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Abstract

This paper studies the recovery of shape from texture under per-
spective projection. We regard Shape from Texture as a statistical
estimation problem, the texture being the realization of a stochastic
process. We introduce warplets, which generalize wavelets over the
2D affine group. At fine scales, the warpogram of the image obeys a
transport equation, called Tezture Gradient Equation.

In order to recover the 3D shape of the surface, one must estimate
the deformation gradient, which measures metric changes in the image.
This is made possible by imposing a notion of homogeneity for the
original texture, according to which the deformation gradient is the
solution of the Texture Gradient Equation. By measuring the warplet
transform of the image at different scales, we obtain a deformation
gradient estimator.

Index terms Shape from Texture, texture gradient, wavelets, warplets.

Introduction

When observing a static monocular image, we perceive the 3D structure of
a scene through a combination of shape cues, especially shading, occlusion
and texture. Shape from Texture, first introduced fifty years ago by Gibson
[10], studies the recovery of the 3D coordinates of a surface in a scene, by
analyzing the distortion of its texture projected in an image [2, 8, 14, 15,



18]. The Shape from Tezture problem is generally broken down into two
independent steps. The first step is to measure the texture distorsion in the
image, and the second is to recover the surface coordinates from this texture
distorsion.

Texture can be modeled either deterministically or stochastically. Al-
though structural, or geometry-based methods allow the recovery of 3D
surface coordinates for deterministic textures, stochastic models encompass
a wider class of textures [15, 18, 24]. Measuring the distorsion of stochastic
textures requires local spectral measurements, obtained by convolving the
image with waveforms which are localized in space as well as in spatial fre-
quency. The local filtering most commonly used is based on the localized
Fourier transform [1, 18], and wavelets have also recently been introduced
for Shape from Texture [14].

Traditionally, one measures the texture distorsion by assuming a prop-
erty on the original texture (for instance, its homogeneity, its isotropy, or
its spectral content), and comparing the properties of the texture in the
observed image to the prior information on the original texture. A differ-
ential analysis consists in measuring the relative distorsion of the texture
within the observed image, without reference to the original texture. In
[18], the relative texture distorsion between neighboring texture patches is
approximated by an affine transform, and measured with a local Fourier
transform.

Unlike local Fourier functions, wavelets have the property of migrating
in position and scale under a 1D affine transform, which leads to a sim-
pler and more precise estimation of the deformation. In two dimensions, to
maintain this migration property, it is necessary to generalize wavelets into
warplets, whose “scale” is no longer a scalar but a 2 X 2 warping matrix.
The observed textured image is modeled as the realization of a stochastic
process. The texture distorsion can locally be approximated by a 2D affine
transform, and the variance of the warplet coefficients, called the warpogram,
thus undergoes a transport in the position-scale parameter space. This fun-
damental transport equation obeyed by the warpogram is called Texture
Gradient Equation. It can be seen as the analog of the Optical Flow Equa-
tion for motion estimation [13]. Whereas the velocity term in the Optical
Flow Equation is related to the projection of the 3D velocity in the image,
here, the velocity measures relative texture distorsion in the image. The
texture distorsion is thus calculated by estimating the different terms of this
equation.

The next step is to recover the 3D surface coordinates from the texture
distorsion. For this, a key assumption on the underlying texture has to be



made: that it displays some form of spatial homogeneity on the surface. Per-
ceptual results indicate that departure from isotropy is also an important
cue in shape from texture, leading to biased slant estimates when the origi-
nal texture is actually anisotropic [22]. Here, we address Shape from Texture
without supposing isotropy for the original texture. As natural though it
may appear from a perceptual point of view, texture homogeneity on a gen-
eral surface is very difficult to state mathematically. We can distinguish two
independent subproblems nested in the recovery of 3D surface coordinates
from the texture gradient. One of the subproblems is purely geometrical,
and concerns the change of metric between the 3D surface and the image
plane, due to the projection (either orthographic or perspective) and to the
surface curvature. We call deformation gradient the relative change of this
metric within the observed image. For instance, a planar surface viewed
under an orthographic projection has a deformation gradient equal to zero.
This is not true under a perspective projection, because the foreshortening
is not the same throughout the image. The geometrical issues pertaining to
Shape from Texture have been formalized by Garding [8] and further ana-
lyzed by Malik and Rosenholtz [18], who establish the relationship between
the deformation gradient and local surface shape parameters. The 3D co-
ordinates of the surface can then easily be inferred, up to a scaling factor.
The other subproblem concerns texture modelization, and imposes a homo-
geneity condition on the texture, under which the deformation gradient is
the solution of the Tezture Gradient Equation, and thus can be calculated.

To recapitulate, we decompose Shape from Texture into three separate
problems:

e Impose a homogeneity condition on the texture, under which the de-
formation gradient is the solution of the Texture Gradient Equation.

e Listimate the deformation gradient from the Texture Gradient Equa-
tion.

e Measure the 3D surface coordinates from the deformation gradient.

The paper is organized as follows. In Section 1, we detail the model used
for Shape from Texture. We focus our attention on developable surfaces,
for which the texture homogeneity condition can be stated quite simply. In
Section 2.1, we introduce the Texture Gradient Equation in the 1D case, after
observing that wavelets migrate in the position-scale parameter space under
an affine transform. Section 2.2 establishes the Texture Gradient Fquation in
2D. Wavelets are now replaced by warplets, which are especially designed to



migrate in the position-scale parameter space under a 2D affine transform.
In Section 3, we analyze the statistical issues involved with the Texture
Gradient Equation. The consistency of the deformation gradient estimator is
proved in 1D, and the corresponding algorithm is illustrated with numerical
results. Section 4 presents our Shape from Texture algorithm, with examples
on photographs. Lastly, we propose a new homogeneity condition, based on
the Texture Gradient Equation, which generalizes the homogeneity condition
of Section 1 to general surfaces. This paper is oriented towards modelization
and algorithms: although we state some mathematical results, we refer to
[7] for their detailed proofs.

1 Shape from Texture Model

We assume the surface to have a Lambertian reflectance distribution. This
supposes the texture to be “painted” on the surface, and to have neither
rugosity, nor self-occlusions. With our Lambertian assumption, and under
perspective projection, the image intensity at position z in the image is
related to the reflectance R of the surface in the scene by

I(z) = a(z)R(p(2)) , (1)

where a(r) is a multiplicative shading term, and p(z) is the perspective
backprojection (Figure 1). For instance, if the light comes from a point
source in direction §, and if 7 is the surface normal, then a(z) = 7i(p(x)) -
S(p(x)) 12, 6. )

We use a stochastic model: the surface reflectance R is the realization of
a random process, supported on ¥ C IR3, and taking its values in IR. The
image intensity I is also a random process, supported on IR?. As explained
in the introduction, we decompose the Shape from Texture problem in three
steps: making a homogeneity assumption on the texture under which the
deformation gradient is the solution of the Texture Gradient Equation; esti-
mating the terms of the Texture Gradient Equation, and obtaining the 3D
surface coordinates from the deformation gradient. We now constrain model
(1) by imposing a homogeneity condition on the original texture R.

A developable surface ¥ (i.e. with zero Gaussian curvature) can be un-
folded isometrically into a portion of a plane, thus defining a mapping from
each position p(x) € ¥ onto d(x) € IR? [4]. A 2D stochastic process R on IR?
can then be defined by R(d(z)) = R(p(z)). In the developable case, model
(1) therefore simply becomes



Figure 1: Perspective image of a textured cylinder (left). Image formation
(right): each position x in the image corresponds to a point p(z) at the
intersection between the surface > and the light ray connecting = and the
optical center O. Vectors 7 and § respectively represent the surface normal
and the light source direction.

We define the original texture R to be homogeneous if R is a wide-sense
stationary process:

E{R(z) R(x + 1)} =C(7) . (2)
In this case,

E{l1(2)]*} = la(2)"E{|R(d(x))]"} = la()|* C(0) .

The shading term a(z) can thus be estimated up to a multiplicative con-
stant from the second moment of the image E {|I(z)[?}. Shape from Shading
studies shape recovery from the shading term only [17, 20]. Here, we con-
centrate on the texture distorsion, and hence compensate for illumination
changes. We estimate the second moment of the image, and then calculate
E{|I(z) |2}71/ °1 (). The image resulting from this local contrast renormal-
ization is still denoted I(x) for convenience. The model therefore simplifies
to

I(x) = R(d(x)) - (3)

We assume that the surface ¥ is C3, and in particular does not contain any
occluding contour. Hence d(z) is C? and invertible.
The Jacobian matrix of d(z) in an orthonormal basis (Z1,Z2) of IR? is



given by
8d1 (x) 8d1 (x)

_ ox oz
Ja(z) = ddy(z) Ody(z) | (4)
8$1 8$2

Since ¥ is developable, and it can be isometrically unfolded into a portion
of a plane, Jy(z) represents the change of metric between the surface X
and the image plane. We call deformation gradient the relative variations
of the Jacobian in directions z; and x2. The deformation gradient is thus
represented by the two matrices, for kK =1, 2:

ody(z) ddy(x)\ * [8%di(x) %di(x)

1 8:131 8:132 8$k 61‘1 8$k8$2
Ja(2)™ O, Ju(w) = . (5)

ddy(x)  Ody(z) 0%dy(z)  0%dy(7)

0z, 0z 0xp0r1 O0xL0xo

We want to solve the following inverse problem: estimate the deformation
gradient (5), given one realization of I(z) = R(d(z)).

2 Texture Gradient Equation

2.1 In 1D: Scalogram Migration

For the sake of simplicity, let us start with a 1D Shape from Texture prob-
lem, in which the shape ¥ to be recovered is a curve. Let R denote the
“reflectance” of X, parameterized by arc-length ¢: R(¢) is assumed station-
ary, and is depicted, in Figure 2, by a regular zig-zag line along the curve.
In a 1D perspective model, a pixel at position z in the image backprojects
onto a position p(z) on X, whose arc-length is ¢(p(z)). The image I(x)
can therefore be viewed as the deformation of a stationary process R by

d(x) = £(p(x)):

Let 9 be a function with zero average, whose support is in [—1,1]. A local
analysis of the image is performed by computing the inner product of I(x)
with

sl = 0 (224, (6

S
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Figure 2: A point z in the image backprojects to a point p(z) on X, whose
arc-length is d(z) = £(p(x)). The zig-zag line represents a stationary texture
covering .. When projected onto the image, it gives rise to a non-stationary
process I(z) = R(d(x)).

whose support is in [u — s,u + s]. This inner product (I, ) is called a
wavelet coefficient of I at position u and scale s [19], and we call scalogram
of I the variance of this wavelet coefficient:

w(u, ) = B{{L, ¢us)*} -

If R is stationary, then we easily verify that for a fixed scale s, its scalogram
is independent of wu:

LRy =0 @

In Figure 3(a), the scalogram of R is displayed in a gray-level image as a
function of u (horizontal axis) and of log s (vertical axis): it does not vary
with 4. On the other hand, the scalogram of I does in general depend on w,
as can be seen in Figure 3(b).

We introduce the Texzture Gradient Equation, which relates the partial
derivatives of w(u, s) with respect to u and to log s:

Ouw(u,s) —v(u, s) Oog sw(u,s) =0 . (8)

The velocity term v(u, s) can be interpreted as a texture gradient: it mea-
sures how the image energy moves across scales, according to the position
in the image. The Texture Gradient Equation (8) is comparable to the Op-
tical Flow Equation for motion estimation [13]. The conservation equation
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Figure 3: (a) Top: a realization of stationary process R(z). Bottom:
scalogram E{|(R,%u.)[*}. The horizontal and vertical axes represent u
and log s, respectively. Dark points indicate high amplitude. (b) Top:
a realization of deformed process I(z) = R(d(z)). Bottom: scalogram

w(u, s) = E{{L, 9us)|*}-

(7), expressing the stationarity of the original process R, is analogous to
brightness constancy in Optical Flow.

We are now going to show that the velocity term v(u,s) tends to the
deformation gradient d”(u)/d'(u) when s — 0. For this, we prove that when
the scale s is small relative to the scale of variation of the deformation, the
scalograms of I and of R are related by a simple migration in the position-
scale parameter space.

Because 1, ¢ is supported in [u — s,u + s], a wavelet coefficient (1,1, )
only depends on image intensities in a neighborhood of wu:

(L hus) = /R(d(m)) Ly (“"”‘“) iz

S S

and a change of variable 2’ = d(z) yields

[ m (dl(xs,) =) sy

If s < d'(u)/d"(u), then 9 (W) is non-zero only if 2’ belongs to a
neighborhood of d(u) proportional to d'(u)s. Hence d'(d='(z')) =~ d'(u), and




if ¢ is in CI,

As a consequence,

(1) [ RGo) g (S50 ) s )

But according to (6),

1 r—du))
d/(u)sfl/}< d’(u)s ) - "/}d(u),d'(u)s(x) ,

so on the right-hand side of (9), we recognize (R, %q() 4 (u)s) Which is a
wavelet coefficient of R at position d(u) and scale d'(u)s. Let so be a fixed
constant, much smaller than d”(u), and let s(u) = s¢/d’'(u). Then (9) implies
that

w(u, 5(w) = (T, Yu,s()*} = E{I(R, Yau),50)*} -
Since R is stationary, E{|(R, T/Jd(u),s0>|2} does not depend on u, therefore

One can expand the total derivative - as a linear combination of partial
derivatives 9, and 0,:

iw (u,s(u)) = Ouw (u, s(w)) + s (u)dsw (u, s(u)) .

du
Noticing that s'(u) = —%s(u), for s sufficiently small,
d”(u)
Oyw(u, s) — W&Ogsw(u,s) ~0. (10)

It is natural that d(z) should appear under this form in (10), because with
no additional assumption on the stationary process, the deformation is only
specified up to an affine transform. Indeed, if I(z) = Ri(di(z)) where Ry is
stationary, and if do(x) = ad;(x) 4+ 3, then one can find another stationary
process, Ro(z) = Ry(ax + ), such that I(x) = Ra(dz(z)). The functions
d; and dy, which satisfy d/d| = dfj/d,, cannot be distinguished with the
sole knowledge that I is obtained through the deformation of a stationary
process.



Equation (10) was derived in a loose fashion, but a careful analysis of
the higher-order terms gives the following result [7]: if the covariance of R,
C(7), defined in (2), satisfies

C(0) = C(r) = |7|"n(r) (11)

with A > 0, n(0) > 0, and 7 continuously differentiable in a neighborhood
of 0, then
dll (U)
(L+0O(s)) Oyw(u,s) — d,—810gsw(u, s)=0. (12)
(u)
The resolution error O(s) tends to zero at least as fast as s, and can therefore
be neglected at fine scales. Condition (11) on the covariance of R is quite
weak, and is satisfied by most correlation functions [25]. This proves that at
small scales s — 0, the deformation gradient is the solution of the Tezture
Gradient Equation.

A scalogram w(u, s) is displayed on the bottom of Figure 3(b): the posi-
tions of the scalogram maxima are transported in the (u;logs) plane, with
a velocity equal to the deformation gradient. Computing the deformation
gradient from partial derivatives of the scalogram is thus in principle possi-
ble. There remains a difficulty: we only observe one realization of I(x), from
which we must estimate a scalogram. Section 3 focuses on this estimation
problem.

2.2 In 2D: warpogram migration

A deformation can be locally approximated by an affine transformation,
which is specified by a translation and a dilation. In 1D, the dilation param-
eter is a positive scalar, whereas in 2D, it is a 2 X 2 matrix. Our 1D analysis
of deformed stationary processes involved wavelets, constructed by trans-
lating and dilating a mother waveform. In 2D, wavelets are now replaced
by warplets, constructed by applying a 2D affine transform to a mother
waveform. Warplets are thus clearly designed to migrate under a 2D affine
transform.

Let 9(z1,x2) be a compactly supported function in [—1,1] x [—1,1], with
zero average. A warplet 1, ¢ is indexed by its position u = (u;,u2), and by
a 2 x 2 invertible matrix



which deforms the support of :
Yu,s(x) = det STHP(S™ (& — w)) -

For instance, modulated Gaussians, called Gabor functions,

2 2

P(x1,x2) = exp (—@) exp(ikz1) ,

have widely been used for texture discrimination [3, 21].

X2

Up X1

Figure 4: Approximate spatial localization of a warplet 1), s constructed
with a Gabor function . The four parameters of S control the shape
and orientation of the ellipse, as well as the frequency of its oscillations
(represented by the stripes).

A warplet coefficient of I(z) at position u and for a warping matrix S is
defined as the inner product (1,1, s). The variance of this warplet coeffi-
cient is called the warpogram of I:

w(u, S) = E{(I,4us)*} -

Asin 1D, we are going to prove that the deformation gradient is the solution
of a Texture Gradient Equation in 2D, for small scales, when det S — 0. For
this, we observe that if I(z) = R(d(z)), then the warpograms of I and of
R are related by a migration in the six-dimensional (u1, ug, $11, 12, S21, S22)
parameter space. A warplet coefficient (1,1, s) only depends on the values
of I in a neighborhood of u whose size is controlled by S. If det S is small

11



enough,

(s = [ [ Rla@) g (57— w) s
dz'
~ ) 3 Ja(d ()

o
dz'

// L tS (57175 (u)(o — d(u) det Jy(u) ’

where Jy(z) is the Jacobian matrix defined in (4). Warplet coefficients of I
and of R are thus related by a migration in position-scale:

(L, %u,s) = (R, Pa(u),1,(u)S) -

Let S(u) = Jy(u) 1Sp. If det Sp is small enough, the warpograms of I and
R are related by

u)) = E{[{L,%u.50))*} = E{ (R, $auy.50)*} -

Since R is stationary, the right-hand side of the above relation is independent
of u. Therefore, for k =1, 2,

d
d—Ukw(u ,S(u)) =0 . (13)

We show in Appendix A that, after expanding the total derivative ﬁ, the
above equation can be rewritten, for £ =1, 2,

Z g8 (w) aij(u, §) = 0, (14)

t,j=1

where the a;; are the coefficients of the following matrix product

a1(u, S) az(u,S)\ _ 8%(;:,15) aué(;:;s) o [S11 s (15)
0,21(’U,,S) a’22(u’5) ow(u,S) Ow(u,S) S19 S99 )

0521 0522

and the gfj represent the deformation gradient (5):

k k
g11(w) 912(U)> -1
= Jy(u) " 0p, Jg(u) . 16

(ke o) = st 0t 1o
In [7], we prove that the resolution error in equation (14) is of the order of
O(det §)'/2. This shows that, when det.S — 0, the deformation gradient

12



is the solution of a 2D Texture Gradient Equation, which is a vector-valued
equation with two components, for k =1, 2:

2
Ouw(u, S) = > vfi(u, S) ayj(u, §) = 0. (17)

ij=1

In Section 4, we will show how to use (14) to estimate the deformation
gradient from warplet coefficients of the image.

3 Consistency of statistical estimation

For the sake of simplicity, this section focuses on the 1D estimation problem.
We want to estimate d”(u)/d'(u), which we know from (12) to be the solution
of the Texture Gradient Equation (8) at small scales. For this, we need to
estimate partial derivatives d,w(u,s) and Giog sw(u, s) from one realization
of I. Since w(u, s) = E {|(I, y,s)|*}, for a generic variable a representing u
or log s, one can see that

Oqw(u, s) = 2Re [E{(I, vy s){L,0utpus)"} - (18)

with
Outp(z) = 9'(z) , (19)
8logs@b(fz) = —Tﬁ(x) - Wﬁl(x) . (20)

Let 9 be a compactly supported wavelet with m vanishing moments, i.e.
whose inner product with any polynomial of degree k < m vanishes:

/w(x)xkdxzo.

Then 0,9 and Oiog 57 are also compactly supported wavelets, and an inte-
gration by parts shows that they respectively have m + 1 and m vanishing
moments. Expression (18) indicates that d,w(u,s) simply depends on the
wavelet transform of I with mother wavelets ¢ and d,1. Appendix B.1
details the implementation of the wavelet transform.

In view of (18), we could use the following unbiased estimator to estimate
Oqw(u, s) from a single realization of I:

—

Ogw(u, s) = 2Re [(I, 1y s) (L, 0uthus)"] - (21)

13



Unfortunately, the variance of (9/(11\1)(14, s) is typically larger than d,w(u, s),
which leads to an unacceptably large mean-squared error. To reduce the
variance, we compute a weighted average of (12), by convolution with a

continuous, positive window function ka(z) = A~'k(A~'z) supported in
[—A, A

dll .
(1 + O(s))@uw(, 3) * kA(u) - <W('))810g5w('7 3)> * kA(u) ' (22)
We assume that d is C?, and that d’(u) > n > 0. For v’ € [u — A, u + A],
d"(u')/d'(u') = d"(u)/d'(u) + O(A) . (23)
Replacing (23) inside (22), for A > s, we obtain

d" (u) _ Oyw(-, 8) * ka(u)
d,(u) 8logsw('vs) * kA(U')

+O(A) . (24)

The error O(A) can be interpreted as a bias due to the smoothing over a

width A. Recalling the estimator 8271}(71,5) defined in (21), equation (24)
d/l(u)

suggests the following estimator for T

——

d"(u) _ @-,s) tkau)
d'(u) Olog sw (-, 8) * ka(u)

(25)

If the signal is measured at a resolution IV, the wavelet transform can be
calculated up to the scale s = N~!. To optimize the estimation, we must
adjust A so that the bias term is of the same order as the variance of the
estimator. We have proved in [7] that for s = A N~ and for A = y N~'/5 if
R is a Gaussian process, with a covariance which satisfies (11) for a certain
h > 0, and if the number of vanishing moments of ¢ is larger than (2h+1)/4,

then
) () ~1/5
Prob{ d,(;‘) — d,(;‘) <2(logN)N / } m 1.
In other words, Cg,’(;‘) tends to L@ with a probability that tends to 1 when

d'(u)
the resolution N goes to infinity.

This consistency result guarantees the convergence of the estimator, but
in practice, for a fixed resolution, averaging the smoothed estimators across

14



several scales improves the result. We therefore propose a modified estimator
d"(u).,
d'(u) *

for

——

d"(u) _ ¥ Ouw(,s:) * ha(u)
(W) 5, Bogaw(-, 5i) * hia(u)
In the example of Figure 5, the signal I(z), displayed in (a), is sam-

(26)

o0z oa o5 08 1
(c)

Figure 5: (a) A realization of I(z), and the squared amplitude of its wavelet

coefficients (I, 1y s)|?. (b) Estimated deformation log(d') in dashed, and

exact deformation log(d’) in full line. (c) Stationarized signal R(z) =
I(d~}(z)), and [(R, ¢pu,s)|* .

pled over [0, 1] at a resolution N = 4096, and we choose 6 scales in a

15



range logs € [—4.5, —3] for which the signal has energy (see Figure 5(a)).
The partial derivatives of the scalogram, m(-,si) and @u(-,si) are
computed with (21), using wavelet coeflicients (I, s;), (I, 0u%u,s;) and
(I, Olog s¥u,s;) that are calculated with an FFT procedure explained in Ap-
pendix B.1. The smoothing kernel is k(z) :/\1— |z| for z inside [—1, 1], and

zero outside this interval. The estimator %(uu)) is computed with (26), for

A = 0.77 + N~/5. The overall algorithm requires O(N log N) operations.
It is important to note that only the wavelet coeflicients corresponding to 6
different scales need to be computed. The whole wavelet transform plane is
displayed in Figures 5(a) and (c) for an explanatory purpose only. Figure
5(b) shows log d’ (full line), and its estimate lo/g\d’ (dotted line), obtained by
integrating m’ and choosing the additive integration constant to satisfy
fol exp(log/\d’) = fol d'. An estimate d for the warping function can be ob-

tained, up to an affine transformation, by integrating exp(@). It is then
possible to stationarize I by computing R(z) = I(d *(z)). Figure 5(c) dis-
plays R: as expected, its wavelet transform remains nearly constant when w
varies, modulo statistical fluctuations. MATLAB scripts reproducing Figure
5 are available at
http://cermics.enpc.fr/~maureen/ShapeFromTexture.html.

4 Application to Shape from Texture

We now turn to the estimation of shape from texture. Section 4.1 details the
deformation gradient estimation from the warplet coefficients of the image,
when the deformation gradient is the solution of the 2D Texture Gradient
Equation. Section 4.2 presents shape recovery from the deformation gradi-
ent, and lastly, Section 4.3 gives a condition on the texture, for general (not
necessarily developable) surfaces, so that the deformation gradient is indeed
the solution of the 2D Texture Gradient Equation at small scales.

4.1 Deformation Gradient estimation

As explained in Section 1, we preprocess the image to remove the shading
term. We suppose I only to have positive values, and we convolve I? with a
2D Gaussian G,. The variance o of the Gaussian must be adjusted according
to the scale of shading variations. The original image I(z) is then divided
by (I? * G,)(z)'/?. The images in Figures 6(a) and 7(a) are the result of
this preprocessing step.

16



When the deformation gradient is the solution of the Texture Gradient
Equation, and when det S — 0, (14) can be rewritten as

u

—_

b (

g’fz(u
[011(%5)7012(%5)7021(%5),@22(%S)] k(u
%1
922(

= Oy, w(u,S) . (27)

Q

~— N’

U

Recall that gfj are the coefficients of the deformation gradient (16), and the
a;j have been defined in (15). A collection of equations (27) corresponding
to P different warping matrices {Si}i:l,m’P are concatenated in a linear
system

a11(u, S1) a2, S1)  asn(u,S1) az(u,S1) glfl(“) Ou,w(u, S1)
ai1(u,S2) ai2(u, S2) a2 (u,S2) axn(u,Ss) gt (u) | Oy w(u, S2)
: : : : g (u) | :
a1(u, Sp) a12(u, Sp) az(u,Sp) an(u,Sp)) \922(u) Ouyw(u, Sp)
(28)
Because we only observe one realization of I(z), as in 1D, (28) is smoothed
with a 2D window ka (7) = A72k(A~'z) supported inside [A, A]?. Since d
is C?, one can verify that convolving (28) with ka yields
k
a(u,51) ... am(,S)) (90l Du,w (-, 81) * ka (u)
- | = : +0(a) ,(29)
_ _ g5 (u) '
ai(u,Sp) ... az(u,Sp) 5 (u) Oy, w(-, Sp) * ka (u)
where

(%(Ua S)) = (8Sijw('v S) * ka (u))lgi,j§2 x ST

1<tm<2
Using O,w(u, S) = 2 Re [E{(I, vy s)(I, 0uthu.s)" }], we estimate d,w(-, S)*ka
with duw(-, S) x ka, where

Ovw(u, 8) = 2Re (T, u5)(I, 0utpus)] - (30)

Let us normalize the image support to [0, 1]2. If I has N? = 2562 pixels,
we can only compute the warpogram for warplets 1, ¢ whose support in any
direction is larger than N~!. We therefore require all the eigenvalues of S
to be greater than N~
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Figure 6: (a) Original image, with shading removed. (b) Normal vector
computed. (c) Surface reconstructed from the normal vector. (d) Visual-
ization of (c) as gray levels. Because (a) does not contain texture on its
borders, there are errors in the border of the reconstructed surface (c).

Denoting

(@, 9))

——

_ X T
1<l,m<2 (85“111( 8) * ka (u)) 1<i,j<2 x5,

equation (29) suggests estimating the deformation gradient by inverting the
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puted. (c) Surface reconstructed from the normal vector. (d) Visualization

Figure 7: (a) Original image, with shading removed. (b) Normal vector com-
of (c) as gray levels.
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To obtain at least as many equations as unknowns, one must choose warplets
corresponding to at least four different warping matrices S, and in practice,

we shall use even more. The estimators gfj are then calculated by singular
value decomposition. The choice of matrices S must be adjusted so that the
resulting system is not degenerated. However, for some shape and texture
configurations, even with a great number of different warping matrices, the
system may remain underdetermined, mimicking the aperture problem in
Optical Flow. Let us take the example of the cylindrical shape in Figure 1,
which is curved in the horizontal direction. If it is covered with a texture
that is constant in the horizontal direction, then the matrix on the left-hand
side of (31) will have a rank strictly smaller than four, which does not allow
recovery of the deformation gradient.

S1
0
6 and 7, calculations were performed with six directions 6, € {ln/6,] =
0,...,5} and with 6 = 0. Four scale couples (s1, s2) are selected, ensuring
that |[(I, 4 5)| is large to avoid numerical instabilities. Ideally, the set of
warping matrices {S;,i = 1..., P} should be selected adaptively according
to u, but we used the same set throughout the image. This explains why we
used a total of P = 6 x4 = 24 warping matrices, instead of the minimal value
of 4. As in 1D, it is important to note that warplet coefficients need only
be calculated for relatively few scaling matrices, compared to a full warplet
transform. For each scaling matrix, we calculate (I,y,s), (I, 0y, %u,s) and
(1,0s;;u,s) with a FFT procedure detailed in Appendix B.2. There are
thus a total of 168 = 24 x 7 sets of warplet coefficients to compute. We
calculate d,w(u,S) with (30), and convolve it with ka. In our examples,
we used A = N~1/% = 0.33, which must be compared to the image support
which is [0, 1]?. Finally, the linear least-squares solution of (31) is computed
with a Singular Value Decomposition [11].

Proving the statistical consistency of the deformation gradient estima-
tor in 2D is far more complicated than in 1D, and has not been done in
the most general setting. However, for a separable deformation d(z,z2) =
(di(x1),da(z2)), the 1D consistency results of Section 3 extend automati-
cally to 2D, and Figures 6 and 7 show that good numerical results are also
obtained for non-separable deformations.

We parameterize S under the form: S = Ry, < SO> Ry,. In Figures
2

4.2 Recovering the 3D surface coordinates

Our goal is now to calculate the normal vector 77 to the surface, from the
deformation gradient. We first recall the geometrical setting presented in [8].
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viewing sphere surface ¥

Figure 8: The slant-tilt frame field of X is (7, iy, gg), where 52 =17 Xty is
tangent to the surface X, and perpendicular to the plane of the figure.

The basic Shape from Texture geometry assumes the image to be projected
onto a viewing sphere, as shown in Figure 8. The perspective backprojection
p maps the viewing sphere to the surface ¥. The tilt direction ¢ is defined
as the direction of maximum change of the distance ||Op(u ||. Defining
b= 00 x t, we obtain an orthonormal frame field (O, 1, b) of the viewing
sphere. The differential of the backprojection transforms ¢ and b into two
orthogonal vectors, which are denoted t}; and 52 after being unit-normalized.
The resulting orthonormal frame field (7, &%, by) of ¥ is called the slant-tilt
frame field. The slant is the angle o between 77 and Op(u). The variations of
the surface normal 77 depend upon the surface curvature, and are specified

by
Vf’z 7 [kt T 'FE
V*g n)  \7 Kp gg )

In the rest of the paper, we consider the deformation gradient to be measured
on the image plane and not on the viewing sphere. The gaze transformation,
which maps one to another, can actually be approximated by the identity
as long as the surface X remains close to the optical axis of the camera. If
this is not the case, a correction term must be taken into account ([18], App.
A2).

If (#1,72) is an orthonormal basis of the image plane, the tilt angle @ is
such that the projection of ¢ on the image plane is given by cos 8 &1 +sin 0 &5.

We define Ry = ((S:?;g _C(i;r109> According to [18, 9], the deformation

21



gradient (5) is related to local surface parameters by

Jy(u) " 0y, Jg(u) = Ry (My(u) cos® — My(u) sinf) R_g , (32)
Jy(u) 710y, Ja(u) = Ry (M(u) sin@ + My(u) cosf) R_g , (33)

where M;(u) and M,(u) are given by

M;(u) = tano <2 + HOp(uant/cosa ||OP(1U3||T> :
My(u) =tano (“OP(IUMT “OP(U3’(|)'% cos 0) .

In order to recover local surface shape from the deformation gradient, the
five parameters (0, o, k¢, kp, 7) must be estimated. After algebraic manipu-
lations detailed in [9], this reduces to computing the tilt direction by linear
minimization. From the tilt and slant, we then compute the normal

N - . —
1 =coso Ou —sino t ,

on a grid whose resolution is 16 times smaller than the image resolution.
This is due to the fact that each vector is derived from the estimated de-
formation gradient which depend on averaged warplet coefficients. Let the
3D coordinates of 7 be (n1,n2,n3). A needle map, displayed in Figures 6(b)
and 7(b), is given by the 2D vector

i’ = (n},ny) = (n1/n3, n2/n3) .

In the golf-ball example of Figure 6(b), since image border does not contain
any texture, we imposed that n} = n}, = 0 at the image corners.

The needle map can be integrated to obtain the depth f(z1,z2) of a
point at position (z1,z2), up to a multiplicative scaling factor. Notic-
ing that 0, f = n)| and 0,,f = n), it is clear that f is the solution of
Af = 0y, nl + 0z,nh [12]. This equation is solved with a standard finite
difference scheme. The reconstructed surface depth f(x1,z2) is plotted in
Figures 6(c,d) and 7(c,d). In the overall algorithm, the most significant
amount of computation is devoted to calculating the warplet coefficients for
different warping matrices S, each requiring O(N? log N) operations. MAT-
LAB routines reproducing the results of this section can be downloaded from
http://cermics.enpc.fr/~maureen/ShapeFromTexture.html.
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Figure 9: The exponential map exp,,) maps a neighborhood of 0 on the
tangent plane to a neighborhood of p(u) on 3. We define a local mapping
dy from the image plane to the tangent plane by expy,)(du(z)) = p(z).

4.3 From Developable to General Surfaces

In Section 1, we modeled the image of a textured surface under perspective
projection as

I(z) = a(z) R(p(2)) -

If ¥ is a developable surface, then the reflectance R, defined on ¥, can be
“flattened” into a 2D process:

I(x) = a(x) R(p(x)) = a(z) R(d(x)) . (34)

When R is wide-sense stationary, Section 2 shows that the deformation
gradient corresponding to d(x) is solution of the Texture Gradient Equation,
at small scales. We now propose a similar approach for a general, non-
developable surface. Noting that the deformation gradient need only be the
solution of the Texture Gradient Equation in the small scale limit (det S —
0), we introduce a local version of model (34). In order to transform R
into a 2D process, we project it locally onto the tangent plane to X at
p(u), denoted T, (¥), through the ezponential map [4]. This map, expy),
projects a neighborhood of 0 in 7)) (¥) to a neighborhood of p(u) on ¥, as
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depicted in Figure 9. It transforms radial lines stemming from 0 in 7},(,,)(X)
into geodesics on ¥ stemming from p(u), while preserving lengths along
these geodesics. We can define a 2D process Ry, in the neighborhood of 0
on T,y (X) by

Rpu)(v) = R(expy() (v)) -
Let dy(z) be the function such that expy,)(dy(z)) = p(z). By definition,

I(x) = a(z) R(p(x)) = a(z) R(expyy)(du(x))) = a(x) Rpw) (du(z)) ,  (35)

which is a local version of model (34).

Let us now impose a homogeneity condition on R. First of all, it is natural
to ask that E{|R(p)|?} be independent of position p € . As a result, a local
contrast renormalization can be performed, leading to an image I(z) such
that

I(z) = Ry(u)(du(z)) -

Let D, be the deformation operator such that D, f(z) = f(dy(z)). Like
the function d,, the operator D, depends both on the local surface shape
and on the perspective projection. Its adjoint is written D,, and

<Eufug> = (fu Dug> :

Because of distorsions due to surface curvature, it does not make sense to
require R, to be wide-sense stationary. Moreover, even in the developable
case, when R is stationary, the deformation gradient is the solution of the
Texture Gradient Equation with a resolution error of order O(det §)Y/2 in
equation (14). Introducing an additional error term of the same order to
equation (14) is of no consequence. We can therefore tolerate the non-
stationarity of R, to induce an error of order O(det S )}/2. We impose that,
for a position v close to 0 on the tangent plane, such that |v| < (det §)'/2,
IE{(Rp(w)s Dutb,s) (Rp(uys Ve Duthu,s) HI = O(det $)'/?|[Vyw(u, S)||
(36)

where the gradients V, and V,, are 2D vectors, and || - || is the Euclidean
norm. This condition imposes a non-trivial relationship between the surface
geometry and the type of texture homogeneity. If 3 is developable, and
Ry = R is stationary, then the left-hand side of (36) vanishes, so the
condition is trivially satisfied. However, the condition is much more general.

For instance, it applies if R is the restriction of a 3D stationary isotropic
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(a) (b)

Figure 10: A non-isotropic texture on a sphere, oriented along parallels (a)
or meridians (b), obeys the weak stationarity condition (36) at the equator.

process to a sphere ¥, or if R is a non-isotropic texture oriented along
parallels or meridians, and considered at the equator [5].
Under condition (36), one can prove that the deformation gradient

Jdu (u)_lazk Jdu (U’)

is the solution of the Texture Gradient Equation, with an error term that
tends to zero when det S — 0. Moreover, the geometric relationships (32-33)
between deformation gradient and local surface shape, which derive from
a differential analysis, are also valid for Jy, (u) 10y, Jy, (u). The surface
normal 7 can therefore be recovered from the image of the textured surface,
with the procedure described in Section 4.2.

Condition (36) is appropriate from a perceptual point of view: it is a
condition between the surface and the texture, that allows the calculation
of surface shape from the texture gradient, with an error term that tends to
zero when the image resolution increases to infinity. This condition, owing to
the error term it tolerates, applies to a broad class of textures and surfaces,
for which the Shape from Texture problem can be solved visually. The
remaining issue is to specify precisely the class of shape-texture combinations
satisfying (36).
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Conclusion

The warplet transform is a natural tool for analyzing the image of a textured
surface under perspective projection. Indeed, the warpogram of the image
satisfies a fundamental transport equation, the Tezture Gradient Equation.
Under an appropriate homogeneity assumption on the original texture, the
deformation gradient, which measures relative metric changes between the
surface and the image plane, is the solution of the Texture Gradient Equa-
tion. We have introduced an estimator for the deformation gradient, and
demonstrated the Shape from Texture algorithm on photographs.

Concerning texture homogeneity, more work is necessary to fully under-
stand the relationship between the texture and the surface shape, so that
the deformation gradient is solution of the Texture Gradient Equation, and
thus the texture gradient a shape cue.

Another area for further research concerns texture modelization. The
Lambertian assumption is somewhat restrictive, and a much wider class of
natural textures could be considered with a 3D modelization [16, 23]. This
could open promising directions for Shape from Texture.

A Transport equation in two dimensions
We detail the calculations leading to (14). Let

CF(u) = (C%(U)){lgi,jg} = 0wy, (Ja(uw)™") So
and let S(u) = Jy(u)1Sy. Because of (13),

d;zkw(US( ) = Buw(u, S(u +ZU w) B, w(u, S(w) % 0. (37)

But
Ouy (Ja(w)™h) = =Ja(w) ™ Oy, (Ja(w)) Ja(w) ™",

therefore

CF(u) = —Ja(w) " Ou, (Ja(w)) S(u) -

One can hence verify that

0
D cljlu) 5 —wlu ng aij (u, S(w)) (38)
3 2,J
and replacing (38) in (37) proves (14), for S(u) = S.
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B Wavelet and warplet expressions

B.1 Wavelet: modulated spline

The wavelet coefficients are calculated with a standard FFT procedure [19]:
a wavelet transform can be obtained as a convolution product

(I, ) = / T@)s (s~ (& — ) dir = T % () (39)

with Ys(x) = s '4p(—s'x). The Fourier transform of t,(z) is s(w) =
1* (sw). We choose 1 to be a modulated box-spline, whose Fourier transform

) ) = (22N oy iz )

For a discrete signal of size N, the wavelet 1, and the variable u are dis-
cretized over the sampling grid, and (39) is computed with an FFT, requiring
O(N log N) operations.

The wavelet coefficients (I, 9,1y, s) = I * 8,1153(14) are also calculated with
an FFT procedure, using Fourier expressions derived from (19-20),

B.2 Warplet: modulated Gaussian

Like the wavelet transform, the warplet transform can be written as the
result of a 2D convolution product:

(I, fus) = / T(x) det S™'p(S™ (& — w)) dz = T fs(u) ,  (40)

with g(z) = det S~'4)(—S~'z). Note that the Fourier transform of g is
ps(w) = 9" (ST w).

We choose 1 to be a Gabor function, whose Fourier transform is

~ (_(w1—27f)2+w%> ‘

(w1, wa) = exp 1

The warplet ¢ and the variable u are discretized over the image sampling
grid, and computing (40) with an FFT requires O(N? log N) operations.
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Similarly to (40), (I,9atu.s) = I * Babs(u) can be computed with the FFT
procedure, using the Fourier transform expressions

Oy, s (@) = =5 (s1101 + sz — 2m) (STw) |

8812";5((*’) = _% (s12w1 + s22w2) Q,/b\(STw) ,
3521%(@ = _% (s11w1 + s21we — 27) @\(STw) ,
8822";5((*’) = _% (312(-01 + 822LU2) Q,/b\(STw)

D s () = —ioy P(S"w) |
Burhs (w) = —iws P(STw) .

References

[1]

2]

R. Bajcsy and L. Lieberman. Texture gradient as a depth cue. Com-
puter Graphics and Image Processing, 5:52—67, 1976.

D. Blostein and N. Ahuja. Shape from texture: integrating texture-
element extraction and surface estimation. IEEE Trans. Patt. Anal.
and Mach. Intell., 11(12):1233-1251, 1990.

A. C. Bovik, N. Gopal, T. Emmoth, and A. Restrepo (Palacios). Lo-
calized measurement of emergent image frequencies by Gabor wavelets.
IEEE Trans. Inform. Theory, 38(2):691-712, 1992.

M. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice-
Hall, 1976.

M. Clerc. Estimation de processus localement dilatés et application au
gradient de texture. PhD thesis, Ecole Polytechnique, Paris, 1999. (in
French).

M. Clerc and S. Mallat. Shape from texture and shading with wavelets.
In Dynamical Systems, Control, Coding, Computer Vision, volume 25
of Progress in Systems and Control Theory, pages 393-417. Birkhauser,
1999.

M. Clerc and S. Mallat. Estimating deformations of stationary
processes. Technical report, CERMICS, 2000. (downloadable at
http://cermics.enpc.fr).

28



8]

[9]

[10]

[19]
[20]

[21]

J. Garding. Shape from texture for smooth curved surfaces in perspec-
tive projection. J. Math. Imaging Vision, 2:327-350, 1992.

J. Garding. Surface orientation and curvature from differential texture
distorsion. In Proc. 5th Int. Conf. on Computer Vision, Cambridge,
Massachussetts, 1995.

J. Gibson. The Perception of the Visual World. Houghton Mifflin,
Boston, 1950.

G. H. Golub and C. F. Van Loan. Matriz Computations. Johns Hopkins
Univ. Press, 1989.

B.K.P. Horn. Robot Vision. McGraw-Hill, 1986.

B.K.P Horn and B.G. Schunck. Determining optical flow. Artificial
Intelligence, 17(1-3):185-203, 1981.

W. Hwang, C-S Lu, and P-C Chung. Shape from texture: Estimation
of planar surface orientation through the ridge surfaces of continuous
wavelet transform. IEEE Trans. Image Proc., 7:773-780, 1998.

K. Kanatani and T.C. Chou. Shape from texture: General principle.
Artificial Intelligence, 38:1-48, 1989.

T. Leung and J. Malik. Recognizing surfaces using three-dimensional
textons. In Proc. 7th Int. Conf. on Computer Vision, Kerkyra, Greece,
1999.

P.L. Lions, E. Rouy, and A. Tourin. Shape-from-shading, viscosity
solutions and edges. Numer. Math., 64:323-353, 1993.

J. Malik and R. Rosenholtz. Computing local surface orientation and
shape from texture for curved surfaces. Int. J. Comp. Vision, 23(2):149—
168, 1997.

S. Mallat. A wavelet tour of signal processing. Academic Press, 1999.

J. Oliensis. Uniqueness in shape from shading. Int. J. Comput. Vision,
6:75-104, 1991.

T. Randen and J.H. Husoy. Filtering for texture classification: A com-
parative study. IEEE Trans. Patt. Anal. and Mach. Intell., 21(4):291—
301, 1999.

29



[22] R. Rosenholtz and J. Malik. Surface orientation from texture: Isotropy
or homogeneity (or both)? Vision Res., 37(16):2283-2293, 1997.

[23] P.H. Suen and G. Healy. The analysis and recognition of real-world tex-
tures in three dimensions. IEEE Trans. Patt. Anal. and Mach. Intell.,
22(5):491-503, May 2000.

[24] B. Super and A. Bovik. Shape from texture using local spectral mo-
ments. IEEFE Trans. Patt. Anal. and Mach. Intell., 17(4):333-343, 1995.

[25] A.M. Yaglom. Correlation Theory of Stationary and Related Random
Functions, volume 1. Springer-Verlag, 1987.

30



