oy’ Oy ERE

+e—"(T‘“/ . 9wy, y')dy'-
S ARV T >K

K(T)

Using (17), the second term of the r.h.s. is upper bounded by Tt For the first term, we

integrate directly w.r.t. y* and get

0%*v o (T— Opr—
——(t,y) =e "7 t)/z DIt (y,y)

) K(T
dyl(l) ( )
Oytoyd oy Aee?' P <K dy

i (K—zk# Akey’k> VT —t
y"t=log| —— X ——

bW

i

(23)

~~

Ui ;(ty)

Therefore, from estimates (6) it follows that

8%v (ty) < K(T) K(T)/
Oyidyd ¥ = VT —t T—t Ek;éik’“emzk‘“’kSK

K — Z ')\ke\/T—tzk-t-yk .
exp —CZ |2F |2 — \/_ log” ( ’#Z/\ieyi dz.

k#1

Substituting Y; into y in the above inequality and applying (6) and the Cauchy-Schwarz inequality,
we see that

d%v > K(T)
’ {81/181/3( ’ t)} B (T—t)% —t th /Rd /Rd 1 Zk# NeeVT=T=h 4l <
2
K =Yy AreVT=E 40" . :
exp _CZ cZ|z |? - —— ( ( L 3 -y’ dz
k#i g
(24)
yi—10g<K’Ek¢i Ak VT=EF 4k >
, X;eVi
The change of variable 2* = = now leads to
2 2
ot y)| s 3 SO gy /dzi/ PRU
81/’8 J T—t (T — t)EtE Rd—1 R Rd—1
1Zk;éi AeeVT—t=F4yk < €xp CZ Z |Zk ? c|y |2
k#£i k#i
We replace z' by \/-g, and the inequality (22) follows (remember that % < % since t >
T/2). O

5.3 Terms A; and Aj

We can proceed analogously to the proof of 2.1 (see section 4.3. The details are left to the reader.

11



5.4 Term A,

To obtain the expansion result in theorem 2.2, we first state an analysis lemma, whose proof is
given in Appendix C.

Lemma 5.1. Let g : [0,T] — R be a measurable bounded function which is continuous in T.

[ [t e (g)”lo(%)

400 1 s dt
where Cy = / ds/ — € (0, +00).
° kz::l 0 o (k—1t)2 ( )

The main idea of the proof is to apply the above lemma with the function g defined by

d 2
— 2 —2rt d%v Ov
g(t) = (T —1t)ze Ey, L kaZB:1 Sik(Ye)Sa,8(Y2) <W(t, Y;) — 6i7a8_gﬂ(t7 Y;:)>

8%v v
<W“’Yt) “Wa—yf“’”)>

We now intend to prove that g is bounded and has a limit in 7' (which enables to extend g as a
continuous function in T'), limit which will give the main term in the expansion of E(AZ (f)).

5.4.1 The function ¢ is bounded
This follows from inequalities (21) and (22),

lg(t)] < K(T)(T - 1)

(S]]
N\
N~
| |~
N2
(S]]
N~
||~
-
N——
IN
I
=

5.4.2 Calculus of lim;_,7 g(t).
We use the equation (23), estimates (21), (22) and we get that

d

gt) — (T —t)ze > " E,

i,5,0,8=1

8i,0(Y2)85,8(Ye)Vialt, Y1) V(L Y1) || = o(VT — ).

Moreover, if we write the above approximation of g as in (24) (i.e. writing ¥ as an integral) and if
we put V(y(i’j),z,z’(j)) =K =Y i NoeVT=t2" +y* 4 oVT=t2" 421 (K — Ykt )\kevT_tszryk)
+

K(Tz d/ dy® /dzi/ 20 2/
T—-1 (T —t)2t2 Jra-1 R Rd-1 Rd-1

k k\2
1 o (y" —y5) k|2 1k |2
p(ylid) 2,20 (D)) NG eVT—t(z3 +2/ )4y +2i 59 XP | —C - —C |27 — ¢ 12"
k#i k k+#j

i.j (7) S
exp <_Tc tlogQ (V(y(”)’z,z' - _em(ZHZIZ)Hl)) 7

Eyo [Wia(t, Y)W, 5(t,Y:)] < K(T)

M ey’

12



we remark that if i # j we can make the change of variable for y/ (on the set v(y(i4), z, /) >
MeVT—t(=+2" )ty +20 S 0)

d= L log (—V(y(i’j).’z’?'(’” - emwz“wi)
VT —t ey’

and get

By, [Uia(t,Y:) ¥ 5(t,Y7)]

< K(T)/ (i) dz/ doe e Sl P ) e S W« KO
T—1t Jga-2 R4 R4 T—t

Therefore,

d d
o) — (T~ 1T, 3 [zs w670 | = ot — 8.
i=1 Lj=1
g(
We now intend to find a tractable expression for 65;,? (y,y") when t is near T'. The approximation

of a density of a multidimensional process when ¢ is small has been a source of a lot of literature.
Such approximation exists even if we consider hypoelliptic stochastic process on manifolds.

To obtain our expression we will proceed following a classical method set out by Leandre in [6].
Let Y,”~" be the solution of the stochastic differential equation

0 0
VIt =y 4+ (T —1t) / bV, Y + VT — t/ s(Y,!7")dw,
0 0

Noting that YlT*t has the same law as Y7_; and following closely the proof described in Leandre
[6], we put Y,/ = = 6(z — y) + y + /T — tY;} ~*. Thanks to the Girsanov theorem Y, ~* has the
same law as Ag’_t solution of

Ay (y, 2 st y) +y + VEA(y, 2))dW] + Vb (0(z - y) +y + ViA§(y, z))db
t h’je (ya Z)
+ 3 (510006 — ) +y 4 VNG5, 2) — 5050 ) +9) 2 250
j=1
Aj(z,y) =0
and  hy(y,2) =57 (0(z —y) +y)(z — y)
But, using the functions ps described by (18), one has
6pT—t 1 STt
- , = ——0 7 11 E 0j Y, .
s 9) = g By [0y0) ()
Therefore, the derivative of the density of Y_;(y) is equal to
pr, 1 Jy (2 =9)*S (0= —y) +y)(z ~y)db
—,j(yVZ) = aa XP | —
Ay (T —t)= 2(T —t)

lim E [ (9;5) (A] " (y, 2))e™ 7= fo Gmoe 0G0
—
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k
K=, \"e
Aiex

We set V(z,x) € R xR 5(z®, x) = log , then § can be written as

d

gty =y (T —pie > /Rddy Pe(Yo,y)

i=1

i Opr—
Z L g E a0 w0
Dkt e

zi=n(z() yt)

Let y; and z; be deterministic vectors in R?. We suppose that there exists two d—dimensional
vector x and ¢ such that lim;—7(z: —y: — xvVT —t) = 0 and lim—y: = §, then

. ap1 Opr B _X*STH@)x
th_{li},(T t) 2 7 (ye,2t) = exp < 5

lim B [(0505) (A, )™ 797 B 100" Osmm o]

6—0, t—>T

But A? is a Gaussian random vector equal to s(7)W; and since standard computations implies

(S~ )’
(2m)? /det(S(7))’

lim E [ (9 p5) (s7)W1) exp (—x"s" ' (@)1 )| =

it follows that

lim (T — 5 P2t (4, ) = exp (_ x*Sl(g)x) (S @)’
-t oy? 2 ) 2t /det(5)
i ; . . _ A\ R VTR . .
We will use this with 2" = 20)yT 4y, 2 = log (K S ) and yj = VT — ty'+
_ ky*
log (I(Zk%"e)

Therefore,

- K-3%, kv :
y:<y17"'7yl 1710g< Afl 7yl+17"'7yd

And in conclusion, we find that

d
iy g(t) = D= 7Y dy pr(yo,7)

=T g Arevt <K

dz) L owoo1gn —1(5Vy)E 2
{Adl (27r)% 50 exp |:—§X S (y)X:| (S (x) } . (25)

The upper bound (6) allow us to apply the Lebesgue dominated convergence theorem.
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Appendix A Proof of Proposition 3.1

Proposition 3.1
Let (H1) and (H2) hold. E[A,,(f)]? can be written as

E[A, (£)]> = A1 + As + A3,

where
T t d )
A :/ dt/ ds 6_2”[ > XOXPXIXEFaik(Xo)aa,s(Xs)
0 (1) ik, B=1
0%u 0%u
;i Xs a..i0-..8 7XS ’
Oridze (s, )85618335 (s )]
T t ‘ d ]
Ay :/ dt/ ds ezrs[ Z (m“wﬁxzaaﬂ(m)am(w)
0 v(t) i,k B8=1
0 0?u i 0?u
s 64015 0) (D) 5 s () + 2DL0) 5 0 0,0)) )
d
: 0 0%u
_ ik, . 8 k _vu
| > dlatai(e )a (%2 aq5(x ))DU(S)awaawﬁ (8@))] ,
ik,a,0=1 =X,
and
T t ‘ d .
Az :/ dt/ ds ezrs[ Z DE(s)DL(s)z'z*a; j,(z) + Z Di (s)D¥(s)aa”
0 e(t) i,k=1 ik, j,0n8=1

10,5(5) (§ s (2700 (2)) 5 (2401 () + a0 () 5o (oo (w)))]

=X,

Proof. Set D! (t) = Bz’(

X, is the solution, and substituting X/ into the preceding, we obtain

t, X;) — ;w (<p(t),X¢(t)). Using the stochastic differential system whose

E[An(f)]zzE[ /D’ ”X’a,j(Xt)dWJ] .

4,j=1

Since (W¢)¢>o0 is a d—dimensional Brownian motion, the Wt] are independent. It leads to

2

d T d
=>E / > Di(t)e " X[oi;(Xe) | dt
j=1 i=1 ~ g

0
M}

The It6 formula applied between ¢(t) and ¢, implies that

d 2 t d t d
(Z M;ﬂ) = 2/ > MEidME +/ > adri, M),
i=1 w(t)

ik=1 @) k=1

15



With the above notations, a straightforward calculation leads to
d

2rs i, k, _ a, B L
XS d(MBI MY, = 3 E (:c T aaﬁ(x)( _ (s,x)x'o; ()

2 (e
Ryt oxtox

+ DL 5 00101 ) x (g 61)a¥ 005 (0) + D) s (o (o) ) ) ds,

r=Xg

and
8%u

e dMI = (—rDZ(s)Xsiaivj(Xs) + — pEn

(5, Xs) X0 (X, )) ds

ds

=X,

+a§ <x (aa—;(ma (0) + D} () 5o (o (x»))

dw?
r=X;

b3 (#0msto) (o100, 0) + Do) g s )

a,B=1

1 5 9Pu : 0%u 3
+ 3 a%; z%z"aq () (m(s,x)x oij(x) + W(s,x) 507 (z'0; (x))

ds.

r=Xg

9u 9 N I
+ awzaxg( )a o (iU Uz,]( )) +Du(S)W(ZIZ O','J(LL‘))))

Combining the second order derivative of u w.r.t. t and z* with (3) gives
2 1 & 5 Ou
~ g (6) =g 2t gy ()

o,B=1

2

d d
1 0%u 0%u
- z aBy_“ 7 § : a
a,B=1 sle)ets )awo‘axﬁ (t7$)+ra:1x Oxt0z™ (t,2)

l\’)

Finally, noting that a; ; = Z 0;,j0k,j, the proposition is proved. O
ji

Appendix B Proof of lemma 4.1

Lemma 4.1.The functions f, are C*°, and under (H3)

o |Ify = flls < v/,
. <
Y0y || oo = p%
Proof. It is clear that |[f — f|[cc < /7. Thus,
sup L) = 1)l < Vi
yeRd |Z—/| +1

Let us put w(n, z,y,y") = f(zy/n+y) — fly) — f(zy/m+y') + f(y'). Hence, obviously

10 = 160 = 50+ 1 <€ ([ otz )Pe dz>1

(/ |w(n,z,y,y'>|2e-z2dz) . (26)
Rd
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The Lipschitz property of f gives

lwn, 2,9,y < 2v/lz| and  |w(n, z,y,4")] < 2ly - y'|.
Using the first (resp. second) estimate for the first (resp. second) integral of (26) yields the first
statement of the lemma. For the second assertion, the proof is the same as for (8). g
Appendix C Proof of lemma 5.1

Lemma 5.1. Let g : [0,7] = R be a measurable bounded function which is continuous in 7.

[ aam = (5) () &

+0oo 1 s dt
where Cy := / ds/ —— € (0, 4+00).
PPV S v

Proof. 1. Suppose first that g is constant.
We can assume g = 1 e.g. . A simple change of variables leads to

T s n—1 tk+1 s % n 1 s
[l A5 [ () (Z/dsf _dr )
0 ©(s) (T - t)E k=0 Ytk ti (T - t)E n k=170 0 (k - t)E

The series above is convergent because its terms decrease like n=3/2: we denote by Cy its limit.
This completes the proof of (27) in that case. 2. Suppose now that g is a bounded measurable
function, continuous in T.

There’s no restriction to assume that g(7') = 0, up to replacing g by g — ¢(T") and applying the
first case. The proof of (27) now consists in showing that

) n1/2 T s
lim <(T> /0 ds/o(s) dt%) —0. (28)

Fix § > 0. Since g is continuous in 7', there exists 7 > 0 such that V¢ € [T —n,T], |g(t)] < 2.

Co
Thus, we deduce that
T s 1/2
/ ds / dtL)s <6 <Z> ,
T-n  Jos) (T—1)2 n

and for 0 < s <T —n, since T'— s > n, we obtain that

/T_77 ds ’ dtﬂ
3
0 os) (T —1)2

Therefore, for n large enough,

<29

i )

Nl

iz (T (t)
(T> /ods/w(s>dt(Tg—t)

which completes the proof of (28) and consequently (27), when ¢(T") = 0. O
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