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1 Introdu
tionThe ele
troni
 ground state energy of a mole
ular system 
onsisting of N ele
tronsand M nu
lei, the latter being here 
onsidered as �xed pointlike 
lassi
al parti
les(Born-Oppenheimer approximation), is the minimum of the variational probleminf fh ;H i;  2 Wg (1)where H = �12 NXi=1�xi � NXi=1 MXk=1 zkjxi � �xkj + X1�i<j�N 1jxi � xjj ;denotes the ele
troni
 hamiltonian andW = 8<: 2 N̂i=1L2(IR3 � �); X�N ZIR3N j j2 = 1; X�N ZIR3N jr j2 < +19=; ;the set of admissible ele
troni
 wave fun
tions. In the above expressions, zk denotesthe 
harge of the k-th nu
leus in atomi
 units, �xk its position in spa
e and � =fj "i; j #ig.Due to the size of the set W, problem (1) 
annot be solved by brute for
e numeri
almethods, ex
ept for very small systems (one or two ele
trons). For more 
omplexsystems, two families of approximation methods are 
urrently used in Chemistryand Physi
s: variational approximations on the one hand, from whi
h pro
eeds inparti
ular the 
elebrated Hartree-Fo
k model [1, 2℄, and the implementation of thedensity fun
tional theory (DFT) through the Kohn-Sham model [3, 4℄ on the otherhand. Although the Hartree-Fo
k and the standard Kohn-Sham models are obtainedby 
ompletely di�erent ways, they eventually give rise to mathemati
al problems ofvery similar stru
tures, so that numeri
al methods for solving the Hartree-Fo
kproblem 
an usually be dire
tly applied to the standard Kohn-Sham problem (atleast with slight modi�
ations).In a re
ent publi
ation [5℄, we have proposed a new numeri
al method, namely theRelaxed Constrained Algorithms (RCA), to solve the Hartree-Fo
k problem. Brie
yspeaking, RCA 
onsists in allowing fra
tional o

upan
y of the mole
ular orbitalsduring the minimization pro
edure; more pre
isely, denoting by ni the o

upationnumbers, the 
onstraints \ni equals 0 or 1" are relaxed into the weaker 
onstraints\0 � ni � 1". The interest of the 
onstraints relaxation is that the so-obtainedproblem has 
onvexity properties whi
h make its numeri
al resolution easier.In the Hartree-Fo
k model, only integer o

upation numbers have a physi
al mean-ing. RCA do work out in this 
ontext be
ause the 
onstraints \ni equals 0 or 1"are automati
ally re
overed when 
onvergen
e is a
hieved; this is a 
onsequen
e ofsome spe
i�
 property of the Hartree-Fo
k energy fun
tional [6℄.The purpose of this paper is to show that, although the various Kohn-Sham en-ergy fun
tionals do not enjoy su
h properties, RCA are fairly adapted to DFT
al
ulations. In most 
ases, integer o

upation numbers are a
tually re
overed at
onvergen
e and RCA then seem to exhibit better robustness qualities than other
urrently used SCF algorithms su
h as, for instan
e, level-shifting [7℄ or Pulay's DIISpro
edure [8℄. In the remaining (rare) 
ases, RCA 
onverge toward solutions to theextended Kohn-Sham model with fra
tional o

upation numbers (FON) at the Fermi2



level (see in parti
ular [4, 9℄ and the referen
es therein); the latter situation is en-
ountered when the ground state density (for the approximated ex
hange-
orrelationfun
tional in use) is only ensemble non-intera
ting v-representable [4℄. RCA thusprovide an eÆ
ient way to optimize simultaneously the energy levels and the o

u-pation numbers in the extended Kohn-Sham model.After re
alling in se
tion 2 the density matrix formulation of both the Hartree-Fo
kand the standard Kohn-Sham models, we present in se
tion 3 the basi
s of the RCAapproa
h and dis
uss its natural 
onne
tion with the extended Kohn-Sham model.The Optimal Damping Algorithm, whi
h is the simplest version of RCA, is des
ribedin se
tion 4. Its 
onvergen
e properties in the Kohn-Sham framework are stated andimplementation tri
ks are given. Some numeri
al tests on simple mole
ular systemsare reported in se
tion 5.The present analysis is restri
ted to 
losed-shell models but open-shell models likethose originated from the Lo
al Spin Density Approximation (LSDA [3, 4℄) 
an betreated in the same way.2 Density matrix formulation of the 
losed-shell Hartree-Fo
k and standard Kohn-Sham modelsAs already mentioned in the introdu
tion, the Hartree-Fo
k and the standard Kohn-Sham models have very similar formal stru
tures. For 
losed shell mole
ular systemsand after dis
retization in a �nite basis f�ig1�i�n, both of them 
an indeed beformulated in the density matrix formalism asinf fE(D); D 2 Pg (2)with E(D) = 2Tr (hD) + Tr (G(D)D) +Ex
(D) (3)and P = fD 2M(n; n); D� = D; Tr (SD) = Np; DSD = Dg :To 
ut a long story short, it is not explained here how problem (2) is derived fromthe original problem (1) following either the variational Hartree-Fo
k approximationor the DFT-Kohn-Sham s
heme. For su
h issues, the reader is referred to the text-books [1, 2, 3, 4℄. Let us nevertheless detail the notations. P is the set of admissibledensity matri
es, Np = N=2 the number of ele
tron pairs and S the n � n overlapmatrix de�ned by Skl = ZIR3 ��k�l:Let us re
all that the 
onne
tion between the density matrix formalism and the moreusual single-parti
le orbital representation of a Hartree-Fo
k or standard Kohn-Shamele
troni
 
on�guration is the following:D = Co

C�o

where Co

 2 M(n;Np) is the matrix of the 
oeÆ
ients of the Np doubly o

upiedorbitals (�i)1�i�Np in the basis f�kg1�k�n:�i(x) = nXk=1Ck;i �k(x):3



In parti
ular the kernel �(x; y) (whi
h 
an be identi�ed with the �rst-order redu
eddensity matrix in the Hartree-Fo
k setting), and the ele
troni
 density �(x) asso
i-ated with a density matrix D are given by�(x; y) = 2 nXk;l=1Dkl �k(x)�l(y)�and �(x) = �(x; x) = 2 nXk;l=1Dkl �k(x)�l(x)�: (4)The 
onstraintsDSD = D thus 
orrespond to the orthonormality 
onditions ZIR3 �i��j = Æijand the 
onstraint Tr (SD) = Np ensures that there are a
tually Np ele
tron pairsin the system.The energy fun
tional E(D) to be minimized is made of three terms. The �rst oneis linear in D and 
ontains the kineti
 energy and the nu
lei-ele
trons intera
tion;the one ele
tron hamiltonian matrix h is given byhkl = 12 ZIR3 r��k � r�l + ZIR3 V ��k�l with V (x) = � MXk=1 zkjx� �xkj :The latter two terms model the ele
troni
 intera
tion. In formula (3), G denotes alinear symmetri
 operator on the set of density matri
es whose expression dependson the model. For the basi
 Kohn-Sham modelGKS(D) = J(D)where J(D)ij = 2 nXk;l=1Dkl ZIR3 ZIR3 �i(x)��j(x)�k(y)�l(y)�jx� yj dxso that the se
ond term of the energy fun
tional 
an be identi�ed with the 
lassi
alCoulomb energy asso
iated with the ele
troni
 density � given by (4):Tr (GKS(D)D) = 12 ZIR3 ZIR3 �(x) �(y)jx� yj dx dyIn the Hartree-Fo
k model, the 
lassi
al Coulomb energy is supplemented by anex
hange term: GHF (D) = J(D)�K(D) (5)with K(D)ij = nXk;l=1Dkl ZIR3 ZIR3 �i(x)��k(x)�j(y)�l(y)�jx� yj dx dy;so thatTr (GHF (D)D) = 12 ZIR3 ZIR3 �(x) �(y)jx� yj dx dy � 14 ZIR3 ZIR3 j�(x; y)j2jx� yj dx dy:The se
ond term in the right-hand side of the above formula is 
alled the Hartree-Fo
k ex
hange term. 4



The term Tr (G(D)D) is thus in any 
ase quadrati
 in D. The fun
tional Ex
 iszero in the Hartree-Fo
k setting and models the ex
hange-
orrelation energy in theKohn-Sham s
heme. In the latter 
ase, it is a non quadrati
 nonlinearity.Finally, for hybrid energy fun
tionals like B3LYP [10℄, some part of the Hartree-Fo
k ex
hange is in
luded in the ex
hange-
orrelation energy. As this term gives aquadrati
-in-D 
ontribution to the energy, we in
lude it in the se
ond term of thefun
tional E(D). For hybrid energy fun
tionals, we thus haveGhybrid(D) = J(D)� �K(D);where � 2℄0; 1[ is an empiri
al 
oeÆ
ient.3 Prin
iple of the RCATwo strategies for 
omputing a numeri
al solution of problem (2) are usually opposed� either solve (2) dire
tly by minimization algorithms [11, 12, 13℄� or solve the asso
iated Euler-Lagrange equations, namely the Hartree-Fo
k orKohn-Sham equations, by a �xed point pro
edure [14, 7, 8℄.Roughly speaking, the former strategy ensures a 
onvergen
e towards a lo
al mini-mum and 
an be eÆ
ient in the latest steps of the minimization pro
edure: quadrati

onvergen
e (or at least superlinear 
onvergen
e) 
an be obtained with quasi-Newtonmethods. Unfortunately, dire
t minimization methods are usually ineÆ
ient for per-forming the early steps of the optimization.On the other hand, standard methods for solving the Euler-Lagrange equations,in
luding Pulay's DIIS algorithm [8℄, o�er in most 
ases a satisfa
tory speed of
onvergen
e, but they fail to 
onverge in some 
ases and 
onverge towards a \bad"solution in some other 
ases (see se
tion 4.4 below).In a re
ent arti
le [5℄, we have proposed an alternative strategy to solve the Hartree-Fo
k problem (G given by (5) and Ex
 = 0)): rather than fo
using on (2), we have
onsidered the problem inf nE( eD); eD 2 ePo (6)where eP = n eD 2M(n; n); eD� = eD; Tr (S eD) = Np; eDS eD � eDo :In other words, the 
onstraints DSD = D have been relaxed: only DSD � D is nowrequired. This relaxation has a 
lear physi
al meaning: for the sake of simpli
itylet us assume that S = I (orthonormal basis set); in this 
ase, the eigenvalues ofD 
an be identi�ed with the o

upation numbers ni of the single-parti
le orbitals,whose 
oeÆ
ients in the basis f�kg1�k�n are themselves the eigenve
tors of D. The
onstraints D2 = D thus mean n2i = ni, that is \ni equals 0 or 1", whereas therelaxed 
onstraints D2 � D mean n2i � ni, that is \0 � ni � 1".In 
omparison with problem (2), problem (6) is mu
h easier to solve by dire
t min-imization pro
edures (see se
tion 4) be
ause the set eP is 
onvex (it is in fa
t the
onvex envelop of P). The spe
i�
 property of the Hartree-Fo
k energy that makesthis strategy work is that any 
riti
al point of problem (6) is on P. Therefore, any5



lo
al minimum of (6) is also a lo
al minimum of (2). For the sake of rigorousness,we must mention that this property, whi
h is related to the fa
t that there are \noun�lled shells" in the Hartree-Fo
k model [15℄, is mathemati
ally guaranteed onlyfor the General Hartree-Fo
k (GHF [16℄) and the Unrestri
ted Hartree-Fo
k (UHF)models. It seems not be known, to the best of the author's knowledge, whether thisproperty remains true for the Restri
ted Hartree-Fo
k (RHF) model under 
onsid-eration in the present arti
le, but it seems to be the 
ase in pra
ti
e (we are notaware of any 
ounter-example).Things are di�erent in the Kohn-Sham setting: on the one hand, there is no reasonwhy a lo
al minimum of (6) should be also a minimum of (2) and numeri
al ex-periments (see se
tion 4.4) indeed 
on�rm that there may exist lo
al minima of (6)whi
h are not on P; but on the other hand, fra
tional o

upation numbers are al-lowed in the extended Kohn-Sham model, so that problem (6) makes sense from aphysi
al viewpoint: it is the formulation of the extended Kohn-Sham problem in thebasis f�kg1�k�n. Let us re
all that the extended Kohn-Sham model is derived fromthe abstra
t density fun
tional theory following the Kohn-Sham s
heme; the onlydi�eren
e with the standard Kohn-Sham model is that the Janak fun
tionalTJ (�) = inf (+1Xi=1 ni ZIR3 jr�ij2; ZIR3 �i��j = Æij ; 0 � ni � 1; +1Xi=1 nij�ij2 = �)is used to model the non-intera
ting kineti
 energy instead of the standard Kohn-Sham fun
tionalTs(�) = inf8<:NpXi=1 ZIR3 jr�ij2; ZIR3 �i��j = Æij ; NpXi=1 j�ij2 = �9=;A more detailed presentation of the extended Kohn-Sham model 
an be read inreferen
e [4℄. The latter model is an improvement of the standard Kohn-Shammodel for both physi
al and mathemati
al reasons: �rst, ensemble non-intera
ting v-representable densities 
an be taken into a

ount [4, 9℄; se
ond, the Janak fun
tionalhas better properties of 
onvexity and di�erentiability [17, 18℄ than the standardKohn-Sham non-intera
ting kineti
 energy fun
tional. In DFT 
al
ulations, the
onstraints relaxation is therefore not only a numeri
al tri
k to for
e 
onvergen
e(as it is in the Hartree-Fo
k setting); it 
orresponds to an improvement of the model.RCA being by de�nition dire
t minimization pro
edures to solve problem (6), they
onverge to a 
riti
al point eD (usually a minimum), whi
h, under some regularityassumptions on Ex
(D), satisfy the Euler-Lagrange equations8><>: F ( eD)C = SCEC�SC = IneD = CNo

C� (7)where the matri
es F ( eD), E, C and No

 have the following meaning: the matrixF ( eD) = h+G( eD) + F x
( eD)denotes the mean-�eld hamiltonian (also 
alled Fo
k matrix); F x
( eD) is the 
on-tribution to the mean-�eld hamiltonian origniated from the ex
hange-
orrelationenergy Ex
( eD). The n�n matrix E 
an be 
hosen diagonal, in whi
h 
ase the n�nmatrix C = (�1; � � � ;�n) 
ontains the 
oordinates in the basis f�kg1�k�n of all the6



(fully o

upied, partially o

upied, or empty) single-parti
le orbitals; the ve
tors(�i)1�i�n are solution to the generalized eigenvalue problemF ( eD) � �i = �iS � �i;and E = Diag (�1; � � � ; �n). The eigenvalues �i are 
onventionally numbered in su
ha way that �1 � �2 � � � � � �n. Lastly, the matrix No

 is the diagonal matrix ofo

upation numbers: No

 = Diag (n1; � � � ; nn). A ne
essary 
ondition for eD beinga 
riti
al point of (6) is that the ni ful�ll the following 
onditions:8>>>>>><>>>>>>: ni = 1 if �i < �ni = 0 if �i > �0 � ni � 1 if �i = �nXi=1 ni = Np: (8)The value of �, whi
h 
an be identi�ed with the Fermi energy, is the Lagrange mul-tiplier of the 
onstraint Tr (S eD) = Np. Conditions (8) mean that (a) the levelsbelow the Fermi energy are fully o

upied, (b) the levels above the Fermi energy areempty, and (
) the Fermi levels 
an be populated with fra
tional o

upation num-bers. Equations (7-8) are the dis
retization in the basis f�kg1�k�n of the extendedKohn-Sham equations (formulae (4.25) and (4.27) in [4℄).In the 
ase when �Np < �Np+1, i.e. when there is a gap between the highest o

upiedlevel and the lowest uno

upied one, equations (7-8) 
an be rewritten as8><>: F ( eD)C = SCEC�SC = IneD = Co

C�o

 (9)where Co

 = (�1; � � � ;�Np); one re
overs the standard Kohn-Sham equations sup-plemented by the so-
alled aufbau prin
iple, whi
h re
ommends �lling the Np single-parti
le orbitals of lowest energy. When �Np < �Np+1, the density matrix obtainedby RCA is solution (theoreti
ally a 
riti
al point, but in pra
ti
e a lo
al minimumat least) to the standard Kohn-Sham problem (2). This situation o

urs most oftenin the tests we have performed so far, but not always (see se
tion 4.4).4 The Optimal Damping Algorithm for the Kohn-ShammodelsThe Optimal Damping Algorithm (ODA) is the simplest implementation of theideas developed above. It 
onsists in solving problem (6) by the following two-stepiteration pro
edure: [a℄ �nd the \steepest des
ent" dire
tion and [b℄ minimize theenergy along this dire
tion.4.1 Des
ription of the ODADenoting by eDk the 
urrent iterate, we have 
hosen to de�ne the \steepest des
ent"dire
tion as the dire
tion pointing towards some eD 2 eP su
h that the slopes = dd� �E( eDk + �( eD � eDk)�����=07



is minimal. A simple 
al
ulation shows that the solution eD to this problem belongsto P (let us denote it by Dk+1) and is given byDk+1 = arg infnTr (F ( eDk)D); D 2 Po ; (10)it is well known (see [6℄ for instan
e) that the solution Dk+1 to problem (10) isthe density matrix obtained by populating the Np lowest single-parti
le orbitals ofF ( eDk).Step [b℄ 
onsists in minimizing the energy fun
tional E(D) in the dire
tion (Dk+1�eDk) 
omputed at step [a℄. As Dk+1 2 P, 
onvexity properties imply that a point ofthe half-line n eDk + �(Dk+1 � eDk); � � 0o belongs to eP if and only if 0 � � � 1.Imposing eDk+1 2 eP is therefore equivalent to imposing � 2 [0; 1℄. Step [b℄ thus
onsists in �nding the minimum of the energy E(D) on the segment lineSeg[ eDk;Dk+1℄ = n(1� �) eDk + �Dk+1; � 2 [0; 1℄olinking together eDk and Dk+1.The ODA 
an be �nally summarized as[a℄ Assemble F ( eDk) and obtain the matrix Dk+1 2 P by the aufbau prin
iple;[b℄ Set eDk+1 = arg infnE( eD); eD 2 Seg[ eDk;Dk+1℄o.The algorithm is initialized with eD0 = D0, the initial guess D0 being obtainedfor instan
e by the diagonalization of the 
ore hamiltonian or by the result of anysemiempiri
al method.For the spe
ial 
ase of the Hartree-Fo
k model, in whi
h the energy fun
tional E(D)is quadrati
 in D, step [b℄ simply 
onsists in minimizing a se
ond degree polynomialon the range [0; 1℄. The situation is a little bit more 
ompli
ated in the Kohn-Shamsetting be
ause the fun
tion� 7! E � eDk + �(Dk+1 � eDk)�has no longer a simple analyti
al expression. Before examining how step [b℄ 
an beperformed in an eÆ
ient way, let us state the 
onvergen
e properties of the ODA inthe Kohn-Sham setting.4.2 Convergen
e propertiesFollowing [6℄, we shall say the a sequen
e ( eDk)k2IN numeri
ally 
onverges towards asolution eD to the (standard or extended) Kohn-Sham equations if the two following
onditions are ful�lled1. eDk+1 � eDk �! 0;2. dd� �E( eDk + �(Dk+1 � eDk)�����=0 = 2Tr (F ( eDk)(Dk+1 � eDk)) �! 0.The se
ond 
ondition means that the slope of the steepest des
ent dire
tion goes tozero when k goes to in�nity. 8



Theorem. For any initial guess eD0 2 eP the sequen
e ( eDk)k2IN generated by theOptimal Damping Algorithm numeri
ally 
onverges toward a solution to the extendedKohn-Sham equations (7-8).Besides, if for large k, there is a uniform (in k) gap between the higher o

upied leveland the lower uno

upied level of F ( eD), then the sequen
e (Dk)k2IN� numeri
ally
onverges toward a solution to the standard Kohn-Sham equations (9) supplementedby the aufbau prin
iple.The demonstration of this theorem is not reported here; it mimi
s the proof of the
onvergen
e of the ODA for the Hartree-Fo
k model already published in [6℄.4.3 Pra
ti
al implementationThe point to dis
uss is the line sear
h (step [b℄) 
onsisting in solving the minimizingproblem inf�2[0;1℄ q(�); with q(�) = E � eDk + �(Dk+1 � eDk)� : (11)Numeri
al experiments performed until now seem to show that a simple \one shot"
ubi
 interpolation is enough, whatever the mole
ular system and the ex
hange-
orrelation fun
tional (but the situation may 
hange for more 
omplex systems). Inthe present 
ase, a \one shot" 
ubi
 interpolation 
onsists in approximating problem(11) by inf�2[0;1℄ p(�); with p(�) = a�3 + b�2 + 
�+ d (12)where the 
oeÆ
ients a, b, 
 and d are expli
itly 
al
ulated su
h that8>>>><>>>>: p(0) = q(0) = E( eDk)p(1) = q(1) = E(Dk+1)p0(0) = q0(0) = 2Tr �F ( eDk)(Dk+1 � eDk)�p0(1) = q0(1) = 2Tr �F (Dk+1)(Dk+1 � eDk)� :The solution to problem (12) is analyti
al and un
ostly. Let us noti
e that a = 0 inthe Hartree-Fo
k setting sin
e the fun
tion q is itself a se
ond degree polynomial.The algorithm that we have implemented is the following:� Initialization. Choose an initial guess eD0 2 eP , assemble eG0 = G( eD0), eF x
0 =F x
( eD0), eF0 = h+ eG0+ eF x
0 , and 
ompute eE1e0 = 2Tr (h eD0), eE
l0 = Tr ( eG0 eD0),eEx
0 = Ex
( eD0), eE0 = eE1e0 + eE
l0 + eEx
0 . Set k = 0.� Iterations.1. Diagonalize eFk and assemble Dk+1 by the aufbau prin
iple.2. Assemble the matri
es Gk+1 = G(Dk+1) and F x
k+1 = F x
(Dk+1) and
omputeE1ek+1 = 2Tr (hDk+1); E
lk+1 = Tr (Gk+1Dk+1); Ex
k+1 = Ex
(Dk+1)Ek+1 = E1ek+1 +E
lk+1 +Ex
k+1:
9



3. Set d = eEk; 
 = 2Tr � eFk(Dk+1 � eDk)� ;a = 2Tr �Fk+1(Dk+1 � eDk)��2Ek+1+ 
+2d; b = Ek+1�a� 
�d;and solve (expli
itly)�m = arginf na�3 + b�2 + 
�+ d; � 2 [0; 1℄o :4. ComputeeDk+1 = (1� �m) eDk + �mDk+1; eGk+1 = (1� �m) eGk + �mGk+1;eF x
k+1 = F x
( eDk+1); eFk+1 = h+ eGk+1 + eF x
k+1;eE1ek+1 = (1� �m) eE1ek + �mE1ek+1; eE
lk+1 = Tr ( eGk+1 eDk+1);eEx
k+1 = Ex
( eDk+1); eEk+1 = eE1ek+1 + eE
lk+1 + eEx
k+1:5. If eDk+1 � eDk is \small enough" then goto termination else set k = k + 1and goto 1.� Termination. Set eDf = eDk+1. Assemble the matrix eGf = G( eDf ) and
omputeE1e = 2Tr (h eDf ); E
l = Tr ( eGf eDf ); Ex
 = Ex
( eDf );EKS = E1e +E
l +Ex
:Let us point out that, although the ODA is fundamentally a minimization method,its stru
ture is very 
lose to that of the standard �xed point iteration pro
edures(Roothaan [14℄ or level-shifting [7℄) for solving the Euler-Lagrange equations (9). Itis therefore very easy to implement this new algorithm in existing 
odes.4.4 Numeri
al resultsIn the numeri
al results reported below, the DIIS algorithm and the ODA are 
om-pared for a few simple mole
ules using various ex
hange-
orrelation fun
tional (X�,BLYP and B3LYP [19℄). In ea
h 
ase, two 
hoi
es of initial guesses are tested: �rsta \fair" initial guess 
omputed by a semi-empiri
al method (INDO or Hu
kel [19℄),se
ond a \
rude" initial guess obtained by diagonalization of the 
ore hamiltonian.All the 
al
ulations have been performed within gaussian 98 [20℄.The 
omparison 
on
erns 
omputational time only; as far as memory o

upation is
on
erned, the ODA is 
learly better sin
e only four matri
es are stored whereas alarger number of matri
es have to be stored for the DIIS algorithm to be eÆ
ient(twenty in gaussian 98). Compared to the basi
 Roothaan algorithm [14℄, the onlysigni�
ant extra-
ost of an ODA iteration is that two 
omputations of the ex
hange-
orrelation energy and matrix are required (rather than one in the Roothaan algo-rithm), whereas the extra-
ost of a DIIS iteration 
omes from the 
omputation ofthe 
ommutators and of the mixing 
oeÆ
ients [8℄. As our implementation of theODA has not been optimized so far, the 
ost of one ODA iteration is roughly twi
ethe 
ost of one DIIS iteration in the examples presented below. We hope to be ableto improve this ratio in favour of the ODA.10



The �rst system under 
onsideration is the 
uoroethylene (CH2=CHF) 
omputedin the gaussian basis set 6-31G [19℄. In this 
ase (see �gure 1), both ODA andDIIS 
onverge toward the same solution to the standard Kohn-Sham equations; fora \
rude" initial guess, the ODA is more eÆ
ient ex
ept in the very last steps ofthe optimization pro
edure, whereas it is outperformed by the DIIS algorithm fora \fair" initial guess. This behavior is typi
al of what has been observed by theauthor for other simple organi
 
ompounds.
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Figure 1: Sear
h for the Kohn-Sham ground state of CH2=CHF with the X� (topleft), BLYP (top right) and B3LYP (bottom) fun
tionals. The ODA and the DIISalgorithm are 
ompared for two di�erent initial guesses (INDO and Core).The se
ond system is the Cr2 dimer 
omputed in the gaussian basis set 6-31G [19℄.For the BLYP ex
hange-
orrelation fun
tional, this mole
ular system enables us toexhibit a 
ase of failure of the DIIS algorithm (see �gure 2). In addition, even when
onvergen
e is a
hieved, the solution to the standard Kohn-Sham equations obtainedwith the DIIS algorithm depends on the initial guess and is higher in energy thanthe solution obtained with the ODA.The third system is the Pd2 dimer 
omputed in the basis set with pseudo-potentielslanl2dz [19℄. For the X� and BLYP fun
tionals, it 
an be observed (see �gure 3)that, as for the previous system, the solution of the standard Kohn-Sham equationsobtained by the DIIS algorithm depends on the initial guess, and that its energyis higher than the energy 
omputed with the ODA (�gure 3). The interest of thisexample is that the solutions obtained with the ODA for the X� and BLYP fun
-tionals respe
tively are not solutions to the standard Kohn-Sham equations (9) butto the extended Kohn-Sham equations (7-8); more pre
isely, we have observed thatthe degenera
y of the Fermi level is of order two for the BLYP ex
hange-
orrelation11
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DIIS / Core  Figure 2: Sear
h for the Kohn-Sham ground state of Cr2 with the X� (top left),BLYP (top right) and B3LYP (bottom) fun
tionals. The ODA and the DIIS algo-rithm are 
ompared for two di�erent initial guesses (Hu
kel and Core).fun
tional, with fra
tional o

upation numbers approximatively equal to 0.43 and0.57 respe
tively. The degenera
y is of order four with the X� ex
hange-
orrelationfun
tional; the fra
tional o

upation numbers are then about 0.91, 0.91, 0.72 and0.46.5 Con
lusionOne of the main interest of the ODA (the simplest version of RCA) is that itprovides solutions to the extended Kohn-Sham equations and is therefore able todeal with systems whose ground state density is only ensemble non-intera
ting v-representable [4, 9℄ for the approximated ex
hange-
orrelation fun
tional under 
on-sideration. The simultaneous optimization of the energy levels and the o

upationnumbers, re
ognized in [3℄ as a major diÆ
ulty, is therefore broken through by theODA.In addition, the numeri
al tests performed so far show that the ODA seems to havebetter robustness properties that the DIIS algorithm: the 
onvergen
e of the former
an be mathemati
ally proved whereas the latter does not 
onverge in some 
ases(
f. se
tion 4.4); in addition, the numeri
al solution to the Kohn-Sham equationsseems to be lower in energy and less dependent on the initial guess when it is 
om-puted with the ODA than when it is 
omputed with the DIIS algorithm. The ODAis also very eÆ
ient to rea
h the neighborhood of a solution; on the other hand,its performan
es are not so good on
e the iterates get 
lose to the solution. Thisis mainly due to the fa
t that the ODA \la
ks of memory" in the sense that the12
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Figure 3: Sear
h for the Kohn-Sham ground state of Pd2 with the X� (top left),BLYP (top right) and B3LYP (bottom) fun
tionals. The ODA and the DIIS algo-rithm are 
ompared for two di�erent initial guesses (Hu
kel and Core).des
ent dire
tion depends on the 
urrent position only, not on the traje
tory whi
hhas led to this point; more sophisti
ated RCA taking into a

ount the informationobtained in the previous iterations are 
urrently under study. Meanwhile, the au-thor's re
ommendation would be to remedy the relative slowness of the ODA byswit
hing to another existing algorithm (DIIS for instan
e) as soon as the slope ofthe steepest des
ent vanishes.Referen
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