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the Jaobian matrix of �(x) nearly haraterizes the orresponding three-dimensionalsurfae whih is being viewed [8℄. The frequeny modulation of a stationary proessF (x) = R(x) exp(i�(x)) orresponds to another lass of deformations often enounteredin signal proessing; in transmissions by frequeny modulation, the message is arriedby �0(x).Estimating the deformation D 2 D from F = DR is an inverse problem. As wesuppose no prior knowledge about the stationary proess R, the deformation D an onlybe reovered up to the subgroup G of D whih leaves the set of stationary proessesglobally invariant. Rather than the deformation itself, we therefore seek to estimate theequivalene lass of D in D=G. We onsider ases where G is a �nite-dimensional Liegroup, and under appropriate assumptions, this equivalene lass an be represented bya vetor �eld on G, whih orresponds to a deformation gradient. A loal analysis of thedeformation is performed by deomposing the autoorrelation of F over an appropriatefamily of loalized funtions, alled atoms in the harmoni analysis literature. Thedeformation gradient is shown to appear as a veloity vetor in a transport equationsatis�ed by a loalized autoorrelation. This general result is applied to one-dimensionalwarping and frequeny modulation, where the atoms are wavelets, and multidimensionalwarping, where the atoms are alled warplets.Computing the deformation gradient requires estimating the autoorrelation of Fprojeted over a family of loalized atoms, from a single realization. Under ertainonditions on the autoorrelation of the stationary proess R, one an obtain onsistentestimators for one-dimensional warping and frequeny modulation. Numerial examplesillustrate these results.The paper is organized in three main setions: after disussing the well-posednessof the inverse problem in Setion 1, we establish in Setion 2 a transport equation forthe loalized autoorrelation of a deformed proess; Setion 3 introdues estimators andproves their onsisteny.1 Inverse ProblemWe want to estimate a deformation operator D whih belongs to a known group D,from a single realization of F = DR. The proess R is wide-sense stationary, and isnot known a priori. Sine we are limited to a single realization, we onentrate onseond-order moments. For this reason, stationarity will always be understood in the2



wide-sense, meaning that EfR(x)g = EfR(0)g ;and EfR(x)R�(y)g = R(x� y) with R(0) < +1 ;where z� denotes the omplex onjugate of z 2 C . Although it is not normalized bythe variane, the term EfR(x)R�(y)g is alled autoorrelation of R in the rest of thispaper.1.1 Class of SolutionsNothing is known about the proess R exept for its stationarity, therefore the set ofsolutions to the inverse problem is the set of all operators ~D 2 D suh that ~D�1F isstationary. In general, this set is larger than fDg. Let G be the set of all operatorsG 2 D suh that if X is a wide-sense stationary proess, then GX is also wide-sensestationary. One an verify that G is a subgroup of D, whih we all stationarity invariantgroup. Clearly, if D is a solution of the inverse problem, any operator ~D = DG withG 2 G is also a solution. The set of solutions of the inverse problem therefore ontainsthe equivalene lass of D in the quotient group D=G. The equivalene lass of D isequal to the set of solutions to the inverse problem if any deformation ~D 2 D suh that~DR is wide-sense stationary neessarily belongs to G. This ondition is not met by allstationary proesses R, but we give suÆient onditions on the autoorrelation of R toguarantee uniqueness. In this paper we onentrate on four ategories of deformationgroups.Example 1 The positive multipliative group is a partiularly simple example whereD = fD : Df(x) = �(x) f(x) with �(x) > 0g :The stationarity invariant group orresponds to multipliative funtions �(x) whih areonstant: G = fGa : Ga f(x) = a f(x) with a > 0g :Two operators D1 and D2 suh that D1f(x) = �1(x) f(x) and D2f(x) = �2(x) f(x)belong to the same equivalene lass in D=G if �1(x)=�2(x) is onstant.The equivalene lass of D is omputed from F (x) = �(x)R(x) by alulatingEfjF (x)j2g = �2(x)EfjR(x)j2g = �2(x)EfjR(0)j2g ; (1)whih spei�es �(x) > 0 up to a multipliative onstant.3



Finding the equivalene lass of D is in general muh more ompliated. In thefollowing, we require the funtion �(x), whih produes the deformation, to have aspei�ed regularity. This regularity will play an important role in the estimation pro-edure.Example 2 The frequeny modulation group modi�es signal frequeny:D = nD : Df(x) = ei �(x) f(x) where �(x) is real and C4o : (2)In transmissions with frequeny modulation, �0(x) is proportional to the signal to betransmitted, and the stationary proess R is the arrier. The stationarity invariantgroup is G = nG(�;�) : G(�;�) f(x) = ei(�+�x)f(x) with (�; �) 2 R2o :Two operators D1 and D2 suh that D1f(x) = ei�1(x) f(x) and D2f(x) = ei�2(x) f(x)are in the same equivalene lass in D=G if and only if �1(x) = �+�x+�2(x) and hene�001 (x) = �002 (x) : (3)The following proposition gives a suÆient ondition on the autoorrelation kernel R(x)to identify �00(x) from the autoorrelation of F = DR. The proof is in Appendix A.1.Proposition 1.1. Let F = DR, where D belongs to the frequeny modulation group Din (2). If there exists an " > 0 suh that8x 2℄� "; "[ ; R(x) > 0then the equivalene lass of D in D=G is uniquely haraterized by the autoorrelationof F = DR.Example 3 The one-dimensional warping group is de�ned byD = �D : Df(x) = f(�(x)) where �(x) is C3 and �0(x) > 0	 : (4)Suh time warpings appear in many physial phenomena, suh as the Doppler e�et.We easily verify that the stationarity invariant group is the aÆne group:G = �G(u;s) : G(u;s) f(x) = f(u+ sx) with (u; s) 2 R � R+�	 :Two warping operators D1 and D2 are in the same equivalene lass in D=G if and onlyif there exists (u; s) suh that �1(x) = u+ s �2(x), or equivalently�001 (x)�01(x) = �002 (x)�02(x) : (5)4



The following proposition, whose proof is in Appendix A.2, gives a suÆient onditionon R to haraterize the equivalene lass of D uniquely. Perrin and Senoussi [12℄provide a similar result.Proposition 1.2. Let F = DR, with D 2 D, where D is the warping group (4). Ifthere exists an " > 0 suh that R is C1 on ℄0; "[ and8x 2 ℄0; "[ ; 0R(x) < 0 ; (6)then the equivalene lass of D in D=G is uniquely haraterized by the autoorrelationof F .Warping deformations are used in geostatistis [11, 13℄, to model nonstationaryphenomena. Stationarizing the data F (x) is suggested as an initial step before applyinglassial geostatistial methods suh as kriging.Example 4 The warping problem in two dimensions has an important appliation inimage analysis, partiularly in reovering a three-dimensional surfae shape by analyz-ing texture deformations. More generally, we study a d-dimensional warping problem,spei�ed by an invertible funtion �(x) from Rd to Rd with�(x1; ::: ; xd) = ��1(x1; :::; xd); ::: ; �d(x1; :::; xd)� :The Jaobian matrix of � at position x 2 Rd is writtenJ�(x) = ���i(x)�xj �1�i;j�d : (7)If the Jaobian determinant det J�(x) does not vanish, �(x) is invertible and orrespondsto a hange of metri. We onsider a group of regular warpingsD = �D : Df(x) = f(�(x)) where �(x) is in C3(Rd ) and det J�(x) > 0	 : (8)Let GL+(Rd ) be the group of linear operators in Rd with a stritly positive determinant.We easily verify that the stationarity invariant group is the aÆne group:G = �G(u;S) : G(u;S) f(x) = f(u+ Sx) with (u; S) 2 Rd �GL+(Rd )	 :Two operators D and ~D suh that Df(x) = f(�(x)) and ~Df(x) = f(~�(x)) are in thesame equivalene lass in D=G if and only if9 (u; S) 2 Rd �GL+(Rd ) ; �(x) = u+ S ~�(x) : (9)5



The partial derivative of the Jaobian matrix in a �xed diretion xk is again a matrix:�J�(x)�xk = ��2�i(u)�xk �xj�1�i;j�d :One an hek that ondition (9) is equivalent to the following matrix equalities, whihgeneralize (5): 8 k 2 f1; :::; dg ; J�1� (x) �J�(x)�xk = J�1~� (x) �J~�(x)�xk : (10)There are ases for whih the inverse warping problem annot be solved. For ex-ample, onsider a stationary proess R(x) = R1(x1) whih only depends on the �rstvariable, and a warping whih leaves x1 invariant: �(x1; :::; xd) = (x1; �1(x2; :::; xd)).In this ase F (x) = R(x1; �1(x2; :::; xd)) = R1(x1) = R(x) : (11)Hene we an not reover �. The following proposition, whose proof is in AppendixA.3, gives a suÆient ondition on R(x) to guarantee that the inverse warping problemhas a unique solution in D=G.Proposition 1.3. Let F = DR, with D 2 D, where D is the multidimensional warpinggroup (8). If there exists h > 0 and a funtion �(x) suh thatR(0)� R(x) = jxjh �(x) ; (12)where �(x) is C2 in a neighborhood of 0, then the equivalene lass of D in D=G isuniquely haraterized by the autoorrelation of F .The inverse warping problem an be applied to the reonstrution of three-dimensionalsurfaes from deformations of textures in images [8℄. One an model the image of athree-dimensional surfae, on whih a texture is mapped, asF (x) = R(�(x)) ;where R is a stationary proess, and �(x) is the two-dimensional warping due to theimaging proess, whih projets the surfae onto the image plane [5℄.We showed in (10) that solving the inverse warping problem is equivalent to om-puting normalized partial derivatives of the Jaobian matrix J�:J�1� (x)�J�(x)�x1 and J�1� (x)�J�(x)�x2 : (13)6



G�arding [8℄, Malik and Rosenholtz [9℄ have proved that these matries speify the loalorientation and urvature of the three-dimensional surfae in the sene. Knowing thesesurfae parameters, it is then possible to reover the three-dimensional oordinatesof the surfae, up to a onstant saling fator. We will see in Setion 2.4 that theJaobian matries (13) appear as veloity vetors in a transport equation satis�ed bythe autoorrelation of F .1.2 Stationarity Invariant GroupThe stationarity invariant group G spei�es the lass of solutions of the inverse problemF = DR, and Setion 2 will show that it is also an important tool to identify theequivalene lass of D in D=G. This setion examines the properties of operators thatbelong to suh a group. Reall that an operator G is said to be stationarity invariantif, for any wide-sense stationary proess R, the proess F = GR is also wide-sensestationary.The following theorem haraterizes this lass of operators. We denote by x � y theinner produt of two vetors x and y of Rd .Theorem 1.1. An operator G is stationarity invariant if and only if there exists �̂(!)from Rd to C and �(!) from Rd to Rd suh thatG ei!�x = �̂(!) ei�(!)�x ; (14)with ess sup!2Rd j�̂(!)j <1.The proof is in Appendix A.4. This theorem proves that a stationarity invariantoperator transposes the frequeny of a sinusoid and modi�es its amplitude. The exam-ples detailed in the previous setion orrespond to partiular lasses of suh operators,where �(!) is aÆne in !. Supposing that �(!) = S! + � with � 2 Rd and where S isan invertible linear operator in Rd , whose adjoint is denoted S, the operator G in (14)an then be written Gf(x) = ei��x f ? �(Sx) ; (15)where �(x) is the funtion whose Fourier transform is �̂(!).Let us de�ne a translation operator Tv for v 2 Rd byTvf(x) = f(x� v) :The following proposition proves that linear operators of the form (15) are haraterizedby a weak form of ommutativity with Tv.7



Proposition 1.4. A linear operator G whih is bounded in L2 (Rd ) satis�es9 � 2 Rd ; 9S 2 GL+(Rd ); 8 v 2 Rd ; G TSv = ei��vTv G (16)if and only if G is stationarity invariant and an be written8 f 2 L2 (Rd) ; Gf(x) = ei��x f ? �(Sx) ; (17)with ess sup!2Rd j�̂(!)j <1.The proof is in Appendix A.5. If �(x) = ei� Æ(x � v) then the operator G de�nedin (17) represents frequeny modulation and warping. In the rest of the paper, weonentrate on deformations where the stationarity invariant operators satisfy (16),whih an be interpreted as a transport property.2 Conservation and TransportThe stationarity of a random proess R is a onservation property of its autoorre-lation through translation. Beause of the deformation, the proess F (x) = DR(x)is no longer stationary and its autoorrelation does not satisfy the same onservationproperty. Yet, we show that the stationarity of R implies a onservation of the auto-orrelation of F , along harateristi urves in an appropriate parameter spae. Theseharateristi urves, whih identify the equivalene lass of D in D=G, are omputedby approximating D�1 by a \tangential" operator G�(v) 2 G. If the operators of Gsatisfy the transport property (16), then the onservation equation an be rewrittenas a transport equation whose veloity term depends upon ~rv�(v), alled deformationgradient. This deformation gradient haraterizes the equivalene lass of D in D=G.Setion 2.1 gives the general transport equation, and Setions 2.2, 2.3 and 2.4 applythis result to one-dimensional warpings, frequeny modulations, and multidimensionalwarpings.2.1 Transport in GroupsWe suppose that all operators G� in the stationarity invariant group G satisfy thetransport property (16) and an thus be writtenG�f(x) = ei(��x+�) f ? �(Sx� v) :The translation parameter v is isolated beause of its partiular role, and sine the phasehas no inuene on the autoorrelation, � is also set apart. We assume that � belongs8



to a a �nite-dimensional Lie group (onvolution group), so G is also a �nite-dimensionalLie group. We write G� = ei� ~G~� Tvwith ~G~�f(x) = ei��x f ? �(Sx) and ~� = (�; S; ) :The group produt and inverse are denoted~G~�1 ~G~�2 = ~G~�1�~�2 and ~G�1~� = ~G~��1 :To identify the tangential deformation G�(v) 2 G whih approximates D�1 forfuntions supported in a neighborhood of v 2 Rd , we use a family of test funtionsonstruted from a single funtion  (x) whose support is in [�1; 1℄d. For � > 0, �(x) =  (x=�) has a support in [��; �℄d. Let ~G ~� be the adjoint of ~G~� . We de-�ne an atomi deomposition of a proess Y (x) by omputing inner produts in L2 (Rd )with deformed and translated test funtions, whih are alled atoms:A�Y (u; ~�) = EfjhY; Tu ~G~�  �ij2g :This atomi deomposition only depends on Y through its autoorrelation.Let us now explain how to identify the tangential deformation G�(v) from a onser-vation property of atomi deompositions. If R is a stationary proess, thenA�R(u; ~�) = EfjhR; Tu ~G~�  �ij2gdoes not depend upon u, hene ~ruA�R(u; ~�) = 0. This is not the ase for the atomideomposition of the deformed proess F = DR:A�F (u; ~�) = EfjhF; Tu ~G~�  �ij2g = EfjhR;DTu ~G~�  �ij2g :Yet, this atomi deomposition satis�es a onservation property along harateristilines that depend upon D. The following proposition proves that if there exists G�(v)whih approximates D�1 for funtions having a support in a neighborhood of v, thenthere exists ~�(u) suh that for all u and ~�~ruA�F (u; ~� � ~�(u)) � 0 for � small.Before stating the proposition, let us set some notation: if f(x) and g(x) are twofuntions with x 2 Rd , then ~rxg is a vetor with d omponents, and the inner produt9



hf; ~rxgi is also a vetor whose d omponents are the inner produts Df; �g�xkE. Wedenote Rehf; ~rxgi the real part of this vetor. We write (�) = O(�) if there exists aonstant C suh that for � small, j(�)j � C �, without speifying the sign.Proposition 2.1. Let �(v) and  be suh that for eah v 2 Rd and eah ~�, the funtion v;~�;� = G�(v)Tv ~G~� � satis�esjRehKF v;~�;� ; D�1(~rv + ~rx)D v;~�;�ij = O(�) jRehKF v;~�;� ; ~rx v;~�;�ij : (18)If there exists a di�erentiable invertible map u(v) suh thatG�(v) Tv = ei�(u(v)) Tu(v) ~G~�(u(v)) ; (19)then for eah (u; ~�), at t = u,���~ruA�F (u; ~� � ~�(t)) + ~rtA�F (u; ~� � ~�(t))��� = O(�) ���~ruA�F (u; ~� � ~�(t))��� : (20)The norms in (20) are Eulidean norms of d-dimensional vetors. The proof isin Appendix B.1. One an verify that if G�(v) = D�1, then the left-hand side of(18) vanishes. Condition (18) imposes a form of tangeny between G�(v) and D�1;however, it does not only depend on operators G�(v) and D�1, but also on  and onthe autoorrelation of R.The partial di�erential equation (20) whih results from the above proposition anbe written as a transport equation in the (u; ~�) domain, by expanding the gradient withrespet to t: ~rtA�F (u; ~� � ~�(t)) = ~rt( ~� � ~�(t)) � ~r~�A�F (u; ~� � ~�(t)) ;where ~r~�A�F (u; ~�) is a vetor of partial derivatives with respet to eah omponent ofparameter ~�. Replaing the free variable ~� by ~� � ~��1(u) in (20) gives, at t = u,���~ruA�F (u; ~�) + ~rt( ~� � ~��1(u) � ~�(t)) � ~r~�A�F (u; ~�)��� = O(�) ���~ruA�F (u; ~�)��� : (21)When � is suÆiently small, the right-hand side is negleted, yielding a transport equa-tion whose veloity term depends upon ~ru ~�(u). This is illustrated in the next threesetions, whih apply this proposition to reover warping deformations and frequenymodulations. Setion 3 will show how, from a single realization of F , we an estimatethe partial derivatives of A�F (u; ~�) and ompute the deformation gradient.2.2 Sale Transport.If D is a one-dimensional warping deformation Df(x) = f(�(x)) with x 2 R, thenD�1f(x) = �0(x) f(�(x)). The stationarity invariant subgroup is the aÆne group,10



whose elements are G�f(x) = f(u+ sx) with � = (u; s). The adjoint of G� isG�f(x) = s�1 f ((x� u)=s) = Tu ~G ~�f(x) with ~G ~�f(x) = s�1 f (x=s) :
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(b)Figure 1: (a) Salogram AR(u; s) of a stationary proess R. The horizontal and vertial axes respetivelyrepresent u and � log s. Darkness of a point is proportional to the value of AR(u; s). (b) Salogram AF (u; s)of a warped proess F .Let  be a funtion whose integral vanishes: R  (x)dx = 0. It is alled a wavelet.Using the above expression of the adjoint operator ~G~� , the atomi deompositionA�Y (u; ~�) = EfjhY; Tu ~G ~� �ij2g an be written, for ~� = s,A�Y (u; s) = En��
Y (x) ; s�1 �(s �)�1(x � u)����2o :We redue the number of parameters by dividing A�Y (u; s) by �2, and replaing theprodut s� by a single sale parameter s. The resulting atomi deompositionAY (u; s) = En��
Y (x) ; s�1  �s�1(x� u)����2o : (22)is alled a salogram, and an be interpreted as the expeted value of a squared wavelettransform. Figure 1(a) shows the salogram AR(u; s) of a stationary proess R. Asexpeted, its value does not depend upon u. Figure 1(b) gives AF (u; s) for a warpedproess F (x) = DR(x) = R(�(x)). The warping auses the values of the salogram ofR to migrate in the (u; log s) plane.Let us now give the expression of �(u) orresponding to the tangential approxima-tion of Proposition 2.1. For regular funtions f supported in a neighborhood of v, a11



tangential approximation of D�1 is alulated with a �rst order Taylor expansion of�(x) in a neighborhood of u(v) = ��1(v):D�1f(x) � �0(u) f (v + �0(u)(x� u)) = G�(v)f(x) : (23)Operators D�1 and G�(v) both translate the support of f from a neighborhood of v toa neighborhood of u(v).In order to derive a transport equation from Proposition 2.1, we must make someassumptions on the autoorrelation of R, that will also guarantee uniqueness of theinverse warping problem. Proposition 1.2 shows that it is neessary to speify thebehavior of the autoorrelation kernel R(x) in a neighborhood of 0. The followingtheorem supposes that R(x) is nearly h-homogeneous in a neighborhood of 0. Partialderivatives are denoted �f�a = �af .Theorem 2.1 (Sale Transport). Let R be a stationary proess suh that there existsh > 0 with R(0)� R(x) = jxjh �(x) (24)where � is C1 in a neighborhood of 0, and �(0) > 0 . Let  (x) be a C1 funtionsupported in [�1; 1℄, suh thatZ  (x) dx = 0 and ZZ jx� yjh  �(x) (y) dx dy 6= 0 : (25)If F (x) = R(�(x)) ;where �(x) is C3 and �0(x) > 0, then for eah u 2 R suh that �00(u) 6= 0, when s tendsto zero �1 +O(s)� �uAF (u; s)� (log�0)0(u) �log sAF (u; s) = 0 : (26)The proof is in Appendix B.2. The onditions imposed on R and  in this theoremguarantee that �log sAF (u; s) does not vanish. The deformation gradient (log�0)0(u)whih spei�es the equivalene lass of D in D=G an thus be omputed from (26)by letting s go to zero. It is therefore not surprising that (24) imposes a strongerondition on R than the uniqueness ondition (6) of Proposition 1.2. The estimationof (log�0)0(u) from a single realization of F will be studied in Setion 3.1.12



2.3 Frequeny TransportIf the deformation operator D is a frequeny modulation, Df(x) = ei�(x) f(x), thestationarity invariant subgroup G is omposed of operators G� suh thatG�f(x) = ei(�+�x) f(x) :In this ase ~G~�f(x) = ei�x f(x) so ~� = �. Let us hoose an even, positive windowfuntion  (x) � 0, with a support equal to [�1; 1℄. The atomi deomposition ofproess Y is the well-known spetrogram:A�Y (u; �) = EfjhY (x) ;  �(x� u)e�i�(x�u)ij2g = EfjhY (x) ;  �(x� u)e�i�xij2g :
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(b)Figure 2: (a) Spetrogram A�R(u; �) of a stationary proess R. The horizontal and vertial axes respetivelyrepresent position u, and frequeny �. The darkness of a point is proportional to the value of A�R(u; �). (b)Spetrogram A�F (u; �) of a frequeny modulated proess F .Figure 2(a) shows a spetrogram A�R(u; �), whose values do not depend upon ubeause R is stationary. Figure 2(b) depits A�F (u; �) for F (x) = DR(x) = ei�(x)R(x),with �(x) = �1 os(�2 x) where �1 and �2 are two onstants. The frequeny modulationtranslates the spetrogram of R non-uniformly along the frequeny axis.Let us now give the expression of �(v) orresponding to the tangential approxi-mation of Proposition 2.1, when D is a frequeny modulation. If f is supported in aneighborhood of v, a �rst order Taylor expansion of �(x) givesD�1f(x) = ei�(x) f(x) � ei(�(v)+�0(v)(x�v)) f(x)13



and one an de�ne a tangential approximation of D�1 for funtions supported in aneighborhood of v by G�(v)f(x) = ei(�(v)+�0(v)(x�v)) f(x) : (27)The following theorem uses this tangential approximation to derive from Proposition2.1 a transport equation, satis�ed by the spetrogram A�F (u; �) in the (u; �) plane, whenthe window sale � dereases to 0. The frequeny � is hosen large enough so that theperiod of ei�x is smaller than the support size � of  �. We set � = �0=� and selet �0 sothat  ̂(!) and its �rst dhe+ 2 derivatives vanish at ! = �0 (dhe denoting the smallestinteger larger or equal to h).Theorem 2.2 (Frequeny transport). Let R be a stationary proess suh that thereexists h > 0 with R(0)� R(x) = jxjh �(x) (28)where � is ontinuous in a neighborhood of 0, and �(0) > 0. Let  be an even, positive,C1 funtion supported in [�1; 1℄ and �0 be suh that  ̂(!) and its �rst dhe+2 derivativesvanish at ! = �0 butZZ jx� yjh(x� y) sin[�0(x� y)℄ (x) (y) dx dy 6= 0 :If F (x) = ei�(x)R(x) where �(x) is Cdhe+4;then for eah u 2 R suh that �00(u) 6= 0 and for � = �0=�, when � ! 0�1 +O(�2)� �uA�F (u; �)� �00(u) ��A�F (u; �) = 0 : (29)The proof is in Appendix B.3. To satisfy the theorem hypothesis, one may hoose (x) to be a box spline obtained by onvolving the indiator funtion 1[�1=2m;1=2m℄ withitself m times:  ̂(!) = � sin(!=(2m))!=(2m) �m ;and �0 = 2m� with m � dhe+ 3.The deformation gradient �00(u) an be haraterized from equation (29) by letting �go to zero, and we proved in (3) that �00(u) spei�es the equivalene lass of D inD=G. Setion 3.2 imposes some further onditions on R and � to obtain a onsistentestimation of �00(u) from this partial di�erential equation.14



2.4 Multidimensional sale transportFor a multidimensional warping where Df(x) = f(�(x)) with x 2 Rd , the adjoint ofD�1 is D�1f(x) = det J�(x) f(�(x)). The matrix J�(x) is the Jaobian matrix (7) of� at position x. The stationarity invariant group G is the aÆne group, omposed ofoperators G� with � = (u; S) 2 Rd �GL+(Rd), suh thatG�f(x) = f(u+ Sx) :The adjoint of G� isG�f(x) = detS�1 f�S�1(x� u)� = Tu ~G ~�f(x)where ~G~�f(x) = detS�1 f(S�1x) and~� = S = �sl;m�1�l;m�d :For a regular funtion f , a Taylor expansion of �(x) in a neighborhood of u(v) = ��1(v)gives D�1f(x) � det J�(u) f��(u) + J�(u) (x� u)� = G�(v)f(x) : (30)The operators D�1 and G�(v) both translate the support of f from a neighborhood ofv to a neighborhood of u(v) = ��1(v).Let  be a funtion suh that RRd  (x) dx = 0. A multidimensional extension of thesalogram is given byA�Y (u; S) = EfjhY (x) ; detS�1  � �S�1(x� u)� ij2g= EfjhY (x) ; detS�1  ���1S�1(x� u)� ij2g :As in the one-dimensional ase, we divide A�Y (u; s) by �2d and replae the produt �Sby a matrix whih we still denote S. The resulting atomi deomposition isAY (u; S) = EfjhY (x) ; detS�1  �S�1(x� u)� ij2g : (31)It is similar to the salogram (22) but sine the sale parameter s is replaed by awarping matrix S, we all it a warpogram.For a one-dimensional warping, the veloity term of transport equation (26) is(log�0)0(u) = �00(u)=�0(u). In two dimensions it beomes a set of matries, indexedby the diretion k of spatial di�erentiation:for 1 � k � d, J�1� (u) �J�(u)�uk = �kl;m(u)�1�l;m�d : (32)15



This set of matries has been shown in (10) to speify the equivalene lass of D inD=G. It is denoted in a vetorial form:~l;m(u) = (kl;m(u))1�k�d :The partial derivative �log sAF (u; s) = s �sAF (u; s) whih appears in the one-dimensionaltransport equation (26) now beomes a matrix produt, between a partial derivativesmatrix and the transpose St of S:��AF (u; S)�si;j �1�i;j�d St = �al;m(u; S)�1�l;m�d : (33)The following theorem isolates the sale parameter � = (detS)1=d by writing S = � ~Swith det ~S = 1, and gives a d-dimensional transport equation when � goes to zero.Theorem 2.3. Suppose that F (x) = R(�(x)), where �(x) is C3 and det J�(x) > 0.Suppose that the autoorrelation kernel R of R satis�esR(0)� R(x) = jxjh �(x) ; (34)with �(0) > 0 and � 2 C2 in a neighborhood of 0. For eah u 2 Rd and for eah ~S withdet ~S = 1, if there exists C(u; ~S) > 0 suh that, for S = � ~S and � small enough,����Re ZZ ~rR(S(x� y))rJ�(u)J�1� (u)S(x� y) �(x) (y) dx dy���� � C(u; ~S)�h ; (35)then when � goes to zero������~ruAF (u; S)� dXl;m=1~l;m(u) al;m(u; S)������ = O(�) ���~ruAF (u; S)��� : (36)The proof of this Theorem is in Appendix B.4.If R(0) � R(x) = � jxjh for small jxj, with � > 0, and if �(x) is a separable warpingfuntion of the form �(x) = (�1(x1); ::: ; �d(xd))then one an verify that ondition (35) is equivalent todXi=1 �00i (u)�0i(u)Re ZZ j ~S(x� y)jh�2( dXj=1 ~Sij(xj � yj))2 �(x) (y) dx dy 6= 0 :For � suÆiently small, negleting the error term on the right-hand side of (36)yields d salar equations:for 1 � k � d, �ukAF (u; S)� dXl;m=1 kl;m(u) al;m(u; S) = 0 :16



For any (u; S), the values �ukAF (u; S) and al;m(u; S) depend upon the autoorrelationof F , and have to be estimated. For eah diretion k, there are d2 unknown oeÆientskl;m(u) equal to the d2 matrix omponents of J�1� (u) �ukJ�(u). To ompute them weneed to invert a linear system:0BB� a1;1(u; S1) a1;2(u; S1) : : : ad;d(u; S1)... ... ... ...a1;1(u; Sd2) a1;2(u; Sd2) : : : ad;d(u; Sd2)1CCA0BBBBB�k1;1(u)k1;2(u)...kd;d(u)
1CCCCCA = 0BB� �ukAF (u; S1)...�ukAF (u; Sd2)1CCA : (37)Changing the diretion index k only modi�es the right-hand side of (37). Note that inorder for the system to be invertible, the left-hand side matrix in (37) must have fullrank. The matries Sk must therefore be appropriately hosen, and the inverse warpingproblem must have a unique solution. This is not always the ase, as shown by theexample in (11).3 Estimation of DeformationsThe deformation gradient appears as a veloity vetor in the transport (21). To re-over it from a single realization of F , the derivatives ~ruA�F (u; ~�) and ~r~�A�F (u; ~�)of the atomi deomposition of F have to be estimated. With a single realization, asample mean estimator has a variane of the same order of magnitude as the term itestimates. This variane an be redued with a spatial smoothing, while the bias, whihis proportional to the width of the smoothing kernel, is ontrolled. The next three se-tions study the onsisteny of suh smoothed estimator for one-dimensional warpings,frequeny modulations and multidimensional warpings.3.1 Warping in one dimensionThe salogram of F is de�ned asAF (u; s) = EfjhF ;  u;sij2g ;with  u;s(x) = s�1 ((x � u)=s). If F (x) = R(�(x)) then Theorem 2.1 proves that�1 +O(s)� �uAF (u; s)� (log�0)0(u)�log sAF (u; s) = 0 : (38)17



To redue the variane of empirial estimators, equation (38) is onvolved with asmoothing kernel, whih is hosen equal tog(x) = ( ��1(1� jx=�j) if jxj � �0 if jxj > � : (39)Let a be a generi variable denoting either u or log s. We de�ne�aAF (u; s) = Z g(u� v) �aAF (v; s) dv : (40)The following proposition, whose proof is in Appendix C.1, shows that the biasintrodued by onvolving equation (38) with g is proportional to �.Proposition 3.1. Under the hypotheses of Theorem 2.1, for eah u 2 R, when � tendsto zero and s < �,�1 +O(s)� �uAF (u; s)� �(log�0)0(u) +O(�)� �log sAF (u; s) = 0 : (41)An integration by parts shows that, for a = u,�uAF (u; s) = ��2 Z u+�=2u��=2 �AF (v +�=2; s)�AF (v ��=2; s)�dv :Given a disretized realization of F measured at a resolution N , wavelet oeÆientshF;  u;si and hF; �a u;si an only be omputed at sales s � N�1 and at positionsu = k=N with k 2 Z. We therefore introdue the following empirial estimator for�uAF (u; s) at sale s:\�uAF (u; s) = ��2N�1 Xjk=N�uj��=2�jhF;  k=N+�=2;sij2 � jhF;  k=N��=2;sij2� : (42)Notiing that �log sAF (u; s) = 2Re[EfhF;  u;si hF; �log s u;si�g℄with �log s u;s(x) = � u;s(x)� s�2 (x� u) 0(s�1(x� u)) ; (43)we hoose an empirial estimator of �log sAF (u; s) at sale s given by\�log sAF (u; s) = 2N�1 Xjk=N�uj�� g(u� k=N)Re �hF;  k=N;si hF; �log s k=N;si�� : (44)18



In view of equation (41), we suggest the following estimator for (log�0)0(u):\(log�0)0(u) = \�uAF (u;N�1)\�log sAF (u;N�1) :To guarantee that\�aAF (u; s) and �aAF (u; s) are lose when s = N�1 and N inreases,we must ensure that the wavelet oeÆients hF;  k=N;si and hF; �log s k=N;si are se-quenes of random variables that have fast spatial deorrelation. This will depend uponthe behavior of the autoorrelation kernel R(x) of R in a neighborhood of 0, and onthe number of vanishing moments of  . A wavelet  (x) has p vanishing moments ifZ xk  (x) dx = 0 for 0 � k < p :The following theorem proves the weak onsisteny of the above estimator \(log�0)0(u)of (log�0)0(u).Theorem 3.1 (Consisteny, warping). Let F (x) = R(�(x)), where R is a station-ary Gaussian proess suh that there exists h > 0 withR(0)� R(x) = jxjh �(x) and �(0) > 0 : (45)Let  be a C2 wavelet supported in [�1; 1℄ with p vanishing moments, suh that2p� h > 1=2 and ZZ jx� yjh  �(x) (y) dx dy 6= 0 :If �(x) is C2p in a neighborhood of 0, and if �(x) 2 C3 \C2p, then for eah u 2 R suhthat �00(u) 6= 0, for � = N�1=5,Prob(����� \�uAF (u;N�1)\�log sAF (u;N�1) � (log�0)0(u)����� � 2 (logN)N�1=5) ����!N!1 1 : (46)This theorem, whose proof is in Appendix C.2, relates the size � of the smoothingkernel to the resolution N . Although we supposed R to be stationary, sine all esti-mations are based on wavelet oeÆients, one an easily verify that the same resultsapply if R is not stationary but has stationary inrements. This is the ase of frationalBrownian motion [1, 6℄, for whih �(x) = 1.Figure 3 displays a numerial experiment onduted on a single realization of awarped proess. The signal F in Figure 3(b) is obtained by warping a stationary signalR, depited in Figure 3(a). Figure 3() shows in dotted lines the estimate \log�0 ofof log�0 obtained by integrating the estimate \(log�0)0(u), and hoosing the additiveintegration onstant so that R 10 exp\log�0 = R 10 �0. An estimate b� for the warping19
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(d)Figure 3: (a) Stationary signal R and its empirial salogram jhR; u;sij2. (b) Warped signal F (x) =R(�(x)) and its empirial salogram. () log �0(x) = �1 + �2sign(1=2 � x) jx � 1=2j2, where �1 and �2 aretwo onstants (full line) and its estimation from F (dashed line). (d) Stationarized signal and its empirialsalogram.
20



funtion an be obtained up to an additive onstant by integrating exp\log�0. It is thenpossible to stationarize the deformed signal F by omputing F Æ (b�)�1. Figure 3(d)displays suh a stationarized signal.3.2 Frequeny ModulationFor a frequeny modulated proess, F (x) = R(x)ei�(x), Theorem 2.2 shows that thedeformation gradient �00(u) an be omputed from a spetrogramA�F (u; �) = EfjhF (x) ;  �(x� u)ei�(x�u)ij2gwith the equation �1 +O(�)� �uA�F (u; �)� �00(u) ��A�F (u; �) = 0 (47)evaluated at a frequeny � = �0=�. To estimate �00(u) from a single realization of Fmeasured at a resolution N , the estimation is performed as in the previous setion, witha spatial smoothing of equation (47).Let g(x) be the smoothing kernel de�ned in (39). For a generi variable a denotingeither u or �, we de�ne�aA�F (u; �) = Z g(u� v) �aA�F (v; �) dv : (48)Similarly to Proposition 3.1, we prove in Appendix C.3.1 that�1 +O(�2)��uA�F (u; �0=�)� ��00(u) +O(�)� ��A�F (u; �0=�) = 0 : (49)To ompute an estimator of the smoothed partial derivatives of the spetrogram, werelate the spetrogram oeÆients to a partiular wavelet transform. Observe that �(x � u) exp�i�0 x� u� � =  1�x� u� � (50)where  1(x) =  (x) ei�0x : (51)If  ̂(!) has a zero of order dhe+ 3 at ! = �0, sine  is real,  ̂(!) is even, and heneZ xk  1(x)dx = (�i)k dk ̂1d!k (��0) = 0 for k � dhe+ 2 .This means that  1 is a wavelet with dhe+3 vanishing moments [10℄. We write  1u;�(x) =��1  1(��1(x�u)). The salogram assoiated to this wavelet is de�ned by AF (u; �) =EfjhF;  1u;�ij2g. It results from (50) thatA�F (u; �0=�) = En��
F (x);  1 ���1(x� u)����2o = �2AF (u; �) ;21



and hene �uA�F (u; �0=�) = �2 �uAF (u; �) :Let \�uAF (u; �) be the empirial estimator de�ned in (42): we hoose to estimate�uA�F (u; �0=�) with \�uA�F (u; �0=�) = �2\�uAF (u; �) :To ompute an empirial estimator of the other partial derivative, ��A�F (u; �0=�),observe that��A�F (u; �) = 2Re[EfhF (x) ;  �(x� u)ei�(x�u)ihF (x) ; �� [ �(x� u)ei�(x�u)℄i�g℄ :Introduing a new wavelet  2(x) = x 1(x) = x (x) ei�0x ; (52)and  2u;�(x) = ��1  2(��1(x�u)), this partial derivative an be rewritten, for � = �0=�:��A�F (u; �0=�) = 2�3 Im[EfhF ;  1u;�i hF ;  2u;�i�g℄ :Similarly to (44), for � = N�1 we suggest the empirial estimator\��A�F (u; �0=�) = 2�3N�1 Xjk=N�uj�� g(u� k=N) Im hhF;  1k=N;�i hF;  2k=N;�i�i : (53)The following theorem proves that for � = N�1,�00(u) = \�uA�F (u; �0=�)\��A�F (u; �0=�)is a weakly onsistent estimator of �00(u) as N !1.Theorem 3.2 (Consisteny, frequeny modulation). Let F (x) = R(x) ei�(x), whereR is a Gaussian proess suh that there exists h > 0 withR(0)� R(x) = jxjh �(x) and �(0) > 0 : (54)Suppose that  1(x) =  (x)ei�0x is a ompatly supported wavelet with p � dhe + 3vanishing moments, suh thatZZ jx� yjh(x� y) sin[�0(x� y)℄ (x) (y) dx dy 6= 0 :If � 2 C2p in a neighborhood of 0 and if � 2 C2p, then for eah u 2 R, for � = N�1=5,Prob(�����\�uA�F (u;N�0)\��A�F (u;N�0) � �00(u)����� � 2 (logN)N�1=5) ����!N!1 1 : (55)22
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(d)Figure 4: (a) Stationary signal R and its empirial salogram jhR; 1u;sij2. (b) Frequeny modulated signalF (x) = R(x) exp(i�(x)) and its empirial salogram. () Frequeny modulation �0(x) (full line), and itsestimation from F (dashed line). (d) Stationarized signal and its empirial salogram.The proof is in Appendix C.3.The numerial example in Figure 4 shows the estimation of a frequeny modulation.We explained that the empirial estimator �00(u) is in fat omputed from wavelet oef-�ients assoiated to the two wavelets  1 and  2 de�ned in (51) and (52). Figure 4(a)shows a realization of a stationary signal R(x) and the orresponding empirial salo-gram AR(u; s) = jhR; 1u;sij2. The frequeny modulated signal F (x) = R(x) exp(i�(x))and its empirial salogram are in Figure 4(b). The derivative �0 of the frequenymodulation is plotted in Figure 4() (full line). An estimate b�0 of �0 is obtained byintegrating �00, and hoosing the additive integration onstant so that R 10 b�0 = R 10 �0.Figure 4() plots b�0 (dashed line), superposed on the theoretial funtion �0 (full line).Lastly, Figure 4(d) represents the stationarized proess F (x) exp(�ib�(x)) and its em-pirial salogram. 23



3.3 Warping in higher dimensionFor a multidimensional warping, at eah position u, the deformation gradient orre-sponds to a set of d matries ~l;m(u) = (kl;m(u))1�k�d de�ned in (32). Theorem 2.3shows that these oeÆients appear in the veloity term of the transport equation (36)satis�ed by the warpogram of F :AF (u; S) = EfjhF;  u;Sij2g ;with  u;S(x) = (detS�1) (S�1(x� u)) :At a suÆiently small sale �, the error on the right-hand side of the transportequation (36) an be negleted. The vetor transport equation an then be written asa linear system0BB� a1;1(u; S1) a1;2(u; S1) : : : ad;d(u; S1)... ... ... ...a1;1(u; Sd2) a1;2(u; Sd2) : : : ad;d(u; Sd2)1CCA0BB�k1;1(u)...kd;d(u)1CCA = 0BB� �ukAF (u; S1)...�ukAF (u; Sd2)1CCA (56)where �al;m(u; S)�1�l;m�d = ��si;jAF (u; S)�1�i;j�d St :If the proess F is measured at a resolution N , we an only ompute the warpogramwith funtions  u;S whose support in any diretion is larger than N�1. We thereforerequire that S = � ~S where � � KN�1, and all the eigenvalues of ~S are greater thanK�1. The loation parameter is also restrited to a uniform grid u = N�1k withk 2 Zd. To estimate the deformation gradient from a single realization of F , as in theone-dimensional ase, the system of equations (56) is onvolved with a d-dimensionalkernel of radius �. The smoothed matrix oeÆients are�al;m(u; S)�1�l;m�d = ��si;jAF (u; S)�1�i;j�d Stwhere, for any variable a, we have de�ned�aAF (u; S) = Z g(u� v) �aAF (v; S) dv :Sine �aAF (u; S) = 2ReEfhF;  u;SihF; �a u;Si�g, an empirial estimator of �aAF (u; S)is \�aAF (u; S) = 2N�d XjN�1k�uj�� g(u�N�1k)RefhF;  N�1k;SihF; �a N�1k;Si�g ;24



and we de�ne �dal;m(u; S)�1�l;m�d = � \�si;jAF (u; S)�1�i;j�d St :If the warping �(x) is suÆiently regular, then the averaged values al;m(u; S) and�ukAF (u; S) are related by a system of equations idential to (56), but with an additionalbias equal to O(�).The kth omponent of the deformation gradient, (kl;m(u)), an be thus estimatedby 0BB�dk1;1(u)...dkd;d(u)1CCA = 0BB�da1;1(u; S1) : : : dad;d(u; S1)... ... ...da1;1(u; Sd2) : : : dad;d(u; Sd2)1CCA�10BB� \�ukAF (u; S1)...\�ukAF (u; Sd2)1CCA : (57)Extending the onsisteny Theorem 3.1 to this d-dimensional ase is possible, but re-quires tehnial hypotheses that are not yet well understood.In Setion 1.1, we mentioned that the warping of textures in images speify thethree-dimensional oordinates of the orresponding surfaes appearing in the sene.The estimator de�ned in (57) is studied numerially in [4, 5℄ to ompute surfaes fromtexture gradients in images.The Matlab routines whih reprodue the numerial illustrations of this setion anbe downloaded fromhttp://www.map.polytehnique.edu/�mallat/Deform.html.
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A Proofs of Setion 1A.1 Proof of Proposition 1.1Let R be a stationary proess, and suppose that there exists an " > 0 suh that R(x) >0 for jxj < ". Let ~R be another stationary proess. We want to show that if theautoorrelations of R(x) exp[i�(x)℄ and of ~R(x) exp[i~�(x)℄ are equal, i.e. ifR(x� y) exp(i[�(x) � �(y)℄) =  ~R(x� y) exp(i[~�(x)� ~�(y)℄); (58)then �00(x) = ~�00(x). The funtions � and ~� are assumed C4, therefore � = � � ~� isalso C4. Let us �x x 2 R; our goal is to prove that �00(x) = 0. We hoose y 2 R suhthat jx � yj < ". After dividing both sides of (58) by R(x � y) > 0, it appears thatei[�(x)��(y)℄ is a funtion of x� y. Therefore �(x)� �(y) is also a funtion of x� y, andin partiular for all a, �(x) � �(y) = �(x + a)� �(y + a) :Di�erentiating this expression with respet to x shows that �0(x) = �0(x + a), thus�00(x) = 0.A.2 Proof of Proposition 1.2Let R be a stationary proess and let " > 0 suh that R(x) is C1 for 0 < jxj < ",with 0R(x) < 0. Let ~R denote another stationary proess, and let us suppose thatthe autoorrelations of R(�(x)) and of ~R(~�(x)) are equal. The funtions � and ~� areassumed C3, therefore � = � Æ ~��1 is also C3. Proving the proposition amounts toproving that � is linear, or equivalently, that �00 vanishes everywhere. By de�nition of�,  ~R(x� y) = R(�(x) � �(y)) : (59)Let us �x x 2 R, and hoose y 6= x, but suÆiently lose to x so that j�(x)� �(y)j < ".Di�erentiating (59) with respet to x and y shows that0R(�(x) � �(y))�0(y) = 0R(�(x) � �(y))�0(x) :Sine 0R(�(x) � �(y)) < 0, we obtain �0(x) = �0(y), therefore �00(x) = 0.26



A.3 Proof of Proposition 1.3Let R be a stationary proess suh that R satis�es (12). Let ~R denote another sta-tionary proess, and suppose that the autoorrelations of R(�(x)) and of ~R(~�(x)) areequal. Let � = � Æ ~��1: by de�nition of �, R(�(x)) = ~R(x), thusR(�(x) � �(y)) =  ~R(x� y) :Di�erentiating this expression with respet to x and y, for x 6= y, shows that~rR(�(x) � �(y))J�(y) = ~rR(�(x) � �(y))J�(x) : (60)Let us �x x 2 Rd , and prove that ~rJ�(x) = 0. Let " > 0 suh that � is C2 onfz; jzj < "g. Let us hoose y 2 Rd suh that j�(x) � �(y)j < " and let z = �(x)� �(y):~rR(z) = �h jzjh�2 (�(z) z + jzj2~r�(z)) :Replaing this expression in (60) and dividing both sides by �h jzjh�2 �(z) proves that(z + h�1jzj2~r log �(z)) J�(y) = (z + h�1jzj2~r log �(z)) J�(��1(z + �(y))) ;so (z + h�1jzj2~r log �(z)) J�(y)J�1� (��1(z + �(y))) = z + h�1jzj2~r log �(z) :Introduing a funtion ~� suh that~�(z) = J�(y) ��1(z + �(y)) ; (61)this an be rewritten(z + h�1jzj2~r log �(z)) J~�(z) = (z + h�1jzj2~r log �(z)) :Notiing that z J~�(�z) = dd� ~�(� z), we have, for � � 0,dd� ~�(� z) = z + h�1jzj2 � ~r log �(z)(J~�(�z)� Id) ;whih, when integrated between � = 0 and � = 1, gives~�(z)� ~�(0) = z + h�1jzj2 Z 10 �~r log �(�z)(J~�(�z)� Id) d� :After replaing ~� with (61), and notiing that ~�(0) = J�(y) y, we obtain��1(z + �(y)) = J�1� (y) z + y + J�1� (y)h�1jzj2 Z 10 �~r log �(�z)(J~�(�z)� Id) d� : (62)27



Sine R is even, ~r�(0) = 0 and so ~r log �(0) = 0. Let us denote ~r log �(�z) =j�zj~a(�z). Realling that � is twie ontinuously di�erentiable in a neighborhood of �zfor 0 � � � 1, the vetor ~a(�z) is di�erentiable, with a bounded gradient. Di�erentiating(62) with respet to z shows thatJ�1� (��1(z + �(y))) = J�1� (y)(Id+ jzj2A(z)) ;and one an hek that A(z) is uniformly bounded for jzj < ". Replaing z by �(x)��(y)gives J�1� (x) = J�1� (y) �Id+ j�(x) � �(y)j2 A(�(x) � �(y))� ;therefore for any unit-length vetor xk 2 Rd ,��xk J�1� (x) = lim�!0 J�1� (x+ �xk)� J�1� (x)�= � lim�!0 J�1� (x+ �xk)j�(x + �xk)� �(x)j2� A(�(x + �xk)� �(x))= 0 :This proves that ~rJ�1� (x) = 0, and therefore ~rJ�(x) = 0. As a onsequene, for eahdiretion xk, ��xk J�(~�(x)) = 0. Sine J�(x) = J�(~��1(x))J�1~� (~��1(x)), we obtain��xk (J�(x) J�1~� (x)) = 0 ;and expanding the above di�erential expression then proves (10).A.4 Proof of Theorem 1.1Let us onsider a spei� family of zero-mean wide-sense stationary proesses de�nedby R!(x) = X ei!�xwhere X is a zero-mean random variable with variane �2. ThenEfR!(x)R�!(y)g = �2 exp(i! � (x� y)) = R! (x� y) :Let G be a stationarity invariant operator. If F!(x) = GR!(x) thenEfF!(x)F �!(y)g = �2 f!(x) f�!(y) = F! (x� y) :28



with f!(x) = Gei!�x. This implies that for any (x; y) the produt f!(x) f!(y)� is afuntion of x�y. One an thus onlude that there exists �̂(!) 2 C and �(!) 2 Rd suhthat f!(x) = Gei!�x = �̂(!) ei�(!)�x : (63)Let us now prove that suh operators are stationarity invariant. A zero-mean proessis wide-sense stationary if and only if it admits a spetral representation:R(x) = ZRd ei!�x dZ(!) ;where Z(!) is an orthogonal proess. Let dP (!) = EfjdZ(!)j2g, we haveR(0) = ZRd dP (!) < +1 :We derive from (63) that F (x) = ZRd ei�(!)�x �̂(!) dZ(!) ;whih shows that F is wide-sense stationary.For any wide-sense stationary proess R, one an writeGR(x) = GEfR(0)g+G (R(x) � EfR(0)g) :Sine R(x) � EfR(0)g is zero-mean and wide-sense stationary, G (R(x)� EfR(0)g) iswide-sense stationary, therefore so is GR(x).For any positive integrable measure dP (!) we must haveF (0) = ZRd j�̂(!)j2 dP (!) < +1 ;and a neessary and suÆient ondition is that ess sup!2Rd j�̂(!)j <1.A.5 Proof of Proposition 1.4We denote by KY the autoorrelation operator of a proess Y , de�ned byKY f(x) = Z EfY (x)Y �(y)g f(y) dy :Let G be a bounded linear operator and F = GR. The autoorrelation operators of Fand R satisfy KF = GKR �G :29



Sine R is stationary, KR ommutes with the translation operator Tv for any v 2 Rd .We derive from (16) that KF also ommutes with Tv and hene that F is wide-sensestationary. The operator G is therefore stationarity invariant and Theorem 1.1 provesthat G ei!�x = �̂(!) ei�(!)�x : (64)Inserting this expression in the equality GTSvf(x) = ei��vTv Gf(x) for f(x) = ei!�ximplies �̂(!) ei�(!)�x e�iSv�! = �̂(!) ei�(!)�(x�v) e�i��v ;from whih we derive that �(!) = S! + � for all ! where �̂(!) 6= 0. For ! suh that�̂(!) = 0, (64) learly holds with �(!) = S!+ �. So G an indeed be written as in (17).Conversely, if G satis�es (17) then a diret alulation shows that (16) holds.B Proofs of Setion 2B.1 Proof of Proposition 2.1 (Transport)The autoorrelation operator of F = DR satis�es KF = DKRD, thereforehKF  v;~�;� ;  v;~�;�i = hKRD v;~�;� ; D v;~�;�i :Let us ompute~rvhKF v;~�;� ;  v;~�;�i = 2Re hKR D v;~�;� ; ~rvD v;~�;�i= 2Re hKR D v;~�;� ;�~rv + ~rx�D v;~�;�i � 2Re hKR D v;~�;�; ~rxD v;~�;�i :Sine R is stationary, for any g we have hKRg; ~rxgi = 0, so~rvhKF  v;~�;� ;  v;~�;�i = 2Re hKF  v;~�;� ; D�1 �~rv + ~rx�D v;~�;�i :Hypothesis (18) thus implies that���~rvhKF  v;~�;� ;  v;~�;�i��� = O(�) ���RehKF  v;~�;� ; ~rx  v;~�;�i��� : (65)Sine  v;~�;� = G�(v)Tv ~G~� �, transport property (19) shows that v;~�;� = ei�(u(v)) Tu(v) ~G~�(u) ~G~� � = ei�(u(v)) Tu(v) ~G ~��~�(u) � :30



The phase ei�(u(v)) disappears in all alulations of hKF v;~�;�;  v;~�;�i. By de�nition,A�F (u; ~�) = hKFTu ~G ~� � ; Tu ~G~� �i ; and sine ~rvf = ~ruf J�1v (u),~rvhKF  v;~�;�;  v;~�;�i = ~rvA�F (u(v); ~� � ~�(u(v))) = ~ruA�F (u(v); ~� � ~�(u(v))) J�1v (u) :This implies that���~ruA�F (u(v); ~� � ~�(u(v)))��� � kJv(u)k ���~rvhKF  v;~�;� ;  v;~�;�i��� ;where kJv(u)k is the operator sup norm of Jv(u). Inserting this in (65) shows that foru �xed ���~ruA�F (u; ~� � ~�(u))��� = O(�) ���RehKF  v;~�;� ; ~rx  v;~�;�i��� : (66)Sine ~ruTu = �~rxTu, using the symmetry of KF we get2RehKF  v;~�;� ; ~rx v;~�;�i = �~ruA�F (u; ~� � ~�(t)) at t = u: (67)Inserting (67) in (66) �nally proves that���~ruA�F (u; ~� � ~�(u))��� = O(�) ���~ruA�F (u; ~� � ~�(t))��� at t = u,whih implies (20).B.2 Proof of Theorem 2.1This theorem is proved as a onsequene of Proposition 2.1. Operator G�(v) is given by(23) G�(v)f(x) = �0(u) f(v + �0(u)(x� u))with u = ��1(v). Transport property (19) holds beause u(v) = ��1(v) is di�erentiableand invertible and G�(v)Tv = Tu(v) ~G ~�(u(v)) ;where ~G~�(u)f(x) = �0(u) f(�0(u)x) with ~�(u) = 1=�0(u).Let us now verify hypothesis (18) onerning v;~�;� = G�(v)Tv ~G ~� �with ~G~�f(x) = 1=sf(x=s). The salogram renormalization (22) is equivalent to dividing �(x) by �, whih yields  �(x) = 1=�  (x=�), and replaing �s by s whih gives v;~�;�(x) = �v;s(x) = �0(u)s  ��0(u)s (x � u)� :31



Let us ompute �v;s = D�1 (�v + �x)D�v;s :Sine Df(x) = (�0(��1(x)))�1 f(��1(x)) and D�1f(x) = �0(x) f(�(x)), a diret alu-lation givesD�1�xD�v;s(x) = ��0(u)�00(u)s j�0(x)j2  ��0(u)s (x� u)�+ j�0(u)j2s2 �0(x) 0��0(u)s (x� u)�andD�1�vD�v;s(x) = �00(u)s�0(u) ��0(u)s (x� u)�+1s2�(x� u)�00(u)� �0(u)� 0��0(u)s (x� u)� ;therefore�v;s(x) = �00(u)s�0(u)j�0(x)j2 (j�0(u)j2 � j�0(x)j2) ��0(u)s (x� u)�+ 1s2 ��0(u)�0(x) (�0(u)� �0(x)� (u� x)�00(u))� 0 ��0(u)s (x� u)� :Sine  is supported in [�1; 1℄, �v;s is supported in [u � s=�0(u); u + s=�0(u)℄. Sine� 2 C3, a Taylor series expansion of j�0(x)j2 and of �0(x) around position u prove that,for small s,�v;s(x) = �2�00(u)2�0(u)3 +O(s)� ��0(u)s (x� u)�+� �000(u)2�00(u)2 +O(s)� 0��0(u)s (x� u)�The autoorrelation kernel of F (x) is F (x; y) = R(�(x) � �(y)), henehKF �v;s ; �v;si = ZZ R(�(x) � �(y)) ��v;s(x)�v;s(y) dx dy :Sine R �v;s(x) dx = R  (x) dx = 0,hKF �v;s ; �v;si = � ZZ �R(0)� R(�(x) � �(y))� ��v;s(x)�v;s(y) dx dy :The supports of �v;s and �v;s are in [u�s=�0(u); u+s=�0(u)℄ and for z in a neighborhoodof 0, the ontinuity of � implies that R(0) � R(z) = �(0) jzjh + o(jzjh). Sine �0 is32



ontinuous at u, a Taylor series expansion of � around u ombined with a hange ofvariables x0 = (x� u)�0(u)=s and y0 = (y � u)�0(u)=s yield, for s suÆiently small,hKF �v;s ; �v;si = � ZZ (�(0)js(x� y)jh + o(js(x � y)jh)) �(x) �� s�0(u) ��2�00(u)2�0(u)3 +O(s)� (y) +� �000(u)2�00(u)2 +O(s)� 0(y)� dx dy ; (68)and therefore jRehKF �v;s �v;sij = O(sh+1): (69)Let us now omputehKF �v;s ; �x�v;si = ZZ R(�(x) � �(y)) ��v;s(x) ddy �v;s(y) dx dy :With an integration by parts,hKF �v;s ; �x�v;si = � ZZ �0(y) 0R(�(x) � �(y)) ��v;s(x) �v;s(y) dx dy ;and sine 0R(z) is antisymmetriRe hKF �v;s ; �x�v;si = 12 ZZ ��0(x) � �0(y)� 0R(�(x) � �(y)) ��v;s(x) �v;s(y) dx dy :A hange of variable x0 = (x� u)�0(u)=s and y0 = (y � u)�0(u)=s givesRe hKF �v;s ; �x�v;si = 12 ZZ ��0(u+ sx=�0(u))� �0(u+ sy=�0(u))�0R��(u+ sx=�0(u))� �(u+ sy=�0(u))� �(x) (y) dx dy :Beause of assumption (24), sine � isC1 in a neighborhood of 0, 0R(z) = h �(0) sign(z) jzjh�1+o(jzjh�1). With a Taylor expansion for �, we get, for s small enough,Re hKF �v;s ; �x�v;si = 12 �00(u)�0(u) ZZ (h �(0) sh jx� yjh + o(shjx� yjh)) �(x) (y) dx dy : (70)Sine RR jx� yjh �(x) (y) dx dy 6= 0 and �00(u) 6= 0, there exists a(u) > 0 suh thatjRe hKF �v;s ; �x�v;sij � a(u) sh + o(sh) ;and (69) implies thatjRe hKF �v;s �v;sij = O(s) jRe hKF �v;s ; �x�v;sij :Sine all the onditions of Proposition 2.1 have been veri�ed, we an apply theresulting transport equation (21) with ~� = s, ~�(u) = 1=�0(u) and ~� � ~�(t) = s=�0(t):�����uAF (u; s)� s �0(u) �00(t)(�0(t))2 �sAF (u; s)���� = O(s) j�uAF (u; s)j at t = u;whih proves (26). 33



B.3 Proof of Theorem 2.2.This theorem is proved as a onsequene of Proposition 2.1. The operator G�(v) isde�ned in (27) by: G�(v)f(x) = ei(�(v)+�0(v)(x�v))f(x) : (71)Transport property (19) holds beause, for u(v) = v, we haveG�(v)Tv = ei�(u(v)) Tu(v) ~G~�(u(v))with ~G~�(u)f(x) = ei�0(u)x f(x) and ~�(u) = ��0(u).Let now verify hypothesis (18):���ReDKF v;�;� ; D�1 (�v + �x)D v;�;�E��� = O(�) ����Re�KF v;�;� ; ��x v;�;������ ; (72)for v;�;�(x) = G�(v)Tv ~G� �(x) =exp[i(�(v) + �0(v)(x � v))℄ exp[i�(x� v)℄ �x� v� � : (73)A diret alulation shows thatDKF v;�;� ; D�1 (�v + �x)D v;�;�E =ZZ R(x� y) exp[i(�(x) � �(y)� �0(v)(x � y))℄ exp[i�(y � x)℄�� i(��00(v)(y � v) + �0(y)� �0(v)) �x� v� � �y � v� � dx dy ;and with a hange of variables x0 = (x� v)=� and y0 = (y � v)=�,DKF v;�;� ; D�1 (�v + �x)D v;�;�E =ZZ R(�(x0 � y0)) exp[i(�(v + �x0)� �(v + �y0)� ��0(v)(x0 � y0))℄ �� i(�0(v + �y0)� �0(v) � �00(v)�y0)ei�0(y0�x0)  (x0) (y0) dx0 dy0 : (74)Beause R e�i�0x (x) dx = 0,ZZ R(0)i(�0(v + �y)� �0(v) � �00(v)�y)ei�0(y�x)  (x) (y) dx dy = 0 : (75)34



After subtrating (75) from (74),DKF v;�;� ; D�1 (�v + �x)D v;�;�E =ZZ R(�(x � y)) (exp[i(�(v + �x) � �(v + �y)� ��0(v)(x � y))℄� 1)�� i(�0(v + �y)� �0(v)� �00(v)�y) ~ �(x) ~ (y) dx dy +ZZ (R(�(x� y))� R(0)) i(�0(v+�y)��0(v)��00(v)�y) ei�0(y�x)  (x) (y) dx dy :(76)Sine � 2 C4+dhe, we an perform the following Taylor expansions, where ak, bk and kare real parameters whih depend on the derivatives �(k)(v), for (x; y) 2 [0; 1℄2:exp[i(�(v + �x)� �(v + �y)� ��0(v)(x � y))℄ =1 + i 2+dheXk=2 ak�k(x� y)k + 2+dheXk=4 bk�2�k(x� y)k +O(�3+dhe) (77)�0(v + �y)� �0(v) = 2+dheXk=1 k+1�kyk +O(�3+dhe) : (78)In partiular, a2 = �00(v)=2 and k = �(k)(v)=(k � 1)! .Replaing these Taylor expansions in (76), we obtainDKF v;�;� ; D�1 (�v + �x)D v;�;�E =� ZZ R(�(x � y))24i 2+dheXk=2 ak�k(x� y)k + 2+dheXk=4 bk�2�k(x� y)k35�� 2+dheXk=2 k+1�kyk ei�0(y�x)  (x) (y) dx dy� i ZZ �hjx� yjh�(�(x � y))242+dheXk=2 k+1�kyk35 ei�0(y�x)  (x) (y) dx dy+ o(�3+dhe) :In the �rst of these two integrals, one an replae R(�(x � y)) by R(0) � �hjx �yjh�(�(x � y)). Sine  ̂ and its �rst dhe + 2 derivatives vanish at �0, we derive thatei�0t  (t) is a funtion with dhe + 3 vanishing moments [10℄, so the �rst integral is of35



the order of O(�4+h).For the seond integral, beause  is even, exhanging x and y shows thatZZ jx� yjh�(�(x � y))y2 sin(�0(y � x)) (x) (y) dx dy = 0 :Sine 2 + dhe � 3, the seond integral has a real part whih is equal to��3+h�(0)�(4)(v)6 ZZ sin(�0(x� y)) jx� yjhy3  (x) (y) dx dy + o(�3+h) :As a onsequene,ReDKF v;�;� ; D�1 (�v + �x)D v;�;�E =� �3+h�(0)�(4)(v)6 ZZ sin(�0(x� y)) jx� yjhy3  (x) (y) dx dy + o(�3+h) : (79)Let us now estimate jRe hKF v;�;� ; �x v;�;�ij. After a hange of variables,hKF v;�;�; �x v;�;�i =ZZ R(�(x � y)) exp[i(�(v + �x) � �(v + �y)� ��0(v)(x � y))℄�� exp[i�0(y � x)℄ i(�0(v) + �0=�) (x) (y) dx dy+ ZZ R(�(x� y)) exp[i(�(v + �x)� �(v + �y)� ��0(v)(x � y))℄�� exp[i�0(y � x)℄ (x) 1�  0(y) dx dy :Using Taylor expansions (77) and (78), we obtainhKF v;�;�; �x v;�;�i =ZZ R(�(x � y))241 + i 2+dheXk=2 ak�k(x� y)k + 2+dheXk=4 bk�2�k(x � y)k35�� exp[i�0(y � x)℄ i(�0(v) + �0=�) (x) (y) dx dy+ ZZ R(�(x � y))241 + i 2+dheXk=2 ak�k(x � y)k + 2+dheXk=4 bk�2�k(x� y)k35�� exp[i�0(y � x)℄ (x) 1� 0(y) dx dy +O(�2+dhe) : (80)Exhanging x and y shows thatZZ R(�(x � y)) sin[�0(y � x)℄ (x) (y) dx dy = 0 ;36



and sine  is even and  0 is odd, hanging x to �x and y to �y shows thatZZ R(�(x � y)) os[�0(y � x)℄ (x) 0(y) dx dy = 0 :Writing R(�(x� y)) = R(0)� �hjx� yjh�(�(x � y)), and notiing that ei�0t  (t) is afuntion with dhe+3 vanishing moments, the �rst integral in (80) has a real part equalto �1+h�00(v)2 �(0) ZZ jx� yj2+h�0 os[�0(y � x)℄ (x) (y) dx dy + o(�1+h) :Beause  is even, the seond integral in (80) has a real part equal to�1+h�00(v)2 �(0) ZZ jx� yj2+h sin[�0(y � x)℄ (x) 0(y) dx dy + o(�1+h) :An integration by parts with respet to y shows thatZZ jx� yj2+h sin[�0(y � x)℄ (x) 0(y) dx dy =� �0 ZZ jx� yj2+h os[�0(y � x)℄ (x) (y) dx dy ++ (2 + h) ZZ jx� yj1+hsign(x� y) sin[�0(y � x)℄ (x) (y) dx dy :Summing up the two ontributions, we see thatRe hKF v;�;� ; �x v;�;�i =��1+h �(0) (1+h=2)�00(v) ZZ jx�yjh(x�y) sin[�0(x�y)℄ (x) (y) dx dy+o(�1+h) :(81)Beause of the hypothesis thatZZ jx� yjh(x� y) sin[�0(x� y)℄ (x) (y) dx dy 6= 0 ;omparing (81) and (79) proves a result whih is stronger than (18), beause the right-hand side has an O(�2) instead of O(�):jReDKF v;�;� ; D�1 (�v + �x)D v;�;�E j = O(�2) jRe hKF v;�;� ; �x v;�;�i j :With a slight modi�ation of Proposition 2.1 to aount for the O(�2) term, we obtaina transport equation (21) with ~� = �, ~�(u) = ��0(u) and ~�1 � ~�2 = ~�1 + ~�2: for usuh that �00(u) 6= 0,j�uA�F (u; �)� �00(u) ��A�F (u; �)j = O(�2) j�uA�F (u; �)j ;whih proves (29). 37



B.4 Proof of Theorem 2.3The proof of this theorem follows the same lines as the proof of Theorem 2.1. Thehypotheses of Proposition 2.1 are veri�ed in order to apply (21) in d dimensions.The transport property (19) learly holds. Let us verify hypothesis (18) onerning v;~�;� = G�(v)Tv ~G ~� �with ~G ~�f(x) = detS�1f(S�1x). The warpogram renormalization (31) is equivalent todividing  �(x) by �d and replaing �S by S. Realling the de�nition (30) of G�(v), weintrodue  v;~�;�(x) = �v;S(x) = det(S�1J�(u)) (S�1J�(u)(x� u)) : (82)Let us de�ne the vetor of funtions~�v;S = D�1(~rv + ~rx)D�v;S :We now prove that for any �xed u and ~S suh that det ~S = 1, if S = � ~S then���RehKF �v;S ; ~�v;S i��� = O(�) ���RehKF �v;S ; ~rx�v;Si��� : (83)Let us �rst ompute an upper bound for ���RehKF �v;S ; ~�v;S i���. SineD�1f(x) = det(J�(x))f(�(x))and Df(x) = det(J�1� (��1(x)))f(��1(x)) ;we haveD�1~rxD�v;S(x) = ��d ��det J�(u)det J�(x) ~r det J�(x)J�1� (x) (S�1J�(u)(x� u))+ det J�(u)~r (S�1J�(u)(x� u))S�1J�(u)J�1� (x)�andD�1~rvD�v;S(x) = ��d h~r det J�(u) (S�1J�(u)(x� u))J�1� (u)+det J�(u)~r (S�1J�(u)(x� u))S�1(~rJ�(u)(x� u)� J�(u))J�1� (u)i :After summing these two expressions, a Taylor expansion of det J�, J�1� and of ~r det J�in the viinity of position u shows that for S = � ~S and � small, there exists C(u; ~S)suh that j~�v;S j � C(u; ~S)�1�d : (84)38



By de�nition of KF ,hKF �v;S ; ~�v;Si = ZZ R(�(x) � �(y))��v;S(x)~�v;S(y) dx dy :The wavelet  has one vanishing moment, so R �v;S(x)dx = 0, and thereforehKF �v;S ; ~�v;Si = ZZ [R(�(x) � �(y)) � R(0)℄ ��v;S(x)~�v;S(y) dx dy ;whih implies thatjhKF �v;S ; ~�v;Sij � ZZ jR(�(x) � �(y)) � R(0)j j�v;S(x)j j~�v;S(y)j dx dy :Inserting (84) and (82), and using ondition (34) on R, after a hange of variable anda Taylor expansion of � around u, we obtainjhKF �v;S ; ~�v;Sij = O(�h+1) :To prove (83), we now show that there exists K(u; ~S) > 0 suh that���RehKF �v;S ; ~rx�v;Si��� � K(u; ~S)�h : (85)With an integration by parts, and using the fat that ~rR(x) is antisymmetri, we gethKF �v;S ; ~rx�v;Si = ZZ ~rR(�(x) � �(y))J�(y)��v;S(x)�v;S(y) dx dy= � 12 ZZ ~rR(�(x) � �(y))(J�(x) � J�(y))��v;S(x)�v;S(y) dx dy :ThereforehKF �v;S ; ~rx�v;Si+ 12 ZZ ~rR(S(x� y))~rJ�(u)J�1� (u)S(x� y) �(x) (y) dx dy= � 12 ZZ (rR(�(u+ J�1� (u)Sx)� �(u+ J�1� (u)Sy))�rR(S(x� y)))�� (J�(u+ J�1� (u)Sx)� J�(u+ J�1� (u)Sy)) �(x) (y) dx dy� 12 ZZ rR(S(x�y))(J�(u+J�1� (u)Sx)�J�(u+J�1� (u)Sy)�~rJ�(u)J�1� (u)S(x�y))��  �(x) (y) dx dyBeause ~rR is C1 in a neighborhood of 0 exluding 0, for small �, seond order Taylorseries expansions for � and for J� around position u prove thathKF �v;S ; ~rx�v;Si+ 12 ZZ ~rR(S(x�y))~rJ�(u)J�1� (u)S(x�y) �(x) (y) dx dy = o(�h)39



Hypothesis (35) on R guarantees that (85) holds, and therefore (83) is satis�ed. Nowthat onditions (18) and (19) of Proposition 2.1 have been veri�ed, the resulting trans-port equation (21) an be applied, with ~� = S, ~�(u) = J�1� (u) and S1 � S2 = S2 S1.This yields:���~ruAF (u; S) + hJ�(u)�1 ~ruJ�(u)Si � ~rSAF (u; S)��� = O(�) ���~ruAF (u; S)��� :The �nal result (36) is derived from this equation by noting thathJ�1� (u) ~ruJ�(u)Si � ~rSAF (u; S) = hJ�1� (u)~ruJ�(u)i � h~rSAF (u; S)Sti :C Proofs of Setion 3C.1 Proof of Proposition 3.1With a slight modi�ation of the proof of Theorem 2.1, one an prove a stronger resultthan (26), whih is stated in the following lemma:Lemma C.1. Under the hypotheses of Theorem 2.1,�uAF (u; s)� (log�0)0(u)�log sAF (u; s) = s(C(u) + o(1)) �uAF (u; s) ; (86)where C is ontinuous.Proof. In one dimension, the proof of Proposition 2.1 an be adapted to show that, if(18) is replaed byRehKF v;~�;� ; D�1 (�v + �x)D v;~�;�i = (u; �)RehKF v;~�;� ; �x v;~�;�i ; (87)and if (19) holds, then the resulting transport equation (21) is replaed by�uA�F (u; ~�) + �t( ~� � ~��1(u) � ~�(t))�~�A�F (u; ~�) = (u; �)�uA�F (u; ~�) :Now, in the proof of Theorem 2.1, (68) proves thatRehKF �v;s; �v;si = sh+1(B(u) + o(1)) ; (88)where B is ontinuous. On the other hand, (70) proves thatRehKF �v;s; �x�v;si = 12 �00(u)�0(u) sh(1 + o(1))h�(0) ZZ jx� yjh �(x) (y) dx dy ; (89)where �00(u)=�0(u) is ontinuous in u.Comparing (88) and (89) shows that (87) holds with(u; �) = s(C(u) + o(1))and C ontinuous. This proves that (86) is indeed satis�ed.40



Convolving both sides of (86) with g, we obtain�uAF (u; s)� Z g(u� v) (log�0)0(v) �log sAF (v; s) dv= s Z (C(v) + o(1))g(u� v)�uAF (v; s) dv : (90)The hypotheses of Theorem 2.1 imply that �log sAF (u; s) does not vanish. By ontinuity,�log sAF (v; s) therefore keeps a onstant sign for v in [u��; u+�℄. Moreover,����Z g(u� v)((log�0)0(v) � (log�0)0(u)) �log sAF (v; s) dv����� maxjv�uj�� j(log�0)0(v)� (log�0)0(u)j j�log sAF (u; s)j= O(�) j�log sAF (u; s)j : (91)beause (log�0)00 is bounded over [u��; u+�℄. If u is suh that �00(u) 6= 0, and if �is small enough, �uAF (v; s) also keeps a onstant sign over [u��; u+�℄. Sine C isontinuous,����Z g(u� v)(C(v) + o(1)� C(u)) �uAF (v; s) dv����� maxjv�uj�� jC(v) + o(1)� C(u)j j�uAF (u; s)j= o(1) j�uAF (u; s)j when �! 0: (92)Combining (90), (91), and (92) proves that(1 +O(s))�uAF (u; s)� ((log�0)0(u) +O(�))�log sAF (u; s) = 0 :C.2 Proof of Theorem 3.1The following lemma, whose proof is in Appendix C.2.1, shows that estimators\�uAF (u; s)and \�log sAF (u; s) are onsistent.Lemma C.2. Let F (x) = R(�(x)), where R is a stationary Gaussian proess suh thatthere exists h > 0 withR(0)� R(x) = jxjh �(x) and �(0) > 0 : (93)Let  be a C2 wavelet supported in [�1; 1℄ and with p vanishing moments, suh that2p� h > 1=2; and ZZ jx� yjh  �(x) (y) dx dy 6= 0 :41



If �(x) is C2p in a neighborhood of 0, and if �(x) 2 C2p \ C3, then for eah u, for ssmall enough,Probnj \�log sAF (u; s)� �log sAF (u; s)j � C j�log sAF (u; s)jo � "1 ; (94)Probnj\�uAF (u; s)� �uAF (u; s)j � C j�uAF (u; s)jo � "2 ; (95)where C = log(N�)�pN� , "1 = C1(u)�2(log(N�))2 and "2 = 6 (N�)�1=(2C2(u)).The parameters C1(u) and C2(u), whih are de�ned in the proof of the lemma, areboth positive.The weak onsisteny of \�uAF (u;N�1)\�log sAF (u;N�1)as an estimator of (log�0)0(u) then results from the following lemma, whose proof isstraightforward:Lemma C.3. If X1 and X2 are two random variables, and C < 1 a onstant suh thatProbfjX1 � EfX1gj � C jEfX1gjg � 1� "1 ;Prob fjX2 � EfX2gj � C jEfX2gjg � 1� "2 ;then Prob�����X2X1 � EfX2gEfX1g ���� � 2C1� C� � 1� "1 � "2 :In view of Lemma C.2, one an apply Lemma C.3 to X1 = \�log sAF (u;N�1) andX2 =\�uAF (u;N�1) with C = log(N�)�pN� yieldingProb(����� \�uAF (u;N�1)\�log sAF (u;N�1) � �uAF (u;N�1)�log sAF (u;N�1) ����� � 2 log(N�)�pN�� log(N�)) � 1� "1 � "2 :Beause of the averaged transport equation (41),(log�0)0(u) = O(�) + �uAF (u;N�1)�log sAF (u;N�1) (1 +O(N�1)):Sine � > N�1 and (log�0)0(u) is bounded, we derive(log�0)0(u) = O(�) + �uAF (u;N�1)�log sAF (u;N�1)thereforeProb ����� \�uAF (u;N�1)\�log sAF (u;N�1) � (log�0)0(u)����� � 2 log(N�)�pN�� log(N�) +O(�)! � 1�"1�"2 :42



We pik � suh that ��1(N�)�1=2 = �, i.e. � = N�1=5. When N ! 1, "1 and"2, whose expressions are given in Lemma C.2, both tend to 0. Moreover, for N largeenough, 2 log(N�)�pN�� log(N�) +O(�) � 2(logN)N�1=5 :ThereforelimN!1Prob ����� \�uAF (u;N�1)\�log sAF (u;N�1) � (log�0)0(u)����� � 2(logN)N�1=5! = 1 :C.2.1 Proof of Lemma C.2 We start by proving (94). Let n = N� denote thenumber of disrete samples overed by the support of g. We seek an upper bound forthe variane of \�log sAF (u; s), whih is de�ned byVlog s(u) = Efj \�log sAF (u; s)� �log sAF (u; s)j2g :Let us hoose u = 0 without loss of generality. One an see that���� �2�u � log sAF (u; s)���� = O(sh)and a Riemann series approximation shows thatZ g(v) �log sAF (v; s) dv �N�1 nXk=�n g(k=N) �log sAF (k=N; s) = O(sh=N) :Replaing \�log sAF (0; s) by its expression in (44), and notiing that the real part issmaller than the modulus, we obtainVlog s(0) � 4N2E8><>:������ Xjkj�n gkXkYk � gkEfXkYkg������29>=>;+O(s2h=N2)where gk, Xk and Yk respetively denote g(k=n); hF;  k=N;si and hF; �log s k=N;si�. Ex-panding ���Pjkj�n���2 under the form �Pjkj�n� � �Pjlj�n��,Vlog s(0) � 4N2EfXjkj�n [gkXkYk � gkEfXkYkg℄ Xjlj�n [glXlYl � glEfXlYlg℄�g+O(s2h=N2)� 4N2 Xjkj�njlj�n [gkglEfXkYkX�l Y �l g � gkglEfXkYkgEfX�l Y �l g℄ +O(s2h=N2) :Sine R is Gaussian, so is F , as well as the random variables Xk and Yk. A lassialresult on Gaussian random variables shows thatE fXkYkX�l Y �l g = E fXkYkgE fX�l Y �l g+ E fXkX�l gE fYkY �l g+ E fXkY �l gE fYkX�l g :43



ThereforeVlog s(0) �4N2 Xjkj�njlj�n gkgl[E fXkX�l gE fYkY �l g+ E fXkY �l gE fYkX�l g℄ +O(s2h=N2)� 4n2 Xjkj�njlj�n [jE fXkX�l g j jE fYkY �l g j+ jE fXkY �l g j jE fYkX�l g j℄ +O(s2h=N2) : (96)Eah of the terms appearing in the sum above an be bounded thanks to the followingdeorrelation lemma:Lemma C.4. Let F (x) = R(�(x)), let Xk = hF;  k=N;si and Yk = hF; �log s k=N;si�.Under the hypotheses of Lemma C.2, for s small enough, there exist ontinuous funtionsM1 and M2 suh that, for jk � lj � 2,jE fXkX�l g j � M1(sk)sh ; (97a)jE fXkY �l g j � M1(sk)sh ; (97b)jE fYkY �l g j � M1(sk)sh ; (97)and for jk � lj > 2, jE fXkX�l g j � M2(sk) s2p(s(jk � lj � 2))2p�h ; (98a)jE fXkY �l g j � M2(sk) s2p(s(jk � lj � 2))2p�h ; (98b)jE fYkY �l g j � M2(sk) s2p(s(jk � lj � 2))2p�h : (98)The proof of the above lemma is in Appendix C.2.2.Replaing (97) and (98) in (96), we see that, sine M1 and M2 are ontinuous andsine k=N = �! 0 when N !1,Vlog s(0) � 4n2 Xjk�lj�2jkj;jlj�n 2(M1(0) + o(1))2s2h+ 4n2 Xjk�lj>2jkj;jlj�n 2(M2(0) + o(1))2s4p(s(jk � lj � 2))4p�2h +O(s2h=N2) : (99)Sine 4p� 2h > 1, Xjk�lj>2jkj;jlj�n(jk � lj � 2)2h�4p = Kpn : (100)44



Replaing (100) in (99), we obtainVlog s(0) � 8C2 s2hn (3M1(0)2 +KpM2(0)2) + o(s2h=n) :In the proof of Theorem 2.1, (70) proves that there exists a(u) > 0 suh thatj�uAF (u; s)j � a(u)sh + o(sh) :For � small enough, �uAF (v; s) does not hange sign for jv � uj � � thus, afteronvolution with g, j�uAF (u; s)j � a(u)sh + o(sh) :Beause of transport equation (41), the same applies to �log sAF (u; s), therefore thereexists a onstant C1(u) suh thatVlog s(u) � C1(u) � j�log sAF (u; s)jpn �2 :Applying Chebyshev's Lemma [3℄ then proves that, for all " > 0,Prob(j \�log sAF (u; s)� �log sAF (u; s)j � pC1(u) ���log sAF (u; s)��"pn ) � "2 ;and (94) follows by hoosing " = pC1(u)�logn and "1 = C1(u)�2(logn)2 .Let us now prove (95). We denote Du = j\�uAF (0; s) � �uAF (0; s)j. One an seethat j�uAF (u; s)j = O(sh)and a Riemann series approximation one again shows that��2 Z �0 AF (v; s) dv ���1n�1 nXk=0AF (k=N; s) = O(sh=n) :Therefore, using one more the notation Xk = hF;  k=N;si,Du = 1n� �� nXk=0(jXkj2 � EfjXkj2g)� 0Xk=�n(jXkj2 � EfjXkj2g)��+O(sh=n) :Denoting eX� = 0Xk=�n+1 jXkj2 and eX+ = nXk=1 jXkj2 ;we have Du � 1n� �j eX+ � Ef eX+gj+ j eX� � Ef eX�gj�+O(sh=n) (101)45



We are now going to prove that there exists a stritly positive onstant C2 suh that8 y ; ProbfDu > yC2 sh�png � 6 e�y=2 (102)and sine j�uAF (u; s)j � a(u)sh + o(sh) with a(u) > 0, hoosing y = logn=C2 will thenimply (95).Let us onsider the random vetor X = (X1; X2; : : : ; Xn), let KX denote the ovari-ane operator of X , and (ej)j=1;:::;n its Karhunen-Lo�eve basis. If (�j)j=1;:::;n are theeigenvalues of KX orresponding to the eigenvetors (ej)j=1;:::;n, thenX = nXj=1p�j Zj ejwhere Zj are independent random variables with variane 1. As a onsequene,eX+ = kXk2 = nXj=1 �jZ2j :The following lemma, whih is proved in [7℄, relies on a theorem by Bakirov [2℄.Lemma C.5. If bX = Pj �jZ2j where Zj are independent Gaussian random variableswith variane one, and Pj �2j = 1, then8 y ; Probfj bX � Ef bXgj > yg � 6 e�y=2 :The random variable bX+ = �Pj �2j��1=2 eX+ satis�es the requirements of LemmaC.5, therefore 8 y; Probfj eX+ � Ef eX+gj > y (Xj �2j )1=2g � 6 e�y=2but Pj �2j is equal to the Hilbert-Shmidt norm of KX :Xj �2j =Xj;k EfXjX�kg ;whih is bounded by Bs2hn beause of (97a) and (98a). Hene8 y ; Probfj eX+ � Ef eX+gj > ypBshpng � 6 e�y=2 :The same applies to eX�, and by ombining the two and using (101) we obtain (102).46



C.2.2 Proof of Lemma C.4 The three terms E fXkX�l g, E fXkY �l g and E fYkY �l gan be written asI = ZZ R(�(u+ sx)� �(v + sy)) (x) ~ (y) dx dy ;where (u; v) = (sk; sl), and  and ~ are two wavelets with p vanishing moments. Clearly,I = ZZ [R(�(u+ sx)� �(v + sy))� R(0)℄ (x) ~ (y) dx dy : (103)For ju� vj � �, jxj � 1 and jyj � 1, we havej�(u+ sx)� �(v + sy)j � (� + 2s) supjx�uj��+2s[�0(x)℄ � (� + 2s)Cubeause � is ontinuously di�erentiable. For � small enough, j�(u+ sx)��(v+ sy)j istherefore in a neighborhood of 0. Sine � is assumed ontinuous in a neighborhood of0, j�(�(u+ sx)� �(v + sy))j � Bfor ju� vj � �, jxj � 1 and jyj � 1.Hene jI j � ZZ j�(u+ sx)� �(v + sy)jhB j (x)j j ~ (y)j dx dy� Csh + o(sh) :This proves (97a), (97b) and (97).Let us now prove (98). Sine  and ~ in (103) are ompatly supported and havep vanishing moments, there exist two ompatly supported funtions � and ~� suh that (x) = �(p)(x) and ~ (y) = ~�(p)(y). Integrating (103) by parts p times with respet tox and to y givesI = ZZ �p�xp �p�yp �j�(u+ sx)� �(v + sy)jh�(�(u+ sx)� �(v + sy))	 �(x) ~�(y) dx dy :But for ju� vj > 2s, one an show that���� �p�xp �p�yp �j�(u+ sx)� �(v + sy)jh�(�(u+ sx)� �(v + sy))	���� � M(u) s2p(ju� vj � 2s)2p�h ;where M(u) depends on h, on derivatives of � up to order 2p in a neighborhood of u,and on derivatives of � up to order 2p in a neighborhood of 0. Therefore there exists aontinuous M2(u) suh thatjI j �M2(u) s2p(s(jk � lj � 2))2p�h ;whih proves (98a), (98b), and (98). 47



C.3 Proofs of Setion 3.2C.3.1 Proof of (49)Lemma C.6. Under the hypotheses of Theorem 2.2,�uA�F (u; �0=�)� �00(u) ��A�F (u; �0=�) = �2(C(u) + o(1))�uA�F (u; �0=�) ; (104)where C is ontinuous.Proof. The proof mimiks the proof of Lemma C.1. In the proof of Theorem 2.2, weshowed in (79) thatReDKF v;�;� ; D�1 (�v + �x)D v;�;�E = �3+h(A(v) + o(1)) ; (105)and in (81) that Re hKF v;�;� ; �x v;�;�i = �1+h(B(v) + o(1)) ; (106)with B(v) ontinuous. Comparing (105) and (106) shows thatReDKF v;�;�; D�1 (�v + �x)D v;�;�E = �2(C(v) + o(1))Re hKF v;�;� ; �x v;�;�i ;with C(v) ontinuous. This implies, by repeating the argument of Lemma C.1, that(104) is satis�ed.Using Lemma C.6, the arguments of Proposition 3.1 an be repeated to prove (49).C.3.2 Proof of Theorem 3.2 As in the proof of Theorem 3.1, one an ombinethe following lemma with Lemma C.3 to prove the weak onsisteny result (55).Lemma C.7. Let F (x) = R(x) ei�(x), where R is a stationary Gaussian proess suhthat there exists h > 0 withR(0)� R(x) = jxjh �(x) and �(0) > 0 :Let  be a C2 even, positive funtion supported in [�1; 1℄ suh that  1(x) = ei�0x (x)has p � dhe+ 3 vanishing moments and suh thatZZ jx� yjh(x� y) sin[�0(x� y)℄ (x) (y) dx dy 6= 0 :If � is C2p in a neighborhood of 0, and if � 2 C2p, thenProbnj\��A�F (u;N�0)� ��A�F (u;N�0)j � Cj��A�F (u;N�0)jo � "1 ;P robnj\�uA�F (u;N�0)� �uA�F (u;N�0)j � Cj�uA�F (u;N�0)jo � "2 :48



The proof of Lemma C.7 is almost idential to the proof of Lemma C.2; the onlydi�erene is that  2 has p�1 vanishing moments instead of p, so that Lemma C.4 mustbe replaed with the following lemma, whih is proved by using the same method.Lemma C.8. Let F (x) = R(x) ei�(x), let Xk = hF;  1k=N;�i and Yk = hF;  2k=N;�i�.Under the hypotheses of Lemma C.7, for � small enough, there exist two ontinuousfuntions M1 and M2 suh thatfor jk � lj � 2, jE fXkX�l g j � M1(�k)�h ;jE fXkY �l g j � M1(�k)�h ;jE fYkY �l g j � M1(�k)�h ;and for jk � lj > 2, jE fXkX�l g j � M2(�k) �2p(�(jk � lj � 2))2p�h ;jE fXkY �l g j � M2(�k) �2p�1(�(jk � lj � 2))2p�1�h ;jE fYkY �l g j � M2(�k) �2p�2(�(jk � lj � 2))2p�2�h :Sine p � dhe+ 3, we have 2(2p� 2� h) > 1, therefore the variane termEfj\��A�F (u; �)� ��A�F (u; �)j2gan be ontrolled as in the proof of Lemma C.2.
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