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tThis paper studies 
lasses of nonstationary pro
esses, su
h as warped pro
esses andfrequen
y-modulated pro
esses, that result from the deformation of stationary pro-
esses. Estimating deformations 
an often provide important information about anunderlying physi
al pro
ess. A 
omputational harmoni
 analysis viewpoint shows thatthe deformed auto
orrelation satis�es a transport equation at small s
ales, with a velo
-ity proportional to a deformation gradient. We derive an estimator of the deformationfrom a single realization of the deformed pro
ess, with a proof of 
onsisten
y underappropriate assumptions.Introdu
tionWhen a nonstationary pro
ess F results from the deformation of a stationary pro
essR, estimating the deformation 
an provide important information about an underlyingphysi
al pro
ess of interest. From one realization of F = DR, we wish to re
over thedeformation operator D, whi
h is assumed to belong to a spe
i�ed group D. For exam-ple, a Doppler e�e
t produ
es a warping deformation in time F (x) = R(�(x)), where�0(x) depends upon velo
ity. The deformation of a stationary texture by perspe
tivein an image also produ
es a warping, where x 2 R2 is a spatial variable; re
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the Ja
obian matrix of �(x) nearly 
hara
terizes the 
orresponding three-dimensionalsurfa
e whi
h is being viewed [8℄. The frequen
y modulation of a stationary pro
essF (x) = R(x) exp(i�(x)) 
orresponds to another 
lass of deformations often en
ounteredin signal pro
essing; in transmissions by frequen
y modulation, the message is 
arriedby �0(x).Estimating the deformation D 2 D from F = DR is an inverse problem. As wesuppose no prior knowledge about the stationary pro
ess R, the deformation D 
an onlybe re
overed up to the subgroup G of D whi
h leaves the set of stationary pro
essesglobally invariant. Rather than the deformation itself, we therefore seek to estimate theequivalen
e 
lass of D in D=G. We 
onsider 
ases where G is a �nite-dimensional Liegroup, and under appropriate assumptions, this equivalen
e 
lass 
an be represented bya ve
tor �eld on G, whi
h 
orresponds to a deformation gradient. A lo
al analysis of thedeformation is performed by de
omposing the auto
orrelation of F over an appropriatefamily of lo
alized fun
tions, 
alled atoms in the harmoni
 analysis literature. Thedeformation gradient is shown to appear as a velo
ity ve
tor in a transport equationsatis�ed by a lo
alized auto
orrelation. This general result is applied to one-dimensionalwarping and frequen
y modulation, where the atoms are wavelets, and multidimensionalwarping, where the atoms are 
alled warplets.Computing the deformation gradient requires estimating the auto
orrelation of Fproje
ted over a family of lo
alized atoms, from a single realization. Under 
ertain
onditions on the auto
orrelation of the stationary pro
ess R, one 
an obtain 
onsistentestimators for one-dimensional warping and frequen
y modulation. Numeri
al examplesillustrate these results.The paper is organized in three main se
tions: after dis
ussing the well-posednessof the inverse problem in Se
tion 1, we establish in Se
tion 2 a transport equation forthe lo
alized auto
orrelation of a deformed pro
ess; Se
tion 3 introdu
es estimators andproves their 
onsisten
y.1 Inverse ProblemWe want to estimate a deformation operator D whi
h belongs to a known group D,from a single realization of F = DR. The pro
ess R is wide-sense stationary, and isnot known a priori. Sin
e we are limited to a single realization, we 
on
entrate onse
ond-order moments. For this reason, stationarity will always be understood in the2



wide-sense, meaning that EfR(x)g = EfR(0)g ;and EfR(x)R�(y)g = 
R(x� y) with 
R(0) < +1 ;where z� denotes the 
omplex 
onjugate of z 2 C . Although it is not normalized bythe varian
e, the term EfR(x)R�(y)g is 
alled auto
orrelation of R in the rest of thispaper.1.1 Class of SolutionsNothing is known about the pro
ess R ex
ept for its stationarity, therefore the set ofsolutions to the inverse problem is the set of all operators ~D 2 D su
h that ~D�1F isstationary. In general, this set is larger than fDg. Let G be the set of all operatorsG 2 D su
h that if X is a wide-sense stationary pro
ess, then GX is also wide-sensestationary. One 
an verify that G is a subgroup of D, whi
h we 
all stationarity invariantgroup. Clearly, if D is a solution of the inverse problem, any operator ~D = DG withG 2 G is also a solution. The set of solutions of the inverse problem therefore 
ontainsthe equivalen
e 
lass of D in the quotient group D=G. The equivalen
e 
lass of D isequal to the set of solutions to the inverse problem if any deformation ~D 2 D su
h that~DR is wide-sense stationary ne
essarily belongs to G. This 
ondition is not met by allstationary pro
esses R, but we give suÆ
ient 
onditions on the auto
orrelation of R toguarantee uniqueness. In this paper we 
on
entrate on four 
ategories of deformationgroups.Example 1 The positive multipli
ative group is a parti
ularly simple example whereD = fD : Df(x) = �(x) f(x) with �(x) > 0g :The stationarity invariant group 
orresponds to multipli
ative fun
tions �(x) whi
h are
onstant: G = fGa : Ga f(x) = a f(x) with a > 0g :Two operators D1 and D2 su
h that D1f(x) = �1(x) f(x) and D2f(x) = �2(x) f(x)belong to the same equivalen
e 
lass in D=G if �1(x)=�2(x) is 
onstant.The equivalen
e 
lass of D is 
omputed from F (x) = �(x)R(x) by 
al
ulatingEfjF (x)j2g = �2(x)EfjR(x)j2g = �2(x)EfjR(0)j2g ; (1)whi
h spe
i�es �(x) > 0 up to a multipli
ative 
onstant.3



Finding the equivalen
e 
lass of D is in general mu
h more 
ompli
ated. In thefollowing, we require the fun
tion �(x), whi
h produ
es the deformation, to have aspe
i�ed regularity. This regularity will play an important role in the estimation pro-
edure.Example 2 The frequen
y modulation group modi�es signal frequen
y:D = nD : Df(x) = ei �(x) f(x) where �(x) is real and C4o : (2)In transmissions with frequen
y modulation, �0(x) is proportional to the signal to betransmitted, and the stationary pro
ess R is the 
arrier. The stationarity invariantgroup is G = nG(�;�) : G(�;�) f(x) = ei(�+�x)f(x) with (�; �) 2 R2o :Two operators D1 and D2 su
h that D1f(x) = ei�1(x) f(x) and D2f(x) = ei�2(x) f(x)are in the same equivalen
e 
lass in D=G if and only if �1(x) = �+�x+�2(x) and hen
e�001 (x) = �002 (x) : (3)The following proposition gives a suÆ
ient 
ondition on the auto
orrelation kernel 
R(x)to identify �00(x) from the auto
orrelation of F = DR. The proof is in Appendix A.1.Proposition 1.1. Let F = DR, where D belongs to the frequen
y modulation group Din (2). If there exists an " > 0 su
h that8x 2℄� "; "[ ; 
R(x) > 0then the equivalen
e 
lass of D in D=G is uniquely 
hara
terized by the auto
orrelationof F = DR.Example 3 The one-dimensional warping group is de�ned byD = �D : Df(x) = f(�(x)) where �(x) is C3 and �0(x) > 0	 : (4)Su
h time warpings appear in many physi
al phenomena, su
h as the Doppler e�e
t.We easily verify that the stationarity invariant group is the aÆne group:G = �G(u;s) : G(u;s) f(x) = f(u+ sx) with (u; s) 2 R � R+�	 :Two warping operators D1 and D2 are in the same equivalen
e 
lass in D=G if and onlyif there exists (u; s) su
h that �1(x) = u+ s �2(x), or equivalently�001 (x)�01(x) = �002 (x)�02(x) : (5)4



The following proposition, whose proof is in Appendix A.2, gives a suÆ
ient 
onditionon R to 
hara
terize the equivalen
e 
lass of D uniquely. Perrin and Senoussi [12℄provide a similar result.Proposition 1.2. Let F = DR, with D 2 D, where D is the warping group (4). Ifthere exists an " > 0 su
h that 
R is C1 on ℄0; "[ and8x 2 ℄0; "[ ; 
0R(x) < 0 ; (6)then the equivalen
e 
lass of D in D=G is uniquely 
hara
terized by the auto
orrelationof F .Warping deformations are used in geostatisti
s [11, 13℄, to model nonstationaryphenomena. Stationarizing the data F (x) is suggested as an initial step before applying
lassi
al geostatisti
al methods su
h as kriging.Example 4 The warping problem in two dimensions has an important appli
ation inimage analysis, parti
ularly in re
overing a three-dimensional surfa
e shape by analyz-ing texture deformations. More generally, we study a d-dimensional warping problem,spe
i�ed by an invertible fun
tion �(x) from Rd to Rd with�(x1; ::: ; xd) = ��1(x1; :::; xd); ::: ; �d(x1; :::; xd)� :The Ja
obian matrix of � at position x 2 Rd is writtenJ�(x) = ���i(x)�xj �1�i;j�d : (7)If the Ja
obian determinant det J�(x) does not vanish, �(x) is invertible and 
orrespondsto a 
hange of metri
. We 
onsider a group of regular warpingsD = �D : Df(x) = f(�(x)) where �(x) is in C3(Rd ) and det J�(x) > 0	 : (8)Let GL+(Rd ) be the group of linear operators in Rd with a stri
tly positive determinant.We easily verify that the stationarity invariant group is the aÆne group:G = �G(u;S) : G(u;S) f(x) = f(u+ Sx) with (u; S) 2 Rd �GL+(Rd )	 :Two operators D and ~D su
h that Df(x) = f(�(x)) and ~Df(x) = f(~�(x)) are in thesame equivalen
e 
lass in D=G if and only if9 (u; S) 2 Rd �GL+(Rd ) ; �(x) = u+ S ~�(x) : (9)5



The partial derivative of the Ja
obian matrix in a �xed dire
tion xk is again a matrix:�J�(x)�xk = ��2�i(u)�xk �xj�1�i;j�d :One 
an 
he
k that 
ondition (9) is equivalent to the following matrix equalities, whi
hgeneralize (5): 8 k 2 f1; :::; dg ; J�1� (x) �J�(x)�xk = J�1~� (x) �J~�(x)�xk : (10)There are 
ases for whi
h the inverse warping problem 
annot be solved. For ex-ample, 
onsider a stationary pro
ess R(x) = R1(x1) whi
h only depends on the �rstvariable, and a warping whi
h leaves x1 invariant: �(x1; :::; xd) = (x1; �1(x2; :::; xd)).In this 
ase F (x) = R(x1; �1(x2; :::; xd)) = R1(x1) = R(x) : (11)Hen
e we 
an not re
over �. The following proposition, whose proof is in AppendixA.3, gives a suÆ
ient 
ondition on 
R(x) to guarantee that the inverse warping problemhas a unique solution in D=G.Proposition 1.3. Let F = DR, with D 2 D, where D is the multidimensional warpinggroup (8). If there exists h > 0 and a fun
tion �(x) su
h that
R(0)� 
R(x) = jxjh �(x) ; (12)where �(x) is C2 in a neighborhood of 0, then the equivalen
e 
lass of D in D=G isuniquely 
hara
terized by the auto
orrelation of F .The inverse warping problem 
an be applied to the re
onstru
tion of three-dimensionalsurfa
es from deformations of textures in images [8℄. One 
an model the image of athree-dimensional surfa
e, on whi
h a texture is mapped, asF (x) = R(�(x)) ;where R is a stationary pro
ess, and �(x) is the two-dimensional warping due to theimaging pro
ess, whi
h proje
ts the surfa
e onto the image plane [5℄.We showed in (10) that solving the inverse warping problem is equivalent to 
om-puting normalized partial derivatives of the Ja
obian matrix J�:J�1� (x)�J�(x)�x1 and J�1� (x)�J�(x)�x2 : (13)6



G�arding [8℄, Malik and Rosenholtz [9℄ have proved that these matri
es spe
ify the lo
alorientation and 
urvature of the three-dimensional surfa
e in the s
ene. Knowing thesesurfa
e parameters, it is then possible to re
over the three-dimensional 
oordinatesof the surfa
e, up to a 
onstant s
aling fa
tor. We will see in Se
tion 2.4 that theJa
obian matri
es (13) appear as velo
ity ve
tors in a transport equation satis�ed bythe auto
orrelation of F .1.2 Stationarity Invariant GroupThe stationarity invariant group G spe
i�es the 
lass of solutions of the inverse problemF = DR, and Se
tion 2 will show that it is also an important tool to identify theequivalen
e 
lass of D in D=G. This se
tion examines the properties of operators thatbelong to su
h a group. Re
all that an operator G is said to be stationarity invariantif, for any wide-sense stationary pro
ess R, the pro
ess F = GR is also wide-sensestationary.The following theorem 
hara
terizes this 
lass of operators. We denote by x � y theinner produ
t of two ve
tors x and y of Rd .Theorem 1.1. An operator G is stationarity invariant if and only if there exists �̂(!)from Rd to C and �(!) from Rd to Rd su
h thatG ei!�x = �̂(!) ei�(!)�x ; (14)with ess sup!2Rd j�̂(!)j <1.The proof is in Appendix A.4. This theorem proves that a stationarity invariantoperator transposes the frequen
y of a sinusoid and modi�es its amplitude. The exam-ples detailed in the previous se
tion 
orrespond to parti
ular 
lasses of su
h operators,where �(!) is aÆne in !. Supposing that �(!) = S! + � with � 2 Rd and where S isan invertible linear operator in Rd , whose adjoint is denoted S, the operator G in (14)
an then be written Gf(x) = ei��x f ? �(Sx) ; (15)where �(x) is the fun
tion whose Fourier transform is �̂(!).Let us de�ne a translation operator Tv for v 2 Rd byTvf(x) = f(x� v) :The following proposition proves that linear operators of the form (15) are 
hara
terizedby a weak form of 
ommutativity with Tv.7



Proposition 1.4. A linear operator G whi
h is bounded in L2 (Rd ) satis�es9 � 2 Rd ; 9S 2 GL+(Rd ); 8 v 2 Rd ; G TSv = ei��vTv G (16)if and only if G is stationarity invariant and 
an be written8 f 2 L2 (Rd) ; Gf(x) = ei��x f ? �(Sx) ; (17)with ess sup!2Rd j�̂(!)j <1.The proof is in Appendix A.5. If �(x) = ei� Æ(x � v) then the operator G de�nedin (17) represents frequen
y modulation and warping. In the rest of the paper, we
on
entrate on deformations where the stationarity invariant operators satisfy (16),whi
h 
an be interpreted as a transport property.2 Conservation and TransportThe stationarity of a random pro
ess R is a 
onservation property of its auto
orre-lation through translation. Be
ause of the deformation, the pro
ess F (x) = DR(x)is no longer stationary and its auto
orrelation does not satisfy the same 
onservationproperty. Yet, we show that the stationarity of R implies a 
onservation of the auto-
orrelation of F , along 
hara
teristi
 
urves in an appropriate parameter spa
e. These
hara
teristi
 
urves, whi
h identify the equivalen
e 
lass of D in D=G, are 
omputedby approximating D�1 by a \tangential" operator G�(v) 2 G. If the operators of Gsatisfy the transport property (16), then the 
onservation equation 
an be rewrittenas a transport equation whose velo
ity term depends upon ~rv�(v), 
alled deformationgradient. This deformation gradient 
hara
terizes the equivalen
e 
lass of D in D=G.Se
tion 2.1 gives the general transport equation, and Se
tions 2.2, 2.3 and 2.4 applythis result to one-dimensional warpings, frequen
y modulations, and multidimensionalwarpings.2.1 Transport in GroupsWe suppose that all operators G� in the stationarity invariant group G satisfy thetransport property (16) and 
an thus be writtenG�f(x) = ei(��x+�) f ? �
(Sx� v) :The translation parameter v is isolated be
ause of its parti
ular role, and sin
e the phasehas no in
uen
e on the auto
orrelation, � is also set apart. We assume that �
 belongs8



to a a �nite-dimensional Lie group (
onvolution group), so G is also a �nite-dimensionalLie group. We write G� = ei� ~G~� Tvwith ~G~�f(x) = ei��x f ? �
(Sx) and ~� = (�; S; 
) :The group produ
t and inverse are denoted~G~�1 ~G~�2 = ~G~�1�~�2 and ~G�1~� = ~G~��1 :To identify the tangential deformation G�(v) 2 G whi
h approximates D�1 forfun
tions supported in a neighborhood of v 2 Rd , we use a family of test fun
tions
onstru
ted from a single fun
tion  (x) whose support is in [�1; 1℄d. For � > 0, �(x) =  (x=�) has a support in [��; �℄d. Let ~G ~� be the adjoint of ~G~� . We de-�ne an atomi
 de
omposition of a pro
ess Y (x) by 
omputing inner produ
ts in L2 (Rd )with deformed and translated test fun
tions, whi
h are 
alled atoms:A�Y (u; ~�) = EfjhY; Tu ~G~�  �ij2g :This atomi
 de
omposition only depends on Y through its auto
orrelation.Let us now explain how to identify the tangential deformation G�(v) from a 
onser-vation property of atomi
 de
ompositions. If R is a stationary pro
ess, thenA�R(u; ~�) = EfjhR; Tu ~G~�  �ij2gdoes not depend upon u, hen
e ~ruA�R(u; ~�) = 0. This is not the 
ase for the atomi
de
omposition of the deformed pro
ess F = DR:A�F (u; ~�) = EfjhF; Tu ~G~�  �ij2g = EfjhR;DTu ~G~�  �ij2g :Yet, this atomi
 de
omposition satis�es a 
onservation property along 
hara
teristi
lines that depend upon D. The following proposition proves that if there exists G�(v)whi
h approximates D�1 for fun
tions having a support in a neighborhood of v, thenthere exists ~�(u) su
h that for all u and ~�~ruA�F (u; ~� � ~�(u)) � 0 for � small.Before stating the proposition, let us set some notation: if f(x) and g(x) are twofun
tions with x 2 Rd , then ~rxg is a ve
tor with d 
omponents, and the inner produ
t9



hf; ~rxgi is also a ve
tor whose d 
omponents are the inner produ
ts Df; �g�xkE. Wedenote Rehf; ~rxgi the real part of this ve
tor. We write 
(�) = O(�) if there exists a
onstant C su
h that for � small, j
(�)j � C �, without spe
ifying the sign.Proposition 2.1. Let �(v) and  be su
h that for ea
h v 2 Rd and ea
h ~�, the fun
tion v;~�;� = G�(v)Tv ~G~� � satis�esjRehKF v;~�;� ; D�1(~rv + ~rx)D v;~�;�ij = O(�) jRehKF v;~�;� ; ~rx v;~�;�ij : (18)If there exists a di�erentiable invertible map u(v) su
h thatG�(v) Tv = ei�(u(v)) Tu(v) ~G~�(u(v)) ; (19)then for ea
h (u; ~�), at t = u,���~ruA�F (u; ~� � ~�(t)) + ~rtA�F (u; ~� � ~�(t))��� = O(�) ���~ruA�F (u; ~� � ~�(t))��� : (20)The norms in (20) are Eu
lidean norms of d-dimensional ve
tors. The proof isin Appendix B.1. One 
an verify that if G�(v) = D�1, then the left-hand side of(18) vanishes. Condition (18) imposes a form of tangen
y between G�(v) and D�1;however, it does not only depend on operators G�(v) and D�1, but also on  and onthe auto
orrelation of R.The partial di�erential equation (20) whi
h results from the above proposition 
anbe written as a transport equation in the (u; ~�) domain, by expanding the gradient withrespe
t to t: ~rtA�F (u; ~� � ~�(t)) = ~rt( ~� � ~�(t)) � ~r~�A�F (u; ~� � ~�(t)) ;where ~r~�A�F (u; ~�) is a ve
tor of partial derivatives with respe
t to ea
h 
omponent ofparameter ~�. Repla
ing the free variable ~� by ~� � ~��1(u) in (20) gives, at t = u,���~ruA�F (u; ~�) + ~rt( ~� � ~��1(u) � ~�(t)) � ~r~�A�F (u; ~�)��� = O(�) ���~ruA�F (u; ~�)��� : (21)When � is suÆ
iently small, the right-hand side is negle
ted, yielding a transport equa-tion whose velo
ity term depends upon ~ru ~�(u). This is illustrated in the next threese
tions, whi
h apply this proposition to re
over warping deformations and frequen
ymodulations. Se
tion 3 will show how, from a single realization of F , we 
an estimatethe partial derivatives of A�F (u; ~�) and 
ompute the deformation gradient.2.2 S
ale Transport.If D is a one-dimensional warping deformation Df(x) = f(�(x)) with x 2 R, thenD�1f(x) = �0(x) f(�(x)). The stationarity invariant subgroup is the aÆne group,10



whose elements are G�f(x) = f(u+ sx) with � = (u; s). The adjoint of G� isG�f(x) = s�1 f ((x� u)=s) = Tu ~G ~�f(x) with ~G ~�f(x) = s�1 f (x=s) :
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(b)Figure 1: (a) S
alogram AR(u; s) of a stationary pro
ess R. The horizontal and verti
al axes respe
tivelyrepresent u and � log s. Darkness of a point is proportional to the value of AR(u; s). (b) S
alogram AF (u; s)of a warped pro
ess F .Let  be a fun
tion whose integral vanishes: R  (x)dx = 0. It is 
alled a wavelet.Using the above expression of the adjoint operator ~G~� , the atomi
 de
ompositionA�Y (u; ~�) = EfjhY; Tu ~G ~� �ij2g 
an be written, for ~� = s,A�Y (u; s) = En��
Y (x) ; s�1 �(s �)�1(x � u)����2o :We redu
e the number of parameters by dividing A�Y (u; s) by �2, and repla
ing theprodu
t s� by a single s
ale parameter s. The resulting atomi
 de
ompositionAY (u; s) = En��
Y (x) ; s�1  �s�1(x� u)����2o : (22)is 
alled a s
alogram, and 
an be interpreted as the expe
ted value of a squared wavelettransform. Figure 1(a) shows the s
alogram AR(u; s) of a stationary pro
ess R. Asexpe
ted, its value does not depend upon u. Figure 1(b) gives AF (u; s) for a warpedpro
ess F (x) = DR(x) = R(�(x)). The warping 
auses the values of the s
alogram ofR to migrate in the (u; log s) plane.Let us now give the expression of �(u) 
orresponding to the tangential approxima-tion of Proposition 2.1. For regular fun
tions f supported in a neighborhood of v, a11



tangential approximation of D�1 is 
al
ulated with a �rst order Taylor expansion of�(x) in a neighborhood of u(v) = ��1(v):D�1f(x) � �0(u) f (v + �0(u)(x� u)) = G�(v)f(x) : (23)Operators D�1 and G�(v) both translate the support of f from a neighborhood of v toa neighborhood of u(v).In order to derive a transport equation from Proposition 2.1, we must make someassumptions on the auto
orrelation of R, that will also guarantee uniqueness of theinverse warping problem. Proposition 1.2 shows that it is ne
essary to spe
ify thebehavior of the auto
orrelation kernel 
R(x) in a neighborhood of 0. The followingtheorem supposes that 
R(x) is nearly h-homogeneous in a neighborhood of 0. Partialderivatives are denoted �f�a = �af .Theorem 2.1 (S
ale Transport). Let R be a stationary pro
ess su
h that there existsh > 0 with 
R(0)� 
R(x) = jxjh �(x) (24)where � is C1 in a neighborhood of 0, and �(0) > 0 . Let  (x) be a C1 fun
tionsupported in [�1; 1℄, su
h thatZ  (x) dx = 0 and ZZ jx� yjh  �(x) (y) dx dy 6= 0 : (25)If F (x) = R(�(x)) ;where �(x) is C3 and �0(x) > 0, then for ea
h u 2 R su
h that �00(u) 6= 0, when s tendsto zero �1 +O(s)� �uAF (u; s)� (log�0)0(u) �log sAF (u; s) = 0 : (26)The proof is in Appendix B.2. The 
onditions imposed on 
R and  in this theoremguarantee that �log sAF (u; s) does not vanish. The deformation gradient (log�0)0(u)whi
h spe
i�es the equivalen
e 
lass of D in D=G 
an thus be 
omputed from (26)by letting s go to zero. It is therefore not surprising that (24) imposes a stronger
ondition on 
R than the uniqueness 
ondition (6) of Proposition 1.2. The estimationof (log�0)0(u) from a single realization of F will be studied in Se
tion 3.1.12



2.3 Frequen
y TransportIf the deformation operator D is a frequen
y modulation, Df(x) = ei�(x) f(x), thestationarity invariant subgroup G is 
omposed of operators G� su
h thatG�f(x) = ei(�+�x) f(x) :In this 
ase ~G~�f(x) = ei�x f(x) so ~� = �. Let us 
hoose an even, positive windowfun
tion  (x) � 0, with a support equal to [�1; 1℄. The atomi
 de
omposition ofpro
ess Y is the well-known spe
trogram:A�Y (u; �) = EfjhY (x) ;  �(x� u)e�i�(x�u)ij2g = EfjhY (x) ;  �(x� u)e�i�xij2g :
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(b)Figure 2: (a) Spe
trogram A�R(u; �) of a stationary pro
ess R. The horizontal and verti
al axes respe
tivelyrepresent position u, and frequen
y �. The darkness of a point is proportional to the value of A�R(u; �). (b)Spe
trogram A�F (u; �) of a frequen
y modulated pro
ess F .Figure 2(a) shows a spe
trogram A�R(u; �), whose values do not depend upon ube
ause R is stationary. Figure 2(b) depi
ts A�F (u; �) for F (x) = DR(x) = ei�(x)R(x),with �(x) = �1 
os(�2 x) where �1 and �2 are two 
onstants. The frequen
y modulationtranslates the spe
trogram of R non-uniformly along the frequen
y axis.Let us now give the expression of �(v) 
orresponding to the tangential approxi-mation of Proposition 2.1, when D is a frequen
y modulation. If f is supported in aneighborhood of v, a �rst order Taylor expansion of �(x) givesD�1f(x) = ei�(x) f(x) � ei(�(v)+�0(v)(x�v)) f(x)13



and one 
an de�ne a tangential approximation of D�1 for fun
tions supported in aneighborhood of v by G�(v)f(x) = ei(�(v)+�0(v)(x�v)) f(x) : (27)The following theorem uses this tangential approximation to derive from Proposition2.1 a transport equation, satis�ed by the spe
trogram A�F (u; �) in the (u; �) plane, whenthe window s
ale � de
reases to 0. The frequen
y � is 
hosen large enough so that theperiod of ei�x is smaller than the support size � of  �. We set � = �0=� and sele
t �0 sothat  ̂(!) and its �rst dhe+ 2 derivatives vanish at ! = �0 (dhe denoting the smallestinteger larger or equal to h).Theorem 2.2 (Frequen
y transport). Let R be a stationary pro
ess su
h that thereexists h > 0 with 
R(0)� 
R(x) = jxjh �(x) (28)where � is 
ontinuous in a neighborhood of 0, and �(0) > 0. Let  be an even, positive,C1 fun
tion supported in [�1; 1℄ and �0 be su
h that  ̂(!) and its �rst dhe+2 derivativesvanish at ! = �0 butZZ jx� yjh(x� y) sin[�0(x� y)℄ (x) (y) dx dy 6= 0 :If F (x) = ei�(x)R(x) where �(x) is Cdhe+4;then for ea
h u 2 R su
h that �00(u) 6= 0 and for � = �0=�, when � ! 0�1 +O(�2)� �uA�F (u; �)� �00(u) ��A�F (u; �) = 0 : (29)The proof is in Appendix B.3. To satisfy the theorem hypothesis, one may 
hoose (x) to be a box spline obtained by 
onvolving the indi
ator fun
tion 1[�1=2m;1=2m℄ withitself m times:  ̂(!) = � sin(!=(2m))!=(2m) �m ;and �0 = 2m� with m � dhe+ 3.The deformation gradient �00(u) 
an be 
hara
terized from equation (29) by letting �go to zero, and we proved in (3) that �00(u) spe
i�es the equivalen
e 
lass of D inD=G. Se
tion 3.2 imposes some further 
onditions on 
R and � to obtain a 
onsistentestimation of �00(u) from this partial di�erential equation.14



2.4 Multidimensional s
ale transportFor a multidimensional warping where Df(x) = f(�(x)) with x 2 Rd , the adjoint ofD�1 is D�1f(x) = det J�(x) f(�(x)). The matrix J�(x) is the Ja
obian matrix (7) of� at position x. The stationarity invariant group G is the aÆne group, 
omposed ofoperators G� with � = (u; S) 2 Rd �GL+(Rd), su
h thatG�f(x) = f(u+ Sx) :The adjoint of G� isG�f(x) = detS�1 f�S�1(x� u)� = Tu ~G ~�f(x)where ~G~�f(x) = detS�1 f(S�1x) and~� = S = �sl;m�1�l;m�d :For a regular fun
tion f , a Taylor expansion of �(x) in a neighborhood of u(v) = ��1(v)gives D�1f(x) � det J�(u) f��(u) + J�(u) (x� u)� = G�(v)f(x) : (30)The operators D�1 and G�(v) both translate the support of f from a neighborhood ofv to a neighborhood of u(v) = ��1(v).Let  be a fun
tion su
h that RRd  (x) dx = 0. A multidimensional extension of thes
alogram is given byA�Y (u; S) = EfjhY (x) ; detS�1  � �S�1(x� u)� ij2g= EfjhY (x) ; detS�1  ���1S�1(x� u)� ij2g :As in the one-dimensional 
ase, we divide A�Y (u; s) by �2d and repla
e the produ
t �Sby a matrix whi
h we still denote S. The resulting atomi
 de
omposition isAY (u; S) = EfjhY (x) ; detS�1  �S�1(x� u)� ij2g : (31)It is similar to the s
alogram (22) but sin
e the s
ale parameter s is repla
ed by awarping matrix S, we 
all it a warpogram.For a one-dimensional warping, the velo
ity term of transport equation (26) is(log�0)0(u) = �00(u)=�0(u). In two dimensions it be
omes a set of matri
es, indexedby the dire
tion k of spatial di�erentiation:for 1 � k � d, J�1� (u) �J�(u)�uk = �
kl;m(u)�1�l;m�d : (32)15



This set of matri
es has been shown in (10) to spe
ify the equivalen
e 
lass of D inD=G. It is denoted in a ve
torial form:~
l;m(u) = (
kl;m(u))1�k�d :The partial derivative �log sAF (u; s) = s �sAF (u; s) whi
h appears in the one-dimensionaltransport equation (26) now be
omes a matrix produ
t, between a partial derivativesmatrix and the transpose St of S:��AF (u; S)�si;j �1�i;j�d St = �al;m(u; S)�1�l;m�d : (33)The following theorem isolates the s
ale parameter � = (detS)1=d by writing S = � ~Swith det ~S = 1, and gives a d-dimensional transport equation when � goes to zero.Theorem 2.3. Suppose that F (x) = R(�(x)), where �(x) is C3 and det J�(x) > 0.Suppose that the auto
orrelation kernel 
R of R satis�es
R(0)� 
R(x) = jxjh �(x) ; (34)with �(0) > 0 and � 2 C2 in a neighborhood of 0. For ea
h u 2 Rd and for ea
h ~S withdet ~S = 1, if there exists C(u; ~S) > 0 su
h that, for S = � ~S and � small enough,����Re ZZ ~r
R(S(x� y))rJ�(u)J�1� (u)S(x� y) �(x) (y) dx dy���� � C(u; ~S)�h ; (35)then when � goes to zero������~ruAF (u; S)� dXl;m=1~
l;m(u) al;m(u; S)������ = O(�) ���~ruAF (u; S)��� : (36)The proof of this Theorem is in Appendix B.4.If 
R(0) � 
R(x) = � jxjh for small jxj, with � > 0, and if �(x) is a separable warpingfun
tion of the form �(x) = (�1(x1); ::: ; �d(xd))then one 
an verify that 
ondition (35) is equivalent todXi=1 �00i (u)�0i(u)Re ZZ j ~S(x� y)jh�2( dXj=1 ~Sij(xj � yj))2 �(x) (y) dx dy 6= 0 :For � suÆ
iently small, negle
ting the error term on the right-hand side of (36)yields d s
alar equations:for 1 � k � d, �ukAF (u; S)� dXl;m=1 
kl;m(u) al;m(u; S) = 0 :16



For any (u; S), the values �ukAF (u; S) and al;m(u; S) depend upon the auto
orrelationof F , and have to be estimated. For ea
h dire
tion k, there are d2 unknown 
oeÆ
ients
kl;m(u) equal to the d2 matrix 
omponents of J�1� (u) �ukJ�(u). To 
ompute them weneed to invert a linear system:0BB� a1;1(u; S1) a1;2(u; S1) : : : ad;d(u; S1)... ... ... ...a1;1(u; Sd2) a1;2(u; Sd2) : : : ad;d(u; Sd2)1CCA0BBBBB�
k1;1(u)
k1;2(u)...
kd;d(u)
1CCCCCA = 0BB� �ukAF (u; S1)...�ukAF (u; Sd2)1CCA : (37)Changing the dire
tion index k only modi�es the right-hand side of (37). Note that inorder for the system to be invertible, the left-hand side matrix in (37) must have fullrank. The matri
es Sk must therefore be appropriately 
hosen, and the inverse warpingproblem must have a unique solution. This is not always the 
ase, as shown by theexample in (11).3 Estimation of DeformationsThe deformation gradient appears as a velo
ity ve
tor in the transport (21). To re-
over it from a single realization of F , the derivatives ~ruA�F (u; ~�) and ~r~�A�F (u; ~�)of the atomi
 de
omposition of F have to be estimated. With a single realization, asample mean estimator has a varian
e of the same order of magnitude as the term itestimates. This varian
e 
an be redu
ed with a spatial smoothing, while the bias, whi
his proportional to the width of the smoothing kernel, is 
ontrolled. The next three se
-tions study the 
onsisten
y of su
h smoothed estimator for one-dimensional warpings,frequen
y modulations and multidimensional warpings.3.1 Warping in one dimensionThe s
alogram of F is de�ned asAF (u; s) = EfjhF ;  u;sij2g ;with  u;s(x) = s�1 ((x � u)=s). If F (x) = R(�(x)) then Theorem 2.1 proves that�1 +O(s)� �uAF (u; s)� (log�0)0(u)�log sAF (u; s) = 0 : (38)17



To redu
e the varian
e of empiri
al estimators, equation (38) is 
onvolved with asmoothing kernel, whi
h is 
hosen equal tog(x) = ( ��1(1� jx=�j) if jxj � �0 if jxj > � : (39)Let a be a generi
 variable denoting either u or log s. We de�ne�aAF (u; s) = Z g(u� v) �aAF (v; s) dv : (40)The following proposition, whose proof is in Appendix C.1, shows that the biasintrodu
ed by 
onvolving equation (38) with g is proportional to �.Proposition 3.1. Under the hypotheses of Theorem 2.1, for ea
h u 2 R, when � tendsto zero and s < �,�1 +O(s)� �uAF (u; s)� �(log�0)0(u) +O(�)� �log sAF (u; s) = 0 : (41)An integration by parts shows that, for a = u,�uAF (u; s) = ��2 Z u+�=2u��=2 �AF (v +�=2; s)�AF (v ��=2; s)�dv :Given a dis
retized realization of F measured at a resolution N , wavelet 
oeÆ
ientshF;  u;si and hF; �a u;si 
an only be 
omputed at s
ales s � N�1 and at positionsu = k=N with k 2 Z. We therefore introdu
e the following empiri
al estimator for�uAF (u; s) at s
ale s:\�uAF (u; s) = ��2N�1 Xjk=N�uj��=2�jhF;  k=N+�=2;sij2 � jhF;  k=N��=2;sij2� : (42)Noti
ing that �log sAF (u; s) = 2Re[EfhF;  u;si hF; �log s u;si�g℄with �log s u;s(x) = � u;s(x)� s�2 (x� u) 0(s�1(x� u)) ; (43)we 
hoose an empiri
al estimator of �log sAF (u; s) at s
ale s given by\�log sAF (u; s) = 2N�1 Xjk=N�uj�� g(u� k=N)Re �hF;  k=N;si hF; �log s k=N;si�� : (44)18



In view of equation (41), we suggest the following estimator for (log�0)0(u):\(log�0)0(u) = \�uAF (u;N�1)\�log sAF (u;N�1) :To guarantee that\�aAF (u; s) and �aAF (u; s) are 
lose when s = N�1 and N in
reases,we must ensure that the wavelet 
oeÆ
ients hF;  k=N;si and hF; �log s k=N;si are se-quen
es of random variables that have fast spatial de
orrelation. This will depend uponthe behavior of the auto
orrelation kernel 
R(x) of R in a neighborhood of 0, and onthe number of vanishing moments of  . A wavelet  (x) has p vanishing moments ifZ xk  (x) dx = 0 for 0 � k < p :The following theorem proves the weak 
onsisten
y of the above estimator \(log�0)0(u)of (log�0)0(u).Theorem 3.1 (Consisten
y, warping). Let F (x) = R(�(x)), where R is a station-ary Gaussian pro
ess su
h that there exists h > 0 with
R(0)� 
R(x) = jxjh �(x) and �(0) > 0 : (45)Let  be a C2 wavelet supported in [�1; 1℄ with p vanishing moments, su
h that2p� h > 1=2 and ZZ jx� yjh  �(x) (y) dx dy 6= 0 :If �(x) is C2p in a neighborhood of 0, and if �(x) 2 C3 \C2p, then for ea
h u 2 R su
hthat �00(u) 6= 0, for � = N�1=5,Prob(����� \�uAF (u;N�1)\�log sAF (u;N�1) � (log�0)0(u)����� � 2 (logN)N�1=5) ����!N!1 1 : (46)This theorem, whose proof is in Appendix C.2, relates the size � of the smoothingkernel to the resolution N . Although we supposed R to be stationary, sin
e all esti-mations are based on wavelet 
oeÆ
ients, one 
an easily verify that the same resultsapply if R is not stationary but has stationary in
rements. This is the 
ase of fra
tionalBrownian motion [1, 6℄, for whi
h �(x) = 1.Figure 3 displays a numeri
al experiment 
ondu
ted on a single realization of awarped pro
ess. The signal F in Figure 3(b) is obtained by warping a stationary signalR, depi
ted in Figure 3(a). Figure 3(
) shows in dotted lines the estimate \log�0 ofof log�0 obtained by integrating the estimate \(log�0)0(u), and 
hoosing the additiveintegration 
onstant so that R 10 exp\log�0 = R 10 �0. An estimate b� for the warping19
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(d)Figure 3: (a) Stationary signal R and its empiri
al s
alogram jhR; u;sij2. (b) Warped signal F (x) =R(�(x)) and its empiri
al s
alogram. (
) log �0(x) = �1 + �2sign(1=2 � x) jx � 1=2j2, where �1 and �2 aretwo 
onstants (full line) and its estimation from F (dashed line). (d) Stationarized signal and its empiri
als
alogram.
20



fun
tion 
an be obtained up to an additive 
onstant by integrating exp\log�0. It is thenpossible to stationarize the deformed signal F by 
omputing F Æ (b�)�1. Figure 3(d)displays su
h a stationarized signal.3.2 Frequen
y ModulationFor a frequen
y modulated pro
ess, F (x) = R(x)ei�(x), Theorem 2.2 shows that thedeformation gradient �00(u) 
an be 
omputed from a spe
trogramA�F (u; �) = EfjhF (x) ;  �(x� u)ei�(x�u)ij2gwith the equation �1 +O(�)� �uA�F (u; �)� �00(u) ��A�F (u; �) = 0 (47)evaluated at a frequen
y � = �0=�. To estimate �00(u) from a single realization of Fmeasured at a resolution N , the estimation is performed as in the previous se
tion, witha spatial smoothing of equation (47).Let g(x) be the smoothing kernel de�ned in (39). For a generi
 variable a denotingeither u or �, we de�ne�aA�F (u; �) = Z g(u� v) �aA�F (v; �) dv : (48)Similarly to Proposition 3.1, we prove in Appendix C.3.1 that�1 +O(�2)��uA�F (u; �0=�)� ��00(u) +O(�)� ��A�F (u; �0=�) = 0 : (49)To 
ompute an estimator of the smoothed partial derivatives of the spe
trogram, werelate the spe
trogram 
oeÆ
ients to a parti
ular wavelet transform. Observe that �(x � u) exp�i�0 x� u� � =  1�x� u� � (50)where  1(x) =  (x) ei�0x : (51)If  ̂(!) has a zero of order dhe+ 3 at ! = �0, sin
e  is real,  ̂(!) is even, and hen
eZ xk  1(x)dx = (�i)k dk ̂1d!k (��0) = 0 for k � dhe+ 2 .This means that  1 is a wavelet with dhe+3 vanishing moments [10℄. We write  1u;�(x) =��1  1(��1(x�u)). The s
alogram asso
iated to this wavelet is de�ned by AF (u; �) =EfjhF;  1u;�ij2g. It results from (50) thatA�F (u; �0=�) = En��
F (x);  1 ���1(x� u)����2o = �2AF (u; �) ;21



and hen
e �uA�F (u; �0=�) = �2 �uAF (u; �) :Let \�uAF (u; �) be the empiri
al estimator de�ned in (42): we 
hoose to estimate�uA�F (u; �0=�) with \�uA�F (u; �0=�) = �2\�uAF (u; �) :To 
ompute an empiri
al estimator of the other partial derivative, ��A�F (u; �0=�),observe that��A�F (u; �) = 2Re[EfhF (x) ;  �(x� u)ei�(x�u)ihF (x) ; �� [ �(x� u)ei�(x�u)℄i�g℄ :Introdu
ing a new wavelet  2(x) = x 1(x) = x (x) ei�0x ; (52)and  2u;�(x) = ��1  2(��1(x�u)), this partial derivative 
an be rewritten, for � = �0=�:��A�F (u; �0=�) = 2�3 Im[EfhF ;  1u;�i hF ;  2u;�i�g℄ :Similarly to (44), for � = N�1 we suggest the empiri
al estimator\��A�F (u; �0=�) = 2�3N�1 Xjk=N�uj�� g(u� k=N) Im hhF;  1k=N;�i hF;  2k=N;�i�i : (53)The following theorem proves that for � = N�1,
�00(u) = \�uA�F (u; �0=�)\��A�F (u; �0=�)is a weakly 
onsistent estimator of �00(u) as N !1.Theorem 3.2 (Consisten
y, frequen
y modulation). Let F (x) = R(x) ei�(x), whereR is a Gaussian pro
ess su
h that there exists h > 0 with
R(0)� 
R(x) = jxjh �(x) and �(0) > 0 : (54)Suppose that  1(x) =  (x)ei�0x is a 
ompa
tly supported wavelet with p � dhe + 3vanishing moments, su
h thatZZ jx� yjh(x� y) sin[�0(x� y)℄ (x) (y) dx dy 6= 0 :If � 2 C2p in a neighborhood of 0 and if � 2 C2p, then for ea
h u 2 R, for � = N�1=5,Prob(�����\�uA�F (u;N�0)\��A�F (u;N�0) � �00(u)����� � 2 (logN)N�1=5) ����!N!1 1 : (55)22
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(d)Figure 4: (a) Stationary signal R and its empiri
al s
alogram jhR; 1u;sij2. (b) Frequen
y modulated signalF (x) = R(x) exp(i�(x)) and its empiri
al s
alogram. (
) Frequen
y modulation �0(x) (full line), and itsestimation from F (dashed line). (d) Stationarized signal and its empiri
al s
alogram.The proof is in Appendix C.3.The numeri
al example in Figure 4 shows the estimation of a frequen
y modulation.We explained that the empiri
al estimator 
�00(u) is in fa
t 
omputed from wavelet 
oef-�
ients asso
iated to the two wavelets  1 and  2 de�ned in (51) and (52). Figure 4(a)shows a realization of a stationary signal R(x) and the 
orresponding empiri
al s
alo-gram 
AR(u; s) = jhR; 1u;sij2. The frequen
y modulated signal F (x) = R(x) exp(i�(x))and its empiri
al s
alogram are in Figure 4(b). The derivative �0 of the frequen
ymodulation is plotted in Figure 4(
) (full line). An estimate b�0 of �0 is obtained byintegrating 
�00, and 
hoosing the additive integration 
onstant so that R 10 b�0 = R 10 �0.Figure 4(
) plots b�0 (dashed line), superposed on the theoreti
al fun
tion �0 (full line).Lastly, Figure 4(d) represents the stationarized pro
ess F (x) exp(�ib�(x)) and its em-piri
al s
alogram. 23



3.3 Warping in higher dimensionFor a multidimensional warping, at ea
h position u, the deformation gradient 
orre-sponds to a set of d matri
es ~
l;m(u) = (
kl;m(u))1�k�d de�ned in (32). Theorem 2.3shows that these 
oeÆ
ients appear in the velo
ity term of the transport equation (36)satis�ed by the warpogram of F :AF (u; S) = EfjhF;  u;Sij2g ;with  u;S(x) = (detS�1) (S�1(x� u)) :At a suÆ
iently small s
ale �, the error on the right-hand side of the transportequation (36) 
an be negle
ted. The ve
tor transport equation 
an then be written asa linear system0BB� a1;1(u; S1) a1;2(u; S1) : : : ad;d(u; S1)... ... ... ...a1;1(u; Sd2) a1;2(u; Sd2) : : : ad;d(u; Sd2)1CCA0BB�
k1;1(u)...
kd;d(u)1CCA = 0BB� �ukAF (u; S1)...�ukAF (u; Sd2)1CCA (56)where �al;m(u; S)�1�l;m�d = ��si;jAF (u; S)�1�i;j�d St :If the pro
ess F is measured at a resolution N , we 
an only 
ompute the warpogramwith fun
tions  u;S whose support in any dire
tion is larger than N�1. We thereforerequire that S = � ~S where � � KN�1, and all the eigenvalues of ~S are greater thanK�1. The lo
ation parameter is also restri
ted to a uniform grid u = N�1k withk 2 Zd. To estimate the deformation gradient from a single realization of F , as in theone-dimensional 
ase, the system of equations (56) is 
onvolved with a d-dimensionalkernel of radius �. The smoothed matrix 
oeÆ
ients are�al;m(u; S)�1�l;m�d = ��si;jAF (u; S)�1�i;j�d Stwhere, for any variable a, we have de�ned�aAF (u; S) = Z g(u� v) �aAF (v; S) dv :Sin
e �aAF (u; S) = 2ReEfhF;  u;SihF; �a u;Si�g, an empiri
al estimator of �aAF (u; S)is \�aAF (u; S) = 2N�d XjN�1k�uj�� g(u�N�1k)RefhF;  N�1k;SihF; �a N�1k;Si�g ;24



and we de�ne �dal;m(u; S)�1�l;m�d = � \�si;jAF (u; S)�1�i;j�d St :If the warping �(x) is suÆ
iently regular, then the averaged values al;m(u; S) and�ukAF (u; S) are related by a system of equations identi
al to (56), but with an additionalbias equal to O(�).The kth 
omponent of the deformation gradient, (
kl;m(u)), 
an be thus estimatedby 0BB�d
k1;1(u)...d
kd;d(u)1CCA = 0BB�da1;1(u; S1) : : : dad;d(u; S1)... ... ...da1;1(u; Sd2) : : : dad;d(u; Sd2)1CCA�10BB� \�ukAF (u; S1)...\�ukAF (u; Sd2)1CCA : (57)Extending the 
onsisten
y Theorem 3.1 to this d-dimensional 
ase is possible, but re-quires te
hni
al hypotheses that are not yet well understood.In Se
tion 1.1, we mentioned that the warping of textures in images spe
ify thethree-dimensional 
oordinates of the 
orresponding surfa
es appearing in the s
ene.The estimator de�ned in (57) is studied numeri
ally in [4, 5℄ to 
ompute surfa
es fromtexture gradients in images.The Matlab routines whi
h reprodu
e the numeri
al illustrations of this se
tion 
anbe downloaded fromhttp://www.
map.polyte
hnique.edu/�mallat/Deform.html.

25



A Proofs of Se
tion 1A.1 Proof of Proposition 1.1Let R be a stationary pro
ess, and suppose that there exists an " > 0 su
h that 
R(x) >0 for jxj < ". Let ~R be another stationary pro
ess. We want to show that if theauto
orrelations of R(x) exp[i�(x)℄ and of ~R(x) exp[i~�(x)℄ are equal, i.e. if
R(x� y) exp(i[�(x) � �(y)℄) = 
 ~R(x� y) exp(i[~�(x)� ~�(y)℄); (58)then �00(x) = ~�00(x). The fun
tions � and ~� are assumed C4, therefore � = � � ~� isalso C4. Let us �x x 2 R; our goal is to prove that �00(x) = 0. We 
hoose y 2 R su
hthat jx � yj < ". After dividing both sides of (58) by 
R(x � y) > 0, it appears thatei[�(x)��(y)℄ is a fun
tion of x� y. Therefore �(x)� �(y) is also a fun
tion of x� y, andin parti
ular for all a, �(x) � �(y) = �(x + a)� �(y + a) :Di�erentiating this expression with respe
t to x shows that �0(x) = �0(x + a), thus�00(x) = 0.A.2 Proof of Proposition 1.2Let R be a stationary pro
ess and let " > 0 su
h that 
R(x) is C1 for 0 < jxj < ",with 
0R(x) < 0. Let ~R denote another stationary pro
ess, and let us suppose thatthe auto
orrelations of R(�(x)) and of ~R(~�(x)) are equal. The fun
tions � and ~� areassumed C3, therefore � = � Æ ~��1 is also C3. Proving the proposition amounts toproving that � is linear, or equivalently, that �00 vanishes everywhere. By de�nition of�, 
 ~R(x� y) = 
R(�(x) � �(y)) : (59)Let us �x x 2 R, and 
hoose y 6= x, but suÆ
iently 
lose to x so that j�(x)� �(y)j < ".Di�erentiating (59) with respe
t to x and y shows that
0R(�(x) � �(y))�0(y) = 
0R(�(x) � �(y))�0(x) :Sin
e 
0R(�(x) � �(y)) < 0, we obtain �0(x) = �0(y), therefore �00(x) = 0.26



A.3 Proof of Proposition 1.3Let R be a stationary pro
ess su
h that 
R satis�es (12). Let ~R denote another sta-tionary pro
ess, and suppose that the auto
orrelations of R(�(x)) and of ~R(~�(x)) areequal. Let � = � Æ ~��1: by de�nition of �, R(�(x)) = ~R(x), thus
R(�(x) � �(y)) = 
 ~R(x� y) :Di�erentiating this expression with respe
t to x and y, for x 6= y, shows that~r
R(�(x) � �(y))J�(y) = ~r
R(�(x) � �(y))J�(x) : (60)Let us �x x 2 Rd , and prove that ~rJ�(x) = 0. Let " > 0 su
h that � is C2 onfz; jzj < "g. Let us 
hoose y 2 Rd su
h that j�(x) � �(y)j < " and let z = �(x)� �(y):~r
R(z) = �h jzjh�2 (�(z) z + jzj2~r�(z)) :Repla
ing this expression in (60) and dividing both sides by �h jzjh�2 �(z) proves that(z + h�1jzj2~r log �(z)) J�(y) = (z + h�1jzj2~r log �(z)) J�(��1(z + �(y))) ;so (z + h�1jzj2~r log �(z)) J�(y)J�1� (��1(z + �(y))) = z + h�1jzj2~r log �(z) :Introdu
ing a fun
tion ~� su
h that~�(z) = J�(y) ��1(z + �(y)) ; (61)this 
an be rewritten(z + h�1jzj2~r log �(z)) J~�(z) = (z + h�1jzj2~r log �(z)) :Noti
ing that z J~�(�z) = dd� ~�(� z), we have, for � � 0,dd� ~�(� z) = z + h�1jzj2 � ~r log �(z)(J~�(�z)� Id) ;whi
h, when integrated between � = 0 and � = 1, gives~�(z)� ~�(0) = z + h�1jzj2 Z 10 �~r log �(�z)(J~�(�z)� Id) d� :After repla
ing ~� with (61), and noti
ing that ~�(0) = J�(y) y, we obtain��1(z + �(y)) = J�1� (y) z + y + J�1� (y)h�1jzj2 Z 10 �~r log �(�z)(J~�(�z)� Id) d� : (62)27



Sin
e 
R is even, ~r�(0) = 0 and so ~r log �(0) = 0. Let us denote ~r log �(�z) =j�zj~a(�z). Re
alling that � is twi
e 
ontinuously di�erentiable in a neighborhood of �zfor 0 � � � 1, the ve
tor ~a(�z) is di�erentiable, with a bounded gradient. Di�erentiating(62) with respe
t to z shows thatJ�1� (��1(z + �(y))) = J�1� (y)(Id+ jzj2A(z)) ;and one 
an 
he
k that A(z) is uniformly bounded for jzj < ". Repla
ing z by �(x)��(y)gives J�1� (x) = J�1� (y) �Id+ j�(x) � �(y)j2 A(�(x) � �(y))� ;therefore for any unit-length ve
tor xk 2 Rd ,��xk J�1� (x) = lim�!0 J�1� (x+ �xk)� J�1� (x)�= � lim�!0 J�1� (x+ �xk)j�(x + �xk)� �(x)j2� A(�(x + �xk)� �(x))= 0 :This proves that ~rJ�1� (x) = 0, and therefore ~rJ�(x) = 0. As a 
onsequen
e, for ea
hdire
tion xk, ��xk J�(~�(x)) = 0. Sin
e J�(x) = J�(~��1(x))J�1~� (~��1(x)), we obtain��xk (J�(x) J�1~� (x)) = 0 ;and expanding the above di�erential expression then proves (10).A.4 Proof of Theorem 1.1Let us 
onsider a spe
i�
 family of zero-mean wide-sense stationary pro
esses de�nedby R!(x) = X ei!�xwhere X is a zero-mean random variable with varian
e �2. ThenEfR!(x)R�!(y)g = �2 exp(i! � (x� y)) = 
R! (x� y) :Let G be a stationarity invariant operator. If F!(x) = GR!(x) thenEfF!(x)F �!(y)g = �2 f!(x) f�!(y) = 
F! (x� y) :28



with f!(x) = Gei!�x. This implies that for any (x; y) the produ
t f!(x) f!(y)� is afun
tion of x�y. One 
an thus 
on
lude that there exists �̂(!) 2 C and �(!) 2 Rd su
hthat f!(x) = Gei!�x = �̂(!) ei�(!)�x : (63)Let us now prove that su
h operators are stationarity invariant. A zero-mean pro
essis wide-sense stationary if and only if it admits a spe
tral representation:R(x) = ZRd ei!�x dZ(!) ;where Z(!) is an orthogonal pro
ess. Let dP (!) = EfjdZ(!)j2g, we have
R(0) = ZRd dP (!) < +1 :We derive from (63) that F (x) = ZRd ei�(!)�x �̂(!) dZ(!) ;whi
h shows that F is wide-sense stationary.For any wide-sense stationary pro
ess R, one 
an writeGR(x) = GEfR(0)g+G (R(x) � EfR(0)g) :Sin
e R(x) � EfR(0)g is zero-mean and wide-sense stationary, G (R(x)� EfR(0)g) iswide-sense stationary, therefore so is GR(x).For any positive integrable measure dP (!) we must have
F (0) = ZRd j�̂(!)j2 dP (!) < +1 ;and a ne
essary and suÆ
ient 
ondition is that ess sup!2Rd j�̂(!)j <1.A.5 Proof of Proposition 1.4We denote by KY the auto
orrelation operator of a pro
ess Y , de�ned byKY f(x) = Z EfY (x)Y �(y)g f(y) dy :Let G be a bounded linear operator and F = GR. The auto
orrelation operators of Fand R satisfy KF = GKR �G :29



Sin
e R is stationary, KR 
ommutes with the translation operator Tv for any v 2 Rd .We derive from (16) that KF also 
ommutes with Tv and hen
e that F is wide-sensestationary. The operator G is therefore stationarity invariant and Theorem 1.1 provesthat G ei!�x = �̂(!) ei�(!)�x : (64)Inserting this expression in the equality GTSvf(x) = ei��vTv Gf(x) for f(x) = ei!�ximplies �̂(!) ei�(!)�x e�iSv�! = �̂(!) ei�(!)�(x�v) e�i��v ;from whi
h we derive that �(!) = S! + � for all ! where �̂(!) 6= 0. For ! su
h that�̂(!) = 0, (64) 
learly holds with �(!) = S!+ �. So G 
an indeed be written as in (17).Conversely, if G satis�es (17) then a dire
t 
al
ulation shows that (16) holds.B Proofs of Se
tion 2B.1 Proof of Proposition 2.1 (Transport)The auto
orrelation operator of F = DR satis�es KF = DKRD, thereforehKF  v;~�;� ;  v;~�;�i = hKRD v;~�;� ; D v;~�;�i :Let us 
ompute~rvhKF v;~�;� ;  v;~�;�i = 2Re hKR D v;~�;� ; ~rvD v;~�;�i= 2Re hKR D v;~�;� ;�~rv + ~rx�D v;~�;�i � 2Re hKR D v;~�;�; ~rxD v;~�;�i :Sin
e R is stationary, for any g we have hKRg; ~rxgi = 0, so~rvhKF  v;~�;� ;  v;~�;�i = 2Re hKF  v;~�;� ; D�1 �~rv + ~rx�D v;~�;�i :Hypothesis (18) thus implies that���~rvhKF  v;~�;� ;  v;~�;�i��� = O(�) ���RehKF  v;~�;� ; ~rx  v;~�;�i��� : (65)Sin
e  v;~�;� = G�(v)Tv ~G~� �, transport property (19) shows that v;~�;� = ei�(u(v)) Tu(v) ~G~�(u) ~G~� � = ei�(u(v)) Tu(v) ~G ~��~�(u) � :30



The phase ei�(u(v)) disappears in all 
al
ulations of hKF v;~�;�;  v;~�;�i. By de�nition,A�F (u; ~�) = hKFTu ~G ~� � ; Tu ~G~� �i ; and sin
e ~rvf = ~ruf J�1v (u),~rvhKF  v;~�;�;  v;~�;�i = ~rvA�F (u(v); ~� � ~�(u(v))) = ~ruA�F (u(v); ~� � ~�(u(v))) J�1v (u) :This implies that���~ruA�F (u(v); ~� � ~�(u(v)))��� � kJv(u)k ���~rvhKF  v;~�;� ;  v;~�;�i��� ;where kJv(u)k is the operator sup norm of Jv(u). Inserting this in (65) shows that foru �xed ���~ruA�F (u; ~� � ~�(u))��� = O(�) ���RehKF  v;~�;� ; ~rx  v;~�;�i��� : (66)Sin
e ~ruTu = �~rxTu, using the symmetry of KF we get2RehKF  v;~�;� ; ~rx v;~�;�i = �~ruA�F (u; ~� � ~�(t)) at t = u: (67)Inserting (67) in (66) �nally proves that���~ruA�F (u; ~� � ~�(u))��� = O(�) ���~ruA�F (u; ~� � ~�(t))��� at t = u,whi
h implies (20).B.2 Proof of Theorem 2.1This theorem is proved as a 
onsequen
e of Proposition 2.1. Operator G�(v) is given by(23) G�(v)f(x) = �0(u) f(v + �0(u)(x� u))with u = ��1(v). Transport property (19) holds be
ause u(v) = ��1(v) is di�erentiableand invertible and G�(v)Tv = Tu(v) ~G ~�(u(v)) ;where ~G~�(u)f(x) = �0(u) f(�0(u)x) with ~�(u) = 1=�0(u).Let us now verify hypothesis (18) 
on
erning v;~�;� = G�(v)Tv ~G ~� �with ~G~�f(x) = 1=sf(x=s). The s
alogram renormalization (22) is equivalent to dividing �(x) by �, whi
h yields  �(x) = 1=�  (x=�), and repla
ing �s by s whi
h gives v;~�;�(x) = �v;s(x) = �0(u)s  ��0(u)s (x � u)� :31



Let us 
ompute �v;s = D�1 (�v + �x)D�v;s :Sin
e Df(x) = (�0(��1(x)))�1 f(��1(x)) and D�1f(x) = �0(x) f(�(x)), a dire
t 
al
u-lation givesD�1�xD�v;s(x) = ��0(u)�00(u)s j�0(x)j2  ��0(u)s (x� u)�+ j�0(u)j2s2 �0(x) 0��0(u)s (x� u)�andD�1�vD�v;s(x) = �00(u)s�0(u) ��0(u)s (x� u)�+1s2�(x� u)�00(u)� �0(u)� 0��0(u)s (x� u)� ;therefore�v;s(x) = �00(u)s�0(u)j�0(x)j2 (j�0(u)j2 � j�0(x)j2) ��0(u)s (x� u)�+ 1s2 ��0(u)�0(x) (�0(u)� �0(x)� (u� x)�00(u))� 0 ��0(u)s (x� u)� :Sin
e  is supported in [�1; 1℄, �v;s is supported in [u � s=�0(u); u + s=�0(u)℄. Sin
e� 2 C3, a Taylor series expansion of j�0(x)j2 and of �0(x) around position u prove that,for small s,�v;s(x) = �2�00(u)2�0(u)3 +O(s)� ��0(u)s (x� u)�+� �000(u)2�00(u)2 +O(s)� 0��0(u)s (x� u)�The auto
orrelation kernel of F (x) is 
F (x; y) = 
R(�(x) � �(y)), hen
ehKF �v;s ; �v;si = ZZ 
R(�(x) � �(y)) ��v;s(x)�v;s(y) dx dy :Sin
e R �v;s(x) dx = R  (x) dx = 0,hKF �v;s ; �v;si = � ZZ �
R(0)� 
R(�(x) � �(y))� ��v;s(x)�v;s(y) dx dy :The supports of �v;s and �v;s are in [u�s=�0(u); u+s=�0(u)℄ and for z in a neighborhoodof 0, the 
ontinuity of � implies that 
R(0) � 
R(z) = �(0) jzjh + o(jzjh). Sin
e �0 is32




ontinuous at u, a Taylor series expansion of � around u 
ombined with a 
hange ofvariables x0 = (x� u)�0(u)=s and y0 = (y � u)�0(u)=s yield, for s suÆ
iently small,hKF �v;s ; �v;si = � ZZ (�(0)js(x� y)jh + o(js(x � y)jh)) �(x) �� s�0(u) ��2�00(u)2�0(u)3 +O(s)� (y) +� �000(u)2�00(u)2 +O(s)� 0(y)� dx dy ; (68)and therefore jRehKF �v;s �v;sij = O(sh+1): (69)Let us now 
omputehKF �v;s ; �x�v;si = ZZ 
R(�(x) � �(y)) ��v;s(x) ddy �v;s(y) dx dy :With an integration by parts,hKF �v;s ; �x�v;si = � ZZ �0(y) 
0R(�(x) � �(y)) ��v;s(x) �v;s(y) dx dy ;and sin
e 
0R(z) is antisymmetri
Re hKF �v;s ; �x�v;si = 12 ZZ ��0(x) � �0(y)� 
0R(�(x) � �(y)) ��v;s(x) �v;s(y) dx dy :A 
hange of variable x0 = (x� u)�0(u)=s and y0 = (y � u)�0(u)=s givesRe hKF �v;s ; �x�v;si = 12 ZZ ��0(u+ sx=�0(u))� �0(u+ sy=�0(u))�
0R��(u+ sx=�0(u))� �(u+ sy=�0(u))� �(x) (y) dx dy :Be
ause of assumption (24), sin
e � isC1 in a neighborhood of 0, 
0R(z) = h �(0) sign(z) jzjh�1+o(jzjh�1). With a Taylor expansion for �, we get, for s small enough,Re hKF �v;s ; �x�v;si = 12 �00(u)�0(u) ZZ (h �(0) sh jx� yjh + o(shjx� yjh)) �(x) (y) dx dy : (70)Sin
e RR jx� yjh �(x) (y) dx dy 6= 0 and �00(u) 6= 0, there exists a(u) > 0 su
h thatjRe hKF �v;s ; �x�v;sij � a(u) sh + o(sh) ;and (69) implies thatjRe hKF �v;s �v;sij = O(s) jRe hKF �v;s ; �x�v;sij :Sin
e all the 
onditions of Proposition 2.1 have been veri�ed, we 
an apply theresulting transport equation (21) with ~� = s, ~�(u) = 1=�0(u) and ~� � ~�(t) = s=�0(t):�����uAF (u; s)� s �0(u) �00(t)(�0(t))2 �sAF (u; s)���� = O(s) j�uAF (u; s)j at t = u;whi
h proves (26). 33



B.3 Proof of Theorem 2.2.This theorem is proved as a 
onsequen
e of Proposition 2.1. The operator G�(v) isde�ned in (27) by: G�(v)f(x) = ei(�(v)+�0(v)(x�v))f(x) : (71)Transport property (19) holds be
ause, for u(v) = v, we haveG�(v)Tv = ei�(u(v)) Tu(v) ~G~�(u(v))with ~G~�(u)f(x) = ei�0(u)x f(x) and ~�(u) = ��0(u).Let now verify hypothesis (18):���ReDKF v;�;� ; D�1 (�v + �x)D v;�;�E��� = O(�) ����Re�KF v;�;� ; ��x v;�;������ ; (72)for v;�;�(x) = G�(v)Tv ~G� �(x) =exp[i(�(v) + �0(v)(x � v))℄ exp[i�(x� v)℄ �x� v� � : (73)A dire
t 
al
ulation shows thatDKF v;�;� ; D�1 (�v + �x)D v;�;�E =ZZ 
R(x� y) exp[i(�(x) � �(y)� �0(v)(x � y))℄ exp[i�(y � x)℄�� i(��00(v)(y � v) + �0(y)� �0(v)) �x� v� � �y � v� � dx dy ;and with a 
hange of variables x0 = (x� v)=� and y0 = (y � v)=�,DKF v;�;� ; D�1 (�v + �x)D v;�;�E =ZZ 
R(�(x0 � y0)) exp[i(�(v + �x0)� �(v + �y0)� ��0(v)(x0 � y0))℄ �� i(�0(v + �y0)� �0(v) � �00(v)�y0)ei�0(y0�x0)  (x0) (y0) dx0 dy0 : (74)Be
ause R e�i�0x (x) dx = 0,ZZ 
R(0)i(�0(v + �y)� �0(v) � �00(v)�y)ei�0(y�x)  (x) (y) dx dy = 0 : (75)34



After subtra
ting (75) from (74),DKF v;�;� ; D�1 (�v + �x)D v;�;�E =ZZ 
R(�(x � y)) (exp[i(�(v + �x) � �(v + �y)� ��0(v)(x � y))℄� 1)�� i(�0(v + �y)� �0(v)� �00(v)�y) ~ �(x) ~ (y) dx dy +ZZ (
R(�(x� y))� 
R(0)) i(�0(v+�y)��0(v)��00(v)�y) ei�0(y�x)  (x) (y) dx dy :(76)Sin
e � 2 C4+dhe, we 
an perform the following Taylor expansions, where ak, bk and 
kare real parameters whi
h depend on the derivatives �(k)(v), for (x; y) 2 [0; 1℄2:exp[i(�(v + �x)� �(v + �y)� ��0(v)(x � y))℄ =1 + i 2+dheXk=2 ak�k(x� y)k + 2+dheXk=4 bk�2�k(x� y)k +O(�3+dhe) (77)�0(v + �y)� �0(v) = 2+dheXk=1 
k+1�kyk +O(�3+dhe) : (78)In parti
ular, a2 = �00(v)=2 and 
k = �(k)(v)=(k � 1)! .Repla
ing these Taylor expansions in (76), we obtainDKF v;�;� ; D�1 (�v + �x)D v;�;�E =� ZZ 
R(�(x � y))24i 2+dheXk=2 ak�k(x� y)k + 2+dheXk=4 bk�2�k(x� y)k35�� 2+dheXk=2 
k+1�kyk ei�0(y�x)  (x) (y) dx dy� i ZZ �hjx� yjh�(�(x � y))242+dheXk=2 
k+1�kyk35 ei�0(y�x)  (x) (y) dx dy+ o(�3+dhe) :In the �rst of these two integrals, one 
an repla
e 
R(�(x � y)) by 
R(0) � �hjx �yjh�(�(x � y)). Sin
e  ̂ and its �rst dhe + 2 derivatives vanish at �0, we derive thatei�0t  (t) is a fun
tion with dhe + 3 vanishing moments [10℄, so the �rst integral is of35



the order of O(�4+h).For the se
ond integral, be
ause  is even, ex
hanging x and y shows thatZZ jx� yjh�(�(x � y))y2 sin(�0(y � x)) (x) (y) dx dy = 0 :Sin
e 2 + dhe � 3, the se
ond integral has a real part whi
h is equal to��3+h�(0)�(4)(v)6 ZZ sin(�0(x� y)) jx� yjhy3  (x) (y) dx dy + o(�3+h) :As a 
onsequen
e,ReDKF v;�;� ; D�1 (�v + �x)D v;�;�E =� �3+h�(0)�(4)(v)6 ZZ sin(�0(x� y)) jx� yjhy3  (x) (y) dx dy + o(�3+h) : (79)Let us now estimate jRe hKF v;�;� ; �x v;�;�ij. After a 
hange of variables,hKF v;�;�; �x v;�;�i =ZZ 
R(�(x � y)) exp[i(�(v + �x) � �(v + �y)� ��0(v)(x � y))℄�� exp[i�0(y � x)℄ i(�0(v) + �0=�) (x) (y) dx dy+ ZZ 
R(�(x� y)) exp[i(�(v + �x)� �(v + �y)� ��0(v)(x � y))℄�� exp[i�0(y � x)℄ (x) 1�  0(y) dx dy :Using Taylor expansions (77) and (78), we obtainhKF v;�;�; �x v;�;�i =ZZ 
R(�(x � y))241 + i 2+dheXk=2 ak�k(x� y)k + 2+dheXk=4 bk�2�k(x � y)k35�� exp[i�0(y � x)℄ i(�0(v) + �0=�) (x) (y) dx dy+ ZZ 
R(�(x � y))241 + i 2+dheXk=2 ak�k(x � y)k + 2+dheXk=4 bk�2�k(x� y)k35�� exp[i�0(y � x)℄ (x) 1� 0(y) dx dy +O(�2+dhe) : (80)Ex
hanging x and y shows thatZZ 
R(�(x � y)) sin[�0(y � x)℄ (x) (y) dx dy = 0 ;36



and sin
e  is even and  0 is odd, 
hanging x to �x and y to �y shows thatZZ 
R(�(x � y)) 
os[�0(y � x)℄ (x) 0(y) dx dy = 0 :Writing 
R(�(x� y)) = 
R(0)� �hjx� yjh�(�(x � y)), and noti
ing that ei�0t  (t) is afun
tion with dhe+3 vanishing moments, the �rst integral in (80) has a real part equalto �1+h�00(v)2 �(0) ZZ jx� yj2+h�0 
os[�0(y � x)℄ (x) (y) dx dy + o(�1+h) :Be
ause  is even, the se
ond integral in (80) has a real part equal to�1+h�00(v)2 �(0) ZZ jx� yj2+h sin[�0(y � x)℄ (x) 0(y) dx dy + o(�1+h) :An integration by parts with respe
t to y shows thatZZ jx� yj2+h sin[�0(y � x)℄ (x) 0(y) dx dy =� �0 ZZ jx� yj2+h 
os[�0(y � x)℄ (x) (y) dx dy ++ (2 + h) ZZ jx� yj1+hsign(x� y) sin[�0(y � x)℄ (x) (y) dx dy :Summing up the two 
ontributions, we see thatRe hKF v;�;� ; �x v;�;�i =��1+h �(0) (1+h=2)�00(v) ZZ jx�yjh(x�y) sin[�0(x�y)℄ (x) (y) dx dy+o(�1+h) :(81)Be
ause of the hypothesis thatZZ jx� yjh(x� y) sin[�0(x� y)℄ (x) (y) dx dy 6= 0 ;
omparing (81) and (79) proves a result whi
h is stronger than (18), be
ause the right-hand side has an O(�2) instead of O(�):jReDKF v;�;� ; D�1 (�v + �x)D v;�;�E j = O(�2) jRe hKF v;�;� ; �x v;�;�i j :With a slight modi�
ation of Proposition 2.1 to a

ount for the O(�2) term, we obtaina transport equation (21) with ~� = �, ~�(u) = ��0(u) and ~�1 � ~�2 = ~�1 + ~�2: for usu
h that �00(u) 6= 0,j�uA�F (u; �)� �00(u) ��A�F (u; �)j = O(�2) j�uA�F (u; �)j ;whi
h proves (29). 37



B.4 Proof of Theorem 2.3The proof of this theorem follows the same lines as the proof of Theorem 2.1. Thehypotheses of Proposition 2.1 are veri�ed in order to apply (21) in d dimensions.The transport property (19) 
learly holds. Let us verify hypothesis (18) 
on
erning v;~�;� = G�(v)Tv ~G ~� �with ~G ~�f(x) = detS�1f(S�1x). The warpogram renormalization (31) is equivalent todividing  �(x) by �d and repla
ing �S by S. Re
alling the de�nition (30) of G�(v), weintrodu
e  v;~�;�(x) = �v;S(x) = det(S�1J�(u)) (S�1J�(u)(x� u)) : (82)Let us de�ne the ve
tor of fun
tions~�v;S = D�1(~rv + ~rx)D�v;S :We now prove that for any �xed u and ~S su
h that det ~S = 1, if S = � ~S then���RehKF �v;S ; ~�v;S i��� = O(�) ���RehKF �v;S ; ~rx�v;Si��� : (83)Let us �rst 
ompute an upper bound for ���RehKF �v;S ; ~�v;S i���. Sin
eD�1f(x) = det(J�(x))f(�(x))and Df(x) = det(J�1� (��1(x)))f(��1(x)) ;we haveD�1~rxD�v;S(x) = ��d ��det J�(u)det J�(x) ~r det J�(x)J�1� (x) (S�1J�(u)(x� u))+ det J�(u)~r (S�1J�(u)(x� u))S�1J�(u)J�1� (x)�andD�1~rvD�v;S(x) = ��d h~r det J�(u) (S�1J�(u)(x� u))J�1� (u)+det J�(u)~r (S�1J�(u)(x� u))S�1(~rJ�(u)(x� u)� J�(u))J�1� (u)i :After summing these two expressions, a Taylor expansion of det J�, J�1� and of ~r det J�in the vi
inity of position u shows that for S = � ~S and � small, there exists C(u; ~S)su
h that j~�v;S j � C(u; ~S)�1�d : (84)38



By de�nition of KF ,hKF �v;S ; ~�v;Si = ZZ 
R(�(x) � �(y))��v;S(x)~�v;S(y) dx dy :The wavelet  has one vanishing moment, so R �v;S(x)dx = 0, and thereforehKF �v;S ; ~�v;Si = ZZ [
R(�(x) � �(y)) � 
R(0)℄ ��v;S(x)~�v;S(y) dx dy ;whi
h implies thatjhKF �v;S ; ~�v;Sij � ZZ j
R(�(x) � �(y)) � 
R(0)j j�v;S(x)j j~�v;S(y)j dx dy :Inserting (84) and (82), and using 
ondition (34) on 
R, after a 
hange of variable anda Taylor expansion of � around u, we obtainjhKF �v;S ; ~�v;Sij = O(�h+1) :To prove (83), we now show that there exists K(u; ~S) > 0 su
h that���RehKF �v;S ; ~rx�v;Si��� � K(u; ~S)�h : (85)With an integration by parts, and using the fa
t that ~r
R(x) is antisymmetri
, we gethKF �v;S ; ~rx�v;Si = ZZ ~r
R(�(x) � �(y))J�(y)��v;S(x)�v;S(y) dx dy= � 12 ZZ ~r
R(�(x) � �(y))(J�(x) � J�(y))��v;S(x)�v;S(y) dx dy :ThereforehKF �v;S ; ~rx�v;Si+ 12 ZZ ~r
R(S(x� y))~rJ�(u)J�1� (u)S(x� y) �(x) (y) dx dy= � 12 ZZ (r
R(�(u+ J�1� (u)Sx)� �(u+ J�1� (u)Sy))�r
R(S(x� y)))�� (J�(u+ J�1� (u)Sx)� J�(u+ J�1� (u)Sy)) �(x) (y) dx dy� 12 ZZ r
R(S(x�y))(J�(u+J�1� (u)Sx)�J�(u+J�1� (u)Sy)�~rJ�(u)J�1� (u)S(x�y))��  �(x) (y) dx dyBe
ause ~r
R is C1 in a neighborhood of 0 ex
luding 0, for small �, se
ond order Taylorseries expansions for � and for J� around position u prove thathKF �v;S ; ~rx�v;Si+ 12 ZZ ~r
R(S(x�y))~rJ�(u)J�1� (u)S(x�y) �(x) (y) dx dy = o(�h)39



Hypothesis (35) on 
R guarantees that (85) holds, and therefore (83) is satis�ed. Nowthat 
onditions (18) and (19) of Proposition 2.1 have been veri�ed, the resulting trans-port equation (21) 
an be applied, with ~� = S, ~�(u) = J�1� (u) and S1 � S2 = S2 S1.This yields:���~ruAF (u; S) + hJ�(u)�1 ~ruJ�(u)Si � ~rSAF (u; S)��� = O(�) ���~ruAF (u; S)��� :The �nal result (36) is derived from this equation by noting thathJ�1� (u) ~ruJ�(u)Si � ~rSAF (u; S) = hJ�1� (u)~ruJ�(u)i � h~rSAF (u; S)Sti :C Proofs of Se
tion 3C.1 Proof of Proposition 3.1With a slight modi�
ation of the proof of Theorem 2.1, one 
an prove a stronger resultthan (26), whi
h is stated in the following lemma:Lemma C.1. Under the hypotheses of Theorem 2.1,�uAF (u; s)� (log�0)0(u)�log sAF (u; s) = s(C(u) + o(1)) �uAF (u; s) ; (86)where C is 
ontinuous.Proof. In one dimension, the proof of Proposition 2.1 
an be adapted to show that, if(18) is repla
ed byRehKF v;~�;� ; D�1 (�v + �x)D v;~�;�i = 
(u; �)RehKF v;~�;� ; �x v;~�;�i ; (87)and if (19) holds, then the resulting transport equation (21) is repla
ed by�uA�F (u; ~�) + �t( ~� � ~��1(u) � ~�(t))�~�A�F (u; ~�) = 
(u; �)�uA�F (u; ~�) :Now, in the proof of Theorem 2.1, (68) proves thatRehKF �v;s; �v;si = sh+1(B(u) + o(1)) ; (88)where B is 
ontinuous. On the other hand, (70) proves thatRehKF �v;s; �x�v;si = 12 �00(u)�0(u) sh(1 + o(1))h�(0) ZZ jx� yjh �(x) (y) dx dy ; (89)where �00(u)=�0(u) is 
ontinuous in u.Comparing (88) and (89) shows that (87) holds with
(u; �) = s(C(u) + o(1))and C 
ontinuous. This proves that (86) is indeed satis�ed.40



Convolving both sides of (86) with g, we obtain�uAF (u; s)� Z g(u� v) (log�0)0(v) �log sAF (v; s) dv= s Z (C(v) + o(1))g(u� v)�uAF (v; s) dv : (90)The hypotheses of Theorem 2.1 imply that �log sAF (u; s) does not vanish. By 
ontinuity,�log sAF (v; s) therefore keeps a 
onstant sign for v in [u��; u+�℄. Moreover,����Z g(u� v)((log�0)0(v) � (log�0)0(u)) �log sAF (v; s) dv����� maxjv�uj�� j(log�0)0(v)� (log�0)0(u)j j�log sAF (u; s)j= O(�) j�log sAF (u; s)j : (91)be
ause (log�0)00 is bounded over [u��; u+�℄. If u is su
h that �00(u) 6= 0, and if �is small enough, �uAF (v; s) also keeps a 
onstant sign over [u��; u+�℄. Sin
e C is
ontinuous,����Z g(u� v)(C(v) + o(1)� C(u)) �uAF (v; s) dv����� maxjv�uj�� jC(v) + o(1)� C(u)j j�uAF (u; s)j= o(1) j�uAF (u; s)j when �! 0: (92)Combining (90), (91), and (92) proves that(1 +O(s))�uAF (u; s)� ((log�0)0(u) +O(�))�log sAF (u; s) = 0 :C.2 Proof of Theorem 3.1The following lemma, whose proof is in Appendix C.2.1, shows that estimators\�uAF (u; s)and \�log sAF (u; s) are 
onsistent.Lemma C.2. Let F (x) = R(�(x)), where R is a stationary Gaussian pro
ess su
h thatthere exists h > 0 with
R(0)� 
R(x) = jxjh �(x) and �(0) > 0 : (93)Let  be a C2 wavelet supported in [�1; 1℄ and with p vanishing moments, su
h that2p� h > 1=2; and ZZ jx� yjh  �(x) (y) dx dy 6= 0 :41



If �(x) is C2p in a neighborhood of 0, and if �(x) 2 C2p \ C3, then for ea
h u, for ssmall enough,Probnj \�log sAF (u; s)� �log sAF (u; s)j � C j�log sAF (u; s)jo � "1 ; (94)Probnj\�uAF (u; s)� �uAF (u; s)j � C j�uAF (u; s)jo � "2 ; (95)where C = log(N�)�pN� , "1 = C1(u)�2(log(N�))2 and "2 = 6 (N�)�1=(2C2(u)).The parameters C1(u) and C2(u), whi
h are de�ned in the proof of the lemma, areboth positive.The weak 
onsisten
y of \�uAF (u;N�1)\�log sAF (u;N�1)as an estimator of (log�0)0(u) then results from the following lemma, whose proof isstraightforward:Lemma C.3. If X1 and X2 are two random variables, and C < 1 a 
onstant su
h thatProbfjX1 � EfX1gj � C jEfX1gjg � 1� "1 ;Prob fjX2 � EfX2gj � C jEfX2gjg � 1� "2 ;then Prob�����X2X1 � EfX2gEfX1g ���� � 2C1� C� � 1� "1 � "2 :In view of Lemma C.2, one 
an apply Lemma C.3 to X1 = \�log sAF (u;N�1) andX2 =\�uAF (u;N�1) with C = log(N�)�pN� yieldingProb(����� \�uAF (u;N�1)\�log sAF (u;N�1) � �uAF (u;N�1)�log sAF (u;N�1) ����� � 2 log(N�)�pN�� log(N�)) � 1� "1 � "2 :Be
ause of the averaged transport equation (41),(log�0)0(u) = O(�) + �uAF (u;N�1)�log sAF (u;N�1) (1 +O(N�1)):Sin
e � > N�1 and (log�0)0(u) is bounded, we derive(log�0)0(u) = O(�) + �uAF (u;N�1)�log sAF (u;N�1)thereforeProb ����� \�uAF (u;N�1)\�log sAF (u;N�1) � (log�0)0(u)����� � 2 log(N�)�pN�� log(N�) +O(�)! � 1�"1�"2 :42



We pi
k � su
h that ��1(N�)�1=2 = �, i.e. � = N�1=5. When N ! 1, "1 and"2, whose expressions are given in Lemma C.2, both tend to 0. Moreover, for N largeenough, 2 log(N�)�pN�� log(N�) +O(�) � 2(logN)N�1=5 :ThereforelimN!1Prob ����� \�uAF (u;N�1)\�log sAF (u;N�1) � (log�0)0(u)����� � 2(logN)N�1=5! = 1 :C.2.1 Proof of Lemma C.2 We start by proving (94). Let n = N� denote thenumber of dis
rete samples 
overed by the support of g. We seek an upper bound forthe varian
e of \�log sAF (u; s), whi
h is de�ned byVlog s(u) = Efj \�log sAF (u; s)� �log sAF (u; s)j2g :Let us 
hoose u = 0 without loss of generality. One 
an see that���� �2�u � log sAF (u; s)���� = O(sh)and a Riemann series approximation shows thatZ g(v) �log sAF (v; s) dv �N�1 nXk=�n g(k=N) �log sAF (k=N; s) = O(sh=N) :Repla
ing \�log sAF (0; s) by its expression in (44), and noti
ing that the real part issmaller than the modulus, we obtainVlog s(0) � 4N2E8><>:������ Xjkj�n gkXkYk � gkEfXkYkg������29>=>;+O(s2h=N2)where gk, Xk and Yk respe
tively denote g(k=n); hF;  k=N;si and hF; �log s k=N;si�. Ex-panding ���Pjkj�n���2 under the form �Pjkj�n� � �Pjlj�n��,Vlog s(0) � 4N2EfXjkj�n [gkXkYk � gkEfXkYkg℄ Xjlj�n [glXlYl � glEfXlYlg℄�g+O(s2h=N2)� 4N2 Xjkj�njlj�n [gkglEfXkYkX�l Y �l g � gkglEfXkYkgEfX�l Y �l g℄ +O(s2h=N2) :Sin
e R is Gaussian, so is F , as well as the random variables Xk and Yk. A 
lassi
alresult on Gaussian random variables shows thatE fXkYkX�l Y �l g = E fXkYkgE fX�l Y �l g+ E fXkX�l gE fYkY �l g+ E fXkY �l gE fYkX�l g :43



ThereforeVlog s(0) �4N2 Xjkj�njlj�n gkgl[E fXkX�l gE fYkY �l g+ E fXkY �l gE fYkX�l g℄ +O(s2h=N2)� 4n2 Xjkj�njlj�n [jE fXkX�l g j jE fYkY �l g j+ jE fXkY �l g j jE fYkX�l g j℄ +O(s2h=N2) : (96)Ea
h of the terms appearing in the sum above 
an be bounded thanks to the followingde
orrelation lemma:Lemma C.4. Let F (x) = R(�(x)), let Xk = hF;  k=N;si and Yk = hF; �log s k=N;si�.Under the hypotheses of Lemma C.2, for s small enough, there exist 
ontinuous fun
tionsM1 and M2 su
h that, for jk � lj � 2,jE fXkX�l g j � M1(sk)sh ; (97a)jE fXkY �l g j � M1(sk)sh ; (97b)jE fYkY �l g j � M1(sk)sh ; (97
)and for jk � lj > 2, jE fXkX�l g j � M2(sk) s2p(s(jk � lj � 2))2p�h ; (98a)jE fXkY �l g j � M2(sk) s2p(s(jk � lj � 2))2p�h ; (98b)jE fYkY �l g j � M2(sk) s2p(s(jk � lj � 2))2p�h : (98
)The proof of the above lemma is in Appendix C.2.2.Repla
ing (97) and (98) in (96), we see that, sin
e M1 and M2 are 
ontinuous andsin
e k=N = �! 0 when N !1,Vlog s(0) � 4n2 Xjk�lj�2jkj;jlj�n 2(M1(0) + o(1))2s2h+ 4n2 Xjk�lj>2jkj;jlj�n 2(M2(0) + o(1))2s4p(s(jk � lj � 2))4p�2h +O(s2h=N2) : (99)Sin
e 4p� 2h > 1, Xjk�lj>2jkj;jlj�n(jk � lj � 2)2h�4p = Kpn : (100)44



Repla
ing (100) in (99), we obtainVlog s(0) � 8C2 s2hn (3M1(0)2 +KpM2(0)2) + o(s2h=n) :In the proof of Theorem 2.1, (70) proves that there exists a(u) > 0 su
h thatj�uAF (u; s)j � a(u)sh + o(sh) :For � small enough, �uAF (v; s) does not 
hange sign for jv � uj � � thus, after
onvolution with g, j�uAF (u; s)j � a(u)sh + o(sh) :Be
ause of transport equation (41), the same applies to �log sAF (u; s), therefore thereexists a 
onstant C1(u) su
h thatVlog s(u) � C1(u) � j�log sAF (u; s)jpn �2 :Applying Chebyshev's Lemma [3℄ then proves that, for all " > 0,Prob(j \�log sAF (u; s)� �log sAF (u; s)j � pC1(u) ���log sAF (u; s)��"pn ) � "2 ;and (94) follows by 
hoosing " = pC1(u)�logn and "1 = C1(u)�2(logn)2 .Let us now prove (95). We denote Du = j\�uAF (0; s) � �uAF (0; s)j. One 
an seethat j�uAF (u; s)j = O(sh)and a Riemann series approximation on
e again shows that��2 Z �0 AF (v; s) dv ���1n�1 nXk=0AF (k=N; s) = O(sh=n) :Therefore, using on
e more the notation Xk = hF;  k=N;si,Du = 1n� �� nXk=0(jXkj2 � EfjXkj2g)� 0Xk=�n(jXkj2 � EfjXkj2g)��+O(sh=n) :Denoting eX� = 0Xk=�n+1 jXkj2 and eX+ = nXk=1 jXkj2 ;we have Du � 1n� �j eX+ � Ef eX+gj+ j eX� � Ef eX�gj�+O(sh=n) (101)45



We are now going to prove that there exists a stri
tly positive 
onstant C2 su
h that8 y ; ProbfDu > yC2 sh�png � 6 e�y=2 (102)and sin
e j�uAF (u; s)j � a(u)sh + o(sh) with a(u) > 0, 
hoosing y = logn=C2 will thenimply (95).Let us 
onsider the random ve
tor X = (X1; X2; : : : ; Xn), let KX denote the 
ovari-an
e operator of X , and (ej)j=1;:::;n its Karhunen-Lo�eve basis. If (�j)j=1;:::;n are theeigenvalues of KX 
orresponding to the eigenve
tors (ej)j=1;:::;n, thenX = nXj=1p�j Zj ejwhere Zj are independent random variables with varian
e 1. As a 
onsequen
e,eX+ = kXk2 = nXj=1 �jZ2j :The following lemma, whi
h is proved in [7℄, relies on a theorem by Bakirov [2℄.Lemma C.5. If bX = Pj �jZ2j where Zj are independent Gaussian random variableswith varian
e one, and Pj �2j = 1, then8 y ; Probfj bX � Ef bXgj > yg � 6 e�y=2 :The random variable bX+ = �Pj �2j��1=2 eX+ satis�es the requirements of LemmaC.5, therefore 8 y; Probfj eX+ � Ef eX+gj > y (Xj �2j )1=2g � 6 e�y=2but Pj �2j is equal to the Hilbert-S
hmidt norm of KX :Xj �2j =Xj;k EfXjX�kg ;whi
h is bounded by Bs2hn be
ause of (97a) and (98a). Hen
e8 y ; Probfj eX+ � Ef eX+gj > ypBshpng � 6 e�y=2 :The same applies to eX�, and by 
ombining the two and using (101) we obtain (102).46



C.2.2 Proof of Lemma C.4 The three terms E fXkX�l g, E fXkY �l g and E fYkY �l g
an be written asI = ZZ 
R(�(u+ sx)� �(v + sy)) (x) ~ (y) dx dy ;where (u; v) = (sk; sl), and  and ~ are two wavelets with p vanishing moments. Clearly,I = ZZ [
R(�(u+ sx)� �(v + sy))� 
R(0)℄ (x) ~ (y) dx dy : (103)For ju� vj � �, jxj � 1 and jyj � 1, we havej�(u+ sx)� �(v + sy)j � (� + 2s) supjx�uj��+2s[�0(x)℄ � (� + 2s)Cube
ause � is 
ontinuously di�erentiable. For � small enough, j�(u+ sx)��(v+ sy)j istherefore in a neighborhood of 0. Sin
e � is assumed 
ontinuous in a neighborhood of0, j�(�(u+ sx)� �(v + sy))j � Bfor ju� vj � �, jxj � 1 and jyj � 1.Hen
e jI j � ZZ j�(u+ sx)� �(v + sy)jhB j (x)j j ~ (y)j dx dy� Csh + o(sh) :This proves (97a), (97b) and (97
).Let us now prove (98). Sin
e  and ~ in (103) are 
ompa
tly supported and havep vanishing moments, there exist two 
ompa
tly supported fun
tions � and ~� su
h that (x) = �(p)(x) and ~ (y) = ~�(p)(y). Integrating (103) by parts p times with respe
t tox and to y givesI = ZZ �p�xp �p�yp �j�(u+ sx)� �(v + sy)jh�(�(u+ sx)� �(v + sy))	 �(x) ~�(y) dx dy :But for ju� vj > 2s, one 
an show that���� �p�xp �p�yp �j�(u+ sx)� �(v + sy)jh�(�(u+ sx)� �(v + sy))	���� � M(u) s2p(ju� vj � 2s)2p�h ;where M(u) depends on h, on derivatives of � up to order 2p in a neighborhood of u,and on derivatives of � up to order 2p in a neighborhood of 0. Therefore there exists a
ontinuous M2(u) su
h thatjI j �M2(u) s2p(s(jk � lj � 2))2p�h ;whi
h proves (98a), (98b), and (98
). 47



C.3 Proofs of Se
tion 3.2C.3.1 Proof of (49)Lemma C.6. Under the hypotheses of Theorem 2.2,�uA�F (u; �0=�)� �00(u) ��A�F (u; �0=�) = �2(C(u) + o(1))�uA�F (u; �0=�) ; (104)where C is 
ontinuous.Proof. The proof mimi
ks the proof of Lemma C.1. In the proof of Theorem 2.2, weshowed in (79) thatReDKF v;�;� ; D�1 (�v + �x)D v;�;�E = �3+h(A(v) + o(1)) ; (105)and in (81) that Re hKF v;�;� ; �x v;�;�i = �1+h(B(v) + o(1)) ; (106)with B(v) 
ontinuous. Comparing (105) and (106) shows thatReDKF v;�;�; D�1 (�v + �x)D v;�;�E = �2(C(v) + o(1))Re hKF v;�;� ; �x v;�;�i ;with C(v) 
ontinuous. This implies, by repeating the argument of Lemma C.1, that(104) is satis�ed.Using Lemma C.6, the arguments of Proposition 3.1 
an be repeated to prove (49).C.3.2 Proof of Theorem 3.2 As in the proof of Theorem 3.1, one 
an 
ombinethe following lemma with Lemma C.3 to prove the weak 
onsisten
y result (55).Lemma C.7. Let F (x) = R(x) ei�(x), where R is a stationary Gaussian pro
ess su
hthat there exists h > 0 with
R(0)� 
R(x) = jxjh �(x) and �(0) > 0 :Let  be a C2 even, positive fun
tion supported in [�1; 1℄ su
h that  1(x) = ei�0x (x)has p � dhe+ 3 vanishing moments and su
h thatZZ jx� yjh(x� y) sin[�0(x� y)℄ (x) (y) dx dy 6= 0 :If � is C2p in a neighborhood of 0, and if � 2 C2p, thenProbnj\��A�F (u;N�0)� ��A�F (u;N�0)j � Cj��A�F (u;N�0)jo � "1 ;P robnj\�uA�F (u;N�0)� �uA�F (u;N�0)j � Cj�uA�F (u;N�0)jo � "2 :48



The proof of Lemma C.7 is almost identi
al to the proof of Lemma C.2; the onlydi�eren
e is that  2 has p�1 vanishing moments instead of p, so that Lemma C.4 mustbe repla
ed with the following lemma, whi
h is proved by using the same method.Lemma C.8. Let F (x) = R(x) ei�(x), let Xk = hF;  1k=N;�i and Yk = hF;  2k=N;�i�.Under the hypotheses of Lemma C.7, for � small enough, there exist two 
ontinuousfun
tions M1 and M2 su
h thatfor jk � lj � 2, jE fXkX�l g j � M1(�k)�h ;jE fXkY �l g j � M1(�k)�h ;jE fYkY �l g j � M1(�k)�h ;and for jk � lj > 2, jE fXkX�l g j � M2(�k) �2p(�(jk � lj � 2))2p�h ;jE fXkY �l g j � M2(�k) �2p�1(�(jk � lj � 2))2p�1�h ;jE fYkY �l g j � M2(�k) �2p�2(�(jk � lj � 2))2p�2�h :Sin
e p � dhe+ 3, we have 2(2p� 2� h) > 1, therefore the varian
e termEfj\��A�F (u; �)� ��A�F (u; �)j2g
an be 
ontrolled as in the proof of Lemma C.2.
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