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1 IntrodutionThe eletroni ground state energy of a moleular system onsisting of N eletronsand M nulei, the latter being here onsidered as �xed pointlike lassial partiles(Born-Oppenheimer approximation), is the minimum of the variational probleminf fh ;H i;  2 Wg (1)where H = �12 NXi=1�xi � NXi=1 MXk=1 zkjxi � �xkj + X1�i<j�N 1jxi � xjj ;denotes the eletroni hamiltonian andW = 8<: 2 N̂i=1L2(IR3 � �); X�N ZIR3N j j2 = 1; X�N ZIR3N jr j2 < +19=; ;the set of admissible eletroni wave funtions. In the above expressions, zk denotesthe harge of the k-th nuleus in atomi units, �xk its position in spae and � =fj "i; j #ig.Due to the size of the set W, problem (1) annot be solved by brute fore numerialmethods, exept for very small systems (one or two eletrons). For more omplexsystems, two families of approximation methods are urrently used in Chemistryand Physis: variational approximations on the one hand, from whih proeeds inpartiular the elebrated Hartree-Fok model [1, 2℄, and the implementation of thedensity funtional theory (DFT) through the Kohn-Sham model [3, 4℄ on the otherhand. Although the Hartree-Fok and the standard Kohn-Sham models are obtainedby ompletely di�erent ways, they eventually give rise to mathematial problems ofvery similar strutures, so that numerial methods for solving the Hartree-Fokproblem an usually be diretly applied to the standard Kohn-Sham problem (atleast with slight modi�ations).In a reent publiation [5℄, we have proposed a new numerial method, namely theRelaxed Constrained Algorithms (RCA), to solve the Hartree-Fok problem. Brieyspeaking, RCA onsists in allowing frational oupany of the moleular orbitalsduring the minimization proedure; more preisely, denoting by ni the oupationnumbers, the onstraints \ni equals 0 or 1" are relaxed into the weaker onstraints\0 � ni � 1". The interest of the onstraints relaxation is that the so-obtainedproblem has onvexity properties whih make its numerial resolution easier.In the Hartree-Fok model, only integer oupation numbers have a physial mean-ing. RCA do work out in this ontext beause the onstraints \ni equals 0 or 1"are automatially reovered when onvergene is ahieved; this is a onsequene ofsome spei� property of the Hartree-Fok energy funtional [6℄.The purpose of this paper is to show that, although the various Kohn-Sham en-ergy funtionals do not enjoy suh properties, RCA are fairly adapted to DFTalulations. In most ases, integer oupation numbers are atually reovered atonvergene and RCA then seem to exhibit better robustness qualities than otherurrently used SCF algorithms suh as, for instane, level-shifting [7℄ or Pulay's DIISproedure [8℄. In the remaining (rare) ases, RCA onverge toward solutions to theextended Kohn-Sham model with frational oupation numbers (FON) at the Fermi2



level (see in partiular [4, 9℄ and the referenes therein); the latter situation is en-ountered when the ground state density (for the approximated exhange-orrelationfuntional in use) is only ensemble non-interating v-representable [4℄. RCA thusprovide an eÆient way to optimize simultaneously the energy levels and the ou-pation numbers in the extended Kohn-Sham model.After realling in setion 2 the density matrix formulation of both the Hartree-Fokand the standard Kohn-Sham models, we present in setion 3 the basis of the RCAapproah and disuss its natural onnetion with the extended Kohn-Sham model.The Optimal Damping Algorithm, whih is the simplest version of RCA, is desribedin setion 4. Its onvergene properties in the Kohn-Sham framework are stated andimplementation triks are given. Some numerial tests on simple moleular systemsare reported in setion 5.The present analysis is restrited to losed-shell models but open-shell models likethose originated from the Loal Spin Density Approximation (LSDA [3, 4℄) an betreated in the same way.2 Density matrix formulation of the losed-shell Hartree-Fok and standard Kohn-Sham modelsAs already mentioned in the introdution, the Hartree-Fok and the standard Kohn-Sham models have very similar formal strutures. For losed shell moleular systemsand after disretization in a �nite basis f�ig1�i�n, both of them an indeed beformulated in the density matrix formalism asinf fE(D); D 2 Pg (2)with E(D) = 2Tr (hD) + Tr (G(D)D) +Ex(D) (3)and P = fD 2M(n; n); D� = D; Tr (SD) = Np; DSD = Dg :To ut a long story short, it is not explained here how problem (2) is derived fromthe original problem (1) following either the variational Hartree-Fok approximationor the DFT-Kohn-Sham sheme. For suh issues, the reader is referred to the text-books [1, 2, 3, 4℄. Let us nevertheless detail the notations. P is the set of admissibledensity matries, Np = N=2 the number of eletron pairs and S the n � n overlapmatrix de�ned by Skl = ZIR3 ��k�l:Let us reall that the onnetion between the density matrix formalism and the moreusual single-partile orbital representation of a Hartree-Fok or standard Kohn-Shameletroni on�guration is the following:D = CoC�owhere Co 2 M(n;Np) is the matrix of the oeÆients of the Np doubly oupiedorbitals (�i)1�i�Np in the basis f�kg1�k�n:�i(x) = nXk=1Ck;i �k(x):3



In partiular the kernel �(x; y) (whih an be identi�ed with the �rst-order redueddensity matrix in the Hartree-Fok setting), and the eletroni density �(x) assoi-ated with a density matrix D are given by�(x; y) = 2 nXk;l=1Dkl �k(x)�l(y)�and �(x) = �(x; x) = 2 nXk;l=1Dkl �k(x)�l(x)�: (4)The onstraintsDSD = D thus orrespond to the orthonormality onditions ZIR3 �i��j = Æijand the onstraint Tr (SD) = Np ensures that there are atually Np eletron pairsin the system.The energy funtional E(D) to be minimized is made of three terms. The �rst oneis linear in D and ontains the kineti energy and the nulei-eletrons interation;the one eletron hamiltonian matrix h is given byhkl = 12 ZIR3 r��k � r�l + ZIR3 V ��k�l with V (x) = � MXk=1 zkjx� �xkj :The latter two terms model the eletroni interation. In formula (3), G denotes alinear symmetri operator on the set of density matries whose expression dependson the model. For the basi Kohn-Sham modelGKS(D) = J(D)where J(D)ij = 2 nXk;l=1Dkl ZIR3 ZIR3 �i(x)��j(x)�k(y)�l(y)�jx� yj dxso that the seond term of the energy funtional an be identi�ed with the lassialCoulomb energy assoiated with the eletroni density � given by (4):Tr (GKS(D)D) = 12 ZIR3 ZIR3 �(x) �(y)jx� yj dx dyIn the Hartree-Fok model, the lassial Coulomb energy is supplemented by anexhange term: GHF (D) = J(D)�K(D) (5)with K(D)ij = nXk;l=1Dkl ZIR3 ZIR3 �i(x)��k(x)�j(y)�l(y)�jx� yj dx dy;so thatTr (GHF (D)D) = 12 ZIR3 ZIR3 �(x) �(y)jx� yj dx dy � 14 ZIR3 ZIR3 j�(x; y)j2jx� yj dx dy:The seond term in the right-hand side of the above formula is alled the Hartree-Fok exhange term. 4



The term Tr (G(D)D) is thus in any ase quadrati in D. The funtional Ex iszero in the Hartree-Fok setting and models the exhange-orrelation energy in theKohn-Sham sheme. In the latter ase, it is a non quadrati nonlinearity.Finally, for hybrid energy funtionals like B3LYP [10℄, some part of the Hartree-Fok exhange is inluded in the exhange-orrelation energy. As this term gives aquadrati-in-D ontribution to the energy, we inlude it in the seond term of thefuntional E(D). For hybrid energy funtionals, we thus haveGhybrid(D) = J(D)� �K(D);where � 2℄0; 1[ is an empirial oeÆient.3 Priniple of the RCATwo strategies for omputing a numerial solution of problem (2) are usually opposed� either solve (2) diretly by minimization algorithms [11, 12, 13℄� or solve the assoiated Euler-Lagrange equations, namely the Hartree-Fok orKohn-Sham equations, by a �xed point proedure [14, 7, 8℄.Roughly speaking, the former strategy ensures a onvergene towards a loal mini-mum and an be eÆient in the latest steps of the minimization proedure: quadrationvergene (or at least superlinear onvergene) an be obtained with quasi-Newtonmethods. Unfortunately, diret minimization methods are usually ineÆient for per-forming the early steps of the optimization.On the other hand, standard methods for solving the Euler-Lagrange equations,inluding Pulay's DIIS algorithm [8℄, o�er in most ases a satisfatory speed ofonvergene, but they fail to onverge in some ases and onverge towards a \bad"solution in some other ases (see setion 4.4 below).In a reent artile [5℄, we have proposed an alternative strategy to solve the Hartree-Fok problem (G given by (5) and Ex = 0)): rather than fousing on (2), we haveonsidered the problem inf nE( eD); eD 2 ePo (6)where eP = n eD 2M(n; n); eD� = eD; Tr (S eD) = Np; eDS eD � eDo :In other words, the onstraints DSD = D have been relaxed: only DSD � D is nowrequired. This relaxation has a lear physial meaning: for the sake of simpliitylet us assume that S = I (orthonormal basis set); in this ase, the eigenvalues ofD an be identi�ed with the oupation numbers ni of the single-partile orbitals,whose oeÆients in the basis f�kg1�k�n are themselves the eigenvetors of D. Theonstraints D2 = D thus mean n2i = ni, that is \ni equals 0 or 1", whereas therelaxed onstraints D2 � D mean n2i � ni, that is \0 � ni � 1".In omparison with problem (2), problem (6) is muh easier to solve by diret min-imization proedures (see setion 4) beause the set eP is onvex (it is in fat theonvex envelop of P). The spei� property of the Hartree-Fok energy that makesthis strategy work is that any ritial point of problem (6) is on P. Therefore, any5



loal minimum of (6) is also a loal minimum of (2). For the sake of rigorousness,we must mention that this property, whih is related to the fat that there are \noun�lled shells" in the Hartree-Fok model [15℄, is mathematially guaranteed onlyfor the General Hartree-Fok (GHF [16℄) and the Unrestrited Hartree-Fok (UHF)models. It seems not be known, to the best of the author's knowledge, whether thisproperty remains true for the Restrited Hartree-Fok (RHF) model under onsid-eration in the present artile, but it seems to be the ase in pratie (we are notaware of any ounter-example).Things are di�erent in the Kohn-Sham setting: on the one hand, there is no reasonwhy a loal minimum of (6) should be also a minimum of (2) and numerial ex-periments (see setion 4.4) indeed on�rm that there may exist loal minima of (6)whih are not on P; but on the other hand, frational oupation numbers are al-lowed in the extended Kohn-Sham model, so that problem (6) makes sense from aphysial viewpoint: it is the formulation of the extended Kohn-Sham problem in thebasis f�kg1�k�n. Let us reall that the extended Kohn-Sham model is derived fromthe abstrat density funtional theory following the Kohn-Sham sheme; the onlydi�erene with the standard Kohn-Sham model is that the Janak funtionalTJ (�) = inf (+1Xi=1 ni ZIR3 jr�ij2; ZIR3 �i��j = Æij ; 0 � ni � 1; +1Xi=1 nij�ij2 = �)is used to model the non-interating kineti energy instead of the standard Kohn-Sham funtionalTs(�) = inf8<:NpXi=1 ZIR3 jr�ij2; ZIR3 �i��j = Æij ; NpXi=1 j�ij2 = �9=;A more detailed presentation of the extended Kohn-Sham model an be read inreferene [4℄. The latter model is an improvement of the standard Kohn-Shammodel for both physial and mathematial reasons: �rst, ensemble non-interating v-representable densities an be taken into aount [4, 9℄; seond, the Janak funtionalhas better properties of onvexity and di�erentiability [17, 18℄ than the standardKohn-Sham non-interating kineti energy funtional. In DFT alulations, theonstraints relaxation is therefore not only a numerial trik to fore onvergene(as it is in the Hartree-Fok setting); it orresponds to an improvement of the model.RCA being by de�nition diret minimization proedures to solve problem (6), theyonverge to a ritial point eD (usually a minimum), whih, under some regularityassumptions on Ex(D), satisfy the Euler-Lagrange equations8><>: F ( eD)C = SCEC�SC = IneD = CNoC� (7)where the matries F ( eD), E, C and No have the following meaning: the matrixF ( eD) = h+G( eD) + F x( eD)denotes the mean-�eld hamiltonian (also alled Fok matrix); F x( eD) is the on-tribution to the mean-�eld hamiltonian origniated from the exhange-orrelationenergy Ex( eD). The n�n matrix E an be hosen diagonal, in whih ase the n�nmatrix C = (�1; � � � ;�n) ontains the oordinates in the basis f�kg1�k�n of all the6



(fully oupied, partially oupied, or empty) single-partile orbitals; the vetors(�i)1�i�n are solution to the generalized eigenvalue problemF ( eD) � �i = �iS � �i;and E = Diag (�1; � � � ; �n). The eigenvalues �i are onventionally numbered in suha way that �1 � �2 � � � � � �n. Lastly, the matrix No is the diagonal matrix ofoupation numbers: No = Diag (n1; � � � ; nn). A neessary ondition for eD beinga ritial point of (6) is that the ni ful�ll the following onditions:8>>>>>><>>>>>>: ni = 1 if �i < �ni = 0 if �i > �0 � ni � 1 if �i = �nXi=1 ni = Np: (8)The value of �, whih an be identi�ed with the Fermi energy, is the Lagrange mul-tiplier of the onstraint Tr (S eD) = Np. Conditions (8) mean that (a) the levelsbelow the Fermi energy are fully oupied, (b) the levels above the Fermi energy areempty, and () the Fermi levels an be populated with frational oupation num-bers. Equations (7-8) are the disretization in the basis f�kg1�k�n of the extendedKohn-Sham equations (formulae (4.25) and (4.27) in [4℄).In the ase when �Np < �Np+1, i.e. when there is a gap between the highest oupiedlevel and the lowest unoupied one, equations (7-8) an be rewritten as8><>: F ( eD)C = SCEC�SC = IneD = CoC�o (9)where Co = (�1; � � � ;�Np); one reovers the standard Kohn-Sham equations sup-plemented by the so-alled aufbau priniple, whih reommends �lling the Np single-partile orbitals of lowest energy. When �Np < �Np+1, the density matrix obtainedby RCA is solution (theoretially a ritial point, but in pratie a loal minimumat least) to the standard Kohn-Sham problem (2). This situation ours most oftenin the tests we have performed so far, but not always (see setion 4.4).4 The Optimal Damping Algorithm for the Kohn-ShammodelsThe Optimal Damping Algorithm (ODA) is the simplest implementation of theideas developed above. It onsists in solving problem (6) by the following two-stepiteration proedure: [a℄ �nd the \steepest desent" diretion and [b℄ minimize theenergy along this diretion.4.1 Desription of the ODADenoting by eDk the urrent iterate, we have hosen to de�ne the \steepest desent"diretion as the diretion pointing towards some eD 2 eP suh that the slopes = dd� �E( eDk + �( eD � eDk)�����=07



is minimal. A simple alulation shows that the solution eD to this problem belongsto P (let us denote it by Dk+1) and is given byDk+1 = arg infnTr (F ( eDk)D); D 2 Po ; (10)it is well known (see [6℄ for instane) that the solution Dk+1 to problem (10) isthe density matrix obtained by populating the Np lowest single-partile orbitals ofF ( eDk).Step [b℄ onsists in minimizing the energy funtional E(D) in the diretion (Dk+1�eDk) omputed at step [a℄. As Dk+1 2 P, onvexity properties imply that a point ofthe half-line n eDk + �(Dk+1 � eDk); � � 0o belongs to eP if and only if 0 � � � 1.Imposing eDk+1 2 eP is therefore equivalent to imposing � 2 [0; 1℄. Step [b℄ thusonsists in �nding the minimum of the energy E(D) on the segment lineSeg[ eDk;Dk+1℄ = n(1� �) eDk + �Dk+1; � 2 [0; 1℄olinking together eDk and Dk+1.The ODA an be �nally summarized as[a℄ Assemble F ( eDk) and obtain the matrix Dk+1 2 P by the aufbau priniple;[b℄ Set eDk+1 = arg infnE( eD); eD 2 Seg[ eDk;Dk+1℄o.The algorithm is initialized with eD0 = D0, the initial guess D0 being obtainedfor instane by the diagonalization of the ore hamiltonian or by the result of anysemiempirial method.For the speial ase of the Hartree-Fok model, in whih the energy funtional E(D)is quadrati in D, step [b℄ simply onsists in minimizing a seond degree polynomialon the range [0; 1℄. The situation is a little bit more ompliated in the Kohn-Shamsetting beause the funtion� 7! E � eDk + �(Dk+1 � eDk)�has no longer a simple analytial expression. Before examining how step [b℄ an beperformed in an eÆient way, let us state the onvergene properties of the ODA inthe Kohn-Sham setting.4.2 Convergene propertiesFollowing [6℄, we shall say the a sequene ( eDk)k2IN numerially onverges towards asolution eD to the (standard or extended) Kohn-Sham equations if the two followingonditions are ful�lled1. eDk+1 � eDk �! 0;2. dd� �E( eDk + �(Dk+1 � eDk)�����=0 = 2Tr (F ( eDk)(Dk+1 � eDk)) �! 0.The seond ondition means that the slope of the steepest desent diretion goes tozero when k goes to in�nity. 8



Theorem. For any initial guess eD0 2 eP the sequene ( eDk)k2IN generated by theOptimal Damping Algorithm numerially onverges toward a solution to the extendedKohn-Sham equations (7-8).Besides, if for large k, there is a uniform (in k) gap between the higher oupied leveland the lower unoupied level of F ( eD), then the sequene (Dk)k2IN� numeriallyonverges toward a solution to the standard Kohn-Sham equations (9) supplementedby the aufbau priniple.The demonstration of this theorem is not reported here; it mimis the proof of theonvergene of the ODA for the Hartree-Fok model already published in [6℄.4.3 Pratial implementationThe point to disuss is the line searh (step [b℄) onsisting in solving the minimizingproblem inf�2[0;1℄ q(�); with q(�) = E � eDk + �(Dk+1 � eDk)� : (11)Numerial experiments performed until now seem to show that a simple \one shot"ubi interpolation is enough, whatever the moleular system and the exhange-orrelation funtional (but the situation may hange for more omplex systems). Inthe present ase, a \one shot" ubi interpolation onsists in approximating problem(11) by inf�2[0;1℄ p(�); with p(�) = a�3 + b�2 + �+ d (12)where the oeÆients a, b,  and d are expliitly alulated suh that8>>>><>>>>: p(0) = q(0) = E( eDk)p(1) = q(1) = E(Dk+1)p0(0) = q0(0) = 2Tr �F ( eDk)(Dk+1 � eDk)�p0(1) = q0(1) = 2Tr �F (Dk+1)(Dk+1 � eDk)� :The solution to problem (12) is analytial and unostly. Let us notie that a = 0 inthe Hartree-Fok setting sine the funtion q is itself a seond degree polynomial.The algorithm that we have implemented is the following:� Initialization. Choose an initial guess eD0 2 eP , assemble eG0 = G( eD0), eF x0 =F x( eD0), eF0 = h+ eG0+ eF x0 , and ompute eE1e0 = 2Tr (h eD0), eEl0 = Tr ( eG0 eD0),eEx0 = Ex( eD0), eE0 = eE1e0 + eEl0 + eEx0 . Set k = 0.� Iterations.1. Diagonalize eFk and assemble Dk+1 by the aufbau priniple.2. Assemble the matries Gk+1 = G(Dk+1) and F xk+1 = F x(Dk+1) andomputeE1ek+1 = 2Tr (hDk+1); Elk+1 = Tr (Gk+1Dk+1); Exk+1 = Ex(Dk+1)Ek+1 = E1ek+1 +Elk+1 +Exk+1:
9



3. Set d = eEk;  = 2Tr � eFk(Dk+1 � eDk)� ;a = 2Tr �Fk+1(Dk+1 � eDk)��2Ek+1+ +2d; b = Ek+1�a� �d;and solve (expliitly)�m = arginf na�3 + b�2 + �+ d; � 2 [0; 1℄o :4. ComputeeDk+1 = (1� �m) eDk + �mDk+1; eGk+1 = (1� �m) eGk + �mGk+1;eF xk+1 = F x( eDk+1); eFk+1 = h+ eGk+1 + eF xk+1;eE1ek+1 = (1� �m) eE1ek + �mE1ek+1; eElk+1 = Tr ( eGk+1 eDk+1);eExk+1 = Ex( eDk+1); eEk+1 = eE1ek+1 + eElk+1 + eExk+1:5. If eDk+1 � eDk is \small enough" then goto termination else set k = k + 1and goto 1.� Termination. Set eDf = eDk+1. Assemble the matrix eGf = G( eDf ) andomputeE1e = 2Tr (h eDf ); El = Tr ( eGf eDf ); Ex = Ex( eDf );EKS = E1e +El +Ex:Let us point out that, although the ODA is fundamentally a minimization method,its struture is very lose to that of the standard �xed point iteration proedures(Roothaan [14℄ or level-shifting [7℄) for solving the Euler-Lagrange equations (9). Itis therefore very easy to implement this new algorithm in existing odes.4.4 Numerial resultsIn the numerial results reported below, the DIIS algorithm and the ODA are om-pared for a few simple moleules using various exhange-orrelation funtional (X�,BLYP and B3LYP [19℄). In eah ase, two hoies of initial guesses are tested: �rsta \fair" initial guess omputed by a semi-empirial method (INDO or Hukel [19℄),seond a \rude" initial guess obtained by diagonalization of the ore hamiltonian.All the alulations have been performed within gaussian 98 [20℄.The omparison onerns omputational time only; as far as memory oupation isonerned, the ODA is learly better sine only four matries are stored whereas alarger number of matries have to be stored for the DIIS algorithm to be eÆient(twenty in gaussian 98). Compared to the basi Roothaan algorithm [14℄, the onlysigni�ant extra-ost of an ODA iteration is that two omputations of the exhange-orrelation energy and matrix are required (rather than one in the Roothaan algo-rithm), whereas the extra-ost of a DIIS iteration omes from the omputation ofthe ommutators and of the mixing oeÆients [8℄. As our implementation of theODA has not been optimized so far, the ost of one ODA iteration is roughly twiethe ost of one DIIS iteration in the examples presented below. We hope to be ableto improve this ratio in favour of the ODA.10



The �rst system under onsideration is the uoroethylene (CH2=CHF) omputedin the gaussian basis set 6-31G [19℄. In this ase (see �gure 1), both ODA andDIIS onverge toward the same solution to the standard Kohn-Sham equations; fora \rude" initial guess, the ODA is more eÆient exept in the very last steps ofthe optimization proedure, whereas it is outperformed by the DIIS algorithm fora \fair" initial guess. This behavior is typial of what has been observed by theauthor for other simple organi ompounds.
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Figure 1: Searh for the Kohn-Sham ground state of CH2=CHF with the X� (topleft), BLYP (top right) and B3LYP (bottom) funtionals. The ODA and the DIISalgorithm are ompared for two di�erent initial guesses (INDO and Core).The seond system is the Cr2 dimer omputed in the gaussian basis set 6-31G [19℄.For the BLYP exhange-orrelation funtional, this moleular system enables us toexhibit a ase of failure of the DIIS algorithm (see �gure 2). In addition, even whenonvergene is ahieved, the solution to the standard Kohn-Sham equations obtainedwith the DIIS algorithm depends on the initial guess and is higher in energy thanthe solution obtained with the ODA.The third system is the Pd2 dimer omputed in the basis set with pseudo-potentielslanl2dz [19℄. For the X� and BLYP funtionals, it an be observed (see �gure 3)that, as for the previous system, the solution of the standard Kohn-Sham equationsobtained by the DIIS algorithm depends on the initial guess, and that its energyis higher than the energy omputed with the ODA (�gure 3). The interest of thisexample is that the solutions obtained with the ODA for the X� and BLYP fun-tionals respetively are not solutions to the standard Kohn-Sham equations (9) butto the extended Kohn-Sham equations (7-8); more preisely, we have observed thatthe degeneray of the Fermi level is of order two for the BLYP exhange-orrelation11
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