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Abstract

This paper studies classes of nonstationary processes, such as warped processes and
frequency-modulated processes, that result from the deformation of stationary pro-
cesses. Estimating deformations can often provide important information about an
underlying physical process. A computational harmonic analysis viewpoint shows that
the deformed autocorrelation satisfies a transport equation at small scales, with a veloc-
ity proportional to a deformation gradient. We derive an estimator of the deformation
from a single realization of the deformed process, with a proof of consistency under

appropriate assumptions.

Introduction

When a nonstationary process F' results from the deformation of a stationary process
R, estimating the deformation can provide important information about an underlying
physical process of interest. From one realization of F' = D R, we wish to recover the
deformation operator D, which is assumed to belong to a specified group D. For exam-
ple, a Doppler effect produces a warping deformation in time F(z) = R(a(z)), where
o/(x) depends upon velocity. The deformation of a stationary texture by perspective

in an image also produces a warping, where & € R? is a spatial variable; recovering
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the Jacobian matrix of a(z) nearly characterizes the corresponding three-dimensional
surface which is being viewed [8]. The frequency modulation of a stationary process
F(z) = R(z) exp(ia(z)) corresponds to another class of deformations often encountered
in signal processing; in transmissions by frequency modulation, the message is carried
by o'(z).

Estimating the deformation D € D from F = D R is an inverse problem. As we
suppose no prior knowledge about the stationary process R, the deformation D can only
be recovered up to the subgroup G of D which leaves the set of stationary processes
globally invariant. Rather than the deformation itself, we therefore seek to estimate the
equivalence class of D in D/G. We consider cases where G is a finite-dimensional Lie
group, and under appropriate assumptions, this equivalence class can be represented by
a vector field on G, which corresponds to a deformation gradient. A local analysis of the
deformation is performed by decomposing the autocorrelation of F' over an appropriate
family of localized functions, called atoms in the harmonic analysis literature. The
deformation gradient is shown to appear as a velocity vector in a transport equation
satisfied by a localized autocorrelation. This general result is applied to one-dimensional
warping and frequency modulation, where the atoms are wavelets, and multidimensional

warping, where the atoms are called warplets.

Computing the deformation gradient requires estimating the autocorrelation of F
projected over a family of localized atoms, from a single realization. Under certain
conditions on the autocorrelation of the stationary process R, one can obtain consistent
estimators for one-dimensional warping and frequency modulation. Numerical examples

illustrate these results.

The paper is organized in three main sections: after discussing the well-posedness
of the inverse problem in Section 1, we establish in Section 2 a transport equation for
the localized autocorrelation of a deformed process; Section 3 introduces estimators and

proves their consistency.

1 Inverse Problem

We want to estimate a deformation operator D which belongs to a known group D,
from a single realization of F = D R. The process R is wide-sense stationary, and is
not known a priori. Since we are limited to a single realization, we concentrate on

second-order moments. For this reason, stationarity will always be understood in the



wide-sense, meaning that

E{R(x)} = E{R(0)} ,
and E{R(z) R*(y)} = cr(z —y) with cr(0) < +o0 ,

where z* denotes the complex conjugate of z € C. Although it is not normalized by
the variance, the term E{R(x) R*(y)} is called autocorrelation of R in the rest of this

paper.

1.1 Class of Solutions

Nothing is known about the process R except for its stationarity, therefore the set of
solutions to the inverse problem is the set of all operators D € D such that D™'F is
stationary. In general, this set is larger than {D}. Let G be the set of all operators
G € D such that if X is a wide-sense stationary process, then G X is also wide-sense
stationary. One can verify that G is a subgroup of D, which we call stationarity invariant
group. Clearly, if D is a solution of the inverse problem, any operator D = D G with
G € G is also a solution. The set of solutions of the inverse problem therefore contains
the equivalence class of D in the quotient group D/G. The equivalence class of D is
equal to the set of solutions to the inverse problem if any deformation D € D such that
DR is wide-sense stationary necessarily belongs to G. This condition is not met by all
stationary processes R, but we give sufficient conditions on the autocorrelation of R to
guarantee uniqueness. In this paper we concentrate on four categories of deformation

groups.

Example 1 The positive multiplicative group is a particularly simple example where
D={D : Df(z)=az) f(x) with a(z) >0} .

The stationarity invariant group corresponds to multiplicative functions a(x) which are

constant:
G={G, : Gy f(x)=af(z) with a >0} .

Two operators D1 and Dy such that D;f(x) = aq(x) f(z) and Dy f(z) = as(z) f(x)
)

belong to the same equivalence class in D/G if ay(z)/az(z) is constant.
)

The equivalence class of D is computed from F(z) = a(z)R(z) by calculating
E{|F(2)"} = o® () E{|R(2)"} = o* (z) E{|R(0)|"} , (1)

which specifies a(z) > 0 up to a multiplicative constant.



Finding the equivalence class of D is in general much more complicated. In the
following, we require the function «(z), which produces the deformation, to have a
specified regularity. This regularity will play an important role in the estimation pro-

cedure.

Example 2 The frequency modulation group modifies signal frequency:

D= {D . D f(z) = e @ f(z) where a(x) is real and C4} : (2)
In transmissions with frequency modulation, «'(x) is proportional to the signal to be
transmitted, and the stationary process R is the carrier. The stationarity invariant
group is

g= {G(¢75) : Goe) fz) =0T f(2) with (¢,€) € ]RZ} :
Two operators D; and Dy such that D f(z) = e?*1(®) f(z) and Dy f(z) = e*2(®) f(x)
are in the same equivalence class in D/G if and only if a; () = ¢+ Ex+ ax(z) and hence

of (z) = aj () . (3)

The following proposition gives a sufficient condition on the autocorrelation kernel c¢g(x)

to identify o (x) from the autocorrelation of F' = D R. The proof is in Appendix A.l.

Proposition 1.1. Let F' = D R, where D belongs to the frequency modulation group D
in (2). If there exists an € > 0 such that

Vo €]l—e, e[, cr(z)>0

then the equivalence class of D in D/G is uniquely characterized by the autocorrelation
of F=DR.

Example 3 The one-dimensional warping group is defined by
D={D : Df(z) = f(a(z)) where a(z) is C* and o/(z) > 0} . (4)

Such time warpings appear in many physical phenomena, such as the Doppler effect.

We easily verify that the stationarity invariant group is the affine group:
G={Gus : Gus f(@)=f(u+sz) with (u,s) e RxRy.} .
Two warping operators D; and D, are in the same equivalence class in D/G if and only
if there exists (u, s) such that oy (z) = u + s as(z), or equivalently
o(@) _ aj()

Ty = : (5)

ay(z)  ay(z)




The following proposition, whose proof is in Appendix A.2, gives a sufficient condition
on R to characterize the equivalence class of D uniquely. Perrin and Senoussi [12]

provide a similar result.

Proposition 1.2. Let F = D R, with D € D, where D is the warping group (4). If

there exists an € > 0 such that cg is C* on ]0,¢[ and
Vo €l0el, cplz) <0, (6)
then the equivalence class of D in D/G is uniquely characterized by the autocorrelation

of F.

Warping deformations are used in geostatistics [11, 13], to model nonstationary
phenomena. Stationarizing the data F'(x) is suggested as an initial step before applying

classical geostatistical methods such as kriging.

Example 4 The warping problem in two dimensions has an important application in
image analysis, particularly in recovering a three-dimensional surface shape by analyz-
ing texture deformations. More generally, we study a d-dimensional warping problem,

specified by an invertible function a(z) from R? to R? with

a(xy, ..., xq) = (al(xl, ey L)y e ,ad(xl,...,xd)) .

The Jacobian matrix of « at position z € R¢ is written

Ja(z) = (%j?)lw . 7

If the Jacobian determinant det J, () does not vanish, a(x) is invertible and corresponds

to a change of metric. We consider a group of regular warpings
D={D : Df(z)= f(a(z)) where a(z) is in C*(R?) and det J,(z) >0} . (8)

Let GL*(R?) be the group of linear operators in R? with a strictly positive determinant.

We easily verify that the stationarity invariant group is the affine group:
G={Gus) : Gus) f@)=f(u+Sz) with (u,5) € R* x GLT(RY)} .

Two operators D and D such that Df(z) = f(a(z)) and Df(x) = f(a(z)) are in the

same equivalence class in D/G if and only if

3(u,S) € R x GLT(RY) , afx) =u+ Sa(z) . (9)



The partial derivative of the Jacobian matrix in a fixed direction zj, is again a matrix:

dJa(z) <62ai(u)>
Ozy, Oxr 05 ) 1 <; i<a '

One can check that condition (9) is equivalent to the following matrix equalities, which

generalize (5):

Vhell,d} , J(2) 2@ - g

8J(x)
8xk @ '

8xk

(10)

There are cases for which the inverse warping problem cannot be solved. For ex-
ample, consider a stationary process R(z) = Rj(z;1) which only depends on the first
variable, and a warping which leaves x; invariant: a(z1,...,zq4) = (x1,@1(x2,...,Tq))-

In this case
F(z) = R(x1,01(x2, ...,xq)) = Ri(x1) = R(x) . (11)

Hence we can not recover a. The following proposition, whose proof is in Appendix
A3, gives a sufficient condition on cg(z) to guarantee that the inverse warping problem

has a unique solution in D/G.

Proposition 1.3. Let F = D R, with D € D, where D is the multidimensional warping
group (8). If there exists h > 0 and a function n(z) such that

cr(0) = cr(2) = Jz[" n(z) , (12)

where n(x) is C% in a neighborhood of 0, then the equivalence class of D in D/G is

uniquely characterized by the autocorrelation of F'.

The inverse warping problem can be applied to the reconstruction of three-dimensional
surfaces from deformations of textures in images [8]. One can model the image of a

three-dimensional surface, on which a texture is mapped, as

where R is a stationary process, and «(x) is the two-dimensional warping due to the

imaging process, which projects the surface onto the image plane [5].

We showed in (10) that solving the inverse warping problem is equivalent to com-

puting normalized partial derivatives of the Jacobian matrix J,:

&gjﬂ(x) and Jojl(x)LJa(x) . (13)

—1
Ja (.Z') 8-’172




Garding [8], Malik and Rosenholtz [9] have proved that these matrices specify the local
orientation and curvature of the three-dimensional surface in the scene. Knowing these
surface parameters, it is then possible to recover the three-dimensional coordinates
of the surface, up to a constant scaling factor. We will see in Section 2.4 that the
Jacobian matrices (13) appear as velocity vectors in a transport equation satisfied by

the autocorrelation of F'.

1.2 Stationarity Invariant Group

The stationarity invariant group G specifies the class of solutions of the inverse problem
F = DR, and Section 2 will show that it is also an important tool to identify the
equivalence class of D in D/G. This section examines the properties of operators that
belong to such a group. Recall that an operator G is said to be stationarity invariant
if, for any wide-sense stationary process R, the process F = G R is also wide-sense
stationary.

The following theorem characterizes this class of operators. We denote by z -y the

inner product of two vectors  and y of R?.

Theorem 1.1. An operator G is stationarity invariant if and only if there exists p(w)
from R to C and 6(w) from R to R such that

Geiw-z — ﬁ(w) eie(w)-z , (14)
with esssup,,cpa |p(w)] < oo.

The proof is in Appendix A.4. This theorem proves that a stationarity invariant
operator transposes the frequency of a sinusoid and modifies its amplitude. The exam-
ples detailed in the previous section correspond to particular classes of such operators,
where 0(w) is affine in w. Supposing that §(w) = Sw + ¢ with £ € R? and where S is
an invertible linear operator in R?, whose adjoint is denoted S, the operator G in (14)

can then be written
Gf(x) = €% f % p(Sa) (15)

where p(z) is the function whose Fourier transform is p(w).

Let us define a translation operator T}, for v € R? by

Tpf(x) = f(x —v) .

The following proposition proves that linear operators of the form (15) are characterized

by a weak form of commutativity with 75,.



Proposition 1.4. A linear operator G which is bounded in L? (R?) satisfies
JeeRY, 3S e GLT(RY), Vv e RY, GTs, =T, G (16)
if and only if G is stationarity invariant and can be written
Viel*(RY) , Gf(z)=e%?® fxp(Sz), (17)

with esssup,,cpa |p(w)] < co.

The proof is in Appendix A.5. If p(z) = e/ §(x — v) then the operator G defined
in (17) represents frequency modulation and warping. In the rest of the paper, we
concentrate on deformations where the stationarity invariant operators satisfy (16),

which can be interpreted as a transport property.

2 Conservation and Transport

The stationarity of a random process R is a conservation property of its autocorre-
lation through translation. Because of the deformation, the process F(z) = D R(x)
is no longer stationary and its autocorrelation does not satisfy the same conservation
property. Yet, we show that the stationarity of R implies a conservation of the auto-
correlation of F', along characteristic curves in an appropriate parameter space. These
characteristic curves, which identify the equivalence class of D in D/G, are computed
by approximating D~! by a “tangential” operator Gy € G. If the operators of G
satisfy the transport property (16), then the conservation equation can be rewritten
as a transport equation whose velocity term depends upon ﬁvﬁ (v), called deformation
gradient. This deformation gradient characterizes the equivalence class of D in D/G.
Section 2.1 gives the general transport equation, and Sections 2.2, 2.3 and 2.4 apply
this result to one-dimensional warpings, frequency modulations, and multidimensional

warpings.

2.1 Transport in Groups

We suppose that all operators Gg in the stationarity invariant group G satisfy the

transport property (16) and can thus be written
Gaf(r) = €5+ fup (Sz—v) .

The translation parameter v is isolated because of its particular role, and since the phase

has no influence on the autocorrelation, ¢ is also set apart. We assume that p, belongs



to a a finite-dimensional Lie group (convolution group), so G is also a finite-dimensional

Lie group. We write
Gp =™ CNJL;, Ty
with
Gaf(x) =" f4p,(Sz) and f = (£5,7) .

The group product and inverse are denoted

G, G, = G545,

and G‘BTI = NB,I .

To identify the tangential deformation G,y € G which approximates D! for
functions supported in a neighborhood of v € R?, we use a family of test functions
constructed from a single function v (z) whose support is in [-1,1]¢. For ¢ > 0,
Yy (z) = 9(x/c) has a support in [—0o,0]?. Let 55 be the adjoint of éﬁ' We de-
fine an atomic decomposition of a process Y (z) by computing inner products in L? (R?)

with deformed and translated test functions, which are called atoms:
AS (u, B) = E{|(Y, Tu G5 90)} -

This atomic decomposition only depends on Y through its autocorrelation.
Let us now explain how to identify the tangential deformation G(,) from a conser-

vation property of atomic decompositions. If R is a stationary process, then
A% (u, ) = E{[(R, Tu G5 v0)*}

does not depend upon u, hence ﬁuA‘g(u,B) = 0. This is not the case for the atomic

decomposition of the deformed process F' = D R:
A (u, f) = E{{F, Tu G5 ¥o)I*} = E{|(R, DT G5 ¥)I"} .

Yet, this atomic decomposition satisfies a conservation property along characteristic
lines that depend upon D. The following proposition proves that if there exists @5(1,)
which approximates D=1 for functions having a support in a neighborhood of v, then
there exists () such that for all u and

VA% (u, B % B(u)) ~ 0 for o small.

Before stating the proposition, let us set some notation: if f(z) and g(z) are two

functions with = € R?, then ﬁﬁ g is a vector with d components, and the inner product



(f, ﬁzg> is also a vector whose d components are the inner products < ,88—06"7k>. We

denote Re(f,V,g) the real part of this vector. We write ¢(o) = O(c) if there exists a
constant C' such that for o small, |c(o)| < C o, without specifying the sign.

Proposition 2.1. Let 3(v) and ¢ be such that for each v € R? and each j3, the function
wv,ﬁya = aﬁ(v)TvéB@ZJU satisfies

[Re(Krth, 5, DV + Va)D b, 5 )| = O0) [Re(Kridy o, Vathy 5 o) - (18)
If there exists a differentiable invertible map u(v) such that
Gy To = e Ty Ga) (19)
then for each (u,f3), at t = u,
Vudf(u, B+ B1) + Vedg(u, B (1) = 0(0) |Vudf(u, B+ B@)| . (20)

The norms in (20) are Euclidean norms of d-dimensional vectors. The proof is
in Appendix B.1. One can verify that if G,y = D~!, then the left-hand side of
(18) vanishes. Condition (18) imposes a form of tangency between Gpg(,) and D1,
however, it does not only depend on operators Gﬁ(v) and D—1, but also on 1 and on
the autocorrelation of R.

The partial differential equation (20) which results from the above proposition can

be written as a transport equation in the (u; ) domain, by expanding the gradient with

respect to t:
ViAG(u, B () = V(B x B(1) - VA% (u, B+ B(1)

where ﬁB-A% (u, B) is a vector of partial derivatives with respect to each component of

parameter 3. Replacing the free variable 8 by § % B’l(u) in (20) gives, at t = u,
Vudf (w, B) + VelB B w) « A1) - VAR (u, B)| = 0(0) [Vudg(w,B)] . (21)

When ¢ is sufficiently small, the right-hand side is neglected, yielding a transport equa-
tion whose velocity term depends upon ﬁuB(u) This is illustrated in the next three
sections, which apply this proposition to recover warping deformations and frequency
modulations. Section 3 will show how, from a single realization of F', we can estimate

the partial derivatives of A (u, ) and compute the deformation gradient.

2.2 Scale Transport.

If D is a one-dimensional warping deformation Df(x) = f(a(z)) with x € R then
D-1f(z) = d'(z) f(a(x)). The stationarity invariant subgroup is the affine group,

10



whose elements are Ggf(z) = f(u + sx) with § = (u, s). The adjoint of Gg is

Gsf(a) =s " f((x—u)/s) = T.G3f(x) with Gsf(x)=s'f(/s) .

(a) (b)

Figure 1: (a) Scalogram Ag(u, s) of a stationary process R. The horizontal and vertical axes respectively
represent v and — log s. Darkness of a point is proportional to the value of Ag(u, s). (b) Scalogram Ar(u, s)

of a warped process F'.

Let ¢ be a function whose integral vanishes: [(z)de = 0. It is called a wavelet.

Using the above expression of the adjoint operator éﬁ’ the atomic decomposition
AZ (u, B) = E{|(Y, T GB*’I/JUHZ} can be written, for § = s,

A9 (u5) = E{|(V (@), 570 ((s0) (o — )}

We reduce the number of parameters by dividing A (u,s) by o2, and replacing the

product so by a single scale parameter s. The resulting atomic decomposition

Ay (u,s) = E{|<Y(x), sThp (s a - u))>|2} . (22)

is called a scalogram, and can be interpreted as the expected value of a squared wavelet
transform. Figure 1(a) shows the scalogram Ag(u,s) of a stationary process R. As
expected, its value does not depend upon u. Figure 1(b) gives Ap(u,s) for a warped
process F(z) = DR(z) = R(a(z)). The warping causes the values of the scalogram of
R to migrate in the (u;logs) plane.

Let us now give the expression of 3(u) corresponding to the tangential approxima-

tion of Proposition 2.1. For regular functions f supported in a neighborhood of v, a

11



tangential approximation of D~1 is calculated with a first order Taylor expansion of

a(z) in a neighborhood of u(v) = a=!(v):

D=1f(z) = o' (u) f (v + &' (u)(z —u)) = G f(2) - (23)

Operators D—1 and @5(1,) both translate the support of f from a neighborhood of v to
a neighborhood of u(v).

In order to derive a transport equation from Proposition 2.1, we must make some
assumptions on the autocorrelation of R, that will also guarantee uniqueness of the
inverse warping problem. Proposition 1.2 shows that it is necessary to specify the
behavior of the autocorrelation kernel cg(z) in a neighborhood of 0. The following
theorem supposes that cg(z) is nearly h-homogeneous in a neighborhood of 0. Partial

s i
derivatives are denoted 8—£ =0.f.

Theorem 2.1 (Scale Transport). Let R be a stationary process such that there ezists
h >0 with

cr(0) — cr(z) = |z|" () (24)

where 1 is C' in a neighborhood of 0, and 1n(0) > 0 . Let )(x) be a C' function
supported in [—1,1], such that

[ @ de=0 and [[le-yp @ v dedy £ 0. (25)

If

where a(z) is C* and o' (x) > 0, then for each u € R such that o''(u) # 0, when s tends

to zero
(1 + 0(5)) 0y Ar(u,s) — (log o) (u) Blog s Ap (u,5) =0 . (26)

The proof is in Appendix B.2. The conditions imposed on c¢g and v in this theorem
guarantee that Oiog s Ar(u,s) does not vanish. The deformation gradient (loga')'(u)
which specifies the equivalence class of D in D/G can thus be computed from (26)
by letting s go to zero. It is therefore not surprising that (24) imposes a stronger
condition on c¢g than the uniqueness condition (6) of Proposition 1.2. The estimation

of (log ') (u) from a single realization of F' will be studied in Section 3.1.

12



2.3 Frequency Transport

If the deformation operator D is a frequency modulation, Df(z) = () f(z), the

stationarity invariant subgroup G is composed of operators GGz such that
Gaf(x) = O f(x) .

In this case C;*Bf(x) = e%? f(z) so B = & Let us choose an even, positive window
function ¢(z) > 0, with a support equal to [—1,1]. The atomic decomposition of

process Y is the well-known spectrogram:

AY (u,€) = E{[(Y(2), Yoz —w)e *C) [} = E{|(Y (2) , Yo (z —u)e )]’} .

10 10

-10 -10
0 0‘2 0‘4 0‘6 0‘8 1 0 0.2 0.4 0.6 0.8 1
500F ‘ ‘ ‘ ‘ 1 500F
400¢ 1 400f
300f 1 300 R
O o e g Zoofv
100¢ 1 100f 1
0O 0:2 0:4 0:6 0:8 1 0O 0:2 0:4 0:6 0:8 1
(a) (b)

Figure 2: (a) Spectrogram A% (u, £) of a stationary process R. The horizontal and vertical axes respectively
represent position u, and frequency £. The darkness of a point is proportional to the value of A% (u,&). (b)

Spectrogram A% (u, £) of a frequency modulated process F'.

Figure 2(a) shows a spectrogram A% (u,§), whose values do not depend upon u
because R is stationary. Figure 2(b) depicts A% (u,¢) for F(z) = DR(z) = ') R(x),
with a(x) = A1 cos(Ae ) where A; and s are two constants. The frequency modulation
translates the spectrogram of R non-uniformly along the frequency axis.

Let us now give the expression of (v) corresponding to the tangential approxi-
mation of Proposition 2.1, when D is a frequency modulation. If f is supported in a

neighborhood of v, a first order Taylor expansion of «a(x) gives

DT f(z) = e®) f(g) a @0 0E—0) f(p)

13



and one can define a tangential approximation of D—! for functions supported in a

neighborhood of v by

G f (@) = @) f(g) (27)
The following theorem uses this tangential approximation to derive from Proposition
2.1 a transport equation, satisfied by the spectrogram A7 (u, §) in the (u; §) plane, when
the window scale o decreases to 0. The frequency ¢ is chosen large enough so that the
period of €% is smaller than the support size o of ¥,. We set & = &y/o and select & so
that 1)(w) and its first [A] + 2 derivatives vanish at w = & ([h] denoting the smallest

integer larger or equal to h).

Theorem 2.2 (Frequency transport). Let R be a stationary process such that there
exists h > 0 with

cr(0) — cr(2) = |z|" () (28)

where n is continuous in a neighborhood of 0, and n(0) > 0. Let ¢ be an even, positive,
C! function supported in [—1,1] and & be such that @/Aj(w) and its first [h]+2 derivatives

vanish at w = & but
/ |z — y|h($ —y) sin[éo(z — y)] ¥(z) Y(y) dedy #0 .
If
F(z) = ela(®) R(z) where a(z) is CIh1+4,

then for each u € R such that & (u) # 0 and for £ = & /o, when o = 0
(14 0(0%)) BuAG (1, €) — o' () D AG:(u,€) = 0 . (29)

The proof is in Appendix B.3. To satisfy the theorem hypothesis, one may choose
() to be a box spline obtained by convolving the indicator function 1[_1 /2,1 /2/m) With
itself m times:

- sin(w/(2m))\ "
P = (T Bm)) T
w/(2m)
and & = 2mm with m > [h] + 3.
The deformation gradient o''(u) can be characterized from equation (29) by letting o
go to zero, and we proved in (3) that o(u) specifies the equivalence class of D in
D/G. Section 3.2 imposes some further conditions on cg and « to obtain a consistent

estimation of o (u) from this partial differential equation.

14



2.4 Multidimensional scale transport
For a multidimensional warping where Df(z) = f(a(z)) with z € R¢, the adjoint of
D~tis D=1 f(z) = det Jo(z) f(a(x)). The matrix J,(z) is the Jacobian matrix (7) of

a at position z. The stationarity invariant group G is the affine group, composed of
operators G5 with 8 = (u,S) € RY x GLT(R?), such that

Gof(@) = [(u+ Sx)
The adjoint of G is
Gsf(z) = det S~ f(S’l(a: - u)) = T.Gf(2)
where ng(a:) =det S~ f(S™'z) and

f=5= (Slm)

1<li,m<d

For a regular function f, a Taylor expansion of a(z) in a neighborhood of u(v) = a=!(v)

gives
DTf(z) ~ det Jo(u) f(a(u) + Ja(u) (z — u)) =G f(@) - (30)

The operators D—! and @B(v) both translate the support of f from a neighborhood of
v to a neighborhood of u(v) = a!(v).
Let 1) be a function such that [, (x)dx = 0. A multidimensional extension of the

scalogram is given by

AG(u,S) = E{|(Y(2), det ST 4, (S7 (2 —w)) )}
= E{|(Y(z),detS™ ¢ (67 S (& —w) )} .

As in the one-dimensional case, we divide A§ (u,s) by 02? and replace the product oS

by a matrix which we still denote S. The resulting atomic decomposition is
Ay (u,S) = E{[(Y (z), det S™" ¢ (S™(z —u)) )]} - (31)

It is similar to the scalogram (22) but since the scale parameter s is replaced by a
warping matrix S, we call it a warpogram.

For a one-dimensional warping, the velocity term of transport equation (26) is
(loga') (u) = a"(u)/a'(u). In two dimensions it becomes a set of matrices, indexed
by the direction k of spatial differentiation:
0Jq(u)

for 1 <k<d, J;'(u) 5u
k

= (vn(w) (32)

1<t,m<d
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This set of matrices has been shown in (10) to specify the equivalence class of D in

D/G. Tt is denoted in a vectorial form:

Fim (W) = (9 (W) 1<k<d -

The partial derivative Oiog s Ar (4, s) = s 95 Ar(u, s) which appears in the one-dimensional
transport equation (26) now becomes a matrix product, between a partial derivatives

matrix and the transpose St of S:

(M) gt — (az,m(u,S)) , (33)
0s;.j 1<ij<d 1<t,m<d

The following theorem isolates the scale parameter o = (det S)'/? by writing S = o S

with det S = 1, and gives a d-dimensional transport equation when o goes to zero.
Theorem 2.3. Suppose that F(z) = R(a(z)), where a(x) is C* and det J,(z) > 0.
Suppose that the autocorrelation kernel cp of R satisfies

cr(0) = cr(z) = |z|" () , (34)

with n(0) > 0 and n € C? in a neighborhood of 0. For each u € R and for each S with
det S =1, if there exists C'(u,S) > 0 such that, for S = o S and o small enough,

‘Re / Ver(S(z — y))Via(w) Iy H(u)S(x —y) " () ¥(y) da dy‘ >C(u,S)o" , (35)

then when o goes to zero
Vadr(,8) = Y T (@) am(u, 9)| = 0(0) |Vudr(u,9)| - (36)

The proof of this Theorem is in Appendix B.4.
If cg(0) — cr(z) = n x| for small |z|, with 7 > 0, and if a(z) is a separable warping

function of the form

a(z) = (aa (1), ..., aq(xq))

then one can verify that condition (35) is equivalent to

d

a II
Z‘;;‘Re/ 19z — "2 Sl — 7)) (@)ly) ddy £ 0.
=1

Jj=1

For ¢ sufficiently small, neglecting the error term on the right-hand side of (36)

yields d scalar equations:

for 1<k <d, 04,Ar(u,S)— Z’ylm ) ar,m(u, S) =0 .

[,m=1
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For any (u, S), the values 0y, Ar(u, S) and a;,m(u, S) depend upon the autocorrelation
of F', and have to be estimated. For each direction &, there are d?> unknown coefficients
Vm (1) equal to the d® matrix components of J; ! (u) Oy, Jo(u). To compute them we

need to invert a linear system:

71,1(“)
01171(’11,,5’1) 01172(’11,,5’1) ad,d(u,Sl) ,Yk (’u, 8ukAF(u,Sl)
: : . . = : L (37)
0,171(’11,5612) 0,172(’11,5612) e ad7d(u,5dz) k ' 8ukAF(u,Sdz)
7d7d(u)

Changing the direction index k only modifies the right-hand side of (37). Note that in
order for the system to be invertible, the left-hand side matrix in (37) must have full
rank. The matrices S must therefore be appropriately chosen, and the inverse warping
problem must have a unique solution. This is not always the case, as shown by the

example in (11).

3 Estimation of Deformations

The deformation gradient appears as a velocity vector in the transport (21). To re-
cover it from a single realization of F', the derivatives ﬁuA%(u,B) and ﬁBAf;(u,B)
of the atomic decomposition of F' have to be estimated. With a single realization, a
sample mean estimator has a variance of the same order of magnitude as the term it
estimates. This variance can be reduced with a spatial smoothing, while the bias, which
is proportional to the width of the smoothing kernel, is controlled. The next three sec-
tions study the consistency of such smoothed estimator for one-dimensional warpings,

frequency modulations and multidimensional warpings.

3.1 Warping in one dimension

The scalogram of F is defined as
Ap(u,5) = E{(F, Yus)"}
with ¢, s(z) = s ((z — u)/s). If F(z) = R(a(z)) then Theorem 2.1 proves that
(14 0(5)) QuAdie(u, ) = (10g0") (1)Bhog s Ar(11,5) = 0 . (38)
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To reduce the variance of empirical estimators, equation (38) is convolved with a

smoothing kernel, which is chosen equal to

A1 = Jz/A) if |z <A
sy = | AT l/AD il < 59)
0 if |z| > A
Let a be a generic variable denoting either u or logs. We define
0uAr (u,s) = /g(u —v) 0, Ar(v,s)dv . (40)

The following proposition, whose proof is in Appendix C.1, shows that the bias

introduced by convolving equation (38) with g is proportional to A.
Proposition 3.1. Under the hypotheses of Theorem 2.1, for each u € R, when A tends

to zero and s < A,

(1 + 0(5)) Fudp (u,s) — ((log o) (u) + O(A)) Dog s Ap(u,5) =0 . (41)

An integration by parts shows that, for a = u,

ut+A/2
BuAr(u,s) = A~ / [Ap(+ AJ2,8) — Ap(v— A/2,5)] dv |
u—A/2

Given a discretized realization of F' measured at a resolution N, wavelet coefficients
(Fytpy,s) and (F, 0,1, ) can only be computed at scales s > N~! and at positions
u = k/N with k € Z. We therefore introduce the following empirical estimator for

OuAr(u,s) at scale s:

0uAr(u,s) = AN 3" [ vyniaal — (B inoagpms)?] . (42)
[k/N—u|<A/2

Noticing that
Olog s AF (u, 8) = 2 Re[E{(F, Yu,s) (F' Otog stu,s) " }]
with
Bog sPu,s () = —Yus(x) =577 (& —uw) ¢ (s H(z —w)) , (43)
we choose an empirical estimator of diog s A (u, s) at scale s given by

alo/gs\AF(u’7 5) = 2N71 Z g(u - k/N) Re [(Fa ’l/}k/N,s> <F; alog s’l/}k/N,sy] . (44)
|k/N—u|<A
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In view of equation (41), we suggest the following estimator for (loga’)’ (u):

—  9,Ap(u, N7

(loga')'(u) = —= -
“ ¢ alog SAF(U;Nil)

To guarantee that EA\F(U, s) and 0, Ap(u, s) are close when s = N~! and N increases,
we must ensure that the wavelet coefficients (F, /N ) and (F,Oog s¥r/N,s) are se-
quences of random variables that have fast spatial decorrelation. This will depend upon
the behavior of the autocorrelation kernel cgr(z) of R in a neighborhood of 0, and on

the number of vanishing moments of ¢. A wavelet 1(z) has p vanishing moments if

/:Ukz/)(a:)dazzo for0<k<p.

—

The following theorem proves the weak consistency of the above estimator (loga')'(u)
of (loga)'(u).
Theorem 3.1 (Consistency, warping). Let F(z) = R(a(x)), where R is a station-

ary Gaussian process such that there exists h > 0 with
cr(0) = cr(2) = [z n(z) and 7(0) >0 . (45)
Let v be a C? wavelet supported in [—1,1] with p vanishing moments, such that
2p—h >1/2 and // |z — y|" ™ (x) (y)dedy #0 .

If n(x) is C?" in a neighborhood of 0, and if a(x) € C3>NC??, then for each u € R such
that o' (u) # 0, for A = N~1/5,

3 A -1
Prob (B/Uﬁ(u,N ) _ (logo) (u)| <2(log NYN™Y> 4y — 1. (46)
alog SAF(U;Nil) N—=oo

This theorem, whose proof is in Appendix C.2, relates the size A of the smoothing
kernel to the resolution N. Although we supposed R to be stationary, since all esti-
mations are based on wavelet coefficients, one can easily verify that the same results
apply if R is not stationary but has stationary increments. This is the case of fractional
Brownian motion [1, 6], for which n(z) = 1.

Figure 3 displays a numerical experiment conducted on a single realization of a
warped process. The signal F' in Figure 3(b) is obtained by warping a stationary signal
R, depicted in Figure 3(a). Figure 3(c) shows in dotted lines the estimate @ of

of loga' obtained by integrating the estimate (loga/)’(u), and choosing the additive

integration constant so that fol exploga’ = fol o/. An estimate @ for the warping
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(c) (d)

Figure 3: (a) Stationary signal R and its empirical scalogram |[(R,vys)|*>. (b) Warped signal F(x) =
R(a(z)) and its empirical scalogram. (c) loga'(x) = A1 + As2sign(1/2 — z) |z — 1/2|%, where A\; and \» are
two constants (full line) and its estimation from F' (dashed line). (d) Stationarized signal and its empirical

scalogram.
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function can be obtained up to an additive constant by integrating exp @. It is then
possible to stationarize the deformed signal F' by computing F o (@)~!. Figure 3(d)

displays such a stationarized signal.

3.2 Frequency Modulation

For a frequency modulated process, F(z) = R(x)e’*(®) Theorem 2.2 shows that the

deformation gradient o'’ (u) can be computed from a spectrogram
Af(u,€) = E{[(F(2), ¥o (z — u)e* ™))%}
with the equation
(14 0(0)) AT (u,€) — 0" (1) D AT (u,€) = 0 (47)

evaluated at a frequency £ = &/o. To estimate o' (u) from a single realization of F
measured at a resolution NV, the estimation is performed as in the previous section, with
a spatial smoothing of equation (47).

Let g(x) be the smoothing kernel defined in (39). For a generic variable a denoting

either u or &, we define

OGO = [ glu =) 0,470, )do (48)
Similarly to Proposition 3.1, we prove in Appendix C.3.1 that
(14 0(0*) DAz (v, €0/0) — (a"(w) + O(A)) FeAT (u,&0/0) =0 . (49)

To compute an estimator of the smoothed partial derivatives of the spectrogram, we

relate the spectrogram coefficients to a particular wavelet transform. Observe that

Vo (@ — u) exp (igom_“> = ¢! <$_“> (50)
o o
where
P! (2) = () 0" . (51)
If ¢)(w) has a zero of order [h] + 3 at w = &, since 1 is real, {(w) is even, and hence

/azk Y (z)de = (—i)* (ch;: (&) =0 fork<Th]+2.

This means that ' is a wavelet with [h]+3 vanishing moments [10]. We write ¢, , () =
ot (o~ (x — u)). The scalogram associated to this wavelet is defined by Ap(u,o) =
E{|(F, v, ,)*}. Tt results from (50) that

A5 60/0) = E{|(F(2), 0! (07 (o - w))['} = 0 Ar(u.0),
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and hence
auA%‘(u; 60/0-) = 02 auAF(ua U) .

Let m(u,a) be the empirical estimator defined in (42): we choose to estimate
0uAY (u, & /o) with

BuAT (u, & /0) = 02 Dy Ap(u,0) .

To compute an empirical estimator of the other partial derivative, 0 A% (u, &0 /0),

observe that
AR (u, €) = 2 Re[E{(F (2), o (w — w)e " ) (F(2) , O [too (w — w)e "7} .
Introducing a new wavelet

V() =zt (z) = wy(z) ™", (52)
and ¢ ,(z) = o~ ¢*(0~"' (x—wu)), this partial derivative can be rewritten, for £ = & /0:
OcAF(u,&o/0) = 20° Im[E{(F', by ;) (F, ¥ ;)" }] -

u,o

Similarly to (44), for o = N~=! we suggest the empirical estimator

FeAG (u,60/0) =20° N1 30 glu—k/N) Im [(F, 0y ) (B 03 )| - (53)
|k/N—u|<A

The following theorem proves that for 0 = N1,

() = 2AE( E0/0)
¢ Af:(u, &0 /0)
is a weakly consistent estimator of o''(u) as N — oo.

Theorem 3.2 (Consistency, frequency modulation). Let F(z) = R(z) e where

R is a Gaussian process such that there exists h > 0 with
cr(0) — cr(z) = |z|"n(x) and n(0) >0 . (54)

Suppose that P (x) = P(x)ee? is a compactly supported wavelet with p > [h] + 3

vanishing moments, such that
J[ 12 = sl = ) snléate — )] @) v0) dody £0.

Ifn € C?7 in a neighborhood of 0 and if o € C*P, then for each u € R, for A = N~1/5,

Prob M — o (u)| <2(ogN)N~Y> 4 — 1. (55)
D A, (u, N&) N—roo
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Figure 4: (a) Stationary signal R and its empirical scalogram |(R, v, ,)|*. (b) Frequency modulated signal
F(z) = R(z)exp(ia(x)) and its empirical scalogram. (c) Frequency modulation o' (z) (full line), and its

estimation from F' (dashed line). (d) Stationarized signal and its empirical scalogram.

The proof is in Appendix C.3.

The numerical example in Figure 4 shows the estimation of a frequency modulation.
We explained that the empirical estimator o (u) is in fact computed from wavelet coef-
ficients associated to the two wavelets ¢! and ¢? defined in (51) and (52). Figure 4(a)
shows a realization of a stationary signal R(z) and the corresponding empirical scalo-
gram Ap(u,s) = (R, Yu.s)>. The frequency modulated signal F(x) = R(x) exp(io(x))
and its empirical scalogram are in Figure 4(b). The derivative o' of the frequency
modulation is plotted in Figure 4(c) (full line). An estimate o/ of ' is obtained by
integrating 07, and choosing the additive integration constant so that fol o = fol o'
Figure 4(c) plots o (dashed line), superposed on the theoretical function o' (full line).
Lastly, Figure 4(d) represents the stationarized process F'(z) exp(—ia(x)) and its em-

pirical scalogram.
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3.3 Warping in higher dimension

For a multidimensional warping, at each position w, the deformation gradient corre-
sponds to a set of d matrices ¥ p,(u) = (%’fm(u))lgkgd defined in (32). Theorem 2.3
shows that these coefficients appear in the velocity term of the transport equation (36)

satisfied by the warpogram of F*:
Ar(u, S) = E{[(F,vu,$)I*} ,
with
VYu,s(z) = (det ST Y(S™ (& —u)) .

At a sufficiently small scale o, the error on the right-hand side of the transport
equation (36) can be neglected. The vector transport equation can then be written as

a linear system

a11(u,81)  ar2(u,81) ... aga(u,81)\ [7f,(w) Ouy, Ar (u, 51)
a1 (u, Sg2) a12(u,Sqe2) ... agq(u,Se) 7§7d(u) Ou, Ar(u, Sq2)
(56)
where
(al,m(u,S))Kl m<d ( si’jAF(u’S))léi,de s

If the process F' is measured at a resolution IV, we can only compute the warpogram
with functions 1), s whose support in any direction is larger than N~!. We therefore
require that S = oS where 0 > KN !, and all the eigenvalues of S are greater than
K~1. The location parameter is also restricted to a uniform grid u = N 'k with
k € Z¢. To estimate the deformation gradient from a single realization of F, as in the
one-dimensional case, the system of equations (56) is convolved with a d-dimensional

kernel of radius A. The smoothed matrix coefficients are

(m(u,s)) = ( Si,jAF(“’S))lgi,de st

where, for any variable a, we have defined

1<l,m<d

0, AF(u,S) :/g(u—v) 04 AF(v,S)dv .

Since 8, AF(u, S) = 2 ReE{(F, ¢y s)(F,041y,s)" }, an empirical estimator of 8, Ar (u, S)
is
9uAr(u,8) =2N"1 N g(u— N7'k) Re{(F, ¥n-14,s)(F, Outhn-14,5)"}

IN-1k—u|<A
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and we define

—

AF(U,S)

(m(u,S)) St

If the warping a(z) is sufficiently regular, then the averaged values @, (u,S) and

L<tm<d ( )1§i,j§d
Ou,, Ar(u, S) are related by a system of equations identical to (56), but with an additional
bias equal to O(A).

The k" component of the deformation gradient, ('yl’fm(u)), can be thus estimated

— —1 —
1 () ari(u,S1) ... aaa(u, S1) Ou, Ar(u, S1)

: = : : : : : (57)
7k () ai(u, Sgz) ... dga(u,Se) Ba A (u, Syz)

Extending the consistency Theorem 3.1 to this d-dimensional case is possible, but re-
quires technical hypotheses that are not yet well understood.

In Section 1.1, we mentioned that the warping of textures in images specify the
three-dimensional coordinates of the corresponding surfaces appearing in the scene.
The estimator defined in (57) is studied numerically in [4, 5] to compute surfaces from

texture gradients in images.
The MATLAB routines which reproduce the numerical illustrations of this section can

be downloaded from

http://www.cmap.polytechnique.edu/~mallat/Deform.html.
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A Proofs of Section 1

A.1 Proof of Proposition 1.1

Let R be a stationary process, and suppose that there exists an € > 0 such that cg(z) >
0 for || < e. Let R be another stationary process. We want to show that if the

autocorrelations of R(x) explic(z)] and of R(z) exp[ic(x)] are equal, i.e. if

cr(z —y) exp(ila(z) — a(y)]) = cg(z —y) exp(ila(z) — a(y)]), (58)

then o/'(r) = @"(z). The functions a and & are assumed C*, therefore § = a — @ is
also C*. Let us fix # € R; our goal is to prove that 6" (x) = 0. We choose y € R such
that |z —y| < e. After dividing both sides of (58) by cr(z —y) > 0, it appears that
ellf(@) =0 is a function of x —y. Therefore f(x) — A(y) is also a function of z — y, and

in particular for all a,
O(x) —0(y)=0(x+a)—0(y +a) .

Differentiating this expression with respect to x shows that 6'(x) = 6'(x + a), thus
0" (z) = 0.

A.2 Proof of Proposition 1.2

Let R be a stationary process and let ¢ > 0 such that cg(z) is C! for 0 < |z| < &,
with cp(z) < 0. Let R denote another stationary process, and let us suppose that
the autocorrelations of R(a(z)) and of R(@(z)) are equal. The functions a and & are

1

assumed C3, therefore # = oo @' is also C3. Proving the proposition amounts to

proving that 6 is linear, or equivalently, that 6" vanishes everywhere. By definition of
g,

cp(z —y) =cr(8(z) — 0(y)) - (59)

Let us fix z € R, and choose y # z, but sufficiently close to x so that |8(z) — 8(y)| < €.
Differentiating (59) with respect to « and y shows that

cr(B(x) —0(y))8' (y) = cR(B(x) — 6(y))0" () -
Since cp(6(x) — 6(y)) < 0, we obtain §'(x) = 6'(y), therefore §"(z) = 0.
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A.3 Proof of Proposition 1.3

Let R be a stationary process such that cg satisfies (12). Let R denote another sta-
tionary process, and suppose that the autocorrelations of R(a(z)) and of R(&(x)) are
equal. Let = a0 @~ ': by definition of 8, R(6(z)) = R(x), thus

cr(B(z) —0(y)) = cplz —y) .
Differentiating this expression with respect to z and y, for x # y, shows that
Ver(@(z) —0(y))Jo(y) = Ver(@(z) — 0(y)) Jo(x) - (60)

Let us fix # € R, and prove that VJy(z) = 0. Let ¢ > 0 such that 5 is C? on
{z, |z| < €}. Let us choose y € R? such that |#(z) — 0(y)| < ¢ and let z = §(x) — O(y):

Ver(z) = =hlz|" 2 (n(2) z + 21 Vn(2)) -
Replacing this expression in (60) and dividing both sides by —h|z|"~2(z) proves that
(z+h Mz Viegn(2)) Jo(y) = (= + Mz’ Viegn(2)) Jo (6 (= +6(y))) ,

SO
(z+h M2’V iogn(2)) Jo(y) Ty (07 (= + 6(y))) = = + b~ |2V log (=) -

Introducing a function 6 such that
0(z) = Jo(y) 6~ (= +6(y)) , (61)
this can be rewritten
(z 4+ hz|*V log n(2)) Ji(z) = (2 + htz 2V log n(z))

Noticing that z J;(Az) = d%é()\ z), we have, for A > 0,

45

00 2) =2+ h 2P AV logn(2)(J;(A\z) — Id) ,

which, when integrated between A =0 and A = 1, gives
1
6(2) — 6(0) = =+ b1 |22 / A log 7(A2) (5 (A2) — Id) dA -
0

After replacing 6 with (61), and noticing that 8(0) = Jy(y) y, we obtain

071 (z+6(y) = Jg_l(y) z+y+ Jg_l(y)ffl|z|2/0 AV logn(Az)(J5(Az) — Id) dX\ . (62)
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Since cp is even, Vn(0) = 0 and so Vlogn(0) = 0. Let us denote Vlogn(Az) =
|Az| @(A\z). Recalling that n is twice continuously differentiable in a neighborhood of Az
for 0 < X < 1, the vector d@(\z) is differentiable, with a bounded gradient. Differentiating
(62) with respect to z shows that

Ty 07z +0) = T, (T + |2 A2))

and one can check that A(z) is uniformly bounded for |z| < e. Replacing z by 8(z)—6(y)

gives
Ty (@) = Jy () (Id + |8(z) —8(y)[> AB(z) — 6())) ,
therefore for any unit-length vector z € R?,

0 Iy @+ Azy) — Iy ()

g1 = i
8xk Je (CU) )1\% A
—1 _ 2
i e @R AIW@ + Av) = 0@ o aga)
A—0 A
=0.

This proves that ﬁJe_l(x) = 0, and therefore ﬁJg(x) = 0. As a consequence, for each
direction zy, %Jg(d(:ﬂ)) = 0. Since Jyp(z) = Jo (& ' (x))J7 (@ (z)), we obtain

[e3

0 1 B
a—xk(Ja(ﬂf) Ji (2)) =0,

and expanding the above differential expression then proves (10).

A.4 Proof of Theorem 1.1

Let us consider a specific family of zero-mean wide-sense stationary processes defined
by

R,(z) = X e
where X is a zero-mean random variable with variance o?. Then
E{R.(z) R (y)} = 0” exp(iw - (z — y)) = cr,(x —y) .
Let G be a stationarity invariant operator. If F, (z) = GR,(z) then
E{F.(2) F;(y)} = 0® fu(z) fi(y) = cr(z —y) .
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with f,(r) = Ge™*. This implies that for any (z,y) the product f,(z) f.(y)* is a
function of z —y. One can thus conclude that there exists p(w) € C and (w) € R? such
that

fo(z) = Ge™® = p(w)e? @) (63)

Let us now prove that such operators are stationarity invariant. A zero-mean process

is wide-sense stationary if and only if it admits a spectral representation:
R(z) = / e dz(w) ,
Rd
where Z(w) is an orthogonal process. Let dP(w) = E{|dZ(w)|?}, we have
cr(0) = dP(w) < 400 .

R4

We derive from (63) that

Fla) = [ "7 plw)az(w)

which shows that F' is wide-sense stationary.

For any wide-sense stationary process R, one can write
GR(z) = GE{R(0)} + G (R(x) — E{R(0)}) .
Since R(xz) — E{R(0)} is zero-mean and wide-sense stationary, G (R(z) — E{R(0)}) is

wide-sense stationary, therefore so is GR(z).

For any positive integrable measure dP(w) we must have

or(®) = [ 1) aP) < +o0

and a necessary and sufficient condition is that esssup,cpq [p(w)| < oo.

A.5 Proof of Proposition 1.4
We denote by Ky the autocorrelation operator of a process Y, defined by
Ky f@) = [ EY @Y W) @) dy

Let G be a bounded linear operator and F' = G R. The autocorrelation operators of F’

and R satisfy

Kr=GKgrG .
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Since R is stationary, Kz commutes with the translation operator T, for any v € R?.
We derive from (16) that K also commutes with T}, and hence that F' is wide-sense
stationary. The operator G is therefore stationarity invariant and Theorem 1.1 proves
that

GewT — ﬁ(w) elf(w) (64)

Inserting this expression in the equality GTs,f(z) = VT, Gf(z) for f(z) = e

implies
ﬁ(w) ei9(w)-z e—iSv-w _ ﬁ(w) ei@(w)~(x—v) e—i£~v 7

from which we derive that 6(w) = Sw + ¢ for all w where p(w) # 0. For w such that
p(w) = 0, (64) clearly holds with #(w) = Sw+&. So G can indeed be written as in (17).
Conversely, if G satisfies (17) then a direct calculation shows that (16) holds.

B Proofs of Section 2

B.1 Proof of Proposition 2.1 (Transport)

The autocorrelation operator of F' = D R satisfies K = D Ky D, therefore
(Kry 5.5 %0500 = (EKrDY, 5., DY, 5,) -

Let us compute

VolEit, 5,5 ¢y 500 =2Re(Kr DY, 5, VD, 5.,)
=2Re(Kr Dt 5, (Vo +V2) Db, 5,) — 2Re (Kr DY, 5,V D, 5,)

Since R is stationary, for any g we have (Krg, Vag) = 0, so
ﬁv(I(F 1/11,75’70 ’ ¢v7/8~70'> =2Re <KF 1/)1),5,0'7 D71 (61} + ﬁﬂ"') ﬁ¢v,é,a> :
Hypothesis (18) thus implies that

Vo(Kr Vojios Vool

= O(O’) ‘R€<KF 1/11,,5'70 ) ﬁx Q’ZJ%B#")

(65)

Since ¢, 5, = Gﬁ(v)Tﬁéwc,, transport property (19) shows that

Uy 5,0 = €D Ty Gy Gt = €M) T G o

v,p,0
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The phase e*?(“(?)) disappears in all calculations of <KF1/)’U7B~,0'71/}U,B70'>' By definition,
A% (u, B) = (KFTuégwg,TuéB¢U> , and since V, f = V. f J; H(u),

—

Vol Kr, 5,50 = VoA (@), B * Bu(v)) = Vi Az (u(v), B * Bu(v) T, (u) -

This implies that

)

[0 (w(w), 5 Blu))]| < 1@ [VolKr 5, 6,5.)

where ||J,(u)]|| is the operator sup norm of J,(u). Inserting this in (65) shows that for
u fixed

VoG (u, B Bw)| = 00) [Re(Kr v, 5, , Vatby5.,) (66)
Since V, T, = —6wTu, using the symmetry of Ky we get
2Re(Kpd, 5,5 Voly5,) = ~Vudf(u, fx (1) att=u. (67)

Inserting (67) in (66) finally proves that
Vudf (u, B+ Bw)| = 0(0) [VuAg(w, B+ B®)| att=nu,

which implies (20).

B.2 Proof of Theorem 2.1

This theorem is proved as a consequence of Proposition 2.1. Operator G, is given by
(23)

Go f(z) =o' (u) f(v+a'(u)(z —u))

with u = a~!(v). Transport property (19) holds because u(v) = a~!(v) is differentiable
and invertible and

Go()Tv = Tu(w) Gauqw)) >
where Eg(u)f(x) = o/ (u) f(o/ (u)z) with B(u) = 1/a/(u).
Let us now verify hypothesis (18) concerning
Yy b0 = G Lol 500

with Eéf(:n) =1/sf(x/s). The scalogram renormalization (22) is equivalent to dividing
Yy (x) by o, which yields ¢, (z) = 1/0¢(x/0), and replacing os by s which gives

o (u o (u

buia@) = oale) = Ty (o)

S S
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Let us compute

Gvs=D1(0y+0;) DOy .

Since Df(z) = (' (e~ (x)))~" f(a~(x)) and D-1f(z) = o/ (x) f(a(z)), a direct calcu-

lation gives

Since ¢ is supported in [—1,1], ¢, s is supported in [u — s/a'(u),u + s/a'(u)]. Since

a € C3, a Taylor series expansion of |o/(z)|? and of o (z) around position u prove that,

for small s,
oate) = (2406 ) 0 (T e - ) +

#(U)Z+O(s) Y’ M(90—71)
(2(1 (u) §

The autocorrelation kernel of F(z) is cr(z,y) = cr(a(z) — a(y)), hence
(Krbus, b0.) = [ [ enlala) = a)),,(0) 6u.clu) dudy
Since [ 0,5(z)dr = [¢(z)dz =0,
(it 0) = = [ [ (en(0) = enla(@) = @) 6,0 bo.cw) dody

The supports of 6, s and @, s are in [u—s/a'(u), u+s/a'(v)] and for z in a neighborhood

of 0, the continuity of n implies that cg(0) — cr(z) = n(0) |z|"* + o(|z|"). Since ' is
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continuous at u, a Taylor series expansion of a around u combined with a change of

variables ¢’ = (x — u)a'(u)/s and y' = (y — u)a/(u)/s yield, for s sufficiently small,
(K500 ) == [ / DI+ olls(e — ) () x
2all alll(u) s , -
(B 0<s>) 00+ (e +0)) /)| dody . (68)

and therefore

|Re(K pby,s du,s)| = O(s" ). (69)
Let us now compute
(i, 0:80.) = [ entala) = al) 6, @) T0.. ) dedy
With an integration by parts,
(i, 08,00 = = [ [ @) ufala) - o) 83, (0) () dody

and since ¢ (z) is antisymmetric

Re (Kib0, 0,0,.) = / [ (@) - ) nlale) - aly) 8. (0) un(w) dody
A change of variable ' = (z — u)a/(u)/s and y' = (y — u)a/(u)/s gives

Re (Kb, 0:6,.) = / [ (@t so/e ) - o'+ syfa'(w)

ch(alu+ sz/a' (W) - alu + sy/a'(w)) 6" (@) Y(y) dedy .

Because of assumption (24), since ) is C' in a neighborhood of 0, ¢/ (2) = hn(0) sign(z) |z|"~1+

o(|z|"1). With a Taylor expansion for a, we get, for s small enough,

Oé

Re (Kpby,s, 0:0y,5) = 3 / (hn(0) s" |z — y|" + o(s" |z —y[")) ™ (2) ¥(y) dz dy . (70)
Since [[ |z — y|"p*(z) ¢ (y) dovdy # 0 and o' (u) # 0, there exists a(u) > 0 such that
|Re (Kpby.s, 0:00,6)| > a(u) s" +o(s")
and (69) implies that
|Re (Kpby,s du,s)| = O(s) | Re (Kpby,s , 020,,5)] -

Since all the conditions of Proposition 2.1 have been verified, we can apply the
resulting transport equation (21) with 3 = s, f(u) = 1/a/(u) and B * B(t) = s/ (t):
a”(t)

OuAr(u,s) —sa'(u) IO

0sAp(u,s)| = O(s) |0, Ar(u,s)| att=u,

which proves (26).
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B.3 Proof of Theorem 2.2.

This theorem is proved as a consequence of Proposition 2.1. The operator Gg(y) is
defined in (27) by:

Gau f(x) = /@OIT =) f(g) (71)
Transport property (19) holds because, for u(v) = v, we have

Gﬁ(v)Tv — eta(u(v)) Tu(v) G’B(u(v))

with G, f(x) = €' 7 f(x) and f(u) = —a’ (u).
Let now verify hypothesis (18):

‘Re <KF¢U7E7U7F (Ov + 0x) ﬁ¢v,€,0>

= 0(0) . (12)

0
Re <KF1/)U7E70'7 £¢v,€,a>

for

Yugo(T) = aﬁ(v)TvEsf/hr(ﬂ«“) =

expli(alo) +0'(0)(x ~ )] explig(e ~ 0w (1) . (@)

A direct calculation shows that

<KF¢U,5,J,F(67J + az)mv,g,c,> -

/ / er(z — y) explia(z) — aly) - o (v)(@ — y))] explié(y — )] x

<i(=a" ) =) +a') — a0 (1) v (0 ) dody
and with a change of variables ' = (z —v)/o and y' = (y — v) /0,

<KFI/)U,£,O'7F (av + az) va,£,¢7> =
/ / cr(o(z' — ")) expli(a(v + 07') — a(v + oy') — 0’ (v) (&' — ¥'))] X

x (o (v +oy') = a'(v) — " (v)oy )@V =) Yl )(y') da' dy' . (74)

Because [ e~%0%y)(z) dx =0,
/ / cr(0)i(a (v + oy) — o' (0) — o (W)oy)e V) Y(@)(y) dedy =0 . (75)
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After subtracting (75) from (74),

<KF¢075707 DT (Ov + 0z) va,é,a> =

/ / cr(o(z — ) (explia(v + o) — alv + o) — 0o’ W) (@ — )] — 1) x

xi(a' (v +oy) —a(v) — a"(V)oy)y™ (@)Y (y) de dy +

/ / (cr(o(x — 1)) — cr(0)) i(e’ (v + o) — ! (v) — o (v)oy) W= (w)(y) da dy
(76)

Since o € C*t"1 we can perform the following Taylor expansions, where ay, by and ¢y,

are real parameters which depend on the derivatives a(*¥) (v), for (x,y) € [0,1]%:

expli(a(v + oz) — a(v + oy) — od (v)(x — y))] =
2+[h] 2+[h]

1+ Z aro®(z —y)kF + Z be_a2ot(z —y)kF + Oy (77)
k=2 k=4

2 [h]
Vo toy) —aw) = 3 cenotyt + 0 ) (78)
k=1

In particular, a; = o' (v)/2 and ¢ = a® (v)/(k = 1)! .

Replacing these Taylor expansions in (76), we obtain

(Kitbugo D7 (9 +02) Do ) =
2+[h] 2+[h] ]
X

- [[ entete - w) [ S aot @ -p)f + Y beoaotla— )
k=2 k=4

2+Th] '
X Z 10t yk 0= () (y) d dy
k=2

2+4[h]

—i//ahlx—ylhn(a(x—y)) [é Ck+10kyk] W= 4 ()9 (y) du dy
+ o(+ Ry

In the first of these two integrals, one can replace cr(o(x — y)) by cgr(0) — o®|z —
y|"n(o(x — y)). Since ¢ and its first [h] 4+ 2 derivatives vanish at &, we derive that
et 4)(¢) is a function with [h] + 3 vanishing moments [10], so the first integral is of
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the order of O(a*t").

For the second integral, because 9 is even, exchanging x and y shows that
[ [ 12 = sl = ) sin(eoty — 90 (@) viy) dedy =0

Since 2 + [h] > 3, the second integral has a real part which is equal to

a® (v
—o )25 [ [ sineoe — ) e — yl's 6(0) ) dedy +ofo*)

As a consequence,

Re (Kb D77 (9, +0) Db ) =

a® (v
=2 [ [sinteate — ) e — ul's 60 00) dedy + oo™

Let us now estimate |Re (Kpty ¢,0, 0utv.,0)|- After a change of variables,

<KF¢U,£707 az¢'v,£,a> =
/ / cr(o(z —y)) expli(a(v + ow) — alv + oy) — oo’ (v)(z — y))] X
x expli€o(y — )] (e (v) + €o/0) (@ )(y) d dy

+ // cr(o(z —y)) expli(a(v + oz) — alv + oy) — od (v)(x — y))] X

(79)

x expli€oly — )} () - (y) drdy

Using Taylor expansions (77) and (78), we obtain

<KF¢U7§7U; az¢v7§7o> =
2+[h] 2+4[h]
X

[[ extota =) [Hi S aot @)+ Y b otz — )t
k=2 k=4

x explibo(y — @)]i(a’ (v) + &o/0) P(2)¢(y) dz dy
2+4[h] 2+4Th] ]
X

+ cr(o(z—y)) [1+1 arot (z —y)F + br—ao® (x —y)*
[[ entote -y [ i3 w3 b y

x explibo(y — )Y (x) %w'(y) dz dy + O(c>+1h1) .

Exchanging z and y shows that

/ / er(o(z — ) sinéo(y — )] (@) Y(y) dedy =0 ;
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and since 1 is even and ¢’ is odd, changing = to —z and y to —y shows that
[[ entote = vy eosteoty - aiste) () dedy = 0.

Writing cg(o(z — y)) = cr(0) — o"|z — y|"n(c(z — y)), and noticing that e®*c? ) (t) is a
function with [h] + 3 vanishing moments, the first integral in (80) has a real part equal

to

7 1D 0) [[ ol 6o cosleoly — )} 00) 0) dady + ol )

Because 9 is even, the second integral in (80) has a real part equal to

P 0) [[ hr ol siloly = )0) ) ey + 0l

An integration by parts with respect to y shows that
J [ 12 = w2 sinlgoty = )00 ) s dy =
~ o [[ 1o - cosleoty — D) wle) i) dedy +
@) [[ e -y signe - ) sinléoly - 2))¥(e) ¥(y) dady
Summing up the two contributions, we see that

Re(Kpthyg,0,0:Vv,0) =
—at*h(0) (1+h/2) a”(v)/ |z —y|"(x—y) sin[éo(e—y)] ¥ (x) Y (y) da dy+o(a*") .
(81)
Because of the hypothesis that

/ / & — y|"(z — y) sinléo(z — y)] () ¥(y) dedy £0

comparing (81) and (79) proves a result which is stronger than (18), because the right-
hand side has an O(¢?) instead of O(c):

|Re <KF¢U757U, D19, + am)m,,,g,g> | = 0(02) |Re (K pthog.o, Ostboca) | -

With a slight modification of Proposition 2.1 to account for the O(c?) term, we obtain
a transport equation (21) with 3 = ¢, f(u) = —a'(u) and By * B2 = B1 + [o: for u
such that o (u) # 0,

|0uAT (u, €) — o (u) O A (u, €)] = O(0?) [0u AL (u, €)]

which proves (29).
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B.4 Proof of Theorem 2.3

The proof of this theorem follows the same lines as the proof of Theorem 2.1. The
hypotheses of Proposition 2.1 are verified in order to apply (21) in d dimensions.

The transport property (19) clearly holds. Let us verify hypothesis (18) concerning
Uy 5.0 = Gaw) TuG 500

with ng(:n) =det S~ f(S7'x). The warpogram renormalization (31) is equivalent to
dividing v, () by 0% and replacing ¢S by S. Recalling the definition (30) of G(,), we

introduce
Yy 5,0 (@) = Ou,5(2) = det(S™ o (u)9h(S™ o (u) (@ — u)) - (82)
Let us define the vector of functions
ng,s =D (Vy+V.)Db,s .
We now prove that for any fixed v and S such that det S = 1, if S = o S then
Re(Kpbys,80s >‘ — 0(0) ‘Re(KF0U75 : ﬁwom)‘ . (83)
Let us first compute an upper bound for ‘Re(KFBv,S , 51,75 ) ‘ Since

D=1 f(z) = det(Ja(2)) f(a())

and
Df(z) = det(J; (@ (@) fla™ (@)
we have
D-1V,Db, s(z) = o ¢ [—%6 det Jo (), 1 (2)1h (S T, (u)(z — u))

+ det Jo (u) V(S o (u) (@ — 1)) S o (u) 1(:v)}

and

D=1V, Db, s(z) = o~ ¢ [6 det Jo (w)p(S™ s (w)(z — w))J T (u)

-

+det Jo (1) V(S g () (z — 1) S~ H(V Iy (u) (z — u) — Ja(u))ng(u)] .

After summing these two expressions, a Taylor expansion of det J,, J; ! and of V det Ja
in the vicinity of position u shows that for S = ¢S and ¢ small, there exists C(u,S)
such that

|¢-;v,S| < C(U,S) ol . (84)
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By definition of K,
(Krby5,60) = [ [ entale) = a8 s(@)dsw) dody
The wavelet 1 has one vanishing moment, so [ 0, s(z)dz = 0, and therefore
(Er8,.5605) = [ [ lentala) - aly)) = cu(0))63 s(@)dus() dody .
which implies that
(b5, Fus)| < [ lentalz) = al) = crlO)] 16050 1Fu,s(w)] dody

Inserting (84) and (82), and using condition (34) on cg, after a change of variable and

a Taylor expansion of a around u, we obtain
(Kru,5,60,5)| = O(a"H) .
To prove (83), we now show that there exists K (u,S) > 0 such that
[Re(K by, Voblos)| > K(u,S)o" (85)

With an integration by parts, and using the fact that Veg(z) is antisymmetric, we get

(K pby.5, % 60.5) = / Sen(a() — o) JuW)rs(@)0s (1) dz dy
-1 / / Ver(a(e) — a(y))(Ja() — Ja(y)0s (@00 5(y) dr dy .
Therefore
(1r0y,5.¥260) + 5 [ [ Fen(S(e = )05 @S (e -~ 0)v" (@)0(y) dedy

= -} [ (Ventatu+ 1 @)S2) - au+ 13 @)5Sy) - Ver(S(a - ) x
(a4 T 0)S2) = T T, (0)S) 0° (&) (o) dr dy
~4 [ [ Ver(Sta—u) Ualut I3 )Sz) - Juut I3 (0)Sy) - F ()5 (@) e -1) %
X U (@) () da dy

Because ﬁcR is C! in a neighborhood of 0 excluding 0, for small o, second order Taylor

series expansions for « and for .J, around position u prove that

(KFbu,5,Vaby,s)+3 / Ver(S(z—y))VJa(w) gyt (w)S(z—y)e* (2)(y) dze dy = o(c™)
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Hypothesis (35) on cg guarantees that (85) holds, and therefore (83) is satisfied. Now
that conditions (18) and (19) of Proposition 2.1 have been verified, the resulting trans-
port equation (21) can be applied, with § = S, f(u) = J;'(u) and S; * So = S5 S).
This yields:

WUAF(U,S) + [Ja(u)_l Vuda(u) s] -ﬁSAF(u,S)‘ = 0(0) WUAF(U,S)‘ .
The final result (36) is derived from this equation by noting that

[J;l(u) Vo (u) s] VsAp(u,S) = [J;l(u)ﬁuja(u)] : [%AF(U, S) sf] .

C Proofs of Section 3

C.1 Proof of Proposition 3.1

With a slight modification of the proof of Theorem 2.1, one can prove a stronger result

than (26), which is stated in the following lemma:
Lemma C.1. Under the hypotheses of Theorem 2.1,

OuAr(u,s) — (log ') (u)dog sAr (u, s) = s(C(u) + 0(1)) 0, Ar (u, s) , (86)
where C' is continuous.

Proof. In one dimension, the proof of Proposition 2.1 can be adapted to show that, if
(18) is replaced by

Re(Kp, 5., D-1(8, +0;) Dy, 5,0 =c(u,0) Re(Kr, 5., ey 5.,) » (87)
and if (19) holds, then the resulting transport equation (21) is replaced by
BuAG(u, B) + 0, (5 B (u) * B(£))05 A% (u, B) = c(u, 0)0uAG:(u, ) -
Now, in the proof of Theorem 2.1, (68) proves that
Re(Kpby,s, ¢0,s) = s" T (B(u) + o(1)) , (88)

where B is continuous. On the other hand, (70) proves that
all(u)

R€<KF9v,saaz9vyS> = % a’(u)

$h(1 -+ o(1))hn(0) / & — " (@)(y) dody ,  (89)

where o' (u)/a/(u) is continuous in w.
Comparing (88) and (89) shows that (87) holds with

c(u,0) = s(C(u) + o(1))

and C continuous. This proves that (86) is indeed satisfied. O
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Convolving both sides of (86) with g, we obtain

OuAr(u,s) — /g(u —0) (log @) (v) diog s AF (v, 5) dv
= /(C(v) +o(1))g(u — )y Ap (v, s)dv . (90)

The hypotheses of Theorem 2.1 imply that Oiog s A (u, s) does not vanish. By continuity,

Olog sAr (v, 5) therefore keeps a constant sign for v in [u — A, u + A]. Moreover,

‘/g(u = 0)((loga”)'(v) — (log a')"(1)) Bhog s A (v, ) dv

< max |(loga’) (v) ~ (oga)'(u)| [Bg A7 (o, 5)

= O(A) |810g sAF (’U,, S)| . (91)

because (loga’)"" is bounded over [u — A,u + A]. If w is such that o' (u) # 0, and if A
is small enough, 0, Ar (v, s) also keeps a constant sign over [u — A,u + A]. Since C is

continuous,

[ stu=0)(€) +0l1) - Cw) Dt (v,5) o
< mas [00) +o(1) = Cu)| BuAr(uss)
= 0(1) [0y AF (u, s)] when A — 0. (92)
Combining (90), (91), and (92) proves that

(14 O(5))0uAF (u,s) — ((log o) (u) + O(A))Bog sAr(u,s) =0 .

C.2 Proof of Theorem 3.1

The following lemma, whose proofis in Appendix C.2.1, shows that estimators m (u, s)

— .
and Oiog s Ar(u, s) are consistent.

Lemma C.2. Let F(x) = R(a(z)), where R is a stationary Gaussian process such that
there exists h > 0 with

cr(0) — cr(z) = |z|" n(z) and n(0) >0 . (93)

Let ¢ be a C? wavelet supported in [—1,1] and with p vanishing moments, such that

2p—h>1/2, and //|x—y|hz/1*(x)z/1(y)dxdy #0.
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If n(x) is C?" in a neighborhood of 0, and if a(x) € C?? N C3, then for each u, for s

small enough,

Prob {|810/gs\AF(u, $) — Olog s Az (U, 8)| > C [Drog s Ar (v, s)|} <e (94)
Prob {|a/uA\F(u, s) — OuAp(u,s)| > C |0, A (u, s)l} <ey, (95)

where C = 08 o) = G 4nd ey = 6 (VA) =Y/ 0w,

The parameters C (u) and C2(u), which are defined in the proof of the lemma, are
both positive.

The weak consistency of
OuAr(u, N1

Otog s Ap (u, N-1)

as an estimator of (loga')'(u) then results from the following lemma, whose proof is

straightforward:

Lemma C.3. If X; and Xs are two random variables, and C < 1 a constant such that

Prob {|X; — E{X1}| < C|E{X1}[} > 1 —e1,
PI‘Ob{|X2 — E{X2}| S C|E{X2}|} Z 1 — &2,

then

oo (5 -3

2C
< >1—¢e1 —es .

-1-C

In view of Lemma C.2, one can apply Lemma C.3 to X; = &@F(u,N’l) and
Xy =0, Ap(u, N71) with C = 802 yielding
2log(NA

- A\/mg—( log()NA) } zl-ea—e.
Because of the averaged transport equation (41),

OuAp(u, N71)
M(u, N-1)
Since A > N1 and (log /)’ (u) is bounded, we derive

OuAr(u, N71)
Olog s Ap(u, N-1)

— . - .
prob{ | 2uAr@N7) _ Sudr(u,N7)
8logslélF('U/,Zvi]') alogsAF(U,Nil)

(loga') (u) = O(A) + (14+O(N7Y).

(log @) (u) = O(A) +

therefore

Prob (

8. Ap(u, N)
alo/gs\AF(ua N_l)

~ (loga')'(u)| < ——o8N2)

> A\/m—log(NA) +O(A)> Z 1—61—82 .
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We pick A such that A~1(NA)"Y/2 = A ie. A = N"'/5 When N — o0, €; and

€2, whose expressions are given in Lemma, C.2, both tend to 0. Moreover, for N large

enough,
2log(NA) -1/5
+0(A) < 2(log N)N~/>
AVNA —log(va) OB < 2(lee )
Therefore
3 A -1
lim Prob 6LA\F(“’N ) — (loga’)'(u)| < 2(log N)N~/3) =1.
N—roo alog sAF(u; Nﬁl)

C.2.1 Proof of Lemma C.2 We start by proving (94). Let n = NA denote the
number of discrete samples covered by the support of g. We seek an upper bound for
the variance of 810/gs\AF(u, s), which is defined by
Viog s() = E{|01og s A (u, 8) — Blog s Ar (u, 5)[*} .
Let us choose u = 0 without loss of generality. One can see that
82
——A =0(s"
Oudlog s (1, 5) ()

and a Riemann series approximation shows that

/ (V) Brog sAp(v,8) dv — N~ Z (k/N) Biog s A (k/N,s) = O(s"/N) .
k=—n
Replacing &;s\AF(O,s) by its expression in (44), and noticing that the real part is
smaller than the modulus, we obtain
2

4
Viogs(0) < 37E { | 2o s XaYi — gsE{XiYi}| o +O(*"/N?)
[E|<n

where g, Xy and Y} respectively denote g(k/n), (F,¥y/n,s) and (F, Oiog s¥r/n, s Ex-
2
Z\k\gn‘ under the form (Z\k\<n) (Z\l|<n) ,

panding

Viogs (0) < %E{ D 19k XkYe — E{XGYRY Y [0 X0V — gE{X Y3} + O(s*" /N?)

[k|<n ll|<n
4
<Nz D kg E{XRYi XY} — grg E{X0 YR JE{X Y} + O(s™ /N?)
k|<n
s

Since R is Gaussian, so is F', as well as the random variables X and Y. A classical

result on Gaussian random variables shows that

E (XY XY} = E (X3} E{X7Y) + E (X0 X7} E (YY)} + E (X037} E(ViX7) .
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Therefore
‘/log s (0) <

% Z grgl[E{Xk XY E{YRY) ) + E{XR Y FE{Va X[} + O(s*" /N?)

|k|<n
lt<n

< % Y UELXRXTHE{YRY, | + |E{XRY, }HIE{Ya X[} ]+ O(s*"/N?) . (96)

|k|<n
lt<n

Each of the terms appearing in the sum above can be bounded thanks to the following

decorrelation lemma.

Lemma C.4. Let F(x) = R(a(x)), let Xy, = (F,¢y/n) and Yy, = (F, alogswk/Ms)*.
Under the hypotheses of Lemma C.2, for s small enough, there exist continuous functions
My and My such that, for |k —1| <2,

E{Xk X[} < My(sk)s", (97a)
[E{XpY"}| < Mi(sk)s" (97b)
[E{YAY"}| < Mi(sk)s" (97¢)
and for |k —1] > 2,
[E{Xp X7} < My(sk) Gk =1 =2))% &’ (98a)
[E{XrY;"}| < Ma(sk) Uk —z|‘— )T (98b)
E{VYH < Ma(sh) - (98¢)

(s(|k =1 = 2))p="
The proof of the above lemma is in Appendix C.2.2.
Replacing (97) and (98) in (96), we see that, since M; and My are continuous and

since k/N = A — 0 when N — oo,

4

2

Viogs(0) < > 2(Mi(0) + o(1))%s™"

k—1]<2
kLIt <n

+0(s* /N?) . (99)

4 Z 2(M>(0) + o(1))2s%P

2 —_J| — 4p—2h
n? | L sk =1 —2)%
[k],]t|<n
Since 4p — 2h > 1,
S o(k=1l-2" =K,n . (100)
|k—1]>2
K[|t <n

44



Replacing (100) in (99), we obtain

Viog o(0) < 5C* (3 M, (0% + K, Ma(0)) + o(s )

In the proof of Theorem 2.1, (70) proves that there exists a(u) > 0 such that
|0 Ap(u, 8)] > a(u)s" + o(s") .

For A small enough, 9, Ar(v,s) does not change sign for |[v — u| < A thus, after
convolution with g,
|0, AF (u, s)| > a(u)s" + o(s") .

Because of transport equation (41), the same applies to Oiog s Ar(u, s), therefore there

exists a constant C7(u) such that

|m<u,s)|r
NG

Applying Chebyshev’s Lemma, [3] then proves that, for all € > 0,

- V o sA- :
Prob{|810gsAF(u,s) Orog s Ar(u, 8)| > |61 gs A (U, s |} <e?,

Vi) < C1(a) |

evn
and (94) follows by choosing ¢ = lcolg(z) and ¢, %lo(gzzf.

Let us now prove (95). We denote D, = |8uAF(0,s) — 0,Ar(0,5)]. One can see
that
|0uAF (u,5)| = O(s")

and a Riemann series approximation once again shows that
A” / Ap(v,s)dv — A~ 1n_1ZAF (k/N,s) = O(s"/n) .
k=0
Therefore, using once more the notation X = (F, /),

0

D, = n%IZuXkP —E{IXHPH = YD (1P = E{IXkPH] + O(s" /) .
k=0

k=—n

Denoting

_ 0 _ n

X7= > X and XT =) |X47,

k=—n+1 k=1

we have

1

Dy € — (IX7 —E{X*}| + X~ —E{X7}|) + O(s"/n) (101)

45



We are now going to prove that there exists a strictly positive constant C such that

Sh
Avin

Vy, Prob{D,>yCs } < 6ev/? (102)

and since |0, AFr (u, s)| > a(u)s" + o(s") with a(u) > 0, choosing y = logn/C» will then
imply (95).

Let us consider the random vector X = (X, Xo,...,X,,), let Kx denote the covari-
ance operator of X, and (ej);j=1, .., its Karhunen-Loeve basis. If (a;);=1,..n are the

eigenvalues of Kx corresponding to the eigenvectors (e;);=1,... n, then
n
X = Z A /O[j Zj ej
j=1
where Z; are independent random variables with variance 1. As a consequence,
. n
XT=XP=> a7 .
j=1

The following lemma, which is proved in [7], relies on a theorem by Bakirov [2].

Lemma C.5. If)A( = Zj Bijz where Z; are independent Gaussian random variables

with variance one, and Zj sz =1, then

Vy, Prob{|X —E{X}| >y} <6e¥/?.

- —1/2 ~
The random variable X+ = (Z i a?) X satisfies the requirements of Lemma
C.5, therefore

Vy, Prob{| X+ — E{XT}| >y (3 a})"/?} < 67/
J

but o is equal to the Hilbert-Schmidt norm of Kx:
> a? =Y E{X; X[},
J J:k
which is bounded by Bs**n because of (97a) and (98a). Hence
Vy, Prob{|X+* —E{XT}|>yVBs"Vn} <6e¥/?.

The same applies to X ~, and by combining the two and using (101) we obtain (102).
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C.2.2 Proof of Lemma C.4 The three terms E {X; X"}, E{X;Y*} and E{Y,.Y;*}

can be written as
1= [[ entatu+s0) - alw+ s9)i(e) bl dedy
where (u,v) = (sk, sl), and ¢ and ¢ are two wavelets with p vanishing moments. Clearly,

1= [[ keatatu+ s) ~ atw + 59)) = ca(0)] ¥(a)ity) dady (103)
For |u —v| < A, |z|] < 1 and |y| < 1, we have

la(u + sz) — a(v + sy)| < (A + 2s) sup [ (z)] < (A+25)C,
|z —u|<A+2s
because « is continuously differentiable. For A small enough, |a(u + sz) — a(v + sy)| is
therefore in a neighborhood of 0. Since 7 is assumed continuous in a neighborhood of
0,
In(a(u + sz) —a(v+sy))| < B
for ju —v| <A, |z|] <1land |y| <1.

Hence
1] < / |o(u + sz) — (v + sy)|" B [ih(«)| [ (y)| dz dy
< Csh +o(s") .

This proves (97a), (97b) and (97c).

Let us now prove (98). Since 1 and ¢ in (103) are compactly supported and have
p vanishing moments, there exist two compactly supported functions  and 6 such that
Y(x) = 0P (z) and 9 (y) = ) (y). Integrating (103) by parts p times with respect to
x and to y gives
I= // o or {la(u+ sz) — a(v + sy)|"n(a(u + sz) — a(v + sy)) } 0(z) (y) da dy

oxP OyP

But for |u — v| > 2s, one can show that
or opr
dxr dy»

M (u) s

(ju—v| —25)%" "7

{leu + sx) — afv + sy)|"n(a(u + sz) — alv + sy))}H <

where M (u) depends on h, on derivatives of « up to order 2p in a neighborhood of wu,
and on derivatives of 7 up to order 2p in a neighborhood of 0. Therefore there exists a
continuous My (u) such that

s

|I| S MQ(U) (S(|k _ l| _ 2))21,7,1 )

which proves (98a), (98b), and (98c).
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C.3 Proofs of Section 3.2
C.3.1 Proof of (49)
Lemma C.6. Under the hypotheses of Theorem 2.2,
0u AL (u, §0/0) — 0 (u) D AT (u, & /o) = 0*(C(u) + 0(1))du AL (u,&/0) ,  (104)
where C is continuous.

Proof. The proof mimicks the proof of Lemma C.1. In the proof of Theorem 2.2, we
showed in (79) that

Re (Krtbueo DT (00 +0:) Do) = 0 (A) +0(1)) (105)
and in (81) that
Re (Kpthy g0, 00tve,0) =0 T (B(v) + 0(1)) , (106)
with B(v) continuous. Comparing (105) and (106) shows that
Re (Kt D1 (00 +02) Dibugr) = 0*(0(0) +0(1) Re (Kt g, Dethu o)

with C'(v) continuous. This implies, by repeating the argument of Lemma C.1, that
(104) is satisfied. O

Using Lemma C.6, the arguments of Proposition 3.1 can be repeated to prove (49).

C.3.2 Proof of Theorem 3.2 As in the proof of Theorem 3.1, one can combine

the following lemma with Lemma C.3 to prove the weak consistency result (55).

Lemma C.7. Let F(z) = R(z) e where R is a stationary Gaussian process such
that there exists h > 0 with

cr(0) — cr(z) = [z|" n(z) and n(0) >0 .

Let 1) be a C? even, positive function supported in [—1,1] such that ' (z) = e®0%)(x)
has p > [h] + 3 vanishing moments and such that

J[ 12 = sl*@ =) sinlto(e — ) (o) v) dody £ 0.
If n is C?? in a neighborhood of 0, and if o € C?P, then
Prob { |8 A7 (u, Néo) — AT (u, N&o)| > ClOAT (u, N&)| | < =1

Prob{|0,4% (u, N&) — 943 (u, N&)| > C|auA<g(u,N§0)|} <es.
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The proof of Lemma C.7 is almost identical to the proof of Lemma C.2; the only
difference is that 1) has p — 1 vanishing moments instead of p, so that Lemma, C.4 must

be replaced with the following lemma, which is proved by using the same method.

Lemma C.8. Let F(z) = R(x)e™™), let Xy = (Fy4by )y ) and Yi = (F,4p 5 )"
Under the hypotheses of Lemma C.7, for o small enough, there exist two continuous
functions My and Ms such that

for |k =1 <2,

[E{XkX[}| < Mi(ok)o"
[E{X:Y/}| < Mi(ok)o"
[E{YiY"} < Mi(ok)o"

and for |k —1] > 2,

* i
[E{XkX[}| < My(ok) (o(|k — 1| — 2))2p—F ’
. 0.21)—1
|E{XkY2 }| < M2(Uk) (0’(|k—l| _2))2p717h ?
0.21)72

E{Y.Y*}| < My(ok .

| { kL }| = Z(U )(O'(|k—l|—2))2p_2_h

Since p > [h] + 3, we have 2(2p — 2 — h) > 1, therefore the variance term
E{|0cAF (u, &) — B AG (u, &)}

can be controlled as in the proof of Lemma C.2.
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