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tThis paper studies the re
overy of shape from texture under per-spe
tive proje
tion. We regard Shape from Texture as a statisti
alestimation problem, the texture being the realization of a sto
hasti
pro
ess. We introdu
e warplets, whi
h generalize wavelets over the2D aÆne group. At �ne s
ales, the warpogram of the image obeys atransport equation, 
alled Texture Gradient Equation.In order to re
over the 3D shape of the surfa
e, one must estimatethe deformation gradient, whi
h measures metri
 
hanges in the image.This is made possible by imposing a notion of homogeneity for theoriginal texture, a

ording to whi
h the deformation gradient is thesolution of the Texture Gradient Equation. By measuring the warplettransform of the image at di�erent s
ales, we obtain a deformationgradient estimator.Index terms Shape from Texture, texture gradient, wavelets, warplets.Introdu
tionWhen observing a stati
 mono
ular image, we per
eive the 3D stru
ture ofa s
ene through a 
ombination of shape 
ues, espe
ially shading, o

lusionand texture. Shape from Texture, �rst introdu
ed �fty years ago by Gibson[10℄, studies the re
overy of the 3D 
oordinates of a surfa
e in a s
ene, byanalyzing the distortion of its texture proje
ted in an image [2, 8, 14, 15,



18℄. The Shape from Texture problem is generally broken down into twoindependent steps. The �rst step is to measure the texture distorsion in theimage, and the se
ond is to re
over the surfa
e 
oordinates from this texturedistorsion.Texture 
an be modeled either deterministi
ally or sto
hasti
ally. Al-though stru
tural, or geometry-based methods allow the re
overy of 3Dsurfa
e 
oordinates for deterministi
 textures, sto
hasti
 models en
ompassa wider 
lass of textures [15, 18, 24℄. Measuring the distorsion of sto
hasti
textures requires lo
al spe
tral measurements, obtained by 
onvolving theimage with waveforms whi
h are lo
alized in spa
e as well as in spatial fre-quen
y. The lo
al �ltering most 
ommonly used is based on the lo
alizedFourier transform [1, 18℄, and wavelets have also re
ently been introdu
edfor Shape from Texture [14℄.Traditionally, one measures the texture distorsion by assuming a prop-erty on the original texture (for instan
e, its homogeneity, its isotropy, orits spe
tral 
ontent), and 
omparing the properties of the texture in theobserved image to the prior information on the original texture. A di�er-ential analysis 
onsists in measuring the relative distorsion of the texturewithin the observed image, without referen
e to the original texture. In[18℄, the relative texture distorsion between neighboring texture pat
hes isapproximated by an aÆne transform, and measured with a lo
al Fouriertransform.Unlike lo
al Fourier fun
tions, wavelets have the property of migratingin position and s
ale under a 1D aÆne transform, whi
h leads to a sim-pler and more pre
ise estimation of the deformation. In two dimensions, tomaintain this migration property, it is ne
essary to generalize wavelets intowarplets, whose \s
ale" is no longer a s
alar but a 2 � 2 warping matrix.The observed textured image is modeled as the realization of a sto
hasti
pro
ess. The texture distorsion 
an lo
ally be approximated by a 2D aÆnetransform, and the varian
e of the warplet 
oeÆ
ients, 
alled the warpogram,thus undergoes a transport in the position-s
ale parameter spa
e. This fun-damental transport equation obeyed by the warpogram is 
alled TextureGradient Equation. It 
an be seen as the analog of the Opti
al Flow Equa-tion for motion estimation [13℄. Whereas the velo
ity term in the Opti
alFlow Equation is related to the proje
tion of the 3D velo
ity in the image,here, the velo
ity measures relative texture distorsion in the image. Thetexture distorsion is thus 
al
ulated by estimating the di�erent terms of thisequation.The next step is to re
over the 3D surfa
e 
oordinates from the texturedistorsion. For this, a key assumption on the underlying texture has to be2



made: that it displays some form of spatial homogeneity on the surfa
e. Per-
eptual results indi
ate that departure from isotropy is also an important
ue in shape from texture, leading to biased slant estimates when the origi-nal texture is a
tually anisotropi
 [22℄. Here, we address Shape from Texturewithout supposing isotropy for the original texture. As natural though itmay appear from a per
eptual point of view, texture homogeneity on a gen-eral surfa
e is very diÆ
ult to state mathemati
ally. We 
an distinguish twoindependent subproblems nested in the re
overy of 3D surfa
e 
oordinatesfrom the texture gradient. One of the subproblems is purely geometri
al,and 
on
erns the 
hange of metri
 between the 3D surfa
e and the imageplane, due to the proje
tion (either orthographi
 or perspe
tive) and to thesurfa
e 
urvature. We 
all deformation gradient the relative 
hange of thismetri
 within the observed image. For instan
e, a planar surfa
e viewedunder an orthographi
 proje
tion has a deformation gradient equal to zero.This is not true under a perspe
tive proje
tion, be
ause the foreshorteningis not the same throughout the image. The geometri
al issues pertaining toShape from Texture have been formalized by G�arding [8℄ and further ana-lyzed by Malik and Rosenholtz [18℄, who establish the relationship betweenthe deformation gradient and lo
al surfa
e shape parameters. The 3D 
o-ordinates of the surfa
e 
an then easily be inferred, up to a s
aling fa
tor.The other subproblem 
on
erns texture modelization, and imposes a homo-geneity 
ondition on the texture, under whi
h the deformation gradient isthe solution of the Texture Gradient Equation, and thus 
an be 
al
ulated.To re
apitulate, we de
ompose Shape from Texture into three separateproblems:� Impose a homogeneity 
ondition on the texture, under whi
h the de-formation gradient is the solution of the Texture Gradient Equation.� Estimate the deformation gradient from the Texture Gradient Equa-tion.� Measure the 3D surfa
e 
oordinates from the deformation gradient.The paper is organized as follows. In Se
tion 1, we detail the model usedfor Shape from Texture. We fo
us our attention on developable surfa
es,for whi
h the texture homogeneity 
ondition 
an be stated quite simply. InSe
tion 2.1, we introdu
e the Texture Gradient Equation in the 1D 
ase, afterobserving that wavelets migrate in the position-s
ale parameter spa
e underan aÆne transform. Se
tion 2.2 establishes the Texture Gradient Equation in2D. Wavelets are now repla
ed by warplets, whi
h are espe
ially designed to3



migrate in the position-s
ale parameter spa
e under a 2D aÆne transform.In Se
tion 3, we analyze the statisti
al issues involved with the TextureGradient Equation. The 
onsisten
y of the deformation gradient estimator isproved in 1D, and the 
orresponding algorithm is illustrated with numeri
alresults. Se
tion 4 presents our Shape from Texture algorithm, with exampleson photographs. Lastly, we propose a new homogeneity 
ondition, based onthe Texture Gradient Equation, whi
h generalizes the homogeneity 
onditionof Se
tion 1 to general surfa
es. This paper is oriented towards modelizationand algorithms: although we state some mathemati
al results, we refer to[7℄ for their detailed proofs.1 Shape from Texture ModelWe assume the surfa
e to have a Lambertian re
e
tan
e distribution. Thissupposes the texture to be \painted" on the surfa
e, and to have neitherrugosity, nor self-o

lusions. With our Lambertian assumption, and underperspe
tive proje
tion, the image intensity at position x in the image isrelated to the re
e
tan
e ~R of the surfa
e in the s
ene byI(x) = a(x) ~R(p(x)) ; (1)where a(x) is a multipli
ative shading term, and p(x) is the perspe
tiveba
kproje
tion (Figure 1). For instan
e, if the light 
omes from a pointsour
e in dire
tion ~s, and if ~n is the surfa
e normal, then a(x) = ~n(p(x)) �~s(p(x)) [12, 6℄.We use a sto
hasti
 model: the surfa
e re
e
tan
e ~R is the realization ofa random pro
ess, supported on � � IR3, and taking its values in IR. Theimage intensity I is also a random pro
ess, supported on IR2. As explainedin the introdu
tion, we de
ompose the Shape from Texture problem in threesteps: making a homogeneity assumption on the texture under whi
h thedeformation gradient is the solution of the Texture Gradient Equation; esti-mating the terms of the Texture Gradient Equation, and obtaining the 3Dsurfa
e 
oordinates from the deformation gradient. We now 
onstrain model(1) by imposing a homogeneity 
ondition on the original texture ~R.A developable surfa
e � (i.e. with zero Gaussian 
urvature) 
an be un-folded isometri
ally into a portion of a plane, thus de�ning a mapping fromea
h position p(x) 2 � onto d(x) 2 IR2 [4℄. A 2D sto
hasti
 pro
ess R on IR2
an then be de�ned by R(d(x)) = ~R(p(x)). In the developable 
ase, model(1) therefore simply be
omesI(x) = a(x)R(d(x)) :4



�~n ~sp(x)x O
Figure 1: Perspe
tive image of a textured 
ylinder (left). Image formation(right): ea
h position x in the image 
orresponds to a point p(x) at theinterse
tion between the surfa
e � and the light ray 
onne
ting x and theopti
al 
enter O. Ve
tors ~n and ~s respe
tively represent the surfa
e normaland the light sour
e dire
tion.We de�ne the original texture ~R to be homogeneous if R is a wide-sensestationary pro
ess: EfR(x)R(x+ �)g = C(�) : (2)In this 
ase,E�jI(x)j2	 = ja(x)j2E�jR(d(x))j2	 = ja(x)j2 C(0) :The shading term a(x) 
an thus be estimated up to a multipli
ative 
on-stant from the se
ond moment of the image E�jI(x)j2	. Shape from Shadingstudies shape re
overy from the shading term only [17, 20℄. Here, we 
on-
entrate on the texture distorsion, and hen
e 
ompensate for illumination
hanges. We estimate the se
ond moment of the image, and then 
al
ulateE�jI(x)j2	�1=2 I(x). The image resulting from this lo
al 
ontrast renormal-ization is still denoted I(x) for 
onvenien
e. The model therefore simpli�esto I(x) = R(d(x)) : (3)We assume that the surfa
e � is C3, and in parti
ular does not 
ontain anyo

luding 
ontour. Hen
e d(x) is C3 and invertible.The Ja
obian matrix of d(x) in an orthonormal basis (~x1; ~x2) of IR2 is5



given by Jd(x) = 0B��d1(x)�x1 �d1(x)�x2�d2(x)�x1 �d2(x)�x2 1CA : (4)Sin
e � is developable, and it 
an be isometri
ally unfolded into a portionof a plane, Jd(x) represents the 
hange of metri
 between the surfa
e �and the image plane. We 
all deformation gradient the relative variationsof the Ja
obian in dire
tions x1 and x2. The deformation gradient is thusrepresented by the two matri
es, for k = 1; 2:Jd(x)�1�xkJd(x) = 0BBB��d1(x)�x1 �d1(x)�x2�d2(x)�x1 �d2(x)�x2
1CCCA�10BBBB��2d1(x)�xk�x1 �2d1(x)�xk�x2�2d2(x)�xk�x1 �2d2(x)�xk�x2

1CCCCA : (5)We want to solve the following inverse problem: estimate the deformationgradient (5), given one realization of I(x) = R(d(x)).2 Texture Gradient Equation2.1 In 1D: S
alogram MigrationFor the sake of simpli
ity, let us start with a 1D Shape from Texture prob-lem, in whi
h the shape � to be re
overed is a 
urve. Let R denote the\re
e
tan
e" of �, parameterized by ar
-length `: R(`) is assumed station-ary, and is depi
ted, in Figure 2, by a regular zig-zag line along the 
urve.In a 1D perspe
tive model, a pixel at position x in the image ba
kproje
tsonto a position p(x) on �, whose ar
-length is `(p(x)). The image I(x)
an therefore be viewed as the deformation of a stationary pro
ess R byd(x) = `(p(x)): I(x) = R(d(x)) :Let  be a fun
tion with zero average, whose support is in [�1; 1℄. A lo
alanalysis of the image is performed by 
omputing the inner produ
t of I(x)with  u;s(x) = 1s �x� us � ; (6)6



`(p)p(x2) p(x1)
x2x1Figure 2: A point x in the image ba
kproje
ts to a point p(x) on �, whosear
-length is d(x) = `(p(x)). The zig-zag line represents a stationary texture
overing �. When proje
ted onto the image, it gives rise to a non-stationarypro
ess I(x) = R(d(x)).whose support is in [u � s; u + s℄. This inner produ
t hI;  u;si is 
alled awavelet 
oeÆ
ient of I at position u and s
ale s [19℄, and we 
all s
alogramof I the varian
e of this wavelet 
oeÆ
ient:w(u; s) = EfjhI;  u;sij2g :If R is stationary, then we easily verify that for a �xed s
ale s, its s
alogramis independent of u: dduEfjhR; u;sij2g = 0 : (7)In Figure 3(a), the s
alogram of R is displayed in a gray-level image as afun
tion of u (horizontal axis) and of log s (verti
al axis): it does not varywith u. On the other hand, the s
alogram of I does in general depend on u,as 
an be seen in Figure 3(b).We introdu
e the Texture Gradient Equation, whi
h relates the partialderivatives of w(u; s) with respe
t to u and to log s:�uw(u; s)� v(u; s) �log sw(u; s) = 0 : (8)The velo
ity term v(u; s) 
an be interpreted as a texture gradient: it mea-sures how the image energy moves a
ross s
ales, a

ording to the positionin the image. The Texture Gradient Equation (8) is 
omparable to the Op-ti
al Flow Equation for motion estimation [13℄. The 
onservation equation7
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(b)Figure 3: (a) Top: a realization of stationary pro
ess R(x). Bottom:s
alogram EfjhR; u;sij2g. The horizontal and verti
al axes represent uand log s, respe
tively. Dark points indi
ate high amplitude. (b) Top:a realization of deformed pro
ess I(x) = R(d(x)). Bottom: s
alogramw(u; s) = EfjhI;  u;sij2g.(7), expressing the stationarity of the original pro
ess R, is analogous tobrightness 
onstan
y in Opti
al Flow.We are now going to show that the velo
ity term v(u; s) tends to thedeformation gradient d00(u)=d0(u) when s! 0. For this, we prove that whenthe s
ale s is small relative to the s
ale of variation of the deformation, thes
alograms of I and of R are related by a simple migration in the position-s
ale parameter spa
e.Be
ause  u;s is supported in [u � s; u + s℄, a wavelet 
oeÆ
ient hI;  u;sionly depends on image intensities in a neighborhood of u:hI;  u;si = Z R(d(x)) 1s  �x� us � dxand a 
hange of variable x0 = d(x) yieldsZ R(x0) 1s  �d�1(x0)� us � dx0d0(d�1(x0)) :If s � d0(u)=d00(u), then  �d�1(x0)�us � is non-zero only if x0 belongs to aneighborhood of d(u) proportional to d0(u)s. Hen
e d0(d�1(x0)) � d0(u), and8



if  is in C1,  �d�1(x0)� us � �  �x0 � d(u)d0(u)s � :As a 
onsequen
e,hI;  u;si � Z R(x) 1d0(u)s �x� d(u)d0(u)s � dx : (9)But a

ording to (6),1d0(u)s �x� d(u)d0(u)s � =  d(u);d0(u)s(x) ;so on the right-hand side of (9), we re
ognize hR; d(u);d0(u)si whi
h is awavelet 
oeÆ
ient of R at position d(u) and s
ale d0(u)s. Let s0 be a �xed
onstant, mu
h smaller than d00(u), and let s(u) = s0=d0(u). Then (9) impliesthat w(u; s(u)) = EfjhI;  u;s(u)ij2g � EfjhR; d(u);s0ij2g :Sin
e R is stationary, EfjhR; d(u);s0ij2g does not depend on u, thereforedduw (u; s(u)) � 0 :One 
an expand the total derivative ddu as a linear 
ombination of partialderivatives �u and �s:dduw (u; s(u)) = �uw (u; s(u)) + s0(u)�sw (u; s(u)) :Noti
ing that s0(u) = �d00(u)d0(u) s(u), for s suÆ
iently small,�uw(u; s)� d00(u)d0(u) �log sw(u; s) � 0 : (10)It is natural that d(x) should appear under this form in (10), be
ause withno additional assumption on the stationary pro
ess, the deformation is onlyspe
i�ed up to an aÆne transform. Indeed, if I(x) = R1(d1(x)) where R1 isstationary, and if d2(x) = �d1(x) + �, then one 
an �nd another stationarypro
ess, R2(x) = R1(�x + �), su
h that I(x) = R2(d2(x)). The fun
tionsd1 and d2, whi
h satisfy d001=d01 = d002=d02, 
annot be distinguished with thesole knowledge that I is obtained through the deformation of a stationarypro
ess. 9



Equation (10) was derived in a loose fashion, but a 
areful analysis ofthe higher-order terms gives the following result [7℄: if the 
ovarian
e of R,C(�), de�ned in (2), satis�esC(0)�C(�) = j� jh �(�) ; (11)with h > 0, �(0) > 0, and � 
ontinuously di�erentiable in a neighborhoodof 0, then (1 +O(s)) �uw(u; s)� d00(u)d0(u) �log sw(u; s) = 0 : (12)The resolution error O(s) tends to zero at least as fast as s, and 
an thereforebe negle
ted at �ne s
ales. Condition (11) on the 
ovarian
e of R is quiteweak, and is satis�ed by most 
orrelation fun
tions [25℄. This proves that atsmall s
ales s ! 0, the deformation gradient is the solution of the TextureGradient Equation.A s
alogram w(u; s) is displayed on the bottom of Figure 3(b): the posi-tions of the s
alogram maxima are transported in the (u; log s) plane, witha velo
ity equal to the deformation gradient. Computing the deformationgradient from partial derivatives of the s
alogram is thus in prin
iple possi-ble. There remains a diÆ
ulty: we only observe one realization of I(x), fromwhi
h we must estimate a s
alogram. Se
tion 3 fo
uses on this estimationproblem.2.2 In 2D: warpogram migrationA deformation 
an be lo
ally approximated by an aÆne transformation,whi
h is spe
i�ed by a translation and a dilation. In 1D, the dilation param-eter is a positive s
alar, whereas in 2D, it is a 2�2 matrix. Our 1D analysisof deformed stationary pro
esses involved wavelets, 
onstru
ted by trans-lating and dilating a mother waveform. In 2D, wavelets are now repla
edby warplets, 
onstru
ted by applying a 2D aÆne transform to a motherwaveform. Warplets are thus 
learly designed to migrate under a 2D aÆnetransform.Let  (x1; x2) be a 
ompa
tly supported fun
tion in [�1; 1℄� [�1; 1℄, withzero average. A warplet  u;S is indexed by its position u = (u1; u2), and bya 2� 2 invertible matrix S = �s11 s12s21 s22� ;10



whi
h deforms the support of  : u;S(x) = detS�1 (S�1(x� u)) :For instan
e, modulated Gaussians, 
alled Gabor fun
tions, (x1; x2) = exp��x21 + x222 � exp(ikx1) ;have widely been used for texture dis
rimination [3, 21℄.
2
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u

Figure 4: Approximate spatial lo
alization of a warplet  u;S 
onstru
tedwith a Gabor fun
tion  . The four parameters of S 
ontrol the shapeand orientation of the ellipse, as well as the frequen
y of its os
illations(represented by the stripes).A warplet 
oeÆ
ient of I(x) at position u and for a warping matrix S isde�ned as the inner produ
t hI;  u;Si. The varian
e of this warplet 
oeÆ-
ient is 
alled the warpogram of I:w(u; S) = E�jhI;  u;Sij2	 :As in 1D, we are going to prove that the deformation gradient is the solutionof a Texture Gradient Equation in 2D, for small s
ales, when detS ! 0. Forthis, we observe that if I(x) = R(d(x)), then the warpograms of I and ofR are related by a migration in the six-dimensional (u1; u2; s11; s12; s21; s22)parameter spa
e. A warplet 
oeÆ
ient hI;  u;Si only depends on the valuesof I in a neighborhood of u whose size is 
ontrolled by S. If detS is small
11



enough,hI;  u;Si = ZZ R(d(x)) 1detS �S�1(x� u)� dx= ZZ R(x0) 1detS �S�1(d�1(x0)� u)� dx0detJd(d�1(x0))� ZZ R(x0) 1detS �S�1J�1d (u)(x0 � d(u))� dx0detJd(u) ;where Jd(x) is the Ja
obian matrix de�ned in (4). Warplet 
oeÆ
ients of Iand of R are thus related by a migration in position-s
ale:hI;  u;Si � hR; d(u);Jd(u)Si :Let S(u) = Jd(u)�1S0. If detS0 is small enough, the warpograms of I andR are related byw(u; S(u)) = E�jhI;  u;S(u)ij2	 � E�jhR; d(u);S0ij2	 :Sin
e R is stationary, the right-hand side of the above relation is independentof u. Therefore, for k = 1; 2,ddukw(u; S(u)) � 0 : (13)We show in Appendix A that, after expanding the total derivative dduk , theabove equation 
an be rewritten, for k = 1; 2,�ukw(u; S) � 2Xi;j=1 gkij(u) aij(u; S) � 0 ; (14)where the aij are the 
oeÆ
ients of the following matrix produ
t�a11(u; S) a12(u; S)a21(u; S) a22(u; S)� =  �w(u;S)�s11 �w(u;S)�s12�w(u;S)�s21 �w(u;S)�s22 !��s11 s21s12 s22� ; (15)and the gkij represent the deformation gradient (5):�gk11(u) gk12(u)gk21(u) gk22(u)� = Jd(u)�1�xkJd(u) : (16)In [7℄, we prove that the resolution error in equation (14) is of the order ofO(detS)1=2. This shows that, when detS ! 0, the deformation gradient12



is the solution of a 2D Texture Gradient Equation, whi
h is a ve
tor-valuedequation with two 
omponents, for k = 1; 2:�ukw(u; S)� 2Xi;j=1 vkij(u; S) aij(u; S) = 0 : (17)In Se
tion 4, we will show how to use (14) to estimate the deformationgradient from warplet 
oeÆ
ients of the image.3 Consisten
y of statisti
al estimationFor the sake of simpli
ity, this se
tion fo
uses on the 1D estimation problem.We want to estimate d00(u)=d0(u), whi
h we know from (12) to be the solutionof the Texture Gradient Equation (8) at small s
ales. For this, we need toestimate partial derivatives �uw(u; s) and �log sw(u; s) from one realizationof I. Sin
e w(u; s) = E�jhI;  u;sij2	, for a generi
 variable a representing uor log s, one 
an see that�aw(u; s) = 2Re [E fhI;  u;sihI; �a u;si�g℄ : (18)with �u (x) =  0(x) ; (19)�log s (x) = � (x)� x 0(x) : (20)Let  be a 
ompa
tly supported wavelet with m vanishing moments, i.e.whose inner produ
t with any polynomial of degree k < m vanishes:Z  (x)xk dx = 0 :Then �u and �log s are also 
ompa
tly supported wavelets, and an inte-gration by parts shows that they respe
tively have m + 1 and m vanishingmoments. Expression (18) indi
ates that �aw(u; s) simply depends on thewavelet transform of I with mother wavelets  and �a . Appendix B.1details the implementation of the wavelet transform.In view of (18), we 
ould use the following unbiased estimator to estimate�aw(u; s) from a single realization of I:d�aw(u; s) = 2Re [hI;  u;sihI; �a u;si�℄ : (21)13



Unfortunately, the varian
e of d�aw(u; s) is typi
ally larger than �aw(u; s),whi
h leads to an una

eptably large mean-squared error. To redu
e thevarian
e, we 
ompute a weighted average of (12), by 
onvolution with a
ontinuous, positive window fun
tion k�(x) = ��1k(��1x) supported in[��;�℄:(1 +O(s))�uw(�; s) � k�(u) = �d00(�)d0(�) �log sw(�; s)� � k�(u) : (22)We assume that d is C3, and that d0(u) � � > 0. For u0 2 [u��; u+�℄,d00(u0)=d0(u0) = d00(u)=d0(u) +O(�) : (23)Repla
ing (23) inside (22), for � > s, we obtaind00(u)d0(u) = �uw(�; s) � k�(u)�log sw(�; s) � k�(u) +O(�) : (24)The error O(�) 
an be interpreted as a bias due to the smoothing over awidth �. Re
alling the estimator d�aw(u; s) de�ned in (21), equation (24)suggests the following estimator for d00(u)d0(u) :\d00(u)d0(u) = d�uw(�; s) � k�(u)\�log sw(�; s) � k�(u) : (25)If the signal is measured at a resolution N , the wavelet transform 
an be
al
ulated up to the s
ale s = N�1. To optimize the estimation, we mustadjust � so that the bias term is of the same order as the varian
e of theestimator. We have proved in [7℄ that for s = �N�1 and for � = �N�1=5, ifR is a Gaussian pro
ess, with a 
ovarian
e whi
h satis�es (11) for a 
ertainh > 0, and if the number of vanishing moments of  is larger than (2h+1)=4,then Prob�����[d00(u)d0(u) � d00(u)d0(u) ���� � 2 (logN)N�1=5� ����!N!1 1 :In other words,[d00(u)d0(u) tends to d00(u)d0(u) with a probability that tends to 1 whenthe resolution N goes to in�nity.This 
onsisten
y result guarantees the 
onvergen
e of the estimator, butin pra
ti
e, for a �xed resolution, averaging the smoothed estimators a
ross14



several s
ales improves the result. We therefore propose a modi�ed estimatorfor d00(u)d0(u) : \d00(u)d0(u) = Pi d�uw(�; si) � k�(u)Pi\�log sw(�; si) � k�(u) : (26)In the example of Figure 5, the signal I(x), displayed in (a), is sam-
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)Figure 5: (a) A realization of I(x), and the squared amplitude of its wavelet
oeÆ
ients jhI;  u;sij2. (b) Estimated deformation log(d̂0) in dashed, andexa
t deformation log(d0) in full line. (
) Stationarized signal R̂(x) =I(d̂�1(x)), and jhR̂;  u;sij2 .pled over [0; 1℄ at a resolution N = 4096, and we 
hoose 6 s
ales in a15



range log s 2 [�4:5; �3℄ for whi
h the signal has energy (see Figure 5(a)).The partial derivatives of the s
alogram, d�uw(�; si) and \�log sw(�; si) are
omputed with (21), using wavelet 
oeÆ
ients hI;  u;sii, hI; �u u;sii andhI; �log s u;sii that are 
al
ulated with an FFT pro
edure explained in Ap-pendix B.1. The smoothing kernel is k(x) = 1� jxj for x inside [�1; 1℄, andzero outside this interval. The estimator[d00(u)d0(u) is 
omputed with (26), for� = 0:77 � N�1=5. The overall algorithm requires O(N logN) operations.It is important to note that only the wavelet 
oeÆ
ients 
orresponding to 6di�erent s
ales need to be 
omputed. The whole wavelet transform plane isdisplayed in Figures 5(a) and (
) for an explanatory purpose only. Figure5(b) shows log d0 (full line), and its estimate[log d0 (dotted line), obtained byintegrating [d00=d0 and 
hoosing the additive integration 
onstant to satisfyR 10 exp([log d0) = R 10 d0. An estimate bd for the warping fun
tion 
an be ob-tained, up to an aÆne transformation, by integrating exp([log d0). It is thenpossible to stationarize I by 
omputing R̂(x) = I(bd�1(x)). Figure 5(
) dis-plays R̂: as expe
ted, its wavelet transform remains nearly 
onstant when uvaries, modulo statisti
al 
u
tuations. Matlab s
ripts reprodu
ing Figure5 are available athttp://
ermi
s.enp
.fr/�maureen/ShapeFromTexture.html.4 Appli
ation to Shape from TextureWe now turn to the estimation of shape from texture. Se
tion 4.1 details thedeformation gradient estimation from the warplet 
oeÆ
ients of the image,when the deformation gradient is the solution of the 2D Texture GradientEquation. Se
tion 4.2 presents shape re
overy from the deformation gradi-ent, and lastly, Se
tion 4.3 gives a 
ondition on the texture, for general (notne
essarily developable) surfa
es, so that the deformation gradient is indeedthe solution of the 2D Texture Gradient Equation at small s
ales.4.1 Deformation Gradient estimationAs explained in Se
tion 1, we prepro
ess the image to remove the shadingterm. We suppose I only to have positive values, and we 
onvolve I2 with a2D GaussianG� . The varian
e � of the Gaussian must be adjusted a

ordingto the s
ale of shading variations. The original image I(x) is then dividedby (I2 � G�)(x)1=2. The images in Figures 6(a) and 7(a) are the result ofthis prepro
essing step. 16



When the deformation gradient is the solution of the Texture GradientEquation, and when detS ! 0, (14) 
an be rewritten as[a11(u; S); a12(u; S); a21(u; S); a22(u; S)℄2664gk11(u)gk12(u)gk21(u)gk22(u)3775 = �ukw(u; S) : (27)Re
all that gkij are the 
oeÆ
ients of the deformation gradient (16), and theaij have been de�ned in (15). A 
olle
tion of equations (27) 
orrespondingto P di�erent warping matri
es fSigi=1;:::;P are 
on
atenated in a linearsystem0BBB�a11(u; S1) a12(u; S1) a21(u; S1) a22(u; S1)a11(u; S2) a12(u; S2) a21(u; S2) a22(u; S2)... ... ... ...a11(u; SP ) a12(u; SP ) a21(u; SP ) a22(u; SP )1CCCA0BB�gk11(u)gk12(u)gk21(u)gk22(u)1CCA = 0BBB��ukw(u; S1)�ukw(u; S2)...�ukw(u; SP )1CCCA :(28)Be
ause we only observe one realization of I(x), as in 1D, (28) is smoothedwith a 2D window k�(x) = ��2k(��1x) supported inside [�; �℄2. Sin
e dis C3, one 
an verify that 
onvolving (28) with k� yields0B�a11(u; S1) : : : a22(u; S1)... ... ...a11(u; SP ) : : : a22(u; SP )1CA0BB�gk11(u)gk12(u)gk21(u)gk22(u)1CCA = 0B��ukw(�; S1) � k� (u)...�ukw(�; SP ) � k� (u)1CA+O(�) ;(29)where �alm(u; S)�1�l;m�2 = ��sijw(�; S) � k� (u)�1�i;j�2 � ST :Using �aw(u; S) = 2Re [EfhI;  u;SihI; �a u;Si�g℄, we estimate �aw(�; S)�k�with d�aw(�; S) � k�, whered�aw(u; S) = 2Re [hI;  u;SihI; �a u;Si�℄ : (30)Let us normalize the image support to [0; 1℄2. If I has N2 = 2562 pixels,we 
an only 
ompute the warpogram for warplets  u;S whose support in anydire
tion is larger than N�1. We therefore require all the eigenvalues of Sto be greater than N�1. 17
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(
) (d)Figure 6: (a) Original image, with shading removed. (b) Normal ve
tor
omputed. (
) Surfa
e re
onstru
ted from the normal ve
tor. (d) Visual-ization of (
) as gray levels. Be
ause (a) does not 
ontain texture on itsborders, there are errors in the border of the re
onstru
ted surfa
e (
).Denoting�dalm(u; S)�1�l;m�2 = �[�sijw(�; S) � k� (u)�1�i;j�2 � ST ;equation (29) suggests estimating the deformation gradient by inverting the18
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) Surfa
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tor. (d) Visualizationof (
) as gray levels.linear system0B� 
a11(u; S1) : : : 
a22(u; S1)... ... ...
a11(u; SP ) : : : 
a22(u; SP )1CA0BBBB�
gk11(u)
gk12(u)
gk21(u)
gk22(u)
1CCCCA = 0B�[�ukw(�; S1) � k� (u)...[�ukw(�; SP ) � k� (u)1CA : (31)19



To obtain at least as many equations as unknowns, one must 
hoose warplets
orresponding to at least four di�erent warping matri
es S, and in pra
ti
e,we shall use even more. The estimators 
gkij are then 
al
ulated by singularvalue de
omposition. The 
hoi
e of matri
es S must be adjusted so that theresulting system is not degenerated. However, for some shape and texture
on�gurations, even with a great number of di�erent warping matri
es, thesystem may remain underdetermined, mimi
king the aperture problem inOpti
al Flow. Let us take the example of the 
ylindri
al shape in Figure 1,whi
h is 
urved in the horizontal dire
tion. If it is 
overed with a texturethat is 
onstant in the horizontal dire
tion, then the matrix on the left-handside of (31) will have a rank stri
tly smaller than four, whi
h does not allowre
overy of the deformation gradient.We parameterize S under the form: S = R�1 �s1 00 s2�R�2 . In Figures6 and 7, 
al
ulations were performed with six dire
tions �1 2 fl�=6; l =0; : : : ; 5g and with �2 = 0. Four s
ale 
ouples (s1; s2) are sele
ted, ensuringthat jhI;  u;Sij is large to avoid numeri
al instabilities. Ideally, the set ofwarping matri
es fSi; i = 1 : : : ; Pg should be sele
ted adaptively a

ordingto u, but we used the same set throughout the image. This explains why weused a total of P = 6�4 = 24 warping matri
es, instead of the minimal valueof 4. As in 1D, it is important to note that warplet 
oeÆ
ients need onlybe 
al
ulated for relatively few s
aling matri
es, 
ompared to a full warplettransform. For ea
h s
aling matrix, we 
al
ulate hI;  u;Si, hI; �uk u;Si andhI; �sij u;Si with a FFT pro
edure detailed in Appendix B.2. There arethus a total of 168 = 24 � 7 sets of warplet 
oeÆ
ients to 
ompute. We
al
ulate d�aw(u; S) with (30), and 
onvolve it with k�. In our examples,we used � = N�1=5 = 0:33, whi
h must be 
ompared to the image supportwhi
h is [0; 1℄2. Finally, the linear least-squares solution of (31) is 
omputedwith a Singular Value De
omposition [11℄.Proving the statisti
al 
onsisten
y of the deformation gradient estima-tor in 2D is far more 
ompli
ated than in 1D, and has not been done inthe most general setting. However, for a separable deformation d(x1; x2) =(d1(x1); d2(x2)), the 1D 
onsisten
y results of Se
tion 3 extend automati-
ally to 2D, and Figures 6 and 7 show that good numeri
al results are alsoobtained for non-separable deformations.4.2 Re
overing the 3D surfa
e 
oordinatesOur goal is now to 
al
ulate the normal ve
tor ~n to the surfa
e, from thedeformation gradient. We �rst re
all the geometri
al setting presented in [8℄.20



uviewing sphere surfa
e �
~n ~t�~t p(u)O

Figure 8: The slant-tilt frame �eld of � is (~n;~t�;~b�), where ~b� = ~n� ~t� istangent to the surfa
e �, and perpendi
ular to the plane of the �gure.The basi
 Shape from Texture geometry assumes the image to be proje
tedonto a viewing sphere, as shown in Figure 8. The perspe
tive ba
kproje
tionp maps the viewing sphere to the surfa
e �. The tilt dire
tion ~t is de�nedas the dire
tion of maximum 
hange of the distan
e k���!Op(u)k. De�ning~b = �!Ou � ~t, we obtain an orthonormal frame �eld (�!Ou;~t;~b) of the viewingsphere. The di�erential of the ba
kproje
tion transforms ~t and ~b into twoorthogonal ve
tors, whi
h are denoted ~t� and~b� after being unit-normalized.The resulting orthonormal frame �eld (~n;~t�;~b�) of � is 
alled the slant-tiltframe �eld. The slant is the angle � between ~n and ���!Op(u). The variations ofthe surfa
e normal ~n depend upon the surfa
e 
urvature, and are spe
i�edby  r~t�~nr~b�~n! = ��t �� �b��~t�~b�� :In the rest of the paper, we 
onsider the deformation gradient to be measuredon the image plane and not on the viewing sphere. The gaze transformation,whi
h maps one to another, 
an a
tually be approximated by the identityas long as the surfa
e � remains 
lose to the opti
al axis of the 
amera. Ifthis is not the 
ase, a 
orre
tion term must be taken into a

ount ([18℄, App.A.2).If (~x1; ~x2) is an orthonormal basis of the image plane, the tilt angle � issu
h that the proje
tion of ~t on the image plane is given by 
os � ~x1+sin � ~x2.We de�ne R� = �
os � � sin �sin � 
os � �. A

ording to [18, 9℄, the deformation
21



gradient (5) is related to lo
al surfa
e parameters byJd(u)�1�x1Jd(u) = R� (Mt(u) 
os � �Mb(u) sin �)R�� ; (32)Jd(u)�1�x2Jd(u) = R� (Mt(u) sin � +Mb(u) 
os �)R�� ; (33)where Mt(u) and Mb(u) are given byMt(u) = tan��2 + k���!Op(u)k�t= 
os � k���!Op(u)k�0 1 � ;Mb(u) = tan��k���!Op(u)k� k���!Op(u)k�b 
os �1 0 � :In order to re
over lo
al surfa
e shape from the deformation gradient, the�ve parameters (�; �; �t; �b; �) must be estimated. After algebrai
 manipu-lations detailed in [9℄, this redu
es to 
omputing the tilt dire
tion by linearminimization. From the tilt and slant, we then 
ompute the normal~n = 
os ��!Ou� sin�~t ;on a grid whose resolution is 16 times smaller than the image resolution.This is due to the fa
t that ea
h ve
tor is derived from the estimated de-formation gradient whi
h depend on averaged warplet 
oeÆ
ients. Let the3D 
oordinates of ~n be (n1; n2; n3). A needle map, displayed in Figures 6(b)and 7(b), is given by the 2D ve
tor~n0 = (n01; n02) = (n1=n3; n2=n3) :In the golf-ball example of Figure 6(b), sin
e image border does not 
ontainany texture, we imposed that n01 = n02 = 0 at the image 
orners.The needle map 
an be integrated to obtain the depth f(x1; x2) of apoint at position (x1; x2), up to a multipli
ative s
aling fa
tor. Noti
-ing that �x1f = n01 and �x2f = n02, it is 
lear that f is the solution of�f = �x1n01 + �x2n02 [12℄. This equation is solved with a standard �nitedi�eren
e s
heme. The re
onstru
ted surfa
e depth f(x1; x2) is plotted inFigures 6(
,d) and 7(
,d). In the overall algorithm, the most signi�
antamount of 
omputation is devoted to 
al
ulating the warplet 
oeÆ
ients fordi�erent warping matri
es S, ea
h requiring O(N2 logN) operations. Mat-lab routines reprodu
ing the results of this se
tion 
an be downloaded fromhttp://
ermi
s.enp
.fr/�maureen/ShapeFromTexture.html.22



p(u)u O
�

expp(u)Tp(u)(�)0du
Figure 9: The exponential map expp(u) maps a neighborhood of 0 on thetangent plane to a neighborhood of p(u) on �. We de�ne a lo
al mappingdu from the image plane to the tangent plane by expp(u)(du(x)) = p(x).4.3 From Developable to General Surfa
esIn Se
tion 1, we modeled the image of a textured surfa
e under perspe
tiveproje
tion as I(x) = a(x) ~R(p(x)) :If � is a developable surfa
e, then the re
e
tan
e ~R, de�ned on �, 
an be\
attened" into a 2D pro
ess:I(x) = a(x) ~R(p(x)) = a(x)R(d(x)) : (34)When R is wide-sense stationary, Se
tion 2 shows that the deformationgradient 
orresponding to d(x) is solution of the Texture Gradient Equation,at small s
ales. We now propose a similar approa
h for a general, non-developable surfa
e. Noting that the deformation gradient need only be thesolution of the Texture Gradient Equation in the small s
ale limit (detS !0), we introdu
e a lo
al version of model (34). In order to transform ~Rinto a 2D pro
ess, we proje
t it lo
ally onto the tangent plane to � atp(u), denoted Tp(u)(�), through the exponential map [4℄. This map, expp(u),proje
ts a neighborhood of 0 in Tp(u)(�) to a neighborhood of p(u) on �, as23



depi
ted in Figure 9. It transforms radial lines stemming from 0 in Tp(u)(�)into geodesi
s on � stemming from p(u), while preserving lengths alongthese geodesi
s. We 
an de�ne a 2D pro
ess Rp(u) in the neighborhood of 0on Tp(u)(�) by Rp(u)(v) = ~R(expp(u)(v)) :Let du(x) be the fun
tion su
h that expp(u)(du(x)) = p(x). By de�nition,I(x) = a(x) ~R(p(x)) = a(x) ~R(expp(u)(du(x))) = a(x)Rp(u)(du(x)) ; (35)whi
h is a lo
al version of model (34).Let us now impose a homogeneity 
ondition on ~R. First of all, it is naturalto ask that Efj ~R(p)j2g be independent of position p 2 �. As a result, a lo
al
ontrast renormalization 
an be performed, leading to an image I(x) su
hthat I(x) = Rp(u)(du(x)) :Let Du be the deformation operator su
h that Duf(x) = f(du(x)). Likethe fun
tion du, the operator Du depends both on the lo
al surfa
e shapeand on the perspe
tive proje
tion. Its adjoint is written Du, andhDuf; gi = hf;Dugi :Be
ause of distorsions due to surfa
e 
urvature, it does not make sense torequire Rp(u) to be wide-sense stationary. Moreover, even in the developable
ase, when R is stationary, the deformation gradient is the solution of theTexture Gradient Equation with a resolution error of order O(detS)1=2 inequation (14). Introdu
ing an additional error term of the same order toequation (14) is of no 
onsequen
e. We 
an therefore tolerate the non-stationarity of Rp(u) to indu
e an error of orderO(detS)1=2. We impose that,for a position v 
lose to 0 on the tangent plane, su
h that jvj � (detS)1=2,kEfhRp(u); Du v;Si hRp(u); ~rxDu v;Si�gk = O(detS)1=2k~ruw(u; S)k ;(36)where the gradients ~rx and ~ru are 2D ve
tors, and k � k is the Eu
lideannorm. This 
ondition imposes a non-trivial relationship between the surfa
egeometry and the type of texture homogeneity. If � is developable, andRp(u) = R is stationary, then the left-hand side of (36) vanishes, so the
ondition is trivially satis�ed. However, the 
ondition is mu
h more general.For instan
e, it applies if ~R is the restri
tion of a 3D stationary isotropi
24



(a) (b)Figure 10: A non-isotropi
 texture on a sphere, oriented along parallels (a)or meridians (b), obeys the weak stationarity 
ondition (36) at the equator.pro
ess to a sphere �, or if ~R is a non-isotropi
 texture oriented alongparallels or meridians, and 
onsidered at the equator [5℄.Under 
ondition (36), one 
an prove that the deformation gradientJdu(u)�1�xkJdu(u)is the solution of the Texture Gradient Equation, with an error term thattends to zero when detS ! 0. Moreover, the geometri
 relationships (32-33)between deformation gradient and lo
al surfa
e shape, whi
h derive froma di�erential analysis, are also valid for Jdu(u)�1�xkJdu(u). The surfa
enormal ~n 
an therefore be re
overed from the image of the textured surfa
e,with the pro
edure des
ribed in Se
tion 4.2.Condition (36) is appropriate from a per
eptual point of view: it is a
ondition between the surfa
e and the texture, that allows the 
al
ulationof surfa
e shape from the texture gradient, with an error term that tends tozero when the image resolution in
reases to in�nity. This 
ondition, owing tothe error term it tolerates, applies to a broad 
lass of textures and surfa
es,for whi
h the Shape from Texture problem 
an be solved visually. Theremaining issue is to spe
ify pre
isely the 
lass of shape-texture 
ombinationssatisfying (36).
25



Con
lusionThe warplet transform is a natural tool for analyzing the image of a texturedsurfa
e under perspe
tive proje
tion. Indeed, the warpogram of the imagesatis�es a fundamental transport equation, the Texture Gradient Equation.Under an appropriate homogeneity assumption on the original texture, thedeformation gradient, whi
h measures relative metri
 
hanges between thesurfa
e and the image plane, is the solution of the Texture Gradient Equa-tion. We have introdu
ed an estimator for the deformation gradient, anddemonstrated the Shape from Texture algorithm on photographs.Con
erning texture homogeneity, more work is ne
essary to fully under-stand the relationship between the texture and the surfa
e shape, so thatthe deformation gradient is solution of the Texture Gradient Equation, andthus the texture gradient a shape 
ue.Another area for further resear
h 
on
erns texture modelization. TheLambertian assumption is somewhat restri
tive, and a mu
h wider 
lass ofnatural textures 
ould be 
onsidered with a 3D modelization [16, 23℄. This
ould open promising dire
tions for Shape from Texture.A Transport equation in two dimensionsWe detail the 
al
ulations leading to (14). LetCk(u) = (
kij(u))f1�i;j�2g = �uk �Jd(u)�1�S0 ;and let S(u) = Jd(u)�1S0. Be
ause of (13),ddukw(u; S(u)) = �ukw(u; S(u)) +Xi;j 
kij(u) �sijw(u; S(u)) � 0 : (37)But �uk �Jd(u)�1� = �Jd(u)�1�uk (Jd(u)) Jd(u)�1 ;therefore Ck(u) = �Jd(u)�1�uk (Jd(u))S(u) :One 
an hen
e verify thatXi;j 
kij(u) ��si;jw(u; S(u)) = �Xi;j gkij(u) aij(u; S(u)) ; (38)and repla
ing (38) in (37) proves (14), for S(u) = S.26



B Wavelet and warplet expressionsB.1 Wavelet: modulated splineThe wavelet 
oeÆ
ients are 
al
ulated with a standard FFT pro
edure [19℄:a wavelet transform 
an be obtained as a 
onvolution produ
thI;  u;si = Z I(x)s�1 (s�1(x� u)) dx = I � ~ s(u) ; (39)with ~ s(x) = s�1 (�s�1x). The Fourier transform of ~ s(x) is 
~ s(!) =b �(s!). We 
hoose  to be a modulated box-spline, whose Fourier transformis b (!) = �sin(!=2� �)!=2� � �5 exp (�i(!=2� �)) :For a dis
rete signal of size N , the wavelet ~ s and the variable u are dis-
retized over the sampling grid, and (39) is 
omputed with an FFT, requiringO(N logN) operations.The wavelet 
oeÆ
ients hI; �a u;si = I � �a ~ s(u) are also 
al
ulated withan FFT pro
edure, using Fourier expressions derived from (19-20),[�u ~ s(!) = �i! b (s!)\�log s ~ s(!) = s! b 0(s!) :B.2 Warplet: modulated GaussianLike the wavelet transform, the warplet transform 
an be written as theresult of a 2D 
onvolution produ
t:hI;  u;Si = Z I(x) detS�1 (S�1(x� u)) dx = I � ~ S(u) ; (40)with ~ S(x) = detS�1 (�S�1x). Note that the Fourier transform of ~ S is
~ S(!) = b �(ST!).We 
hoose  to be a Gabor fun
tion, whose Fourier transform isb (!1; !2) = exp��(!1 � 2�)2 + !224 � :The warplet ~ S and the variable u are dis
retized over the image samplinggrid, and 
omputing (40) with an FFT requires O(N2 logN) operations.27



Similarly to (40), hI; �a u;Si = I � �a ~ S(u) 
an be 
omputed with the FFTpro
edure, using the Fourier transform expressions\�s11 ~ S(!) = �!12 (s11!1 + s21!2 � 2�) b (ST!) ;\�s12 ~ S(!) = �!12 (s12!1 + s22!2) b (ST!) ;\�s21 ~ S(!) = �!22 (s11!1 + s21!2 � 2�) b (ST!) ;\�s22 ~ S(!) = �!22 (s12!1 + s22!2) b (ST!)\�u1 ~ S(!) = �i!1 b (ST!) ;\�u2 ~ S(!) = �i!2 b (ST!) :Referen
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