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Abstract

The calculations of electronic ground state energies, following either the
Hartree-Fock or the Kohn-Sham schemes, are major issues in Quantum Chem-
istry. In a recent publication, we have proposed a new numerical method,
namely the Relaxed Constrained Algorithms (RCA), to solve the Hartree-Fock
problem. The purpose of the present article is to discuss the extension of this
method to the case of the Kohn-Sham problem. It is shown that RCA seem to
be more robust than other SCF algorithms currently used and that they provide
in addition a natural way to solve the extended Kohn-Sham problem, obtained
by allowing fractional occupancy of the single-particle orbitals.
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1 Introduction

The electronic ground state energy of a molecular system consisting of IV electrons
and M nuclei, the latter being here considered as fixed pointlike classical particles
(Born-Oppenheimer approximation), is the minimum of the variational problem

inf {(y, Hy), ¢ € W} (1)
where
1
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denotes the electronic hamiltonian and
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the set of admissible electronic wave functions. In the above expressions, z; denotes
the charge of the k-th nucleus in atomic units, Zj its position in space and X =

{19}

Due to the size of the set W, problem (1) cannot be solved by brute force numerical
methods, except for very small systems (one or two electrons). For more complex
systems, two families of approximation methods are currently used in Chemistry
and Physics: variational approximations on the one hand, from which proceeds in
particular the celebrated Hartree-Fock model [1, 2], and the implementation of the
density functional theory (DFT) through the Kohn-Sham model [3, 4] on the other
hand. Although the Hartree-Fock and the standard Kohn-Sham models are obtained
by completely different ways, they eventually give rise to mathematical problems of
very similar structures, so that numerical methods for solving the Hartree-Fock
problem can usually be directly applied to the standard Kohn-Sham problem (at
least with slight modifications).

In a recent publication [5], we have proposed a new numerical method, namely the
Relaxed Constrained Algorithms (RCA), to solve the Hartree-Fock problem. Briefly
speaking, RCA consists in allowing fractional occupancy of the molecular orbitals
during the minimization procedure; more precisely, denoting by n; the occupation
numbers, the constraints “n; equals 0 or 17 are relazed into the weaker constraints
“0 < n; < 17. The interest of the constraints relaxation is that the so-obtained
problem has convexity properties which make its numerical resolution easier.

In the Hartree-Fock model, only integer occupation numbers have a physical mean-
ing. RCA do work out in this context because the constraints “n; equals 0 or 17
are automatically recovered when convergence is achieved; this is a consequence of
some specific property of the Hartree-Fock energy functional [6].

The purpose of this paper is to show that, although the various Kohn-Sham en-
ergy functionals do not enjoy such properties, RCA are fairly adapted to DFT
calculations. In most cases, integer occupation numbers are actually recovered at
convergence and RCA then seem to exhibit better robustness qualities than other
currently used SCF algorithms such as, for instance, level-shifting [7] or Pulay’s DIIS
procedure [8]. In the remaining (rare) cases, RCA converge toward solutions to the
extended Kohn-Sham model with fractional occupation numbers (FON) at the Fermi



level (see in particular [4, 9] and the references therein); the latter situation is en-
countered when the ground state density (for the approximated exchange-correlation
functional in use) is only ensemble non-interacting v-representable [4]. RCA thus
provide an efficient way to optimize simultaneously the energy levels and the occu-
pation numbers in the extended Kohn-Sham model.

After recalling in section 2 the density matrix formulation of both the Hartree-Fock
and the standard Kohn-Sham models, we present in section 3 the basics of the RCA
approach and discuss its natural connection with the extended Kohn-Sham model.
The Optimal Damping Algorithm, which is the simplest version of RCA, is described
in section 4. Its convergence properties in the Kohn-Sham framework are stated and
implementation tricks are given. Some numerical tests on simple molecular systems
are reported in section 5.

The present analysis is restricted to closed-shell models but open-shell models like
those originated from the Local Spin Density Approximation (LSDA [3, 4]) can be
treated in the same way.

2 Density matrix formulation of the closed-shell Hartree-
Fock and standard Kohn-Sham models

As already mentioned in the introduction, the Hartree-Fock and the standard Kohn-
Sham models have very similar formal structures. For closed shell molecular systems
and after discretization in a finite basis {x;},<;<,, both of them can indeed be
formulated in the density matrix formalism as

inf {E(D), DeP} (2)
with
E(D) = 2Tr (hD) + Tr (G(D)D) + E,(D) (3)

and
P={DeM(n,n), D*=D, Tr(SD)=N, DSD=D}.

To cut a long story short, it is not explained here how problem (2) is derived from
the original problem (1) following either the variational Hartree-Fock approximation
or the DFT-Kohn-Sham scheme. For such issues, the reader is referred to the text-
books [1, 2, 3, 4]. Let us nevertheless detail the notations. P is the set of admissible
density matrices, N, = N/2 the number of electron pairs and S the n x n overlap

matrix defined by
Ski = / XEXt-
R3

Let us recall that the connection between the density matrix formalism and the more
usual single-particle orbital representation of a Hartree-Fock or standard Kohn-Sham
electronic configuration is the following:

D = CoceCloee

where Cye € M(n, N,) is the matrix of the coefficients of the N, doubly occupied
orbitals (¢;)1<i<n, in the basis {Xx}; <pcp

¢i(z) = z”: Cr.i Xk (T).
k=1
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In particular the kernel 7(z,y) (which can be identified with the first-order reduced
density matrix in the Hartree-Fock setting), and the electronic density p(z) associ-
ated with a density matrix D are given by

) =2 3 Duxrla) uy)”
k=1

and

plz) =7(z,2) =2 Y Drxe(z) xa(z)". (4)
k=1

The constraints DSD = D thus correspond to the orthonormality conditions / , qﬁiqﬁ;‘- = 0j;
R

and the constraint Tr (SD) = N, ensures that there are actually N, electron pairs
in the system.

The energy functional E(D) to be minimized is made of three terms. The first one
is linear in D and contains the kinetic energy and the nuclei-electrons interaction;
the one electron hamiltonian matrix A is given by

1 * * : _ 2k
hy = 3 /R3 Vxi - Vxi+ /R3 Vxixi with Viz) =— Z —

The latter two terms model the electronic interaction. In formula (3), G denotes a
linear symmetric operator on the set of density matrices whose expression depends
on the model. For the basic Kohn-Sham model

GES(D) = J(D)

where

D)y =2 Z Dm/ /R3 Xi(2) x5 (@)xeW)xay)” .

k=1 |z —yl

so that the second term of the energy functional can be identified with the classical
Coulomb energy associated with the electronic density p given by (4):

T (@S 0)D) = 5 [ RS%W@

In the Hartree-Fock model, the classical Coulomb energy is supplemented by an
exchange term:

G""(D) = J(D) - K(D) (5)
with
D)y = Z Dkl/ / Xi(@) Xk (@) Wxiw)” g
ki1 R? |z —yl
so that
T (G"F(D)D) = 5 e p|$_y| dw dy—4/R3/R3 |T|$x_yy| dz dy.

The second term in the right-hand side of the above formula is called the Hartree-
Fock exchange term.



The term Tr (G(D)D) is thus in any case quadratic in D. The functional Eg is
zero in the Hartree-Fock setting and models the exchange-correlation energy in the
Kohn-Sham scheme. In the latter case, it is a non quadratic nonlinearity.

Finally, for hybrid energy functionals like B3LYP [10], some part of the Hartree-
Fock exchange is included in the exchange-correlation energy. As this term gives a
quadratic-in-D contribution to the energy, we include it in the second term of the
functional E(D). For hybrid energy functionals, we thus have

GMorid(D) = J(D) — aK (D),

where « €]0, 1] is an empirical coefficient.

3 Principle of the RCA

Two strategies for computing a numerical solution of problem (2) are usually opposed
e either solve (2) directly by minimization algorithms [11, 12, 13]

e or solve the associated Euler-Lagrange equations, namely the Hartree-Fock or
Kohn-Sham equations, by a fixed point procedure [14, 7, 8].

Roughly speaking, the former strategy ensures a convergence towards a local mini-
mum and can be efficient in the latest steps of the minimization procedure: quadratic
convergence (or at least superlinear convergence) can be obtained with quasi-Newton
methods. Unfortunately, direct minimization methods are usually inefficient for per-
forming the early steps of the optimization.

On the other hand, standard methods for solving the Euler-Lagrange equations,
including Pulay’s DIIS algorithm [8], offer in most cases a satisfactory speed of
convergence, but they fail to converge in some cases and converge towards a “bad”
solution in some other cases (see section 4.4 below).

In a recent article [5], we have proposed an alternative strategy to solve the Hartree-
Fock problem (G given by (5) and E,. = 0)): rather than focusing on (2), we have
considered the problem

inf { E(D), DeP} (6)
where

ﬁ:{ﬁeM(n,n), D*=D, Tr(SD)=N,, f)sﬁgf)}.

In other words, the constraints DS D = D have been relaxed: only DSD < D is now
required. This relaxation has a clear physical meaning: for the sake of simplicity
let us assume that S = I (orthonormal basis set); in this case, the eigenvalues of
D can be identified with the occupation numbers n; of the single-particle orbitals,
whose coefficients in the basis {Xxx}, <<, are themselves the eigenvectors of D. The
constraints D? = D thus mean n? _:_ni, that is “n; equals 0 or 1”7, whereas the

relaxed constraints D? < D mean nf < n;, that is “0 <n; <17.

In comparison with problem (2), problem (6) is much easier to solve by direct min-
imization procedures (see section 4) because the set P is convex (it is in fact the
convex envelop of P). The specific property of the Hartree-Fock energy that makes
this strategy work is that any critical point of problem (6) is on P. Therefore, any



local minimum of (6) is also a local minimum of (2). For the sake of rigorousness,
we must mention that this property, which is related to the fact that there are “no
unfilled shells” in the Hartree-Fock model [15], is mathematically guaranteed only
for the General Hartree-Fock (GHF [16]) and the Unrestricted Hartree-Fock (UHF)
models. It seems not be known, to the best of the author’s knowledge, whether this
property remains true for the Restricted Hartree-Fock (RHF) model under consid-
eration in the present article, but it seems to be the case in practice (we are not
aware of any counter-example).

Things are different in the Kohn-Sham setting: on the one hand, there is no reason
why a local minimum of (6) should be also a minimum of (2) and numerical ex-
periments (see section 4.4) indeed confirm that there may exist local minima of (6)
which are not on P; but on the other hand, fractional occupation numbers are al-
lowed in the eztended Kohn-Sham model, so that problem (6) makes sense from a
physical viewpoint: it is the formulation of the extended Kohn-Sham problem in the
basis {Xk}<p<,- Let us recall that the extended Kohn-Sham model is derived from
the abstract density functional theory following the Kohn-Sham scheme; the only
difference with the standard Kohn-Sham model is that the Janak functional

“+00 “+o00
Ty(p) = inf{z n; /113 Vil /R3 Gid; =0y, 0<m; <1, Y mylgl” = P}
i=1 i=1

is used to model the non-interacting kinetic energy instead of the standard Kohn-
Sham functional

Ny N,
— 12 A — 5. 12 —
Ts(p) = 1nf{; /R3 |v¢z| ) /R3 ¢z¢] 5z]7 Zz:; |¢z| )0}

A more detailed presentation of the extended Kohn-Sham model can be read in
reference [4]. The latter model is an improvement of the standard Kohn-Sham
model for both physical and mathematical reasons: first, ensemble non-interacting v-
representable densities can be taken into account [4, 9]; second, the Janak functional
has better properties of convexity and differentiability [17, 18] than the standard
Kohn-Sham non-interacting kinetic energy functional. In DFT calculations, the
constraints relaxation is therefore not only a numerical trick to force convergence
(as it is in the Hartree-Fock setting); it corresponds to an improvement of the model.

RCA being by definition direct minimization procedures to solve problem (6), they
converge to a critical point D (usually a minimum), which, under some regularity
assumptions on E*¢(D), satisfy the Euler-Lagrange equations

F(D)C = SCE
C*SC =1, (7)
D = CNye . C*

where the matrices F(D), E, C and N, have the following meaning: the matrix

F(D) = h+G(D) + F*(D)
denotes the mean-field hamiltonian (also called Fock matrix); F#¢(D) is the con-
tribution to the mean-field hamiltonian origniated from the exchange-correlation

energy E¢(D). The n x n matrix £ can be chosen diagonal, in which case the n xn
matrix C' = (®y,---,®,) contains the coordinates in the basis {Xxx}, <1<, of all the

6



(fully occupied, partially occupied, or empty) single-particle orbitals; the vectors
(®;)1<i<n are solution to the generalized eigenvalue problem

and E = Diag (e1,---,€,). The eigenvalues ¢; are conventionally numbered in such
a way that €; < €2 < --- < ¢,. Lastly, the matrix N, is the diagonal mgtrix of
occupation numbers: N,.. = Diag (n1,---,n,). A necessary condition for D being

a critical point of (6) is that the n; fulfill the following conditions:

n; =1 ife; <p

n; =0 ife; >p

0<n; <1 ifei:,u (8)
n

Zni—Np

=1

The value of i, which can be identified with the Fermi energy, is the Lagrange mul-
tiplier of the constraint Tr (SD) = N,. Conditions (8) mean that (a) the levels
below the Fermi energy are fully occupied, (b) the levels above the Fermi energy are
empty, and (c) the Fermi levels can be populated with fractional occupation num-
bers. Equations (7-8) are the discretization in the basis {x%}; <4<, of the extended
Kohn-Sham equations (formulae (4.25) and (4.27) in [4]). -

In the case when €y, < €n, 11, i.e. when there is a gap between the highest occupied
level and the lowest unoccupied one, equations (7-8) can be rewritten as

F(D)C = SCE
c*SC =1, (9)
D = CoccChee

where Coee = (®1,---,Pn,); one recovers the standard Kohn-Sham equations sup-

plemented by the so-called aufbau principle, which recommends filling the N, single-
particle orbitals of lowest energy. When ey, < €y, 11, the density matrix obtained
by RCA is solution (theoretically a critical point, but in practice a local minimum
at least) to the standard Kohn-Sham problem (2). This situation occurs most often
in the tests we have performed so far, but not always (see section 4.4).

4 The Optimal Damping Algorithm for the Kohn-Sham
models

The Optimal Damping Algorithm (ODA) is the simplest implementation of the
ideas developed above. It consists in solving problem (6) by the following two-step
iteration procedure: [a] find the “steepest descent” direction and [b] minimize the
energy along this direction.

4.1 Description of the ODA

Denoting by Dy, the current iterate, we have chosen to define the “steepest descent”
direction as the direction pointing towards some D € P such that the slope

_ 4
~ X

S

(E(Di + A(D - Dy)) \H



is minimal. A simple calculation shows that the solution D to this problem belongs
to P (let us denote it by Dyy1) and is given by

Dyjy = arg inf {Tx (F(D)D), D €P}; (10)

it is well known (see [6] for instance) that the solution Dyi; to problem (10) is
the density matrix obtained by populating the N, lowest single-particle orbitals of
F(Dy).

Step [b] consists in minimizing the energy functional £(D) in the direction (Dy41 —
Dk) computed at step [a]. As Di41 € P, convexity propertles imply that a point of

the half-line {Dk +A(Dyi1 — D), A > 0} belongs to P if and only if 0 < X < 1.

Imposing Dyy1 € P is therefore equivalent to imposing A € [0,1]. Step [b] thus
consists in finding the minimum of the energy E(D) on the segment line

Seg[Dy, Dy11] = {(1 — M\)Dy, 4+ ADp1, A€o, 1]}

linking together ﬁk and Dy41.
The ODA can be finally summarized as

[a] Assemble F(Dy) and obtain the matrix Dy, € P by the aufbau principle;
[b] Set Dy, = arg inf{E(ﬁ), De Seg[f)k,DkH]}.

The algorithm is initialized with Dy = Dy, the initial guess Dy being obtained
for instance by the diagonalization of the core hamiltonian or by the result of any
semiempirical method.

For the special case of the Hartree-Fock model, in which the energy functional E(D)
is quadratic in D, step [b] simply consists in minimizing a second degree polynomial
on the range [0, 1]. The situation is a little bit more complicated in the Kohn-Sham
setting because the function

A= E (f)k + A(Dg41 — Ek))

has no longer a simple analytical expression. Before examining how step [b] can be
performed in an efficient way, let us state the convergence properties of the ODA in
the Kohn-Sham setting.

4.2 Convergence properties

Following [6], we shall say the a sequence (Dy)ken numerically converges towards a
solution D to the (standard or extended) Kohn-Sham equations if the two following
conditions are fulfilled

1. ﬁ]ﬁ.l — ﬁk — 0

2. ddA (E(Dk + A(Drs1 — f),c))\ = 2Tt (F(Dy,)(Dgy1 — D)) — 0.

The second condition means that the slope of the steepest descent direction goes to
zero when k goes to infinity.



Theorem. For any initial guess Dy € P the sequence (ﬁk)keN generated by the
Optimal Damping Algorithm numerically converges toward a solution to the extended
Kohn-Sham equations (7-8).

Besides, if for large k, there is a uniform (in k) gap between the higher occupied level
and the lower unoccupied level of F(D), then the sequence (Dy)pen+ numerically
converges toward a solution to the standard Kohn-Sham equations (9) supplemented
by the aufbau principle.

The demonstration of this theorem is not reported here; it mimics the proof of the
convergence of the ODA for the Hartree-Fock model already published in [6].

4.3 Practical implementation

The point to discuss is the line search (step [b]) consisting in solving the minimizing
problem
inf g(\), with ¢(\) = E (Ds+ Dk — Dy)) - (11)
A€[0,1]
Numerical experiments performed until now seem to show that a simple “one shot”
cubic interpolation is enough, whatever the molecular system and the exchange-
correlation functional (but the situation may change for more complex systems). In
the present case, a “one shot” cubic interpolation consists in approximating problem
(11) by
/\é%fl] p(A),  with p(\) =aX® +bA2+ A +d (12)

where the coefficients a, b, ¢ and d are explicitly calculated such that

p(0) = q(0) = E(Dy,)

p(1) = q(1) = B(Dys1) )

P'(0) = ¢'(0) = 2T (F(Dy)(Dgsr — Dy))
p(1) = ¢ (1) =2Tr (F(Dy1)(Desr = Dy)) .

The solution to problem (12) is analytical and uncostly. Let us notice that ¢ = 0 in
the Hartree-Fock setting since the function g is itself a second degree polynomial.

The algorithm that we have implemented is the following;:

e Initialization. Choose an initial guess 50 S 75 assemble éo G(DO) FIC =
F“”C(DO) F() = h+G0 —|—F6”C, and compute Ele = 2Tr (hDy), E (GODO)
E¥¢ = E"(Dy), Ey = E}¢ 4+ E§' + E3°. Set k = 0.

e Iterations.

1. Diagonalize ﬁk and assemble Dy by the aufbau principle.

2. Assemble the matrices Gyy1 = G(Dgy1) and FJ¢, = F*(Dyy1) and
compute

By, =2Tr (hDyy1),  BEfyy =Tr (GeaDer),  EfSy = E*(Dyy)

Epp1 =B, + By + B



3. Set N N N
d=Ey,  c=2Tr (F(Depr— Dy)),

0 =2Tr (Fipr(Dipr = Dp)) =2 Bgpa+e+2d, b= Epp—a—c—d,
and solve (explicitly)
A = arginf {aX® +632 +cA+d, Ae0,1]}.
4. Compute
D1 = (1 = Am) Dy + A D1, Gra1 = (1= M) G + A G,
Fie) = F™(Dyy), Fyr1 = h+ Gy + FF,
By = (1= M) B + MBS, B¢, = Tr (Gyt1Dp11),
E/fil = E"(Dj11), By = El%il + Eglﬂ + Elﬁr

5. If l~)k+1 — Dy, is “small enough” then goto termination else set k =k + 1
and goto 1.

e Termination. Set l~)f = Djy1. Assemble the matrix C~¥f = G(f)f) and
compute

EY* =2Tr (hDf),  E“ =Tr(GfDy),  E* = E"(Dy),
EKS — Ele +Ecl —|—EIC.

Let us point out that, although the ODA is fundamentally a minimization method,
its structure is very close to that of the standard fixed point iteration procedures
(Roothaan [14] or level-shifting [7]) for solving the Euler-Lagrange equations (9). It
is therefore very easy to implement this new algorithm in existing codes.

4.4 Numerical results

In the numerical results reported below, the DIIS algorithm and the ODA are com-
pared for a few simple molecules using various exchange-correlation functional (X,
BLYP and B3LYP [19]). In each case, two choices of initial guesses are tested: first
a “fair” initial guess computed by a semi-empirical method (INDO or Huckel [19]),
second a “crude” initial guess obtained by diagonalization of the core hamiltonian.
All the calculations have been performed within GAUSSIAN 98 [20].

The comparison concerns computational time only; as far as memory occupation is
concerned, the ODA is clearly better since only four matrices are stored whereas a
larger number of matrices have to be stored for the DIIS algorithm to be efficient
(twenty in GAUSSIAN 98). Compared to the basic Roothaan algorithm [14], the only
significant extra-cost of an ODA iteration is that two computations of the exchange-
correlation energy and matrix are required (rather than one in the Roothaan algo-
rithm), whereas the extra-cost of a DIIS iteration comes from the computation of
the commutators and of the mixing coefficients [8]. As our implementation of the
ODA has not been optimized so far, the cost of one ODA iteration is roughly twice
the cost of one DIIS iteration in the examples presented below. We hope to be able
to improve this ratio in favour of the ODA.
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The first system under consideration is the fluoroethylene (CHo=CHF) computed
in the gaussian basis set 6-31G [19]. In this case (see figure 1), both ODA and
DIIS converge toward the same solution to the standard Kohn-Sham equations; for
a “crude” initial guess, the ODA is more efficient except in the very last steps of
the optimization procedure, whereas it is outperformed by the DIIS algorithm for
a “fair” initial guess. This behavior is typical of what has been observed by the
author for other simple organic compounds.
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Figure 1: Search for the Kohn-Sham ground state of CHy=CHF with the X« (top
left), BLYP (top right) and B3LYP (bottom) functionals. The ODA and the DIIS
algorithm are compared for two different initial guesses (INDO and Core).

The second system is the Cry dimer computed in the gaussian basis set 6-31G [19].
For the BLYP exchange-correlation functional, this molecular system enables us to
exhibit a case of failure of the DIIS algorithm (see figure 2). In addition, even when
convergence is achieved, the solution to the standard Kohn-Sham equations obtained
with the DIIS algorithm depends on the initial guess and is higher in energy than
the solution obtained with the ODA.

The third system is the Pdy dimer computed in the basis set with pseudo-potentiels
lanl2dz [19]. For the Xa and BLYP functionals, it can be observed (see figure 3)
that, as for the previous system, the solution of the standard Kohn-Sham equations
obtained by the DIIS algorithm depends on the initial guess, and that its energy
is higher than the energy computed with the ODA (figure 3). The interest of this
example is that the solutions obtained with the ODA for the X« and BLYP func-
tionals respectively are not solutions to the standard Kohn-Sham equations (9) but
to the eztended Kohn-Sham equations (7-8); more precisely, we have observed that
the degeneracy of the Fermi level is of order two for the BLYP exchange-correlation
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Figure 2: Search for the Kohn-Sham ground state of Cry with the Xa (top left),
BLYP (top right) and B3LYP (bottom) functionals. The ODA and the DIIS algo-
rithm are compared for two different initial guesses (Huckel and Core).

functional, with fractional occupation numbers approximatively equal to 0.43 and
0.57 respectively. The degeneracy is of order four with the X« exchange-correlation
functional; the fractional occupation numbers are then about 0.91, 0.91, 0.72 and
0.46.

5 Conclusion

One of the main interest of the ODA (the simplest version of RCA) is that it
provides solutions to the extended Kohn-Sham equations and is therefore able to
deal with systems whose ground state density is only ensemble non-interacting v-
representable [4, 9] for the approximated exchange-correlation functional under con-
sideration. The simultaneous optimization of the energy levels and the occupation
numbers, recognized in [3] as a major difficulty, is therefore broken through by the
ODA.

In addition, the numerical tests performed so far show that the ODA seems to have
better robustness properties that the DIIS algorithm: the convergence of the former
can be mathematically proved whereas the latter does not converge in some cases
(cf. section 4.4); in addition, the numerical solution to the Kohn-Sham equations
seems to be lower in energy and less dependent on the initial guess when it is com-
puted with the ODA than when it is computed with the DIIS algorithm. The ODA
is also very efficient to reach the neighborhood of a solution; on the other hand,
its performances are not so good once the iterates get close to the solution. This
is mainly due to the fact that the ODA “lacks of memory” in the sense that the
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Figure 3: Search for the Kohn-Sham ground state of Pdy with the Xa (top left),
BLYP (top right) and B3LYP (bottom) functionals. The ODA and the DIIS algo-
rithm are compared for two different initial guesses (Huckel and Core).

descent direction depends on the current position only, not on the trajectory which
has led to this point; more sophisticated RCA taking into account the information
obtained in the previous iterations are currently under study. Meanwhile, the au-
thor’s recommendation would be to remedy the relative slowness of the ODA by
switching to another existing algorithm (DIIS for instance) as soon as the slope of
the steepest descent vanishes.
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