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method [1{4℄. Suh modi�ations yield high order methods with reasonablestability properties. However, near sharp fronts, small spurious osillationsremain and will so until the loal Pelet number is small enough. These over-shoots or undershoots, even if they are relatively small, may have a dramatie�et in hemially reating ows where it is stringent from both a physi-al and numerial viewpoint to guarantee that all the speies onentrationsremain positive.Beause of the omplexity of hemially reating ow equations, the method-ology of this paper is to fous on a muh simpler problem, a linear homoge-neous stationary onvetion-di�usion equation with non homogeneous bound-ary data. For this model problem, it is well known that a maximum prinipleholds, i.e. under some assumptions on the data, the solution attains its max-imum and minimum on the boundary. We will say that an approximationmethod for the onvetion-di�usion equation satis�es a disrete maximumpriniple (DMP in short) if the above property is transferred to the disreteproblem. The DMP is not only important for the physial reasons mentionedabove but it has also important onsequenes onerning L1 onvergene,pointwise stability estimates, and L2 uniform onvergene when the di�usionoeÆient tends to zero [5{7℄. For maximum priniples applied to general el-lipti partial di�erential equations of seond order, we refer to [8℄.The approximation of the onvetion-di�usion equation in the framework ofstabilized Galerkin methods has already been studied extensively in the liter-ature. As a remedy for the presene of overshoots or undershoots near sharplayers, various rosswind di�usion terms have been proposed, either linear[4,7℄ or nonlinear [2,3,9{11℄. Although extensive numerial experimentationhas been reported on a wide range of rosswind di�usion operators, a DMPfor stabilized Galerkin methods has only been rigorously established when therosswind dissipation is an order one perturbation [12,10℄. In this ase, an ap-proximation method with a �rst order isotropi visosity is reovered. Thus,establishing a DMP for high order stabilized Galerkin methods is still an openproblem. To this purpose, it seems reasonable to onsider nonlinear rosswinddi�usion. Indeed, in the framework of unsteady problems, Godunov's theoremestablishes that a linear, monotoniity preserving method is at most �rst orderaurate [13, p. 177℄.The goal of this paper is to study a ertain lass of methods based on non-linear rosswind di�usion for the onvetion-di�usion equation and to derivesuÆient onditions that will guarantee a DMP. These onditions apply tolinear simpliial elements on stritly aute triangulations. More spei�ally,upon writing the �nite element residual as a sum over the neighboring ele-ments, we prove that it is possible to hoose the nonlinear rosswind di�usionoperator in suh a way that all the terms have the same sign if the disretesolution presents loally a minimum or a maximum. Using this tehnique2



of proof for linear problems, one reovers the lassial requirement that thesti�ness matrix be diagonally dominant with negative o�-diagonal entries [5℄.For Poisson type problems, this latter property holds for instane when usingstritly aute meshes. The aute type ondition on the mesh, however, maybe weakened as pointed out for instane in [14℄ and more reently in [15℄ fortetrahedral triangulations, but these aspets will not be further investigatedhere in the framework of nonlinear problems.In the next setion, we provide a brief bakground on stabilized Galerkin meth-ods and the DMP. In setion three we present our theoretial results. Finally,in setion four, we present numerial results for various linear and nonlin-ear rosswind di�usion operators. We onsider two model problems : a linearonvetion-di�usion equation and a nonlinear Bunsen ame. We investigateviolation of the maximum priniple, smearing of internal layers and numerialost.2 Stabilized Galerkin methods and the DMPLet 
 be an open bounded onneted subset of Rd with a Lipshitz bound-ary �
. We onsider the two-dimensional homogeneous onvetion-di�usionequation �"�u+ � � ru = 0 in 
; (1)u = g on �
; (2)where � 2 L1(
)d is a given ow veloity �eld, " a di�usion oeÆient and gis given in H1=2(�
). We assume that � is solenoidal, i.e. r � � = 0 and that" > 0 so that the above problem is well posed.Hereafter, we will use the notation e� = �j�j where j � j is the Eulidean norm.For any funtion v, we denote its streamline derivative by v� = e� �rv so that� � rv = j�jv�. Moreover, letting P�? = I� �
�j�j2 be the orthogonal projetoronto the hyperplane �? along the line R�, we denote the rosswind derivativeof any funtion v by v�? = P� � rv.Let T be a triangulation of 
 with no overlapping nodes. For any simplexK 2T , we denote hK its diameter, mK its measure and we set h = maxK2T hK .For a funtion v 2 L1(
)m (m � 1), jvjK denotes the L1(K)m norm of itsrestrition to K.Let V gh and V 0h be the �nite element spaes de�ned byV gh = fv 2 C0(�
); vjK 2 P1(K); 8K 2 T ; v = Pg on �
g;3



V 0h = fv 2 C0(�
); vjK 2 P1(K); 8K 2 T ; v = 0 on �
g;where P denotes the L2-projetion onto the spae of pieewise aÆne funtionson the boundary. We may then formulate the streamline di�usion method for(1)-(2) as follows: �nd U 2 V gh suh thatasd(U; v) = 0; 8v 2 V 0h ;where the bilinear form asd(U; v) is given byasd(U; v) = ("rU;rv) + (j�jU�; v) + (�U�; v�): (3)Here, (�; �) denotes the L2(
) inner produt. The streamline di�usion oeÆ-ient � is onstant elementwise with �K proportional to j�jKhK . The linearsystem (3) has positive de�nite symmetri part and the disrete solution U isunique.It is well known that the streamline di�usion method is aurate but pro-dues unaeptable osillations near sharp layers. As a remedy, an additionalrosswind di�usion term, often alled shok apturing term or disontinuityapturing term may be added in the formbd(U ; v) = (�f(U)U�?; v�?) = (�f(U)rU; P� � rv)where f(U) is some funtion of the �nite element solution U . The streamline-rosswind di�usion method may then be formulated as follows: �nd U 2 V ghsuh that asd(U; v) + bd(U ; v) = 0; 8v 2 V 0h : (4)Note that f(U) represents the relative amount of rosswind di�usion intro-dued in the method with respet to the streamline di�usion. With f = 0 wereover the usual streamline di�usion method while the hoie f = 1 yields a�rst order method with isotropi di�usion of order h.The question addressed in this paper is how to hose f(U) so that a DMPan be rigorously proven for (4) while retaining high auray. For the modelproblem (1)-(2), the DMP is formulated as follows:8x 2 
; miny2�
 g(y) � U(x) � maxy2�
 g(y):When the triangulation is stritly aute, it was proven in [10℄ that upon taking�K = K j�jKhK2 and f = 1; (5)where K is a ertain funtion of the angles of K, the method (4) satis�esthe DMP. Thus unphysial osillations are fully wiped out, but at the prie ofauray sine the method is only �rst order.4



Di�erent hoies of f(U) preserving auray have been proposed in the lit-erature. They may be split into two broad ategories. In the �rst one, thefuntion f does not depend on U so that the disrete system retains the linearfeatures of the model problem. Furthermore, �f is usually of order 3=2 withrespet to h in order to preserve auray. For instane, the hoie�f = max(h3=2 � "; 0);was introdued by Johnson et al. [16,4℄ and generalized by Lube [17℄. In amore reent ontribution, Shih and Elman [7℄ onsider�f = �dh3=2 (6)and the stabilization parameters � and �d are hosen in suh a way as to giveuniform onvergene in ".In the seond ategory, f(U) depends on U so that the disrete system isnonlinear regardless of the model problem. In the ame problems we are even-tually interested in, this is not a severe penalty sine one has already to opewith highly nonlinear soure terms for the thermohemistry. The most reentf(U) in this ategory is the one suggested by Codina [10℄ and given byf(U) = jr(U)jj�j jrU j ; (7)where r(U) is the �nite element residual, i.e. the �nite element solution in-serted in the di�erential equation. Numerial experiments showed reasonablenumerial behavior of the proposed method but there is no guarantee for aDMP.In the following, we shall restrit ourselves to the ase where the veloity �eld� is onstant elementwise and onsider a partiular form of rosswind di�usionwhere f(U) only depends on the angle between rU jK and �jK. Upon denotingby �K this angle, the rosswind di�usion term now readsbd(�K ;U; v) = (�f(�K)U�?; v�?): (8)For instane, when using linear simpliial elements, the rosswind di�usionterm proposed by Codina takes on the simple formf(�K) = j os �K j:The streamline-rosswind di�usion method we shall onsider is thus: �nd U 2V gh suh that asd(U; v) + bd(�K;U; v) = 0; 8v 2 V 0h : (9)5



In the next setion, we will obtain an expliit expression for f suh that aDMP holds for (9) on stritly aute meshes.Remark 2.1 The formulation (9) an be rewritten in a Petrov-Galerkin form("rU;rv) + (� � rU; v) + (�0� � rU; e� � rv) = 0; 8v 2 V 0h ;where �0 is a renormalized streamline di�usion oeÆient given elementwiseby �0K = �Kj�j2K and e� = � + f(�K)(tan �K)�?1 :The vetor �?1 is given by the rotation of � with angle +�2 in the plane spannedby rU and �. The above expression results from (U�?; v�?) = 1j�j2 (�?1 �rU; �?1 �rv) and �?1 � rU = tan �K j�jU�. As a result, (9) may also be viewed as aGalerkin/least squares formulation with a modi�ed advetion diretion for thestabilization term.3 Main resultsIn this setion, we �rst present some preliminary results on stritly aute tri-angulations, then obtain suÆient onditions for the DMP with �rst orderisotropi visosity and �nally prove the main results for the nonlinear formu-lation.3.1 Stritly aute triangulations and preliminary resultsOn a given simplex K 2 T , we denote by ( K0 ; : : : ;  Kd ) the loal shapefuntions (also termed nodal funtions or baryentri oordinates) and setei = r Kijr Ki j for 0 � i � d. Hereafter we shall assume that the triangulation Tis stritly aute in the following sense:8K 2 T ; 9�K > 0; max0�i<j�d ( Ki ;  Kj )j Ki j j Kj j � � sin�K:In two spae dimensions, �K is simply given by �2 minus the largest angle ofthe triangle K while in three spae dimensions one has to onsider the largestangle among the six pairs of faes of the tetrahedron.Lemma 3.1 Let T be a stritly aute triangulation, U 2 V gh and K 2 T . Leti0 be the vertex number where U is minimal on K, set rUKk = (rU jK � ei0)ei06



and rUK? = rU jK �rUKk . Then we havejrUKk j � tan�K jrUK? j: (10)In addition, the same result holds for the vertex where U is maximal on K.Proof Without loss of generality, we assume that U is minimal on K atthe vertex i0 = 0. Introdue the Gram matrix Gij = (ei; ej), 0 � i; j � d,and the quantities Æi = Ui � U0 � 0 for 1 � i � d. We may then writerU jK = Pdi=1 Æiei, rUKk = (Pdi=1 ÆiG0i)e0 and rUK? = Pdi=1 Æi(ei �G0ie0). Astraightforward alulation then yieldsjrUKk j2 = dXi=1 Æ2iG20i + 2Xi<j ÆiÆjG0iG0j;and jrUK? j2 = dXi=1 Æ2i (1�G20i) + 2Xi<j ÆiÆj(Gij �G0iG0j):Sine the triangulation is stritly aute, we have G20i � (tan�K)2(1 � G20i).Moreover, the last term in the expression for jrUKk j2 is positive whereas it isnegative for jrUK? j2. The estimate (10) is then easily obtained. 2Corollary 3.2 Keep the assumptions and notation of lemma 3.1. Assumefurther that rU jK 6= 0 and denote by !K;i0 the angle between rU jK and ei0 .If i0 orresponds to a minimum, we have�2 + �K � !K;i0 � 3�2 � �K; (11)and orrespondingly in the ase of a maximum��2 + �K � !K;i0 � �2 � �K ; (12)Proof Diret onsequene of lemma 3.1. 2
3.2 DMP for �rst order isotropi visosityWe present here suÆient onditions for the DMP to hold in the ase of �rstorder isotropi visosity. The result is analogous to the one obtained in [10℄but the tehnique of proof is slightly di�erent.7



Proposition 3.3 Let T be a stritly aute triangulation. For K 2 T , letK = j�jKhK2" be the loal Pelet number, set �K = hK min0�i�d jr Ki j and letK be suh that 8K 2 T ; K � 2(d+ 1) �K sin�K � 1K : (13)Then the formulation (9) with�K = K j�jK hK2 and f = 1; (14)satis�es the DMP.Proof For a given vertex S0 in the triangulation, we denote by V (S0)the set of elements K in T sharing this vertex. Assume that U reahes itsminimum on the vertex S0 and that S0 2 
. Let v0 2 V 0h be the global shapefuntion assoiated with vertex S0 (i.e. v0(S0) = 1 and v0 vanishes at all theother verties of T ). Denote by !K the angle between rU jK and rv0 on K.Then, testing (9) with v = v0 yieldsXK2V (S0)BK � 1d+ 1 os �K + (CK +DK) os!K� = 0; (15)where BK = mK j�jK jrU jK, CK = � jrv0jj�jK and DK = " jrv0jj�jK . From orollary3.2, we dedue that os!K � � sin�K. We thus have(CK +DK) os!K � � sin�K(CK +DK)� � sin�K hK jrv0j2 (K + 1K )� � sin�K �K2 (K + 1K );and we readily see using (13) that all the terms in the sum (15) are negative.Hene they all vanish, whih implies that rU jK = 0 for all K 2 V (S0). Wethen easily dedue that U an only reah its minimum at the boundary. Theproof for the ase of a maximum is similar. 2
Remark 3.4 The onstant K in (13) explodes as �K ! 0+.8



u

v0

β

ϕ

ωϕ

β

K

K

K

θK

1Fig. 1. The various angles onsidered in the proof of theorem 3.5.3.3 DMP for nonlinear rosswind di�usionTheorem 3.5 Let T be a stritly aute triangulation. For K 2 T , let K and�K be de�ned as in proposition 3.3, let K be suh that8K 2 T ; K � 2(d+ 1)�K sin�K ;and set eK = KK. Then the formulation (9) with�K = K j�jK hK2 ;andf(�K) = max 1 + tan�K tan(~�K=2)1 + tan�K tan ~�K � 1eK sin�Kos(~�K � �K) sin ~�K ; 0! ; (16)with ~�K = min(b�K ; � � b�K) and b�K = �K mod� satis�es the DMP.Proof (i) Let S0 be a vertex of T in 
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whereas if (�K; 'K) lies in D3 [D4, we have��K sin�K os �K + F(�K; 'K) � 0: (19)Assume �rst that (�K; 'K) 2 D1. Sine sin �K sin'K � 0 and os �K � 0, asuÆient ondition for (18) to hold is that f + 1eK �  ('K) ot �K with ('K) = sin�Ksin'K +  1 + 1eK! ot'K:Sine the funtion  is dereasing, a suÆient ondition for (18) to hold isthat f + 1eK �  ��2 + �K � �K� ot �K ;and a straightforward alulation yieldsf � 1 + tan�K tan(�K=2)1 + tan�K tan �K � 1eK sin�Kos(�K � �K) sin �K :Thus the hoie (16) guarantees (18). Assume next that (�K ; 'K) 2 D2. Thena straightforward alulation shows that in order to guarantee (18), it suÆesto have f � 1. Indeed, in suh ase, we get��K sin�K os �K + F(�K; 'K) � ��K sin�K os �K + �1 + 1eK � os(�K + 'K)� ��K sin�K os �K � �1 + 1eK � sin�K� 0:Moreover f � 1 trivially results from (16) so that inequality (18) is alsoestablished for (�K ; 'K) 2 D2. The proof of (19) when (�K ; 'K) lies in D3[D4is similar and is omitted for brevity.(iii) Consider now �K 2 [�2 ; �℄ and the domainsD5 to D8 illustrated in �gure 2.It is readily seen that domains D5 to D8 are reovered from D1 to D4 usingthe symmetry �K ! � � �K and 'K ! �'K . Sine F(�K ; 'K) hanges signunder suh symmetry, we dedue that if (�K ; 'K) lies in D5 [D6, we have��K sin�K os �K + F(�K; 'K) � 0;whereas if (�K; 'K) lies in D7 [D8, we have��K sin�K os �K + F(�K; 'K) � 0:Moreover, if �K 2 [�; 2�℄, we onsider the translation �K ! �K � � and'K ! 'K � � whih leaves F(�K ; 'K) invariant. To sum up, we have proventhat for all �K 2 [0; 2�℄, letting b�K = �K mod�, we have(b�K; 'K) 2 D1 [D2 [D5 [D6 =) ��K sin�K os �K + F(�K ; 'K) � 0;11



and(b�K; 'K) 2 D3 [D4 [D7 [D8 =) ��K sin�K os �K + F(�K ; 'K) � 0:(iv) DMP in the 2D ase. Assume that U reahes its minimum on vertex S0.We then dedue from orollary 3.2 that for all K 2 V (S0), the pairs (b�K ; 'K)lie in D1 [ D2 [ D5 [ D6. Therefore, from the above inequalities, we deduethat all the elements K 2 V (S0) yield a negative ontribution to the sum (17).Thus the disrete solution U is neessarily onstant on V (S0) and from thisproperty it readily follows that miny2
 U(y) � miny2�
 g(y). The ase whereU reahes its maximum on vertex S0 is treated similarly.(v) DMP for arbitrary spae dimension. We notie that (17) an be reast intothe form XK2V (S0)B0K (�K sin�K os �K + �1 + 1eK � os!K� (f � 1) sin �K os e'K) = 0;whih we rewrite for onveniene asXK2V (S0)B0K�aK + bK + K(�)� = 0;where the angle � has been introdued in part (i) of the proof. Realling theexpression for os e'K, it is readily seen that K(�) takes its extreme valuesfor � = 0mod� in whih ase rv0 lies in the plane spanned by rU and � sothat a 2D situation is reovered. Assume now that U reahes its minimum onvertex S0. SineaK + bK + K(�) � aK + bK +max�(0); (�)�;we dedue from the 2D ase that aK + bK + K(�) � 0. Thus all the elementsK 2 V (S0) yield a negative ontribution to the sum and the proof is ompletedas before. The ase of a maximum is treated similarly by notiing thataK + bK + K(�) � aK + bK +min�(0); (�)� � 0;thanks to the 2D ase. 2
Remark 3.6 A straightforward alulation shows that the nonlinear ross-12



wind di�usion operator given by (16) may be equivalently reast into the formf(�K) = max0BB�1 + tan�Kr1�j os �K j1+j os �K j1 + tan�K j tan �K j � 1eK tan�Kj os �K sin �K j+ tan�K sin2 �K ; 01CCA ;(20)the above expression being valid for all �K 2 [0; 2�℄.Corollary 3.7 Keep the notation and assumptions of theorem 3.5 exept forthe funtion f(�K) whih is now given byf(�K) = 1 + tan�Kr1�j os �K j1+j os �K j1 + tan�K j tan �K j ; (21)or, equivalently, byf(�K) = jU�jK(jU�jK + tan�KjU�?jK) (jU�jK + jrU jK + tan�K jU�?jK)jrU jK + jU�jK : (22)Then the formulation (9) satis�es the DMP.Proof The equivalene between (21) and (22) simply results from therelations jU�jK = j os �K j jrU jK and jU�?jK = j sin �K j jrU jK thanks tosome little algebra. On the other hand, the DMP is a diret onsequene ofthe proof of theorem 3.5. 2Remark 3.8 Notie that the funtion f(�K) given by either (16) or (21) islower than one. Thus the amount of rosswind di�usion is always lower thanthat of streamline di�usion. In addition, (16) yields a lower amount of ross-wind di�usion with respet to (21) sine it takes into aount the physialisotropi di�usion through the resaled Pelet number eK.Remark 3.9 It is easily seen that f(�K) ! 0+ when �K ! �2 . Thus foronvetion dominated ows, the rosswind di�usion term vanishes when theresidual goes to zero. This ensures that the formulation (9) retains an auraysimilar to the original streamline di�usion method.In �gure 3, we illustrate the funtion (21) for various values of the parameter�K. The solid line orresponds to �K = 30Æ (the largest possible value for �Korresponding to an equilateral triangle), the dashed line to �K = 10Æ and thedotted line to �K = 1Æ. Notie how the well at �K = 90Æ beomes steeper withdereasing �K. 13
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Xn+1 �Xn is less than a presribed tolerane (typially 10�5).With the rosswind di�usion operator given by (22), Newton's method exhibitspoor stability properties and its onvergene domain is extremely narrow. SuhdiÆulties stem on the one hand from the presene of absolute values whihmust be di�erentiated in the Jaobian matrix and on the other hand from thefat that the angle �K is ill de�ned in the regions where rU is very small.In order to enhane onvergene of Newton's method, we introdue in thenumerial experiments reported below the following two modi�ations of thenonlinear rosswind di�usion operator. First we onsider a regularized absolutevalue jxjreg = x tanh( x�reg ), so that (22) beomesf1(�K ; �reg) = jU�jreg(jU�jreg + tan�KjU�?jreg) (jU�jreg + jrU jK + tan�K jU�?jreg)jrU jK + jU�jreg :(24)Sine we treat here a 2D ase, we have U�? = �?1 � rU and jrU jK =qU2� + U2�?. In addition, we also introdue a uto� funtion (x) = exp(��utx�2)that \turns o�" the rosswind di�usion operator when the gradient of the dis-rete solution is small, so that (24) beomesf2(�K ; �reg; �ut) = f1(�K; �reg) (jrU jK): (25)The approximate rosswind di�usion operators f1 and f2 do not guarantee aDMP. However, from a numerial viewpoint, suh modi�ations of the originalrosswind di�usion operator f are attrative beause the numerial ost forobtaining a disrete solution is muh lower. In addition, in our numerial exper-iments (see below), we observed only a slight degradation in over/undershootswhen using (24) and (25). Notie also that f1 and f2 tend to f when �reg and�ut tend to zero so that a DMP is reovered.4.2 Linear test ases: onvetion-di�usion problemsWe onsider the onvetion-di�usion problem (1)-(2) with di�usion oeÆient" = 10�5 and onstant ow veloity of norm j�j = 1 with two di�erent owangles. The problem is posed on the unit 2D square. Flow angles and boundaryonditions are shown in �gure 4. The boundary values on the right edge of thesquare step from U = 0 to U = 1 at y = 45 . The Dirihlet boundary onditionsreate an internal layer whih is onveted aross the domain and an outowlayer near the outow boundary.For the onvetion-di�usion problem (1)-(2), the quality of the numerial so-15
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Fig. 4. Flow angle and boundary onditions for test ase 1 (left) and 2 (right).lution will be investigated in terms of layer width and over/undershoots. Thelayer width �x will be measured at y = 0:5 (x = 0:5 for test ase two) and isde�ned as �x = jx1% � x99%jwhere x1% is the lowest oordinate where U(x1%; 0:5) = 0:01 Umax. Similarly,x99% is the largest oordinate where U(x99%; 0:5) = 0:99 Umax. Over/undershootswill be measured in perentage of the maximal variation of the solution,Uvar = Umax � Umin = maxx2�
 U(x)�minx2�
 U(x), aording toUshoot = max(jmaxx2
 U(x)� Umaxj; jminx2
 U(x)� minx2�
U(x)j)=Uvar:Numerial solutions will be obtained on four di�erent stritly aute mesheswhih are presented in �gure 5. The meshes are Delaunay triangulations ob-tained with the Bowyer-Watson algorithm as desribed in [18℄. On all meshes,the majority of the triangles are lose to equilateral. The number of degreesof freedom together with the largest and lowest value for � on eah mesh arereported in Table 1.We �rst study the impat of the regularization parameter �reg on the behaviorof the stabilized method obtained using the approximate rosswind di�usionoperator (24). The solution is omputed for test ase 1 on the seond to �nestmesh. Solution quality is reported in Table 2 for di�erent values of �reg. Foromparison purposes, the last line gives the orresponding results obtainedwith the standard streamline di�usion method. We notie that even for valuesas large as �reg = 100, overshoots amount to less than 1%. Furthermore,osillations derease signi�antly when �reg tends to zero. For �reg = 10, theovershoots and undershoots are within the onvergene range of Newton'smethod. Finally, we notie that the value of �reg has only a minor inuene onthe layer width, lower values of �reg yielding slightly wider layers sine theyorrespond to enhaned numerial di�usion.16



Fig. 5. Delaunay triangulations of stritly aute type used for the onve-tion-di�usion problems. nodes min �K max �K42 6.6 29.5135 11.7 29.9503 11.6 30.01925 9.9 30.0Table 1Number of nodes together with the greatest and lowest value of �K for the meshesof �gure 5.We next ompare six di�erent rosswind di�usion operators, three linear andthree nonlinear. We onsider� SD: the standard SD method orresponding to � = j�jh2 and f = 0;� O(h): � = j�jh2 and f = 1 yielding a �rst order isotropi visosity;� O(h3=2): � as before and f = h1=2 ( = 15) orresponding to a shok ap-turing method with high auray;17



�reg overshoot % undershoot % layer width100 0.97 0.003 0.2650 0.40 0.002 0.2625 0.03 0.001 0.2710 0.002 0.0007 0.295 0.0002 0.0005 0.32SD 16.8 3.4 0.36Table 2Impat of regularization parameter �reg on solution quality.� Codina: � as before and f(U) =  jU�jj�jjrU j ( = 0:7) as suggested by [10℄;� f1: the approximate nonlinear rosswind di�usion operator (24) with �reg =10;� f2: the approximate nonlinear rosswind di�usion operator (25) with �reg =0:8h�1K and �ut = 5 �10�4h�2K . Both regularization parameters are taken herein mesh dependent form in order to yield the same order of regularizationon all meshes.Numerial solutions on the �nest mesh are shown in �gure 6 for test ase 1.The O(h) method leads to a dramati smearing of the internal layer whilethe O(h3=2) method yields a slightly larger layer than the nonlinear methods.Overshoots obtained on the �nest mesh are presented in �gure 7 while table3 reports the maximum overshoot observed on eah of the four meshes. Wenotie that our proposed method f1 together with the linear O(h) methodare the only ones that satisfy the DMP, the latter however at the expense ofexessive smearing. The linear method of order O(h3=2) also performs well withrespet to the DMP but the violations tend to inrease on the �ner meshes,an e�et one may also notie in the f2 ase. Finally, we notie that for thistest ase, Codina's method yields a fair amount of overshoot, indiating thatthe nonlinear rosswind di�usion whih it introdues is not large enough. Asa further illustration, we present in �gure 8 for the seond to �nest meshand a typial numerial solution, a loud of points obtained as follows. Foreah element K of the mesh, we plot the point with oordinates �K and theminimal amount of rosswind di�usion needed to guarantee a DMP. The solidurve orresponds to the theoretial rosswind di�usion given by (21) whilethe dotted line orresponds to Codina's method, i.e. f(�K) = j os �K j. Asexpeted, all the points lie below the solid urve but a fairly large amount ofpoints lies above the dotted urve, indiating potential violation of the DMP.It is also interesting to assess the numerial ost of the various rosswinddi�usion operators. To this purpose, we present in �gure 9 the layer width as18



Fig. 6. Numerial solutions obtained with six di�erent rosswind di�usion operatorsfor test ase 1 on the �nest mesh of �gure 5; from left to right and top to bottom:SD, O(h), O(h3=2), Codina, f1, f2.

Fig. 7. Overshoots obtained with six di�erent rosswind di�usion operators for testase 1 on the �nest mesh of �gure 5; from left to right and top to bottom: SD, O(h),O(h3=2), Codina, f1, f2.
19



Nodes SD O(h) O(h3=2) Codina f1 f242 16.5 0 0 4.0 0 0135 17.6 0 0 3.0 0 0.07503 16.8 0 0 2.4 0 0.481925 16.2 0 0.94 2.1 0.03 0.51Table 3Maximum overshoot (%) obtained with six di�erent rosswind di�usion operatorsfor test ase 1 on the four meshes of �gure 5.
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Fig. 8. Comparison of rosswind di�usion operators (21) (solid) and (7) (dotted);all the points must lie below a urve to guarantee a DMP for the orrespondingmethod; points above a urve indiate potential violation of the DMP.a funtion of linear algebra ost normalized by the ost assoiated with theSD method on the �nest mesh. On a given mesh, the linear algebra ost isestimated by the total number of BiCGStab iterations in Newton's methodmultiplied by the square of the number of nodes. For a sharp resolution of thelayer width (e.g. 0.2), the method providing the best solution quality, namelyf1, yields a omputational ost two orders of magnitude larger than that ofthe linear, SD method. In this ontext, the approximate operator f2 given by(25) appears to o�er an attrative ompromise between omputational ostand solution quality. Indeed, it yields only a minor degradation in terms ofovershoots with respet to f1 while dereasing the omputational ost by morethan an order of magnitude.Turning next to test ase 2, we report in table 4 the maximum overshoot ob-20
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Fig. 9. Layer width as a funtion of normalized linear algebra ost; test ase 1 onstritly aute meshes.Nodes SD O(h) O(h3=2) Codina f1 f242 13.2 0.00 0.00 2.1 0.00 0.00135 13.8 0.00 0.00 0.56 1.38 0.27503 13.5 0.00 0.17 0.39 0.05 0.331925 13.7 0.00 1.69 0.48 0.13 0.43Table 4Maximum overshoot (%) obtained with six di�erent rosswind di�usion operatorsfor test ase 2 on the four meshes of �gure 5.tained on the four meshes of �gure 5. The results are similar to those obtainedfor test ase 1. We notie however that the three nonlinear methods now yieldovershoots of the same order of magnitude on the �ner meshes.We onlude this setion by investigating the performane of the various meth-ods on meshes violating the stritly aute ondition. Suh meshes are oftenonsidered in pratie beause they are easy to generate sine they are oftenassoiated with an underlying tensorial mesh. We onsider here four meshesobtained by splitting into two triangles the square ells of a tensor produtuniform mesh with respetively 5, 10, 20 and 40 nodes per side of the om-putational domain. For these meshes, � = 0 and it is therefore impossibleto apply diretly the theoretial results of setion 3. In our numerial exper-iments, we set �K = �=6 for all triangles when evaluating the approximate21



Fig. 10. Numerial solutions obtained with six di�erent rosswind di�usion operatorsfor test ase 1 on the �nest mesh violating the stritly aute ondition; from left toright and top to bottom: SD, O(h), O(h3=2), Codina, f1, f2.rosswind di�usion operators (24) and (25). Notie that a lower value for �Kshould inrease the amount of numerial di�usion. We present results for testase 1, showing the solutions on the �nest mesh for the di�erent methods in�gure 10 and the loation of the overshoots in �gure 11. In table 5 we re-port the maximum overshoots observed on the four meshes. The linear �rstorder method still satis�es the DMP, at the expense however of an exessivelysmeared internal layer. The performane of the linear O(h3=2) method dete-riorates substantially on �ner meshes, indiating that in some elements therosswind di�usion has less and less e�et. All the nonlinear methods fail towipe out the overshoots ompletely. However, the approximate operators f1and f2 yield relatively better results than Codina's. Finally, in order to as-sess the omputational ost of the methods, we present in �gure 12 the layerwidth as a funtion of linear algebra ost normalized as before. The ost forobtaining a given resolution of the internal layer is omparable for all threenonlinear methods, with f2 slightly less expensive.To sum up, our numerial experiments on linear onvetion-di�usion equationsshow that among the three nonlinear methods onsidered, the approximateoperator f2 yields the most attrative ompromise between solution qualityand omputational ost. In the next setion, we investigate the numerialperformane of the approximate operator f2 on a strongly nonlinear problem.22



Fig. 11. Overshoots obtained with six di�erent rosswind di�usion operators for testase 1 on the �nest mesh violating the stritly aute ondition; from left to rightand top to bottom: SD, O(h), O(h3=2), Codina, f1, f2.Nodes SD O(h) O(h3=2) Codina f1 f236 12.2 0.00 1.3 5.5 1.8 1.5121 14.3 0.00 4.5 6.5 2.3 2.3441 14.8 0.00 7.1 6.6 2.1 2.41681 14.8 0.00 9.0 6.6 1.7 2.4Table 5Maximum overshoot (%) obtained with six di�erent rosswind di�usion operatorsfor test ase 1 on four meshes violating the stritly aute ondition.4.3 A nonlinear example: the Bunsen ameThe theory underlying the nonlinear rosswind di�usion operator (22) doesnot extend to nonlinear problems. A somewhat natural extension of (22) tononlinear problems is to onsider the operatorf(U) = jr(U)jK(jr(U)jK + tan�KjU�?jK) (jr(U)jK + jrU jK + tan�KjU�?jK)jrU jK + jr(U)jK ;(26)23
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Fig. 12. Layer width as a funtion of normalized linear algebra ost; test ase 1 onmeshes violating the stritly aute ondition.
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Fig. 13. Shemati of the Bunsen ame on�guration.where r(U) is the nonlinear �nite element residual. This expression presentstwo advantages. First it preserves onsisteny sine f(U) vanishes wheneverr(U) = 0. Seond, for onvetion dominated ows where r(U) ' U�, wereover the theoretial expression (22). The operator (26) appears thereforeas a reasonable extension to nonlinear problems of the theory developed in thelinear ase. However, its numerial performane must be arefully assessed.As an illustration, we onsider a methane/air Bunsen ame obtained by ow-ing a stoihiometri methane/air mixture through a ylindrial tube (see �gure13). The fuel tube has radius 4 mm and the inow veloity pro�le is paraboliwith a peak veloity of 1.5 m/s. The ame is surrounded by an air oow withveloity 1 m/s. Reatants and air are own at room temperature (298 K)so that we expet the temperature to be larger than 298 K throughout the24



ame. The governing equations are the ompressible Navier-Stokes equationsoupled with a system of onvetion-di�usion-reation equations for the hem-ial speies and the temperature. We treat a simpli�ed reation model withfour hemial speies. Thus, the total number of dependent unknowns is 8:radial and axial veloity omponents, pressure, temperature and the massfrations of the 4 hemial speies. More details on Bunsen ame modelingmay be found for instane in [19℄.We ompare two numerial methods to approximate the ame problem:� SD: lassial streamline di�usion stabilization. Denoting by � a dependentunknown exept the pressure, the streamline di�usion oeÆient for theorresponding governing equation reads � = ��h2 where �� is the onvetionveloity arising in the onservation equation for �;� f2: streamline di�usion as above plus nonlinear rosswind di�usion for theveloities, temperature and speies. For the veloity equations, the ross-wind di�usion operator is linear and suh that �f = O(h3=2). For the tem-perature and speies, the nonlinear rosswind di�usion operator (26) is on-sidered with the same regularization of absolute values and uto� funtionsas f2.The ame governing equations are disretized on a Delaunay triangulationontaining about 3300 nodes. Most of the triangles are almost equilateralbut a few triangles do not satisfy the stritly aute ondition. For pratialpurposes, the expression (26) is implemented using �0K = max(�K ; 10Æ).In table 6 we show the main ame harateristis obtained with and withoutnonlinear rosswind di�usion. The SD method yields an important undershootin the temperature �eld thus on�rming the need for additional stabilization.The nonlinear rosswind di�usion operator sueeds in removing all the un-dershoot for temperature. The ame length (resp. width) is however smallersine this quantity dereases (resp. inreases) with enhaned di�usion.A more detailed investigation of the temperature �eld is presented in �gure14. The temperature undershoot omputed by the SD method is quite signi�-ant and is due to two ombined e�ets: (i) the onvetive shear layer betweenthe premixed reatant ow and the air oow and (ii) the sti� reation termsarising near the burner lip and at the tip of the ame one. The temperatureundershoot is onveted downstream up to the outow boundary of burntgases. The nonlinear rosswind di�usion operator handles both phenomena,yielding a numerial solution without undershoot. However, the rosswind sta-bilized ame is lower and more smeared. We also point out that the onvetivelayer between ombustion produts and air is resolved in both omputationseven in the upper part of the domain where the mesh is oarse. This is possiblethanks to the nonlinear harater of the rosswind operator. Any linear hoie25



SD f2Min. temperature (K) 246 298Max. temperature (K) 2172 2232Flame length (m) 0.91 0.69Flame width (m) 0.26 0.48Lifto� (m) 0.02 0.03Table 6Main harateristis of Bunsen ame omputed with and without nonlinear ross-wind di�usion.

Fig. 14. Top: temperature �eld as omputed without (left) and with nonlinear ross-wind di�usion (right); bottom: isotherms in the interval [245,298℄ omputed by theSD method and zoom of the mesh near the burner.of f would ause exessive smearing of this layer. As a onlusion, for Bunsename models, nonlinear rosswind di�usion shemes appear to have a stronginuene on solution quality. A more thorough investigation will be presentedin a forthoming paper. 26
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Fig. 15. Comparison of various nonlinear rosswind di�usion operators: solid (21),dashed (27) and dotted (7); from left to right and top to bottom: � = 30Æ, � = 20Æ,� = 10Æ and � = 1Æ.Remark 4.1 Sine the theoretial results do not extend to nonlinear problems,other ad ho modi�ations of the nonlinear rosswind di�usion operator maybe onsidered, as for instanef3(U) = jr(U)jqr(U)2 + (tan�K�? � rU)2 : (27)For pure onvetion problems, this expression oinides with the rosswinddi�usion operator suggested by Codina when taking � = 45Æ. In addition, (27)yields a fairly reasonable approximation of the theoretial operator (21) asillustrated in �gure 15. A regularized version of f3 has been implemented forthe Bunsen ame problem and appears to produe results similar to those ofmethod f2.5 ConlusionsIn this paper, we have derived a new nonlinear rosswind di�usion operatorwhih guarantees rigorously the DMP in the ase of the linear homogeneousonvetion-di�usion equation disretized on a stritly aute triangulation with27
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