
Probabilisti harateristis method for a 1D salar onservationlawB.Jourdain�Otober 2, 2000AbstratIn this paper, we are interested in approximating the solution of a 1D invisid salar on-servation law starting from an initial ondition with bounded variation thanks to a system ofinterating di�usions. We modify the system of signed partiles assoiated with the paraboliequation obtained from addition of a visous term to this equation (see [3℄[4℄[6℄) by killingouples of partiles with opposite sign that merge. The sample-paths of the orrespondingreordered partiles an be seen as probabilisti harateristis along whih the approximatesolution is onstant. This enables us to prove that when the visosity vanishes as the initialnumbers of partiles goes to +1, the approximate solution onverges to the unique entropysolution of the invisid onservation law. We illustrate this onvergene by numerial results.In this paper, we are interested in giving a probabilisti partile approximation of the entropysolution of the salar onservation law�tu+ �xA(u) = 0; u(0; x) = u0(x): (0.1)where A is a C1 funtion and the initial ondition u0 is a funtion with bounded variationi.e. there are a bounded signed measure m and a real onstant a suh that dx a.e., u0(x) =a + R x�1m(dy). Uniqueness does not hold for weak solutions of this equation. But aord-ing to Kruzkhov theorem, there is a unique entropy solution u bounded and belonging toC([0;+1); L1lo(R)) haraterized by the entropy inequalities : 8 2 R, for any positive C1funtion g with ompat support on [0;+1)� R,Z +10 ZR(ju� j�tg + sgn(u� )(A(u) �A())�xg)(t; x)dxdt + ZR ju0(x)� jg(0; x)dx � 0:(0.2)Taking  > kuk1 and  < �kuk1 in (0.2), one easily heks that the entropy solution is a weaksolution.Let jmj and kmk denote respetively the total variation of the measure m and its total mass.As the entropy solution u(t; x) of (0.1) is equal to a+ kmkv(t; x) where v is the entropy solutionof �tv+�xf(v) = 0 for initial data v0(x) = (u0(x)�a)=kmk, f(v) = A(a+ kmkv)=kmk, it is notrestritive to assume from now on that a = 0 and kmk = 1 i.e. jmj is a probability measure.It is well-known that the solution u� of the visous salar onservation law�tu� = �22 �xxu� � �xA(u�); u�(0; x) = H �m(x) (0.3)�ENPC-CERMICS, 6-8 av Blaise Pasal, Cit�e Desartes, Champs sur Marne, 77455 Marne la Vall�e Cedex 2,Frane - e-mail : jourdain�ermis.enp.fr 1



where � > 0 onverges to the entropy solution of (0.1) in the vanishing visosity limit � ! 0. In[6℄, following the approah developped by Bossy and Talay [3℄ [4℄ in ase of the visous Burgersequation (A(u) = u2=2), we introdue the paraboli problem satis�ed by w = �xu� in order toonstrut a probabilisti partile approximation of u� :�tw = �22 �xxw � �x(A0(u�)w); w(0; :) = m; u�(t; x) = Z x�1w(t; y)dywhih writes �tw = �22 �xx � �x(A0(H � w)w); w(0; :) = m (0.4)where (H �w)(t; x) = R x�1w(t; y)dy denotes the spatial onvolution of w(t; :) with the Heavisidefuntion H(y) = 1fy�0g. A weak solution of this equation is obtained thanks to the uniquesolution P 2 P(C([0;+1);R)) of the nonlinear martingale problem (PM�) starting at m:De�nition 0.1 From now on, h is a density of m with respet to jmj with values in f�1; 1g.With any probability measure Q on C([0;+1);R) we assoiate the bounded signed measure ~Qde�ned by d ~Q=dQ = h(X0) where (Xt)t�0 denotes the anonial proess on C([0;+1);R). Thetimes marginals of Q and ~Q are respetively denoted by (Qt)t�0 and ( ~Qt)t�0. We say that Qsolves the martingale problem (PM�) starting at m if Q0 = jmj and8� 2 C2b (R); M�t = �(Xt)��(X0)�Z t0 �22 �00(Xs)+A0(H� ~Qs(Xs))�0(Xs)ds is a Q-martingale:Indeed, by the onstany of the expetation of the P martingale h(X0)M�t , one easily heksthat t ! ~Pt is a weak solution of (0.4). As a onsequene, the funtion u�(t; x) is equal toH � ~Pt(x). That is why we are indued to approximate u�(t; x) by the umulative distributionfuntion Un� (t; x) = H � ~�nt (x) = 1n nXi=1 H(x�Xit )h(Xi0)with �n = 1nPni=1 ÆXi denoting the empirial measure of the partile system de�ned by thestohasti di�erential equationXit = Xi0 + �Bit + Z t0 A0(H � ~�ns (Xis))ds; i � nwhere (B1; : : : ; Bn) a Rn -valued Brownian motion independent of the initial variables Xi0; 1 �i � n I.I.D. with law jmj 2 P(R). Ever in [6℄, we show that as n! +1, the empirial measures�n (onsidered as a P(C([0;+1);R)) random variables) onverge in distribution to the onstantP (suh a result is alled propagation of haos : see [11℄) whih implies the onvergene of Un�to u�. Sine u� onverges to the entropy solution u of (0.1) as � ! 0, it is natural to wonderwhether Un�n onverges to u as n! +1 when limn!+1 �n = 0. This paper is dediated to thisproblem. Aording to the numerial results given in [2℄, the answer is likely to be positive.In ase m is a probability measure, there is no signed weights and Un�n(t; x) = 1nPni=1 1fXit�xg.To prove that Un�n onverges to the entropy solution of (0.1), we want to ompute the left-hand-side of the entropy inequalities (0.2) with Un�n and n = [n℄=n ([x℄ denotes the integral partof x) replaing u and . That is why we are interested in jUn�n(t; x) � nj. Let (Y 1t ; : : : ; Y nt )2



denote the inreasing reordering of (X1t ; : : : ;Xnt ). The funtion x ! jUn�n(t; x) � nj � jnj isthe umulative distribution funtion of the signed measure 1nPnj=1(1fj>[n℄g � 1fj�[n℄)ÆY jt . Ofourse, it is also the umulative distribution funtion of a linear ombination of ÆXit ; 1 � i � nbut the orresponding oeÆients are not onstant in time as previously. That is why thereordered system (Y 1; : : : ; Y n) is very interesting to ompute the approximate left-hand-sideof (0.2). Moreover this system has a very simple interpretation. By the oupation timesformula, a.s., dt a.e., the positions X1t ; : : : ;Xnt are distint and Un�n(t; Y it ) = i=n. Thereforethe urves t ! Y it an be seen as probabilisti harateristis along whih the approximatesolution is dt a.e. onstant. One an hek that (Y 1; : : : ; Y n) is a di�usion with di�usion matrix�n times the identity and onstant drift oeÆient (A0(1=n); : : : ; A0(1)) normally reeted atthe boundary of the losed onvex set Dn = fy = (y1; : : : ; yn) 2 Rn ; y1 � y2 � : : : � yng.The deterministi harateristis assoiated with the salar onservation law (0.1) for the initialdata u0(x) are given by y(t) = y + A0(u0(y))t. For t � infx6=y jx � yj=jA0(u0(x)) � A0(u0(y))jthey may interset. The small Brownian perturbation that is added to de�ne the probabilistiharateristis allows to introdue reexion whih prevents strit rossings with Y is > Y i+1s .If we set �(t; x) = R x�1 g(t; y)dy where g is the nonnegative test funtion in (0.2), omputed�(t; Y it ) by Itô's formula, sum over i the obtained result multiplied by (1fi>[n℄g � 1fi�[n℄),make integrations by parts in the spatial integrals, we get that the left-hand-side of (0.2) withUn�n and n replaing u and  is equal to the ontribution of the loal time term giving thereexion plus a remainder whih vanishes as n ! +1. One remarkable feature is that theontribution of the loal time whih prevents strit rossings of our probabilisti harateristisis positive and gives the entropy inequality in the limit n! +1.When m is a signed measure, the situation is more ompliated. Beause of the possibility ofrossings of ouples of partiles (Xi;Xj) with opposite signs h(Xi0) = �h(Xj0), x! jUn�n(t; x)�nj�n is no longer the umulative distribution funtion of a linear ombination of ÆY it , 1 � i � nwith oeÆients onstant in time. That is why the omputation of the approximate left-hand-side of the entropy inequality (0.2) is not easier with the reordered system (Y 1; : : : ; Y n) than withthe original one. To overome this diÆulty, we an de�ne diretly (Y 1; : : : Y n) as a di�usionnormally reeted at the boundary of Dn with di�usion matrix �n times the identity and driftoeÆient �A0( 1nh(Y 10 )); A0( 1n(h(Y i0 ) + h(Y 20 ))); : : : ; A0( 1nPni=1 h(Y i0 ))� where the initial vetor(Y 10 ; : : : ; Y n0 ) is distributed aording to the law of the inreasing reordering of n independentvariables with law jmj. But when we ompute the left-hand-side of (0.2) with u replaed bythe new approximate solution 1nPni=1 h(Y i0 )H(x � Y it ), the ontribution of the loal time onhyperplanes yi = yi+1 suh that h(Y i0 ) = �h(Y i+10 ) has the wrong sign.In fat, the right approah onsists in modifying the dynamis of the original partile system(X1; : : : ;Xn) by killing the ouples of partiles with opposite sign that merge. This modi�ationis in fat very natural : this auses the variation of the approximate solution x ! Un� (t; x) toderease with t, whih is a transription of the same property satis�ed by x! u�(t; x). In the�rst setion of the paper, we onstrut the modi�ed partile system and prove that for �xed� > 0, the approximate solution of (0.3) based on the surviving partiles still onverges to theexat solution u� as the initial number of partiles n goes to +1. In the seond setion, byonsidering the inreasing reordering of the modi�ed system, we prove that when � depends onn and onverges to 0 as n! +1, this approximate solution onverges to the entropy solution of(0.1). If we assume that m is a probability measure, sine all partiles share the same sign, thereis no killing and we get bak to the muh simpler situation desribed previously. That is whywe obtain stronger onvergene results, suh as a propagation of haos result for the reorderedsystem. The last setion is dediated to an example of numerial simulation of the modi�edsystem with dereasing number of partiles. 3



To onlude this introdution, we mention the approximation of the solution of (0.1) by interat-ing proesses with jumps introdued by Perthame and Pulvirenti [9℄ (see also [5℄). The prinipleis radially di�erent : the system of interating partiles is assoiated with a nonlinear kinetiequation from whih the salar onservation law an be reovered when a relaxation parameter� goes to +1. This approah is not limited to spae dimension 1 as the one presented here.But the onvergene result is for �xed relaxation parameter � > 0 e.g. � does not go do +1with the number of partiles. Moreover, the initial data of (0.1) is not only assumed to have abounded variation but also to be nonnegative and integrable.1 Modi�ation of the partile system assoiated with the vis-ous onservation lawThe modi�ation of the system of di�using partiles onsists in killing the ouples of partileswith opposite sign that merge. Before giving a preise onstrution, we explain why suh anannihilation proedure is naturally assoiated with the martingale problem (PM�).Lemma 1.1 For any signed measure m with kmk = 1 and for any � > 0, the solution P of themartingale problem (PM�) starting at m is suh that the total mass k ~Ptk of ~Pt is non-inreasing.Proof : This proof is based on the Markov property.Aording to the Jordan-Hahn deomposition, 8s � 0 there exist two Borel subsets of R denotedby C+s and C�s suh that C+s [ C�s = R, C+s \ C�s = ; and k ~Psk = ~Ps(C+s )� ~Ps(C�s ):Let 0 � t1 � t2.k ~Pt2k = EP ��1C+t2 (Xt2)� 1C�t2 (Xt2)�h(X0)� = EP �EP�1C+t2 (Xt2)� 1C�t2 (Xt2)����Gt1�h(X0)�where (Gt)t�0 denotes the anonial �ltration on C([0;+1);R).The drift oeÆient b(s; x) = A0(H � ~Ps(x)) is bounded whereas the di�usion oeÆient is astritly positive onstant. Combining Theorems 6.2.2, 6.3.4 and 6.4.3 [10℄, we obtain that ifQt1;x denotes the solution of the martingale problem Q0 = Æx,8� 2 C2b (R); �(Xt)� �(X0)� Z t0 �22 �00(Xs) + b(t1 + s;Xs)�0(Xs)ds is a Q martingalethen P a.s., Qt1;Xt1t2�t1 is a regular onditional probability distribution of Xt2 given Gt1 . Henek ~Pt2k = ZRQt1;xt2�t1(C+t2 )�Qt1;xt2�t1(C�t2 ) ~Pt1(dx)� ZC+t1 Qt1;xt2�t1(C+t2 ) ~Pt1(dx)� ZC�t1 Qt1;xt2�t1(C�t2 ) ~Pt1(dx)� ~Pt1(C+t1 )� ~Pt1(C�t1 ) � k ~Pt1k:This monotoniity property is linked to the intersetion of sample-paths with opposite sign. Thedisretized version of this phenomenom is the murder of the ouples of partiles with opposite4



sign that merge.The preise onstrution of the partile system is based on Girsanov theorem. On a �lteredprobability spae (
;F ;Q ; (Ft)t�0) let X10 ; : : : ;Xn0 be F0 measurable variables I.I.D. aordingto jmj and (W 1; : : : ;W n) a n-dimensional (Ft) Brownian motion. The �rst time when twopartiles with opposite sign merge is�1 = inffs > 0; 9i; j 2 [1; n℄ with h(Xi0) = �h(Xj0) suh that Xi0 + �W is = Xj0 + �W js g:When n+ = Card(fi 2 [1; n℄; h(Xi0) = 1g) and n� = Card(fi 2 [1; n℄; h(Xi0) = �1g) areboth positive, then respetively by reurrene of straights lines and polarity of points for thetwo-dimensional Brownian motion, Q a.s., �1 < +1 andI1 = fi 2 [1; n℄;9j 2 [1; n℄; h(Xi0) = �h(Xj0) and Xi0 + �W i�1 = Xj0 + �W j�1gontains two elements. If n+ � 2 and n� � 2, then Q a.s.�2 = inffs > �1; 9i; j 2 [1; n℄ n I1 with h(Xi0) = �h(Xj0); Xi0 + �W is = Xj0 + �W js g < +1and I2 = fi 2 [1; n℄ n I1;9j 2 [1; n℄ n I1; h(Xi0) = �h(Xj0) and Xi0 + �W i�2 = Xj0 + �W j�2gontains two elements. Indutively, we obtain that Q a.s. 0 < �1 < �2 < : : : < �n+^n� < +1,where�k = inffs > �k�1; 9i; j 2 [1; n℄n(I1[: : :[Ik�1) with h(Xi0) = �h(Xj0); Xi0+�W is = Xj0+�W js g(onvention: �0 = 0) and Ik = fi 2 [1; n℄n (I1[ : : :[Ik�1);9j 2 [1; n℄n (I1[ : : :[Ik�1); h(Xi0) =�h(Xj0) and Xi0 + �W i�k = Xj0 + �W j�kg ontains two elements. At time �k, we kill the pair ofpartiles with opposite sign whih have just merged. More preisely, for onveniene we freezetheir position : 81 � k � n+ ^ n�; 8i 2 Ik; 8t � 0; Xit = Xi0 + �W it^�k : After time �n+^n� ,either there is no remaining partile (ase n+ = n� = n=2) or all the remaining partiles sharethe same sign and keep moving aording to the orresponding oordinates of the Brownianmotion : 8i 2 [1; n℄ n (I1 [ : : : [ In+^n�); 8t � 0; Xit = Xi0 + �W it :Let It = ; if 0 � t < �1, = Skl=1 I l if �k � t < �k+1 for 1 � k � n+ ^ n� (onvention�n+^n�+1 = +1) denote the set of indexes of partiles killed at time t. The approximatesolution is onstruted thanks to the surviving partiles :Un� (t; x) = 1nXi=2It h(Xi0)H(x�Xit ):We denote by �n = 1nPni=1 ÆXi the empirial measure of the system. Aording to de�nition0.1, ~�n = 1nPni=1 h(Xi0)ÆXi . Sine the indexes in It orrespond to ouples of partiles with thesame position but opposite sign, as their position is frozen after the time when they merge, wehave ~�nt = 1nXi=2It h(Xi0)ÆXit and Un� (t; x) = H � ~�nt (x): (1.1)By Girsanov theorem, if P 2 P(C([0;+1);R)) is de�ned bydPdQ ����Ft = exp 1� nXi=1 Z t0 A0(Un� (s;Xis))dBis � 12�2 nXi=1 Z t0 A0(Un� (s;Xis))2ds!then for Bit = W it � 1� R t0 A0(Un� (s;Xis))ds, (B1; : : : ; Bn) is a P n-dimensional Brownian motion.Moreover the partile system (X1t ; : : : ;Xnt ) solvesXit = Xi0 + Z t0 1fi=2Isg ��dBis +A0(Un� (s;Xis))ds� ; 1 � i � n: (1.2)5



For notational simpliity, we do not emphasize the dependene of P on n. The probabilitymeasures P and Q are not neessarily equivalent on F . As a onsequene, it is possible thatP(�k < +1) < 1 for some k 2 [1; n+ ^ n�℄. Nethertheless, sine P and Q are equivalent on Ftfor any t 2 [0;+1), de�ning kmax = maxfk � n+ ^ n� : �k < +1g (onvention max ; = 0), Pa.s. 0 < �1 < : : : < �kmax < +1 and 8k 2 [1; kmax℄, Ik ontains two elements.To state the onvergene result of the approximate solution Un� (t; x) = 1nPi=2It h(Xi0)H(x �Xit) = 1nPni=1 h(Xi0)H(x�Xit ) to the solution u� of (0.3), we introdue the weighted spaeL11=(1+x2) = �f : R ! R : kjf jk def= ZR jf(x)j1 + x2 dx < +1� :For any 1 � i � n, the ontinuity of t ! Xit implies that H(x � Xit ) 2 C([0;+1); L11=(1+x2)).Hene Un� 2 C([0;+1); L11=(1+x2)) by linearity.Theorem 1.2 The visous onservation law (0.3) has a unique bounded weak solution u�.Moreover u� belongs to L11=(1+x2) and the approximate solution Un� onverges to it in the followingsense : 8T > 0; limn!+1 E supt�T kjUn� (t; x)� u�(t; x)jk = 0where E denotes the expetation with respet to the probability measure P.Let �n� denote the image of P by �n = 1nPni=1 ÆXi . We are going to take advantage of theequality Un� (t; x) = H � ~�nt (x) to study properties of the sequene (�n� )n in order to prove theTheorem.Lemma 1.3 The sequene (�n�)n is tightProof : Sine �n is the empirial measure of the exhangeable proesses (X1; : : : ;Xn), a-ording to [11℄, the tightness of (�n�)n is equivalent to the tightness of the distributions of theproesses X1. Let 0 � s � t � T and 1 � i � n,jX1t �X1s j � � supr2[s;t℄ jB1r �B1s j+ Z ts jA0(Un� (r;X1r ))jdr:Remarking that A0 is bounded on [�1; 1℄ and applying Burkholder-Davis-Gundy inequality, weobtain E ((X1t �X1s )4) � CT (t� s)2 (1.3)where the onstant CT does not depend on n and is non-dereasing in �. As for any n � 1, X10is distributed aording to jmj=kmk, by Kolmogorov riterion, we onlude that both sequenesare tight.Proposition 1.4 Any weak limit �1� of the tight sequene (�n�)n gives full measure tofQ 2 P(C([0;+1);R)) suh that H � ~Qs(x) solves (0.3) weaklyg:6



To prove the Proposition, we have to deal with the possible lak of regularity of the density h.We approximate h(x) by funtions of the form (1�Cd(x; F )) _�1 where C > 0 and d(x; F ) isthe distane from x to some losed set F inluded in fx : h(x) = 1g. By the regularity of theprobability measure jmj, jmj(fx : h(x) = 1g n F ) an be hosen arbitrarily small. We deduethat :Lemma 1.5 For any � > 0, there is a Lipshitz ontinuous funtion h� with values in [�1; 1℄suh that jmj(fx : h(x) 6= h�(x)g) � �.Proof of Proposition 1.4 : Let �1� denote the limit point of a weakly onverging subsequeneof (�n� )n that we still index by n for simpliity, g be a C1 funtion with ompat support on[0;+1)�R and �(t; x) = R x�1 g(t; y)dy. Computing �(t;Xit ) by Itô's formula and (1.2), summingover i the obtained equality multiplied by h(Xi0), we obtain< ~�nt ; �(t; :) >� < ~�n0 ; �(0; :) > �Z t0 < ~�ns ; �s�(s; :) + �22 �xx�(s; :) +A0(Un� (s; :))�x�(s; :) > ds= �n nXi=1 Z t0 1fi=2Isg�x�(s;Xis)dBis:The right-hand-side onverges to 0 in L1(
;F ;P) as n! +1. So does the left-hand-side whihis transformed by spatial integrations by parts into~�nt (R)ZR g(t; y)dy � ZR g(t; y)H � ~�nt (y)dy � ~�n0 (R) ZR g(0; y)dy + ZR g(0; y)H � ~�n0 (y)dy� Z t0 ~�ns (R)ZR �sg(s; y)dyds+ Z t0 ZRH � ~�ns (y)(�s + �22 �xx)g(s; y)dyds+ Z t0 ZR �xg(s; y)Z y�1A0(Un� (s; z))~�ns (dz)dydsAs ~�ns (R) does not depend on s, the sum of the �rst, the third and the �fth term is nil. It is aneasy onsequene of the oupation times formula that P a:s:, ds a:e:; 8i 6= j 2 [1; n℄ n Is; Xis 6=Xjs . When this property is satis�ed, aording to (1.1),����A(Un� (s; y))�A(0) � Z y�1A0(Un� (s; z))~�ns (dz)���� =�������� Xi=2IsXis�yA0�Xj =2Is 1fXjs�Xisgh(Xj0)n 1A�A0�Xj =2Is 1fXjs<Xisgh(Xj0)n 1A� h(Xi0)n A00�Xj =2Is 1fXjs�Xisgh(Xj0)n 1A��������� supx;z2[�1;1℄jx�zj�1=n jA0(x)�A0(z)j �!n!+1 0:We onlude that for the bounded funtion F : P(C([0;+1);R)) ! R :F (Q) =ZR g(0; y)H � ~Q0(y)dy � ZR g(t; y)H � ~Qt(y)dy+ Z t0 ZRH � ~Qs(y)(�s + �22 �xx)g(s; y) +A(H � ~Qs(y))�xg(s; y)dyds7



E jF (�n)j onverges to zero as n ! +1. In spite of the weak onvergene of �n� to �1� , weannot dedue immediately that E�1� jF (Q)j = 0 sine beause of the density h, the funtionF is not neessarily ontinuous. That is why we de�ne a ontinuous funtion F � by replaingH � ~Qs(x) by < Q;H(x�Xs)h�(X0) > in the de�nition of F to upper-bound E�1� jF (Q)j.E�1� jF (Q)j � E�1� (jF � F �j(Q)) + j(E�1� � E�n� )jF �(Q)jj+ E�n� (jF � F �j(Q)) + E�n� jF (Q)jAs F � is a ontinuous and bounded funtion, for �xed � > 0, the seond term of the right-hand-side onverges to 0 as n ! +1. As the initial variables (X10 ; : : : ;Xn0 ) are I.I.D. aording tojmj=kmk, using Lemma 1.5 we obtain 8n � 1; 8(s; x) 2 [0;+1)� R,E�n� jH � ~Qs(x)� < Q;H(x�Xs)h�(X0) > j � 1n nXi=1 E (jh � h�j(Xi0)) = E (jh � h�j(X10 )) � �:With the uniform ontinuity of the funtion A0 on [�1; 1℄, we dedue that E�n� (jF � F �j(Q))onverges to 0 uniformly in n as � ! 0. Remarking that �1� a.s., Q0 = jmj, we hek thatE�1� (jF � F �j(Q)) also onverges to 0. Hene E�1� jF (Q)j = 0. Taking t; ; g in denumeratedense sets and then taking limits, we dedue that �1� a.s., for any test funtion g, F (Q) = 0 i.e.�1� a.s. H � ~Qs(x) is a weak solution of (0.3).We are now ready to onlude the Proof of Theorem 1.2Proof of Theorem 1.2 : Proposition 1.4 ensures existene of bounded weak solutions of(0.3). If u is suh a solution, then by a good hoie of test funtions one obtains the followingintegral representation :dx a:e:; u(t; x) = G�t � (H �m)(x)� Z t0 ��xG�t�s � A(u(s; :))� (x)dswhere G�t (x) = exp(�x2=2�2t)=�p2�t denotes the heat kernel. Uniqueness of bounded weaksolutions is easily derived (see [6℄ for instane). From now on, u� denotes the unique boundedweak solution of (0.3). Again aording to Proposition 2.2, there exists Q 2 P(C([0;+1);R)suh that u�(s; x) is equal to H� ~Qs(x). Sine 8t � 0, s! H� ~Qs(x) =< Q;h(X0)H(x�Xs) > isontinuous at t as soon as Qt(fxg) = 0 (ondition satis�ed dx a.e.), we dedue that the funtionu� belongs to C([0;+1); L11=(1+x2)).Let T > 0. We want to prove that 0 is the only limit point of (E supt2[0;T ℄ kjUn� (t; x)�u�(t; x)jk)n.For any subsequene, aording to Lemma 1.3, we an extrat from the orresponding subse-quene of (�n�)n a further subsequene onverging weakly to �1� , that we still index by n forsimpliity. Sine Un� (t; x) = H � ~�nt (x), it is suÆient to show that limn E�n� supt�T kjH � ~Qt(x)�u(t; x)jk = 0. The funtion Q ! supt�T kjH � ~Qt(x) � u(t; x)jk is not neessarily ontinuous.That is why, for � > 0, we introdue H�(x) = 1fx>0g + x+�� 1f���x�0g and h� as in Lemma 1.5whih are Lipshitz ontinuous approximations of the funtions H and h. Using Proposition 2.2,we getE�n� supt2[0;T ℄ kjH � ~Qt(x)� u(t; x)jk � (E�n� � E�1� ) supt2[0;T ℄ kj < Q;H�(x�Xt)h�(X0) > �u(t; x)jk+ (E�n� + E�1� ) supt2[0;T ℄ kj < Q;H�(x�Xt)h�(X0)�H(x�Xt)h(X0) > jk: (1.4)The funtions Q 2 P(C([0;+1);R)) !< Q;H�(x � Xt)h�(X0) > indexed by (t; x) 2 [0; T ℄ �R are equiontinuous and bounded by 1. We dedue that Q ! supt2[0;T ℄ kj < Q;H�(x �8



Xt)h�(X0) > �u(t; x)jk is ontinuous and bounded. Hene for �xed �, the �rst term of theright-hand-side of (1.4) onverges to 0 as n! +1.kj < Q;H�(x�Xt)h�(X0)�H(x�Xt)h(X0) > jk � kj < Q; jh� � hj(X0) > jk+ kjQt((x� �; x℄)jk= �j < Q; jh� � hj(X0) > j+ ZR�Z y+�y dx1 + x2�Qt(dy)� �j < Q; jh� � hj(X0) > j+ 2artan� �2�As the variables (X10 ; : : : ;Xn0 ) are I.I.D. aording to jmj, �1� a.s., Q0 = jmj. With Lemma 1.5,we obtain that the seond term of the right-hand-side of (1.4) onverges to 0 uniformly in n as�! 0.
2 Convergene of the approximate solution to the entropy so-lution of (0.1)2.1 The onvergene resultLet (�n)n be a sequene of positive numbers suh that limn!+1 �n = 0 and (X1; : : : ;Xn) and Pbe de�ned like previously with �n replaing �. We are interested in the asymptoti behaviour ofUn�n(t; x) = 1nPni=1 h(Xi0)H(x�Xit ) as n! +1. Considering Theorem 1.2 and the onvergeneof the solution u� of the visous onservation law (0.3) to the unique entropy solution of (0.1)as � ! 0, our main result is not surprising.Theorem 2.1 If (�n)n is a sequene of positive numbers suh that limn!+1 �n = 0, then theapproximate solution Un�n(t; x) onverges to the unique entropy solution u(t; x) of (0.1) withinitial data u0(x) = H �m(x) in C([0;+1); L11=(1+x2)). More preisely,8T > 0; limn!+1 E supt�T kjUn�n(t; x)� u(t; x)jk = 0:Let �n�n denote the image of P by the empirial measure �n = 1nPni=1 ÆXi . Sine the sequene(�n)n is bounded, by an easy adaptation of the proof of Lemma 1.3, we hek that the sequene(�n�n)n is tight. The proof of Theorem 2.1 is the same as the one of Theorem 1.2 as soon as wehek that the following Proposition analogous to Proposition 1.4 holds :Proposition 2.2 Any weak limit �10 of the tight sequene (�n�n)n gives full measure tofQ 2 P(C([0;+1);R)) suh that the entropy solution of (0.1) is equal to H � ~Qs(x)g:Before introduing reordered partiles in the general ase in order to prove this Proposition, we�rst suppose that m is a probability measure. In this muh simpler ase, sine all partiles arepositive there is no killing and the de�nition of the system of reordered partiles is quite simple.Moreover, we dedue from Proposition 2.2 a propagation of haos for this system.9



2.2 Propagation of haos for the reordered system in ase m is a probabilitymeasureBy Kruzkhov uniqueness result for entropy solutions of (0.1), there is no more than one mappingP (t) 2 C([0;+1);P(R)) suh that the entropy solution u(s; x) of (0.1) is equal to (H �P (s))(x).Combining the tightness of the distributions of the empirial measures �n, the ontinuity of themappingQ 2 P(C([0;+1);R)) ! (t! Qt) 2 C([0;+1);P(R)) and Proposition 2.2, we deduethe following onvergene result for the ow of time-marginals t! �nt .Corollary 2.3 The variables t! �nt 2 C([0;+1);P(R)) onverge in distribution to the uniquemapping P (t) 2 C([0;+1);P(R)) suh that the entropy solution u(s; x) of (0.1) is equal to(H � P (s))(x).This onvergene is weaker than a lassial propagation of haos result i.e. the onvergenein distribution of the empirial measures �n onsidered as P(C([0;+1);R))-valued randomvariables to a onstant P . Here the natural andidate for the limit is a probability measureP 2 P(C([0;+1);R)) suh that H � Ps(x) is equal to the entropy solution u(s; x) of (0.1) andP a.s., 8t � 0, Xt = X0+R t0 A0(H �Ps(Xs))ds. We would like to prove uniqueness of probabilitymeasures satisfying both these properties and to hek that any weak limit �10 of the sequene(�n�n)n is onentrated on suh probability measures. Beause of the possible disontinuities ofthe entropy solution u(t; x), we annot prove these results.Nethertheless, we are able to prove a propagation of haos on the sample-path spae for thereordered partile system (Y 1; : : : ; Y n) whih is de�ned as follows : for any t � 0, Y 1t � Y 2t �: : : � Y nt is the inreasing reordering (order statistis) of (X1t ; : : : ;Xnt ). By an easy adaptationof the proof given in [7℄ for partile systems assoiated with the porous medium equation, wehek that (Y 1; : : : ; Y n) is a di�usion normally reeted at the boundary of the losed onvexset Dn = fy = (y1; : : : ; yn) 2 Rn ; y1 � y2 � : : : � yng. More preisely, for 1 � j � n,Y jt = Y j0 + �n�jt + Z t0 A0(Un�n(s; Y js ))ds+ Z t0 (js � j+1s )djV jswhere �jt = R t0 Pni=1 1fY js =XisgdBis, 1s = n+1s = 0, (R t0 (js � j+1s )djV js)1�j�n is a ontinuousproess with �nite variation jV jt and djV js a.e. 82 � j � n, js � 0 and js(Y js � Y j�1s ) = 0.By the oupation times formula P a.s., ds a.e. the positions X1s ; : : : ;Xns are distint. As aonsequene 81 � i; j � n, < �i; �j >t= 1fi=jgt and (�1; : : : ; �n) is a n-dimensional Brownianmotion. Moreover ds a.e., 81 � j � n, Un�n(s; Y js ) = j=n i.e. the reordered sample-paths arestohasti harateristis along whih the approximate solution is ds a.e. onstant.Let �n = 1nPni=1 ÆY i denote the orresponding empirial measure. Even if 8s � 0; �ns = �ns , ingeneral �n 6= �n. For Q 2 P(C([0;+1);R)) let GQt : x 2 [0; 1℄! inffy : H �Qt(y) � xg denotethe pseudo-inverse of the umulative distribution funtion of the marginal Qt. The Lebesguemeasure on [0; 1℄ is denoted by �. We reall that Qt = � Æ (GQt )�1.Theorem 2.4 The empirial measures �n 2 P(C([0;+1);R)) of the reordered partile systemsonverge in distribution to the unique P element ofA = fQ 2 P(C([0;+1);R)) : 8k 2 N� ; 80 � t1 < t2 < : : : < tk; Qt1;:::;tk = �Æ(GQt1 ; : : : ; GQtk)�1gand suh that 8t � 0; Pt = P (t). 10



Proof : Sine the �nite-dimensional marginals Qt1;:::;tk of Q 2 A are determined by its one-dimensional marginals Qt, there is no more than one probability measure P 2 A suh that8t � 0; Pt = P (t).We have to hek that the distribution ��n of the empirial measures �n onverge weakly to aprobability measure onentrated on fQ 2 A : 8t � 0; Qt = P (t)g. Aording to Sznitman [11℄,the tightness of the sequene (��n)n is equivalent to the tightness of the sequene ( 1nPnj=1 P Æ(Y j)�1)n. We easily hek that 8n � 1; 1nPnj=1 P Æ (Y j0 )�1 = m. Moreover, if y1 � y2 �: : : � yn (resp. y01 � y02 � : : : � y0n) denote the inreasing reordering of (x1; : : : ; xn) 2 Rn(resp. (x01; : : : ; x0n)), Pni=1(y0i � yi)4 � Pni=1(x0i � xi)4 : this inequality an be heked by aneasy omputation for n = 2 and then generalized by indution. Hene8T > 0; 8s; t 2 [0; T ℄; 1n nXj=1 E((Y jt � Y js )4) � 1n nXi=1 E ((Xit �Xis)4) � CT (t� s)2:By Kolmogorov riterion, we onlude that both sequenes are tight.Let ��1 denote the limit of a onvergent subsequene of (��n)n that we still index by n forsimpliity. Sine 8t; �nt = �nt and Q 2 P(C([0;+1);R)) ! (t ! Qt) 2 C([0;+1);P(R)) isontinuous, by Corollary 2.3, we obtain that ��1(fQ : 8t � 0; Qt = P (t)g) = 1. As A is losed(see Lemma 2.5 below), ��1(A) � lim supn ��n(A).We easily hek that for 0 � t1 < t2 < : : : < tk,81 � i � n; 8x 2 ((i� 1)=n; i=n℄; (G�nt1 ; : : : ; G�ntk )(x) = (Y it1 ; : : : ; Y itk):Hene ��n(A) = 1 whih onludes the proof.Lemma 2.5 The set A is losed for the weak onvergene topology. Moreover it is equal to~A = fQ 2 P(C([0;+1);R)) : 8x 2 [0; 1℄; Q(infs�0H �Qs(Xs) � x) � xg:Proof : Suppose that (Qn)n 2 A onverges weakly to Q. Let t1 < t2 < : : : < tk. Aording toBillingsley [1℄(proof of Theorem 25.6 p.343), 81 � i � k, �(dx) a.e. GQnti (x) ! GQti (x). Hene�(dx) a.e. (GQnt1 ; : : : ; GQntk )(x) ! (GQt1 ; : : : ; GQtk)(x). Sine Qnt1;:::;tk = � Æ (GQnt1 ; : : : ; GQntk )�1onverges weakly to Qt1;:::;tk , we dedue that Qt1;:::;tk = � Æ (GQt1 ; : : : ; GQtk)�1. Hene A is losed.For Q 2 P(C([0;+1);R)), beause of the weak ontinuity of s ! Qs, infs�0H � Qs(Xs) =infq2Q+ H �Qq(Xq) and X ! infs�0H �Qs(Xs) is measurable.Let Q 2 A, (qi)i2N� denote the elements of Q+ and x 2 [0; 1℄. Sine H �Qt(GQt (y)) � y,Q�min(H �Qq1(Xq1); : : : ;H �Qqk(Xqk)) � x�= ��y : min(H �Qq1(GQq1(y)); : : : ;H �Qqk(GQqk(y))) � x� � �(y : y � x) = x:Taking the limit k ! +1, we dedue Q(infq2Q+ H �Qq(Xq) � x) � x. We easily onlude thatQ 2 ~A.Let Q 2 ~A, t1 < t2 < : : : < tk, x 2 R and 1 � i � k. As fGQt (y) � xg = fy � H �Qt(x)g,Q(fGQti ( kminj=1 H �Qtj (Xtj )) � xg) = Q(f kminj=1 H �Qtj (Xtj ) � H �Qti(x)g) � H �Qti(x)11



Moreover sine GQt (H �Qt(y)) � y, the onverse inequality holds :Q(fGQti ( kminj=1 H �Qtj (Xtj )) � xg) � Q(fGQti (H �Qti(Xti)) � xg) � Q(Xti � x) = H �Qti(x):Hene if �Qt1;:::;tk : x 2 [0; 1℄! inffy : Q( kminj=1 H �Qtj (Xtj ) � y) � xg;Qt1;:::;tk = � Æ ((GQt1 ; : : : ; GQtk) Æ �Qt1;:::;tk)�1. Sine Q 2 ~A, 8y 2 [0; 1℄; Q(minkj=1H � Qtj (Xtj ) �y) � y, whih implies �Qt1;:::;tk(x) � x. As Qti = � Æ (GQti )�1 we dedue that �(dx) a.e., GQti (x) =GQti (�Qt1;:::;tk(x)). Hene �(dx) a.e., (GQt1 ; : : : ; GQtk)(x) = (GQt1 ; : : : ; GQtk)(�Qt1;:::;tk(x)) and Qt1;:::;tk =� Æ (GQt1 ; : : : ; GQtk)�1. We onlude that ~A � A.Remark 2.6 If the entropy solution (t; x)! u(t; x) = H �Pt(x) of (0.1) is ontinuous, then forany t � 0, the probability measure Pt does not weight points and 8x 2 [0; 1℄; P (H�Pt(Xt) � x) =x. Sine P 2 ~A and H �Pt(Xt) � infs�0H � Ps(Xs), we dedue that P (H �Pt(Xt) = infs�0H �Ps(Xs)) = 1. By the ontinuity of t ! H � Pt(Xt), we onlude that P a.s., t ! H � Pt(Xt) isonstant. Hene the sample-paths t! Xt are stohasti harateristis along whih the entropysolution is onstant.On the other hand, when a shok i.e. a disontinuity urve appears at time t0 > 0 and positionx0 for the entropy solution, Pt0(fx0g) = P (fXt0 = x0g) > 0 and for P almost all the sample-paths suh that Xt0 = x0, t ! H � Pt(Xt) is onstant on [0; t0) and presents a stritly positivejump at time t0.Remark 2.7 For any bounded monotone initial data u0(x), Kunik [8℄ gives an expliit repre-sentation formula for the entropy solution of (0.1). When u0(x) is the umulative distributionfuntion of a probability measure, the solution is given by u = �xv where v(t; x) = sups2[0;1℄(xs�tA(s)� I(s)) and I is a primitive of the pseudo-inverse of u0: x! inffy : u0(y) � xg.2.3 System of reordered partiles and probabilisti harateristisIn the general ase, beause of the murder of the ouples of partiles with opposite sign thatmerge, the desription of the reordered system is more ompliated that when m is a probabilitymeasure. We reall that in the onstrution of the partile system (X1; : : : ;Xn), �1 < �2 <: : : < �kmax denote the suessive times when ouples of surviving partile with opposite signmerge and are killed. For t 2 [0; �1℄ let Y 1t � Y 2t � : : : � Y nt denote the inreasing reorderingof (X1t ; : : : ;Xnt ). Again by an easy adaptation of the proof given in [7℄, we hek that on[0; �1℄, (Y 1; : : : ; Y n) is a di�usion normally reeted at the boundary of the losed onvex setDn = fy = (y1; : : : ; yn) 2 Rn ; y1 � y2 � : : : � yng. More preisely, for t � �1 and 1 � j � n,Y jt = Y j0 + �n�jt + Z t0 A0(Un�n(s; Y js ))ds+ Z t0 (js � j+1s )djV js (2.1)where �jt = R t0 Pni=1 1fY js =XisgdBis, 1s = n+1s = 0, (R t0 (js � j+1s )djV js)1�j�n is a ontinuousproess with �nite variation jV jt and djV js a.e. 82 � j � n, js � 0 and js(Y js � Y j�1s ) = 0.We easily hek that�1 = infft � 0; 92 � l � n; Y lt = Y l�1t and h(Y l0 ) 6= h(Y l�10 )g;12



that there is a unique suh index l denoted by l1 and that l1 and l1 � 1 are the reorderedindexes of the �rst pair of killed partiles i.e. with original indexes in I1. After time �1,we freeze Y l1 and Y l1�1 i.e. 8t � �1; Y l1t = Y l1�1t = Y l1�1 and for l = l1; l1 � 1, we set8t � �1; �lt = �l�1 + Pi2I1 1fh(Y l0 )=h(Xi0)g(Bit � Bi�1). We list the indexes of the survivingreordered partiles thanks to the inreasing funtion '1 : [1; n� 2℄! [1; n℄ n fl1; l1 � 1g.For t 2 [�1; �2℄, we de�ne Y '1(1)t � : : : � Y '1(n�2)t as the inreasing reordering of the surviv-ing partiles (Xit )i=2I1 . Therefore for t 2 [�1; �2℄, (Y '1(1)t ; : : : ; Y '1(n�2)t ) is a di�usion normallyreeted at the boundary of Dn�2 : 81 � l � n� 2; 8t 2 [�1; �2℄,Y '1(l)t = Y '1(l)�1 + �n�'1(l)t + Z t0 A0(Un�n(s; Y '1(l)s ))ds+ Z t0 (ls � l+1s )djV js (2.2)where �'1(l)t = �'1(l)�1 + R t�1Pi=2I1 1fY '1(l)s =XisgdBis, 1s = n�1s = 0, (R t0 (ls � l+1s )djV js)1�j�n�2is a ontinuous proess with �nite variation jV jt and djV js a.e. 82 � l � n � 2, ls � 0 andls(Y '1(l)s � Y '1(l�1)s ) = 0. Moreover,�2 = infft � �1; 92 � l � n� 2; Y '1(l)t = Y '1(l�1)t and h(Y '1(l)0 ) 6= h(Y '1(l�1)0 )g;and there is a unique suh index l that we denote by l2. The reordered indexes of the seondpair of killed partiles i.e. with original indexes in I2 are '1(l2) and '1(l2 � 1). After time�2, we freeze their positions : 8t � �2; Y '1(l2)t = Y '1(l2�1)t = Y '1(l2)�2 and for l = l2; l2 � 1,we set 8t � �2; �'1(l)t = �'1(l)�2 +Pi2I2 1fh(Y '1(l)0 )=h(Xi0)g(Bit � Bi�2). We list the indexes of thesurviving reordered partiles thanks to the inreasing funtion '2 : [1; n� 4℄ ! [1; n℄ n fl1; l1 �1; '1(l2); '1(l2 � 1)g.Now supposing indutively that for some k � kmax � 1 we have de�ned the reordered systemup to time �k, the funtions '1; : : : ; 'k, the indexes l1; : : : ; lk. Then we freeze Y 'k�1(lk)t =Y 'k�1(lk�1)t = Y 'k�1(lk)�k for t � �k and for l = lk; lk � 1, we set 8t � �k; �'k�1(l)t = �'k�1(l)�k +Pi2Ik 1fh(Y 'k�1(l)0 )=h(Xi0)g(Bit�Bi�k). For t 2 [�k; �k+1℄, we de�ne Y 'k(1)t � : : : � Y 'k(n�2k)t as theinreasing reordering of (Xit )i=2I1[:::[Ik and we set �'k(l)t = �'k(l)�k +R t�kPi=2I1[:::[Ik 1fY 'k(l)s =XisgdBis.The index lk+1 is de�ned as the unique l 2 [2; n�2k℄ suh that Y 'k(l)�k+1 = Y 'k(l�1)�k+1 and h(Y 'k(l)0 ) 6=h(Y 'k(l�1)0 ) and we list the indexes of the n�2(k+1) surviving partiles thanks to the inreasingfuntion 'k : [1; n� 2(k + 1)℄! [1; n℄ n fl1; l1 � 1; '1(l2); '1(l2 � 1); : : : ; 'k(lk+1); 'k(lk+1 � 1)g.This way, the reordered system is de�ned up to time �kmax .For t � �kmax , Y 'kmax(1)t � : : : � Y 'kmax(n�2kmax)t is de�ned as the inreasing reordering of(Xit )i=2I1[:::[Ikmax and �'kmax(l)t = �'kmax (l)�kmax + R t�kmax Pi=2I1[:::[Ikmax 1fY 'kmax (l)s =XisgdBis:LetNt = n�2Pkmaxk=1 1f�k�tg, Jt = Sk:�k�tf'k�1(lk); 'k�1(lk�1)g (onvention : '0 is the identityfuntion) and by a slight abuse of notations, 't : l 2 [1; Nt℄!Pkmaxk=0 1[�k ;�k+1)(t)'k(l) 2 [1; n℄nJt(onvention : �0 = 0; �kmax+1 = +1) denote respetively the number of partiles surviving attime t, the indexes of the partiles killed before time t and the original index of the l-th survivingpartile. To simplify notations, we set hj = h(Y j0 ) and U(j) = 1nPji=1 hi.Proposition 2.8 Eah reordered partile is a probabilisti harateristi along whih the ap-proximate solution Un�n(s; :) is ds a.e. onstant up to the time when the partile is killed. Morepreisely, for ds a.e. s � 0, 8j 2 [1; n℄ n Js; Un�n(s; Y js ) = U(j) = 1nPji=1 hi. Moreover the13



dynamis of the reordered system is given by :81 � j � n; dY jt = 1fj =2Jtg��nd�jt +A0(U(j))dt + ('�1t (j)t � '�1t (j)+1t )djV jt�: (2.3)where � = (�1; : : : ; �n) is a P Brownian motion and P a.s., djV jt a.e. 1t = Nt+1t = 0 and forl 2 [2; Nt℄; lt = 0 if h't(l) 6= h't(l�1) and lt � 0; lt(Y 't(l)t � Y 't(l�1)t ) = 0 otherwise.Proof : By onstrution Y 't(1)t � : : : � Y 't(Nt)t is the inreasing reordering of (Xit )i=2It. Sineouples of partiles with opposite sign that merge are killed,f(Xit ; h(Xi0)); i =2 Itg = f(Y 't(l)t ; h't(l)); 1 � l � Ntg = f(Y jt ; hj); j =2 Jtg:Aording to (1.1), we dedue that ~�nt = 1nPj =2Jt hjÆY jt = 1nPNtl=1 h't(l)ÆY 't(l)t .Hene the approximate solution writesUn�n(t; x) = 1n NtXl=1 h't(l)1fY 't(l)t �xg: (2.4)By the oupation times formula, a.s. for dt a.e. t � 0 the positions (Xit )i=2It are distintand as a onsequene Y 't(1)t < Y 't(2)t < : : : < Y 't(Nt)t . Hene dt a.e., 8j =2 Jt, Un�n(t; Y jt ) =1nP'�1t (j)l=1 h't(l) = 1nPji=1 hj � 1nPji=1;i2Jt hi. Sine the indexes in [1; j℄ \ Jt orrespond toouples of killed partiles with opposite sign, the seond summation in the right-hand-side is niland Un�n(t; Y jt ) = U(j).Equation (2.3) is obtained by setting l = '�1t (j) in the suessive equations similar to (2.1) and(2.2) and using the result we have just proved. Sine ds a.e. the positions (Xis)i=2Is are distint,81 � i; j � n; < �j�i >t= 1fi=jgt and � is a n-dimensional Brownian motion.By de�nition of the partile system, 80 � k � kmax, 8t 2 [�k; �k+1), 1t = n+1�2kt = 0 and fordjV jt a.e. t 2 [�k; �k+1), 82 � l � n�2k, lt � 0 and lt(Y 'k(l)t �Y 'k(l�1)t ) = 0. As the stoppingtime �k+1 is the �rst time after �k when two surviving partiles with opposite sign merge, forl 2 [2; n � 2k℄ if h'k(l) 6= h'k(l�1), then 8t 2 [�k; �k+1), Y 'k(l)t � Y 'k(l�1)t > 0 whih ombinedwith the previous property yields that for djV jt a.e. t 2 [�k; �k + 1), lt = 0. Sine a propertyholding 8k, for djV jt a.e. t 2 [�k; �k+1), holds for djV jt a.e. t � 0, the proof is ompleted.
2.4 Proof of Proposition 2.2For  2 R, let n = [n℄=n where [x℄ denotes the integral part of x. The entropy inequalities(0.2) are based on the funtions ju � j and sgn(u � )(A(u) � A()). That is why, we areinterested in the approximation jUn�n(t; x)� nj of the �rst one. Aording to (2.4), the funtionx! jUn�n(t; x)� nj � jnj is the umulative distribution funtion of the signed measure�n;t = 1n NtXl=1 �sgn( 1n lXi=1 h't(i)�n)h't(l)�1f 1nPli=1 h't(i)=ng�ÆY 't(l)t (onvention: sgn(0) = 0):The next Lemma gives a muh simpler expression of this measure.14



Lemma 2.9 Let for 1 � j � n, wj = sgn(U(j) � n)hj � 1fU(j)=ng.1. 8l 2 [1; Nt℄; U('t(l)) = 1nPli=1 h't(i).2. If for some l 2 [2; Nt℄, w't(l�1) = 1 and w't(l) = �1, then h't(l�1) 6= h't(l):3. If for some l 2 [2; Nt℄, h't(l�1) 6= h't(l) then w't(l�1) 6= w't(l).4. 8t � 0; �n;t = 1n NtXl=1 w't(l)ÆY 't(l)t = 1n nXj=1wjÆY jt :
Proof : 1. For l 2 [1; Nt℄, U('t(l)) = 1nP't(l)j=1 hj = 1nP't(l)j=1j2Jt hj+ 1nP't(l)j=1j =2Jt hj : Sine the indexesin [1; 't(l)℄ \ Jt orrespond to ouples of partiles with opposite sign, the �rst summation inthe right-hand-side is nil. Setting i = '�1t (j) in the seond summation, we obtain U('t(l)) =1nPli=1 h't(i)2. Let l 2 [2; Nt℄ be suh that w't(l�1) = 1 and w't(l) = �1. Neessarily U('t(l � 1)) 6= n.� In ase U('t(l)) 6= n sine aording to 1., U('t(l)) = U('t(l�1))+h't(l)=n, sgn(U('t(l�1))�n) = sgn(U('t(l))� n). By the de�nition of the weights wj, we dedue that h't(l�1) 6= h't(l):� In ase U't(l) = n, then aording to 1., U('t(l � 1)) + h't(l)=n = n.Hene h't(l) = �sgn(U('t(l�1))�n). Multiplying both sides by h't(l�1), we get h't(l�1)h't(l) =�w't(l�1) = �1.3. � In ase U('t(l � 1)) 6= n and U('t(l)) 6= n, aording to 1., sgn(U('t(l � 1)) � n) =sgn(U('t(l))� n) and w't(l�1) 6= w't(l).� In ase U('t(l � 1)) = n, w't(l�1) = �1 whereas w't(l) = sgn(h't(l)=n)h't(l) = +1.� In ase U('t(l)) = n, w't(l) = �1 whereas sgn(U('t(l�1))�n) = �h't(l) whene multiplyingboth sides by h't(l�1), we get w't(l�1) = �h't(l�1)h't(l) = 1.4. Combining the de�nition of �n;t and 1., we obtain that �n;t = 1nPNtl=1w't(l)ÆY 't(l)t . Aordingto 3., the ouples of partiles that merge and are killed at suessive times �1 < : : : < �kmax haveopposite weights w. Sine their positions are frozen afterwards, 8t � 0; Pj2Jt wjÆY jt is the nilmeasure and 1n nXj=1wjÆY jt = 1n Xj2JtwjÆY jt + 1n NtXl=1 w't(l)ÆY 't(l)t = �n;t :
We are now ready to prove Proposition 2.2. Let �10 denote the limit point of a weakly onvergingsubsequene of (�n�n)n that we still index by n for simpliity, g be a non-negative C1 funtionwith ompat support on [0;+1) � R and �(t; x) = R x�1 g(t; y)dy. Aording to Lemma 2.9,omputing �(t; Y jt ) thanks to (2.3), summing the obtained result multiplied by wj over 1 � j � n,
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we get0 =� < �n;t ; �(t; :) > + < �n;0 ; �(0; :) > +Z t0 < �n;s ; �s�(s; :) > + < �n;s ; �x�(s; :) > ds+ �2n2n Z t0 Xj =2Jswj�xx�(s; Y js )ds+ Z t0 �nn Xj =2Jswj�x�(s; Y js )d�js+ Z t0 1n Xj =2Jswj('�1s (j)s � '�1s (j+1)s )�x�(s; Y js )djV js (2.5)where �n;s = 1n Xj =2JswjA0(U(j))ÆY js = 1n NsXl=1 w's(l)A0(U('s(l)))ÆY 's(l)s : (2.6)Denoting respetively by T 1n , T 2n and T 3n the sum of the three �rst terms, the sum of the fourthand the �fth terms and the last term of the r.h.s., (2.5) writes T 1n + T 2n + T 3n = 0. Clearly,limn!+1 E jT 2n j = 0.nT 3n = Z t0 NsXl=2 w's(l)1fw's(l)=w's(l�1)gls(�x�(s; Y 's(l)s )� �x�(s; Y 's(l�1)s ))djV js+ Z t0 NsXl=2 1fw's(l)=1;w's(l�1)=�1gls(�x�(s; Y 's(l)s ) + �x�(s; Y 's(l�1)s ))djV js� Z t0 NsXl=2 1fw's(l)=�1;w's(l�1)=1gls(�x�(s; Y 's(l)s ) + �x�(s; Y 's(l�1)s ))djV js (2.7)Aording to Proposition 2.8, the �rst term of the r.h.s. is nil. Combining assertion 2. inLemma 2.9 and Proposition 2.8, we hek that the third term is also nil. Sine �x� = g � 0,T 3n is non-negative. Therefore to onlude, it is enough to hek that for the bounded funtionF : P(C([0;+1);R)) ! R de�ned byF (Q) = �ZR g(t; y)jH � ~Qt(y)� jdy + ZR g(0; y)jH � ~Q0(y)� jdy+ Z t0 ZR jH � ~Qs(y)� j�sg(s; y) + sgn(H � ~Qs(y)� )(A(H � ~Qs(y))�A())�xg(s; y)dyds;limn!+1 E jF (�n) + T 1n j = 0. Indeed supposing this onvergene, sine F (�n) = F (�n) + T 1n +T 2n +T 3n , we have E(F (�n)�) � E(jF (�n)+T 1n j+ jT 2n j+(T 3n)�)!n!+1 0. Approximating F byontinuous funtions like in the proof of Proposition 1.4, we dedue from the weak onvergeneof �n�n to �10 that E�10 (F (Q)�) = 0. Taking t; ; g in denumerate dense sets and then takinglimits, we dedue that �10 a.s., for any positive test funtion g, 8 2 R, 8t � 0, F (Q) � 0 i.e.�10 a.s. H � ~Qs(x) is the entropy solution of (0.1).Let us prove that the variables F (�n) + T 1n onverge to zero. Sine x ! jUn�n(t; x) � nj � jnjis the umulative distribution funtion of the signed measure �n;t , omputing the brakets <;>
16



in T 1n by the integration by parts formula, we getT 1n = �jUn�n(t;+1)� njZR g(t; y)dy + ZR g(t; y)jUn�n (t; y)� njdy+ jUn�n(0;+1) � njZR g(0; y)dy � ZR g(0; y)jUn�n (0; y)� njdy+ Z t0 jUn�n(s;+1)� njZR �sg(s; y)dyds � Z t0 ZR �sg(s; y)jUn�n(s; y)� njdyds� Z t0 ZR �xg(s; y)(H � �n;s (y)� sgn(n)(A(0) �A(n)))dydsAs Un�n(s;+1) = ~�ns (R) does not depend on s, the sum of the �rst, the third and the �fth termsof the r.h.s. is nil.We set Ns(y) = maxfl 2 [1; Ns℄; Y 's(l)s � yg. By Lemma 2.9 1., if U('s(l)) = n thensgn(U('s(l � 1)) � n) = �h's(l) and w's(l) = �1 = �h's(l)sgn(U('s(l � 1)) � n). Hene by(2.6),H��n;s (y) = 1n Ns(y)Xl=1 �sgn(U('s(l)) � n) + 1fU('s(l))=ngsgn(U('s(l � 1)) � n)�h's(l)A0(U('s(l))):Moreover aording to (2.4), Un�n(s; y) = 1nPNs(y)l=1 h's(l) and with the onvention U('s(0)) = 0,sgn(Un�n(s; y)� n)(A(Un�n(s; y))�A(n)) = sgn(0� n)(A(0) �A(n)))+ Ns(y)Xl=1 �sgn(U('s(l))� n)(A(U('s(l)))�A(U('s(l � 1))))+ 1fU's(l)=ngsgn(U('s(l � 1))� n)(A(U('s(l)))�A(U('s(l � 1))))�:Therefore����H � �n;s (y)�sgn(n)(A(0) �A(n)))� sgn(Un�n(s; y)� n)(A(Un�n(s; y))�A(n))����� Ns(y)Xl=1 jA(U('s(l))) �A(U('s(l � 1))) �A0(U('s(l)))h's(l)=nj:Sine by Lemma 2.9 1., U('s(l)) = U('s(l � 1)) + h's(l)=n, the right-hand-side is smaller thansupx;y2[�1;1℄jx�yj� 1n jA0(x)�A0(y)j. As the support of g is ompat, we dedue that the random variables����T 1n � ZR g(t; y)jUn�n (t; y)� njdy + ZR g(0; y)jUn�n (0; y) � njdy+ Z t0 ZR jUn�n(s; y)� nj�sg(s; y) + sgn(Un�n(s; y)� n)(A(Un�n(s; y))�A(n))�xg(s; y)dyds����onverge uniformly to 0 as n! +1. Sine 8x 2 R; jjx� nj � jx� jj � jn � j � 1n ,jsgn(x� )(A(x) �A()) � sgn(x� n)(A(x) �A(n))j � supy2[n;℄(j2A(y) �A()�A(n)j);and aording to (1.1), 8(s; y) 2 [0;+1)�R; Un�n(s; y) = H � ~�ns (y), the variables jF (�n) + T 1n jalso onverge uniformly to 0. 17



Remark 2.10 It should be noted that we obtain the entropy inequalities beause T 2n is non-negative i.e. thanks to the loal time term whih prevents strit rossings of the surviving har-ateristis Y js ; j =2 Js whih share the same sign. Moreover, it is neessary to kill ouples ofpartiles with opposite sign that merge so that the non-positive third term of the right-hand-sideof (2.7) vanishes.3 Numerial exampleAs a numerial benhmark, we onsider the Burgers equation (A(u) = u2=2) with initial datau0(x) = 14 �1[�3;�2℄(x)� 1[2;3℄(x)� whih is the umulative distribution funtion of the signedmeasure m = 14 (Æ�3 � Æ�2 � Æ2 + Æ3). The orresponding entropy solution is given byu(t; x) = 1t �min�x+ 3; t4� 1[�3;min(�2+ t8 ;�3+p t2 ;0)℄(x)+ max�x� 3;� t4� 1[max(2� t8 ;3�p t2 ;0);3℄(x)�:We easily hek that the L1 norm (resp. variation) of x ! u(t; x) is equal to 1=2 if t � 18and 9=t if t � 18 (resp. 1 if t � 8, 2p2=t if 8 � t � 18 and 12=t if t � 18). We simulatethe system (1.2) for n = 4000 partiles and visosity oeÆient � = 0:001. The initializationis deterministi : for 1 � i � 1000, Xi0 = �3 and h(Xi0) = 1, for 1001 � i � 2000, Xi0 = �2and h(Xi0) = �1, for 2001 � i � 3000, h(Xi0) = �1 and for 3001 � i � 4000, Xi0 = 3 andh(Xi0) = 1. This way, there is no initialization error i.e. the approximate solution at time 0U(0; x) = 1nPni=1 h(Xi0)H(x�Xi0) is equal to u0(x). The system is disretized in time thanks tothe Euler sheme with time step �t = 0:4. If at time k�t, the set of indexes of killed partilesis Ik�t and the positions of the Nk�t remaining partiles are (Xik�t)i=2Ik�t , the approximatesolution at time k�t and the positions of the partiles at the next time step are given by(U(k�t; x) = 1nPi=2Ik�t h(Xi0)H(x�Xik�t)8i =2 Ik�t; Xi(k+1)�t = Xik�t + �(Bi(k+1)�t �Bik�t) +A0(U(k�t;Xik�t))�t:Then the ouples of partiles with opposite sign whih are loser than s = 0:005 are killed i.e.their indexes are added to Ik�t to obtain I(k+1)�t.In �gure 1, we ompare the exat solution u(t; :) and the approximate solution U(t; :) at timest = 4; 8; 16 and 40. We an only distinguish very slight di�erenes. The number of survivingpartiles Nk�t is dereasing with k : indeed N4 = 4000, N8 = 3984, N16 = 2836 and N40 = 1192is smaller than 30% of N0. In table 1, we give the evolution of the expetation of the L1 normof the error with respet to time. This expetation is estimated from 20 runs of the partilesystem. The width of the orresponding Con�dene Interval at 95% is also preised. For eahrun, at time k�t, the L1 norm of the error is omputed thanks to the inreasing reordering(Y 'k�t(l)k�t )1�l�Nk�t of the surviving partiles (Xik�t)i=2Ik�t by the following formulaNk�t�1Xl=1 12(Y 'k�t(l+1)k�t � Y 'k�t(l)k�t )�ju� U j(k�t; Y 'k�t(l+1)k�t ) + ju� U j(k�t; Y 'k�t(l)k�t )� :The expetation of the L1 norm of the error remains small in omparison with the L1 normof the expliit solution (approximately 1%). We also ompare the expetation of the variationof the approximate solution whih is given by Nk�t=n (the width of orresponding on�deneinterval at 95% is nether greater than 0:0005) with the variation of the expliit solution. Theyare very lose. This result is not surprising beause we kill ouples of partiles of opposite signthat merge to mimi the dereasing property of the variation of the expliit solution.18
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Figure 1: Comparison of U(t; x) and u(t; x)
time t 4 8 12 16 20 28 40ku(t; :)k1 0.5 0.5 0.5 0.5 0.45 0.321 0.225EkU(t; :) � u(t; :)k1 0.0015 0.0018 0.0063 0.0081 0.0039 0.0030 0.0035width of C.I. at 95 % 2.5e-5 2.3e-5 2.7e-5 4.8e-5 7.8e-5 7.8e-5 3e-4variation u(t; :) 1 1 0.816 0.707 0.6 0.429 0.3E(Nt)=n 1 0.995 0.816 0.709 0.595 0.425 0.298Table 1: Evolution of the L1 norm of the error with respet to t19



ConlusionIn this paper we proved the onvergene of a stohasti partiles approximation of the entropysolution of (0.1) as the initial number of partiles goes to +1. In ase the initial data u0is monotoni, the system of interating partiles is the same as the one introdued by Bossyand Talay [3℄ [4℄ for the Burgers equation (A(u) = u2=2). But otherwise, we have modi�edthe dynamis by killing the ouples of partiles with opposite sign that merge. This mimisthe dereasing property of the variation of the entropy solution x ! u(t; x) with repet to t.To obtain an e�etive numerial proedure, it is neessary to disretize the partile system intime. Our results an be seen as a preliminary step in the study of the onvergene rate ofthe approximate solution based on the time-disretized system with respet to the time step�t, the number of partiles n and the parameter s governing the murders introdued in thenumerial example. From a numerial point of view, killing of partiles is interesting beausethe omputational e�ort needed to ompute the suessive positions of the partiles dereasesin time with the number of surviving partiles. In return additional e�ort is needed to deal withthe murders.We should also mention a very onvenient feature of the partile system with killing : if theapproximate solution de�ned as the umulative distribution funtion of the weighted empirialmeasure is non-negative (resp. non-positive) at time 0, it remains non-negative (resp. non-positive) afterwards. This feature an be exploited to generalize the onvergene results forthe partile approximation of the solution of the porous medium equation given in [7℄ : using asystem with killing, we ould deal with any non-negative initial data with bounded variation andnot only monotoni ones. Indeed the di�usion oeÆient of eah partile whih is a frationalpower of the approximate solution would remain well-de�ned.An interesting question is whether killing of ouples of partiles with opposite sign an begeneralized in spae dimension d � 2. Beause points are polar for the d-dimensional Brownianmotion, the partiles are not likely to merge and it is not sensible to study a system with killingin ontinuous time. But it is still possible to ontemplate killing ouples with opposite signwhih are loser than some ritial distane s after disretization in time.Referenes[1℄ P. Billingsley. Probability and Measure. John Wiley and Sons, 1986.[2℄ M. Bossy, L. Fezoui, and S. Piperno. Comparison of a stohasti partile method and a�nite volume deterministi method applied to Burgers equation. Monte Carlo MethodsAppl., 3(2):113{140, 1997.[3℄ M. Bossy and D. Talay. Convergene rate for the approximation of the limit law of weakly in-terating partiles: Appliation to the Burgers equation. Annals of Applied Prob., 6(3):818{861, 1996.[4℄ M. Bossy and D. Talay. A stohasti partile method for the MKean-Vlasov and theBurgers equation. Math. Comp., 66(217):157{192, 1997.[5℄ B. Jourdain. Propagation trajetorielle du haos pour les lois de onservation salaires. InS�eminaire de Probabilit�es XXXII, pages 215{230. Springer, 1998.20
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