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tWe study a one-dimensional mole
ular system 
onsisting of N nu
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trons, mod-eled by a quantum me
hani
al model, namely the Thomas-Fermi-von Weizsä
ker (TFW) model.For ea
h N �xed, we 
onsider the ground state of this system. Then we investigate its behaviorin the limit N ! 1. We show that the system 
onverges to a periodi
 system, and that itsenergy per atom 
onverges to the energy of a periodi
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hed for the periodi
 
on�guration with one atom per 
ell.
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1 INTRODUCTION 21 Introdu
tionIt is an unsolved problem in the study of matter to understand why matter is in a 
rystalline stateat low temperature [14℄. So far as we know, this �
rystal problem� has been ta
kled by Radin [13, 8℄in a 
lassi
al framework and in one dimension. Our aim here is to address the same kind of problemwhen we take into a

ount the quantum feature of the ele
trons.We 
onsider a set of N identi
al pointwise nu
lei, of 
harge +1 and positions fXig1�i�N , togetherwith N ele
trons, de�ned through their density �. We assume that the system is in its ground state,whi
h means that it is a solution of:IN = inf�ETFW (�; fXig); � � 0; p� 2 H1(R); jxj� 2 L1(R); ZR � = N�; (1.1)where the energy ETFW is de�ned by:ETFW (�; fXig) = ZR(p� 0)2 + ZR �p + NXi=1 ZR 12 jx�Xij�(x)dx� 14 ZZR2 �(x)jx� yj�(y)dxdy�Xi<j jXi �Xjj2 : (1.2)The potential � jxj2 is the Coulombi
 intera
tion potential in one dimension, and the exponent p isstri
tly greater than one. Note that sin
e the term R �p is a homogeneous gas approximation of thekineti
 energy, p should be equal to d+2d = 1+21 = 3 in this one-dimensional model. On the otherhand, if one 
onsiders that we deal with a three-dimensional model whi
h is invariant with respe
tto two variables, then p should be equal to 53 . Both 
ases are 
ontained in the present study. Theminimization problem (1.1) with respe
t to �, with fXig �xed, is 
alled the ele
troni
 problem:I(fXig) = inf�ETFW (�; fXig); � � 0; p� 2 H1(R); jxj� 2 L1(R); ZR � = N�; (1.3)The global one, also equal to IN = inf�I(fXig); Xi 2 R�; (1.4)is 
alled the geometry optimization problem. The �rst point is, one 
an reorder the nu
lei so thatXi � Xi+1, for all i 2 f1; : : : ; N � 1g. Next, a straightforward adaptation of [1℄ (see also [2℄)shows that the ele
troni
 problem (1.3) is 
onvex with respe
t to �, and has a unique solution.Also, adapting the proofs of [7℄ to this one-dimensional 
ase, one easily shows that the geometryoptimization problem (1.1) has a solution. Our interest lies in showing that in the limit N !1, thesystem 
onverges (in some sense to be made pre
ise below) to a periodi
 system. For this purpose,we introdu
e the following periodi
 geometry optimization problem:Iper = inf�ETFWper;R (�); R > 0; � � 0; p� 2 H1per(℄0; R[); Z R0 � = 1�; (1.5)



1 INTRODUCTION 3where H1per(℄0; R[) is the set of H1lo
 fun
tions whi
h are periodi
 of period R, and the energy ETFWper;Ris de�ned by: ETFWper;R (�) = Z R2�R2 (p� 0)2 + Z R2�R2 �p � Z R2�R2 GR(x)�(x)dx+12 Z R2�R2 Z R2�R2 �(x)GR(x� y)�(y)dxdy; (1.6)where the potential GR represents the 
oulombi
 intera
tion between neutral R-periodi
 distributionof 
harges. A
tually, we have: GR(x) =Xk 6=0 R e 2i�kxR4�2k2 : (1.7)Here again, the minimization problem (1.5) may be splitted into ele
troni
 and geometry optimizationproblem, namely:Iper;R = inf�ETFWper;R (�); � � 0; p� 2 H1per(℄0; R[); Z R0 � = 1�; (1.8)Iper = inf�Iper;R ; R > 0�: (1.9)As shown in [2℄, problem (1.8) is 
onvex with respe
t to � and has a unique solution �R. Moreover,(1.9), has at least one solution R, by [3℄.Our �rst result is the 
onvergen
e in energy:Theorem 1.1 The sequen
e INN whi
h models the energy per atom 
onverges to the periodi
 energyIper.Next, we show a 
onvergen
e result on the ele
troni
 density and on the nu
lei positions:Theorem 1.2 Let (�N ; fXNi g) be any solution of problem (1.1). Then there exists a sequen
e(iN)N2N su
h that:(i) iN �!1; N � iN �!1;(ii) There exists a solution (�R; R) of (1.5) su
h that 8j 2 Z; XNiN+j �XNiN �! jR; and �N(� �XNiN )� �R(� �XNiN ) 
onverges to 0 uniformly on any 
ompa
t subset of R.Note that it will be
ome 
lear in the 
ourse of the proof of Theorem 1.2 (Se
tion 4) that 
ondition(i) is in fa
t a ne
essary 
ondition, implied by (ii).Before entering the details of the proofs, let us point out that similar results were obtainedby Gardner and Radin [8, 12℄ in a 
lassi
al framework, where the atoms are supposed to intera
twith ea
h other through a Lennard-Jones type two-body potential. In the same spirit, Nijboer andVentevogel [16, 10, 11℄ obtained an analogous result to that of Corollary 5.1 (see below) in this 
ase.In [12℄, Radin also proves that a ground state 
on�guration of N parti
les, in the limit N ! 1;



2 A PRIORI ESTIMATES 4is indeed a ground state in a lo
al sense: assuming that the energy of the system S is de�ned bya density of energy e(S), an in�nite system S is a lo
al ground state if for any interval I and anysystem T equal to S on R n I, we have: ZI e(T ) � ZI e(S):In the present 
ase, the existen
e of e, i.e the lo
al feature of the energy, is not that obvious be
auseof the ele
trostati
 terms, although it may be re-written in a lo
al form (this is in fa
t what is donein the proof of Theorem 1.1).2 A priori estimatesWe �rst show that two nu
lei 
an never have the same position, and study the Euler-Lagrangeequations of problem (1.1).Proposition 2.1 The minimization problem (1.1) has at least one solution (�N ; fXNi g). Withoutloss of generality, we may assume that this solution satis�es XNi � XNi+1, for all 1 � i � N � 1.Moreover, any su
h solution satis�es:XN1 < XN2 < � � � < XNN ; andZ XNi+1XNi �N = 1; Z XN1�1 �N = Z 1XNN �N = 12 : (2.1)Proof: Consider any solution of (1.1), whi
h we denote by (�N ; fXNi g). In parti
ular, �N is thesolution of the minimization problem with fXNi g �xed. It 
onsequently satis�es the Euler-Lagrangeequation of the 
orresponding problem, namely, setting uN = p�N :�u00N + pu2p�1N + �12 NXi=1 jx�XNi j � 12 jxj ? u2N�uN + �uN = 0;where ? denotes the 
onvolution produ
t over R, and � is the Lagrange multiplier asso
iated tothe 
onstraint RR �N = N . Using Harna
k inequality, one then easily shows that uN never 
an
els.Moreover, sin
e p�N 2 H1(R); �N is a 
ontinuous and bounded fun
tion. Next, di�erentiating thefun
tion ETFW with respe
t to XNi on the set fXN1 < � � � < XNN g, one �nds :�ETFW�XNi (�N ; fXNi g) = 12 ZR sgn(XNi � x)�N (x)dx� 12 NXj=1 sgn(XNi �XNj ); (2.2)where sgn denotes the sign fun
tion, with the 
onvention that sgn(0) = 0. Sin
e XNi < XNi+1,12PNj=1 sgn(XNi �XNj ) = i� N+12 : Hen
e, one easily �nds that�2ETFW�XNi 2 = �N(XNi ); �2ETFW�XNi �XNj = 0 i 6= j:



2 A PRIORI ESTIMATES 5This in parti
ular shows that ETFW is stri
tly 
onvex with respe
t to fXNi g. Next, 
onsider thesystem fYig de�ned by (2.1): it satis�es Yi < Yi+1, and it is a 
riti
al point of ETFW (�N ; �). Hen
e, itis the unique solution of the 
onvex variational problem de�ning fXNi g. As a 
onsequen
e, XNi = Yi,hen
e XNi < XNi+1, for all i, and (�N ; fXNi g) satis�es (2.2), for all i. Summing these inequalities, we�nd (2.1). �Studying the Euler-Lagrange equation satis�ed by �N , we de�ne�N = 12�N ? jxj � 12 NXi=1 jx�XNi j � �; (2.3)and thus have: � �u00N + pu2p�1N � �NuN = 0;��00N =PNi=1 ÆXNi � u2N : (2.4)Proposition 2.2 For any (�N = u2N ; fXNi g) solution of (1.1), denoting by �N the fun
tion de�nedin (2.3), uN 2 C2(R), �N 2 C1(R n fXNi g), and �N admits left and right derivatives at XNi , whi
hsatisfy: 8i; �0N(XNi �) = ��0N (XNi +) = 12 : (2.5)Moreover, 12�0N 2 + �pN = �N�N + u0N2: (2.6)Proof: The regularity of uN and �N follow from standard ellipti
 regularity and equations (2.4).Let x 2℄ �1; XN1 [. A

ording to (2.4), �0N(x) = R x�1 u2N(t)dt, so that using (2.1), �0N(XN1 �) = 12 .Due to the presen
e of a Dira
 mass at XN1 , one immediately dedu
es that �0N(XN1 +) = �12 : Next,we 
arry on this integration pro
edure until XN2 , then XN3 , and so on, to �nally get (2.5). We thenturn to the proof of (2.6): multiplying the �rst equation of (2.4) by u0N and the se
ond one by �0N ,we substra
t the results and get, on ea
h interval ℄XNi ; XNi+1[:�u00Nu0N + pu2p�1N u0N � �NuNu0N + �0N�00N = u2N�0N ;whi
h implies: ��12u0N 2 + 12u2pN + 14�0N 2 � 12�Nu2N�0 = 0:Its derivative being identi
ally 0, this fun
tion is thus a 
onstant on ea
h interval ℄XNi ; XNi+1[. More-over, sin
e u0N ; uN ; �N are 
ontinuous, and sin
e, a

ording to (2.5), (�0N)2 is 
ontinuous at XNi ,�u0N 2 + u2pN + 12�0N 2� �Nu2N is 
onstant on R. To show that this 
onstant is 0, we only need to showthat lim�1(�u0N 2+u2pN + 12�0N 2��Nu2N) = 0. In order to do so, we point out that uN ! 0 at in�nitysin
e uN 2 H1(R): Next, writing �0N(x) = R x�1 u2N(t)dt, one easily shows that the same propertyholds for �0N . Next, we point out that, for x � y < XN1 ;�N(y)� �N(x) = Z yx Z t�1 u2N(s)dsdt = (y � x) Z x�1 u2N + Z yx (y � t)u2N(t)dt;



2 A PRIORI ESTIMATES 6So that, using the fa
t that jxju2N 2 L1(R),j�N(y)� �N(x)j � Z y�1 jt� yju2N(t)dt �! 0 as y ! �1:This implies that �N has a limit at in�nity, hen
e is bounded on a neighborhood of �1. Hen
e�NuN vanishes at �1, and from the �rst equation of (2.4), u00N 2 is integrable on a neighborhood of�1. Hen
e, u0N goes to 0 at �1. �Corollary 2.3 Let (�N ; fXNi g) be a solution of (1.1), and �N be the e�e
tive potential (2.3). Thenwe have:(i) j�0N j � 12 , and this value is rea
hed only at the XNi s,(ii) �N � � 18(p�1)�1=p;(ii) XNi+1 �XNi � �8(p� 1)�1=p; for all i 2 f1; : : : ; N � 1g:Proof: Sin
e �N satis�es the se
ond equation of (2.4), �00N is stri
tly positive on ea
h ℄XNi ; XNi+1[,whi
h means that �0N is stri
tly in
reasing on these intervals, and thus ranges from �12 to 12 mono-toni
ally. Next, on ℄ � 1; XN1 [, using the fa
t that �0N(x) = Z x�1 u2N(t)dt, we �nd that �0N rangesmonotoni
ally from 0 to 12 on this interval. Using the same kind of argument on ℄XNN ;1[, this proves(i). We turn to the proof of (ii): uN is a C2 bounded fun
tion vanishing at in�nity. Hen
e, thereexists a point x0 2 R whi
h the maximum of uN . Moreover, at this point, u0N 
an
els and u00N isnon-positive. Hen
e, �N(x0)�N(x0) � p�pN (x0), and 12�0N 2(x0) + �pN(x0) = �N(x0)�N(x0): It followsthat: (p� 1)�pN(x0) � 12�0N 2(x0): (2.7)Using (i), this implies (ii). Then, using (2.1), we have k�kL1(Xi+1 �Xi) � R Xi+1Xi � = 1; from whi
h(iii) follows. �Proposition 2.4 Let (u2N ; fXNi g) be a solution of (1.1), and �N the 
orresponding e�e
tive potential(2.3). Let (iN )N2N a sequen
e of indexes (su
h that 0 � iN � N). Then, for any L > 0, there existsa 
onstant CL independent of N su
h thatk�NkL1(XNiN�L;XNiN+L) � CL (2.8)Proof: Let JN denote the interval [XNiN � L;XNiN + L℄. The �rst step of the proof is to show thatu0N is bounded. Indeed, let x0 be the point where it rea
h its maximum (sin
e u0N �! 0 at in�nity,as the proof of Proposition 2.2 shows, su
h a point exists). Then u00N(x0) = 0, so that using (2.4),�N�N = p�pN : Hen
e, using (2.6), one �nds that(u0N)2(x0) = (1� p)�pN (x0) + 12(�0N)2(x0) � 18 ;



3 CONVERGENCE OF THE ENERGY 7whi
h proves our 
laim. We next show (2.8). Su
h a bound 
learly holds for a general CL dependingon N , sin
e �N has a limit at in�nity and satis�es the se
ond equation of (2.4). We now assumethat it does not hold uniformly with respe
t to N . We then have an interval [a; b℄ � JN on whi
hj�N j �! 1 as N ! 1. Sin
e �0N is bounded independently of N , either �N �! +1 on JN , or�N �! �1 on the whole interval JN . We now set �N = 12L RJN �N : We then havek�N � �NkL1(JN ) � k�0NkL1(JN ) � 12 :Hen
e, �N�N = 12�0N 2 + �pN � u0N 2 � (�N � �N)�N is bounded on JN . As a 
onsequen
e,�N �! 0 in L1(JN):This also implies that u0N and u00N 
onverge to 0 in D0(JN). Using (2.4), this implies that �NuN �! 0in D0(JN). A similar result then holds for �N�N . Using (2.6), we then have12�0N 2 � u0N 2 �! 0 in D0(JN ):On the other hand, 2(uNu00N + u0N 2) = �00N �! 0 in D0(JN): Sin
e we already know that uNu00N =pu2pN � �N�N satis�es this property, we dedu
e that�0N 2 �! 0 in D0(JN):This 
ontradi
ts the fa
t that �00N + ÆXNi = �N �! 0 in L1([XNiN � ";XNiN + "℄) for any 0 < " <(8(p� 1))1=p. �Remark 2.5 Note that in the 
ase where 1 < p � 2, it is possible to adapt the te
hni
s used in [15℄to show that there exists a 
onstant C independent of N su
h that j�N j � C on the whole real line.3 Convergen
e of the energyWe start by showing that the energy per atom does 
onverge to some real number:Proposition 3.1 Let IN be de�ned by (1.1). Then the sequen
e INN 
onverges.Proof: The point is that the sequen
e IN satis�es:IN+P < IN + IP ; 8N;P 2 N: (3.1)This follows from an easy adaptation of the proofs of [7℄ or [3℄, and 
onsists roughly in pointing outthat if a system of N + P atoms divides into two parts of respe
tively N and P atoms, its energies
onverges to the sum of the energy of the subsystems. Then, �xing a P 2 N, we have, for all N 2 N,N = PQ+R, with R < P . Using (3.1), we infer:IN < QIP + IR:Hen
e, INN < QIPPQ+R + IRN : Letting N go to in�nity, we get: lim sup INN � IPP : We dedu
e from this thatlim sup INN � lim inf INN . �



3 CONVERGENCE OF THE ENERGY 8We are now in position to prove Theorem 1.1:Proof of Theorem 1.1:We �rst show that:limN!1 INN � Iper; (3.2)where Iper is de�ned in (1.5). Consider R 2 R a solution of Iper, and de�ne Y Ni = (i � N)R; i =1; : : : ; 2N . Consider the density �N = �N solution of the ele
troni
 problem with nu
lei Y Ni , togetherwith its energy J2N . An easy adaptation of [5, 6℄ shows that J2N2N 
onverges to Iper;R = Iper. Moreover,the system (�N ; fY Ni g) is a test system for the minimization problem I2N , hen
eI2N2N � J2N2N �! Iper:This proves (3.2). We now show: limN!1 INN � Iper: (3.3)In order to do so, we re-write the energy IN : let (�N ; fXNi g) be a solution of IN , and �N the asso
iatede�e
tive potential (2.3). Then,IN = ETFW (�N ; fXNi g) = ZR(p�N 0)2 + ZR �pN + 12 ZR(�0N)2;a

ording to the de�nition of �N . Thus, we have:IN = Z XN1�1 (p�N 0)2 + �pN + 12(�0N)2 + Z +1XNN (p�N 0)2 + �pN + 12(�0N)2+ N�1Xi=1 Z XNi+1XNi (p�N 0)2 + �pN + 12(�0N)2:First, we prove that for any i 2 f1; : : : ; N � 1g,Z XNi+1XNi (p�N 0)2 + �pN + 12(�0N)2 � Iper: (3.4)In order to do so, we introdu
e Y Ni as the unique point in ℄XNi ; XNi+1[ su
h that �0N(Y Ni ) = 0. Itexists sin
e �0N ranges monotoni
ally from �12 to 12 on ℄XNi ; XNi+1[. We then 
onsider the fun
tion �ide�ned by: �i(x) = (�N (x) if XNi � x � Y Ni ;�N (XNi � x) if 2XNi � Y Ni � x � XNi : (3.5)This de�nes a fun
tion �i on [2XNi � Y Ni ; Y Ni ℄ satisfying periodi
 boundary 
onditions. We de�ne �iin the same way, namely�i(x) = (�N(x) if XNi � x � Y Ni ;�N(XNi � x) if 2XNi � Y Ni � x � XNi ; (3.6)



3 CONVERGENCE OF THE ENERGY 9and prolong these two fun
tions by periodi
ity. Thanks to (2.5), one then easily �nds that ��i00 =ÆXNi � �i on [2XNi � Y Ni ; Y Ni ℄, together with periodi
 boundary 
onditions. This implies, from thede�nition of G2(XNi �Y Ni ) (1.7), that�i(x) = �G2(XNi �Y Ni ) � �i ?[�(Y Ni �XNi );Y Ni �XNi ℄ G2(XNi �Y Ni )�(x +XNi ) + a;where a is a 
onstant. Thus, the derivatives of these two e�e
tive potentials are equal, andZ Y NiXNi (p�N 0)2 + �pN + 12(�0N)2 = 12 Z Y Ni2XNi �Y Ni (p�i 0)2 + �pi + 12(�i0)2= 12ETFWper;R (�i) � 12Iper: (3.7)A similar treatment may be done 
on
erning the integral over [Y Ni ; XNi+1℄, whi
h proves (3.4).

Xi Y2X -Y ii i

Xi Y2X -Y ii i

Figure 1: The symmetrisation pro
ess des
ribed by equations (3.5) and (3.6): above, the true density�N , and below, the symmetrised one.We then prove that Z XN1�1 (p�N 0)2 + �pN + 12(�0N)2 � 12I1: Consider the fun
tion �0 de�ned by�0(x) = (�N(x) if x � XN1 ;�N(XN1 � x) if x > XN1 :De�ne �0 in the same way from �N . We then have �000 = ÆXN1 ��0; and �0 
onverges to some 
onstantat in�nity. This implies in parti
ular that �0 = �00 + a, where a 2 R and �00 = 12�1 ? jxj � 12 jx�XN1 j.As a 
onsequen
e, �00 = �000, hen
eZ XN1�1 (p�N 0)2 + �pN + 12(�0N)2 = 12 ZR(p�1 0)2 + �p1 + 12(�010)2= 12ETFW (�1; XN1 ) � 12I1:



4 CONVERGENCE OF THE DENSITY 10Likewise, Z +1XNN (p�N 0)2 + �pN + 12(�0N)2 � 12I1: Together with (3.4), this shows thatIN � (N � 1)Iper + I1:Dividing this inequality by N and letting N go to in�nity, we �nd (3.2). �4 Convergen
e of the densityThis se
tion is devoted to the proof of Theorem 1.2.We know from [3℄ that I1 > Iper. We also know that, Iper;R being de�ned by (1.8), limR!1 Iper;R = I1:This implies in parti
ular that there exists an R0 > 0 su
h that8R > R0; Iper;R > 12(Iper + I1): (4.1)Remark 4.1 Inequality (4.1) also shows that the set of solutions R of problem (1.9) is bounded fromabove.Next, we noti
e that inequality (3.7) may be improved, sin
e 12ETFWper;R (�i) � Iper;R is an equality onlyif �i is the solution of Iper;R, due to the stri
t 
onvexity of this variational problem [2℄. Thus, denotingby AN the number of indexes i in f1; : : : ; Ng su
h that XNi+1 �XNi > R0, we have:IN � AN4 (I1 + Iper) + (N � AN2 � 1)Iper + I1:We thus have INN � Iper + Iper�I1N � I1�Iper4 ANN ; whi
h implies, a

ording to Theorem 1.1 and the fa
tthat I1 > Iper, that AN = o(N); as N �!1: (4.2)Next, denote by BN the number of indexes i 2 f1; : : : ; Ng su
h thatlim inf Z XNi+1XNi (p�N 0)2 + �pN + 12(�0N)2 > Iper:For the same reason, BN also satis�es (4.2). Hen
e, one 
an �nd a sequen
e (iN ) of indexes su
hthat:(i) iN �!1; N � iN �!1;(ii) XNiN+1 �XNiN � R0,(iii) Z XNiN+1XNiN (p�N 0)2 + �pN + 12(�0N)2 �! Iper:



5 CONSEQUENCES AND EXTENSIONS 11Changing the origin if ne
essary, we may assume without loss of generality that XNiN = 0. From (iii)and Corollary 2.3, we dedu
e that p�N is bounded in H1lo
 \ L1. Using (iii) and Proposition 2.4,similar bounds may be obtained for �N . Hen
e, we may extra
t a subsequen
e so that (�N ; �N)
onverges to some (�1; �1) strongly in all Lplo
, and that XNiN+1 
onverges to R � R0. We may alsoassume that Y NiN 
onverges to some r � R. As a 
onsequen
e, we have:Z R0 (p�1 0)2 + �p1 + 12(�01)2 � Iper: (4.3)Moreover, equation �00N = �N passes to the limit, together with the fa
t that �0N(0) = �12 =��0N(XNiN+1) and �0N(Y NiN ) = 0, so that �01(0) = ��01(R) = �12 , and �01(r) = 0. Hen
e, usingthe same tri
ks as in the proof of Theorem 1.1, we have:Z r0 (p�1 0)2 + �p1 + 12(�01)2 � 12Iper; (4.4)Z Rr (p�1 0)2 + �p1 + 12(�01)2 � 12Iper; (4.5)and equality holds in (4.4), respe
tively (4.5), only if �1 is the solution �per;2r of the periodi
 problemIper;2r, respe
tively the solution �per;2(R�r) of Iper;2(R�r). On the other hand, (4.3) implies that equalitydoes hold in these two equations, showing that �1 = �per;2r on [0; r℄ and �1 = �per;2(R�r) on [r; R℄.Hen
e, setting u1 = p�1, the fun
tions (u1; �1) are solutions of the system (2.4) on ℄0; R[, namely� �u001 + pu2p�11 � �1u1 = 0;��001 = �u21: (4.6)Consequently, �1 = �per;2r on [0; r℄, where �per;2r = G2r � G2r ? �per;2r. Hen
e, (u1; �1) and(p�per;2r; �per;2r) share the same values and the same derivatives at 0, and satisfy the same di�erentialequation on ℄0; R[. A

ording to Cau
hy-Lips
hitz theorem, together with the fa
t that the fun
tion(u; �) 7! (pu2p�1 � �u;�u2) is lo
ally lips
hitz 
ontinuous from R2 to R2, this implies that they areequal on the whole interval [0; R℄. Sin
e the unique point at whi
h �0per;2r rea
hes 12 is 2r, this impliesthat R = 2r is a solution of problem Iper, and that �1 = �per;R. Next, we point out that (4.6) is alsosatis�ed on the right of R, so that, still using Cau
hy-Lips
hitz theorem, (�1; �1) = (�per;R; �per;R)on the right of R. Hen
e, the unique point satisfying �01 = 12 on the right of R is 2R, whi
h meansthat XNiN+2 �! 2R as N goes to in�nity. Carrying on this pro
ess on both sides of the interval [0; R℄,we 
on
lude our proof. �5 Consequen
es and extensionsWe give in this se
tion some side-remarks and extension to the Thomas-Fermi (TF) 
ase. First ofall, an adaptation of the above proof shows that:Corollary 5.1 (a) Let fXigi2Z be a periodi
 
on�guration of nu
lei, in the sense that Xi+N =Xi+L, for some �xed N;L. Then the minimum of energy per nu
lei, as de�ned in (5.1) below,is rea
hed only for the equidistant 
on�guration (Xi+1 = Xi + LN ).



5 CONSEQUENCES AND EXTENSIONS 12(b) Let (�; fXig) be a system su
h that 0 < X1 � X2 � � � � � XN < L, and � satis�es periodi
boundary 
onditions on ℄0; L[. Assume in addition that this system is a minimizer of thefollowing energy: ETFWL (�; fXig) = Z L0 (p� 0)2 + Z L0 �p + 12 Z L0 (�0)2;where � is a solution of ��00 = P ÆXi � � with periodi
 boundary 
onditions. Then Xi+1 =Xi + LN , for all i.In (a), the periodi
 TFW energy is de�ned by (we assume that X0 = 0):~ETFW (�; fXig) = Z L2�L2 (p� 0)2 + Z L2�L2 �p � Xjjj<N2 Z L2�L2 GL(x�Xj)�(x)dx+12 Z L2�L2 Z L2�L2 �(x)GL(x� y)�(y)dxdy + 12 Xjij;jjj<N2 GL(Xi �Xj);where GL is de�ned by (1.7), and the ele
troni
 ground state is:INper;L = inf� ~ETFW (�; fXig); � � 0; p� 2 H1per(℄0; L[); Z L0 � = N�; (5.1)and the energy per nu
lei is equal to INper;LN .
Figure 2: Two periodi
 distributions of nu
lei, with N = 9. Corollary 5.1 states that the above onehas stri
tly lower energy than the other.Using similar te
hniques as for the TFW 
ase, one 
an show that Corollary 5.1 holds in the TF
ase, where one forgets the term R (p� 0)2 in the energy. On the 
ontrary, Theorem 1.2 does not holdin this 
ase sin
e problem (1.1) has no solution [9℄. More pre
isely, IN = NI1 in this 
ase, and thisvalue is rea
hed only in the limit Xi+1 �Xi !1, for all i. The proof is more simple in fa
t, sin
e(2.1) is still valid, and (2.4) reads:( ��00 + �1p� 1p�1� 1p�1 =PNi=1 ÆXi ;� = p�p�1:And the analogue of (2.6) is �12�02 + (p� 1)�1p�� pp�1 = a, where a is a 
onstant (not ne
essarily 0).Hen
e, thanks to the fa
t that �02 has a �xed value at Xi, so does �, and we may apply Cau
hy-Lips
hitz theorem to show that the 
on�guration is indeed periodi
 with one atom per 
ell.
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