
Periodiity of the in�nite-volume ground state of aone-dimensional quantum modelX. Blan1;2 & C. Le Bris11 CERMICS, Eole Nationale des Ponts et Chaussées,6 & 8, avenue Blaise Pasal, Cité Desartes,Champs sur Marne, 77455 Marne-La-Vallée Cedex 22 Éole Normale Supérieure,45 rue d'Ulm,75230 Paris edex 05Marh 27, 2000AbstratWe study a one-dimensional moleular system onsisting of N nulei and N eletrons, mod-eled by a quantum mehanial model, namely the Thomas-Fermi-von Weizsäker (TFW) model.For eah N �xed, we onsider the ground state of this system. Then we investigate its behaviorin the limit N ! 1. We show that the system onverges to a periodi system, and that itsenergy per atom onverges to the energy of a periodi TFW model. This implies that for anyperiodi on�guration of nulei (with an arbitrary number n of idential atoms per ell), theminimum of energy per atom is reahed for the periodi on�guration with one atom per ell.
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1 INTRODUCTION 21 IntrodutionIt is an unsolved problem in the study of matter to understand why matter is in a rystalline stateat low temperature [14℄. So far as we know, this �rystal problem� has been takled by Radin [13, 8℄in a lassial framework and in one dimension. Our aim here is to address the same kind of problemwhen we take into aount the quantum feature of the eletrons.We onsider a set of N idential pointwise nulei, of harge +1 and positions fXig1�i�N , togetherwith N eletrons, de�ned through their density �. We assume that the system is in its ground state,whih means that it is a solution of:IN = inf�ETFW (�; fXig); � � 0; p� 2 H1(R); jxj� 2 L1(R); ZR � = N�; (1.1)where the energy ETFW is de�ned by:ETFW (�; fXig) = ZR(p� 0)2 + ZR �p + NXi=1 ZR 12 jx�Xij�(x)dx� 14 ZZR2 �(x)jx� yj�(y)dxdy�Xi<j jXi �Xjj2 : (1.2)The potential � jxj2 is the Coulombi interation potential in one dimension, and the exponent p isstritly greater than one. Note that sine the term R �p is a homogeneous gas approximation of thekineti energy, p should be equal to d+2d = 1+21 = 3 in this one-dimensional model. On the otherhand, if one onsiders that we deal with a three-dimensional model whih is invariant with respetto two variables, then p should be equal to 53 . Both ases are ontained in the present study. Theminimization problem (1.1) with respet to �, with fXig �xed, is alled the eletroni problem:I(fXig) = inf�ETFW (�; fXig); � � 0; p� 2 H1(R); jxj� 2 L1(R); ZR � = N�; (1.3)The global one, also equal to IN = inf�I(fXig); Xi 2 R�; (1.4)is alled the geometry optimization problem. The �rst point is, one an reorder the nulei so thatXi � Xi+1, for all i 2 f1; : : : ; N � 1g. Next, a straightforward adaptation of [1℄ (see also [2℄)shows that the eletroni problem (1.3) is onvex with respet to �, and has a unique solution.Also, adapting the proofs of [7℄ to this one-dimensional ase, one easily shows that the geometryoptimization problem (1.1) has a solution. Our interest lies in showing that in the limit N !1, thesystem onverges (in some sense to be made preise below) to a periodi system. For this purpose,we introdue the following periodi geometry optimization problem:Iper = inf�ETFWper;R (�); R > 0; � � 0; p� 2 H1per(℄0; R[); Z R0 � = 1�; (1.5)



1 INTRODUCTION 3where H1per(℄0; R[) is the set of H1lo funtions whih are periodi of period R, and the energy ETFWper;Ris de�ned by: ETFWper;R (�) = Z R2�R2 (p� 0)2 + Z R2�R2 �p � Z R2�R2 GR(x)�(x)dx+12 Z R2�R2 Z R2�R2 �(x)GR(x� y)�(y)dxdy; (1.6)where the potential GR represents the oulombi interation between neutral R-periodi distributionof harges. Atually, we have: GR(x) =Xk 6=0 R e 2i�kxR4�2k2 : (1.7)Here again, the minimization problem (1.5) may be splitted into eletroni and geometry optimizationproblem, namely:Iper;R = inf�ETFWper;R (�); � � 0; p� 2 H1per(℄0; R[); Z R0 � = 1�; (1.8)Iper = inf�Iper;R ; R > 0�: (1.9)As shown in [2℄, problem (1.8) is onvex with respet to � and has a unique solution �R. Moreover,(1.9), has at least one solution R, by [3℄.Our �rst result is the onvergene in energy:Theorem 1.1 The sequene INN whih models the energy per atom onverges to the periodi energyIper.Next, we show a onvergene result on the eletroni density and on the nulei positions:Theorem 1.2 Let (�N ; fXNi g) be any solution of problem (1.1). Then there exists a sequene(iN)N2N suh that:(i) iN �!1; N � iN �!1;(ii) There exists a solution (�R; R) of (1.5) suh that 8j 2 Z; XNiN+j �XNiN �! jR; and �N(� �XNiN )� �R(� �XNiN ) onverges to 0 uniformly on any ompat subset of R.Note that it will beome lear in the ourse of the proof of Theorem 1.2 (Setion 4) that ondition(i) is in fat a neessary ondition, implied by (ii).Before entering the details of the proofs, let us point out that similar results were obtainedby Gardner and Radin [8, 12℄ in a lassial framework, where the atoms are supposed to interatwith eah other through a Lennard-Jones type two-body potential. In the same spirit, Nijboer andVentevogel [16, 10, 11℄ obtained an analogous result to that of Corollary 5.1 (see below) in this ase.In [12℄, Radin also proves that a ground state on�guration of N partiles, in the limit N ! 1;



2 A PRIORI ESTIMATES 4is indeed a ground state in a loal sense: assuming that the energy of the system S is de�ned bya density of energy e(S), an in�nite system S is a loal ground state if for any interval I and anysystem T equal to S on R n I, we have: ZI e(T ) � ZI e(S):In the present ase, the existene of e, i.e the loal feature of the energy, is not that obvious beauseof the eletrostati terms, although it may be re-written in a loal form (this is in fat what is donein the proof of Theorem 1.1).2 A priori estimatesWe �rst show that two nulei an never have the same position, and study the Euler-Lagrangeequations of problem (1.1).Proposition 2.1 The minimization problem (1.1) has at least one solution (�N ; fXNi g). Withoutloss of generality, we may assume that this solution satis�es XNi � XNi+1, for all 1 � i � N � 1.Moreover, any suh solution satis�es:XN1 < XN2 < � � � < XNN ; andZ XNi+1XNi �N = 1; Z XN1�1 �N = Z 1XNN �N = 12 : (2.1)Proof: Consider any solution of (1.1), whih we denote by (�N ; fXNi g). In partiular, �N is thesolution of the minimization problem with fXNi g �xed. It onsequently satis�es the Euler-Lagrangeequation of the orresponding problem, namely, setting uN = p�N :�u00N + pu2p�1N + �12 NXi=1 jx�XNi j � 12 jxj ? u2N�uN + �uN = 0;where ? denotes the onvolution produt over R, and � is the Lagrange multiplier assoiated tothe onstraint RR �N = N . Using Harnak inequality, one then easily shows that uN never anels.Moreover, sine p�N 2 H1(R); �N is a ontinuous and bounded funtion. Next, di�erentiating thefuntion ETFW with respet to XNi on the set fXN1 < � � � < XNN g, one �nds :�ETFW�XNi (�N ; fXNi g) = 12 ZR sgn(XNi � x)�N (x)dx� 12 NXj=1 sgn(XNi �XNj ); (2.2)where sgn denotes the sign funtion, with the onvention that sgn(0) = 0. Sine XNi < XNi+1,12PNj=1 sgn(XNi �XNj ) = i� N+12 : Hene, one easily �nds that�2ETFW�XNi 2 = �N(XNi ); �2ETFW�XNi �XNj = 0 i 6= j:



2 A PRIORI ESTIMATES 5This in partiular shows that ETFW is stritly onvex with respet to fXNi g. Next, onsider thesystem fYig de�ned by (2.1): it satis�es Yi < Yi+1, and it is a ritial point of ETFW (�N ; �). Hene, itis the unique solution of the onvex variational problem de�ning fXNi g. As a onsequene, XNi = Yi,hene XNi < XNi+1, for all i, and (�N ; fXNi g) satis�es (2.2), for all i. Summing these inequalities, we�nd (2.1). �Studying the Euler-Lagrange equation satis�ed by �N , we de�ne�N = 12�N ? jxj � 12 NXi=1 jx�XNi j � �; (2.3)and thus have: � �u00N + pu2p�1N � �NuN = 0;��00N =PNi=1 ÆXNi � u2N : (2.4)Proposition 2.2 For any (�N = u2N ; fXNi g) solution of (1.1), denoting by �N the funtion de�nedin (2.3), uN 2 C2(R), �N 2 C1(R n fXNi g), and �N admits left and right derivatives at XNi , whihsatisfy: 8i; �0N(XNi �) = ��0N (XNi +) = 12 : (2.5)Moreover, 12�0N 2 + �pN = �N�N + u0N2: (2.6)Proof: The regularity of uN and �N follow from standard ellipti regularity and equations (2.4).Let x 2℄ �1; XN1 [. Aording to (2.4), �0N(x) = R x�1 u2N(t)dt, so that using (2.1), �0N(XN1 �) = 12 .Due to the presene of a Dira mass at XN1 , one immediately dedues that �0N(XN1 +) = �12 : Next,we arry on this integration proedure until XN2 , then XN3 , and so on, to �nally get (2.5). We thenturn to the proof of (2.6): multiplying the �rst equation of (2.4) by u0N and the seond one by �0N ,we substrat the results and get, on eah interval ℄XNi ; XNi+1[:�u00Nu0N + pu2p�1N u0N � �NuNu0N + �0N�00N = u2N�0N ;whih implies: ��12u0N 2 + 12u2pN + 14�0N 2 � 12�Nu2N�0 = 0:Its derivative being identially 0, this funtion is thus a onstant on eah interval ℄XNi ; XNi+1[. More-over, sine u0N ; uN ; �N are ontinuous, and sine, aording to (2.5), (�0N)2 is ontinuous at XNi ,�u0N 2 + u2pN + 12�0N 2� �Nu2N is onstant on R. To show that this onstant is 0, we only need to showthat lim�1(�u0N 2+u2pN + 12�0N 2��Nu2N) = 0. In order to do so, we point out that uN ! 0 at in�nitysine uN 2 H1(R): Next, writing �0N(x) = R x�1 u2N(t)dt, one easily shows that the same propertyholds for �0N . Next, we point out that, for x � y < XN1 ;�N(y)� �N(x) = Z yx Z t�1 u2N(s)dsdt = (y � x) Z x�1 u2N + Z yx (y � t)u2N(t)dt;



2 A PRIORI ESTIMATES 6So that, using the fat that jxju2N 2 L1(R),j�N(y)� �N(x)j � Z y�1 jt� yju2N(t)dt �! 0 as y ! �1:This implies that �N has a limit at in�nity, hene is bounded on a neighborhood of �1. Hene�NuN vanishes at �1, and from the �rst equation of (2.4), u00N 2 is integrable on a neighborhood of�1. Hene, u0N goes to 0 at �1. �Corollary 2.3 Let (�N ; fXNi g) be a solution of (1.1), and �N be the e�etive potential (2.3). Thenwe have:(i) j�0N j � 12 , and this value is reahed only at the XNi s,(ii) �N � � 18(p�1)�1=p;(ii) XNi+1 �XNi � �8(p� 1)�1=p; for all i 2 f1; : : : ; N � 1g:Proof: Sine �N satis�es the seond equation of (2.4), �00N is stritly positive on eah ℄XNi ; XNi+1[,whih means that �0N is stritly inreasing on these intervals, and thus ranges from �12 to 12 mono-tonially. Next, on ℄ � 1; XN1 [, using the fat that �0N(x) = Z x�1 u2N(t)dt, we �nd that �0N rangesmonotonially from 0 to 12 on this interval. Using the same kind of argument on ℄XNN ;1[, this proves(i). We turn to the proof of (ii): uN is a C2 bounded funtion vanishing at in�nity. Hene, thereexists a point x0 2 R whih the maximum of uN . Moreover, at this point, u0N anels and u00N isnon-positive. Hene, �N(x0)�N(x0) � p�pN (x0), and 12�0N 2(x0) + �pN(x0) = �N(x0)�N(x0): It followsthat: (p� 1)�pN(x0) � 12�0N 2(x0): (2.7)Using (i), this implies (ii). Then, using (2.1), we have k�kL1(Xi+1 �Xi) � R Xi+1Xi � = 1; from whih(iii) follows. �Proposition 2.4 Let (u2N ; fXNi g) be a solution of (1.1), and �N the orresponding e�etive potential(2.3). Let (iN )N2N a sequene of indexes (suh that 0 � iN � N). Then, for any L > 0, there existsa onstant CL independent of N suh thatk�NkL1(XNiN�L;XNiN+L) � CL (2.8)Proof: Let JN denote the interval [XNiN � L;XNiN + L℄. The �rst step of the proof is to show thatu0N is bounded. Indeed, let x0 be the point where it reah its maximum (sine u0N �! 0 at in�nity,as the proof of Proposition 2.2 shows, suh a point exists). Then u00N(x0) = 0, so that using (2.4),�N�N = p�pN : Hene, using (2.6), one �nds that(u0N)2(x0) = (1� p)�pN (x0) + 12(�0N)2(x0) � 18 ;



3 CONVERGENCE OF THE ENERGY 7whih proves our laim. We next show (2.8). Suh a bound learly holds for a general CL dependingon N , sine �N has a limit at in�nity and satis�es the seond equation of (2.4). We now assumethat it does not hold uniformly with respet to N . We then have an interval [a; b℄ � JN on whihj�N j �! 1 as N ! 1. Sine �0N is bounded independently of N , either �N �! +1 on JN , or�N �! �1 on the whole interval JN . We now set �N = 12L RJN �N : We then havek�N � �NkL1(JN ) � k�0NkL1(JN ) � 12 :Hene, �N�N = 12�0N 2 + �pN � u0N 2 � (�N � �N)�N is bounded on JN . As a onsequene,�N �! 0 in L1(JN):This also implies that u0N and u00N onverge to 0 in D0(JN). Using (2.4), this implies that �NuN �! 0in D0(JN). A similar result then holds for �N�N . Using (2.6), we then have12�0N 2 � u0N 2 �! 0 in D0(JN ):On the other hand, 2(uNu00N + u0N 2) = �00N �! 0 in D0(JN): Sine we already know that uNu00N =pu2pN � �N�N satis�es this property, we dedue that�0N 2 �! 0 in D0(JN):This ontradits the fat that �00N + ÆXNi = �N �! 0 in L1([XNiN � ";XNiN + "℄) for any 0 < " <(8(p� 1))1=p. �Remark 2.5 Note that in the ase where 1 < p � 2, it is possible to adapt the tehnis used in [15℄to show that there exists a onstant C independent of N suh that j�N j � C on the whole real line.3 Convergene of the energyWe start by showing that the energy per atom does onverge to some real number:Proposition 3.1 Let IN be de�ned by (1.1). Then the sequene INN onverges.Proof: The point is that the sequene IN satis�es:IN+P < IN + IP ; 8N;P 2 N: (3.1)This follows from an easy adaptation of the proofs of [7℄ or [3℄, and onsists roughly in pointing outthat if a system of N + P atoms divides into two parts of respetively N and P atoms, its energiesonverges to the sum of the energy of the subsystems. Then, �xing a P 2 N, we have, for all N 2 N,N = PQ+R, with R < P . Using (3.1), we infer:IN < QIP + IR:Hene, INN < QIPPQ+R + IRN : Letting N go to in�nity, we get: lim sup INN � IPP : We dedue from this thatlim sup INN � lim inf INN . �



3 CONVERGENCE OF THE ENERGY 8We are now in position to prove Theorem 1.1:Proof of Theorem 1.1:We �rst show that:limN!1 INN � Iper; (3.2)where Iper is de�ned in (1.5). Consider R 2 R a solution of Iper, and de�ne Y Ni = (i � N)R; i =1; : : : ; 2N . Consider the density �N = �N solution of the eletroni problem with nulei Y Ni , togetherwith its energy J2N . An easy adaptation of [5, 6℄ shows that J2N2N onverges to Iper;R = Iper. Moreover,the system (�N ; fY Ni g) is a test system for the minimization problem I2N , heneI2N2N � J2N2N �! Iper:This proves (3.2). We now show: limN!1 INN � Iper: (3.3)In order to do so, we re-write the energy IN : let (�N ; fXNi g) be a solution of IN , and �N the assoiatede�etive potential (2.3). Then,IN = ETFW (�N ; fXNi g) = ZR(p�N 0)2 + ZR �pN + 12 ZR(�0N)2;aording to the de�nition of �N . Thus, we have:IN = Z XN1�1 (p�N 0)2 + �pN + 12(�0N)2 + Z +1XNN (p�N 0)2 + �pN + 12(�0N)2+ N�1Xi=1 Z XNi+1XNi (p�N 0)2 + �pN + 12(�0N)2:First, we prove that for any i 2 f1; : : : ; N � 1g,Z XNi+1XNi (p�N 0)2 + �pN + 12(�0N)2 � Iper: (3.4)In order to do so, we introdue Y Ni as the unique point in ℄XNi ; XNi+1[ suh that �0N(Y Ni ) = 0. Itexists sine �0N ranges monotonially from �12 to 12 on ℄XNi ; XNi+1[. We then onsider the funtion �ide�ned by: �i(x) = (�N (x) if XNi � x � Y Ni ;�N (XNi � x) if 2XNi � Y Ni � x � XNi : (3.5)This de�nes a funtion �i on [2XNi � Y Ni ; Y Ni ℄ satisfying periodi boundary onditions. We de�ne �iin the same way, namely�i(x) = (�N(x) if XNi � x � Y Ni ;�N(XNi � x) if 2XNi � Y Ni � x � XNi ; (3.6)



3 CONVERGENCE OF THE ENERGY 9and prolong these two funtions by periodiity. Thanks to (2.5), one then easily �nds that ��i00 =ÆXNi � �i on [2XNi � Y Ni ; Y Ni ℄, together with periodi boundary onditions. This implies, from thede�nition of G2(XNi �Y Ni ) (1.7), that�i(x) = �G2(XNi �Y Ni ) � �i ?[�(Y Ni �XNi );Y Ni �XNi ℄ G2(XNi �Y Ni )�(x +XNi ) + a;where a is a onstant. Thus, the derivatives of these two e�etive potentials are equal, andZ Y NiXNi (p�N 0)2 + �pN + 12(�0N)2 = 12 Z Y Ni2XNi �Y Ni (p�i 0)2 + �pi + 12(�i0)2= 12ETFWper;R (�i) � 12Iper: (3.7)A similar treatment may be done onerning the integral over [Y Ni ; XNi+1℄, whih proves (3.4).

Xi Y2X -Y ii i

Xi Y2X -Y ii i

Figure 1: The symmetrisation proess desribed by equations (3.5) and (3.6): above, the true density�N , and below, the symmetrised one.We then prove that Z XN1�1 (p�N 0)2 + �pN + 12(�0N)2 � 12I1: Consider the funtion �0 de�ned by�0(x) = (�N(x) if x � XN1 ;�N(XN1 � x) if x > XN1 :De�ne �0 in the same way from �N . We then have �000 = ÆXN1 ��0; and �0 onverges to some onstantat in�nity. This implies in partiular that �0 = �00 + a, where a 2 R and �00 = 12�1 ? jxj � 12 jx�XN1 j.As a onsequene, �00 = �000, heneZ XN1�1 (p�N 0)2 + �pN + 12(�0N)2 = 12 ZR(p�1 0)2 + �p1 + 12(�010)2= 12ETFW (�1; XN1 ) � 12I1:



4 CONVERGENCE OF THE DENSITY 10Likewise, Z +1XNN (p�N 0)2 + �pN + 12(�0N)2 � 12I1: Together with (3.4), this shows thatIN � (N � 1)Iper + I1:Dividing this inequality by N and letting N go to in�nity, we �nd (3.2). �4 Convergene of the densityThis setion is devoted to the proof of Theorem 1.2.We know from [3℄ that I1 > Iper. We also know that, Iper;R being de�ned by (1.8), limR!1 Iper;R = I1:This implies in partiular that there exists an R0 > 0 suh that8R > R0; Iper;R > 12(Iper + I1): (4.1)Remark 4.1 Inequality (4.1) also shows that the set of solutions R of problem (1.9) is bounded fromabove.Next, we notie that inequality (3.7) may be improved, sine 12ETFWper;R (�i) � Iper;R is an equality onlyif �i is the solution of Iper;R, due to the strit onvexity of this variational problem [2℄. Thus, denotingby AN the number of indexes i in f1; : : : ; Ng suh that XNi+1 �XNi > R0, we have:IN � AN4 (I1 + Iper) + (N � AN2 � 1)Iper + I1:We thus have INN � Iper + Iper�I1N � I1�Iper4 ANN ; whih implies, aording to Theorem 1.1 and the fatthat I1 > Iper, that AN = o(N); as N �!1: (4.2)Next, denote by BN the number of indexes i 2 f1; : : : ; Ng suh thatlim inf Z XNi+1XNi (p�N 0)2 + �pN + 12(�0N)2 > Iper:For the same reason, BN also satis�es (4.2). Hene, one an �nd a sequene (iN ) of indexes suhthat:(i) iN �!1; N � iN �!1;(ii) XNiN+1 �XNiN � R0,(iii) Z XNiN+1XNiN (p�N 0)2 + �pN + 12(�0N)2 �! Iper:



5 CONSEQUENCES AND EXTENSIONS 11Changing the origin if neessary, we may assume without loss of generality that XNiN = 0. From (iii)and Corollary 2.3, we dedue that p�N is bounded in H1lo \ L1. Using (iii) and Proposition 2.4,similar bounds may be obtained for �N . Hene, we may extrat a subsequene so that (�N ; �N)onverges to some (�1; �1) strongly in all Lplo, and that XNiN+1 onverges to R � R0. We may alsoassume that Y NiN onverges to some r � R. As a onsequene, we have:Z R0 (p�1 0)2 + �p1 + 12(�01)2 � Iper: (4.3)Moreover, equation �00N = �N passes to the limit, together with the fat that �0N(0) = �12 =��0N(XNiN+1) and �0N(Y NiN ) = 0, so that �01(0) = ��01(R) = �12 , and �01(r) = 0. Hene, usingthe same triks as in the proof of Theorem 1.1, we have:Z r0 (p�1 0)2 + �p1 + 12(�01)2 � 12Iper; (4.4)Z Rr (p�1 0)2 + �p1 + 12(�01)2 � 12Iper; (4.5)and equality holds in (4.4), respetively (4.5), only if �1 is the solution �per;2r of the periodi problemIper;2r, respetively the solution �per;2(R�r) of Iper;2(R�r). On the other hand, (4.3) implies that equalitydoes hold in these two equations, showing that �1 = �per;2r on [0; r℄ and �1 = �per;2(R�r) on [r; R℄.Hene, setting u1 = p�1, the funtions (u1; �1) are solutions of the system (2.4) on ℄0; R[, namely� �u001 + pu2p�11 � �1u1 = 0;��001 = �u21: (4.6)Consequently, �1 = �per;2r on [0; r℄, where �per;2r = G2r � G2r ? �per;2r. Hene, (u1; �1) and(p�per;2r; �per;2r) share the same values and the same derivatives at 0, and satisfy the same di�erentialequation on ℄0; R[. Aording to Cauhy-Lipshitz theorem, together with the fat that the funtion(u; �) 7! (pu2p�1 � �u;�u2) is loally lipshitz ontinuous from R2 to R2, this implies that they areequal on the whole interval [0; R℄. Sine the unique point at whih �0per;2r reahes 12 is 2r, this impliesthat R = 2r is a solution of problem Iper, and that �1 = �per;R. Next, we point out that (4.6) is alsosatis�ed on the right of R, so that, still using Cauhy-Lipshitz theorem, (�1; �1) = (�per;R; �per;R)on the right of R. Hene, the unique point satisfying �01 = 12 on the right of R is 2R, whih meansthat XNiN+2 �! 2R as N goes to in�nity. Carrying on this proess on both sides of the interval [0; R℄,we onlude our proof. �5 Consequenes and extensionsWe give in this setion some side-remarks and extension to the Thomas-Fermi (TF) ase. First ofall, an adaptation of the above proof shows that:Corollary 5.1 (a) Let fXigi2Z be a periodi on�guration of nulei, in the sense that Xi+N =Xi+L, for some �xed N;L. Then the minimum of energy per nulei, as de�ned in (5.1) below,is reahed only for the equidistant on�guration (Xi+1 = Xi + LN ).



5 CONSEQUENCES AND EXTENSIONS 12(b) Let (�; fXig) be a system suh that 0 < X1 � X2 � � � � � XN < L, and � satis�es periodiboundary onditions on ℄0; L[. Assume in addition that this system is a minimizer of thefollowing energy: ETFWL (�; fXig) = Z L0 (p� 0)2 + Z L0 �p + 12 Z L0 (�0)2;where � is a solution of ��00 = P ÆXi � � with periodi boundary onditions. Then Xi+1 =Xi + LN , for all i.In (a), the periodi TFW energy is de�ned by (we assume that X0 = 0):~ETFW (�; fXig) = Z L2�L2 (p� 0)2 + Z L2�L2 �p � Xjjj<N2 Z L2�L2 GL(x�Xj)�(x)dx+12 Z L2�L2 Z L2�L2 �(x)GL(x� y)�(y)dxdy + 12 Xjij;jjj<N2 GL(Xi �Xj);where GL is de�ned by (1.7), and the eletroni ground state is:INper;L = inf� ~ETFW (�; fXig); � � 0; p� 2 H1per(℄0; L[); Z L0 � = N�; (5.1)and the energy per nulei is equal to INper;LN .
Figure 2: Two periodi distributions of nulei, with N = 9. Corollary 5.1 states that the above onehas stritly lower energy than the other.Using similar tehniques as for the TFW ase, one an show that Corollary 5.1 holds in the TFase, where one forgets the term R (p� 0)2 in the energy. On the ontrary, Theorem 1.2 does not holdin this ase sine problem (1.1) has no solution [9℄. More preisely, IN = NI1 in this ase, and thisvalue is reahed only in the limit Xi+1 �Xi !1, for all i. The proof is more simple in fat, sine(2.1) is still valid, and (2.4) reads:( ��00 + �1p� 1p�1� 1p�1 =PNi=1 ÆXi ;� = p�p�1:And the analogue of (2.6) is �12�02 + (p� 1)�1p�� pp�1 = a, where a is a onstant (not neessarily 0).Hene, thanks to the fat that �02 has a �xed value at Xi, so does �, and we may apply Cauhy-Lipshitz theorem to show that the on�guration is indeed periodi with one atom per ell.
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