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Benjamin JOURDAINENPC-CERMICS6-8 av Blaise Pasal, Champs sur Marne77455 Marne la Vallée Cedex 2Franejourdain�ermis.enp.frDeember 7, 2000AbstratIn this paper, we give a probabilisti interpretation of a visous salar onservation lawin a bounded interval thanks to a nonlinear martingale problem. The underlying nonlinearstohasti proess is re�eted at the boundary to take into aount the Dirihlet onditions.After proving uniqueness for the martingale problem, we show existene thanks to a propa-gation of haos result. Indeed we exhibit a system of N interating partiles, the empirialmeasure of whih onverges to the unique solution of the martingale problem as N ! +1.As a onsequene, the solution of the visous onservation law an be approximated thanksto a numerial algorithm based on the simulation of the partile system. When this systemis disretized in time thanks to the Euler-Lépingle sheme [10℄, we show that the rate ofonvergene of the error is in O(�t + 1=pN) where �t denotes the time step. Finally, wegive numerial results whih on�rm this theoretial rate.1 IntrodutionWe are interested in the following visous salar onservation law with non homogeneousDirihlet boundary onditions on the interval [0; 1℄ :8>>>><>>>>: ��tv(t; x) = �22 �2�x2 v(t; x) � ��xA(v(t; x));8(t; x) 2 (0;+1)� (0; 1)8x 2 [0; 1℄; v(0; x) = v0(x);8t > 0; v(t; 0) = 0 and v(t; 1) = 1; (1.1)We suppose that A : R �! R is a C1 funtion and that the initial data v0 is the umulativedistribution funtion of a probability measure U0 on [0; 1℄, whih writes 8x 2 [0; 1℄; v0(x) =U0([0; x℄) = H � U0(x) where H(y) = 1fy�0g denotes the Heaviside funtion.After giving a probabilisti interpretation of the solution of this equation thanks to a non-linear martingale problem, we want to derive and study a partile approximation of thissolution. Our main motivation is that the spatial domain in equation (1.1) is bounded. Toour knowledge, the only paper about a probabilisti partile interpretation for the solutionof a partial di�erential equations posed in a bounded spatial domain is [1℄, that is dediatedto the 2d invisid Navier Stokes equation. In [1℄, the authors do not prove the onvergene1



of the proposed partile method. By onsidering the muh simpler equation (1.1), we areable not only to prove the onvergene but also to bound the assoiated rate.When the visous salar onservation law is posed in the spatial domain R instead of [0; 1℄,one an show that its unique weak solution is equal to H � Pt(x) where (Pt)t�0 denote thetime-marginals of the probability measure P on C([0;+1);R) haraterized the followingmartingale problem nonlinear in the sense of MKean [4℄ [8℄ :( P0 = U08' 2 C2b (R); '(Xt)� '(X0)� R t0 h�22 '00(Xs)�A0(H � Ps(Xs))'0(Xs)i ds is a P -martingalewhere X denotes the anonial proess on C([0;1);R).Here, we follow a similar approah. To take into aount the Dirihlet boundary ondi-tions, we work with a di�usion proess with re�etion. That is why we introdue (X;K) theanonial proess on the sample path spae C = C([0;+1); [0; 1℄)�C([0;+1);R) (endowedwith the topology of uniform onvergene on ompat sets). For P in P(C) the set of prob-ability measures on C, ( �Pt)t�0 is the set of time-marginals of the probability measure �P onC([0;+1); [0; 1℄) de�ned by �P = P Æ X�1. We assoiate the following nonlinear problemwith (1.1)De�nition 1.1 A probability measure P 2 P(C) solves the martingale problem (MP ) start-ing at U0 
 Æ0 2 P([0; 1℄� R), ifi) P Æ (X0;K0)�1 = U0 
 Æ0ii) 8' 2 C2b (R); '(Xt�Kt)�'(X0�K0)�R t0 �22 '00(Xs�Ks)+A0(H� �Ps(Xs))'0(Xs�Ks)dsis a P martingaleiii) P a.s., 8t � 0; R t0 djKjs < +1; jKjt = R t0 1f0;1g(Xs)djKjs and Kt = R t0 (1�2Xs)djKjs.In setion 2, we prove that if P solves problem (MP ), then (t; x) ! H � �Pt(x) is theunique weak solution of (1.1). We dedue uniqueness for the martingale problem. Existeneis obtained thanks to a propagation of haos result for a system of weakly interating di�usionproesses.In setion 3, we disretize this system in time thanks to the version of the Euler shemeintrodued by Lépingle [10℄. This way, we derive a numerial method to approximate thesolution of (1.1). We prove a theoretial rate of onvergene in O(�t + 1=pN) where �tand N denote respetively the time-step and the number of partiles. This rate is the sameas the one obtained by Bossy [3℄ when the spatial domain is R. As an important step in theproof, we show that in ase the di�usion oe�ient is a onstant, the weak error of the EulerLépingle sheme is in O(�t). To our knowledge, this is the �rst result onerning the weakerror of this sheme.The last setion is devoted to numerial experiments whih on�rm the theoretial rate ofonvergene of our partile method. The treatment of the re�etion by the Euler Lépinglesheme does not alter the onvergene whereas we exhibit a sublinear numerial dependeneon the time step �t when the partile system is disretized thanks to the ruder Eulerprojetion sheme.To onlude the introdution, we should mention that using signed weights like in [8℄ and[3℄, we ould extend our approah to deal with the following more general boundary ondi-tions in (1.1) : 8t > 0; v(t; 0) = a and v(t; 1) = b, and 8x 2 [0; 1℄; v0(x) = U0([0; x℄) where U0is a bounded signed measure on [0; 1℄ satisfying the ompatibility ondition U0([0; 1℄) = b�a.But we restrit ourselves to a simple ase without weights to avoid further ompliation ofthe already tehnial developments.
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2 Probabilisti interpretation of the visous salar on-servation law equationFor T > 0 let QT = (0; T )� (0; 1) and W 0;12 (QT ), W 1;12 (QT ) denote the Hilbert spaes withrespetive salar produts (f. [9℄)(u; v)W 0;12 (QT ) = RQT (uv + �xu�xv)dxdt;(u; v)W 1;12 (QT ) = RQT (uv + �xu�xv + �tu�tv)dxdt:We introdue the Banah spae V 0;12 (QT ) = fu 2 W 0;12 (QT ) \ C((0; T ); L2(0; 1)) suh thatkukV 0;12 (QT ) = sup0�t�T ku(t; x)kL2(0;1) + k�xukL2(QT ) < +1g. The orresponding sub-spaes onsisting in elements whih vanish on [0; T ℄ � f0; 1g are respetively denoted byÆW 0;12 (QT ), ÆW 1;12 (QT ), ÆV 0;12 (QT ).We �rst prove uniqueness of weak solutions of problem (1.1) de�ned in the following way :De�nition 2.1 A weak solution of (1.1) is a funtion v : [0;+1)� [0; 1℄! R satisfying theboundary onditions and suh that for any T > 0, v 2 V 0;12 (QT ) \ L1(QT ) and for all � inÆW 1;12 (QT ) and all t 2 [0; T ℄,Z 10 v(t; x)�(t; x)dx = Z 10 v0(x)�(0; x)dx + Z t0 Z 10 ��s�(s; x)v(s; x)dxds+ Z t0 Z 10 ��x�(s; x)A(v(s; x))dxds (2.1)� Z t0 Z 10 �22 ��x�(s; x) ��xv(s; x)dxds:Then we hek that when P solves the martingale problem (MP ), V (t; x) = H � �Pt(x) is aweak solution of (1.1). Uniqueness for the martingale problem is derived from uniquenessfor this equation. The probabilisti interpretation is ompleted by a propagation of haosresult whih ensures existene for problem (MP ).2.1 Uniqueness result for equation (1.1)Lemma 2.2 Equation (1.1) has no more than one weak solution in the sense of De�nition2.1.Proof : Let v1 and v2 be two weak solutions of (1.1) and T > 0. We set w = v1�v2. Thenw is in ÆV 0;12 (QT ) and w(0; x) = 0 for all x 2 [0; 1℄. Moreover, for all � 2 ÆW 1;12 (QT ),Z 10 w(t; x)�(t; x)dx = Z t0 Z 10 ��s�(s; x)w(s; x)dxds+ Z t0 Z 10 ��x�(s; x)�A(v1(s; x)) �A(v2(s; x))	 dxds (2.2)� Z t0 Z 10 �22 ��x�(s; x) ��xw(s; x)dxds:Thus, w is a generalized solution in the sense of Ladyzenskaja, Solonnikov and Ural'eva(f. [9℄) of a linear equation with uniformly bounded oe�ients. We an apply results ofhapter 3 of [9℄. In partiular the identity ([9℄,2.13) of setion 2, used to establish the energyinequality holds and beomes in our ase12 Z 10 w2(x; t)dx + Z t0 Z 10 �22 ��w�x�2 (s; x)dxds= Z t0 Z 10 �w�x (s; x)�A(v1(s; x)) �A(v2(s; x))	 dxds: (2.3)3



Formally, this identity is obtained by taking � = w in (2.2) and integrating by part the �rstterm of the right hand side. As w is not su�iently smooth to do so, the proof of (2.3) relieson two steps. The �rst one onsists in working with Steklov averagings in time of funtions� and showing that is it possible to integrate by parts the �rst term of the right hand side of(2.2). The seond one onsists in proving that it is possible to replae � by w in the obtainedidentity.Following tehniques from hapter 3 of [9℄, we dedue from (2.3) thatmin(12 ; �22 )"kw(t)k2L2([0;1℄) + ZQt ��w�x�2 (s; x)dxds#� ZQt �w�x (s; x)�A(v1(s; x)) �A(v2(s; x))	 dxds:Now we observe that for M = kv1kL1(QT ) _ kv2kL1(QT )ZQt �w�x (s; x)�A(v1(s; x)) �A(v2(s; x))	 dxds� supjxj�M jA0(x)j ZQt jwj(s; x) �����w�x ���� (s; x)dxds� supjxj�M jA0(x)j sups�t kw(s)kL2[0;1℄ Z t0 k�w�x (s)kL2[0;1℄ds� supjxj�M jA0(x)jpt2 �sups�t kw(s)k2L2(0;1) + k�w�x k2L2(Qt)� :by using Cauhy-Shwarz inequality and the upper-bound 2ab � a2 + b2. Thusmin(1; �2)"sups�t kw(s)k2L2(0;1) + ZQt ��w�x�2 (s; x)dxds# � Cptkwk2V 0;12 (Qt)and hene, min(1; �2)kwk2V 0;12 (Qt) � Cptkwk2V 0;12 (Qt):Choose t1 suh that t1 < min(1; �4)C2 ^ Tthen kwkV 0;12 (Qt1 ) = 0. Now, for t � t1, Equality (2.3) gives12 Z 10 w2(x; t)dx + Z tt1 Z 10 �22 ��w�x�2 (s; x)dxds= Z tt1 Z 10 �w�x (s; x)�A(v1(s; x)) �A(v2(s; x))	 dxdsand the previous omputation shows that for any t2 � T suh thatt2 � t1 < min(1; �4)C2kwkV 0;12 (Qt1;t2 ) = 0. Finally, we an iterate this proedure to obtain that kwkV 0;12 (QT ) = 0.Sine T is arbitrary v1 = v2.
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2.2 Uniqueness for the martingale problem (MP ) and link withequation (1.1)Proposition 2.3 If P solves the martingale problem (MP ) starting at U0
Æ0, then V (t; x) =H � �Pt(x) is a weak solution of (1.1). Moreover, uniqueness holds for the martingale problem(MP ).Proof : Clearly the funtion V (t; x) = H � �Pt(x) is bounded by 1. Let T > 0. We hek thatthe funtion V belongs to V 0;12 (QT ) and satis�es the non homogeneous Dirihlet boundaryonditions in (1.1) thanks to the following Lemma the proof of whih is postponed.Lemma 2.4 If P solves the martingale problem (MP ) then for any t > 0, �Pt has a density�pt whih belongs to L2([0; 1℄) and it holds thatk�ptkL2([0;1℄) � C(1 + t�1=4) exp(Ct):We still have to hek that V satis�es the identity (2.1). Let � be a C1 funtion on[0; T ℄� [0; 1℄ with �(t; 0) = �(t; 1) = 0 for all t 2 [0; T ℄. We set  (t; x) = R x0 �(t; y)dy. Then is C1 with � �x (t; 0) = � �x (t; 1) = 0. Aording to De�nition 1.1 ii), under the probabilitymeasure P , 1� (Xt �Kt � R t0 A0(V (s;Xs))ds) is a loal martingale with quadrati variation ti.e. a Brownian motion. Thus, by It�'s formulaE (t;Xt) = E (0; X0 ) + E Z t0 �� �s + �22 �2 �x2 � (s;Xs)ds+ E Z t0 � �x (s;Xs)A0(V (s;Xs))dsAs �ps = �V�x (s; :), we dedue thatZ 10  (t; x)�V�x (t; x)dx = Z 10  (0; x)�V0�x (x)dx + Z t0 Z 10 � �s (s; x)�V�x (s; x)dxds+ Z t0 Z 10 �22 ���x (s; x)�V�x (s; x)dxds+ Z t0 Z 10 �(s; x)A0(V (s; x))�V�x (s; x)dxds:Applying Stieljes integration by parts formula in the spatial integrals in the �rst and lastlines of the previous equality, we get identity (2.1) for � a C1 funtion vanishing for x = 0and x = 1. As V is in V 0;12 (QT ) we an extend the identity easily by density for any funtion� in ÆW 1;12 (QT ).Hene V (t; x) = H � �Pt(x) is a weak solution in the sense of De�nition 2.1.Uniqueness for the martingale problem (MP ) is derived from the uniqueness result for theproblem (1.1): if P andQ solve (MP ), then for any (t; x) 2 [0;+1)�R; H� �Pt (x) = H� �Qt(x).Hene P and Q solve a linear martingale problem with bounded drift term A0(H � �Pt(x))and by Girsanov theorem, P = Q.Proof of Lemma 2.4 : We just have to adapt to the ase of re�eted di�usion proessesthe proof of Proposition 1.1 of Méléard and Roelly [12℄. Aording to De�nition 1.1 ii),under the probability measure P , 1� (Xt �Kt � R t0 A0(V (s;Xs))ds) a Brownian motion. Assup[0;1℄ jA0(x)j < +1, by Girsanov theorem, under the probability measure Q 2 P(C) suhthatdQdP ����Ft = 1Zt where Zt = exp�Z t0 1�2A0(H � �Ps(Xs))d(Xs �Ks)� 12�2A02(H � �Ps(Xs))ds� ;�t = 1� (Xt �Kt) is a Brownian motion starting at 1�X0 and (Xt)t�0 is the doubly re�etedproess assoiated with (��t)t�0. 5



For  bounded and measurable, sine EP ( (Xt)) = EQ ( (Xt)Zt), by Cauhy-Shwarz in-equality EP ( (Xt)) � �Z 10  2(x)ut(x)dx� 12 exp t2�2 sup[0;1℄ jA02(x)j!where ut(x) = R 10 p�2t(z; x)U0(dz) andpt(z; x) = 1p2�tXn2Z�e� (x�z�2n)22t + e� (x+z+2n)22t �denotes the transition density of the doubly re�eted Brownian motion in [0; 1℄. For any(z; x) 2 R2 we easily hek that pt(z; x) � 2p2�t + 1. Thus,EP ( (Xt)) � C(1 + t�1=4) exp(Ct)k kL2([0;1℄)whih gives the lemma.2.3 The propagation of haos resultThe system of weakly interating di�usion proesses with normal re�eting boundary ondi-tions is given by the stohasti di�erential equation :(X i;Nt = X i;N0 + �W it + R t0 A0(H � ��Ns (X i;Ns ))ds+Ki;NtjKi;N jt = R t0 1f0;1g(X i;Ns )djKi;N js; Ki;Nt = R t0 (1� 2X i;Ns )djKi;N js; i � N (2.4)where ��Ns = 1N PNj=1 ÆXj;Ns and (W 1; : : : ;WN ) is a N-dimensional Brownian motion inde-pendent of the initial variables (X1;N0 ; : : : ; XN;N0 ) whih are I.I.D. with law U0.As sup[0;1℄ jA0(x)j is bounded, by Girsanov theorem, this equation admits a unique weaksolution. Existene for problem (MP ) is ensured by the following propagation of haosresult:Theorem 2.5 The partile systems ((X1;N ;K1;N); : : : ; (XN;N ;KN;N)) are P -haoti whereP denotes the unique solution of the martingale problem (MP ) starting at U0
Æ0 i.e. for �xedj 2 N� the law of ((X1;N ;K1;N); : : : ; (Xj;N ;Kj;N)) onverges weakly to P
j as N ! +1.Proof : Exept in the treatment of the disontinuity of the Heaviside funtion, we followthe proof given by Sznitman [14℄ Theorem 1.4. When possible, we take advantage of thepartiular form of our di�usion domain (the interval [0; 1℄) to simplify the arguments.By Proposition 2.3, uniqueness holds for problem (MP ). As the partiles (X i;N ;Ki;N)i�Nare exhangeable, the propagation of haos result is equivalent to the weak onvergene ofthe law �N of the empirial measure �N = 1N PNi=1 Æ(Xi;N ;Ki;N ) to a probability measureonentrated on solutions of problem (MP ) when N ! +1 (see [13℄ and the referenesited in it).Again by exhangeability the tightness of the sequene (�N )N is equivalent to the tightnessof the laws of the ouples (X1;N ;K1;N). As sup[0;1℄ jA0(x)j < +1, the laws of the proessesY 1;N = X1;N �K1;N are tight. Sine the map sending y 2 C([0;+1);R) to the solution(x; k) 2 C of the Skorokhod problem is ontinuous (see [11℄), we dedue that the laws of theouples (X1;N ;K1;N) are tight. Hene (�N )N is a tight sequene.Let �1 be the limit of a onverging subsequene that we still index by N for simpliity and Qdenote the anonial variable on P(C). We are going to prove that �1 a.s., Q solves problem(MP ). Clearly, �1 a.s., QÆ(X0;K0)�1 = u0(x)dx
Æ0 i.e. �1 a.s., ondition i) in De�nition6



1.1 is satis�ed. To deal with ondition ii), we set ' 2 C2b (R), p � 1, t � s � s1 � ::: � sp � 0,g 2 Cb(R2p ) and de�ne a mapping F on the set P(C) of probability measures on C byF (Q) =< Q;�'(Xt �Kt)� '(Xs �Ks)� Z ts �22 '00(Xr �Kr) +A0(H � �Qr(Xr))'0(Xr �Kr)dr�g(Xs1 ;Ks1 ; : : : ; Xsp ;Ksp) > :The mapping Fk de�ned like F with the Heaviside funtion H replaed by the Lipshitzontinuous approximation Hk(x) = k(x+ 1k )ll f� 1k<x<0g+ ll fx�0g is ontinuous and bounded.Hene the weak onvergene of �N to �1 impliesE�1 jF (Q)j � lim supk E�1 jF � Fk(Q)j+ lim supk lim supN E�N jF � Fk(Q)j+ lim supN E�N jF (Q)j(2.5)As the mappings Fk onverge pointwise to F and are bounded uniformly in k, the �rst termof the right-hand-side is equal to 0. Applying It�'s formula, we hek that the third term isalso nil. By the Lipshitz ontinuity of A0 on [0; 1℄,E�N jF � Fk(Q)j � CE� < ��N ; Z ts (Hk �H) � ��Nr (Xr)dr > �:Using the exhangeability of the partiles X i;N , i � N , we dedue thatlim supN E�N jF � Fk(Q)j � C lim supN E� Z ts (Hk �H)(X1;Nr �X2;Nr )dr�: (2.6)Using Girsanov theorem like in the proof of Lemma 2.4, we obtain that 8N � 2, the ouple(X1;Nr ; X2;Nr ) has a density that belongs to L2([0; 1℄ � [0; 1℄) with a norm smaller thanC �1 + r�1=2� exp(Ct). Hene 8r 2 [0; t℄; E((Hk�H)(X1;Nr �X2;Nr )) � C(t) �1 + r�1=2� k� 14 .By (2.6), we dedue that lim supk lim supN E�N jF � Fk(Q)j = 0. Hene eah term of theright-hand-side of (2.5) is nil and E�1 jF (Q)j = 0. As a onsequene, �1 a.s., Q satis�esondition ii) in De�nition 1.1.Let us hek that �1 a.s., Q satis�es ondition iii). The loseness of the following subsetof CF T;M = �(x; k) : jkjT �M; jkjT = Z T0 1f0;1g(xs)djkjs; 8t � T; kt = Z t0 (1� 2xs)djkjs�whih is stated in Lemma 2.6 implies that fQ 2 P(C) : Q(F T;M ) � 1� �g is also losed. Bythe weak onvergene of �N to �1, we dedue�1(fQ : Q(F T;M ) � 1� �g) � lim supN �N (fQ : Q(F T;M ) � 1� �g)= 1� lim infN �N (fQ : Q(fjkjT > Mg) > �g)� 1� lim infN E�N �< Q; jkjT >M� � = 1� lim infN E(jK1;N jT )M� :(2.7)As jK1;N jT = R T0 (1� 2X1;Ns )dK1;Ns , by It�'s formula, we obtain that jK1;N jT is equal to�X1;N0 � 12�2 ��X1;NT � 12�2 + Z T0 (2X1;Ns � 1)A0(H � ��Ns (X1;Ns ))ds+ Z T0 �(2X1;Ns � 1)dW 1s + �2T:Hene supN E(jK1;N jT ) < +1. With (2.7), we dedue that �1(fQ : Q([M>0FM;T ) �1� �g) = 1. As � is arbitrary, we onlude that�1��Q : Q� \T>0 [M>0FM;T� = 1�� = 1i.e. �1 a.s. Q satis�es De�nition 1.1 iii) whih puts an end to the proof.7



Lemma 2.6 The subset F T;M of C whih onsists in the ouples (x; k) suh that jkjT �M ,jkjT = R T0 1f0;1g(xs)djkjs and 8t � T; kt = R t0 (1� 2xs)djkjs is losed.Proof : Let (xn; kn) 2 F T;M onverge to (x; k) in C. As 8n � 0; jknjT �M , by extrationof a subsequene, we an suppose that the measures djkjn (resp. dkn) on the ompat set[0; T ℄ onverge weakly to da, a positive measure with mass smaller than M (resp. db asigned measure). As kn onverges uniformly to k on [0; T ℄, t 2 [0; T ℄! kt is the umulativedistribution funtion of the measure db.If f : [0; T ℄! R is ontinuous, as xn onverges uniformly to x on [0; T ℄,Z T0 f(s)dbs = limn Z T0 f(s)dkns = limn Z T0 f(s)(1� 2xns )djknjs = Z T0 f(s)(1� 2xs)das:Hene (1� 2xs) is a density of db w.r.t. da and8t 2 [0; T ℄; kt = Z t0 (1� 2xs)das: (2.8)As (xn; kn) 2 F T;M ; R T0 xns (1�xns )djknjs = 0. Letting n! +1, we get R T0 xs(1�xs)das = 0i.e. das a.e. xs 2 f0; 1g and j1�2xsj = 1. With (2.8), we dedue that da is the total variationof dk and onlude that (x; k) 2 F T;M .Corollary 2.7 It is possible to approximate the weak solution V (t; x) = H � �Pt(x) of (1.1)thanks to the empirial umulative distribution funtion H � ��Nt (x) of the partile system.More preisely 8(t; x) 2 [0;+1)� [0; 1℄; limN!+1 E jV (t; x) �H � ��Nt (x)j = 0.Proof : For t > 0 and x 2 [0; 1℄, aording to Lemma 2.4, the funtion Q 2 P(C) !jH � �Pt(x) � H � �Qt(x)j 2 R is ontinuous at P . The weak onvergene of the sequene(�N )N to �1 = ÆP implieslimN!+1 E jH � �Pt(x)�H � ��Nt (x)j = E�1 jH � �Pt(x) �H � �Qt(x)j = 0:In ase t = 0, we onlude by the strong law of large numbers.
3 Partile methodIn this setion we desribe a numerial partile method to approximate the solution V ofequation (1.1) on [0; T ℄ � [0; 1℄ (where T is a positive onstant) and analyse its rate ofonvergene. Aording to Corollary 2.7, it is possible to approximate V (t; x) by the empirialumulative distribution funtion H � ��Nt (x) = 1N PNj=1H(x �Xj;Nt ) of the partile system(2.4). To transform this onvergene result into a numerial approximation proedure, weneed to disretize in time the N -dimensional stohasti di�erential equation (2.4). To do sowe use the version of the Euler sheme introdue by Lépingle [10℄ whih mimis the re�etionat the boundary. We hoose �t > 0 and L 2 N suh that T = L�t and denote by Y itl theposition of the i-th partile (1 � i � N) at the disretization time tl = l�t (0 � l � L). TheEuler-Lépingle sheme onsists in setting 0 < �0 < �1 < 1 and in generating exat re�exionon the lower-boundary on [tl; tl+1℄ when Y itl � �0 and exat re�exion on the upper-boundaryon [tl; tl+1℄ when Y itl � �1. The other ases of re�exion are treated by projetion onto [0; 1℄.We will atually let �0 and �1 depend on �t in order to redue the omputational e�ortbut to simplify notations we do not emphasize this dependene unless neessary. Takingadvantage of the one-dimensional spae domain, we invert the initial umulative distributionfuntion V0(x) = H �U0(x) to onstrut the set of initial positions of the numerial partiles :yi0 = inf �z : H � U0(z) � iN� for 1 � i � N: (3.1)8



At time tl, the funtion V (tl; x) is approximated thanks to the empirial umulative distri-bution funtion V (tl; x) = 1N NXi=1 H(x� Y itl)and the positions of the ith partile are given indutively by8>>>>><>>>>>: Y it0 = yi08t 2 [tl; tl+1℄; Y it = 0 _ �Y itl + �(W it �W itl) + (t� tl)A0(V (tl; Y itl)) + Cit� ^ 1Cit = ll fY itl��0g sups2[tl;t℄ �Y itl + �(W is �W itl) + (s� tl)A0(V (tl; Y itl))��� ll fY itl��1g sups2[tl;t℄ �Y itl � 1 + �(W is �W itl) + (s� tl)A0(V (tl; Y itl))�+ : (3.2)Sine it is possible to simulate jointly the Brownian inrement (W itl+1 �W itl) and the orre-sponding sups2[tl;tl+1℄ �W is �W itl + (s� tl)��, this disretization sheme is feasible.To obtain the optimal rate of onvergene O(1=pN + �t) we are going to make ratherstrong assumptions on the initial ondition v0(x) = H�U0(x) ensuring that the weak solutionof (1.1) is in fat a lassial solution. These hypotheses are possibly too restritive but theyavoid further ompliations of the already tehnial proof. For the solution of (1.1) to belassial i.e. C1;2 (C1 in the time variable t and C2 in the spae variable x), it is neessarythat v0 is C2. Moreover, sine the Dirihlet boundary onditions are onstant in time, forx = 0 or x = 1, �22 �xxv(t; x) �A0(v(t; x))�xv(t; x) = �tv(t; x) = 0. At time t = 0, we obtainthe neessary ompatibility onditions �2v000 (0) = 2A0(0)v00(0) and �2v000 (1) = 2A0(1)v00(1).Our hypothesis(H)8><>:v0 2 C2+�([0; 1℄) (C2 with v000 Hölder ontinuous with exponent �) where � 2℄0; 1[;�2v000 (0) = 2A0(0)v00(0) and �2v000 (1) = 2A0(1)v00(1);A is a C3 funtionis slightly stronger than these neessary onditions. Combining Theorem 6.1 pp.452-453 [9℄whih gives existene of a lassial solution on [0; T ℄� [0; 1℄ for (1.1) and the proof of Lemma2.2 whih gives uniqueness of weak solutions on [0; T ℄� [0; 1℄, we obtainLemma 3.1 Under hypothesis (H), the solution V (t; x) = H � �Pt(x) of (1.1) belongs toC1;2([0; T ℄� [0; 1℄) and �xV (t; x) is Hölder ontinuous with exponent (1 + �)=2 in the timevariable t on [0; T ℄� [0; 1℄.In order to redue the e�ort needed to ompute the orretion terms Cit in (3.2), it isinteresting to let �0 and �1 depend on the time-step �t and onverge respetively to 0 and1 as �t ! 0. Supposing that these onvergene are not too quik, we obtain the followingestimate for the onvergene rate of the partile method :Theorem 3.2 Under hypothesis (H), if we assume that 0 < �0(�t) � �1(�t) < 1 satisfy�0(�t)^ (1��1(�t)) � a�t for 0 �  < 1=2 and a > 0, then there exists a stritly positiveonstant C depending on A;U0; T; �; a and  suh that80 � l � L; supx2[0;1℄ E jV (tl; x)� V (tl; x)j � C � 1pN +�t� :The proof follows the main ideas of Bossy [3℄ who deals with the onvergene rate of a partileapproximation for the solution of the salar onservation law with spatial domain R similarto (1.1) even if some new di�ulties arise in the present framework beause of the re�exion.Let Wt denote a standard Brownian motion. To analyse the onvergene rate, for y 2 [0; 1℄,we introdue the stohasti di�erential equation with normal re�exion, onstant di�usionoe�ient and drift oe�ient A0(V (s; x)) :(Xyt = y + �Wt + R t0 A0(V (s;Xys ))ds+Kyt ;jKyjt = R t0 ll f0;1g(Xys )djKyjs; Kyt = R t0 (1� 2Xys )djKyjs: (3.3)9



Under hypothesis (H), aording to Lemma 3.1, the funtion b(s; x) def= A0(V (s; x)) is Lip-shitz ontinuous in the spae variable x uniformly for s 2 [0; T ℄ and bounded. As a on-sequene, for any y 2 [0; 1℄ the above stohasti di�erential equation has a unique solution(see for instane [11℄ Remark 3.3 p.525).We are interested in the upper bound ofError(tl) = supx2[0;1℄ E jV (tl; x)� V (tl; x)j� supx2[0;1℄ �����V (tl; x)� 1N NXi=1 E �H(x�Xyi0tl )������+ supx2[0;1℄E ����� 1N NXi=1 E �H(x�Xyi0tl )�� V (tl; x)����� : (3.4)The �rst term of the right-hand-side is an initialization error, that we upper-bound in thenext paragraph. Sine the dynamis of the partile system (3.2) on [tl; tl+1℄ depends onthe approximate solution V (tl; :) of (1.1) at time tl, the analysis of the seond term of theright-hand-side is more ompliated than the analysis of the weak error of the disretizationby the Euler-Lépingle sheme of the Stohasti Di�erential Equation (3.3) where the driftoe�ient b(s; x) = A0(V (s; x)) is supposed to be known. We are going to deal with the latterproblem as a model problem : the obtained results are useful to solve the former problem.They are also interesting by themselves beause although limited to the ase of a onstantdi�usion oe�ient, they form the �rst study of the weak rate of the Euler-Lépingle shemeto our knowledge.3.1 Initialization errorLemma 3.3 Under hypothesis (H), the solution (Xyt ) of (3.3) an be hosen ontinuousin (t; y) 2 [0; T ℄ � [0; 1℄ and nondereasing in y for �xed t 2 [0; T ℄. Moreover, 8(t; x) 2[0; T ℄� [0; 1℄; V (t; x) = E(R 10 H(x�Xyt )U0(dy)).Proof of Lemma 3.3 : As (Xxt �Xyt )t2[0;T ℄ is a ontinuous proess with bounded variation,(Xxt �Xyt )+ = (x� y)+ + Z t0 ll fXxs>Xys g(b(s;Xxs )� b(s;Xys ))ds+ Z t0 ll fXxs>Xys g(dKxs � dKys )The third term of the right-hand-side is nonpositive. By the Lipshitz ontinuity of x !b(s; x) and Gronwall's lemma, we dedue that for some real onstant CT ,a:s:; supt2[0;T ℄(Xxt �Xyt )+ � CT (x� y)+: (3.5)Using the symmetri inequality for (Xyt �Xxt )+, we obtain that a.s. supt2[0;T ℄ jXxt �Xyt j �CT jx � yj. Aording to Kolmogorov ontinuity theorem, the C([0; T ℄; [0; 1℄)-valued proess(t ! Xyt ) indexed by y 2 [0; 1℄ admits a ontinuous version that we still denote by Xyt tosimplify notations. By (3.5), a.s., 8q � q0 2 [0; 1℄ \ Q; 8t 2 [0; T ℄; Xqt � Xq0t . With thea.s. ontinuity of y 2 [0; 1℄ ! Xyt in the variable y, we onlude that this funtion is a.s.nondereasing.Let now X0 be an initial variable with law U0 independent of the Brownian motion W . Weeasily hek that the law of (XX0t ;KX0t )t2[0;T ℄ on C([0; T ℄; [0; 1℄� R) solves the martingaleproblemi) Q0 = U0 
 Æ0ii) 8' 2 C2b (R); '(Xt�Kt)�'(X0�K0)�R t0 �22 '00(Xs�Ks)+A0(V (s;Xs))'0(Xs�Ks)dsis a Q martingaleiii) Q a.s., 8t � 0; R t0 djKjs < +1; jKjt = R t0 ll f0;1g(Xs)djKjs and Kt = R t0 (1� 2Xs)djKjs.10



By Girsanov theorem, uniqueness holds for this martingale problem. Sine the image ofthe solution P of problem (MP ) starting at U0 
 Æ0 by the anonial restrition fromC([0;+1); [0; 1℄� R) to C([0; T ℄; [0; 1℄� R) solves this martingale problem, we dedue that8(t; x) 2 [0; T ℄� [0; 1℄; V (t; x) = H � �Pt(x) = E �H(x�XX0t )�. By independene of X0 andW , we onlude that V (t; x) = E(R 10 H(x�Xyt )U0(dy)).We easily dedue that the initialization error is smaller than 1=N .Lemma 3.4 8t � 0; supx2[0;1℄ �����V (t; x)� 1N NXi=1 E(H(x �Xyi0t ))����� � 1N :Proof : Let U0 = 1N PNi=1 Æyi0 . Clearly,a:s:; Z[0;1℄H(x�Xyt )U0(dy)� 1N NXi=1H(x�Xyi0t ) = (U0 � U0)(fy 2 [0; 1℄ : Xyt � xg):Sine by Lemma 3.3, y ! Xyt is a.s. ontinuous and inreasing, if nonempty, the set fy :Xyt � xg is equal to [0; �t(x)℄ where �t(x) = inffy : Xyt > xg . By de�nition of the initialpositions yi0 (see (3.1)), 8y 2 [0; 1℄; 0 � (U0 � U0)([0; y℄) � 1=N . Hene0 � Z[0;1℄H(x�Xyt )U0(dy)� 1N NXi=1H(x�Xyi0t ) � 1N :We onlude by taking expetations.3.2 Weak error of the Euler-Lépingle shemeWe reall that T = L�t (�t > 0, L 2 N) and tl = l�t for 0 � l � L. The Euler-Lépingledisretization of the Stohasti Di�erential Equation(Xyt = y + �Wt + R t0 b(s;Xys )ds+KytjKyjt = R t0 ll f0;1g(Xys )djKyjs; Kyt = R t0 (1� 2Xys )djKyjs (3.6)is given by8>>>>>><>>>>>>: eXyt0 = y8t 2 [tl; tl+1℄; eXyt = 0 _ � eXytl + �(Wt �Wtl) + b(tl; eXytl)(t� tl) + Ct� ^ 1Ct = ll f eXytl��0g sups2[tl;t℄ � eXytl + �(Ws �Wtl) + b(tl; eXytl)(s� tl)���ll f eXytl��1g sups2[tl;t℄ � eXytl � 1 + �(Ws �Wtl) + b(tl; eXytl)(s� tl)�+In the next Proposition, assuming a regularity ondition on the drift oe�ient b(s; x) whihis satis�ed by A0(V (s; x)) under hypothesis (H) (see Lemma 3.1), we upper-bound the weakonvergene rate of this sheme :Proposition 3.5 Assume that b is C1;2 on [0; T ℄ � [0; 1℄, that for some � > 0, �xb(t; x)is Hölder ontinuous with exponent � in t and that 0 < �0(�t) � �1(�t) < 1 satisfy�0(�t) ^ (1 � �1(�t)) � a�t for  2 [0; 1=2) and a > 0. Then there is a onstant Cdepending on �; T; b; a;  but not on y and �t suh that when f : [0; 1℄ ! R is a funtionwith bounded variation and m denotes its distribution derivative,8l � L; ���E �f(Xytl)� f( eXytl)���� � C�t Z 10 jmj(dx):11



The error proeeds from two soures. The �rst one is the usual Euler disretization of thedrift oe�ient. The seond ontribution is the inexat treatment of the re�exion on thelower boundary (resp. the upper boundary, resp. both boundaries) between tl and tl+1when eXytl � �1 (resp. eXytl � �0, resp. eXytl 2 (�0; �1)) whih will turn out to be negletable.To get rid of it, we introdue the Euler-Peano disretization of (3.6). The Euler-Peano isa theoretial disretization sheme whih onsists in freezing the drift oe�ient on eahinterval [tl; tl+1℄ whereas the normal re�exion remains exat :(X̂yt = y + �Wt + R t0 b(�s; X̂y�s)ds+ K̂ytjK̂yjt = R t0 ll f0;1g(X̂ys )djK̂yjs; K̂yt = R t0 (1� 2X̂ys )djK̂yjs (3.7)where �s = �t � s�t� and [x℄ denotes the integral part of x.Lemma 3.6 Assume that b(�; �) is bounded and that 0 < �0(�t) � �1(�t) < 1 satisfy�0(�t) ^ (1� �1(�t)) � a�t for  2 [0; 1=2) and a > 0. Then for some positive onstants and C independent of �t and y8l � L; P(9k � l; X̂ytk 6= eXytk ) � C�t�� 12 e��t2�1 : (3.8)Proof : The proof follows the ideas of [10℄ even if this upper-bound is not stated. Tosimplify notations, we do not emphasize the dependene of �0 and �1 on �t.P(9k � l; X̂ytk 6= eXytk) � l�1Xk=0P(X̂ytk = eXytk ; X̂ytk+1 6= eXytk+1): (3.9)When �0 < X̂ytk = eXytk < �1, we remark that 8t 2 [tk; tk+1℄; X̂yt = eXyt unless bothproesses reah 0 or 1 before tk+1. As a onsequene,P(�0 < X̂ytk = eXytk < �1; X̂ytk+1 6= eXytk+1)� P supt2[tk;tk+1℄(�(Wt �Wtk ) + b(tk; eXytk)(t� tk)) > 1� �1!+ P� inft2[tk;tk+1℄(�(Wt �Wtk ) + b(tk; eXytk)(t� tk)) < ��0�� P supt2[tk;tk+1℄ jWt �Wtk j > (a�t � sup jb(:; :)j�t)=�!Sine  < 1, for �t small enough, a�t � sup jb(:; :)j�t � a�t=2: ThenP(�0 < X̂ytk = eXytk < �1; X̂ytk+1 6= eXytk+1) � P sups2[tk;tk+1℄ jWs �Wtk j � a�t=(2�)!� 2r 2��t Z +1a�t=(2�) e�z2=2�tdz � 4�a r 2��t 12�e�a2�t2�1=8�2 :Sine �0 � �1, �1^(1��0) � a�t and remarking that 8t 2 [tk; tk+1℄; Ct � � sups2[tk;tk+1℄ jWs�Wtk j+sup jb(:; :)j�t, we easily obtain similar bounds for P(X̂ytk = eXytk � �1; X̂ytk+1 6= eXytk+1)and P(X̂ytk = eXytk � �0; X̂ytk+1 6= eXytk+1) and we onlude by (3.9) sine l � L = T=�t.Let l � 1, f : [0; 1℄! R be a funtion with bounded variation and m denote its distributionderivative. Aording to the previous Lemma,����E�f(Xytl)� f( eXytl)����� � ���E �f(Xytl)� f(X̂ytl)����+ supz;z02[0;1℄ jf(z)� f(z0)jC�t�� 12 e��t2�1� ���E �f(Xytl)� f(X̂ytl)����+ C�t�� 12 e��t2�1 Z 10 jmj(dy):12



The set Df of disontinuity points of f is denumerate. For y � z 2 [0; 1℄ n Df , f(z) =f(y) + R zy m(dx) = f(y) + R 10 H(x� y)�H(x� z)m(dx). As the funtion b(:; :) is bounded,by Girsanov theorem both variables Xytl and X̂ytl have densities w.r.t. Lebesgue measure.Hene P(Xytl 2 Df ) + P(X̂ytl 2 Df ) = 0 and���E �f(Xytl)� f(X̂ytl)���� = ����Z 10 E �H(x�Xytl)�H(x� X̂ytl)�m(dx)���� :Therefore the proof of Proposition 3.5 is ompleted as soon as we obtain the following weakonvergene rate for the Euler Peano sheme :Proposition 3.7 Under the assumptions of Proposition 3.5, there is a onstant C dependingon �; T; b but not on x, y and �t suh that8l � L; 8x; y 2 [0; 1℄; ���E �H(x�Xytl)�H(x� X̂ytl)���� � C�t:In ase l = 0, the onlusion is lear. As for all other values of l the proof is the same, weare only going to deal with the ase l = L i.e. tl = T . By Girsanov theorem both variablesXyT and X̂yT admit densities with respet to Lebesgue measure. HeneE �H(0�XyT )�H(0� X̂yT )� = P(XyT = 0)� P(X̂yT = 0) = 0� 0 = 0E �H(1�XyT )�H(1� X̂yT )� = P(XyT � 1)� P(X̂yT � 1) = 1� 1 = 0and the onlusion holds for x 2 f0; 1g.>From now on, we assume that x 2 (0; 1). We follow the idea �rst introdued by Talay andTubaro : if the funtion v solves the paraboli problem(�tv + �22 �2zv + b(t; z)�zv = 0; (t; z) 2 [0; T )� [0; 1℄8z 2 [0; 1℄; v(T; z) = H(x� z); 8t 2 [0; T ℄; �zv(t; 0) = �zv(t; 1) = 0 (3.10)omputing formally H(x � X̂yT ) �H(x �XyT ) = v(T; X̂yT ) � v(T;XyT ) by It�'s formula andtaking expetations we obtainE(H(x � X̂yT )�H(x�XyT )) = E  Z T0 (b(s; X̂ys )� b(�s; X̂y�s))(��zv(s; X̂ys ))ds! :The funtion v appears only through the opposite of its spatial derivative, whih justi�es ourinterest in the paraboli problem satis�ed by w = ��zv(�tw + �22 �2zw + b(t; z)�zw + �zb(t; z)w = 0; (t; z) 2 [0; T )� [0; 1℄;8t 2 [0; T ); w(t; 0) = w(t; 1) = 0; w(T; :) = Æx(:): (3.11)Aording to setion IV.16 [9℄ and setion 3.7 [7℄ whih are dediated to Green's funtions,the following holds :Lemma 3.8 Under the assumptions of Proposition 3.5, there is a ontinuous funtion (x; t; z) 2(0; 1)� [0; T )� [0; 1℄! w(x; t; z) 2 R suh that :� for �xed x 2 (0; 1), (t; z)! w(x; t; z) 2 C1;2([0; T )� [0; 1℄), solves(�tw + �22 �2zw + b(t; z)�zw + �zb(t; z)w = 0; (t; z) 2 [0; T )� [0; 1℄8t 2 [0; T ); w(x; t; 0) = w(x; t; 1) = 0 (3.12)and takes the terminal value w(x; T; :) = Æx(:) in the distribution sense.� For any integers r and s suh that 2r + s � 2,8t 2 [0; T ); 8x; z; j�rt �szw(x; t; z)j � C(T � t)� 1+2r+s2 exp�� (z � x)2T � t � :13



� for any funtion ' ontinuous on [0; 1℄, the funtionw'(t; z) = (R 10 w(x0; t; z)'(x0)dx0 if t < T'(z) if t = Tis ontinuous on [0; T ℄� [0; 1℄ and satis�es (3.12).Thanks to these results, we express rigorously E(H(x � X̂yT )�H(x�XyT )) in terms of w :Lemma 3.9E(H(x � X̂yT )�H(x�XyT )) = E  Z T0 (b(s; X̂ys )� b(�s; X̂y�s))w(x; s; X̂ys )ds! : (3.13)Proof : For � > 0, we set '�(x0) = e�(x0�x)2=(2�)=p2�� and v�(t; z) = R 1z w'�(t; z0)dz0. ByLemma 3.8, the funtion v� is ontinuous on [0; T ℄� [0; 1℄ and satis�es(8(t; z) 2 [0; T )� [0; 1℄; �tv� + �22 �2zv� + b(t; z)�zv� + �22 �zw'�(t; 1) = 08t 2 [0; T ); �zv�(t; 0) = �zv�(t; 1) = 0:Hene for t < T , by It�'s formula,v�(t; X̂yt )� v�(t;Xyt ) =Z t0 �(�zv�(s; X̂ys )� �zv�(s;Xys ))dWs+ Z t0 (b(s; X̂ys )� b(�s; X̂y�s))(��zv�(s; X̂ys ))ds:This equation still holds for t = T by ontinuity of both sides, sine for s < T , by theupperbound of w given in Lemma 3.8 and the onvolution property of Gaussian kernelsj�zv�(s; z)j � Z 10 '�(x0)jw(x0 ; s; z)jdx0 � C=p�+ (T � s): (3.14)Taking expetations, we dedue thatE(v�(T; X̂yT ))� v�(T;XyT )) = E  Z T0 (b(s; X̂ys )� b(�s; X̂y�s))(��zv�(s; X̂ys ))ds! : (3.15)The funtion z ! v�(T; z) = R 1z '�(z0)dz0 is bounded by 1 uniformly in � and onvergespointwise to ll fz=xg=2 + ll fz<xg as �! 0. By Lebesgue theorem, the left-hand-side of (3.15)onverges toE(H(x � X̂yT )�H(x�XyT )) + 12(P(XyT = x)� P(X̂yT = x)) = E(H(x � X̂yT )�H(x�XyT ))sine by Girsanov theorem both variables XyT and X̂yT admit densities w.r.t. Lebesguemeasure.By ontinuity of the funtion w, 8(s; z) 2 [0; T )� [0; 1℄; ��zv�(s; z) = R 10 w(x0; s; z)'�(x0)dx0onverges to w(x; s; z) as � ! 0. Using (3.14), we obtain by Lebesgue theorem that theright-hand-side of (3.15) onverges to E �R T0 (b(s; X̂ys )� b(�s; X̂y�s))w(x; s; X̂ys )ds�. Hene(3.13) holds.In the sequel x 2 (0; 1) is �xed and we denote w(t; z) instead of w(x; t; z).Applying It�'s formula to the funtion gl(t; z) = (b(t; z) � b(tl; X̂xtl))w(t; z) we get that forl � L� 1 and s 2 [tt; tl+1).(b(s; X̂ys )� b(tl; X̂ytl))w(s; X̂ys ) = Z stl (�t + �22 �2z + b(tl; X̂ytl)�z)gl(�; X̂y� )d�+ Z stl �zgl(�; X̂y� )dK̂y� + � Z stl �zgl(�; X̂y� )dW� (3.16)def� T 1s + T 2s + T 3s14



We divide the integral on [0; T ℄ in the right-hand-side of (3.13) into integrals on [tl; tl+1℄; 0 �l � L� 1 and treat separetely the �rst and last term,���E(H(x � X̂yT )�H(x�XyT ))��� � ����E �Z t10 (b(s; X̂ys )� b(0; y))w(s;Xys )ds�����+ �����E  L�2Xl=1 Z tl+1tl T 1s + T 2s + T 3s ds!����� (3.17)+ �����E  Z TtL�1(b(s; X̂ys )� b(tL�1; X̂ytL�1))w(s;Xys )ds!����� :To upper-bound the last term we need the following Lemma the proof of whih is postponed :Lemma 3.1080 � t � s � T; E  sup�2[t;s℄(X̂y� � X̂ys )2 + (jK̂yjs � jK̂yjt)2! � C(s� t):Combining this result, the regularity assumptions on b and the upperbound jw(s; :)j � C(T�s)�1=2 given in Lemma 3.8, we get����E� Z TtL�1(b(s; X̂ys )� b(tL�1; X̂yTL�1))w(s; X̂ys )ds������ E sup[tL�1 ;T ℄ ���b(s; X̂ys )� b(tL�1; X̂yTL�1)��� Z TtL�1 C(T � s)�1=2ds � C�tThe same bound is valid for ���E �R t10 (b(s; X̂ys )� b(0; y))w(s; X̂ys )ds����. One we hek thatLemma 3.118s 2 [0; T ℄; E jT 1s j � C Z s�s �(T � �)�1=2 + (T � �)�2=3��1=3� d� (3.18)8� 2 (0; 1=2); 81 � l � L� 1; 8s 2 [tl; tl+1[; E jT 2s j � Ct�(1�2�)=4(1��)l �t(5�4�)=4(T � s)�1(3.19)E �Z tL�1t1 T 3s ds� = 0: (3.20)we dedue from (3.17) that���E(H(x � X̂yT )�H(x�XyT ))��� �C�T + C Z tL�1t1 Z s�s �(T � �)�1=2 + (T � �)�2=3��1=3� d�+ C�t(5�4�)=4 L�2Xl=1 t�(1�2�)=4(1��)l (T � tl+1)�1�t� C ��t+�t(5�4�)=4j ln�tj� � C�t by hoosing � < 1=4:i.e. Proposition 3.7 holds.Proof of Lemma 3.10 : Let � : x 2 R ! 1� j1� x+ 2[x=2℄j 2 [0; 1℄ and 0 � t � T . ByGirsanov theorem, sine b is bounded, the stohasti di�erential equationY� = X̂yt + �(W� �Wt) + Z �t (�1)[Yr℄b(�r; �(Y�r ))drhas a unique weak solution. Moreover the proesses (�(Y�))��t and (X̂y� )��t have the samelaw. Sine � is Lipshitz ontinuous with onstant 1, we dedue thatE  sup�2[t;s℄(X̂y� � X̂yt )2! � E  sup�2[t;s℄(Y� � X̂yt )2! � C(s� t):15



Now applying It�'s formula to ompute (X̂ys � 12 )2 � (X̂yt � 12 )2, we getjK̂yjs � jK̂yjt = Z st (2X̂yr � 1)(�dWr + b(�r; X̂y�r)dr) + (s� t) + (X̂yt � X̂ys )(X̂yt + X̂ys � 1):Using the previous upper-bound, we onlude that E �(jK̂yjs � jK̂yjt)2� � C(s� t).Proof of Lemma 3.11 : Using (3.11) we hek that 80 � l � L� 1, 8s 2 [tl; tl+1),T 1s = Z stl w(�; X̂y� )��t + �22 �2z + (2b(tl; X̂ytl)� b(�; X̂y� ))�z� b(�; X̂y� )d�+ Z stl ��2�zb(�; X̂y� )� (b(�; X̂y� )� b(tl; X̂ytl))2��zw(�; X̂y� )d�By the regularity assumptions on the funtion b(:; :) and the upper-bound jw(�; :)j � C(T ��)�1=2 given in Lemma 3.8, we dedue that E jT 1s j � C R stl(T � �)�1=2 + E j�zw(�; X̂y� )jd�.Sine the rough upper-bound C=(T � �) of �zw(�; :) is not integrable for � 2 [0; T ℄ we aregoing to make use of Girsanov theorem : for a well-hosen exponential martingale Ẑt, if �ytdenotes the doubly re�eted proess assoiated with the Brownian motion y+�Wt, we haveE j�zw(�; X̂y� )j = E �j�zw(�; �y� )jẐT� � �E(Ẑ3T )�1=3 �E j�zw(�; �y� )j3=2�2=3 :Sine 8� 2℄0; T ℄; 8y 2 [0; 1℄, the density of �y� is smaller than C��1=2, by Lemma 3.8,E j�zw(�; �y� )j3=2 � C Z 10 (T � �)�3=2 exp�� (z � x)2T � � � ��1=2dz � C(T � �)�1��1=2and we dedue that E j�zw(�; X̂y� )j � C(T � �)�2=3��1=3. Hene (3.18) holds.We turn to the proof of (3.19). Let 0 � l � L � 1 and s 2 [tl; tl+1). As djK̂yj� =ll f0;1g(X̂y� )djK̂yj� and w(t; 0) = w(t; 1) = 0,T 2s = Z stl (b(�; X̂y� )� b(tl; X̂ytl))�zw(�; X̂y� )ll f0;1g(X̂y� )dK̂y� :We dedue thatE jT 2s j � sup[tl;s℄ j�zw(�; 0)j _ j�zw(�; 1)j � E� sup[tl;tl+1℄�(b(�; X̂y� )� b(tl; X̂ytl))2ll f0;1g(X̂y� )��!1=2��E �jK̂yjtl+1 � jK̂yjtl�2�1=2 : (3.21)Let us upper-bound the three terms of the right-hand-side. By Lemma 3.8, sup[tl;s℄ j�zw(�; 0)j_j�zw(�; 1)j � C(T � s)�1. Let � 2 (0; 1=2),E� sup[tl;tl+1℄((b(�; X̂y� )� b(tl; X̂ytl))2ll fX̂y�=0g� �4 sup jb(:; :)j2P�X̂ytl � �t(1��)=2; inf[tl;tl+1℄ X̂y� = 0�+ E  ll fX̂ytl��t(1��)=2g sup[tl;tl+1℄(b(�; 0)� b(tl; X̂ytl))2!Following the same approah as in the proof of (3.8), we upper-bound the �rst term ofthe right-hand-side by C�t�=2e�=�t2� . The seond term is smaller than C�t1��P(X̂ytl ��t(1��)=2) and by using Girsanov Theorem like in the derivation of (3.18), when l � 1, weget P(X̂ytl � �t(1��)=2) � E(Ẑ(1��)=�T )�=1��P(�ytl � �t(1��)=2)(1�2�)=(1��)� Ct�(1�2�)=2(1��)l �t(1�2�)=2:16



Treating in a symmetri way E(sup [tl;tl+1℄((b(�; X̂y� ) � b(tl; X̂ytl))2ll fX̂y�=1g), we dedue thatwhen l � 1,E� sup[tl;tl+1℄((b(�; X̂y� )� b(tl; X̂ytl))2ll f0;1g(X̂y� )� � Ct�(1�2�)=2(1��)l �t(3�4�)=2:Sine aording to Lemma 3.10, the third term of right-hand-side of (3.21) is smaller thanC�t1=2 we onlude that (3.19) holds.Let us �nally hek (3.20). By the integration by parts formula, for l � L� 2Z tl+1tl T 3s ds = � Z tl+1tl (tl+1��)�(b(�; X̂y� )� b(tl; X̂ytl))�zw(�; X̂y� ) + �zb(�; X̂y� )w(�; X̂y� )� dW�:Sine aording to Lemma 3.8, jw(�; :)j � C(T � �)�1=2, j�zw(�; :)j � C(T � �)�1 and thefuntions b and �zb are bounded, we dedue that 80 � l � L� 2, E �R tl+1tl T 3s ds� = 0. Hene(3.20) holds.Remark 3.12 Our proof only works in ase the di�usion oe�ient is onstant beauseotherwise the analysis of the error would involve higher order derivatives of the Green'sfuntion w.3.3 Proof of Theorem 3.2We ome bak to the analysis of the stohasti partile method and the estimation ofsupx2[0;1℄ E jV (tl; x)� V (tl; x)j = Error(tl), for 0 � l � L. Now, we setb(t; x) = A0(V (t; x)):By Lemma 3.1, this drift funtion satis�es the regularity assumptions made in the study ofthe weak error of the Euler-Lépingle sheme. By (3.4) and Lemma 3.4,Error(tl) � 1N + supx2[0;1℄ E ����� 1N NXi=1 E �H(x�Xyi0tl )�� V (tl; x)�����To deal with the inexat treatment of the re�exion by the Euler-Lépingle sheme, we in-trodue the system of proesses (Zi; i = 1; : : : ; N) evolving aording to the Euler-Peanosheme on [tl; tl+1) and reinitialized at the positions (Y itl+1 ; 1 � i � N) at time tl+1 (for0 � l � L� 1) :8<:80 � l � L� 1; 8t 2 [tl; tl+1); Zit = Y itl + �(W it �W itl) + (t� tl)A0(V (tl; Y itl)) + K̂it � K̂itl ;jK̂ijt = Z t0 ll f0;1g(Zis)djK̂ijs; and K̂it = Z t0 (1� 2Zit)djK̂ijs: (3.22)Sine we assume that  < 1=2, aording to Lemma 3.6, 81 � i � N; P(9k � l : Zit�k 6=Y itk ) � C�t. HeneError(tl) � 1N + C�t+ supx2[0;1℄ E ����� 1N NXi=1 ll f81�k�l; Zit�k =Y itkg �E(H(x �Xyi0tl ))�H(x� Zit�l )������ :(3.23)We introdue the solution w(x; t; z) of the paraboli problem(�tw + �22 �2zw + b(t; z)�zw + �zb(t; z)w = 0; (t; z) 2 [0; tl)� [0; 1℄;8t 2 [0; tl); w(t; 0) = w(t; 1) = 0; w(tl; :) = Æx(:):Lemma 3.8 remains valid with tl replaing T .17



Lemma 3.13E���� 1N NXi=1ll f81�k�l; Zit�k =Y itkg�E(H(x �Xyi0tl ))�H(x� Zit�l )� l�1Xk=0 Z tk+1tk w(x; s; Zis)(A0(V (tk; Y itk ))� b(s; Zis))ds����� � C � 1pN +�t� ;where the onstant C � 0 does not depend on x 2 [0; 1℄.Proof : For � > 0, we set '�(x0) = e�(x0�x)2=(2�)=p2�� and v�(t; z) = R 1z w'� (t; z0)dz0 =R 1z R 10 w(x0; t; z0)'�(x0)dx0dz0. Applying It�'s formula like in the proof of Lemma 3.9, weobtain that if 81 � k � l; Zit�k = Y itkEv� (tl; Xyi0tl )� v�(tl; Zitl)� l�1Xk=0 Z tk+1tk (b(s; Zis)�A0(V (tk; Y itk )))�zv�(s; Zis)ds= �� Z tl0 �zv�(s; Zis)dW is = �� Z tl0 �zv�(s; Ẑis)dW is (3.24)where Ẑi is the ontinuous proess satisfying8>>><>>>:Ẑi0 = yi08t 2 [tk; tk+1℄; Ẑit = Ẑitk + �(W it �W itk ) + (t� tk)A0(V (tk; Y itk )) + K̂itjK̂ijt = Z t0 ll f0;1g(Ẑis)djK̂ijs; and K̂it = Z t0 (1� 2Ẑit)djK̂ijs:Sine aording to Lemma 3.8, (�zv�(s; z))2 � Ctl�s exp�� (z�x)2tl�s �, the inequalityE(�z v�(s; Ẑis))2 � C(tl � s)�2=3s�1=3where the onstant C does not depend on � and x, is obtained like the upperbound ofE j�zw(�; X̂y� )j in the proof of Lemma 3.11. Hene E �Z tl0 (�zv�(s; Ẑis))2ds� � C andE ����� 1N NXi=1 ll f81�k�l; Zit�k =Y itkg Z tl0 �zv�(s; Ẑis)dW is ������ E ����� 1N NXi=1 Z tl0 �zv�(s; Ẑis)dW is �����+ 1N NXi=1 E ����ll f91�k�l; Zit�k 6=Y itkg Z tl0 �zv�(s; Ẑis)dW is �����  1N2 NXi=1 E Z tl0 (�zv�(s; Ẑis))2ds!1=2+ 1N NXi=1 �P(91 � k � l; Zit�k 6= Y itk )�1=2 �E Z tl0 (�zv�(s; Ẑis))2ds�1=2� C � 1pN +�t� aording to Lemma 3.6.By (3.24), we dedue thatE���� 1N NXi=1 ll f81�k�l; Zit�k =Y itkg�E(v� (tl; Xyi0tl ))� v�(tl; Zit�l )� l�1Xk=0 Z tk+1tk (A0(V (tk; Y itk ))� b(s; Zis))(��zv�(s; Zis)ds����� � C � 1pN +�t�18



and we onlude by taking the limit �! 0 like in the proof of Lemma 3.9.By (3.23) and the previous Lemma, we obtain thatError(tl) � C � 1pN +�t�+ supx2[0;1℄ E ����� 1N NXi=1 ll f81�k�l; Zit�k =Y itkg l�1Xk=0 Z tk+1tk w(x; s; Zis) �A0(V (tk; Y itk ))� b(s; Zis)� ds����� :Sine aording to Lemma 3.8, w(x; s; z) � C=ptl � s, using one more Lemma 3.6, we getError(tl) � C � 1pN +�t�+supx2[0;1℄ E ����� 1N NXi=1 l�1Xk=0 Z tk+1tk w(x; s; Zis) �A0(V (tk; Y itk))� b(s; Zis)� ds����� :We onsider now the last term in the upperbound of Error(tl). We split it in two parts,in order to introdue the di�erene between the drift funtion b(tk; �) = A0(V (tk; :)) and itsapproximation A0(V (tk; �)) at the same point Y itk . As 80 � k � L� 1; Zitk = Y itk , we getE ����� 1N NXi=1 l�1Xk=0 Z tk+1tk w(x; s; Zis) �A0(V (tk; Y itk ))� b(s; Zis)� ds������ E ����� 1N NXi=1 l�1Xk=0 Z tk+1tk w(x; s; Zis) �b(s; Zis)� b(tk; Zitk)� ds����� (3.25)+ E ����� 1N NXi=1 l�1Xk=0 Z tk+1tk w(x; s; Zis) �b(tk; Y itk)�A0(V (tk; Y itk ))� ds����� :The �rst term in the right-hand-side of (3.25) is a time disretization error. In order toobtain an error bound of order O(�t), we need an expetation inside the absolute value.If for k 2 f0; : : : ; Lg, we denote Ftk def= �(W is ; 0 � s � tk; i = 1; : : : ; N), then for alls 2 [tk; tk+1), the variables (Ritk;s def= w(x; s; Zis) �b(s; Zis)� b(tk; Zitk )� ; i = 1; : : : ; N) areFtk -independent. Hene,E ����� 1N NXi=1 Ritk;s � EFtk �Ritk;s������ � 1pNvuut 1N NXi=1 E �Ritk;s�2 � CpNvuut 1N NXi=1 E �w(x; s; Zis)�2Using one more that w(x; s; z) � C=ptl � s, we easily obtain thatE ����� 1N NXi=1 l�1Xk=0 Z tk+1tk w(x; s; Zis) �b(s; Zis)� b(tk; Zitk)� ds������ E ����� 1N NXi=1 l�1Xk=0 Z tk+1tk EFtk �w(x; s; Zis) �b(s; Zis)� b(tk; Zitk)�	 ds�����+ CpN :To obtain an upper-bound of order O(�t) for the �rst term in the right-hand-side of theprevious inequality, we just have to remark that we are now in the same ontext as in theproof of Proposition 3.7 : Equality (3.16) and Lemma 3.11 are valid replaing X̂ by Zi andT by tl. Following the proof of Proposition 3.7 we onlude thatsupx2[0;1℄ E ����� 1N NXi=1 l�1Xk=0 Z tk+1tk w(x; s; Zis) �b(s; Zis)� b(tk; Zitk)� ds����� � C�t+ CpN : (3.26)
19



For the seond term in (3.25), by the upper-bound C=ptl � s for w(x; s; z) and sine byde�nition b(t; :) = A0(V (t; :)), we getsupx2[0;1℄ E ����� 1N NXi=1 l�1Xk=0 Z tk+1tk w(x; s; Zis) �b(tk; Y itk)�A0(V (tk; Y itk ))� ds������ C supv2[0;1℄ jA0(v)j l�1Xk=0�Z tk+1tk 1ptl � sds� 1N NXi=1 E ��V (tk; Y itk )� V (tk ; Y itk)�� : (3.27)Lemma 3.1480 � l � L; 1N NXi=1 ��V (tl; Y itl)� V (tl; Y itl)�� � C( 1pN +�t):Using Lemma 3.14 in (3.27), with (3.26) we ome bak to (3.25) and dedue thatError(tl) � C( 1pN +�t);whih ends the proof of Theorem 3.2.We are now onentrated on the upper bound of1N NXi=1 E ��V (tl; Y itl)� V (tl; Y itl)��given in Lemma 3.14. Beause of the omplex form of V (tl; Y itl), we need to introdueanother auxiliary family of disrete time proesses : let (X it; t 2 [0; T ℄; i = 1; : : : ; N) denotethe solution of the following Euler-Peano equations,8>>><>>>:X i0 = yi08t 2 [tl; tl+1℄; Xit = Xitl + �(W it �W itl) + (t� tl)b(tl; Xitl) +KitjKijt = Z t0 ll f0;1g(X is)djKijs; and Kit = Z t0 (1� 2Xit)djKijs: (3.28)We will ompare V (tl; Y itl) = 1N PNj=1H(Y itl � Y jtl) with the same expression written withthe system of independent partiles 1N PNj=1H(Xitl �Xjtl).First, we note thatE ���V (tl; Y itl)� V (tl; Xitl)��� = E ���V (tl; Zitl)� V (tl; Xitl)���� E ���V (tl; Zit�l )� V (tl; Xitl)���+ C�t2� CjZit�l �Xitl j+ C�t2:The �rst inequality is obtained thanks to Lemma 3.6 whih ompares Peano and Lépingleshemes. The seond one uses the Lipshitz property of V stated in Lemma 3.1. Now, usingarguments similar to those given at the beginning of the proof of Lemma 3.3, one an easilyhek thatjZit�l �Xitl j � jY itl�1 �X itl�1 j+�tCjV (tl�1; Y itl�1)� V (tl�1; Xitl�1)j� jZit�l�1 �Xitl�1 j+ C�t2 +�tCjV (tl�1; Y itl�1)� V (tl�1; X itl�1)j:By indution, we dedue that1N NXi=1 E ���V (tl; Y itl)� V (tl; Xitl)��� � C�t l�1Xm=0 1N NXi=1 E ���V (tm; Y itm)� V (tm; Xitm)���+ C�t:(3.29)20



For all k 2 f0; : : : ; Lg we set�E(tk) def= 1N NXi=1 E ���V (tk; Y itk)� V (tk; Xitk )��� ;so that, by (3.29),1N NXi=1 E ��V (tl; Y itl)� V (tl; Y itl)�� � �E(tl) + C�t l�1Xm=0 �E(tm) + C�t: (3.30)We have transformed the estimation of 1N PNi=1 E ��V (tl; Y itl)� V (tl; Y itl)�� into the estimationof eah �E(tm) for 0 � m � L. For m = 0, �E(0) = 1N PNi=1 jV (0; yi0) � V (0; yi0)j � 1N , byLemma 3.4. For m � 1, we insert the term 1N PNj=1H(Xitl �Xjtl) in the expression of �E(tm)to split it in two part :�E(tm) � 1N NXi=1 E ������V (tm; Y itm)� 1N NXj=1H(Xitm �Xjtm)������+ 1N NXi=1 E ������ 1N NXj=1H(X itm �Xjtm)� V (tm; Xitm)������� 1N2 NXi;j=1 E ���H(Y itm � Y jtm)�H(X itm �Xjtm)���+ 1N NXi=1 E ������ 1N NXj=1H(X itm �Xjtm)� V (tm; Xitm)������ :
(3.31)

To deal with the �rst term in the right-hand-side, we introdue the errors �E(tk) for k � m�1.The seond term is very similar to error terms we have already treated. The upper-bound ofthese terms are respetively given in the following Lemmas the proofs of whih are postponed :Lemma 3.151N2 NXi;j=1 E ���H(Y itm � Y jtm)�H(Xitm �Xjtm)��� � C�t+ C�tm�1Xk=0 �E(tk)ptm � tk :Lemma 3.161N NXi=1 E ������ 1N NXj=1H(Xitm �Xjtm)� V (tm; Xitm)������ � CpN + C�t:Coming bak to (3.31), we have obtained that�E(tm) � C�t+ CpN + C�tm�1Xk=0 �E(tk)ptm � tk :Using a disrete time version of Gronwall's Lemma, we obtain that 8m � L; �E(tm) �C�t+ CpN . By (3.30), we onlude that Lemma 3.14 holds.Proof of Lemma 3.15 : The main di�ulty is to deal with the non Lipshitz Heavisidefuntion H . To overome this di�ulty, the idea onsists in smoothing H thanks to theprobability transition density of the Euler-Peano sheme. First, we note thatH(Y itm � Y jtm)�H(X itm �Xjtm)= m�1Xk=0 H �Xi;tm�k ;Y itm�ktm �Xj;tm�k;Y jtm�ktm ��H �Xi;tm�k�1;Y itm�k�1tm �Xj;tm�k�1;Y jtm�k�1tm � :21



where for 0 � k � L, y 2 [0; 1℄ and 1 � i � N , (Xi;tk;yt )t2[tk;T ℄ denote the Euler Peanoproess starting from X i;tk;ytk = y at time tk and with posterior evolution given by (3.28). ByLemma 3.6, replaing Y itm�k by Zit�m�k in the expression above has a ost of order O(�t2).Hene, using the inequalityE jH(A) �H(B)j = P(A � 0; B < 0) + P(A < 0; B � 0) � P (jBj � jB �Aj) ;E ����H �X i;tm�k;Y itm�ktm �Xj;tm�k;Y jtm�ktm ��H �Xi;tm�k�1;Y itm�k�1tm �Xj;tl�m�1;Y jtl�m�1tl ������ C�t2 + E �����H  Xi;tm�k ;Zit�m�ktm �Xj;tm�k ;Zjt�m�ktm !�H �X i;tm�k�1;Y itm�k�1tm �Xj;tm�k�1;Y jtm�k�1tm ������� C�t2 + P�����Xi;tm�k�1;Y itm�k�1tm �Xj;tm�k�1;Y jtm�k�1tm ����� �����X i;tm�k�1;Y itm�k�1tm �Xj;tm�k�1;Y jtm�k�1tm �Xi;tm�k ;Zit�m�ktm +Xj;tm�k;Zjt�m�ktm �����!� C�t2 + P�����Xi;tm�k�1;Y itm�k�1tm �Xj;tm�k�1;Y jtm�k�1tm ����� C�t���V � V ��(tm�k�1; Y itm�k�1) + ��V � V ��(tm�k�1; Y jtm�k�1)��;as for i = 1; : : : ; N ,�����Xi;tm�k�1;Y itm�k�1tm �X i;tm�k;Zit�m�ktm ����� � C ����Xi;tm�k�1;Y itm�k�1tm�k � Zit�m�k ����� C�t��V � V ��(tm�k�1; Y itm�k�1):The variable ��V � V ��(tm�k�1; Y itm�k�1) + ��V � V ��(tm�k�1; Y jtm�k�1) is Ftm�k�1 measur-able. Moreover, for i 6= j, onditionally on Ftm�k�1 , the variables Xi;tm�k�1;Y itm�k�1tm andXj;tm�k�1;Y jtm�k�1tm are independent and admit densities with respet to Lebesgue measurewith a L2 norm smaller than C=(tk+1)1=4 (by Girsanov Theorem, as in the proof of Lemma2.4). Hene, onditionally on Ftm�k�1 , the variable X i;tm�k�1;Y itm�k�1tm � Xj;tm�k�1;Y jtm�k�1tmadmits a density with respet to Lebesgue measure with a L1 norm smaller than C=ptk+1and we dedue thatP�����Xi;tm�k�1;Y itm�k�1tm �Xj;tm�k�1;Y jtm�k�1tm ����� C�t���V � V �� (tm�k�1; Y itm�k�1) ��V � V �� (tm�k�1; Y jtm�k�1)��� C �tptk+1 E ���V � V �� (tm�k�1; Y itm�k�1) + ��V � V �� (tm�k�1; Y jtm�k�1)� :We onlude that1N2 NXi;j=1 E ���H(Y itm � Y jtm)�H(X itm �Xjtm)��� � C�t+ C�tm�1Xk=0 �E(tm�k�1)ptk+1 :
Proof of Lemma 3.16 : We are going to deompose the expression of interest in order22



to introdue error terms that we have already bounded.1N NXi=1 E ������V (tm; Xitm)� 1N NXj=1H(Xitm �Xjtm)������� 1N NXi=1 E�jV (tm; x)� 1N NXj=1 EH(x �Xyj0tm)j����x=Xitm�+ 1N NXi=1 E 0� 1N NXj=1 jEH(x �Xyj0tm)� EH(x �Xjtm)j����x=Xitm1A+ 1N NXi=1 E 0�j 1N NXj=1(EH(x �Xjtm)jx=Xitm �H(Xitm �Xjtm))j1A� supx2[0;1℄ ������V (tm; x)� 1N NXj=1 EH(x �Xyj0tm)������+ supx2[0;1℄;j�N ���EH(x �Xyj0tm)� EH(x �Xjtm)���+ 1N NXi=10�E� 1N2 NXj;k=1(EH(x �Xjtm)jx=Xitm �H(Xitm �Xjtm))(EH(x �Xktm)jx=Xitm �H(X itm �Xktm))�1A 12 :The �rst term in the right-hand-side is the initialisation error bounded in Lemma 3.4 by 1N .The seond term is the weak time disretization error for the Euler-Peano sheme boundedin Proposition 3.7 by C�t. The last term is a statistial error : it is smaller than 1=pN sineby independene of the variables (Xjtm ; 1 � j � N), eah term of the summation PNj;k=1with j 6= k is nil.4 Numerial experimentsAs a numerial benhmark, we onsider the following Dirihlet problem for the visous Burg-ers equation whih orresponds to the hoie A(x) = x2=2 :8><>: ��tv(t; x) = �2v�x2 (t; x) � v(t; x)�v�x (t; x); t > 0; x 2 [0; 2�℄v(0; x) = 2 sin(x)os(x) + e ; x 2 [0; 2�℄ and 8t � 0; v(t; 0) = 0; v(t; 2�) = 0; (4.1)The exat solution is (see [2℄) V (t; x) = 2 sin(x)=(os(x) + e(1+t)):The spatial domain [0; 2�℄ is di�erent from the one onsidered so far but our results re-main true for any bounded interval replaing [0; 1℄. The fat that the distribution derivativem0(x)dx of the initial data v(0; x) given bym0(x) = (2+2e os(x))=(os(x)+e)2 is not a prob-ability measure but a bounded signed measure represents a more signi�ant modi�ation.In fat, we ould not �nd any expliit solution when v(0; :) is the umulative distributionfuntion of a probability measure.To take into aount this modi�ation, we use weighted partiles (Y itl ; wi)1�i�N (see for in-stane [8℄ whih deals with a spatial domain equal to R). The N initial loations yi0 =inffy;H � jm0j=km0kL1([0;2�℄)(y) = iN g) are hosen in order to approximate the umu-lative distribution funtion of the probability measure jm0j(x)dx=km0kL1([0;2�℄) and the23



orresponding weights are wi = km0kL1([0;2�℄)sign(m0(yi0)). The approximate solution isgiven by the weighted umulative distribution funtion of the partile system V (tl; x) =1N PNi=1 wiH(x � Y itl) where the suessive positions are de�ned indutively by (3.2) butwith ^1 (resp. �1) replaed by ^2� (resp. �2�) in the seond (resp. last) line.The parameters of Lépingle sheme are �0 = 0:25 and �1 = 2� � 0:25. We have plotted onFigure 1 the numerial solution at time t = 1. As the dependene of the error on the number
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Figure 1: Exat and numerial solutions of (4.1) obtained at time t = 1, for 106 partiles and�t = 10�2 with the Lépingle sheme.of partiles is standard and orresponds to the usual entral limit theorem rate (see [4℄[5℄[8℄for numerial results in ase the spatial domain is R), we onentrate our numerial study onthe dependene on the time step. That is why we take a large number of partiles N = 106.Aording to Theorem 3.2, EkV (1; :)�V (1; :)kL1([0;2�℄) � 2� supx2[0;2�℄ E jV (1; x)�V (1; x)j �C(�t +N�1=2). Sine it is not possible to ompute the last quantity, we ompute the �rstone by averaging kV (1; :)�V (1; :)kL1([0;2�℄) over 20 runs of the partile method and give thedependene of the result on �t in Table 1 and Figure 2.�t Lépingle Con�dene Projetion Con�denesheme interval at 95% sheme interval at 95%2�1 0.0940 [0.0933,0.0946℄ 0.2510 [0.2501,0.2519℄2�2 0.0585 [0.0579,0.0591℄ 0.2320 [0.2309,0.2329℄2�3 0.0329 [0.0322,0.0336℄ 0.1964 [0.1953,0.1975℄2�4 0.0173 [0.0166,0.0180℄ 0.1568 [0.1557,0.1578℄2�5 0.0083 [0.0076,0.0090℄ 0.1241 [0.1227,0.1254℄2�6 0.0053 [0.0045,0.0060℄ 0.0982 [0.0969,0.0995℄2�7 0.0049 [0.0043,0.0055℄ 0.0779 [0.0765,0.0793℄2�8 0.0050 [0.0042,0.0058℄ 0.0635 [0.0627,0.0643℄Table 1: Expetation of L1 norm of error at t = 1 for N = 106 partiles (kV (�; 1)kL1([0;2�℄) = 1:09)We need to hek that our test ase (4.1) produes a signi�ant rate of e�etive re�etions.If this rate is too small, we only observe the e�et of the lassial Euler sheme (withoutre�etion) with weak onvergene also in �t, and we annot onlude on the onvergene ofthe Lépingle sheme. The rate of e�etive re�etions is around 10% for this test ase : morepreisely there are about 10% of the partiles in [0; �0℄[ [�1; 2�℄ at eah time-step. For these24



partiles, we ompute the orretion term C in (3.2). When we disretize the partile systemaording to the projeted Euler sheme, whih treats the re�etion simply by projetiononto [0; 1℄, we learly observe a sublinear onvergene in �t (see Table 1 and Figure 2). Theprojeted Euler sheme does not use the orretion term C whatever the position of thepartile and its weak onvergene rate is in O(�t1=2), (see [6℄). Therefore we an onludethat the quasi-linear dereasing of the error for the Lépingle sheme on�rms our theoretialanalysis.
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