
The Texture Gradient Equation for reoveringShape from TextureMaureen ClerCERMICSEole Nationale des Ponts et Chauss�ees, FraneSt�ephane MallatCMAP, Eole Polytehnique, Franeand Courant Institute, New York UniversityNovember 22, 2000AbstratThis paper studies the reovery of shape from texture under per-spetive projetion. We regard Shape from Texture as a statistialestimation problem, the texture being the realization of a stohastiproess. We introdue warplets, whih generalize wavelets over the2D aÆne group. At �ne sales, the warpogram of the image obeys atransport equation, alled Texture Gradient Equation.In order to reover the 3D shape of the surfae, one must estimatethe deformation gradient, whih measures metri hanges in the image.This is made possible by imposing a notion of homogeneity for theoriginal texture, aording to whih the deformation gradient is thesolution of the Texture Gradient Equation. By measuring the warplettransform of the image at di�erent sales, we obtain a deformationgradient estimator.Index terms Shape from Texture, texture gradient, wavelets, warplets.IntrodutionWhen observing a stati monoular image, we pereive the 3D struture ofa sene through a ombination of shape ues, espeially shading, olusionand texture. Shape from Texture, �rst introdued �fty years ago by Gibson[10℄, studies the reovery of the 3D oordinates of a surfae in a sene, byanalyzing the distortion of its texture projeted in an image [2, 8, 14, 15,



18℄. The Shape from Texture problem is generally broken down into twoindependent steps. The �rst step is to measure the texture distorsion in theimage, and the seond is to reover the surfae oordinates from this texturedistorsion.Texture an be modeled either deterministially or stohastially. Al-though strutural, or geometry-based methods allow the reovery of 3Dsurfae oordinates for deterministi textures, stohasti models enompassa wider lass of textures [15, 18, 24℄. Measuring the distorsion of stohastitextures requires loal spetral measurements, obtained by onvolving theimage with waveforms whih are loalized in spae as well as in spatial fre-queny. The loal �ltering most ommonly used is based on the loalizedFourier transform [1, 18℄, and wavelets have also reently been introduedfor Shape from Texture [14℄.Traditionally, one measures the texture distorsion by assuming a prop-erty on the original texture (for instane, its homogeneity, its isotropy, orits spetral ontent), and omparing the properties of the texture in theobserved image to the prior information on the original texture. A di�er-ential analysis onsists in measuring the relative distorsion of the texturewithin the observed image, without referene to the original texture. In[18℄, the relative texture distorsion between neighboring texture pathes isapproximated by an aÆne transform, and measured with a loal Fouriertransform.Unlike loal Fourier funtions, wavelets have the property of migratingin position and sale under a 1D aÆne transform, whih leads to a sim-pler and more preise estimation of the deformation. In two dimensions, tomaintain this migration property, it is neessary to generalize wavelets intowarplets, whose \sale" is no longer a salar but a 2 � 2 warping matrix.The observed textured image is modeled as the realization of a stohastiproess. The texture distorsion an loally be approximated by a 2D aÆnetransform, and the variane of the warplet oeÆients, alled the warpogram,thus undergoes a transport in the position-sale parameter spae. This fun-damental transport equation obeyed by the warpogram is alled TextureGradient Equation. It an be seen as the analog of the Optial Flow Equa-tion for motion estimation [13℄. Whereas the veloity term in the OptialFlow Equation is related to the projetion of the 3D veloity in the image,here, the veloity measures relative texture distorsion in the image. Thetexture distorsion is thus alulated by estimating the di�erent terms of thisequation.The next step is to reover the 3D surfae oordinates from the texturedistorsion. For this, a key assumption on the underlying texture has to be2



made: that it displays some form of spatial homogeneity on the surfae. Per-eptual results indiate that departure from isotropy is also an importantue in shape from texture, leading to biased slant estimates when the origi-nal texture is atually anisotropi [22℄. Here, we address Shape from Texturewithout supposing isotropy for the original texture. As natural though itmay appear from a pereptual point of view, texture homogeneity on a gen-eral surfae is very diÆult to state mathematially. We an distinguish twoindependent subproblems nested in the reovery of 3D surfae oordinatesfrom the texture gradient. One of the subproblems is purely geometrial,and onerns the hange of metri between the 3D surfae and the imageplane, due to the projetion (either orthographi or perspetive) and to thesurfae urvature. We all deformation gradient the relative hange of thismetri within the observed image. For instane, a planar surfae viewedunder an orthographi projetion has a deformation gradient equal to zero.This is not true under a perspetive projetion, beause the foreshorteningis not the same throughout the image. The geometrial issues pertaining toShape from Texture have been formalized by G�arding [8℄ and further ana-lyzed by Malik and Rosenholtz [18℄, who establish the relationship betweenthe deformation gradient and loal surfae shape parameters. The 3D o-ordinates of the surfae an then easily be inferred, up to a saling fator.The other subproblem onerns texture modelization, and imposes a homo-geneity ondition on the texture, under whih the deformation gradient isthe solution of the Texture Gradient Equation, and thus an be alulated.To reapitulate, we deompose Shape from Texture into three separateproblems:� Impose a homogeneity ondition on the texture, under whih the de-formation gradient is the solution of the Texture Gradient Equation.� Estimate the deformation gradient from the Texture Gradient Equa-tion.� Measure the 3D surfae oordinates from the deformation gradient.The paper is organized as follows. In Setion 1, we detail the model usedfor Shape from Texture. We fous our attention on developable surfaes,for whih the texture homogeneity ondition an be stated quite simply. InSetion 2.1, we introdue the Texture Gradient Equation in the 1D ase, afterobserving that wavelets migrate in the position-sale parameter spae underan aÆne transform. Setion 2.2 establishes the Texture Gradient Equation in2D. Wavelets are now replaed by warplets, whih are espeially designed to3



migrate in the position-sale parameter spae under a 2D aÆne transform.In Setion 3, we analyze the statistial issues involved with the TextureGradient Equation. The onsisteny of the deformation gradient estimator isproved in 1D, and the orresponding algorithm is illustrated with numerialresults. Setion 4 presents our Shape from Texture algorithm, with exampleson photographs. Lastly, we propose a new homogeneity ondition, based onthe Texture Gradient Equation, whih generalizes the homogeneity onditionof Setion 1 to general surfaes. This paper is oriented towards modelizationand algorithms: although we state some mathematial results, we refer to[7℄ for their detailed proofs.1 Shape from Texture ModelWe assume the surfae to have a Lambertian reetane distribution. Thissupposes the texture to be \painted" on the surfae, and to have neitherrugosity, nor self-olusions. With our Lambertian assumption, and underperspetive projetion, the image intensity at position x in the image isrelated to the reetane ~R of the surfae in the sene byI(x) = a(x) ~R(p(x)) ; (1)where a(x) is a multipliative shading term, and p(x) is the perspetivebakprojetion (Figure 1). For instane, if the light omes from a pointsoure in diretion ~s, and if ~n is the surfae normal, then a(x) = ~n(p(x)) �~s(p(x)) [12, 6℄.We use a stohasti model: the surfae reetane ~R is the realization ofa random proess, supported on � � IR3, and taking its values in IR. Theimage intensity I is also a random proess, supported on IR2. As explainedin the introdution, we deompose the Shape from Texture problem in threesteps: making a homogeneity assumption on the texture under whih thedeformation gradient is the solution of the Texture Gradient Equation; esti-mating the terms of the Texture Gradient Equation, and obtaining the 3Dsurfae oordinates from the deformation gradient. We now onstrain model(1) by imposing a homogeneity ondition on the original texture ~R.A developable surfae � (i.e. with zero Gaussian urvature) an be un-folded isometrially into a portion of a plane, thus de�ning a mapping fromeah position p(x) 2 � onto d(x) 2 IR2 [4℄. A 2D stohasti proess R on IR2an then be de�ned by R(d(x)) = ~R(p(x)). In the developable ase, model(1) therefore simply beomesI(x) = a(x)R(d(x)) :4



�~n ~sp(x)x O
Figure 1: Perspetive image of a textured ylinder (left). Image formation(right): eah position x in the image orresponds to a point p(x) at theintersetion between the surfae � and the light ray onneting x and theoptial enter O. Vetors ~n and ~s respetively represent the surfae normaland the light soure diretion.We de�ne the original texture ~R to be homogeneous if R is a wide-sensestationary proess: EfR(x)R(x+ �)g = C(�) : (2)In this ase,E�jI(x)j2	 = ja(x)j2E�jR(d(x))j2	 = ja(x)j2 C(0) :The shading term a(x) an thus be estimated up to a multipliative on-stant from the seond moment of the image E�jI(x)j2	. Shape from Shadingstudies shape reovery from the shading term only [17, 20℄. Here, we on-entrate on the texture distorsion, and hene ompensate for illuminationhanges. We estimate the seond moment of the image, and then alulateE�jI(x)j2	�1=2 I(x). The image resulting from this loal ontrast renormal-ization is still denoted I(x) for onveniene. The model therefore simpli�esto I(x) = R(d(x)) : (3)We assume that the surfae � is C3, and in partiular does not ontain anyoluding ontour. Hene d(x) is C3 and invertible.The Jaobian matrix of d(x) in an orthonormal basis (~x1; ~x2) of IR2 is5



given by Jd(x) = 0B��d1(x)�x1 �d1(x)�x2�d2(x)�x1 �d2(x)�x2 1CA : (4)Sine � is developable, and it an be isometrially unfolded into a portionof a plane, Jd(x) represents the hange of metri between the surfae �and the image plane. We all deformation gradient the relative variationsof the Jaobian in diretions x1 and x2. The deformation gradient is thusrepresented by the two matries, for k = 1; 2:Jd(x)�1�xkJd(x) = 0BBB��d1(x)�x1 �d1(x)�x2�d2(x)�x1 �d2(x)�x2
1CCCA�10BBBB��2d1(x)�xk�x1 �2d1(x)�xk�x2�2d2(x)�xk�x1 �2d2(x)�xk�x2

1CCCCA : (5)We want to solve the following inverse problem: estimate the deformationgradient (5), given one realization of I(x) = R(d(x)).2 Texture Gradient Equation2.1 In 1D: Salogram MigrationFor the sake of simpliity, let us start with a 1D Shape from Texture prob-lem, in whih the shape � to be reovered is a urve. Let R denote the\reetane" of �, parameterized by ar-length `: R(`) is assumed station-ary, and is depited, in Figure 2, by a regular zig-zag line along the urve.In a 1D perspetive model, a pixel at position x in the image bakprojetsonto a position p(x) on �, whose ar-length is `(p(x)). The image I(x)an therefore be viewed as the deformation of a stationary proess R byd(x) = `(p(x)): I(x) = R(d(x)) :Let  be a funtion with zero average, whose support is in [�1; 1℄. A loalanalysis of the image is performed by omputing the inner produt of I(x)with  u;s(x) = 1s �x� us � ; (6)6



`(p)p(x2) p(x1)
x2x1Figure 2: A point x in the image bakprojets to a point p(x) on �, whosear-length is d(x) = `(p(x)). The zig-zag line represents a stationary textureovering �. When projeted onto the image, it gives rise to a non-stationaryproess I(x) = R(d(x)).whose support is in [u � s; u + s℄. This inner produt hI;  u;si is alled awavelet oeÆient of I at position u and sale s [19℄, and we all salogramof I the variane of this wavelet oeÆient:w(u; s) = EfjhI;  u;sij2g :If R is stationary, then we easily verify that for a �xed sale s, its salogramis independent of u: dduEfjhR; u;sij2g = 0 : (7)In Figure 3(a), the salogram of R is displayed in a gray-level image as afuntion of u (horizontal axis) and of log s (vertial axis): it does not varywith u. On the other hand, the salogram of I does in general depend on u,as an be seen in Figure 3(b).We introdue the Texture Gradient Equation, whih relates the partialderivatives of w(u; s) with respet to u and to log s:�uw(u; s)� v(u; s) �log sw(u; s) = 0 : (8)The veloity term v(u; s) an be interpreted as a texture gradient: it mea-sures how the image energy moves aross sales, aording to the positionin the image. The Texture Gradient Equation (8) is omparable to the Op-tial Flow Equation for motion estimation [13℄. The onservation equation7
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(b)Figure 3: (a) Top: a realization of stationary proess R(x). Bottom:salogram EfjhR; u;sij2g. The horizontal and vertial axes represent uand log s, respetively. Dark points indiate high amplitude. (b) Top:a realization of deformed proess I(x) = R(d(x)). Bottom: salogramw(u; s) = EfjhI;  u;sij2g.(7), expressing the stationarity of the original proess R, is analogous tobrightness onstany in Optial Flow.We are now going to show that the veloity term v(u; s) tends to thedeformation gradient d00(u)=d0(u) when s! 0. For this, we prove that whenthe sale s is small relative to the sale of variation of the deformation, thesalograms of I and of R are related by a simple migration in the position-sale parameter spae.Beause  u;s is supported in [u � s; u + s℄, a wavelet oeÆient hI;  u;sionly depends on image intensities in a neighborhood of u:hI;  u;si = Z R(d(x)) 1s  �x� us � dxand a hange of variable x0 = d(x) yieldsZ R(x0) 1s  �d�1(x0)� us � dx0d0(d�1(x0)) :If s � d0(u)=d00(u), then  �d�1(x0)�us � is non-zero only if x0 belongs to aneighborhood of d(u) proportional to d0(u)s. Hene d0(d�1(x0)) � d0(u), and8



if  is in C1,  �d�1(x0)� us � �  �x0 � d(u)d0(u)s � :As a onsequene,hI;  u;si � Z R(x) 1d0(u)s �x� d(u)d0(u)s � dx : (9)But aording to (6),1d0(u)s �x� d(u)d0(u)s � =  d(u);d0(u)s(x) ;so on the right-hand side of (9), we reognize hR; d(u);d0(u)si whih is awavelet oeÆient of R at position d(u) and sale d0(u)s. Let s0 be a �xedonstant, muh smaller than d00(u), and let s(u) = s0=d0(u). Then (9) impliesthat w(u; s(u)) = EfjhI;  u;s(u)ij2g � EfjhR; d(u);s0ij2g :Sine R is stationary, EfjhR; d(u);s0ij2g does not depend on u, thereforedduw (u; s(u)) � 0 :One an expand the total derivative ddu as a linear ombination of partialderivatives �u and �s:dduw (u; s(u)) = �uw (u; s(u)) + s0(u)�sw (u; s(u)) :Notiing that s0(u) = �d00(u)d0(u) s(u), for s suÆiently small,�uw(u; s)� d00(u)d0(u) �log sw(u; s) � 0 : (10)It is natural that d(x) should appear under this form in (10), beause withno additional assumption on the stationary proess, the deformation is onlyspei�ed up to an aÆne transform. Indeed, if I(x) = R1(d1(x)) where R1 isstationary, and if d2(x) = �d1(x) + �, then one an �nd another stationaryproess, R2(x) = R1(�x + �), suh that I(x) = R2(d2(x)). The funtionsd1 and d2, whih satisfy d001=d01 = d002=d02, annot be distinguished with thesole knowledge that I is obtained through the deformation of a stationaryproess. 9



Equation (10) was derived in a loose fashion, but a areful analysis ofthe higher-order terms gives the following result [7℄: if the ovariane of R,C(�), de�ned in (2), satis�esC(0)�C(�) = j� jh �(�) ; (11)with h > 0, �(0) > 0, and � ontinuously di�erentiable in a neighborhoodof 0, then (1 +O(s)) �uw(u; s)� d00(u)d0(u) �log sw(u; s) = 0 : (12)The resolution error O(s) tends to zero at least as fast as s, and an thereforebe negleted at �ne sales. Condition (11) on the ovariane of R is quiteweak, and is satis�ed by most orrelation funtions [25℄. This proves that atsmall sales s ! 0, the deformation gradient is the solution of the TextureGradient Equation.A salogram w(u; s) is displayed on the bottom of Figure 3(b): the posi-tions of the salogram maxima are transported in the (u; log s) plane, witha veloity equal to the deformation gradient. Computing the deformationgradient from partial derivatives of the salogram is thus in priniple possi-ble. There remains a diÆulty: we only observe one realization of I(x), fromwhih we must estimate a salogram. Setion 3 fouses on this estimationproblem.2.2 In 2D: warpogram migrationA deformation an be loally approximated by an aÆne transformation,whih is spei�ed by a translation and a dilation. In 1D, the dilation param-eter is a positive salar, whereas in 2D, it is a 2�2 matrix. Our 1D analysisof deformed stationary proesses involved wavelets, onstruted by trans-lating and dilating a mother waveform. In 2D, wavelets are now replaedby warplets, onstruted by applying a 2D aÆne transform to a motherwaveform. Warplets are thus learly designed to migrate under a 2D aÆnetransform.Let  (x1; x2) be a ompatly supported funtion in [�1; 1℄� [�1; 1℄, withzero average. A warplet  u;S is indexed by its position u = (u1; u2), and bya 2� 2 invertible matrix S = �s11 s12s21 s22� ;10



whih deforms the support of  : u;S(x) = detS�1 (S�1(x� u)) :For instane, modulated Gaussians, alled Gabor funtions, (x1; x2) = exp��x21 + x222 � exp(ikx1) ;have widely been used for texture disrimination [3, 21℄.
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Figure 4: Approximate spatial loalization of a warplet  u;S onstrutedwith a Gabor funtion  . The four parameters of S ontrol the shapeand orientation of the ellipse, as well as the frequeny of its osillations(represented by the stripes).A warplet oeÆient of I(x) at position u and for a warping matrix S isde�ned as the inner produt hI;  u;Si. The variane of this warplet oeÆ-ient is alled the warpogram of I:w(u; S) = E�jhI;  u;Sij2	 :As in 1D, we are going to prove that the deformation gradient is the solutionof a Texture Gradient Equation in 2D, for small sales, when detS ! 0. Forthis, we observe that if I(x) = R(d(x)), then the warpograms of I and ofR are related by a migration in the six-dimensional (u1; u2; s11; s12; s21; s22)parameter spae. A warplet oeÆient hI;  u;Si only depends on the valuesof I in a neighborhood of u whose size is ontrolled by S. If detS is small
11



enough,hI;  u;Si = ZZ R(d(x)) 1detS �S�1(x� u)� dx= ZZ R(x0) 1detS �S�1(d�1(x0)� u)� dx0detJd(d�1(x0))� ZZ R(x0) 1detS �S�1J�1d (u)(x0 � d(u))� dx0detJd(u) ;where Jd(x) is the Jaobian matrix de�ned in (4). Warplet oeÆients of Iand of R are thus related by a migration in position-sale:hI;  u;Si � hR; d(u);Jd(u)Si :Let S(u) = Jd(u)�1S0. If detS0 is small enough, the warpograms of I andR are related byw(u; S(u)) = E�jhI;  u;S(u)ij2	 � E�jhR; d(u);S0ij2	 :Sine R is stationary, the right-hand side of the above relation is independentof u. Therefore, for k = 1; 2,ddukw(u; S(u)) � 0 : (13)We show in Appendix A that, after expanding the total derivative dduk , theabove equation an be rewritten, for k = 1; 2,�ukw(u; S) � 2Xi;j=1 gkij(u) aij(u; S) � 0 ; (14)where the aij are the oeÆients of the following matrix produt�a11(u; S) a12(u; S)a21(u; S) a22(u; S)� =  �w(u;S)�s11 �w(u;S)�s12�w(u;S)�s21 �w(u;S)�s22 !��s11 s21s12 s22� ; (15)and the gkij represent the deformation gradient (5):�gk11(u) gk12(u)gk21(u) gk22(u)� = Jd(u)�1�xkJd(u) : (16)In [7℄, we prove that the resolution error in equation (14) is of the order ofO(detS)1=2. This shows that, when detS ! 0, the deformation gradient12



is the solution of a 2D Texture Gradient Equation, whih is a vetor-valuedequation with two omponents, for k = 1; 2:�ukw(u; S)� 2Xi;j=1 vkij(u; S) aij(u; S) = 0 : (17)In Setion 4, we will show how to use (14) to estimate the deformationgradient from warplet oeÆients of the image.3 Consisteny of statistial estimationFor the sake of simpliity, this setion fouses on the 1D estimation problem.We want to estimate d00(u)=d0(u), whih we know from (12) to be the solutionof the Texture Gradient Equation (8) at small sales. For this, we need toestimate partial derivatives �uw(u; s) and �log sw(u; s) from one realizationof I. Sine w(u; s) = E�jhI;  u;sij2	, for a generi variable a representing uor log s, one an see that�aw(u; s) = 2Re [E fhI;  u;sihI; �a u;si�g℄ : (18)with �u (x) =  0(x) ; (19)�log s (x) = � (x)� x 0(x) : (20)Let  be a ompatly supported wavelet with m vanishing moments, i.e.whose inner produt with any polynomial of degree k < m vanishes:Z  (x)xk dx = 0 :Then �u and �log s are also ompatly supported wavelets, and an inte-gration by parts shows that they respetively have m + 1 and m vanishingmoments. Expression (18) indiates that �aw(u; s) simply depends on thewavelet transform of I with mother wavelets  and �a . Appendix B.1details the implementation of the wavelet transform.In view of (18), we ould use the following unbiased estimator to estimate�aw(u; s) from a single realization of I:d�aw(u; s) = 2Re [hI;  u;sihI; �a u;si�℄ : (21)13



Unfortunately, the variane of d�aw(u; s) is typially larger than �aw(u; s),whih leads to an unaeptably large mean-squared error. To redue thevariane, we ompute a weighted average of (12), by onvolution with aontinuous, positive window funtion k�(x) = ��1k(��1x) supported in[��;�℄:(1 +O(s))�uw(�; s) � k�(u) = �d00(�)d0(�) �log sw(�; s)� � k�(u) : (22)We assume that d is C3, and that d0(u) � � > 0. For u0 2 [u��; u+�℄,d00(u0)=d0(u0) = d00(u)=d0(u) +O(�) : (23)Replaing (23) inside (22), for � > s, we obtaind00(u)d0(u) = �uw(�; s) � k�(u)�log sw(�; s) � k�(u) +O(�) : (24)The error O(�) an be interpreted as a bias due to the smoothing over awidth �. Realling the estimator d�aw(u; s) de�ned in (21), equation (24)suggests the following estimator for d00(u)d0(u) :\d00(u)d0(u) = d�uw(�; s) � k�(u)\�log sw(�; s) � k�(u) : (25)If the signal is measured at a resolution N , the wavelet transform an bealulated up to the sale s = N�1. To optimize the estimation, we mustadjust � so that the bias term is of the same order as the variane of theestimator. We have proved in [7℄ that for s = �N�1 and for � = �N�1=5, ifR is a Gaussian proess, with a ovariane whih satis�es (11) for a ertainh > 0, and if the number of vanishing moments of  is larger than (2h+1)=4,then Prob�����[d00(u)d0(u) � d00(u)d0(u) ���� � 2 (logN)N�1=5� ����!N!1 1 :In other words,[d00(u)d0(u) tends to d00(u)d0(u) with a probability that tends to 1 whenthe resolution N goes to in�nity.This onsisteny result guarantees the onvergene of the estimator, butin pratie, for a �xed resolution, averaging the smoothed estimators aross14



several sales improves the result. We therefore propose a modi�ed estimatorfor d00(u)d0(u) : \d00(u)d0(u) = Pi d�uw(�; si) � k�(u)Pi\�log sw(�; si) � k�(u) : (26)In the example of Figure 5, the signal I(x), displayed in (a), is sam-
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u ()Figure 5: (a) A realization of I(x), and the squared amplitude of its waveletoeÆients jhI;  u;sij2. (b) Estimated deformation log(d̂0) in dashed, andexat deformation log(d0) in full line. () Stationarized signal R̂(x) =I(d̂�1(x)), and jhR̂;  u;sij2 .pled over [0; 1℄ at a resolution N = 4096, and we hoose 6 sales in a15



range log s 2 [�4:5; �3℄ for whih the signal has energy (see Figure 5(a)).The partial derivatives of the salogram, d�uw(�; si) and \�log sw(�; si) areomputed with (21), using wavelet oeÆients hI;  u;sii, hI; �u u;sii andhI; �log s u;sii that are alulated with an FFT proedure explained in Ap-pendix B.1. The smoothing kernel is k(x) = 1� jxj for x inside [�1; 1℄, andzero outside this interval. The estimator[d00(u)d0(u) is omputed with (26), for� = 0:77 � N�1=5. The overall algorithm requires O(N logN) operations.It is important to note that only the wavelet oeÆients orresponding to 6di�erent sales need to be omputed. The whole wavelet transform plane isdisplayed in Figures 5(a) and () for an explanatory purpose only. Figure5(b) shows log d0 (full line), and its estimate[log d0 (dotted line), obtained byintegrating [d00=d0 and hoosing the additive integration onstant to satisfyR 10 exp([log d0) = R 10 d0. An estimate bd for the warping funtion an be ob-tained, up to an aÆne transformation, by integrating exp([log d0). It is thenpossible to stationarize I by omputing R̂(x) = I(bd�1(x)). Figure 5() dis-plays R̂: as expeted, its wavelet transform remains nearly onstant when uvaries, modulo statistial utuations. Matlab sripts reproduing Figure5 are available athttp://ermis.enp.fr/�maureen/ShapeFromTexture.html.4 Appliation to Shape from TextureWe now turn to the estimation of shape from texture. Setion 4.1 details thedeformation gradient estimation from the warplet oeÆients of the image,when the deformation gradient is the solution of the 2D Texture GradientEquation. Setion 4.2 presents shape reovery from the deformation gradi-ent, and lastly, Setion 4.3 gives a ondition on the texture, for general (notneessarily developable) surfaes, so that the deformation gradient is indeedthe solution of the 2D Texture Gradient Equation at small sales.4.1 Deformation Gradient estimationAs explained in Setion 1, we preproess the image to remove the shadingterm. We suppose I only to have positive values, and we onvolve I2 with a2D GaussianG� . The variane � of the Gaussian must be adjusted aordingto the sale of shading variations. The original image I(x) is then dividedby (I2 � G�)(x)1=2. The images in Figures 6(a) and 7(a) are the result ofthis preproessing step. 16



When the deformation gradient is the solution of the Texture GradientEquation, and when detS ! 0, (14) an be rewritten as[a11(u; S); a12(u; S); a21(u; S); a22(u; S)℄2664gk11(u)gk12(u)gk21(u)gk22(u)3775 = �ukw(u; S) : (27)Reall that gkij are the oeÆients of the deformation gradient (16), and theaij have been de�ned in (15). A olletion of equations (27) orrespondingto P di�erent warping matries fSigi=1;:::;P are onatenated in a linearsystem0BBB�a11(u; S1) a12(u; S1) a21(u; S1) a22(u; S1)a11(u; S2) a12(u; S2) a21(u; S2) a22(u; S2)... ... ... ...a11(u; SP ) a12(u; SP ) a21(u; SP ) a22(u; SP )1CCCA0BB�gk11(u)gk12(u)gk21(u)gk22(u)1CCA = 0BBB��ukw(u; S1)�ukw(u; S2)...�ukw(u; SP )1CCCA :(28)Beause we only observe one realization of I(x), as in 1D, (28) is smoothedwith a 2D window k�(x) = ��2k(��1x) supported inside [�; �℄2. Sine dis C3, one an verify that onvolving (28) with k� yields0B�a11(u; S1) : : : a22(u; S1)... ... ...a11(u; SP ) : : : a22(u; SP )1CA0BB�gk11(u)gk12(u)gk21(u)gk22(u)1CCA = 0B��ukw(�; S1) � k� (u)...�ukw(�; SP ) � k� (u)1CA+O(�) ;(29)where �alm(u; S)�1�l;m�2 = ��sijw(�; S) � k� (u)�1�i;j�2 � ST :Using �aw(u; S) = 2Re [EfhI;  u;SihI; �a u;Si�g℄, we estimate �aw(�; S)�k�with d�aw(�; S) � k�, whered�aw(u; S) = 2Re [hI;  u;SihI; �a u;Si�℄ : (30)Let us normalize the image support to [0; 1℄2. If I has N2 = 2562 pixels,we an only ompute the warpogram for warplets  u;S whose support in anydiretion is larger than N�1. We therefore require all the eigenvalues of Sto be greater than N�1. 17
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To obtain at least as many equations as unknowns, one must hoose warpletsorresponding to at least four di�erent warping matries S, and in pratie,we shall use even more. The estimators gkij are then alulated by singularvalue deomposition. The hoie of matries S must be adjusted so that theresulting system is not degenerated. However, for some shape and textureon�gurations, even with a great number of di�erent warping matries, thesystem may remain underdetermined, mimiking the aperture problem inOptial Flow. Let us take the example of the ylindrial shape in Figure 1,whih is urved in the horizontal diretion. If it is overed with a texturethat is onstant in the horizontal diretion, then the matrix on the left-handside of (31) will have a rank stritly smaller than four, whih does not allowreovery of the deformation gradient.We parameterize S under the form: S = R�1 �s1 00 s2�R�2 . In Figures6 and 7, alulations were performed with six diretions �1 2 fl�=6; l =0; : : : ; 5g and with �2 = 0. Four sale ouples (s1; s2) are seleted, ensuringthat jhI;  u;Sij is large to avoid numerial instabilities. Ideally, the set ofwarping matries fSi; i = 1 : : : ; Pg should be seleted adaptively aordingto u, but we used the same set throughout the image. This explains why weused a total of P = 6�4 = 24 warping matries, instead of the minimal valueof 4. As in 1D, it is important to note that warplet oeÆients need onlybe alulated for relatively few saling matries, ompared to a full warplettransform. For eah saling matrix, we alulate hI;  u;Si, hI; �uk u;Si andhI; �sij u;Si with a FFT proedure detailed in Appendix B.2. There arethus a total of 168 = 24 � 7 sets of warplet oeÆients to ompute. Wealulate d�aw(u; S) with (30), and onvolve it with k�. In our examples,we used � = N�1=5 = 0:33, whih must be ompared to the image supportwhih is [0; 1℄2. Finally, the linear least-squares solution of (31) is omputedwith a Singular Value Deomposition [11℄.Proving the statistial onsisteny of the deformation gradient estima-tor in 2D is far more ompliated than in 1D, and has not been done inthe most general setting. However, for a separable deformation d(x1; x2) =(d1(x1); d2(x2)), the 1D onsisteny results of Setion 3 extend automati-ally to 2D, and Figures 6 and 7 show that good numerial results are alsoobtained for non-separable deformations.4.2 Reovering the 3D surfae oordinatesOur goal is now to alulate the normal vetor ~n to the surfae, from thedeformation gradient. We �rst reall the geometrial setting presented in [8℄.20



uviewing sphere surfae �
~n ~t�~t p(u)O

Figure 8: The slant-tilt frame �eld of � is (~n;~t�;~b�), where ~b� = ~n� ~t� istangent to the surfae �, and perpendiular to the plane of the �gure.The basi Shape from Texture geometry assumes the image to be projetedonto a viewing sphere, as shown in Figure 8. The perspetive bakprojetionp maps the viewing sphere to the surfae �. The tilt diretion ~t is de�nedas the diretion of maximum hange of the distane k���!Op(u)k. De�ning~b = �!Ou � ~t, we obtain an orthonormal frame �eld (�!Ou;~t;~b) of the viewingsphere. The di�erential of the bakprojetion transforms ~t and ~b into twoorthogonal vetors, whih are denoted ~t� and~b� after being unit-normalized.The resulting orthonormal frame �eld (~n;~t�;~b�) of � is alled the slant-tiltframe �eld. The slant is the angle � between ~n and ���!Op(u). The variations ofthe surfae normal ~n depend upon the surfae urvature, and are spei�edby  r~t�~nr~b�~n! = ��t �� �b��~t�~b�� :In the rest of the paper, we onsider the deformation gradient to be measuredon the image plane and not on the viewing sphere. The gaze transformation,whih maps one to another, an atually be approximated by the identityas long as the surfae � remains lose to the optial axis of the amera. Ifthis is not the ase, a orretion term must be taken into aount ([18℄, App.A.2).If (~x1; ~x2) is an orthonormal basis of the image plane, the tilt angle � issuh that the projetion of ~t on the image plane is given by os � ~x1+sin � ~x2.We de�ne R� = �os � � sin �sin � os � �. Aording to [18, 9℄, the deformation
21



gradient (5) is related to loal surfae parameters byJd(u)�1�x1Jd(u) = R� (Mt(u) os � �Mb(u) sin �)R�� ; (32)Jd(u)�1�x2Jd(u) = R� (Mt(u) sin � +Mb(u) os �)R�� ; (33)where Mt(u) and Mb(u) are given byMt(u) = tan��2 + k���!Op(u)k�t= os � k���!Op(u)k�0 1 � ;Mb(u) = tan��k���!Op(u)k� k���!Op(u)k�b os �1 0 � :In order to reover loal surfae shape from the deformation gradient, the�ve parameters (�; �; �t; �b; �) must be estimated. After algebrai manipu-lations detailed in [9℄, this redues to omputing the tilt diretion by linearminimization. From the tilt and slant, we then ompute the normal~n = os ��!Ou� sin�~t ;on a grid whose resolution is 16 times smaller than the image resolution.This is due to the fat that eah vetor is derived from the estimated de-formation gradient whih depend on averaged warplet oeÆients. Let the3D oordinates of ~n be (n1; n2; n3). A needle map, displayed in Figures 6(b)and 7(b), is given by the 2D vetor~n0 = (n01; n02) = (n1=n3; n2=n3) :In the golf-ball example of Figure 6(b), sine image border does not ontainany texture, we imposed that n01 = n02 = 0 at the image orners.The needle map an be integrated to obtain the depth f(x1; x2) of apoint at position (x1; x2), up to a multipliative saling fator. Noti-ing that �x1f = n01 and �x2f = n02, it is lear that f is the solution of�f = �x1n01 + �x2n02 [12℄. This equation is solved with a standard �nitedi�erene sheme. The reonstruted surfae depth f(x1; x2) is plotted inFigures 6(,d) and 7(,d). In the overall algorithm, the most signi�antamount of omputation is devoted to alulating the warplet oeÆients fordi�erent warping matries S, eah requiring O(N2 logN) operations. Mat-lab routines reproduing the results of this setion an be downloaded fromhttp://ermis.enp.fr/�maureen/ShapeFromTexture.html.22



p(u)u O
�

expp(u)Tp(u)(�)0du
Figure 9: The exponential map expp(u) maps a neighborhood of 0 on thetangent plane to a neighborhood of p(u) on �. We de�ne a loal mappingdu from the image plane to the tangent plane by expp(u)(du(x)) = p(x).4.3 From Developable to General SurfaesIn Setion 1, we modeled the image of a textured surfae under perspetiveprojetion as I(x) = a(x) ~R(p(x)) :If � is a developable surfae, then the reetane ~R, de�ned on �, an be\attened" into a 2D proess:I(x) = a(x) ~R(p(x)) = a(x)R(d(x)) : (34)When R is wide-sense stationary, Setion 2 shows that the deformationgradient orresponding to d(x) is solution of the Texture Gradient Equation,at small sales. We now propose a similar approah for a general, non-developable surfae. Noting that the deformation gradient need only be thesolution of the Texture Gradient Equation in the small sale limit (detS !0), we introdue a loal version of model (34). In order to transform ~Rinto a 2D proess, we projet it loally onto the tangent plane to � atp(u), denoted Tp(u)(�), through the exponential map [4℄. This map, expp(u),projets a neighborhood of 0 in Tp(u)(�) to a neighborhood of p(u) on �, as23



depited in Figure 9. It transforms radial lines stemming from 0 in Tp(u)(�)into geodesis on � stemming from p(u), while preserving lengths alongthese geodesis. We an de�ne a 2D proess Rp(u) in the neighborhood of 0on Tp(u)(�) by Rp(u)(v) = ~R(expp(u)(v)) :Let du(x) be the funtion suh that expp(u)(du(x)) = p(x). By de�nition,I(x) = a(x) ~R(p(x)) = a(x) ~R(expp(u)(du(x))) = a(x)Rp(u)(du(x)) ; (35)whih is a loal version of model (34).Let us now impose a homogeneity ondition on ~R. First of all, it is naturalto ask that Efj ~R(p)j2g be independent of position p 2 �. As a result, a loalontrast renormalization an be performed, leading to an image I(x) suhthat I(x) = Rp(u)(du(x)) :Let Du be the deformation operator suh that Duf(x) = f(du(x)). Likethe funtion du, the operator Du depends both on the loal surfae shapeand on the perspetive projetion. Its adjoint is written Du, andhDuf; gi = hf;Dugi :Beause of distorsions due to surfae urvature, it does not make sense torequire Rp(u) to be wide-sense stationary. Moreover, even in the developablease, when R is stationary, the deformation gradient is the solution of theTexture Gradient Equation with a resolution error of order O(detS)1=2 inequation (14). Introduing an additional error term of the same order toequation (14) is of no onsequene. We an therefore tolerate the non-stationarity of Rp(u) to indue an error of orderO(detS)1=2. We impose that,for a position v lose to 0 on the tangent plane, suh that jvj � (detS)1=2,kEfhRp(u); Du v;Si hRp(u); ~rxDu v;Si�gk = O(detS)1=2k~ruw(u; S)k ;(36)where the gradients ~rx and ~ru are 2D vetors, and k � k is the Eulideannorm. This ondition imposes a non-trivial relationship between the surfaegeometry and the type of texture homogeneity. If � is developable, andRp(u) = R is stationary, then the left-hand side of (36) vanishes, so theondition is trivially satis�ed. However, the ondition is muh more general.For instane, it applies if ~R is the restrition of a 3D stationary isotropi24



(a) (b)Figure 10: A non-isotropi texture on a sphere, oriented along parallels (a)or meridians (b), obeys the weak stationarity ondition (36) at the equator.proess to a sphere �, or if ~R is a non-isotropi texture oriented alongparallels or meridians, and onsidered at the equator [5℄.Under ondition (36), one an prove that the deformation gradientJdu(u)�1�xkJdu(u)is the solution of the Texture Gradient Equation, with an error term thattends to zero when detS ! 0. Moreover, the geometri relationships (32-33)between deformation gradient and loal surfae shape, whih derive froma di�erential analysis, are also valid for Jdu(u)�1�xkJdu(u). The surfaenormal ~n an therefore be reovered from the image of the textured surfae,with the proedure desribed in Setion 4.2.Condition (36) is appropriate from a pereptual point of view: it is aondition between the surfae and the texture, that allows the alulationof surfae shape from the texture gradient, with an error term that tends tozero when the image resolution inreases to in�nity. This ondition, owing tothe error term it tolerates, applies to a broad lass of textures and surfaes,for whih the Shape from Texture problem an be solved visually. Theremaining issue is to speify preisely the lass of shape-texture ombinationssatisfying (36).
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ConlusionThe warplet transform is a natural tool for analyzing the image of a texturedsurfae under perspetive projetion. Indeed, the warpogram of the imagesatis�es a fundamental transport equation, the Texture Gradient Equation.Under an appropriate homogeneity assumption on the original texture, thedeformation gradient, whih measures relative metri hanges between thesurfae and the image plane, is the solution of the Texture Gradient Equa-tion. We have introdued an estimator for the deformation gradient, anddemonstrated the Shape from Texture algorithm on photographs.Conerning texture homogeneity, more work is neessary to fully under-stand the relationship between the texture and the surfae shape, so thatthe deformation gradient is solution of the Texture Gradient Equation, andthus the texture gradient a shape ue.Another area for further researh onerns texture modelization. TheLambertian assumption is somewhat restritive, and a muh wider lass ofnatural textures ould be onsidered with a 3D modelization [16, 23℄. Thisould open promising diretions for Shape from Texture.A Transport equation in two dimensionsWe detail the alulations leading to (14). LetCk(u) = (kij(u))f1�i;j�2g = �uk �Jd(u)�1�S0 ;and let S(u) = Jd(u)�1S0. Beause of (13),ddukw(u; S(u)) = �ukw(u; S(u)) +Xi;j kij(u) �sijw(u; S(u)) � 0 : (37)But �uk �Jd(u)�1� = �Jd(u)�1�uk (Jd(u)) Jd(u)�1 ;therefore Ck(u) = �Jd(u)�1�uk (Jd(u))S(u) :One an hene verify thatXi;j kij(u) ��si;jw(u; S(u)) = �Xi;j gkij(u) aij(u; S(u)) ; (38)and replaing (38) in (37) proves (14), for S(u) = S.26



B Wavelet and warplet expressionsB.1 Wavelet: modulated splineThe wavelet oeÆients are alulated with a standard FFT proedure [19℄:a wavelet transform an be obtained as a onvolution produthI;  u;si = Z I(x)s�1 (s�1(x� u)) dx = I � ~ s(u) ; (39)with ~ s(x) = s�1 (�s�1x). The Fourier transform of ~ s(x) is ~ s(!) =b �(s!). We hoose  to be a modulated box-spline, whose Fourier transformis b (!) = �sin(!=2� �)!=2� � �5 exp (�i(!=2� �)) :For a disrete signal of size N , the wavelet ~ s and the variable u are dis-retized over the sampling grid, and (39) is omputed with an FFT, requiringO(N logN) operations.The wavelet oeÆients hI; �a u;si = I � �a ~ s(u) are also alulated withan FFT proedure, using Fourier expressions derived from (19-20),[�u ~ s(!) = �i! b (s!)\�log s ~ s(!) = s! b 0(s!) :B.2 Warplet: modulated GaussianLike the wavelet transform, the warplet transform an be written as theresult of a 2D onvolution produt:hI;  u;Si = Z I(x) detS�1 (S�1(x� u)) dx = I � ~ S(u) ; (40)with ~ S(x) = detS�1 (�S�1x). Note that the Fourier transform of ~ S is~ S(!) = b �(ST!).We hoose  to be a Gabor funtion, whose Fourier transform isb (!1; !2) = exp��(!1 � 2�)2 + !224 � :The warplet ~ S and the variable u are disretized over the image samplinggrid, and omputing (40) with an FFT requires O(N2 logN) operations.27



Similarly to (40), hI; �a u;Si = I � �a ~ S(u) an be omputed with the FFTproedure, using the Fourier transform expressions\�s11 ~ S(!) = �!12 (s11!1 + s21!2 � 2�) b (ST!) ;\�s12 ~ S(!) = �!12 (s12!1 + s22!2) b (ST!) ;\�s21 ~ S(!) = �!22 (s11!1 + s21!2 � 2�) b (ST!) ;\�s22 ~ S(!) = �!22 (s12!1 + s22!2) b (ST!)\�u1 ~ S(!) = �i!1 b (ST!) ;\�u2 ~ S(!) = �i!2 b (ST!) :Referenes[1℄ R. Bajsy and L. Lieberman. Texture gradient as a depth ue. Com-puter Graphis and Image Proessing, 5:52{67, 1976.[2℄ D. Blostein and N. Ahuja. Shape from texture: integrating texture-element extration and surfae estimation. IEEE Trans. Patt. Anal.and Mah. Intell., 11(12):1233{1251, 1990.[3℄ A. C. Bovik, N. Gopal, T. Emmoth, and A. Restrepo (Palaios). Lo-alized measurement of emergent image frequenies by Gabor wavelets.IEEE Trans. Inform. Theory, 38(2):691{712, 1992.[4℄ M. Do Carmo. Di�erential Geometry of Curves and Surfaes. Prentie-Hall, 1976.[5℄ M. Cler. Estimation de proessus loalement dilat�es et appliation augradient de texture. PhD thesis, Eole Polytehnique, Paris, 1999. (inFrenh).[6℄ M. Cler and S. Mallat. Shape from texture and shading with wavelets.In Dynamial Systems, Control, Coding, Computer Vision, volume 25of Progress in Systems and Control Theory, pages 393{417. Birkh�auser,1999.[7℄ M. Cler and S. Mallat. Estimating deformations of stationaryproesses. Tehnial report, CERMICS, 2000. (downloadable athttp://ermis.enp.fr). 28
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