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Abstract

We study a one-dimensional molecular system consisting of N nuclei and N electrons, mod-
eled by a quantum mechanical model, namely the Thomas-Fermi-von Weizsécker (TFW) model.
For each N fixed, we consider the ground state of this system. Then we investigate its behavior
in the limit N — oco. We show that the system converges to a periodic system, and that its
energy per atom converges to the energy of a periodic TFW model. This implies that for any
periodic configuration of nuclei (with an arbitrary number n of identical atoms per cell), the
minimum of energy per atom is reached for the periodic configuration with one atom per cell.
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1 Introduction

It is an unsolved problem in the study of matter to understand why matter is in a crystalline state
at low temperature [14]. So far as we know, this “crystal problem” has been tackled by Radin [13, §]
in a classical framework and in one dimension. Our aim here is to address the same kind of problem
when we take into account the quantum feature of the electrons.

We consider a set of N identical pointwise nuclei, of charge +1 and positions {X;}1<;<n, together
with N electrons, defined through their density p. We assume that the system is in its ground state,
which means that it is a solution of:

Iy = inf{ETFW(p, {Xi}), p>0, /p€ H'(R), |z[p € L'(R), /Rp = N}, (1.1)

where the energy ET*W is defined by:

BTy = [ (e /puZ/ Lo = Xilp(a)do
= 1 o = slototsay - S (12)

1<j
The potential —%' is the Coulombic interaction potential in one dimension, and the exponent p is
strictly greater than one. Note that since the term [ p? is a homogeneous gas approximation of the
kinetic energy, p should be equal to ‘%2 = % = 3 in this one-dimensional model. On the other
hand, if one considers that we deal with a three dimensional model which is invariant with respect
to two variables, then p should be equal to 2 3. Both cases are contained in the present study. The

minimization problem (1.1) with respect to p, with {X;} fixed, is called the electronic problem:

f({Xm=inf{ETFW<p,{Xz~}>, p>0, Jp e H'R), [t]p € I'(R), /R pzN}, (1.3)

The global one, also equal to

Iy = inf{]({Xi}), X; € R}, (1.4)

is called the geometry optimization problem. The first point is, one can reorder the nuclei so that
X, < Xjq, forall ¢ € {1,...,N —1}. Next, a straightforward adaptation of [1] (see also [2])
shows that the electronic problem (1.3) is convex with respect to p, and has a unique solution.
Also, adapting the proofs of [7| to this one-dimensional case, one easily shows that the geometry
optimization problem (1.1) has a solution. Our interest lies in showing that in the limit N — oo, the
system converges (in some sense to be made precise below) to a periodic system. For this purpose,
we introduce the following periodic geometry optimization problem:

R
fperzinf{E,Z;ng(p), R>0, p>0, +/peH,(0,R]), /p:1}, (1.5)
0
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TFW
Eper,R

where H!, (]0, R[) is the set of H}

per loc

is defined by:

functions which are periodic of period R, and the energy

Eprl(p) = /_ i(ﬁ N+ /_ ip‘”— /_ _ Gr(z)p(z)dx

= / / o) Gl — y)ply)dady, (L6)

where the potential G represents the coulombic interaction between neutral R-periodic distribution
of charges. Actually, we have:

2irkx

e R
k#0

Here again, the minimization problem (1.5) may be splitted into electronic and geometry optimization
problem, namely:

R
IPQT,R = lnf{Ez;f,VI‘%/(p)a P Z 07 \/ﬁ € ngr(]()? RD? / p= 1}7 (18)
0

Lper = inf{f,m,R . R> 0}. (1.9)

As shown in [2], problem (1.8) is convex with respect to p and has a unique solution pp. Moreover,
(1.9), has at least one solution R, by [3].
Our first result is the convergence in energy:

Theorem 1.1 The sequence IWN which models the energy per atom converges to the periodic energy

Ly
Next, we show a convergence result on the electronic density and on the nuclei positions:

Theorem 1.2 Let (py,{XN}) be any solution of problem (1.1). Then there exists a sequence
(in)Nen such that:

(Z')iNHOO, N—’iN—>OO,

(ii) There exists a solution (pr, R) of (1.5) such thatVj € Z, X[\ ., — X\ — jR, and py(- —

X)) = pr(- — X[Y) converges to 0 uniformly on any compact subset of R.

Note that it will become clear in the course of the proof of Theorem 1.2 (Section 4) that condition
(i) is in fact a necessary condition, implied by (ii).

Before entering the details of the proofs, let us point out that similar results were obtained
by Gardner and Radin [8, 12| in a classical framework, where the atoms are supposed to interact
with each other through a Lennard-Jones type two-body potential. In the same spirit, Nijboer and
Ventevogel [16, 10, 11] obtained an analogous result to that of Corollary 5.1 (see below) in this case.
In [12|, Radin also proves that a ground state configuration of N particles, in the limit N — oo,
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is indeed a ground state in a local sense: assuming that the energy of the system S is defined by
a density of energy e(S), an infinite system S is a local ground state if for any interval I and any

system T equal to S on R\ I, we have:
/e(T) > /6(8).
I I

In the present case, the existence of e, i.e the local feature of the energy, is not that obvious because
of the electrostatic terms, although it may be re-written in a local form (this is in fact what is done
in the proof of Theorem 1.1).

2 A priori estimates

We first show that two nuclei can never have the same position, and study the Euler-Lagrange
equations of problem (1.1).

Proposition 2.1 The minimization problem (1.1) has at least one solution (pn,{X}N}). Without
loss of generality, we may assume that this solution satisfies XV < Xﬁ_l, foralll <1 < N —1.
Moreover, any such solution satisfies:

XN <XV <. <Xy, and

XN, XN 00 1
/XN pn =1, / pN:/XNpNZE' (2.1)
i —0o0 N

Proof: Consider any solution of (1.1), which we denote by (py,{X'}). In particular, py is the
solution of the minimization problem with { XV} fixed. It consequently satisfies the Euler-Lagrange
equation of the corresponding problem, namely, setting uy = \/p,:

N
1 1
—uy Fpud (5 E lz — XN - §|CU|*U?V>UN+9UN:07
i=1

where * denotes the convolution product over R, and 6 is the Lagrange multiplier associated to
the constraint fR py = N. Using Harnack inequality, one then easily shows that uy never cancels.
Moreover, since \/p, € H'(R), py is a continuous and bounded function. Next, differentiating the
function E7W with respect to XV on the set { X < --- < X¥}, one finds :

OETTY N 1 N RS N N
S o (XN = 5 [ s (XY —o)on(@de = 5 s - X)) @)
2 jil
where sgn denotes the sign function, with the convention that sgn(0) = 0. Since X}V < XN,

%Zjvzl sgn(XY — X)) = i — L. Hence, one easily finds that
52 ETFW

OXN?

82 ETFW

pN( i )7 aXlNaX]N Z%]
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This in particular shows that E7*" is strictly convex with respect to {X¥}. Next, consider the

system {Y;} defined by (2.1): it satisfies Y; < Y;,1, and it is a critical point of E7*" (py,-). Hence, it
is the unique solution of the convex variational problem defining { X}V}. As a consequence, X}¥ =Y;
hence X7V < X7, for all i, and (pn, {X}V}) satisfies (2.2), for all 7. Summing these inequalities, we
find (2.1). ¢

Studying the Euler-Lagrange equation satisfied by py, we define

N
1 1 N
oN = 5PN * || - 2 ;_1 v — X7 -0, (2:3)

and thus have:

{ —uy +puy = pyuy =0,
N

—PN =i 5XiN — Uy

Proposition 2.2 For any (py = v, {X}N}) solution of (1.1), denoting by ¢n the function defined

in (2.3), uy € C*(R), oy € C¥(R\{XN}), and ¢n admits left and right derivatives at X}, which
satisfy:

(2.4)

. ! - / 1
Vi, oY) = —oly (X)) = 5. (2:5)
Moreover,

1
2 IN2 + oy = dnpn + UINQ' (2.6)

Proof: The regularity of uy and ¢y follow from standard elliptic regularity and equations (2.4).
Let « €] — oo, X{'[. According to (2.4), ¢ly(x) = [*_ ui/(t)dt, so that using (2.1), o)y (X{") =
Due to the presence of a Dirac mass at XV, one immediately deduces that ¢/y(XN") = —L. Next,
we carry on this integration procedure until X2, then X2', and so on, to finally get (2.5). We then
turn to the proof of (2.6): multiplying the first equation of (2.4) by u/y and the second one by ¢'y,
we substract the results and get, on each interval | XN, X7, [:

—ulguly + puit My — dyuntly + Sy = uky,

which implies:

!/
(—%u'Nz + %ui’,’ + i(ﬁ']\f — %qﬁNu?V) = 0.
Its derivative being identically 0, this function is thus a constant on each interval | X}V, XY [. More-
over, since u'y, uy, ¢y are continuous, and since, according to (2.5), (¢’y)? is continuous at XV,
—ul? U+ %qﬁ’N2 — ¢yu¥ is constant on R. To show that this constant is 0, we only need to show
that lim_.(—u/y” +u? + Lo* — pnu?) = 0. In order to do so, we point out that uy — 0 at infinity
since uy € H*(R). Next, writing ¢/y(z) = [*_ u%(t)dt, one easily shows that the same property
holds for ¢y. Next, we point out that, for x <y < X}V,

oxt) ~onto) = [ [ oo wh(s)dsit = (=) [+ [ - i
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So that, using the fact that |z|u’ € L'(R),
! 2
on() ~ (@) < [ It yluk(dt —0 a5y —oc.

This implies that ¢5 has a limit at infinity, hence is bounded on a neighborhood of —oco. Hence
¢nuy vanishes at —oo, and from the first equation of (2.4), u4* is integrable on a neighborhood of
—oo. Hence, u'y goes to 0 at —oo. ¢

Corollary 2.3 Let (pn, {X}N}) be a solution of (1.1), and ¢y be the effective potential (2.3). Then
we have:

(i) |¢y| < %, and this value is reached only at the X} s,
.. 1 1/p
(”) PN < (S(pfl)) ’

(i) XN, = XN > (8(p—1))"", for alli € {1,...,N —1}.

Proof: Since ¢y satisfies the second equation of (2.4), ¢ is strictly positive on each | XN, X[ [,

which means that ¢y is strictly increasing on these intervals, and thus ranges from —% to % mono-
x

tonically. Next, on | — co, X{[, using the fact that ¢y () :/ uy (t)dt, we find that ¢’y ranges

—00
monotonically from 0 to % on this interval. Using the same kind of argument on ]X5, o[, this proves
(). We turn to the proof of (ii): uy is a C? bounded function vanishing at infinity. Hence, there
exists a point 2o € R which the maximum of uy. Moreover, at this point, vy cancels and u/ is
non-positive. Hence, dn(zo)pn (o) > ppi (7o), and L1¢*(zo) + Py (20) = dn(20)pn(0). It follows
that:

(0~ k() < 504 (o). (2.7

Using (i), this implies (ii). Then, using (2.1), we have ||p||z~(Xiz1 — X;) > f)f”l p = 1, from which
(iii) follows. ¢

Proposition 2.4 Let (u3, {XN}) be a solution of (1.1), and ¢y the corresponding effective potential
(2.3). Let (in)nen a sequence of indexes (such that 0 < iy < N). Then, for any L > 0, there exists
a constant C'p, independent of N such that

NllLeo(xN —L XN +L) = VL :
lonllzw ey —rxy +ny < C (2.8)

Proof: Let Jy denote the interval [XZ]]VV — L, X{JVV + L]. The first step of the proof is to show that
u'y is bounded. Indeed, let zy be the point where it reach its maximum (since vy, — 0 at infinity,
as the proof of Proposition 2.2 shows, such a point exists). Then v/ (zy) = 0, so that using (2.4),
dnpy = pply- Hence, using (2.6), one finds that

1 \2 _ 1 1 \2 1
(uiy)*(20) = (1 = p)py (20) + 5(¢)"(w0) < 3,
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which proves our claim. We next show (2.8). Such a bound clearly holds for a general C, depending
on N, since ¢y has a limit at infinity and satisfies the second equation of (2.4). We now assume
that it does not hold uniformly with respect to N. We then have an interval [a,b] C Jy on which
|on| — 00 as N — oo. Since ¢'y is bounded independently of N, either ¢y — +o0 on Jy, or
¢n — —oo on the whole interval Jy. We now set ¢y = i fJN ¢n. We then have

—_

lon — On Iy < 1By [lLoe(y) < 3

Hence, ¢ypy = %¢’N2 + i — uy® — (¢n — dn)pn is bounded on Jy. As a consequence,
PN — 0 in LOO(JN)

This also implies that vy and u%, converge to 0 in D’(Jy). Using (2.4), this implies that ¢yuy — 0
in D'(Jy). A similar result then holds for ¢ ypy. Using (2.6), we then have

1
§¢’N2 —uy> — 0 in D'(Jy).

On the other hand, 2(uyu’ + u/y*) = p% — 0 in D'(Jy). Since we already know that uyul =
— ¢y pn satisfies this property, we deduce that

=0 in D'(Jy).
This contradicts the fact that ¢} + dxn = py —> 0 in L2¥([X) — &, XN +¢]) for any 0 < & <
Bp—1))". ¢

Remark 2.5 Note that in the case where 1 < p < 2, it is possible to adapt the technics used in [15]
to show that there ezists a constant C independent of N such that |¢pn| < C on the whole real line.

3 Convergence of the energy

We start by showing that the energy per atom does converge to some real number:
Proposition 3.1 Let Iy be defined by (1.1). Then the sequence IWN converges.
Proof: The point is that the sequence Iy satisfies:
Inyp <Iy—+1Ip, VN,PeN. (3.1)

This follows from an easy adaptation of the proofs of [7] or [3], and consists roughly in pointing out
that if a system of N + P atoms divides into two parts of respectively N and P atoms, its energies
converges to the sum of the energy of the subsystems. Then, fixing a P € N, we have, for all N € N,
N = PQ+ R, with R < P. Using (3.1), we infer:

Iy < QIP+IR.

Hence, IN < P%IfR + IR . Letting N go to infinity, we get: lim sup - Iy <F 12 We deduce from this that

lim sup = Iy < 1iminf IN .0
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We are now in position to prove Theorem 1.1:
Proof of Theorem 1.1:We first show that:

I
lim WN < Lyer, (3.2)

N—o00

where I, is defined in (1.5). Consider R € R a solution of I, and define YN = (i — N)R, i=
1,...,2N. Consider the density py = ny solution of the electronic problem with nuclei Y}V, together

with its energy Jon. An easy adaptation of |5, 6] shows that ‘;2—1@’ converges to I, 5 = Ipe,;. Moreover,

the system (ny,{Y;"}) is a test system for the minimization problem Iy, hence

Ly v
2N — 2N per

This proves (3.2). We now show:

I
lim NN > Lper. (3.3)

N—o00

In order to do so, we re-write the energy Iy: let (pn, {X¥}) be a solution of Iy, and ¢y the associated
effective potential (2.3). Then,

I = B (o (0D = [ (Vo P+ [ g [

according to the definition of ¢. Thus, we have:

X{V +00

o= [ P [ W A 50
— Xﬁrl "2 1 I \2
£ [ W s 36

First, we prove that for any i € {1,..., N — 1},

W ) D (3.4

X

12

In order to do so, we introduce Y;¥ as the unique point in | X7, X[ such that ¢/y(Y;Y) = 0. It
exists since ¢y ranges monotonically from —% to % on | XN, XN ,[. We then consider the function p;
defined by:

pn () if XN<az<Yl,

This defines a function p; on 2XY — YV Y] satisfying periodic boundary conditions. We define ¢;
in the same way, namely

3.6
dn(XN —x) if 2XN YN <2 < XN, (3.6)
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and prolong these two functions by periodicity. Thanks to (2.5), one then easily finds that —¢;" =
dyn — p; on 2XN — VN VN] together with periodic boundary conditions. This implies, from the

definition of Gy xn_yny (1.7), that

@@%:Q%“W%”—PﬂpmemmemG%wqu@”¥WU+@

where a is a constant. Thus, the derivatives of these two effective potentials are equal, and

v 1 1 1
[ s gent = 5[ R 60
N 2 2 Joxn v 2

i

1
— E () >

Iper- (37)

Z2 N

A similar treatment may be done concerning the integral over [Y;, X¥,], which proves (3.4).

/\/\

2X Y i

Figure 1: The symmetrisation process described by equations (3.5) and (3.6): above, the true density
pn, and below, the symmetrised one.

A7 1 1
We then prove that / (Von )2+ b + §(¢IN)2 > 511. Consider the function py defined by

—00

pn () if <X,
po(l’) = N . N
pon(X] —x) it x> X

Define ¢y in the same way from ¢. We then have ¢ff = (5X{v — po, and ¢y converges to some constant
at infinity. This implies in particular that ¢y = ¢) + a, where a € R and ¢} = $p; % |z| — 3|z — X]|.
As a consequence, ¢y’ = @9, hence

| W gon? = g [

— 00

1 1
= §ETFW(P1aXfV) > 511-
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+oo 1 1
Likewise, / (Von )2+ i + 5(@5,1\7)2 > 511. Together with (3.4), this shows that
N

XN

In > (N = 1) per + L.

Dividing this inequality by N and letting N go to infinity, we find (3.2). ¢

4 Convergence of the density

This section is devoted to the proof of Theorem 1.2.
We know from [3] that I; > I,.,. We also know that, I, g being defined by (1.8), I%irn Lyer,p = 1h.
—00

This implies in particular that there exists an Ry > 0 such that

1
VR > Ry, Iper,R > i(Iper + Il) (41)

Remark 4.1 Inequality (4.1) also shows that the set of solutions R of problem (1.9) is bounded from

above.

Next, we notice that inequality (3.7) may be improved, since L ELEW (p;) > Lper,r is an equality only
if p; is the solution of I,., g, due to the strict convexity of this variational problem |2]. Thus, denoting
by Ay the number of indexes 7 in {1,..., N} such that X\, — X > Ry, we have:

Ay

A
Iy > TN(A + L) + (N = =X — 1)Ly + 1.

We thus have IWN — Iper + Ipeyvfh > 117411,” ATN, which implies, according to Theorem 1.1 and the fact

that I; > I, that

Ay =0o(N), as N — o0. (4.2)

Next, denote by By the number of indexes ¢ € {1,..., N} such that

XN 1
lim inf/ (Von ')+ + 5(‘/5,1\7)2 > Iper-

XN

12

For the same reason, By also satisfies (4.2). Hence, one can find a sequence (ix) of indexes such
that:

(1) iN—)OO, N—iN—>OO,

(ii) XZ-]]V\H_1 —Xi]x < Ry,

Xil}JVJrl "2 1 I \2

i) [ 560 L

XiN
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Changing the origin if necessary, we may assume without loss of generality that Xijx = 0. From (iii)
and Corollary 2.3, we deduce that \/p, is bounded in Hy,, N L*°. Using (iii) and Proposition 2.4,
similar bounds may be obtained for ¢n. Hence, we may extract a subsequence so that (py, dn)
converges to some (poo, Poo) strongly in all L7 . and that X{XH converges to R < Ry. We may also

assume that Y/]X converges to some r < R. As a consequence, we have:

R
1
/ (Voo ') + e+ 5(0)° < Tper- (4.3)
0
Moreover, equation ¢y = py passes to the limit, together with the fact that ¢/y(0) = —5 =

—oly( zN+1) and ¢y (YY) = 0, so that ¢/ (0) = —¢,(R) = —3, and ¢/ (r) = 0. Hence, using
the same tricks as in the proof of Theorem 1.1, we have:

[ P et 0 2 (4.4

f AV 1/2 1
[V et 5607 2 S (45)

)
\Y%

and equality holds in (4.4), respectively (4.5), only if p is the solution pper o, of the periodic problem
Lper or, respectively the solution ppey a(r—r) Of Iper2(r—r). On the other hand, (4.3) implies that equality
does hold in these two equations, showmg that pee = pperzr 00 [0,7] and pse = pper2(r—r) o0 [, R].
Hence, setting o = /poo, the functions (s, ¢o) are solutions of the system (2.4) on |0, R[, namely

—u! 4+ puPt — pue = 0,
{ iy _p_u Podtias (4.6)
Consequently, ¢oc = Pper2r o0 [0,7], where ¢peror = Gar — Gop * pperor. Hence, (uno, o) and

(\/m , @per,2r) share the same values and the same derivatives at 0, and satisfy the same differential
equation on ]0, R[. According to Cauchy-Lipschitz theorem, together with the fact that the function
(u, #) — (pu*~! — ¢u, —u?) is locally lipschitz continuous from R? to R?, this implies that they are
equal on the whole interval [0, R]. Since the unique point at which Pper.or TeaChes % is 2r, this implies
that R = 2r is a solution of problem I, and that po, = pper z- Next, we point out that (4.6) is also
satisfied on the right of R, so that, still using Cauchy-Lipschitz theorem, (poo, Poo) = (Pper,rs Pper.r)
on the right of R. Hence, the unique point satisfying ¢ = l on the right of R is 2R, which means
that X;Y , — 2R as N goes to infinity. Carrying on this process on both sides of the interval [0, R},

we Conclude our proof. ¢

5 Consequences and extensions

We give in this section some side-remarks and extension to the Thomas-Fermi (TF) case. First of
all, an adaptation of the above proof shows that:

Corollary 5.1 (a) Let {X;}icz be a periodic configuration of nuclei, in the sense that X; y =
X;+ L, for some fized N, L. Then the minimum of energy per nuclei, as defined in (5.1) below,
is reached only for the equidistant configuration (X;y1 = X; + %)



5 CONSEQUENCES AND EXTENSIONS 12

(b) Let (p,{Xi}) be a system such that 0 < X; < Xy < --- < Xy < L, and p satisfies periodic
boundary conditions on 10, L[. Assume in addition that this system is a minimizer of the

following energy:
B L L 1 (L
5o = [ [ g [

where ¢ is a solution of —¢" = > 0x, — p with periodic boundary conditions. Then X\, =
X, + %, for all .

In (a), the periodic TEFW energy is defined by (we assume that X, = 0):

/ C Gyl - X ol

L L
2

ETPW(p (X)) = /

2 ‘ |<i

/L/L )G (x — )p(y)dxdy+% Z Gr(X: — Xj),

22 lil,|51<5

w\h

where G, is defined by (1.7), and the electronic ground state is:

Bow =i BV D, 020, Vpenl (o, [o=N} G

.. v
and the energy per nuclei is equal to 25=.

0 0 0 0 0 0606 0 06 0o o 0o 0o oo

Figure 2: Two periodic distributions of nuclei, with N = 9. Corollary 5.1 states that the above one
has strictly lower energy than the other.

Using similar techniques as for the TFW case, one can show that Corollary 5.1 holds in the TF
case, where one forgets the term f(\/ﬁ )% in the energy. On the contrary, Theorem 1.2 does not hold
in this case since problem (1.1) has no solution [9]. More precisely, Iy = NI; in this case, and this
value is reached only in the limit X;,; — X; — oo, for all <. The proof is more simple in fact, since
(2.1) is still valid, and (2.4) reads:

{ 0"+ ()77 = 2 o,
¢ =pp .

And the analogue of (2.6) is —3¢'> + (p — )(%¢)1% = a, where a is a constant (not necessarily 0).

Hence, thanks to the fact that ¢/> has a fixed value at X;, so does ¢, and we may apply Cauchy-
Lipschitz theorem to show that the configuration is indeed periodic with one atom per cell.
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