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Abstract

In this paper, we are interested in approximating the solution of a 1D inviscid scalar con-
servation law starting from an initial condition with bounded variation thanks to a system of
interacting diffusions. We modify the system of signed particles associated with the parabolic
equation obtained from addition of a viscous term to this equation (see [3][4][6]) by killing
couples of particles with opposite sign that merge. The sample-paths of the corresponding
reordered particles can be seen as probabilistic characteristics along which the approximate
solution is constant. This enables us to prove that when the viscosity vanishes as the initial
numbers of particles goes to +00, the approximate solution converges to the unique entropy
solution of the inviscid conservation law. We illustrate this convergence by numerical results.

In this paper, we are interested in giving a probabilistic particle approximation of the entropy
solution of the scalar conservation law

Ou+ 0, A(u) =0,  u(0,z) = up(x). (0.1)

where A is a C! function and the initial condition ug is a function with bounded variation
i.e. there are a bounded signed measure m and a real constant a such that dz a.e., ug(z) =
a + ffoo m(dy). Uniqueness does not hold for weak solutions of this equation. But accord-
ing to Kruzkhov theorem, there is a unique entropy solution u bounded and belonging to
C([0,+0), L},.(R)) characterized by the entropy inequalities : Ve € R, for any positive C™
function g with compact support on [0, +00) X R,

+oo
/ /(|u — clOyg + sen(u — o) (A(w) — A(c))Drg)(t, z)dzdt + / o (x) — clg(0, w)dz > 0.
0 R R 03

Taking ¢ > ||u|lec and ¢ < —||ul|x in (0.2), one easily checks that the entropy solution is a weak
solution.

Let |m| and ||m|| denote respectively the total variation of the measure m and its total mass.
As the entropy solution (¢, ) of (0.1) is equal to a + ||m||v(¢, ) where v is the entropy solution
of v+ 0, f (v) = 0 for initial data vy(z) = (ug(z) —a)/||m||, f(v) = A(a+||m]|v)/||m], it is not

restrictive to assume from now on that ¢ = 0 and ||m|| =1 i.e. |m| is a probability measure.
It is well-known that the solution u, of the viscous scalar conservation law
o2
Oy = 78II’U/U — 0, A(ug), ug(0,z) = H * m(z) (0.3)
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where o > 0 converges to the entropy solution of (0.1) in the vanishing viscosity limit o — 0. In
[6], following the approach developped by Bossy and Talay [3] [4] in case of the viscous Burgers
equation (A(u) = u?/2), we introduce the parabolic problem satisfied by w = d,u, in order to
construct a probabilistic particle approximation of u, :

2 T
010 = T — 0, (A (o), w(0..) = m, up(ty0) = [ wlt,y)dy

—0o0

which writes

0.2

Ow = 7811 — 0, (A'(H * w)w), w(0,.) =m (0.4)
where (H xw)(t,z) = [*_ w(t,y)dy denotes the spatial convolution of w(t,.) with the Heaviside
function H(y) = 1{y>0} A weak solution of this equation is obtained thanks to the unique
solution P € P(C([0,+00),R)) of the nonlinear martingale problem (PM?) starting at m:

Definition 0.1 From now on, h is a density of m with respect to |m| with values in {—1,1}.
With any probability measure Q on C([0,400),R) we associate the bounded signed measure Q
defined by dQ/dQ = h(Xy) where (Xt)i>0 denotes the canonical process on C([0,+00),R). The
times marginals of Q and Q are respectively denoted by (Qt)i>0 and (Qt)t>0 We say that Q
solves the martingale problem (PM?) starting at m if Qo = |m| and

0.2

— ¢ (X,)+ A (H*Qu( X)) (X,)ds is a Q-martingale.

Vo € G, MY = (X0 —0(X0)~ [ 5

Indeed, by the constancy of the expectation of the P martingale h(Xy)M, t , one easily checks
that ¢ — P, is a weak solution of (0.4). As a consequence, the function uy(t,z) is equal to
H x Py(z). That is why we are induced to approximate u,(t,z) by the cumulative distribution
function

U™t,z) = H * i} (x ZHx—Xt (X9)

with p" = %2?21 0xi denoting the empirical measure of the particle system defined by the
stochastic differential equation

t
X =X+ oB; +/ A(H « @ (XY))ds, i <n
0

where (B?,..., B") a R"-valued Brownian motion independent of the initial variables X§, 1 <
i <n LLD. with law |m| € P(R). Ever in [6], we show that as n — +o00, the empirical measures
p" (considered as a P(C([0, +00),R)) random variables) converge in distribution to the constant
P (such a result is called propagation of chaos : see [11]) which implies the convergence of U}
to uy. Since u, converges to the entropy solution u of (0.1) as o — 0, it is natural to wonder
whether U7 converges to u as n — +o00 when limy, ;o 0, = 0. This paper is dedicated to this
problem. According to the numerical results given in [2], the answer is likely to be positive.

In case m is a probability measure, there is no signed weights and U} (t,z) = %2?21 Lixi<a}-
To prove that U} converges to the entropy solution of (0.1), we want to compute the left-hand-
side of the entropy inequalities (0.2) with U7 and ¢, = [cn]/n ([z] denotes the integral part
of z) replacing u and c¢. That is why we are interested in |U} (t,2) — cp|. Let (Y},...,Y)



denote the increasing reordering of (X},...,X/"). The function z — |UZ (t,z) — ¢u| — |cn] is
the cumulative distribution function of the signed measure % Z;'L:l(l{j>[cn}} — 1{jS[cn])5Ytj. Of
course, it is also the cumulative distribution function of a linear combination of § Xti,]. <i<n
but the corresponding coefficients are not constant in time as previously. That is why the
reordered system (Y'!,...,Y™) is very interesting to compute the approximate left-hand-side
of (0.2). Moreover this system has a very simple interpretation. By the occupation times
formula, a.s., dt a.e., the positions X},..., X are distinct and U? (¢,Y}) = i/n. Therefore
the curves ¢ — Y} can be seen as probabilistic characteristics along which the approximate
solution is dt a.e. constant. One can check that (Y'!,...,Y™) is a diffusion with diffusion matrix
oy times the identity and constant drift coefficient (A'(1/n),..., A’(1)) normally reflected at
the boundary of the closed convex set D, = {y = (y1,...,yn) € R", y1 < ya < ... < yp}.
The deterministic characteristics associated with the scalar conservation law (0.1) for the initial
data ug(z) are given by y(t) = y + A'(ug(y))t. For t > infzy o — yl/|A4"(uo()) — A'(uo(y)
they may intersect. The small Brownian perturbation that is added to define the probabilistic
characteristics allows to introduce reflexion which prevents strict crossings with Y > Yi+i.
If we set ¢(t,x) = [*_ g(t,y)dy where g is the nonnegative test function in (0.2), compute
dp(t,Y}) by Ito’s formula, sum over i the obtained result multiplied by (1 (i>lenly — L{i<[en])s
make integrations by parts in the spatial integrals, we get that the left-hand-side of (0.2) with
Uy and c, replacing v and c is equal to the contribution of the local time term giving the
reflexion plus a remainder which vanishes as n — +4o00. One remarkable feature is that the
contribution of the local time which prevents strict crossings of our probabilistic characteristics
is positive and gives the entropy inequality in the limit n — +o0.

When m is a signed measure, the situation is more complicated. Because of the possibility of
crossings of couples of particles (X, X7) with opposite signs h(X}) = —h(X}), z — [UZ (¢, %) —
¢n|—¢p 18 no longer the cumulative distribution function of a linear combination of 5Yti, 1<i<n
with coefficients constant in time. That is why the computation of the approximate left-hand-
side of the entropy inequality (0.2) is not easier with the reordered system (Y'!,...,Y™) than with
the original one. To overcome this difficulty, we can define directly (Y'!,...Y™) as a diffusion
normally reflected at the boundary of D,, with diffusion matrix o, times the identity and drift
coefficient (A'(Ln(Yy)), A’ (2 (h(Y]) + h(YD))), ..., A (L 31 h(Yy))) where the initial vector
(Y, ..., Y is distributed according to the law of the increasing reordering of n independent
variables with law |m|. But when we compute the left-hand-side of (0.2) with u replaced by
the new approximate solution " | h(Y{)H(z — Y}), the contribution of the local time on
hyperplanes y* = y**! such that h(Y]) = —h(Y;1!) has the wrong sign.

In fact, the right approach consists in modifying the dynamics of the original particle system
(X1, ..., X™) by killing the couples of particles with opposite sign that merge. This modification
is in fact very natural : this causes the variation of the approximate solution z — UZ(t,z) to
decrease with ¢, which is a transcription of the same property satisfied by  — u,(¢,z). In the
first section of the paper, we construct the modified particle system and prove that for fixed
o > 0, the approximate solution of (0.3) based on the surviving particles still converges to the
exact solution u, as the initial number of particles n goes to +00. In the second section, by
considering the increasing reordering of the modified system, we prove that when o depends on
n and converges to 0 as n — 400, this approximate solution converges to the entropy solution of
(0.1). If we assume that m is a probability measure, since all particles share the same sign, there
is no killing and we get back to the much simpler situation described previously. That is why
we obtain stronger convergence results, such as a propagation of chaos result for the reordered
system. The last section is dedicated to an example of numerical simulation of the modified
system with decreasing number of particles.



To conclude this introduction, we mention the approximation of the solution of (0.1) by interact-
ing processes with jumps introduced by Perthame and Pulvirenti [9] (see also [5]). The principle
is radically different : the system of interacting particles is associated with a nonlinear kinetic
equation from which the scalar conservation law can be recovered when a relaxation parameter
A goes to +o0o. This approach is not limited to space dimension 1 as the one presented here.
But the convergence result is for fixed relaxation parameter A > 0 e.g. A does not go do +oo
with the number of particles. Moreover, the initial data of (0.1) is not only assumed to have a
bounded variation but also to be nonnegative and integrable.

1 Modification of the particle system associated with the vis-
cous conservation law

The modification of the system of diffusing particles consists in killing the couples of particles
with opposite sign that merge. Before giving a precise construction, we explain why such an
annihilation procedure is naturally associated with the martingale problem (PM?).

Lemma 1.1 For any signed measure m with [[m|| =1 and for any o > 0, the solution P of the
martingale problem (PM?) starting at m is such that the total mass ||Py|| of P; is non-increasing.

Proof : This proof is based on the Markov property.
According to the Jordan-Hahn decomposition, Vs > 0 there exist two Borel subsets of R denoted
by C and C; such that C;; UC, =R, CF NC; =0 and ||Ps|| = Ps(C;) — Ps(Cy ).

Let O S tl S t2.

G, )(xo))
where (G;)i>0 denotes the canonical filtration on C([0, +-00), R).
The drift coefficient b(s,z) = A'(H x Ps(z)) is bounded whereas the diffusion coefficient is a
strictly positive constant. Combining Theorems 6.2.2, 6.3.4 and 6.4.3 [10], we obtain that if
Q!"+® denotes the solution of the martingale problem Qo = d,,

12l =B (10 () = 1, () 1)) =B (B (165 (60— 1 ()

2

Vp € CH(R), d(X:) — ¢(Xo) — /Ot T ¢"(X,) + bty + 5, X,)¢(X,)ds is a Q martingale

2

then P a.s. Qt2 til is a regular conditional probability distribution of X;, given G;,. Hence

1B, = / QU (C) — Q") (C;r) Py (d)
< [, A CDPatan - [ Q2 (C) P

S Ptl(Ctl) - Ptl( tl) S ||Pt1||

This monotonicity property is linked to the intersection of sample-paths with opposite sign. The
discretized version of this phenomenom is the murder of the couples of particles with opposite



sign that merge.

The precise construction of the particle system is based on Girsanov theorem. On a filtered
probability space (Q, F,Q, (F¢)i>0) let X§,..., X" be Fy measurable variables L.LD. according
to |m| and (W!,...,W") a n-dimensional (F;) Brownian motion. The first time when two
particles with opposite sign merge is

7 = inf{s >0, 3,5 € [1,n] with A(X{) = —h(X]) such that X} +oW!= X] + oW}.

When nt = Card({i € [I,n], h(X{) = 1}) and n~ = Card({i € [I,n], h(XE) = —1}) are
both positive, then respectively by recurrence of straights lines and polarity of points for the
two-dimensional Brownian motion, QQ a.s., 71 < +00 and

I'={ie1,n],3j € 1,n], h(X}) = —h(X]) and X+ oW: = X] +oWi}
contains two elements. If n™ > 2 and n~ > 2, then Q a.s.
—inf{s > 11, 3i,j € [1,n]\ I with h(X}) = —h(X]), Xi+oW!=X]+ oW} < 40

and 12 = {i € [1,n]\ 1,35 € [1,n] \ I', h(X}) = —h(X]) and X} + oWl = X] +oWi}
contains two elements. Inductively, we obtain that Q a.s. 0 < 7 < 70 < ... < Tptpn- < +00,
where

7 = inf{s > 7, 1, 30,5 € [L,n]\(I'U...UT*Y) with h(X}) = —h(X]), Xi+oW!=X]+oWI}

(convention: 79 = 0) and I¥ = {i € [1,n]\ (L' U...UIF1), Fj € [1,n]\ (I'U...UIFY), h(X]) =
—h(X{]) and X{+oW! = X]+ oW/} contains two elements. At time 75, we kill the pair of
particles with opposite sign which have just merged. More precisely, for convenience we freeze
their position : V1 <k < nt An~, Vi € I*, Vt > 0, X} = X{ + oW/,,, . After time 7,45, -,
either there is no remaining particle (case n* = n~ = n/2) or all the remaining particles share
the same sign and keep moving according to the corresponding coordinates of the Brownian
motion : Vi € [L,n] \ (I*U...UT"" 7)) V>0, X} = X} +oW}.

Let ; = 0if0<t<m, = Ulefl if 7, <t < 71y for 1 <k <n'tAn (convention
Tp+an—+1 = +00) denote the set of indexes of particles killed at time ¢. The approximate
solution is constructed thanks to the surviving particles :

U (t,x) = ZhXO (z — X}).
Z¢It
We denote by p" = %2?21 0xi the empirical measure of the system. According to definition
0.1, g" = % o h(XE)dxi. Since the indexes in I; correspond to couples of particles with the
same position but opposite sign, as their position is frozen after the time when they merge, we
have

iy = Zh X3)ox; and Ug(t,x) = H * jif (z). (1.1)
Z%It

By Girsanov theorem, if P € P(C([0, +00),R)) is defined by

—exp< /A’U”sX))dBZ—— /A’U”le))d>

then for Bf = W} — 1 fo A'(UM(s,X%))ds, (BY,...,B") is a P n-dimensional Brownian motion.
Moreover the particle system (X},..., X[*) solves

dar

. . t . .
X :X3+/ Lgny (0B + AU (s, X1))ds) , 1 < i <n. (1.2)
0



For notational simplicity, we do not emphasize the dependence of P on n. The probability
measures P and QQ are not necessarily equivalent on F. As a consequence, it is possible that
P(1x < 400) < 1 for some k € [1,n" An~]. Nethertheless, since P and Q are equivalent on F;
for any t € [0, 400), defining ka0, = max{k <n* An~: 7 < 400} (convention maxp = 0), P
a.s. 0< 71 <...< 7. <+ooand Vk € [1, kpqzl, I contains two elements.

To state the convergence result of the approximate solution U’ (¢,z) = %EZ¢ 1, WX H (z —
X)) =15  h(X})H(z — X}) to the solution u, of (0.3), we introduce the weighted space

n

def T
Loy = { £ mo e g [ 1 < o).

For any 1 < i < n, the continuity of + — X} implies that H(z — X}) € C([O,—i—oo),L%/(
Hence U} € C([0, +oo),L%/(1+$2)) by linearity.

1+x2))'

Theorem 1.2 The viscous conservation law (0.3) has a unique bounded weak solution u,.
Moreover u, belongs to L%/( and the approzimate solution U} converges to it in the following
sense :

1+22)

VT >0, lim Esup |||[UX(t, ) — us(t,z)||| =0

where E denotes the expectation with respect to the probability measure P,

Let n} denote the image of P by pu”™ = %E?:l dxi. We are going to take advantage of the
equality U (t,z) = H * i} (x) to study properties of the sequence (77),, in order to prove the
Theorem.

Lemma 1.3 The sequence (n?}),, is tight

Proof : Since p" is the empirical measure of the exchangeable processes (X',..., X™), ac-
cording to [11], the tightness of (7),, is equivalent to the tightness of the distributions of the
processes X' Let 0 < s <t<Tand 1 <i<mn,

t
X! - XM <o s (B - B+ [ AW X lar
re(s,t] s

Remarking that A’ is bounded on [—1, 1] and applying Burkholder-Davis-Gundy inequality, we
obtain

E((X; —X;)") < Cr(t —s)? (1.3)

where the constant Cp does not depend on n and is non-decreasing in . As for any n > 1, X}
is distributed according to |m|/||m||, by Kolmogorov criterion, we conclude that both sequences
are tight. ]

Proposition 1.4 Any weak limit ©2° of the tight sequence (7l)y gives full measure to

{Q € P(C(]0,40),R)) such that H % Q(z) solves (0.3) weakly}.



To prove the Proposition, we have to deal with the possible lack of regularity of the density h.
We approximate h(x) by functions of the form (1 — Cd(z, F)) V —1 where C' > 0 and d(z, F') is
the distance from z to some closed set F' included in {z : h(z) = 1}. By the regularity of the
probability measure |m|, |m|({z : h(z) = 1} \ F) can be chosen arbitrarily small. We deduce
that :

Lemma 1.5 For any € > 0, there is a Lipschitz continuous function h¢ with values in [—1,1]
such that |m|({z : h(z) # h(z)}) <e.

Proof of Proposition 1.4 : Let 75° denote the limit point of a weakly converging subsequence
of (77), that we still index by n for simplicity, g be a C*° function with compact support on
[0, +00) xR and ¢(t, z) = ffoo g(t,y)dy. Compqting #(t, X}) by Ito’s formula and (1.2), summing
over 7 the obtained equality multiplied by h(X{), we obtain

t 2
< g, (t,.) >— < g, $(0,.) > —/0 < i, 0sh(s,.) + %amgb(s, D)+ AU (s,.))0:0(s,.) > ds

noo
g . .
== / Liigr,10:9(s, X;)dBs.
= /o

The right-hand-side converges to 0 in L'(£2, F,P) as n — 4+o00. So does the left-hand-side which
is transformed by spatial integrations by parts into

ﬂ?(R)/Rg(t,y)dy—/g(t,y)H*ﬂ?(y)dy—%L(R)/Rg(an)dy+/Rg(0,y)H*ﬂ6L(y)dy
2

R
— /Ot A (R) /R359(5,y)dyds + /Ot/RH* fig (y)(9s + %8a:$)g(5ay)dyd5
v t [ oot [ a2, )y

As 17 (R) does not depend on s, the sum of the first, the third and the fifth term is nil. It is an
easy consequence of the occupation times formula that IP a.s., ds a.e., Vi # j € [1,n]\ I, X #£
X7. When this property is satisfied, according to (1.1),

Yy
‘A(U?(s,y))—A(O)— [ Ao -

—00

h(X?) h(X3) | h(X)) h(X})
2o A Xy | A X ey T, ) T A | 2 e,
)?fl<sy jels J¢Is J¢ls

< sup () = A'(2)] e 0.
z,z€[-1,1]
|x—§'\§11}n

We conclude that for the bounded function F' : P(C([0,+0),R)) — R :
F(Q) = [ 90.0)H « Qu)dy — [ a(t.)H + Qulw)dy

¢ ~ o2 ~
[ ] Q)0+ G0a)glo) + AGT = Qua) e (s,)duds



E|F(p™)| converges to zero as n — 4o00. In spite of the weak convergence of 7 to 75°, we
cannot deduce immediately that E™ |F(Q)| = 0 since because of the density h, the function

F is not necessarily continuous. That is why we define a continuous function £ by replacing
H + Qs(z) by < Q, H(z — Xs)h¢(Xp) > in the definition of F' to upper-bound E™ |F(Q)|.

E™ |F(Q)] SE™ (|F — F(Q)) + [(E™ —E™)|F(Q)|| +E™ (|F — F|(Q)) + E™ |F(Q)|

As F€ is a continuous and bounded function, for fixed € > 0, the second term of the right-hand-
side converges to 0 as n — +o0o. As the initial variables (X{,...,X{) are L.LD. according to
|m|/[|m||, using Lemma 1.5 we obtain Vn > 1, V(s,z) € [0,4+00) x R,

E™ |H * Qs(z)— < Q, H(z — X,)h(Xo) > | < %ZE(Ih = he|(X5)) = E(|h — h*|(Xp)) < e
=1

With the uniform continuity of the function A’ on [—1,1], we deduce that E™ (|F — F¢|(Q))
converges to 0 uniformly in n as ¢ — 0. Remarking that 75° a.s., Q9 = |m/|, we check that
E= (|F — F€|(Q)) also converges to 0. Hence E™ |F(Q)| = 0. Taking t,c,g in denumerate
dense sets and then taking limits, we deduce that 75° a.s., for any test function g, F/(Q) =0 i.e.
7 a.s. H * Q4(x) is a weak solution of (0.3). ||

We are now ready to conclude the Proof of Theorem 1.2

Proof of Theorem 1.2 : Proposition 1.4 ensures existence of bounded weak solutions of
(0.3). If w is such a solution, then by a good choice of test functions one obtains the following
integral representation :

t
dz a.e., u(t,z) =GY « (H *m)(z) — /0 (0:GL_g * A(u(s,.))) (z)ds

where GY(z) = exp(—x?/20%t)/ov/27t denotes the heat kernel. Uniqueness of bounded weak
solutions is easily derived (see [6] for instance). From now on, u, denotes the unique bounded
weak solution of (0.3). Again according to Proposition 2.2, there exists Q@ € P(C([0,+00), R)
such that u, (s, z) is equal to H+Q, (). Since Vt > 0, s — HxQ4(z) =< Q, h(Xo)H (z—X,) > is
continuous at ¢ as soon as Q;({z}) = 0 (condition satisfied dz a.e.), we deduce that the function
us belongs to C(]0, +oo),Li/(1+w2)).

Let T' > 0. We want to prove that 0 is the only limit point of (Esup,cpo 17 ||Uy (¢, 2) —uq (¢, 2)|[)n-
For any subsequence, according to Lemma 1.3, we can extract from the corresponding subse-
quence of (7'), a further subsequence converging weakly to 75°, that we still index by n for
simplicity. Since U (t,z) = H % i (z), it is sufficient to show that lim, E™ sup,. |||H * Qs(z) —
u(t,z)||| = 0. The function Q@ — sup,cq |||H * Qi(x) — u(t,x)||| is not necessarily continuous.
That is why, for € > 0, we introduce H¢(z) = Lizsoy + wTﬁl{*GSISU} and h¢ as in Lemma 1.5
which are Lipschitz continuous approximations of the functions H and h. Using Proposition 2.2,
we get

E™ sup ||[H * Qi(z) — u(t,z)|| < (B —E™) sup ||| <Q,H(z — X;)h*(Xo) > —u(t, )|
te[0,7] te[0,T]

+ (E™ +E™) S[up] Il < Q@ H(z — X¢)h (Xo) — H(z — Xy)h(Xo) > ||| (1.4)
telo,T"

The functions @ € P(C([0,+),R)) =< Q, H (z — X;)h¢(Xp) > indexed by (¢,z) € [0,T] %
R are equicontinuous and bounded by 1. We deduce that @ — supycplll < @, H(z —

8



X)h¢(Xo) > —u(t,z)||| is continuous and bounded. Hence for fixed ¢, the first term of the
right-hand-side of (1.4) converges to 0 as n — +oo.

Il <@, H(z — Xy)h(Xo) — H(z — Xy)h(Xo) > [[| <[] < @Q,[h° = hl(Xo) > [[| + [|Qe((z — €, z])]]
+e€ T
:W|<Q,|h€—h|(X0)>|+/R</y —lj_$2>Qt(dy)
Y

<7l < Q,|h = h|(Xgy) > |+ 2arctan <§>

As the variables (X{¢, ..., X}) are LLD. according to |m|, 7° a.s., Qo = |m|. With Lemma 1.5,
we obtain that the second term of the right-hand-side of (1.4) converges to 0 uniformly in n as
e — 0. |

2 Convergence of the approximate solution to the entropy so-
lution of (0.1)

2.1 The convergence result

Let (0,), be a sequence of positive numbers such that lim,, o 0, = 0 and (X!,..., X") and P
be defined like previously with o, replacing 0. We are interested in the asymptotic behaviour of
Ul (t,z) = 257" | h(X})H(z—X/}) as n — +o00. Considering Theorem 1.2 and the convergence
of the solution u, of the viscous conservation law (0.3) to the unique entropy solution of (0.1)
as 0 — 0, our main result is not surprising.

Theorem 2.1 If (0,), is a sequence of positive numbers such that lim,_, o 0, = 0, then the
approzimate solution U} (t,x) converges to the unique entropy solution u(t,z) of (0.1) with

initial data ug(z) = H * m(z) in C([0,400), L%/(sz)). More precisely,

VT >0, lim Esup |||U} (t,z) — u(t,z)||| = 0.

Let 7; denote the image of P’ by the empirical measure u" = %Z?:l dxi. Since the sequence
(0n)n is bounded, by an easy adaptation of the proof of Lemma 1.3, we check that the sequence
(7} )n is tight. The proof of Theorem 2.1 is the same as the one of Theorem 1.2 as soon as we
check that the following Proposition analogous to Proposition 1.4 holds :

Proposition 2.2 Any weak limit m§° of the tight sequence (7} )n gives full measure to

{Q € P(C([0,400),R)) such that the entropy solution of (0.1) is equal to H * Q4(x)}.

Before introducing reordered particles in the general case in order to prove this Proposition, we
first suppose that m is a probability measure. In this much simpler case, since all particles are
positive there is no killing and the definition of the system of reordered particles is quite simple.
Moreover, we deduce from Proposition 2.2 a propagation of chaos for this system.



2.2 Propagation of chaos for the reordered system in case m is a probability
measure

By Kruzkhov uniqueness result for entropy solutions of (0.1), there is no more than one mapping
P(t) € C(]0,+00), P(R)) such that the entropy solution u(s,z) of (0.1) is equal to (H * P(s))(z).
Combining the tightness of the distributions of the empirical measures p”, the continuity of the
mapping @ € P(C([0,+0),R)) = (t = Q) € C([0, +00), P(R)) and Proposition 2.2, we deduce
the following convergence result for the flow of time-marginals ¢ — 3.

Corollary 2.3 The variables t — pup € C([0,400), P(R)) converge in distribution to the unique
mapping P(t) € C([0,400),P(R)) such that the entropy solution u(s,z) of (0.1) is equal to
(H = P(s))(x).

This convergence is weaker than a classical propagation of chaos result i.e. the convergence
in distribution of the empirical measures pu" considered as P(C([0,+00),R))-valued random
variables to a constant P. Here the natural candidate for the limit is a probability measure
P € P(C([0,400),R)) such that H * Ps(z) is equal to the entropy solution u(s,z) of (0.1) and
Pas,Vt>0, X, =Xo+ f(f A'(H % Ps(Xs))ds. We would like to prove uniqueness of probability
measures satisfying both these properties and to check that any weak limit 75° of the sequence
(7} )n is concentrated on such probability measures. Because of the possible discontinuities of
the entropy solution u(t,x), we cannot prove these results.

Nethertheless, we are able to prove a propagation of chaos on the sample-path space for the
reordered particle system (Y! ... Y™) which is defined as follows : for any ¢t > 0, V! < Y? <
... < Y™ is the increasing reordering (order statistics) of (X},..., X["). By an easy adaptation
of the proof given in [7] for particle systems associated with the porous medium equation, we
check that (Y'!,...,Y™) is a diffusion normally reflected at the boundary of the closed convex
set D, ={y = (y',...,y") € R?, y' <y? <...<y"}. More precisely, for 1 < j <n,

. . . t . t .
Y7 = Y + ol + / AU (s,Y))ds + / (] — A7 Y)av,
0 0

where 3/ = f(f S l{ysjzxg}nga v =0t =0, (fot(q/g - vg+1)d|V|s)15an is a continuous
process with finite variation |V|, and d|V|, a.e. V2 < j < n, 7] > 0 and /(Y —Y? ) = 0.
By the occupation times formula P a.s., ds a.e. the positions X},..., X™ are distinct. As a
consequence V1 < i,j < n, < 8,7 >= lgi—jyt and (BY,...,B") is a n-dimensional Brownian
motion. Moreover ds a.e., V1 < j < n, U(’}n(s,Ysj) = j/n i.e. the reordered sample-paths are
stochastic characteristics along which the approximate solution is ds a.e. constant.

Let " = %E?:l dy: denote the corresponding empirical measure. Even if Vs > 0, n? = p?, in
general " # p™. For Q € P(C([0,+00),R)) let G? cx €[0,1] = inf{y : H*Q(y) > z} denote
the pseudo-inverse of the cumulative distribution function of the marginal @);. The Lebesgue
measure on [0, 1] is denoted by A. We recall that Q; = Ao (G?)*l.

Theorem 2.4 The empirical measures n" € P(C([0,+00),R)) of the reordered particle systems
converge in distribution to the unique P element of

A=1{Q e P(C([0,+0),R)) : VEE€ N, VO <ty <ty <...<ty, Qu .1 =N(GF,...,GE)7"}

and such that ¥t > 0, P, = P(t).
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Proof : Since the finite-dimensional marginals Q;, .. ¢ of @ € A are determined by its one-
dimensional marginals @);, there is no more than one probability measure P € A such that
vVt >0, P, = P(t).
We have to check that the distribution 7™ of the empirical measures 7, converge weakly to a
probability measure concentrated on {Q € A: Vt >0, Q; = P(t)}. According to Sznitman [11],
the tightness of the sequence (7"), is equivalent to the tightness of the sequence (% E?:1 Po
(Y7)71),. We easily check that ¥n > 1, 13" Po (Yj)™! = m. Moreover, if y; < yp <
. < yp (resp. ¥} < yh < ... < 4yl) denote the increasing reordering of (z!,...,2") € R®
(vesp. (h,...,20)), Sor (Y —yi)* < >°0  (zh — x;)* : this inequality can be checked by an
easy computation for n = 2 and then generalized by induction. Hence

1 & D 1 ¢ -
VT >0, Vst €[0,7), ~ Y E((Y = YI)) < — Y E((X] - X)) < Cr(t —)”.
j=1 =1

By Kolmogorov criterion, we conclude that both sequences are tight.

Let 7°° denote the limit of a convergent subsequence of (7"), that we still index by n for
simplicity. Since V¢, ;' = up and Q € P(C([0,400),R)) — (t — Q) € C([0,+00),P(R)) is
continuous, by Corollary 2.3, we obtain that 7°°({Q : Vt >0, Q; = P(t)}) = 1. As A is closed
(see Lemma 2.5 below), 7°(A) > limsup,, 7"(.A).

We easily check that for 0 <t <ty < ... <y,

VI<i<n, Vo€ ((i—1)/nifnl, (G ,....GI ) (@) = (Yi,...,Y0).

Hence 7"(A) = 1 which concludes the proof. ||

Lemma 2.5 The set A is closed for the weak convergence topology. Moreover it is equal to
A={Q € P(C([0,+0),R)) : Vz € [0,1], Q(infs>0 H * Q4(X,) < z) < z}.

Proof : Suppose that (Q™"), € A converges weakly to Q. Let t; < to < ... < tx. According to
Billingsley [1](proof of Theorem 25.6 p.343), V1 < i < k, A(dz) a.e. Gg (x) = Gg(x) Hence

Adz) ae. (GP,...,GZ ) (@) = (GF,...,G)(z). Since QF ., = Ao (G ,....GZ" )~
converges weakly to Qy, .. ¢ , we deduce that @, ; = Ao (Gg, . Gg)_l. Hence A is closed.

For Q € P(C([0,4+00),R)), because of the weak continuity of s — Qs, infy>0 H * Q4(X;) =
infeq, H * Qq(X,) and X — inf,>o H * Q4(X,) is measurable.

Let Q € A, (¢;)ien+ denote the elements of Q and x € [0,1]. Since H x Qt(G?(y)) >y,

Q(min(H *Qq (X)), H x Qg (Xy,)) < x)
= Ay W ¢ QG H + Qu(GF0) < 2) <Aws y <) =
Taking the limit £ — +o00, we deduce Q(infyeq, H * Qq¢(X,) < x) < . We easily conclude that
QeA
Let Qe A, ty <ty <...<tp,ze€Rand1<i<k As{GZ(y) <z} ={y < H=*Qz)},

QUGS Gmin 1+ Q, (X,))) <)) = Q(min H * @, (X)) <+ Qu (0)}) < H » Q(0)

11



Moreover since G? (H * Q¢(y)) <y, the converse inequality holds :

QUGS Gmin 7+ Q, (X,,)) < 0}) 2 QUGL(H = Qu (X)) <)) 2 QX <) = H = Qo).

Hence if .
Pf 12 € 0,1] = inf{y : Q(umin H £ Qy, (X)) <) > o},
Qty,..ty, = ((Gg, . GQ) o FQ ) 1. Since Q € A, Yy € [0,1], Q(mln 1 H +Q(Xy;) <

y) <y, which implies Ftl,...,tk( x) > z. As Qp = Ao (Gg)_1 we deduce that A(dz) a.e., Gg( ) =
GL(Y 4, (2). Hence A(dz) ae., (G, G )(@) = (G, GR)(TF_y, (x)) and Qo =
Ao (GE,..., Gg)_l. We conclude that A C A.

Remark 2.6 If the entropy solution (t,x) — u(t,x) = H* P;(z) of (0.1) is continuous, then for
any t > 0, the probability measure P, does not weight points and Vz € [0,1], P(H*P,(X;) < z) =
z. Since P € A and H x P(X;) > inf >0 H * Py(Xy), we deduce that P(H * P;(X;) = infy>o H *
Py(X,)) = 1. By the continuity of t — H * P,(X;), we conclude that P a.s., t — H x P/(Xy) is
constant. Hence the sample-paths t — Xy are stochastic characteristics along which the entropy
solution is constant.

On the other hand, when a shock i.e. a discontinuity curve appears at time tog > 0 and position
zqo for the entropy solution, Py, ({xo}) = P({Xy, = xo}) > 0 and for P almost all the sample-
paths such that Xy, = xo, t — H * P(Xy) is constant on [0,t9) and presents a strictly positive
Jump at time to.

Remark 2.7 For any bounded monotone initial data uy(z), Kunik [8] gives an explicit repre-
sentation formula for the entropy solution of (0.1). When uy(x) is the cumulative distribution
function of a probability measure, the solution is given by u = dyv where v(t, z) = SUP,¢o,1] (xs—
tA(s) — I(s)) and I is a primitive of the pseudo-inverse of ug: © — inf{y : wuo(y) > z}.

2.3 System of reordered particles and probabilistic characteristics

In the general case, because of the murder of the couples of particles with opposite sign that
merge, the description of the reordered system is more complicated that when m is a probability
measure. We recall that in the construction of the particle system (X',...,X"), 1, < 7 <
. < Tk,... denote the successive times when couples of surviving particle with opposite sign
merge and are killed. For ¢ € [0,71] let ;! < Y? < ... <Y} denote the increasing reordering
of (X},...,X). Again by an easy adaptation of the proof given in [7], we check that on
[0,71], (Y!,...,Y™) is a diffusion normally reflected at the boundary of the closed convex set
D, ={y= (@ ...,y") e R*, y! <y? <...<y"}. More precisely, for t <7y and 1 < j <n,

. . . t . to
Yy =Y +ou +/ A'(U?n(s,Ys”))der/ (v] = A HdIV ] (2.1)
0 0
where ﬂt = fo i1 {Y] Xl}ng, Al = Antl =, fo - J+1 )d|V |s)1<j<n is a continuous

process with finite variation |V |; and d|V]; a.e. V2 < j <mn, 75 > 0 and 72 (Ysj — Ysj_l) = 0.
We easily check that

7 =inf{t >0, 32<1<n, ¥} =Y}7" and (YY) # YT,
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that there is a unique such index [ denoted by [; and that [; and [; — 1 are the reordered
indexes of the first pair of killed particles i.e. with original indexes in [;. After time 7,
we freeze Y and Yh-1 ie. V¢t > 7, Y1 = Yl1 - Yl1 and for [ = 1,11 — 1, we set
Vi > 1, BL=BL 4+ Yen Lonevy=n(x )}(Bt Bﬁl) We hst the indexes of the surviving
reordered particles thanks to the increasing function ¢; : [1,n — 2] — [1,n] \ {l1,]; — 1}.

For ¢t € [11, 72|, we define thl(l) <...< Yt@l(nﬁ) as the increasing reordering of the surviv-

ing particles (X{);¢r,. Therefore for ¢ € [r1, 7], (Yypl(l), e ,1’?‘71(”72)) is a diffusion normally
reflected at the boundary of D,, o : V1 <[ <n—2, Vt € [1, 2],

t
0 =y 4ot + / A3, VP ONds + [ L=V, (22)
0

l l t . B ‘
where 5f1() — Tﬁl() + fn dign I{Yspl(l)zxg}dB;, yE =yl =0, (JE( = AV ]s)i<j<ns
is a continuous process with finite variation |V]; and d|V|; a.e. V2 <[ < n —2, L > 0 and
A~y D) = 0. Moreover,

m=inf{t >m, 2<1<n -2, V70 = v and my ") £ a0 ),

and there is a unique such index [/ that we denote by l,. The reordered indexes of the second

pair of killed particles i.e. with original indexes in Iy are i1(l2) and ¢1(lo — 1). After time

T9, we freeze their positions : Vi > 79, Y?pl(h) = thl(lrl) = Y;gl(h) and for [ = Iy,l5 — 1
! ! ; ; . .

we set Vi > 7o, fl() = T"f;() + > i 1{h(Y0“01(l)):h(Xé)}(B% — B)). We list the indexes of the

surviving reordered particles thanks to the increasing function s : [1,n — 4] — [1,n] \ {l1,l; —
Lpi(l2), p1(lz — 1)}

Now supposing inductively that for some k < k4, — 1 we have defined the reordered system
up to time 73, the functions ¢1,..., ¢, the indexes Iy,...,l;. Then we freeze th’“’l(lk) =
y Pt =y o) for ¢ > 1 and for 1= Iy, U — 1, we set Wt > 7, g0 = prrtl)

_B;:'k)' For ¢ € [y, Tg41], we define thk(l) <...< Yt‘%’k(”*%) as the

Ezelk 1{h( Pl— 1(1)) h(Xl)}(Bt

increasing reordering of (Xg)ighu...ulk and we set ﬂf’“(l) = f’“(l)—i-f:k Zi¢[1U urk 1{Y“’k(” Xl}ng'
The index lj 4 is defined as the unique | € [2, n—2k] such that YTfi(l) YTfi(ll Y and h(YW’“( )) #

h(YLp’“(lfl)) and we list the indexes of the n—2(k+1) surviving particles thanks to the increasing

function ¢y : [1,n —2(k +1)] = [Ln] \ {li,l1 = Lp1(l2), p1(l2 — 1), . ., @k (lkt1) s ok (U1 — 1) }-
This way, the reordered system is defined up to time 73, .

1 2%k
For t > 7 ., Yt@’“m”( ) g o < Yw'“m‘“” (n=2kmaz) i3 defined as the increasing reordering of
(Xg)i¢llu"'UIkmaz and Bt ﬂ kmaz + ka EZ%IIU...UIICWEE {Y;PkmaE (l):X;}dB,z

Let Ny =n—2 Zzz‘i” Vi<t St = Uper, <el0r—1(lk), k-1 (lk—1) } (convention : o is the identity
function) and by a slight abuse of notations, ¢; : I € [1, N¢] — Zﬁ’;gw Lr s Bk (1) € [1,n]\ Ty
(convention : 79 =0, 7y,,,.+1 = +00) denote respectively the number of particles surviving at
time ¢, the indexes of the particles killed before time ¢ and the orlgmal index of the [-th surviving
particle. To simplify notations, we set h; = h(YJ ) and U(j) = I h,.

n =1

Proposition 2.8 Fach reordered particle is a probabilistic characteristic along which the ap-
prozimate solution U} (s,.) is ds a.e. constant up to the time when the particle is killed. More

precisely, for ds a.e. s >0, Vj € [1,n]\ Js, U(?n(s,Ysj) =U(j) =4 J _, hi. Moreover the

n
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dynamics of the reordered system is given by :
. . Y 1.
V1< j<n, dY7 = 1ggu |ondBl + A UG)dE+ (7 D =480 D havy,|. (2.3)

where B = (B',...,") is a P Brownian motion and P a.s., d|V|; a.e. v} = 'y,fvt"'l = 0 and for
LE 2, N, A =0 if b,y # bty and 7f > 0, 41 (V7Y =¥ CD) = 0 otherwise.

Proof : By construction tht(l) <...< Y?pt(Nt) is the increasing reordering of (X});¢;,. Since
couples of particles with opposite sign that merge are killed,

(XX i ¢ LY = {7 b)), 1<TS Ny = {(Y7, hy), 5 ¢ T

According to (1.1), we deduce that g = - E]¢Jt YJ = ZNt hy, Y“"t(”'

Hence the approximate solution writes

Z h(pt {YLPt(l)<x} (2'4)

By the occupation times formula, a.s. for dt a.e. ¢ > 0 the positions (Xti)iggt are distinct

and as a consequence Y;‘pt(l) < Y;’Ot@) <...< th(Nt). Hence dt a.e., Vj ¢ J;, U} (t,Y/) =
Y . .

LS ) ho, 1y = LS hi— %ELME% hi. Since the indexes in [1,7] N J; correspond to

couples of killed particles with opposite sign, the second summation in the right-hand-side is nil

and U (£,Y7) = U(j).

Equation (2.3) is obtained by setting I = ¢, *(j) in the successive equations similar to (2.1) and
(2.2) and using the result we have just proved. Since ds a.e. the positions (X{);¢7, are distinct,
V1<i,j <n, <BB' >=1;-j1 and j is a n-dimensional Brownian motion.

By definition of the particle system, V0 < k < kpaz, Vt € [Tk, Thi1), Vi = 'y;”“l*zk = 0 and for
dlV|; a.e. t € [, 7 +1), V2 <1 <n—2k, v >0and 7%(}’?‘7’“(” —Yf’“(lfl)) = 0. As the stopping
time 741 is the first time after 7, when two surviving particles with opposite sign merge, for
L€ [2,n — 2K] if by () # o (i-1» then ¥t € [r,mi11), VP — v207D 5 0 which combined
with the previous property yields that for d|V|; a.e. t € [y, 7% + 1), 7} = 0. Since a property
holding Vk, for d|V|; a.e. t € [1g, T+1), holds for d|V|; a.e. ¢ > 0, the proof is completed. ||

2.4 Proof of Proposition 2.2

For ¢ € R, let ¢, = [cn]/n where [z] denotes the integral part of . The entropy inequalities
(0.2) are based on the functions |u — ¢| and sgn(u — ¢)(A(u) — A(c)). That is why, we are
interested in the approximation |U} (t,) — ¢, | of the first one. According to (2.4), the function
z — |Ug (t,z) — cy| — |c,| is the cumulative distribution function of the signed measure

Ny !

1 1 .

e = - Z (sgn(g Zh%(i)—cn)h%(l) (5 b= cn}>5)¢"t(’) (convention: sgn(0) = 0).
=1 i=1

The next Lemma gives a much simpler expression of this measure.
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Lemma 2.9 Let for 1 < j <n, w; = sgn(U(j) — cn)hj — Liv(j)=c,}-

LYLE LN, Ulpe(l) = £ 50 by
2. If for some | € [2, N¢], w apt(l 1y = Land wy,q) = =1, then hy,q-1) # by, )
8. If for some | € [2, Ni], hy,q—1) # hyyq) then Wey(1-1) 7 Wiy (1)-

4.

1 Nt 1 n
VE2 0, 1 = =y wp By ey = — ) widy;.
=1 =1

Proof : 1. Forl € [I,N;], U(g(l)) = 2 }p;(ll) hj =1 eell h + = Z h Since the indexes
JEJt J%Jt
n [1, ()] N J; correspond to couples of particles with opposite sign, the first summation in

the right-hand-side is nil. Setting i = ¢; '(4) in the second summation, we obtain U(yp(l)) =
!

% 2i=1Peu(i)

2. Let I € [2, N¢] be such that w,,_1) = 1 and wy, ) = —1. Necessarily U(p;(l — 1)) # cp-

e In case U(yp(l)) # ¢, since according to 1., U(p¢(1)) = U(pe(I—1))+hg, 1)/, sgn(U (ge(l—1))—

cn) = sgn(U(p¢(1)) — cn). By the definition of the weights w;, we deduce that h,,_1) # hy, )

e In case Uy, (;) = ¢, then according to 1., U(pi(l — 1)) + hy,qy/n = cn-

Hence hy, ;) = —sgn(U(p¢(I—1)) —cp). Multiplying both sides by h,, 1), we get by, —1yhp, 1) =

—Wyp,(1—-1) = —1.

3. e In case U(pi(l — 1)) # ¢ and U(g:(l)) # cn, according to 1., sgn(U(pi(l — 1)) —cpn) =
sgn(U(p¢ (1)) — cn) and wy, —1) # Wy, 1)

e In case U(pi(l — 1)) = cn, wy,—1) = —1 whereas wy, ;) = sgn(hq,( /n) =+1.

e In case U(p(1)) = cn, wy, (1) = —1 whereas sgn(U (¢ (I — )) cn) = —hy) Whence multiplying
both sides by h(pt(lfl)’ we get wy, ;1) = hgﬂt(l 1)h () = 1.

4. Combining the definition of ;" and 1., we obtain that v, = L El 1 Wy (1) Y“"f(’) According

to 3., the couples of particles that merge and are killed at successive times 71 < ... < 7%, .. have
opposite weights w. Since their positions are frozen afterwards, V¢ > 0, > jeds wjéyj is the nil
t

1 & n,c
E Z ’U)](SYtJ = Z U)Jéyj + Z w@t th(l) = Vt
i=1

]E]t

measure and

We are now ready to prove Proposition 2.2. Let mj° denote the limit point of a weakly converging
subsequence of (77 ), that we still index by n for simplicity, g be a non-negative C*° function
with compact support on [0,400) x R and ¢(¢,z) = [*_ g(t,y)dy. According to Lemma 2.9,

computing ¢(¢, Y;j ) thanks to (2.3), summing the obtained result multiplied by w; over 1 < j <n,

15



we get

t
0=— <" d(t,.) >+ <1y ¢(0, )>+/ < v 0sd(s,.) >+ < EXC0:9(s,.) > ds

+—/Zw] Orrp(s ds+/ 5> w0 (s, Y )dp]

it s i s
/ > sy D =y )9 6(5, Y )V, (2:5)
JETs
where
1 1
pe=2 > wiA(U(4))6y,; = - Zwnps(l)A,(U((‘pS(l)))(SYSlPs(l)' (2.6)
i s =

Denoting respectively by T}, T2 and T2 the sum of the three first terms, the sum of the fourth
and the fifth terms and the last term of the r.h.s., (2.5) writes T} + 72 + T3 = 0. Clearly,
limy, 100 E[TZ| = 0.

T = 0 Zwws(l)1{%5(z)iww(zfl)ﬂé(axﬁb(s’Ys% ) = Oep(s, Y%l Y ))d|V|S

th

/0 Z {wesy=Lwpy - 1)——1}’7s(‘9 (5, Y22 W) + 0pp(s, Y7 U=D))d|V
=2
t Ns

_/0 D V=t g1y Ve (Dub(5, Y O) 4 025, Y271 d|V | (2.7)
=2

According to Proposition 2.8, the first term of the r.h.s. is nil. Combining assertion 2. in
Lemma 2.9 and Proposition 2.8, we check that the third term is also nil. Since 0,¢ = g > 0,
T3 is non-negative. Therefore to conclude, it is enough to check that for the bounded function
F:P(C([0,+00),R)) — R defined by

F(Q) = - /R oty )| * Quly) — cldy + /R 9(0,9)H * Qoly) — cldy
t
+ / / % O(y) — g (s, ) + sgn(H * Ou(y) — )AUH * Os(y)) — A(c))Dug(s, y)dyds,
0 R

limy, 100 E|F(u™) + T}| = 0. Indeed supposing this convergence, since F(u") = F(u") + T} +
T2+ T3, we have E(F(u™)") < E(|F(u™) + T} + |T?|+ (12) ") —n—+00 0. Approximating F by
continuous functions like in the proof of Proposition 1.4, we deduce from the weak convergence
of 7 to 7§° that E™0 (F(Q)~) = 0. Taking t,c, g in denumerate dense sets and then taking
limits, we deduce that 7§° a.s., for any positive test function g, Ve € R, V¢ > 0, F(Q) > 0 i.e.
7e° a.s. H x Q4(x) is the entropy solution of (0.1).

Let us prove that the variables F(u") + T, converge to zero. Since z — U2 (¢,2) — ¢u| — |cp|
is the cumulative distribution function of the signed measure v,", computing the brackets <, >
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in 7! by the integration by parts formula, we get
—|Ug, (£, +00) — cal / g(t,y)dy + /Rg(t,y)lU?n (t,y) — caldy

U (0, +00) —cn|/ (0, y)dy / 9(0,9)|U (0,y) — ealdy

/|U"s+oo —cn|/8sgsydyds—//asgsy| ) — caldyds
- /0 /R Oug(s,y) (H * £(y) — sgn(c,)(A(0) — A(cy)))dyds

As U} (s,+00) = fi (R) does not depend on s, the sum of the first, the third and the fifth terms
of the r.h.s. is nil.

We set N(y) = max{l € [1,Ng], v < y}. By Lemma 2.9 1., if U(ps(l)) = ¢, then
?gn()U(cps(l — 1)) —en) = —hy,q) and wy, ) = —1 = —hy, ysgn(U(ps(l — 1)) — ¢,). Hence by
2.6),

)

Ns(y)

> (sen(U — n) + LU, (1)) =c, 580U (95 (I = 1)) = 1)) hy, () A (U (05 (1))
=1

Hx+&(y

§|P—‘

Moreover according to (2.4), U2 (s,y) = 1 37 s y and with the convention U (p5(0)) = 0,

905

sgn(Uy, (s,9) — cn) (A(Ug, (5,9)) — A(cn)) = sgn(0 — ¢n) (A(0) — A(cn)))

s\Y
+ > [sgn(U(sos(m — cn) (AU (ps(1)) — AU (51 — 1))))
=1

10, ey s (U (51— 1)) — ) (AU (05 (1)) — AU (551 — 1))))] .
Therefore

H o+ &0%(y) —sgn(cn ) (A(0) — A(cn))) — sgn(Uz, (s,y) — cn) (A(Ug, (5,9)) = A(cn))‘

Ns(y)

< D AUps () = AU (s (1 = 1)) = A'(U (s (D)) gy 1y /.

=1

Since by Lemma 2.9 1., U(ps(l)) = U(ps(l — 1)) + hy, 1y/n, the right-hand-side is smaller than

SUP. ye(-1,1 |A'(z)— A’ (y)|. As the support of ¢ is compact, we deduce that the random variables
lo—y|<+

T! —/Rg(t,y)|U;"”n(t,y) —cn|dy+/Rg(an)|Ugn(0,y) — cpldy

t
o [ 102, (5090 = calgto) + sen(U3, (5,0) = ) (ACUZ, (5.9)) = Aleu))Daa(s, )iy
converge uniformly to 0 as n — 4o00. Since Vz € R, ||z — ¢y — [z —¢|| < |ep —¢] < L

[sgn(z — ¢)(A(x) — A(c)) — sgn(z — cn)(A(z) — Alen))| < Sap ](I2A(y) — A(e) — Alen)),
YE|Cn,C

and according to (1.1), V(s,y) € [0,400) x R, U (s,y) = H = i(y), the variables |F (") + T}\|
also converge uniformly to 0.
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Remark 2.10 It should be noted that we obtain the entropy inequalities because T? is non-
negative i.e. thanks to the local time term which prevents strict crossings of the surviving char-
acteristics Y, j ¢ Js which share the same sign. Moreover, it is necessary to kill couples of
particles with opposite sign that merge so that the non-positive third term of the right-hand-side
of (2.7) vanishes.

3 Numerical example

As a numerical benchmark, we consider the Burgers equation (A(u) = u?/2) with initial data
up(z) = % (11—, 9)(x) — 1ja5(z)) which is the cumulative distribution function of the signed
measure 1m = i (6_3 —0_2 — do + d3). The corresponding entropy solution is given by

[ . ¢
u(t,z) = 7 [mln (m + 3, Z) 1[_3,min(—2+§,—3+ 5.0)] (z)

4
+ max (m - 3, _Z> 1[maX(27%,37 %’0)’3] (,’I;) .

We easily check that the L' norm (resp. variation) of z — u(t,z) is equal to 1/2 if ¢t < 18
and 9/t if t > 18 (vesp. 1 if ¢ < 8, 24/2/t if 8 < ¢ < 18 and 12/t if ¢ > 18). We simulate
the system (1.2) for n = 4000 particles and viscosity coefficient o = 0.001. The initialization
is deterministic : for 1 <4 < 1000, X} = —3 and h(X}) = 1, for 1001 < i < 2000, X} = —2
and h(X}) = —1, for 2001 < 4 < 3000, h(X§) = —1 and for 3001 < 4 < 4000, X} = 3 and
h(X}) = 1. This way, there is no initialization error i.e. the approximate solution at time 0
U0,2) = 237 | h(X{)H (z— X{) is equal to ug(z). The system is discretized in time thanks to
the Euler scheme with time step At = 0.4. If at time kAt, the set of indexes of killed particles
is Iya; and the positions of the Nya; remaining particles are (X} At)iglia, the approximate
solution at time kAt and the positions of the particles at the next time step are given by

U(kAt,z) = % ziglkm h(X{)H (z — XliAt)
Vi & Ikaty X(ppyar = Xiar +0Blppnyar = Biar) + AU (RAL Xia,)) At

Then the couples of particles with opposite sign which are closer than s = 0.005 are killed i.e.
their indexes are added to Ixa¢ to obtain I 1)as-

In figure 1, we compare the exact solution u(t,.) and the approximate solution U(¢,.) at times
t =4,8,16 and 40. We can ounly distinguish very slight differences. The number of surviving
particles Nya¢ is decreasing with &k : indeed N4 = 4000, Ng = 3984, N1 = 2836 and Nyg = 1192
is smaller than 30% of Ny. In table 1, we give the evolution of the expectation of the L' norm
of the error with respect to time. This expectation is estimated from 20 runs of the particle
system. The width of the corresponding Confidence Interval at 95% is also precised. For each
run, at time kAt, the L' norm of the error is computed thanks to the increasing reordering
(kaA’“ft(l))lng Ny, Of the surviving particles (XfA,)i¢r,, by the following formula

Ngae—1

3 %(Ykﬁ“ft(lﬂ) = Y22 0) (ju = UlRAL Y22 ) 4 - Ul At v D) ).

I=1
The expectation of the L' norm of the error remains small in comparison with the L' norm
of the explicit solution (approximately 1%). We also compare the expectation of the variation
of the approximate solution which is given by Nipa;/n (the width of corresponding confidence
interval at 95% is nether greater than 0.0005) with the variation of the explicit solution. They
are very close. This result is not surprising because we kill couples of particles of opposite sign
that merge to mimic the decreasing property of the variation of the explicit solution.
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Figure 1: Comparison of U(¢,z) and u(t, x)

time t 4 8 12 16 20 28 40

[u(t, ) 0.5 0.5 0.5 05 | 045 | 0.321 | 0.225
E|U(t,.) —wu(t,.)][1 | 0.0015 | 0.0018 | 0.0063 | 0.0081 | 0.0039 | 0.0030 | 0.0035
width of C.I. at 95 % | 2.5e-5 | 2.3e-5 | 2.7e-5 | 4.8e-5 | 7.8e-5 | 7.8e-5 | 3e-4

variation u(t,.) 1 1 0.816 | 0.707 0.6 0.429 0.3
E(Ny)/n 1 0.995 | 0.816 | 0.709 | 0.595 | 0.425 | 0.298

Table 1: Evolution of the L' norm of the error with respect to ¢
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Conclusion

In this paper we proved the convergence of a stochastic particles approximation of the entropy
solution of (0.1) as the initial number of particles goes to +oo. In case the initial data wug
is monotonic, the system of interacting particles is the same as the one introduced by Bossy
and Talay [3] [4] for the Burgers equation (A(u) = u?/2). But otherwise, we have modified
the dynamics by killing the couples of particles with opposite sign that merge. This mimics
the decreasing property of the variation of the entropy solution x — wu(t,z) with repect to ¢.
To obtain an effective numerical procedure, it is necessary to discretize the particle system in
time. Our results can be seen as a preliminary step in the study of the convergence rate of
the approximate solution based on the time-discretized system with respect to the time step
At, the number of particles n and the parameter s governing the murders introduced in the
numerical example. From a numerical point of view, killing of particles is interesting because
the computational effort needed to compute the successive positions of the particles decreases
in time with the number of surviving particles. In return additional effort is needed to deal with
the murders.

We should also mention a very convenient feature of the particle system with killing : if the
approximate solution defined as the cumulative distribution function of the weighted empirical
measure is non-negative (resp. non-positive) at time 0, it remains non-negative (resp. non-
positive) afterwards. This feature can be exploited to generalize the convergence results for
the particle approximation of the solution of the porous medium equation given in [7] : using a
system with killing, we could deal with any non-negative initial data with bounded variation and
not only monotonic ones. Indeed the diffusion coefficient of each particle which is a fractional
power of the approximate solution would remain well-defined.

An interesting question is whether killing of couples of particles with opposite sign can be
generalized in space dimension d > 2. Because points are polar for the d-dimensional Brownian
motion, the particles are not likely to merge and it is not sensible to study a system with killing
in continuous time. But it is still possible to contemplate killing couples with opposite sign
which are closer than some critical distance s after discretization in time.
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