
Probabilisti
 
hara
teristi
s method for a 1D s
alar 
onservationlawB.Jourdain�O
tober 2, 2000Abstra
tIn this paper, we are interested in approximating the solution of a 1D invis
id s
alar 
on-servation law starting from an initial 
ondition with bounded variation thanks to a system ofintera
ting di�usions. We modify the system of signed parti
les asso
iated with the paraboli
equation obtained from addition of a vis
ous term to this equation (see [3℄[4℄[6℄) by killing
ouples of parti
les with opposite sign that merge. The sample-paths of the 
orrespondingreordered parti
les 
an be seen as probabilisti
 
hara
teristi
s along whi
h the approximatesolution is 
onstant. This enables us to prove that when the vis
osity vanishes as the initialnumbers of parti
les goes to +1, the approximate solution 
onverges to the unique entropysolution of the invis
id 
onservation law. We illustrate this 
onvergen
e by numeri
al results.In this paper, we are interested in giving a probabilisti
 parti
le approximation of the entropysolution of the s
alar 
onservation law�tu+ �xA(u) = 0; u(0; x) = u0(x): (0.1)where A is a C1 fun
tion and the initial 
ondition u0 is a fun
tion with bounded variationi.e. there are a bounded signed measure m and a real 
onstant a su
h that dx a.e., u0(x) =a + R x�1m(dy). Uniqueness does not hold for weak solutions of this equation. But a

ord-ing to Kruzkhov theorem, there is a unique entropy solution u bounded and belonging toC([0;+1); L1lo
(R)) 
hara
terized by the entropy inequalities : 8
 2 R, for any positive C1fun
tion g with 
ompa
t support on [0;+1)� R,Z +10 ZR(ju� 
j�tg + sgn(u� 
)(A(u) �A(
))�xg)(t; x)dxdt + ZR ju0(x)� 
jg(0; x)dx � 0:(0.2)Taking 
 > kuk1 and 
 < �kuk1 in (0.2), one easily 
he
ks that the entropy solution is a weaksolution.Let jmj and kmk denote respe
tively the total variation of the measure m and its total mass.As the entropy solution u(t; x) of (0.1) is equal to a+ kmkv(t; x) where v is the entropy solutionof �tv+�xf(v) = 0 for initial data v0(x) = (u0(x)�a)=kmk, f(v) = A(a+ kmkv)=kmk, it is notrestri
tive to assume from now on that a = 0 and kmk = 1 i.e. jmj is a probability measure.It is well-known that the solution u� of the vis
ous s
alar 
onservation law�tu� = �22 �xxu� � �xA(u�); u�(0; x) = H �m(x) (0.3)�ENPC-CERMICS, 6-8 av Blaise Pas
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where � > 0 
onverges to the entropy solution of (0.1) in the vanishing vis
osity limit � ! 0. In[6℄, following the approa
h developped by Bossy and Talay [3℄ [4℄ in 
ase of the vis
ous Burgersequation (A(u) = u2=2), we introdu
e the paraboli
 problem satis�ed by w = �xu� in order to
onstru
t a probabilisti
 parti
le approximation of u� :�tw = �22 �xxw � �x(A0(u�)w); w(0; :) = m; u�(t; x) = Z x�1w(t; y)dywhi
h writes �tw = �22 �xx � �x(A0(H � w)w); w(0; :) = m (0.4)where (H �w)(t; x) = R x�1w(t; y)dy denotes the spatial 
onvolution of w(t; :) with the Heavisidefun
tion H(y) = 1fy�0g. A weak solution of this equation is obtained thanks to the uniquesolution P 2 P(C([0;+1);R)) of the nonlinear martingale problem (PM�) starting at m:De�nition 0.1 From now on, h is a density of m with respe
t to jmj with values in f�1; 1g.With any probability measure Q on C([0;+1);R) we asso
iate the bounded signed measure ~Qde�ned by d ~Q=dQ = h(X0) where (Xt)t�0 denotes the 
anoni
al pro
ess on C([0;+1);R). Thetimes marginals of Q and ~Q are respe
tively denoted by (Qt)t�0 and ( ~Qt)t�0. We say that Qsolves the martingale problem (PM�) starting at m if Q0 = jmj and8� 2 C2b (R); M�t = �(Xt)��(X0)�Z t0 �22 �00(Xs)+A0(H� ~Qs(Xs))�0(Xs)ds is a Q-martingale:Indeed, by the 
onstan
y of the expe
tation of the P martingale h(X0)M�t , one easily 
he
ksthat t ! ~Pt is a weak solution of (0.4). As a 
onsequen
e, the fun
tion u�(t; x) is equal toH � ~Pt(x). That is why we are indu
ed to approximate u�(t; x) by the 
umulative distributionfun
tion Un� (t; x) = H � ~�nt (x) = 1n nXi=1 H(x�Xit )h(Xi0)with �n = 1nPni=1 ÆXi denoting the empiri
al measure of the parti
le system de�ned by thesto
hasti
 di�erential equationXit = Xi0 + �Bit + Z t0 A0(H � ~�ns (Xis))ds; i � nwhere (B1; : : : ; Bn) a Rn -valued Brownian motion independent of the initial variables Xi0; 1 �i � n I.I.D. with law jmj 2 P(R). Ever in [6℄, we show that as n! +1, the empiri
al measures�n (
onsidered as a P(C([0;+1);R)) random variables) 
onverge in distribution to the 
onstantP (su
h a result is 
alled propagation of 
haos : see [11℄) whi
h implies the 
onvergen
e of Un�to u�. Sin
e u� 
onverges to the entropy solution u of (0.1) as � ! 0, it is natural to wonderwhether Un�n 
onverges to u as n! +1 when limn!+1 �n = 0. This paper is dedi
ated to thisproblem. A

ording to the numeri
al results given in [2℄, the answer is likely to be positive.In 
ase m is a probability measure, there is no signed weights and Un�n(t; x) = 1nPni=1 1fXit�xg.To prove that Un�n 
onverges to the entropy solution of (0.1), we want to 
ompute the left-hand-side of the entropy inequalities (0.2) with Un�n and 
n = [
n℄=n ([x℄ denotes the integral partof x) repla
ing u and 
. That is why we are interested in jUn�n(t; x) � 
nj. Let (Y 1t ; : : : ; Y nt )2



denote the in
reasing reordering of (X1t ; : : : ;Xnt ). The fun
tion x ! jUn�n(t; x) � 
nj � j
nj isthe 
umulative distribution fun
tion of the signed measure 1nPnj=1(1fj>[
n℄g � 1fj�[
n℄)ÆY jt . Of
ourse, it is also the 
umulative distribution fun
tion of a linear 
ombination of ÆXit ; 1 � i � nbut the 
orresponding 
oeÆ
ients are not 
onstant in time as previously. That is why thereordered system (Y 1; : : : ; Y n) is very interesting to 
ompute the approximate left-hand-sideof (0.2). Moreover this system has a very simple interpretation. By the o

upation timesformula, a.s., dt a.e., the positions X1t ; : : : ;Xnt are distin
t and Un�n(t; Y it ) = i=n. Thereforethe 
urves t ! Y it 
an be seen as probabilisti
 
hara
teristi
s along whi
h the approximatesolution is dt a.e. 
onstant. One 
an 
he
k that (Y 1; : : : ; Y n) is a di�usion with di�usion matrix�n times the identity and 
onstant drift 
oeÆ
ient (A0(1=n); : : : ; A0(1)) normally re
e
ted atthe boundary of the 
losed 
onvex set Dn = fy = (y1; : : : ; yn) 2 Rn ; y1 � y2 � : : : � yng.The deterministi
 
hara
teristi
s asso
iated with the s
alar 
onservation law (0.1) for the initialdata u0(x) are given by y(t) = y + A0(u0(y))t. For t � infx6=y jx � yj=jA0(u0(x)) � A0(u0(y))jthey may interse
t. The small Brownian perturbation that is added to de�ne the probabilisti

hara
teristi
s allows to introdu
e re
exion whi
h prevents stri
t 
rossings with Y is > Y i+1s .If we set �(t; x) = R x�1 g(t; y)dy where g is the nonnegative test fun
tion in (0.2), 
omputed�(t; Y it ) by Itô's formula, sum over i the obtained result multiplied by (1fi>[
n℄g � 1fi�[
n℄),make integrations by parts in the spatial integrals, we get that the left-hand-side of (0.2) withUn�n and 
n repla
ing u and 
 is equal to the 
ontribution of the lo
al time term giving there
exion plus a remainder whi
h vanishes as n ! +1. One remarkable feature is that the
ontribution of the lo
al time whi
h prevents stri
t 
rossings of our probabilisti
 
hara
teristi
sis positive and gives the entropy inequality in the limit n! +1.When m is a signed measure, the situation is more 
ompli
ated. Be
ause of the possibility of
rossings of 
ouples of parti
les (Xi;Xj) with opposite signs h(Xi0) = �h(Xj0), x! jUn�n(t; x)�
nj�
n is no longer the 
umulative distribution fun
tion of a linear 
ombination of ÆY it , 1 � i � nwith 
oeÆ
ients 
onstant in time. That is why the 
omputation of the approximate left-hand-side of the entropy inequality (0.2) is not easier with the reordered system (Y 1; : : : ; Y n) than withthe original one. To over
ome this diÆ
ulty, we 
an de�ne dire
tly (Y 1; : : : Y n) as a di�usionnormally re
e
ted at the boundary of Dn with di�usion matrix �n times the identity and drift
oeÆ
ient �A0( 1nh(Y 10 )); A0( 1n(h(Y i0 ) + h(Y 20 ))); : : : ; A0( 1nPni=1 h(Y i0 ))� where the initial ve
tor(Y 10 ; : : : ; Y n0 ) is distributed a

ording to the law of the in
reasing reordering of n independentvariables with law jmj. But when we 
ompute the left-hand-side of (0.2) with u repla
ed bythe new approximate solution 1nPni=1 h(Y i0 )H(x � Y it ), the 
ontribution of the lo
al time onhyperplanes yi = yi+1 su
h that h(Y i0 ) = �h(Y i+10 ) has the wrong sign.In fa
t, the right approa
h 
onsists in modifying the dynami
s of the original parti
le system(X1; : : : ;Xn) by killing the 
ouples of parti
les with opposite sign that merge. This modi�
ationis in fa
t very natural : this 
auses the variation of the approximate solution x ! Un� (t; x) tode
rease with t, whi
h is a trans
ription of the same property satis�ed by x! u�(t; x). In the�rst se
tion of the paper, we 
onstru
t the modi�ed parti
le system and prove that for �xed� > 0, the approximate solution of (0.3) based on the surviving parti
les still 
onverges to theexa
t solution u� as the initial number of parti
les n goes to +1. In the se
ond se
tion, by
onsidering the in
reasing reordering of the modi�ed system, we prove that when � depends onn and 
onverges to 0 as n! +1, this approximate solution 
onverges to the entropy solution of(0.1). If we assume that m is a probability measure, sin
e all parti
les share the same sign, thereis no killing and we get ba
k to the mu
h simpler situation des
ribed previously. That is whywe obtain stronger 
onvergen
e results, su
h as a propagation of 
haos result for the reorderedsystem. The last se
tion is dedi
ated to an example of numeri
al simulation of the modi�edsystem with de
reasing number of parti
les. 3



To 
on
lude this introdu
tion, we mention the approximation of the solution of (0.1) by intera
t-ing pro
esses with jumps introdu
ed by Perthame and Pulvirenti [9℄ (see also [5℄). The prin
ipleis radi
ally di�erent : the system of intera
ting parti
les is asso
iated with a nonlinear kineti
equation from whi
h the s
alar 
onservation law 
an be re
overed when a relaxation parameter� goes to +1. This approa
h is not limited to spa
e dimension 1 as the one presented here.But the 
onvergen
e result is for �xed relaxation parameter � > 0 e.g. � does not go do +1with the number of parti
les. Moreover, the initial data of (0.1) is not only assumed to have abounded variation but also to be nonnegative and integrable.1 Modi�
ation of the parti
le system asso
iated with the vis-
ous 
onservation lawThe modi�
ation of the system of di�using parti
les 
onsists in killing the 
ouples of parti
leswith opposite sign that merge. Before giving a pre
ise 
onstru
tion, we explain why su
h anannihilation pro
edure is naturally asso
iated with the martingale problem (PM�).Lemma 1.1 For any signed measure m with kmk = 1 and for any � > 0, the solution P of themartingale problem (PM�) starting at m is su
h that the total mass k ~Ptk of ~Pt is non-in
reasing.Proof : This proof is based on the Markov property.A

ording to the Jordan-Hahn de
omposition, 8s � 0 there exist two Borel subsets of R denotedby C+s and C�s su
h that C+s [ C�s = R, C+s \ C�s = ; and k ~Psk = ~Ps(C+s )� ~Ps(C�s ):Let 0 � t1 � t2.k ~Pt2k = EP ��1C+t2 (Xt2)� 1C�t2 (Xt2)�h(X0)� = EP �EP�1C+t2 (Xt2)� 1C�t2 (Xt2)����Gt1�h(X0)�where (Gt)t�0 denotes the 
anoni
al �ltration on C([0;+1);R).The drift 
oeÆ
ient b(s; x) = A0(H � ~Ps(x)) is bounded whereas the di�usion 
oeÆ
ient is astri
tly positive 
onstant. Combining Theorems 6.2.2, 6.3.4 and 6.4.3 [10℄, we obtain that ifQt1;x denotes the solution of the martingale problem Q0 = Æx,8� 2 C2b (R); �(Xt)� �(X0)� Z t0 �22 �00(Xs) + b(t1 + s;Xs)�0(Xs)ds is a Q martingalethen P a.s., Qt1;Xt1t2�t1 is a regular 
onditional probability distribution of Xt2 given Gt1 . Hen
ek ~Pt2k = ZRQt1;xt2�t1(C+t2 )�Qt1;xt2�t1(C�t2 ) ~Pt1(dx)� ZC+t1 Qt1;xt2�t1(C+t2 ) ~Pt1(dx)� ZC�t1 Qt1;xt2�t1(C�t2 ) ~Pt1(dx)� ~Pt1(C+t1 )� ~Pt1(C�t1 ) � k ~Pt1k:This monotoni
ity property is linked to the interse
tion of sample-paths with opposite sign. Thedis
retized version of this phenomenom is the murder of the 
ouples of parti
les with opposite4



sign that merge.The pre
ise 
onstru
tion of the parti
le system is based on Girsanov theorem. On a �lteredprobability spa
e (
;F ;Q ; (Ft)t�0) let X10 ; : : : ;Xn0 be F0 measurable variables I.I.D. a

ordingto jmj and (W 1; : : : ;W n) a n-dimensional (Ft) Brownian motion. The �rst time when twoparti
les with opposite sign merge is�1 = inffs > 0; 9i; j 2 [1; n℄ with h(Xi0) = �h(Xj0) su
h that Xi0 + �W is = Xj0 + �W js g:When n+ = Card(fi 2 [1; n℄; h(Xi0) = 1g) and n� = Card(fi 2 [1; n℄; h(Xi0) = �1g) areboth positive, then respe
tively by re
urren
e of straights lines and polarity of points for thetwo-dimensional Brownian motion, Q a.s., �1 < +1 andI1 = fi 2 [1; n℄;9j 2 [1; n℄; h(Xi0) = �h(Xj0) and Xi0 + �W i�1 = Xj0 + �W j�1g
ontains two elements. If n+ � 2 and n� � 2, then Q a.s.�2 = inffs > �1; 9i; j 2 [1; n℄ n I1 with h(Xi0) = �h(Xj0); Xi0 + �W is = Xj0 + �W js g < +1and I2 = fi 2 [1; n℄ n I1;9j 2 [1; n℄ n I1; h(Xi0) = �h(Xj0) and Xi0 + �W i�2 = Xj0 + �W j�2g
ontains two elements. Indu
tively, we obtain that Q a.s. 0 < �1 < �2 < : : : < �n+^n� < +1,where�k = inffs > �k�1; 9i; j 2 [1; n℄n(I1[: : :[Ik�1) with h(Xi0) = �h(Xj0); Xi0+�W is = Xj0+�W js g(
onvention: �0 = 0) and Ik = fi 2 [1; n℄n (I1[ : : :[Ik�1);9j 2 [1; n℄n (I1[ : : :[Ik�1); h(Xi0) =�h(Xj0) and Xi0 + �W i�k = Xj0 + �W j�kg 
ontains two elements. At time �k, we kill the pair ofparti
les with opposite sign whi
h have just merged. More pre
isely, for 
onvenien
e we freezetheir position : 81 � k � n+ ^ n�; 8i 2 Ik; 8t � 0; Xit = Xi0 + �W it^�k : After time �n+^n� ,either there is no remaining parti
le (
ase n+ = n� = n=2) or all the remaining parti
les sharethe same sign and keep moving a

ording to the 
orresponding 
oordinates of the Brownianmotion : 8i 2 [1; n℄ n (I1 [ : : : [ In+^n�); 8t � 0; Xit = Xi0 + �W it :Let It = ; if 0 � t < �1, = Skl=1 I l if �k � t < �k+1 for 1 � k � n+ ^ n� (
onvention�n+^n�+1 = +1) denote the set of indexes of parti
les killed at time t. The approximatesolution is 
onstru
ted thanks to the surviving parti
les :Un� (t; x) = 1nXi=2It h(Xi0)H(x�Xit ):We denote by �n = 1nPni=1 ÆXi the empiri
al measure of the system. A

ording to de�nition0.1, ~�n = 1nPni=1 h(Xi0)ÆXi . Sin
e the indexes in It 
orrespond to 
ouples of parti
les with thesame position but opposite sign, as their position is frozen after the time when they merge, wehave ~�nt = 1nXi=2It h(Xi0)ÆXit and Un� (t; x) = H � ~�nt (x): (1.1)By Girsanov theorem, if P 2 P(C([0;+1);R)) is de�ned bydPdQ ����Ft = exp 1� nXi=1 Z t0 A0(Un� (s;Xis))dBis � 12�2 nXi=1 Z t0 A0(Un� (s;Xis))2ds!then for Bit = W it � 1� R t0 A0(Un� (s;Xis))ds, (B1; : : : ; Bn) is a P n-dimensional Brownian motion.Moreover the parti
le system (X1t ; : : : ;Xnt ) solvesXit = Xi0 + Z t0 1fi=2Isg ��dBis +A0(Un� (s;Xis))ds� ; 1 � i � n: (1.2)5



For notational simpli
ity, we do not emphasize the dependen
e of P on n. The probabilitymeasures P and Q are not ne
essarily equivalent on F . As a 
onsequen
e, it is possible thatP(�k < +1) < 1 for some k 2 [1; n+ ^ n�℄. Nethertheless, sin
e P and Q are equivalent on Ftfor any t 2 [0;+1), de�ning kmax = maxfk � n+ ^ n� : �k < +1g (
onvention max ; = 0), Pa.s. 0 < �1 < : : : < �kmax < +1 and 8k 2 [1; kmax℄, Ik 
ontains two elements.To state the 
onvergen
e result of the approximate solution Un� (t; x) = 1nPi=2It h(Xi0)H(x �Xit) = 1nPni=1 h(Xi0)H(x�Xit ) to the solution u� of (0.3), we introdu
e the weighted spa
eL11=(1+x2) = �f : R ! R : kjf jk def= ZR jf(x)j1 + x2 dx < +1� :For any 1 � i � n, the 
ontinuity of t ! Xit implies that H(x � Xit ) 2 C([0;+1); L11=(1+x2)).Hen
e Un� 2 C([0;+1); L11=(1+x2)) by linearity.Theorem 1.2 The vis
ous 
onservation law (0.3) has a unique bounded weak solution u�.Moreover u� belongs to L11=(1+x2) and the approximate solution Un� 
onverges to it in the followingsense : 8T > 0; limn!+1 E supt�T kjUn� (t; x)� u�(t; x)jk = 0where E denotes the expe
tation with respe
t to the probability measure P.Let �n� denote the image of P by �n = 1nPni=1 ÆXi . We are going to take advantage of theequality Un� (t; x) = H � ~�nt (x) to study properties of the sequen
e (�n� )n in order to prove theTheorem.Lemma 1.3 The sequen
e (�n�)n is tightProof : Sin
e �n is the empiri
al measure of the ex
hangeable pro
esses (X1; : : : ;Xn), a
-
ording to [11℄, the tightness of (�n�)n is equivalent to the tightness of the distributions of thepro
esses X1. Let 0 � s � t � T and 1 � i � n,jX1t �X1s j � � supr2[s;t℄ jB1r �B1s j+ Z ts jA0(Un� (r;X1r ))jdr:Remarking that A0 is bounded on [�1; 1℄ and applying Burkholder-Davis-Gundy inequality, weobtain E ((X1t �X1s )4) � CT (t� s)2 (1.3)where the 
onstant CT does not depend on n and is non-de
reasing in �. As for any n � 1, X10is distributed a

ording to jmj=kmk, by Kolmogorov 
riterion, we 
on
lude that both sequen
esare tight.Proposition 1.4 Any weak limit �1� of the tight sequen
e (�n�)n gives full measure tofQ 2 P(C([0;+1);R)) su
h that H � ~Qs(x) solves (0.3) weaklyg:6



To prove the Proposition, we have to deal with the possible la
k of regularity of the density h.We approximate h(x) by fun
tions of the form (1�Cd(x; F )) _�1 where C > 0 and d(x; F ) isthe distan
e from x to some 
losed set F in
luded in fx : h(x) = 1g. By the regularity of theprobability measure jmj, jmj(fx : h(x) = 1g n F ) 
an be 
hosen arbitrarily small. We dedu
ethat :Lemma 1.5 For any � > 0, there is a Lips
hitz 
ontinuous fun
tion h� with values in [�1; 1℄su
h that jmj(fx : h(x) 6= h�(x)g) � �.Proof of Proposition 1.4 : Let �1� denote the limit point of a weakly 
onverging subsequen
eof (�n� )n that we still index by n for simpli
ity, g be a C1 fun
tion with 
ompa
t support on[0;+1)�R and �(t; x) = R x�1 g(t; y)dy. Computing �(t;Xit ) by Itô's formula and (1.2), summingover i the obtained equality multiplied by h(Xi0), we obtain< ~�nt ; �(t; :) >� < ~�n0 ; �(0; :) > �Z t0 < ~�ns ; �s�(s; :) + �22 �xx�(s; :) +A0(Un� (s; :))�x�(s; :) > ds= �n nXi=1 Z t0 1fi=2Isg�x�(s;Xis)dBis:The right-hand-side 
onverges to 0 in L1(
;F ;P) as n! +1. So does the left-hand-side whi
his transformed by spatial integrations by parts into~�nt (R)ZR g(t; y)dy � ZR g(t; y)H � ~�nt (y)dy � ~�n0 (R) ZR g(0; y)dy + ZR g(0; y)H � ~�n0 (y)dy� Z t0 ~�ns (R)ZR �sg(s; y)dyds+ Z t0 ZRH � ~�ns (y)(�s + �22 �xx)g(s; y)dyds+ Z t0 ZR �xg(s; y)Z y�1A0(Un� (s; z))~�ns (dz)dydsAs ~�ns (R) does not depend on s, the sum of the �rst, the third and the �fth term is nil. It is aneasy 
onsequen
e of the o

upation times formula that P a:s:, ds a:e:; 8i 6= j 2 [1; n℄ n Is; Xis 6=Xjs . When this property is satis�ed, a

ording to (1.1),����A(Un� (s; y))�A(0) � Z y�1A0(Un� (s; z))~�ns (dz)���� =�������� Xi=2IsXis�yA0�Xj =2Is 1fXjs�Xisgh(Xj0)n 1A�A0�Xj =2Is 1fXjs<Xisgh(Xj0)n 1A� h(Xi0)n A00�Xj =2Is 1fXjs�Xisgh(Xj0)n 1A��������� supx;z2[�1;1℄jx�zj�1=n jA0(x)�A0(z)j �!n!+1 0:We 
on
lude that for the bounded fun
tion F : P(C([0;+1);R)) ! R :F (Q) =ZR g(0; y)H � ~Q0(y)dy � ZR g(t; y)H � ~Qt(y)dy+ Z t0 ZRH � ~Qs(y)(�s + �22 �xx)g(s; y) +A(H � ~Qs(y))�xg(s; y)dyds7



E jF (�n)j 
onverges to zero as n ! +1. In spite of the weak 
onvergen
e of �n� to �1� , we
annot dedu
e immediately that E�1� jF (Q)j = 0 sin
e be
ause of the density h, the fun
tionF is not ne
essarily 
ontinuous. That is why we de�ne a 
ontinuous fun
tion F � by repla
ingH � ~Qs(x) by < Q;H(x�Xs)h�(X0) > in the de�nition of F to upper-bound E�1� jF (Q)j.E�1� jF (Q)j � E�1� (jF � F �j(Q)) + j(E�1� � E�n� )jF �(Q)jj+ E�n� (jF � F �j(Q)) + E�n� jF (Q)jAs F � is a 
ontinuous and bounded fun
tion, for �xed � > 0, the se
ond term of the right-hand-side 
onverges to 0 as n ! +1. As the initial variables (X10 ; : : : ;Xn0 ) are I.I.D. a

ording tojmj=kmk, using Lemma 1.5 we obtain 8n � 1; 8(s; x) 2 [0;+1)� R,E�n� jH � ~Qs(x)� < Q;H(x�Xs)h�(X0) > j � 1n nXi=1 E (jh � h�j(Xi0)) = E (jh � h�j(X10 )) � �:With the uniform 
ontinuity of the fun
tion A0 on [�1; 1℄, we dedu
e that E�n� (jF � F �j(Q))
onverges to 0 uniformly in n as � ! 0. Remarking that �1� a.s., Q0 = jmj, we 
he
k thatE�1� (jF � F �j(Q)) also 
onverges to 0. Hen
e E�1� jF (Q)j = 0. Taking t; 
; g in denumeratedense sets and then taking limits, we dedu
e that �1� a.s., for any test fun
tion g, F (Q) = 0 i.e.�1� a.s. H � ~Qs(x) is a weak solution of (0.3).We are now ready to 
on
lude the Proof of Theorem 1.2Proof of Theorem 1.2 : Proposition 1.4 ensures existen
e of bounded weak solutions of(0.3). If u is su
h a solution, then by a good 
hoi
e of test fun
tions one obtains the followingintegral representation :dx a:e:; u(t; x) = G�t � (H �m)(x)� Z t0 ��xG�t�s � A(u(s; :))� (x)dswhere G�t (x) = exp(�x2=2�2t)=�p2�t denotes the heat kernel. Uniqueness of bounded weaksolutions is easily derived (see [6℄ for instan
e). From now on, u� denotes the unique boundedweak solution of (0.3). Again a

ording to Proposition 2.2, there exists Q 2 P(C([0;+1);R)su
h that u�(s; x) is equal to H� ~Qs(x). Sin
e 8t � 0, s! H� ~Qs(x) =< Q;h(X0)H(x�Xs) > is
ontinuous at t as soon as Qt(fxg) = 0 (
ondition satis�ed dx a.e.), we dedu
e that the fun
tionu� belongs to C([0;+1); L11=(1+x2)).Let T > 0. We want to prove that 0 is the only limit point of (E supt2[0;T ℄ kjUn� (t; x)�u�(t; x)jk)n.For any subsequen
e, a

ording to Lemma 1.3, we 
an extra
t from the 
orresponding subse-quen
e of (�n�)n a further subsequen
e 
onverging weakly to �1� , that we still index by n forsimpli
ity. Sin
e Un� (t; x) = H � ~�nt (x), it is suÆ
ient to show that limn E�n� supt�T kjH � ~Qt(x)�u(t; x)jk = 0. The fun
tion Q ! supt�T kjH � ~Qt(x) � u(t; x)jk is not ne
essarily 
ontinuous.That is why, for � > 0, we introdu
e H�(x) = 1fx>0g + x+�� 1f���x�0g and h� as in Lemma 1.5whi
h are Lips
hitz 
ontinuous approximations of the fun
tions H and h. Using Proposition 2.2,we getE�n� supt2[0;T ℄ kjH � ~Qt(x)� u(t; x)jk � (E�n� � E�1� ) supt2[0;T ℄ kj < Q;H�(x�Xt)h�(X0) > �u(t; x)jk+ (E�n� + E�1� ) supt2[0;T ℄ kj < Q;H�(x�Xt)h�(X0)�H(x�Xt)h(X0) > jk: (1.4)The fun
tions Q 2 P(C([0;+1);R)) !< Q;H�(x � Xt)h�(X0) > indexed by (t; x) 2 [0; T ℄ �R are equi
ontinuous and bounded by 1. We dedu
e that Q ! supt2[0;T ℄ kj < Q;H�(x �8



Xt)h�(X0) > �u(t; x)jk is 
ontinuous and bounded. Hen
e for �xed �, the �rst term of theright-hand-side of (1.4) 
onverges to 0 as n! +1.kj < Q;H�(x�Xt)h�(X0)�H(x�Xt)h(X0) > jk � kj < Q; jh� � hj(X0) > jk+ kjQt((x� �; x℄)jk= �j < Q; jh� � hj(X0) > j+ ZR�Z y+�y dx1 + x2�Qt(dy)� �j < Q; jh� � hj(X0) > j+ 2ar
tan� �2�As the variables (X10 ; : : : ;Xn0 ) are I.I.D. a

ording to jmj, �1� a.s., Q0 = jmj. With Lemma 1.5,we obtain that the se
ond term of the right-hand-side of (1.4) 
onverges to 0 uniformly in n as�! 0.
2 Convergen
e of the approximate solution to the entropy so-lution of (0.1)2.1 The 
onvergen
e resultLet (�n)n be a sequen
e of positive numbers su
h that limn!+1 �n = 0 and (X1; : : : ;Xn) and Pbe de�ned like previously with �n repla
ing �. We are interested in the asymptoti
 behaviour ofUn�n(t; x) = 1nPni=1 h(Xi0)H(x�Xit ) as n! +1. Considering Theorem 1.2 and the 
onvergen
eof the solution u� of the vis
ous 
onservation law (0.3) to the unique entropy solution of (0.1)as � ! 0, our main result is not surprising.Theorem 2.1 If (�n)n is a sequen
e of positive numbers su
h that limn!+1 �n = 0, then theapproximate solution Un�n(t; x) 
onverges to the unique entropy solution u(t; x) of (0.1) withinitial data u0(x) = H �m(x) in C([0;+1); L11=(1+x2)). More pre
isely,8T > 0; limn!+1 E supt�T kjUn�n(t; x)� u(t; x)jk = 0:Let �n�n denote the image of P by the empiri
al measure �n = 1nPni=1 ÆXi . Sin
e the sequen
e(�n)n is bounded, by an easy adaptation of the proof of Lemma 1.3, we 
he
k that the sequen
e(�n�n)n is tight. The proof of Theorem 2.1 is the same as the one of Theorem 1.2 as soon as we
he
k that the following Proposition analogous to Proposition 1.4 holds :Proposition 2.2 Any weak limit �10 of the tight sequen
e (�n�n)n gives full measure tofQ 2 P(C([0;+1);R)) su
h that the entropy solution of (0.1) is equal to H � ~Qs(x)g:Before introdu
ing reordered parti
les in the general 
ase in order to prove this Proposition, we�rst suppose that m is a probability measure. In this mu
h simpler 
ase, sin
e all parti
les arepositive there is no killing and the de�nition of the system of reordered parti
les is quite simple.Moreover, we dedu
e from Proposition 2.2 a propagation of 
haos for this system.9



2.2 Propagation of 
haos for the reordered system in 
ase m is a probabilitymeasureBy Kruzkhov uniqueness result for entropy solutions of (0.1), there is no more than one mappingP (t) 2 C([0;+1);P(R)) su
h that the entropy solution u(s; x) of (0.1) is equal to (H �P (s))(x).Combining the tightness of the distributions of the empiri
al measures �n, the 
ontinuity of themappingQ 2 P(C([0;+1);R)) ! (t! Qt) 2 C([0;+1);P(R)) and Proposition 2.2, we dedu
ethe following 
onvergen
e result for the 
ow of time-marginals t! �nt .Corollary 2.3 The variables t! �nt 2 C([0;+1);P(R)) 
onverge in distribution to the uniquemapping P (t) 2 C([0;+1);P(R)) su
h that the entropy solution u(s; x) of (0.1) is equal to(H � P (s))(x).This 
onvergen
e is weaker than a 
lassi
al propagation of 
haos result i.e. the 
onvergen
ein distribution of the empiri
al measures �n 
onsidered as P(C([0;+1);R))-valued randomvariables to a 
onstant P . Here the natural 
andidate for the limit is a probability measureP 2 P(C([0;+1);R)) su
h that H � Ps(x) is equal to the entropy solution u(s; x) of (0.1) andP a.s., 8t � 0, Xt = X0+R t0 A0(H �Ps(Xs))ds. We would like to prove uniqueness of probabilitymeasures satisfying both these properties and to 
he
k that any weak limit �10 of the sequen
e(�n�n)n is 
on
entrated on su
h probability measures. Be
ause of the possible dis
ontinuities ofthe entropy solution u(t; x), we 
annot prove these results.Nethertheless, we are able to prove a propagation of 
haos on the sample-path spa
e for thereordered parti
le system (Y 1; : : : ; Y n) whi
h is de�ned as follows : for any t � 0, Y 1t � Y 2t �: : : � Y nt is the in
reasing reordering (order statisti
s) of (X1t ; : : : ;Xnt ). By an easy adaptationof the proof given in [7℄ for parti
le systems asso
iated with the porous medium equation, we
he
k that (Y 1; : : : ; Y n) is a di�usion normally re
e
ted at the boundary of the 
losed 
onvexset Dn = fy = (y1; : : : ; yn) 2 Rn ; y1 � y2 � : : : � yng. More pre
isely, for 1 � j � n,Y jt = Y j0 + �n�jt + Z t0 A0(Un�n(s; Y js ))ds+ Z t0 (
js � 
j+1s )djV jswhere �jt = R t0 Pni=1 1fY js =XisgdBis, 
1s = 
n+1s = 0, (R t0 (
js � 
j+1s )djV js)1�j�n is a 
ontinuouspro
ess with �nite variation jV jt and djV js a.e. 82 � j � n, 
js � 0 and 
js(Y js � Y j�1s ) = 0.By the o

upation times formula P a.s., ds a.e. the positions X1s ; : : : ;Xns are distin
t. As a
onsequen
e 81 � i; j � n, < �i; �j >t= 1fi=jgt and (�1; : : : ; �n) is a n-dimensional Brownianmotion. Moreover ds a.e., 81 � j � n, Un�n(s; Y js ) = j=n i.e. the reordered sample-paths aresto
hasti
 
hara
teristi
s along whi
h the approximate solution is ds a.e. 
onstant.Let �n = 1nPni=1 ÆY i denote the 
orresponding empiri
al measure. Even if 8s � 0; �ns = �ns , ingeneral �n 6= �n. For Q 2 P(C([0;+1);R)) let GQt : x 2 [0; 1℄! inffy : H �Qt(y) � xg denotethe pseudo-inverse of the 
umulative distribution fun
tion of the marginal Qt. The Lebesguemeasure on [0; 1℄ is denoted by �. We re
all that Qt = � Æ (GQt )�1.Theorem 2.4 The empiri
al measures �n 2 P(C([0;+1);R)) of the reordered parti
le systems
onverge in distribution to the unique P element ofA = fQ 2 P(C([0;+1);R)) : 8k 2 N� ; 80 � t1 < t2 < : : : < tk; Qt1;:::;tk = �Æ(GQt1 ; : : : ; GQtk)�1gand su
h that 8t � 0; Pt = P (t). 10



Proof : Sin
e the �nite-dimensional marginals Qt1;:::;tk of Q 2 A are determined by its one-dimensional marginals Qt, there is no more than one probability measure P 2 A su
h that8t � 0; Pt = P (t).We have to 
he
k that the distribution ��n of the empiri
al measures �n 
onverge weakly to aprobability measure 
on
entrated on fQ 2 A : 8t � 0; Qt = P (t)g. A

ording to Sznitman [11℄,the tightness of the sequen
e (��n)n is equivalent to the tightness of the sequen
e ( 1nPnj=1 P Æ(Y j)�1)n. We easily 
he
k that 8n � 1; 1nPnj=1 P Æ (Y j0 )�1 = m. Moreover, if y1 � y2 �: : : � yn (resp. y01 � y02 � : : : � y0n) denote the in
reasing reordering of (x1; : : : ; xn) 2 Rn(resp. (x01; : : : ; x0n)), Pni=1(y0i � yi)4 � Pni=1(x0i � xi)4 : this inequality 
an be 
he
ked by aneasy 
omputation for n = 2 and then generalized by indu
tion. Hen
e8T > 0; 8s; t 2 [0; T ℄; 1n nXj=1 E((Y jt � Y js )4) � 1n nXi=1 E ((Xit �Xis)4) � CT (t� s)2:By Kolmogorov 
riterion, we 
on
lude that both sequen
es are tight.Let ��1 denote the limit of a 
onvergent subsequen
e of (��n)n that we still index by n forsimpli
ity. Sin
e 8t; �nt = �nt and Q 2 P(C([0;+1);R)) ! (t ! Qt) 2 C([0;+1);P(R)) is
ontinuous, by Corollary 2.3, we obtain that ��1(fQ : 8t � 0; Qt = P (t)g) = 1. As A is 
losed(see Lemma 2.5 below), ��1(A) � lim supn ��n(A).We easily 
he
k that for 0 � t1 < t2 < : : : < tk,81 � i � n; 8x 2 ((i� 1)=n; i=n℄; (G�nt1 ; : : : ; G�ntk )(x) = (Y it1 ; : : : ; Y itk):Hen
e ��n(A) = 1 whi
h 
on
ludes the proof.Lemma 2.5 The set A is 
losed for the weak 
onvergen
e topology. Moreover it is equal to~A = fQ 2 P(C([0;+1);R)) : 8x 2 [0; 1℄; Q(infs�0H �Qs(Xs) � x) � xg:Proof : Suppose that (Qn)n 2 A 
onverges weakly to Q. Let t1 < t2 < : : : < tk. A

ording toBillingsley [1℄(proof of Theorem 25.6 p.343), 81 � i � k, �(dx) a.e. GQnti (x) ! GQti (x). Hen
e�(dx) a.e. (GQnt1 ; : : : ; GQntk )(x) ! (GQt1 ; : : : ; GQtk)(x). Sin
e Qnt1;:::;tk = � Æ (GQnt1 ; : : : ; GQntk )�1
onverges weakly to Qt1;:::;tk , we dedu
e that Qt1;:::;tk = � Æ (GQt1 ; : : : ; GQtk)�1. Hen
e A is 
losed.For Q 2 P(C([0;+1);R)), be
ause of the weak 
ontinuity of s ! Qs, infs�0H � Qs(Xs) =infq2Q+ H �Qq(Xq) and X ! infs�0H �Qs(Xs) is measurable.Let Q 2 A, (qi)i2N� denote the elements of Q+ and x 2 [0; 1℄. Sin
e H �Qt(GQt (y)) � y,Q�min(H �Qq1(Xq1); : : : ;H �Qqk(Xqk)) � x�= ��y : min(H �Qq1(GQq1(y)); : : : ;H �Qqk(GQqk(y))) � x� � �(y : y � x) = x:Taking the limit k ! +1, we dedu
e Q(infq2Q+ H �Qq(Xq) � x) � x. We easily 
on
lude thatQ 2 ~A.Let Q 2 ~A, t1 < t2 < : : : < tk, x 2 R and 1 � i � k. As fGQt (y) � xg = fy � H �Qt(x)g,Q(fGQti ( kminj=1 H �Qtj (Xtj )) � xg) = Q(f kminj=1 H �Qtj (Xtj ) � H �Qti(x)g) � H �Qti(x)11



Moreover sin
e GQt (H �Qt(y)) � y, the 
onverse inequality holds :Q(fGQti ( kminj=1 H �Qtj (Xtj )) � xg) � Q(fGQti (H �Qti(Xti)) � xg) � Q(Xti � x) = H �Qti(x):Hen
e if �Qt1;:::;tk : x 2 [0; 1℄! inffy : Q( kminj=1 H �Qtj (Xtj ) � y) � xg;Qt1;:::;tk = � Æ ((GQt1 ; : : : ; GQtk) Æ �Qt1;:::;tk)�1. Sin
e Q 2 ~A, 8y 2 [0; 1℄; Q(minkj=1H � Qtj (Xtj ) �y) � y, whi
h implies �Qt1;:::;tk(x) � x. As Qti = � Æ (GQti )�1 we dedu
e that �(dx) a.e., GQti (x) =GQti (�Qt1;:::;tk(x)). Hen
e �(dx) a.e., (GQt1 ; : : : ; GQtk)(x) = (GQt1 ; : : : ; GQtk)(�Qt1;:::;tk(x)) and Qt1;:::;tk =� Æ (GQt1 ; : : : ; GQtk)�1. We 
on
lude that ~A � A.Remark 2.6 If the entropy solution (t; x)! u(t; x) = H �Pt(x) of (0.1) is 
ontinuous, then forany t � 0, the probability measure Pt does not weight points and 8x 2 [0; 1℄; P (H�Pt(Xt) � x) =x. Sin
e P 2 ~A and H �Pt(Xt) � infs�0H � Ps(Xs), we dedu
e that P (H �Pt(Xt) = infs�0H �Ps(Xs)) = 1. By the 
ontinuity of t ! H � Pt(Xt), we 
on
lude that P a.s., t ! H � Pt(Xt) is
onstant. Hen
e the sample-paths t! Xt are sto
hasti
 
hara
teristi
s along whi
h the entropysolution is 
onstant.On the other hand, when a sho
k i.e. a dis
ontinuity 
urve appears at time t0 > 0 and positionx0 for the entropy solution, Pt0(fx0g) = P (fXt0 = x0g) > 0 and for P almost all the sample-paths su
h that Xt0 = x0, t ! H � Pt(Xt) is 
onstant on [0; t0) and presents a stri
tly positivejump at time t0.Remark 2.7 For any bounded monotone initial data u0(x), Kunik [8℄ gives an expli
it repre-sentation formula for the entropy solution of (0.1). When u0(x) is the 
umulative distributionfun
tion of a probability measure, the solution is given by u = �xv where v(t; x) = sups2[0;1℄(xs�tA(s)� I(s)) and I is a primitive of the pseudo-inverse of u0: x! inffy : u0(y) � xg.2.3 System of reordered parti
les and probabilisti
 
hara
teristi
sIn the general 
ase, be
ause of the murder of the 
ouples of parti
les with opposite sign thatmerge, the des
ription of the reordered system is more 
ompli
ated that when m is a probabilitymeasure. We re
all that in the 
onstru
tion of the parti
le system (X1; : : : ;Xn), �1 < �2 <: : : < �kmax denote the su

essive times when 
ouples of surviving parti
le with opposite signmerge and are killed. For t 2 [0; �1℄ let Y 1t � Y 2t � : : : � Y nt denote the in
reasing reorderingof (X1t ; : : : ;Xnt ). Again by an easy adaptation of the proof given in [7℄, we 
he
k that on[0; �1℄, (Y 1; : : : ; Y n) is a di�usion normally re
e
ted at the boundary of the 
losed 
onvex setDn = fy = (y1; : : : ; yn) 2 Rn ; y1 � y2 � : : : � yng. More pre
isely, for t � �1 and 1 � j � n,Y jt = Y j0 + �n�jt + Z t0 A0(Un�n(s; Y js ))ds+ Z t0 (
js � 
j+1s )djV js (2.1)where �jt = R t0 Pni=1 1fY js =XisgdBis, 
1s = 
n+1s = 0, (R t0 (
js � 
j+1s )djV js)1�j�n is a 
ontinuouspro
ess with �nite variation jV jt and djV js a.e. 82 � j � n, 
js � 0 and 
js(Y js � Y j�1s ) = 0.We easily 
he
k that�1 = infft � 0; 92 � l � n; Y lt = Y l�1t and h(Y l0 ) 6= h(Y l�10 )g;12



that there is a unique su
h index l denoted by l1 and that l1 and l1 � 1 are the reorderedindexes of the �rst pair of killed parti
les i.e. with original indexes in I1. After time �1,we freeze Y l1 and Y l1�1 i.e. 8t � �1; Y l1t = Y l1�1t = Y l1�1 and for l = l1; l1 � 1, we set8t � �1; �lt = �l�1 + Pi2I1 1fh(Y l0 )=h(Xi0)g(Bit � Bi�1). We list the indexes of the survivingreordered parti
les thanks to the in
reasing fun
tion '1 : [1; n� 2℄! [1; n℄ n fl1; l1 � 1g.For t 2 [�1; �2℄, we de�ne Y '1(1)t � : : : � Y '1(n�2)t as the in
reasing reordering of the surviv-ing parti
les (Xit )i=2I1 . Therefore for t 2 [�1; �2℄, (Y '1(1)t ; : : : ; Y '1(n�2)t ) is a di�usion normallyre
e
ted at the boundary of Dn�2 : 81 � l � n� 2; 8t 2 [�1; �2℄,Y '1(l)t = Y '1(l)�1 + �n�'1(l)t + Z t0 A0(Un�n(s; Y '1(l)s ))ds+ Z t0 (
ls � 
l+1s )djV js (2.2)where �'1(l)t = �'1(l)�1 + R t�1Pi=2I1 1fY '1(l)s =XisgdBis, 
1s = 
n�1s = 0, (R t0 (
ls � 
l+1s )djV js)1�j�n�2is a 
ontinuous pro
ess with �nite variation jV jt and djV js a.e. 82 � l � n � 2, 
ls � 0 and
ls(Y '1(l)s � Y '1(l�1)s ) = 0. Moreover,�2 = infft � �1; 92 � l � n� 2; Y '1(l)t = Y '1(l�1)t and h(Y '1(l)0 ) 6= h(Y '1(l�1)0 )g;and there is a unique su
h index l that we denote by l2. The reordered indexes of the se
ondpair of killed parti
les i.e. with original indexes in I2 are '1(l2) and '1(l2 � 1). After time�2, we freeze their positions : 8t � �2; Y '1(l2)t = Y '1(l2�1)t = Y '1(l2)�2 and for l = l2; l2 � 1,we set 8t � �2; �'1(l)t = �'1(l)�2 +Pi2I2 1fh(Y '1(l)0 )=h(Xi0)g(Bit � Bi�2). We list the indexes of thesurviving reordered parti
les thanks to the in
reasing fun
tion '2 : [1; n� 4℄ ! [1; n℄ n fl1; l1 �1; '1(l2); '1(l2 � 1)g.Now supposing indu
tively that for some k � kmax � 1 we have de�ned the reordered systemup to time �k, the fun
tions '1; : : : ; 'k, the indexes l1; : : : ; lk. Then we freeze Y 'k�1(lk)t =Y 'k�1(lk�1)t = Y 'k�1(lk)�k for t � �k and for l = lk; lk � 1, we set 8t � �k; �'k�1(l)t = �'k�1(l)�k +Pi2Ik 1fh(Y 'k�1(l)0 )=h(Xi0)g(Bit�Bi�k). For t 2 [�k; �k+1℄, we de�ne Y 'k(1)t � : : : � Y 'k(n�2k)t as thein
reasing reordering of (Xit )i=2I1[:::[Ik and we set �'k(l)t = �'k(l)�k +R t�kPi=2I1[:::[Ik 1fY 'k(l)s =XisgdBis.The index lk+1 is de�ned as the unique l 2 [2; n�2k℄ su
h that Y 'k(l)�k+1 = Y 'k(l�1)�k+1 and h(Y 'k(l)0 ) 6=h(Y 'k(l�1)0 ) and we list the indexes of the n�2(k+1) surviving parti
les thanks to the in
reasingfun
tion 'k : [1; n� 2(k + 1)℄! [1; n℄ n fl1; l1 � 1; '1(l2); '1(l2 � 1); : : : ; 'k(lk+1); 'k(lk+1 � 1)g.This way, the reordered system is de�ned up to time �kmax .For t � �kmax , Y 'kmax(1)t � : : : � Y 'kmax(n�2kmax)t is de�ned as the in
reasing reordering of(Xit )i=2I1[:::[Ikmax and �'kmax(l)t = �'kmax (l)�kmax + R t�kmax Pi=2I1[:::[Ikmax 1fY 'kmax (l)s =XisgdBis:LetNt = n�2Pkmaxk=1 1f�k�tg, Jt = Sk:�k�tf'k�1(lk); 'k�1(lk�1)g (
onvention : '0 is the identityfun
tion) and by a slight abuse of notations, 't : l 2 [1; Nt℄!Pkmaxk=0 1[�k ;�k+1)(t)'k(l) 2 [1; n℄nJt(
onvention : �0 = 0; �kmax+1 = +1) denote respe
tively the number of parti
les surviving attime t, the indexes of the parti
les killed before time t and the original index of the l-th survivingparti
le. To simplify notations, we set hj = h(Y j0 ) and U(j) = 1nPji=1 hi.Proposition 2.8 Ea
h reordered parti
le is a probabilisti
 
hara
teristi
 along whi
h the ap-proximate solution Un�n(s; :) is ds a.e. 
onstant up to the time when the parti
le is killed. Morepre
isely, for ds a.e. s � 0, 8j 2 [1; n℄ n Js; Un�n(s; Y js ) = U(j) = 1nPji=1 hi. Moreover the13



dynami
s of the reordered system is given by :81 � j � n; dY jt = 1fj =2Jtg��nd�jt +A0(U(j))dt + (
'�1t (j)t � 
'�1t (j)+1t )djV jt�: (2.3)where � = (�1; : : : ; �n) is a P Brownian motion and P a.s., djV jt a.e. 
1t = 
Nt+1t = 0 and forl 2 [2; Nt℄; 
lt = 0 if h't(l) 6= h't(l�1) and 
lt � 0; 
lt(Y 't(l)t � Y 't(l�1)t ) = 0 otherwise.Proof : By 
onstru
tion Y 't(1)t � : : : � Y 't(Nt)t is the in
reasing reordering of (Xit )i=2It. Sin
e
ouples of parti
les with opposite sign that merge are killed,f(Xit ; h(Xi0)); i =2 Itg = f(Y 't(l)t ; h't(l)); 1 � l � Ntg = f(Y jt ; hj); j =2 Jtg:A

ording to (1.1), we dedu
e that ~�nt = 1nPj =2Jt hjÆY jt = 1nPNtl=1 h't(l)ÆY 't(l)t .Hen
e the approximate solution writesUn�n(t; x) = 1n NtXl=1 h't(l)1fY 't(l)t �xg: (2.4)By the o

upation times formula, a.s. for dt a.e. t � 0 the positions (Xit )i=2It are distin
tand as a 
onsequen
e Y 't(1)t < Y 't(2)t < : : : < Y 't(Nt)t . Hen
e dt a.e., 8j =2 Jt, Un�n(t; Y jt ) =1nP'�1t (j)l=1 h't(l) = 1nPji=1 hj � 1nPji=1;i2Jt hi. Sin
e the indexes in [1; j℄ \ Jt 
orrespond to
ouples of killed parti
les with opposite sign, the se
ond summation in the right-hand-side is niland Un�n(t; Y jt ) = U(j).Equation (2.3) is obtained by setting l = '�1t (j) in the su

essive equations similar to (2.1) and(2.2) and using the result we have just proved. Sin
e ds a.e. the positions (Xis)i=2Is are distin
t,81 � i; j � n; < �j�i >t= 1fi=jgt and � is a n-dimensional Brownian motion.By de�nition of the parti
le system, 80 � k � kmax, 8t 2 [�k; �k+1), 
1t = 
n+1�2kt = 0 and fordjV jt a.e. t 2 [�k; �k+1), 82 � l � n�2k, 
lt � 0 and 
lt(Y 'k(l)t �Y 'k(l�1)t ) = 0. As the stoppingtime �k+1 is the �rst time after �k when two surviving parti
les with opposite sign merge, forl 2 [2; n � 2k℄ if h'k(l) 6= h'k(l�1), then 8t 2 [�k; �k+1), Y 'k(l)t � Y 'k(l�1)t > 0 whi
h 
ombinedwith the previous property yields that for djV jt a.e. t 2 [�k; �k + 1), 
lt = 0. Sin
e a propertyholding 8k, for djV jt a.e. t 2 [�k; �k+1), holds for djV jt a.e. t � 0, the proof is 
ompleted.
2.4 Proof of Proposition 2.2For 
 2 R, let 
n = [
n℄=n where [x℄ denotes the integral part of x. The entropy inequalities(0.2) are based on the fun
tions ju � 
j and sgn(u � 
)(A(u) � A(
)). That is why, we areinterested in the approximation jUn�n(t; x)� 
nj of the �rst one. A

ording to (2.4), the fun
tionx! jUn�n(t; x)� 
nj � j
nj is the 
umulative distribution fun
tion of the signed measure�n;
t = 1n NtXl=1 �sgn( 1n lXi=1 h't(i)�
n)h't(l)�1f 1nPli=1 h't(i)=
ng�ÆY 't(l)t (
onvention: sgn(0) = 0):The next Lemma gives a mu
h simpler expression of this measure.14



Lemma 2.9 Let for 1 � j � n, wj = sgn(U(j) � 
n)hj � 1fU(j)=
ng.1. 8l 2 [1; Nt℄; U('t(l)) = 1nPli=1 h't(i).2. If for some l 2 [2; Nt℄, w't(l�1) = 1 and w't(l) = �1, then h't(l�1) 6= h't(l):3. If for some l 2 [2; Nt℄, h't(l�1) 6= h't(l) then w't(l�1) 6= w't(l).4. 8t � 0; �n;
t = 1n NtXl=1 w't(l)ÆY 't(l)t = 1n nXj=1wjÆY jt :
Proof : 1. For l 2 [1; Nt℄, U('t(l)) = 1nP't(l)j=1 hj = 1nP't(l)j=1j2Jt hj+ 1nP't(l)j=1j =2Jt hj : Sin
e the indexesin [1; 't(l)℄ \ Jt 
orrespond to 
ouples of parti
les with opposite sign, the �rst summation inthe right-hand-side is nil. Setting i = '�1t (j) in the se
ond summation, we obtain U('t(l)) =1nPli=1 h't(i)2. Let l 2 [2; Nt℄ be su
h that w't(l�1) = 1 and w't(l) = �1. Ne
essarily U('t(l � 1)) 6= 
n.� In 
ase U('t(l)) 6= 
n sin
e a

ording to 1., U('t(l)) = U('t(l�1))+h't(l)=n, sgn(U('t(l�1))�
n) = sgn(U('t(l))� 
n). By the de�nition of the weights wj, we dedu
e that h't(l�1) 6= h't(l):� In 
ase U't(l) = 
n, then a

ording to 1., U('t(l � 1)) + h't(l)=n = 
n.Hen
e h't(l) = �sgn(U('t(l�1))�
n). Multiplying both sides by h't(l�1), we get h't(l�1)h't(l) =�w't(l�1) = �1.3. � In 
ase U('t(l � 1)) 6= 
n and U('t(l)) 6= 
n, a

ording to 1., sgn(U('t(l � 1)) � 
n) =sgn(U('t(l))� 
n) and w't(l�1) 6= w't(l).� In 
ase U('t(l � 1)) = 
n, w't(l�1) = �1 whereas w't(l) = sgn(h't(l)=n)h't(l) = +1.� In 
ase U('t(l)) = 
n, w't(l) = �1 whereas sgn(U('t(l�1))�
n) = �h't(l) when
e multiplyingboth sides by h't(l�1), we get w't(l�1) = �h't(l�1)h't(l) = 1.4. Combining the de�nition of �n;
t and 1., we obtain that �n;
t = 1nPNtl=1w't(l)ÆY 't(l)t . A

ordingto 3., the 
ouples of parti
les that merge and are killed at su

essive times �1 < : : : < �kmax haveopposite weights w. Sin
e their positions are frozen afterwards, 8t � 0; Pj2Jt wjÆY jt is the nilmeasure and 1n nXj=1wjÆY jt = 1n Xj2JtwjÆY jt + 1n NtXl=1 w't(l)ÆY 't(l)t = �n;
t :
We are now ready to prove Proposition 2.2. Let �10 denote the limit point of a weakly 
onvergingsubsequen
e of (�n�n)n that we still index by n for simpli
ity, g be a non-negative C1 fun
tionwith 
ompa
t support on [0;+1) � R and �(t; x) = R x�1 g(t; y)dy. A

ording to Lemma 2.9,
omputing �(t; Y jt ) thanks to (2.3), summing the obtained result multiplied by wj over 1 � j � n,

15



we get0 =� < �n;
t ; �(t; :) > + < �n;
0 ; �(0; :) > +Z t0 < �n;
s ; �s�(s; :) > + < �n;
s ; �x�(s; :) > ds+ �2n2n Z t0 Xj =2Jswj�xx�(s; Y js )ds+ Z t0 �nn Xj =2Jswj�x�(s; Y js )d�js+ Z t0 1n Xj =2Jswj(
'�1s (j)s � 
'�1s (j+1)s )�x�(s; Y js )djV js (2.5)where �n;
s = 1n Xj =2JswjA0(U(j))ÆY js = 1n NsXl=1 w's(l)A0(U('s(l)))ÆY 's(l)s : (2.6)Denoting respe
tively by T 1n , T 2n and T 3n the sum of the three �rst terms, the sum of the fourthand the �fth terms and the last term of the r.h.s., (2.5) writes T 1n + T 2n + T 3n = 0. Clearly,limn!+1 E jT 2n j = 0.nT 3n = Z t0 NsXl=2 w's(l)1fw's(l)=w's(l�1)g
ls(�x�(s; Y 's(l)s )� �x�(s; Y 's(l�1)s ))djV js+ Z t0 NsXl=2 1fw's(l)=1;w's(l�1)=�1g
ls(�x�(s; Y 's(l)s ) + �x�(s; Y 's(l�1)s ))djV js� Z t0 NsXl=2 1fw's(l)=�1;w's(l�1)=1g
ls(�x�(s; Y 's(l)s ) + �x�(s; Y 's(l�1)s ))djV js (2.7)A

ording to Proposition 2.8, the �rst term of the r.h.s. is nil. Combining assertion 2. inLemma 2.9 and Proposition 2.8, we 
he
k that the third term is also nil. Sin
e �x� = g � 0,T 3n is non-negative. Therefore to 
on
lude, it is enough to 
he
k that for the bounded fun
tionF : P(C([0;+1);R)) ! R de�ned byF (Q) = �ZR g(t; y)jH � ~Qt(y)� 
jdy + ZR g(0; y)jH � ~Q0(y)� 
jdy+ Z t0 ZR jH � ~Qs(y)� 
j�sg(s; y) + sgn(H � ~Qs(y)� 
)(A(H � ~Qs(y))�A(
))�xg(s; y)dyds;limn!+1 E jF (�n) + T 1n j = 0. Indeed supposing this 
onvergen
e, sin
e F (�n) = F (�n) + T 1n +T 2n +T 3n , we have E(F (�n)�) � E(jF (�n)+T 1n j+ jT 2n j+(T 3n)�)!n!+1 0. Approximating F by
ontinuous fun
tions like in the proof of Proposition 1.4, we dedu
e from the weak 
onvergen
eof �n�n to �10 that E�10 (F (Q)�) = 0. Taking t; 
; g in denumerate dense sets and then takinglimits, we dedu
e that �10 a.s., for any positive test fun
tion g, 8
 2 R, 8t � 0, F (Q) � 0 i.e.�10 a.s. H � ~Qs(x) is the entropy solution of (0.1).Let us prove that the variables F (�n) + T 1n 
onverge to zero. Sin
e x ! jUn�n(t; x) � 
nj � j
njis the 
umulative distribution fun
tion of the signed measure �n;
t , 
omputing the bra
kets <;>
16



in T 1n by the integration by parts formula, we getT 1n = �jUn�n(t;+1)� 
njZR g(t; y)dy + ZR g(t; y)jUn�n (t; y)� 
njdy+ jUn�n(0;+1) � 
njZR g(0; y)dy � ZR g(0; y)jUn�n (0; y)� 
njdy+ Z t0 jUn�n(s;+1)� 
njZR �sg(s; y)dyds � Z t0 ZR �sg(s; y)jUn�n(s; y)� 
njdyds� Z t0 ZR �xg(s; y)(H � �n;
s (y)� sgn(
n)(A(0) �A(
n)))dydsAs Un�n(s;+1) = ~�ns (R) does not depend on s, the sum of the �rst, the third and the �fth termsof the r.h.s. is nil.We set Ns(y) = maxfl 2 [1; Ns℄; Y 's(l)s � yg. By Lemma 2.9 1., if U('s(l)) = 
n thensgn(U('s(l � 1)) � 
n) = �h's(l) and w's(l) = �1 = �h's(l)sgn(U('s(l � 1)) � 
n). Hen
e by(2.6),H��n;
s (y) = 1n Ns(y)Xl=1 �sgn(U('s(l)) � 
n) + 1fU('s(l))=
ngsgn(U('s(l � 1)) � 
n)�h's(l)A0(U('s(l))):Moreover a

ording to (2.4), Un�n(s; y) = 1nPNs(y)l=1 h's(l) and with the 
onvention U('s(0)) = 0,sgn(Un�n(s; y)� 
n)(A(Un�n(s; y))�A(
n)) = sgn(0� 
n)(A(0) �A(
n)))+ Ns(y)Xl=1 �sgn(U('s(l))� 
n)(A(U('s(l)))�A(U('s(l � 1))))+ 1fU's(l)=
ngsgn(U('s(l � 1))� 
n)(A(U('s(l)))�A(U('s(l � 1))))�:Therefore����H � �n;
s (y)�sgn(
n)(A(0) �A(
n)))� sgn(Un�n(s; y)� 
n)(A(Un�n(s; y))�A(
n))����� Ns(y)Xl=1 jA(U('s(l))) �A(U('s(l � 1))) �A0(U('s(l)))h's(l)=nj:Sin
e by Lemma 2.9 1., U('s(l)) = U('s(l � 1)) + h's(l)=n, the right-hand-side is smaller thansupx;y2[�1;1℄jx�yj� 1n jA0(x)�A0(y)j. As the support of g is 
ompa
t, we dedu
e that the random variables����T 1n � ZR g(t; y)jUn�n (t; y)� 
njdy + ZR g(0; y)jUn�n (0; y) � 
njdy+ Z t0 ZR jUn�n(s; y)� 
nj�sg(s; y) + sgn(Un�n(s; y)� 
n)(A(Un�n(s; y))�A(
n))�xg(s; y)dyds����
onverge uniformly to 0 as n! +1. Sin
e 8x 2 R; jjx� 
nj � jx� 
jj � j
n � 
j � 1n ,jsgn(x� 
)(A(x) �A(
)) � sgn(x� 
n)(A(x) �A(
n))j � supy2[
n;
℄(j2A(y) �A(
)�A(
n)j);and a

ording to (1.1), 8(s; y) 2 [0;+1)�R; Un�n(s; y) = H � ~�ns (y), the variables jF (�n) + T 1n jalso 
onverge uniformly to 0. 17



Remark 2.10 It should be noted that we obtain the entropy inequalities be
ause T 2n is non-negative i.e. thanks to the lo
al time term whi
h prevents stri
t 
rossings of the surviving 
har-a
teristi
s Y js ; j =2 Js whi
h share the same sign. Moreover, it is ne
essary to kill 
ouples ofparti
les with opposite sign that merge so that the non-positive third term of the right-hand-sideof (2.7) vanishes.3 Numeri
al exampleAs a numeri
al ben
hmark, we 
onsider the Burgers equation (A(u) = u2=2) with initial datau0(x) = 14 �1[�3;�2℄(x)� 1[2;3℄(x)� whi
h is the 
umulative distribution fun
tion of the signedmeasure m = 14 (Æ�3 � Æ�2 � Æ2 + Æ3). The 
orresponding entropy solution is given byu(t; x) = 1t �min�x+ 3; t4� 1[�3;min(�2+ t8 ;�3+p t2 ;0)℄(x)+ max�x� 3;� t4� 1[max(2� t8 ;3�p t2 ;0);3℄(x)�:We easily 
he
k that the L1 norm (resp. variation) of x ! u(t; x) is equal to 1=2 if t � 18and 9=t if t � 18 (resp. 1 if t � 8, 2p2=t if 8 � t � 18 and 12=t if t � 18). We simulatethe system (1.2) for n = 4000 parti
les and vis
osity 
oeÆ
ient � = 0:001. The initializationis deterministi
 : for 1 � i � 1000, Xi0 = �3 and h(Xi0) = 1, for 1001 � i � 2000, Xi0 = �2and h(Xi0) = �1, for 2001 � i � 3000, h(Xi0) = �1 and for 3001 � i � 4000, Xi0 = 3 andh(Xi0) = 1. This way, there is no initialization error i.e. the approximate solution at time 0U(0; x) = 1nPni=1 h(Xi0)H(x�Xi0) is equal to u0(x). The system is dis
retized in time thanks tothe Euler s
heme with time step �t = 0:4. If at time k�t, the set of indexes of killed parti
lesis Ik�t and the positions of the Nk�t remaining parti
les are (Xik�t)i=2Ik�t , the approximatesolution at time k�t and the positions of the parti
les at the next time step are given by(U(k�t; x) = 1nPi=2Ik�t h(Xi0)H(x�Xik�t)8i =2 Ik�t; Xi(k+1)�t = Xik�t + �(Bi(k+1)�t �Bik�t) +A0(U(k�t;Xik�t))�t:Then the 
ouples of parti
les with opposite sign whi
h are 
loser than s = 0:005 are killed i.e.their indexes are added to Ik�t to obtain I(k+1)�t.In �gure 1, we 
ompare the exa
t solution u(t; :) and the approximate solution U(t; :) at timest = 4; 8; 16 and 40. We 
an only distinguish very slight di�eren
es. The number of survivingparti
les Nk�t is de
reasing with k : indeed N4 = 4000, N8 = 3984, N16 = 2836 and N40 = 1192is smaller than 30% of N0. In table 1, we give the evolution of the expe
tation of the L1 normof the error with respe
t to time. This expe
tation is estimated from 20 runs of the parti
lesystem. The width of the 
orresponding Con�den
e Interval at 95% is also pre
ised. For ea
hrun, at time k�t, the L1 norm of the error is 
omputed thanks to the in
reasing reordering(Y 'k�t(l)k�t )1�l�Nk�t of the surviving parti
les (Xik�t)i=2Ik�t by the following formulaNk�t�1Xl=1 12(Y 'k�t(l+1)k�t � Y 'k�t(l)k�t )�ju� U j(k�t; Y 'k�t(l+1)k�t ) + ju� U j(k�t; Y 'k�t(l)k�t )� :The expe
tation of the L1 norm of the error remains small in 
omparison with the L1 normof the expli
it solution (approximately 1%). We also 
ompare the expe
tation of the variationof the approximate solution whi
h is given by Nk�t=n (the width of 
orresponding 
on�den
einterval at 95% is nether greater than 0:0005) with the variation of the expli
it solution. Theyare very 
lose. This result is not surprising be
ause we kill 
ouples of parti
les of opposite signthat merge to mimi
 the de
reasing property of the variation of the expli
it solution.18
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Figure 1: Comparison of U(t; x) and u(t; x)
time t 4 8 12 16 20 28 40ku(t; :)k1 0.5 0.5 0.5 0.5 0.45 0.321 0.225EkU(t; :) � u(t; :)k1 0.0015 0.0018 0.0063 0.0081 0.0039 0.0030 0.0035width of C.I. at 95 % 2.5e-5 2.3e-5 2.7e-5 4.8e-5 7.8e-5 7.8e-5 3e-4variation u(t; :) 1 1 0.816 0.707 0.6 0.429 0.3E(Nt)=n 1 0.995 0.816 0.709 0.595 0.425 0.298Table 1: Evolution of the L1 norm of the error with respe
t to t19



Con
lusionIn this paper we proved the 
onvergen
e of a sto
hasti
 parti
les approximation of the entropysolution of (0.1) as the initial number of parti
les goes to +1. In 
ase the initial data u0is monotoni
, the system of intera
ting parti
les is the same as the one introdu
ed by Bossyand Talay [3℄ [4℄ for the Burgers equation (A(u) = u2=2). But otherwise, we have modi�edthe dynami
s by killing the 
ouples of parti
les with opposite sign that merge. This mimi
sthe de
reasing property of the variation of the entropy solution x ! u(t; x) with repe
t to t.To obtain an e�e
tive numeri
al pro
edure, it is ne
essary to dis
retize the parti
le system intime. Our results 
an be seen as a preliminary step in the study of the 
onvergen
e rate ofthe approximate solution based on the time-dis
retized system with respe
t to the time step�t, the number of parti
les n and the parameter s governing the murders introdu
ed in thenumeri
al example. From a numeri
al point of view, killing of parti
les is interesting be
ausethe 
omputational e�ort needed to 
ompute the su

essive positions of the parti
les de
reasesin time with the number of surviving parti
les. In return additional e�ort is needed to deal withthe murders.We should also mention a very 
onvenient feature of the parti
le system with killing : if theapproximate solution de�ned as the 
umulative distribution fun
tion of the weighted empiri
almeasure is non-negative (resp. non-positive) at time 0, it remains non-negative (resp. non-positive) afterwards. This feature 
an be exploited to generalize the 
onvergen
e results forthe parti
le approximation of the solution of the porous medium equation given in [7℄ : using asystem with killing, we 
ould deal with any non-negative initial data with bounded variation andnot only monotoni
 ones. Indeed the di�usion 
oeÆ
ient of ea
h parti
le whi
h is a fra
tionalpower of the approximate solution would remain well-de�ned.An interesting question is whether killing of 
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