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Abstract

We investigate nonlinear crosswind diffusion in the framework of stabilized Galerkin
approximations of linear and nonlinear model problems. In particular, for linear
convection-diffusion problems, we derive rigorously sufficient conditions for a dis-
crete maximum principle to be satisfied. These conditions apply on strictly acute
triangulations for linear simplicial finite elements. The new crosswind diffusion op-
erator is compared numerically to other discontinuity capturing schemes which lack
theoretical justification. The numerical results are investigated in terms of both
solution quality (violation of maximum principle, smearing of internal layers) and
computational cost.
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1 Introduction

The main motivation for this work is the computation of chemically react-
ing flows using stabilized Galerkin methods. The governing equations for such
flows consist of the compressible Navier-Stokes equations coupled with a sys-
tem of convection-diffusion-reaction equations for the thermochemistry. Usu-
ally the flow is convection dominated with very sharp internal layers near
flame fronts. It is well known that the standard Galerkin method is ill suited
for the computation of such flows. In order to get a stable numerical scheme, a
least squares perturbation may be added to the standard formulation yielding
a Petrov-Galerkin method like the SUPG method or the streamline diffusion
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method [1-4]. Such modifications yield high order methods with reasonable
stability properties. However, near sharp fronts, small spurious oscillations
remain and will so until the local Peclet number is small enough. These over-
shoots or undershoots, even if they are relatively small, may have a dramatic
effect in chemically reacting flows where it is stringent from both a physi-
cal and numerical viewpoint to guarantee that all the species concentrations
remain positive.

Because of the complexity of chemically reacting flow equations, the method-
ology of this paper is to focus on a much simpler problem, a linear homoge-
neous stationary convection-diffusion equation with non homogeneous bound-
ary data. For this model problem, it is well known that a maximum principle
holds, i.e. under some assumptions on the data, the solution attains its max-
imum and minimum on the boundary. We will say that an approximation
method for the convection-diffusion equation satisfies a discrete maximum
principle (DMP in short) if the above property is transferred to the discrete
problem. The DMP is not only important for the physical reasons mentioned
above but it has also important consequences concerning L convergence,
pointwise stability estimates, and L? uniform convergence when the diffusion
coefficient tends to zero [5-7]|. For maximum principles applied to general el-
liptic partial differential equations of second order, we refer to [8].

The approximation of the convection-diffusion equation in the framework of
stabilized Galerkin methods has already been studied extensively in the liter-
ature. As a remedy for the presence of overshoots or undershoots near sharp
layers, various crosswind diffusion terms have been proposed, either linear
[4,7] or nonlinear [2,3,9-11]. Although extensive numerical experimentation
has been reported on a wide range of crosswind diffusion operators, a DMP
for stabilized Galerkin methods has only been rigorously established when the
crosswind dissipation is an order one perturbation [12,10]. In this case, an ap-
proximation method with a first order isotropic viscosity is recovered. Thus,
establishing a DMP for high order stabilized Galerkin methods is still an open
problem. To this purpose, it seems reasonable to consider nonlinear crosswind
diffusion. Indeed, in the framework of unsteady problems, Godunov’s theorem
establishes that a linear, monotonicity preserving method is at most first order
accurate [13, p. 177].

The goal of this paper is to study a certain class of methods based on non-
linear crosswind diffusion for the convection-diffusion equation and to derive
sufficient conditions that will guarantee a DMP. These conditions apply to
linear simplicial elements on strictly acute triangulations. More specifically,
upon writing the finite element residual as a sum over the neighboring ele-
ments, we prove that it is possible to choose the nonlinear crosswind diffusion
operator in such a way that all the terms have the same sign if the discrete
solution presents locally a minimum or a maximum. Using this technique



of proof for linear problems, one recovers the classical requirement that the
stiffness matrix be diagonally dominant with negative off-diagonal entries [5].
For Poisson type problems, this latter property holds for instance when using
strictly acute meshes. The acute type condition on the mesh, however, may
be weakened as pointed out for instance in [14] and more recently in [15] for
tetrahedral triangulations, but these aspects will not be further investigated
here in the framework of nonlinear problems.

In the next section, we provide a brief background on stabilized Galerkin meth-
ods and the DMP. In section three we present our theoretical results. Finally,
in section four, we present numerical results for various linear and nonlin-
ear crosswind diffusion operators. We consider two model problems : a linear
convection-diffusion equation and a nonlinear Bunsen flame. We investigate
violation of the maximum principle, smearing of internal layers and numerical
cost.

2 Stabilized Galerkin methods and the DMP

Let © be an open bounded connected subset of R¢ with a Lipschitz bound-
ary 0€2. We consider the two-dimensional homogeneous convection-diffusion
equation

—cAu+p-Vu=0 in(, (1)

u=g¢ on 0, (2)

where 5 € L®(2)% is a given flow velocity field, ¢ a diffusion coefficient and g
is given in H'/?(0%2). We assume that j3 is solenoidal, i.e. V - f = 0 and that
€ > 0 so that the above problem is well posed.

Hereafter, we will use the notation ez = % where | - | is the Euclidean norm.
For any function v, we denote its streamline derivative by vg = eg- Vv so that

B - Vv = |B|ug. Moreover, letting Py =1 — % be the orthogonal projector

onto the hyperplane 3+ along the line R3, we denote the crosswind derivative
of any function v by vgL = Ps - V.

Let 7 be a triangulation of €2 with no overlapping nodes. For any simplex K €
T, we denote hy its diameter, my its measure and we set h = maxyxer hi.
For a function v € L>®(Q)™ (m > 1), |v|g denotes the L>°(K)™ norm of its
restriction to K.

Let V)Y and V) be the finite element spaces defined by

Vi ={veC’(Q);vg € P(K),VK € T;v="Pg on 9Q},



Vv, ={ve Q) vk € PI(K),YK € T;v =0 on 0},

where P denotes the L2-projection onto the space of piecewise affine functions
on the boundary. We may then formulate the streamline diffusion method for
(1)-(2) as follows: find U € V}? such that

asqa(U,v) =0, Vv e VY,
where the bilinear form ay (U, v) is given by
asa(U,v) = (eVU, V) + (|8|Us, v) + (nUs, vg). (3)

Here, (-,-) denotes the L?*(f2) inner product. The streamline diffusion coeffi-
cient 7 is constant elementwise with g proportional to |G|ghgk. The linear
system (3) has positive definite symmetric part and the discrete solution U is
unique.

It is well known that the streamline diffusion method is accurate but pro-
duces unacceptable oscillations near sharp layers. As a remedy, an additional
crosswind diffusion term, often called shock capturing term or discontinuity
capturing term may be added in the form

bea(Usv) = (nf (U)Upse,vge) = (nf (U)VU, Ps - Vv)

where f(U) is some function of the finite element solution U. The streamline-
crosswind diffusion method may then be formulated as follows: find U € V¢
such that

asq(U,v) + beq(U;v) =0, Vv e VL. (4)

Note that f(U) represents the relative amount of crosswind diffusion intro-
duced in the method with respect to the streamline diffusion. With f =0 we
recover the usual streamline diffusion method while the choice f =1 yields a
first order method with isotropic diffusion of order h.

The question addressed in this paper is how to chose f(U) so that a DMP
can be rigorously proven for (4) while retaining high accuracy. For the model
problem (1)-(2), the DMP is formulated as follows:

Vo€, wming(y) < Ulr) < maxg(y).

When the triangulation is strictly acute, it was proven in [10] that upon taking

h
Nk = CKWI; K and f=1, (5)

where ¢k is a certain function of the angles of K, the method (4) satisfies
the DMP. Thus unphysical oscillations are fully wiped out, but at the price of
accuracy since the method is only first order.



Different choices of f(U) preserving accuracy have been proposed in the lit-
erature. They may be split into two broad categories. In the first one, the
function f does not depend on U so that the discrete system retains the linear
features of the model problem. Furthermore, nf is usually of order 3/2 with
respect to h in order to preserve accuracy. For instance, the choice

nf = max(h¥/? - =,0),

was introduced by Johnson et al. [16,4] and generalized by Lube [17]. In a
more recent contribution, Shih and Elman [7] consider

nf = neah®* (6)

and the stabilization parameters 1 and 7., are chosen in such a way as to give
uniform convergence in ¢.

In the second category, f(U) depends on U so that the discrete system is
nonlinear regardless of the model problem. In the flame problems we are even-
tually interested in, this is not a severe penalty since one has already to cope
with highly nonlinear source terms for the thermochemistry. The most recent
f(U) in this category is the one suggested by Codina [10] and given by

r(U)]

)= o

(7)
where r(U) is the finite element residual, i.e. the finite element solution in-
serted in the differential equation. Numerical experiments showed reasonable

numerical behavior of the proposed method but there is no guarantee for a
DMP.

In the following, we shall restrict ourselves to the case where the velocity field
[ is constant elementwise and consider a particular form of crosswind diffusion
where f(U) only depends on the angle between VU |k and /3| k. Upon denoting
by Ok this angle, the crosswind diffusion term now reads

bcd(QK;U,v) = (Uf(eK)UﬂL,’UﬂL). (8)

For instance, when using linear simplicial elements, the crosswind diffusion
term proposed by Codina takes on the simple form

f(0k) =|cosbx].

The streamline-crosswind diffusion method we shall consider is thus: find U €
V)¢ such that

asd(U, U) + bcd(GK; U, U) =0, Yv € Vho. (9)



In the next section, we will obtain an explicit expression for f such that a
DMP holds for (9) on strictly acute meshes.

Remark 2.1 The formulation (9) can be rewritten in a Petrov-Galerkin form
(eVU, Vo) + (8- VU,v) + (/B -VU,B-Vuv) =0, YveV,

where 1’ is a renormalized streamline diffusion coefficient given elementwise
— K

by 1 = T and

B =6+ f(0x) (tan i) B
The vector Bi- is given by the rotation of 8 with angle +35 in the plane spanned
by VU and 3. The above expression results from (UL, vze) = #(ﬁf-VU, Bt
Vv) and B - VU = tanl|B|Us. As a result, (9) may also be viewed as a

Galerkin/least squares formulation with a modified advection direction for the
stabilization term.

3 Main results

In this section, we first present some preliminary results on strictly acute tri-
angulations, then obtain sufficient conditions for the DMP with first order
isotropic viscosity and finally prove the main results for the nonlinear formu-
lation.

3.1 Strictly acute triangulations and preliminary results

On a given simplex K € T, we denote by (&,... 4X) the local shape

functions (also termed nodal functions or barycentric coordinates) and set

—
€= Ve
is strictly acute in the following sense:

for 0 < i < d. Hereafter we shall assume that the triangulation 7

VK € T, dJag >0 max M<—sina;(.
| BB TR <

In two space dimensions, ag is simply given by 7 minus the largest angle of
the triangle K while in three space dimensions one has to consider the largest
angle among the six pairs of faces of the tetrahedron.

Lemma 3.1 Let T be a strictly acute triangulation, U € V! and K € T. Let
ig be the vertex number where U is minimal on K, set VUHK = (VU|k - €;)ei,



and VUE = VU|x — VU”K. Then we have
|VU||K| > tan ag [VUE|. (10)
In addition, the same result holds for the vertex where U is mazimal on K.

Proof Without loss of generality, we assume that U is minimal on K at
the vertex ip = 0. Introduce the Gram matrix G;; = (e;,¢€;), 0 < 1,7 < d,
and the quantities 6; = U; — Uy > 0 for 1 < ¢ < d. We may then write
VU|K = Z?:l 6i€i7 VU”K == (Z?:l 6Z'G0i)60 and VUf = Z?:l 6z(ez - Ggieg). A
straightforward calculation then yields

d
i=1 i<j
and ;
VUL =367 (1= Ggy) + 2 6:0;(Gij — GoiGoy).-
i=1 i<j
Since the triangulation is strictly acute, we have G, > (tanax)?(1 — G).
Moreover, the last term in the expression for |VUHK |2 is positive whereas it is
negative for [VUK |2, The estimate (10) is then easily obtained. O

Corollary 3.2 Keep the assumptions and notation of lemma 3.1. Assume
further that VU|kx # 0 and denote by wg ;, the angle between VU|k and e;,.
If iy corresponds to a minimum, we have

3
g +ag < wki, < ?ﬂ — Qf, (11)

and correspondingly in the case of a mazimum

7 7
—5 tag Swii, < 5 — Ok, (12)
2 2
Proof Direct consequence of lemma 3.1. O

3.2 DMP for first order isotropic viscosity

We present here sufficient conditions for the DMP to hold in the case of first
order isotropic viscosity. The result is analogous to the one obtained in [10]
but the technique of proof is slightly different.



Proposition 3.3 Let T be a strictly acute triangulation. For K € T, let
YK = WBL:K be the local Peclet number, set oy = hx ming<;<q |VYF| and let
cx be such that

2 1
VK € > R — 13
T, ez (d+1) ogsinag  yx (13)

Then the formulation (9) with

|Blx hic
2

and =1, (14)

Nk = Ck

satisfies the DMP.

Proof For a given vertex Sy in the triangulation, we denote by V'(Sp)
the set of elements K in 7 sharing this vertex. Assume that U reaches its
minimum on the vertex Sy and that Sy € Q. Let vy € V)2 be the global shape
function associated with vertex Sy (i.e. v9(Sp) = 1 and vy vanishes at all the
other vertices of 7). Denote by wy the angle between VU|x and Vuy on K.
Then, testing (9) with v = vy yields

1
Z By <d+ T cos Ok + (Cx + Dg) cosz> =0, (15)

KeV(Sp)

where By = mg |f|x [VU|k, Cx = 2Vl and Dg = 2% From corollary

. \6% 18]k
3.2, we deduce that coswg < —sinag. We thus have
(Ck + Dg) coswg < —sinag(Ck + D)
. hi |V
< —sin aK7K|2 vol (cx + %K)

< —sinag % (ex + A%K),

and we readily see using (13) that all the terms in the sum (15) are negative.
Hence they all vanish, which implies that VU | = 0 for all K € V(S;). We
then easily deduce that U can only reach its minimum at the boundary. The
proof for the case of a maximum is similar. O

Remark 3.4 The constant cx in (13) explodes as ax — 07.



Fig. 1. The various angles considered in the proof of theorem 3.5.

3.3 DMP for nonlinear crosswind diffusion

Theorem 3.5 Let T be a strictly acute triangulation. For K € T, let vk and
ok be defined as in proposition 3.3, let cx be such that

2
d‘i‘l)O'KSiIlO[K7

VKET, CKZ(

and set Y = cxYk. Then the formulation (9) with

1Bl hie
Nk = Ck 9 )

and

1+ tanag tan(fx/2) 1 sin ag

F(6r) = -

1+ tan ag tan O %COS(@K — a)sin O

0) . (16)

with O = min(gK, i §K) and Ox = 0 mod satisfies the DMP.

Proof (i) Let Sy be a vertex of 7 in 2 and vy the corresponding global
shape function. Recalling that 3i is given by the rotation of 3 with angle +5
in the plane spanned by VU and (3, we denote by wy the angle between VU |
and Vg, by px the angle between  and Vv, and by ¢k the angle between
B and Vg (see figure 1). We may then write

cos g = cosbl coswg + sin g sinwg cos &

cos O = —sinfg coswg + cos Ok sin wg cos &
for a certain £ € [0, 27| and thus

coswg = cos O cos i — sin O cos P .



/2+a

/2-a

\\\\TIIZY m )
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1 X

Fig. 2. The different domains in the (6, ¢x) plane for potential overshoot or un-
dershoot (diagonal lines have slope —1).

Using the above notation, (9) may be cast into the form

Y Bi (tksinag cosfx + (1 + %{) cos O cos Qi
KeV(So) (17)

— (f+7%<) sin&KCOS@K) =0,

with Bl = mg ng |VU|k |Vl and 7 = h}{&iKvoh{ < 1. In particular, in the

2D case we simply have cos ¢ = sin g and (17) reads

Z B'K(TK sin ak cos O + F (O, goK)) =0,
KEV(S())

with

1 1
F(Or, oK) = (1 + ~—> cos Oy cos g — (f + ~—> sin Ak sin .
YK YK

(ii) We now study some properties of the functional F (0, @) with the non-
linear crosswind diffusion f chosen as in (16). Consider the domains Dy to D,
in the (0k, ¢x) plane as illustrated on figure 2. Let us show that if (O, k)
lies in Dy U Dy, we have

+7 sinag cos Ok + F(Ok, pr) <0, (18)

10



whereas if (0, @) lies in D3 U Dy, we have

+7x sin ag cos O + F(Ok, pr) > 0. (19)
Assume first that (fx, px) € D;. Since sinf sinpx > 0 and cosfx > 0, a
sufficient condition for (18) to hold is that f + i > Y(pK) cot O with

sin ag

V(pk) = + (1 + ;) cot Q.

sin @ 80

Since the function ¢ is decreasing, a sufficient condition for (18) to hold is
that

1
f+~— ZQZ)(E—FCYK—QK) COtQK,
Tk 2
and a straightforward calculation yields

1+ tanag tan(fx/2) 1 sin ag
1+tanaKtan9K ’7[( COS(@K —O[K) SiIng.

[z

Thus the choice (16) guarantees (18). Assume next that (0, ¢x) € Dy. Then
a straightforward calculation shows that in order to guarantee (18), it suffices
to have f < 1. Indeed, in such case, we get

+7x sinag cos Ok + F(Ok, pr) < £7x sin ag cos O + (1 + ;LK) cos(Ox + ¢K)

< £7x sinag cos O — (1 + ~L) sin ag

TK

<0.
Moreover f < 1 trivially results from (16) so that inequality (18) is also
established for (0, ¢x) € Dy. The proof of (19) when (0, px) lies in D3U D,
is similar and is omitted for brevity.
(iii) Consider now 0 € [7, 7] and the domains Ds to Dy illustrated in figure 2.
It is readily seen that domains Dj to Dg are recovered from D; to D, using

the symmetry 0 — ™ — 0k and px — —pg. Since F (0, px) changes sign
under such symmetry, we deduce that if (fx, @) lies in Dy U Dg, we have

+7 sinag cos O + F(Ok, px) <0,
whereas if (0, ¢x) lies in D7 U Dg, we have
+7y sinag cos O + F (O, o) > 0.

Moreover, if O € [m, 27|, we consider the translation g — 0x — 7 and
vxg — @K — m which leaves .7-"(95, @) invariant. To sum up, we have proven
that for all 0 € [0, 27], letting 6x = 05 mod 7, we have

(§K, ¢vK) € Dy UDyU D5 U Dg = £7 sinag cosOx + F(0k, px) <0,

11



and

(éK,(,OK) c D3 UD4 UD7 UDg — :|:TK SiIlOéKCOSQK +.7:(9K,g0K) Z 0.

(iv) DMP in the 2D case. Assume that U reaches its minimum on vertex S.
We then deduce from corollary 3.2 that for all K € V/(S,), the pairs (Ox, ¢x)
lie in D; U Dy U D5 U Dg. Therefore, from the above inequalities, we deduce
that all the elements K € V/(Sy) yield a negative contribution to the sum (17).
Thus the discrete solution U is necessarily constant on V(Sp) and from this
property it readily follows that minyco U(y) > mingesq g(y). The case where
U reaches its maximum on vertex S is treated similarly.

(v) DMP for arbitrary space dimension. We notice that (17) can be recast into
the form

> By (tgsinag cosfk + (1+%) COS Wi
KEV(So) K
— (f = 1)sinfg cos px) = 0,

which we rewrite for convenience as

> Bic(ax + bk +cx(6)) =0,

KeV(So)
where the angle £ has been introduced in part (i) of the proof. Recalling the
expression for cos @k, it is readily seen that ck (&) takes its extreme values
for ¢ = Omod 7 in which case Vuy lies in the plane spanned by VU and f so

that a 2D situation is recovered. Assume now that U reaches its minimum on
vertex Sy. Since

ax +bix +ck(§) < ax +bx + max(c(O), C(?T)),

we deduce from the 2D case that ax + bk + cx(§) < 0. Thus all the elements
K € V(S)) yield a negative contribution to the sum and the proof is completed
as before. The case of a maximum is treated similarly by noticing that

ax + b +cx(§) > ax + bk + min(c(O), C(?T)) >0,

thanks to the 2D case. O

Remark 3.6 A straightforward calculation shows that the nonlinear cross-

12



wind diffusion operator given by (16) may be equivalently recast into the form

1—|cos Ok |
F(60) 1—|—tanOsz 1+ cos x| 1 tan ax
K) — Imax o

1 + tan ag| tan Ok | Ak | cos O sin O | + tan g sin? O’

(20)
the above expression being valid for all Ok € [0, 27].

Corollary 3.7 Keep the notation and assumptions of theorem 3.5 except for
the function f(0x) which is now given by

1+ tan a0
| cos Ok |
fx) = (21)

1+ tan o | tanfx|

or, equivalently, by

Us| (|Uslx + |VU|k + tan ak|Ug. |k)

22
(|Ug|K+tanaK|U5L|K) |VU|K—|—|U5|K ( )

f(gK) =

Then the formulation (9) satisfies the DMP.

Proof The equivalence between (21) and (22) simply results from the
relations |Ug|g = |cosOk||VU|x and |UsL|x = |sinfk||VU|k thanks to
some little algebra. On the other hand, the DMP is a direct consequence of
the proof of theorem 3.5. O

Remark 3.8 Notice that the function f(0x) given by either (16) or (21) is
lower than one. Thus the amount of crosswind diffusion is always lower than
that of streamline diffusion. In addition, (16) yields a lower amount of cross-
wind diffusion with respect to (21) since it takes into account the physical
wsotropic diffusion through the rescaled Peclet number Y.

Remark 3.9 It is easily seen that f(0x) — 07 when 0k — 5. Thus for
convection dominated flows, the crosswind diffusion term vanishes when the
residual goes to zero. This ensures that the formulation (9) retains an accuracy

stmilar to the original streamline diffusion method.

In figure 3, we illustrate the function (21) for various values of the parameter
ay. The solid line corresponds to aj = 30° (the largest possible value for o
corresponding to an equilateral triangle), the dashed line to a; = 10° and the
dotted line to ax = 1°. Notice how the well at 85 = 90° becomes steeper with
decreasing ag.

13
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Fig. 3. The nonlinear crosswind diffusion operator (21) as a function of 0y for
different values of a; solid line: g = 30°, dashed line: g = 10°, dotted line:
A — 1°.

4 Numerical results

In this section we discuss the numerical implementation of the nonlinear cross-
wind diffusion operator derived from theoretical considerations in the previous
section. We consider convection dominated flows where the local Peclet num-
ber is small on all practical meshes. The correction due to the coefficient 7y
is not considered and we focus on the nonlinear crosswind diffusion operator
(22). Its numerical performance is investigated on various test problems, lin-
ear and nonlinear, and compared to that of other methods. The test cases we
consider are the solution of (1)-(2) on strictly acute and orthogonal meshes
with different flow directions and the computation of a Bunsen flame with
simple chemistry.

4.1 Numerical implementation

The discrete problem (9) yields a nonlinear system of equations of the form
F(X) = 0. A numerical solution is obtained using a damped Newton’s method:
given an initial guess X°, a sequence of iterates X™ is generated according to

J(X™) (X" — XM = —A"F(X™), (23)

where J(X™) denotes the Jacobian matrix of the nonlinear residual F' at X"
and A" the damping parameter. The Jacobian matrix is evaluated numerically
using perturbed residual evaluations and the linear system (23) is solved nu-
merically with a Krylov iterative method with an appropriate preconditionner
(typically BiCGStab with an ILU preconditionner). Convergence of Newton’s
method is achieved when the normalized Euclidean norm of the update vector

14



Xt — X" is less than a prescribed tolerance (typically 107°).

With the crosswind diffusion operator given by (22), Newton’s method exhibits
poor stability properties and its convergence domain is extremely narrow. Such
difficulties stem on the one hand from the presence of absolute values which
must be differentiated in the Jacobian matrix and on the other hand from the
fact that the angle 0 is ill defined in the regions where VU is very small.

In order to enhance convergence of Newton’s method, we introduce in the
numerical experiments reported below the following two modifications of the
nonlinear crosswind diffusion operator. First we consider a regularized absolute
value |z]ey = tanh(ﬁ), so that (22) becomes

|Uﬂ|reg (|Uﬂ|reg +|VU|g + tan O‘K|Uﬂl|reg)
(|U6|reg + tan aK|Uﬂ¢|reg) VU |k + |U6|reg

fl (QK; 67“69) —

(24)

Since we treat here a 2D case, we have Ugt = (i - VU and |VU|x =
Uj + U3, In addition, we also introduce a cutoff function c(z) = exp(—€eut?)

that “turns oftf” the crosswind diffusion operator when the gradient of the dis-
crete solution is small, so that (24) becomes

f2(0K7 €reg, €cut) - fl (eKa 6reg) C(|VU|K) (25)

The approximate crosswind diffusion operators f; and f; do not guarantee a
DMP. However, from a numerical viewpoint, such modifications of the original
crosswind diffusion operator f are attractive because the numerical cost for
obtaining a discrete solution is much lower. In addition, in our numerical exper-
iments (see below), we observed only a slight degradation in over/undershoots
when using (24) and (25). Notice also that f; and f; tend to f when €., and
€. tend to zero so that a DMP is recovered.

4.2 Linear test cases: convection-diffusion problems

We consider the convection-diffusion problem (1)-(2) with diffusion coefficient
e = 107° and constant flow velocity of norm |3| = 1 with two different flow
angles. The problem is posed on the unit 2D square. Flow angles and boundary
conditions are shown in figure 4. The boundary values on the right edge of the
square step from U =0toU =1 aty = %. The Dirichlet boundary conditions
create an internal layer which is convected across the domain and an outflow
layer near the outflow boundary.

For the convection-diffusion problem (1)-(2), the quality of the numerical so-

15
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u=0 u=0
Fig. 4. Flow angle and boundary conditions for test case 1 (left) and 2 (right).

lution will be investigated in terms of layer width and over/undershoots. The
layer width Az will be measured at y = 0.5 (z = 0.5 for test case two) and is
defined as

Ar = |331% - 5U99%|

where x,9, is the lowest coordinate where U(xzy4,0.5) = 0.01 Uppaq- Similarly,
Tggy 1s the largest coordinate where U (zg9%, 0.5) = 0.99 Uppe.- Over /undershoots
will be measured in percentage of the maximal variation of the solution,
Upar = Unaz — Umin = MaXgepn U() — mingego U(x), according to

Ushoot = max (| max U(x) = Unazl, | min U(z) — min U(x)|)/Uyar-

Numerical solutions will be obtained on four different strictly acute meshes
which are presented in figure 5. The meshes are Delaunay triangulations ob-
tained with the Bowyer-Watson algorithm as described in [18]. On all meshes,
the majority of the triangles are close to equilateral. The number of degrees
of freedom together with the largest and lowest value for oo on each mesh are
reported in Table 1.

We first study the impact of the regularization parameter €., on the behavior
of the stabilized method obtained using the approximate crosswind diffusion
operator (24). The solution is computed for test case 1 on the second to finest
mesh. Solution quality is reported in Table 2 for different values of €,.,. For
comparison purposes, the last line gives the corresponding results obtained
with the standard streamline diffusion method. We notice that even for values
as large as €., = 100, overshoots amount to less than 1%. Furthermore,
oscillations decrease significantly when ¢, tends to zero. For €,., = 10, the
overshoots and undershoots are within the convergence range of Newton'’s
method. Finally, we notice that the value of €., has only a minor influence on
the layer width, lower values of ¢,., yielding slightly wider layers since they
correspond to enhanced numerical diffusion.
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Fig. 5. Delaunay triangulations of strictly acute type used for the convec-
tion-diffusion problems.

nodes | min o | max ag
42 6.6 29.5
135 11.7 29.9
503 11.6 30.0
1925 9.9 30.0

Table 1
Number of nodes together with the greatest and lowest value of ax for the meshes
of figure 5.

We next compare six different crosswind diffusion operators, three linear and
three nonlinear. We consider

e SD: the standard SD method corresponding to n = @ and f =0;

e O(h):n= @ and f =1 yielding a first order isotropic viscosity;
o O(h*?): n as before and f = ch*/? (¢ = £) corresponding to a shock cap-

turing method with high accuracys;
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€reg | Overshoot % | undershoot % | layer width
100 0.97 0.003 0.26
50 0.40 0.002 0.26
25 0.03 0.001 0.27
10 0.002 0.0007 0.29
) 0.0002 0.0005 0.32
SD 16.8 3.4 0.36

Table 2

Impact of regularization parameter €., on solution quality.

e Codina: 7 as before and f(U) = Clﬂ‘\[@U\ (¢ =0.7) as suggested by [10];

e fi: the approximate nonlinear crosswind diffusion operator (24) with €,., =
10;

e f5: the approximate nonlinear crosswind diffusion operator (25) with €,., =
O.Sh}1 and €., = 5- 10_4h[}2. Both regularization parameters are taken here
in mesh dependent form in order to yield the same order of regularization
on all meshes.

Numerical solutions on the finest mesh are shown in figure 6 for test case 1.
The O(h) method leads to a dramatic smearing of the internal layer while
the O(h*/?) method yields a slightly larger layer than the nonlinear methods.
Overshoots obtained on the finest mesh are presented in figure 7 while table
3 reports the maximum overshoot observed on each of the four meshes. We
notice that our proposed method f; together with the linear O(h) method
are the only ones that satisfy the DMP, the latter however at the expense of
excessive smearing. The linear method of order O(h3/2) also performs well with
respect to the DMP but the violations tend to increase on the finer meshes,
an effect one may also notice in the f5 case. Finally, we notice that for this
test case, Codina’s method yields a fair amount of overshoot, indicating that
the nonlinear crosswind diffusion which it introduces is not large enough. As
a further illustration, we present in figure 8 for the second to finest mesh
and a typical numerical solution, a cloud of points obtained as follows. For
each element K of the mesh, we plot the point with coordinates #x and the
minimal amount of crosswind diffusion needed to guarantee a DMP. The solid
curve corresponds to the theoretical crosswind diffusion given by (21) while
the dotted line corresponds to Codina’s method, i.e. f(0x) = |cosf|. As
expected, all the points lie below the solid curve but a fairly large amount of
points lies above the dotted curve, indicating potential violation of the DMP.

It is also interesting to assess the numerical cost of the various crosswind
diffusion operators. To this purpose, we present in figure 9 the layer width as
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Fig. 6. Numerical solutions obtained with six different crosswind diffusion operators
for test case 1 on the finest mesh of figure 5; from left to right and top to bottom:
SD, O(h), O(h*/?), Codina, f1, fa.

Fig. 7. Overshoots obtained with six different crosswind diffusion operators for test
case 1 on the finest mesh of figure 5; from left to right and top to bottom: SD, O(h),
O(h*?), Codina, f1, fa.
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Nodes | SD | O(h) | O(h*?) | Codina | fi | fa
42 165 0 0 4.0 0 0
135 | 176 | 0 0 3.0 0 | 0.07
503 | 16.8 | 0 0 2.4 0 |0.48

1925 | 162 | 0 0.94 2.1 | 0.03 | 0.51

Table 3
Maximum overshoot (%) obtained with six different crosswind diffusion operators
for test case 1 on the four meshes of figure 5.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

0 s B SO S

0 0.5 1 15 2 . 3

Fig. 8. Comparison of crosswind diffusion operators (21) (solid) and (7) (dotted);
all the points must lie below a curve to guarantee a DMP for the corresponding
method; points above a curve indicate potential violation of the DMP.

a function of linear algebra cost normalized by the cost associated with the
SD method on the finest mesh. On a given mesh, the linear algebra cost is
estimated by the total number of BiCGStab iterations in Newton’s method
multiplied by the square of the number of nodes. For a sharp resolution of the
layer width (e.g. 0.2), the method providing the best solution quality, namely
f1, yields a computational cost two orders of magnitude larger than that of
the linear, SD method. In this context, the approximate operator f; given by
(25) appears to offer an attractive compromise between computational cost
and solution quality. Indeed, it yields only a minor degradation in terms of
overshoots with respect to f; while decreasing the computational cost by more
than an order of magnitude.

Turning next to test case 2, we report in table 4 the maximum overshoot ob-

20



+——+SD

x-x O(h)

*----x O(h"{3/2})

o-—-o Theory,reg, f_ 1
e---e Theory, reg+cut, f_2
u--..m Codina

10°

1
07l il i il il

Fig. 9. Layer width as a function of normalized linear algebra cost; test case 1 on
strictly acute meshes.

Nodes | SD | O(h) | O(h%/?) | Codina | f1 | fo
42 | 13.2 | 0.00 | 0.00 2.1 | 0.00 | 0.00
135 | 13.8 | 0.00 | 0.00 0.56 | 1.38 | 0.27
503 | 13.5 | 0.00 | 0.17 0.39 | 0.05 | 0.33
1925 | 13.7 | 0.00 | 1.69 0.48 | 0.13 | 0.43

Table 4
Maximum overshoot (%) obtained with six different crosswind diffusion operators
for test case 2 on the four meshes of figure 5.

tained on the four meshes of figure 5. The results are similar to those obtained
for test case 1. We notice however that the three nonlinear methods now yield
overshoots of the same order of magnitude on the finer meshes.

We conclude this section by investigating the performance of the various meth-
ods on meshes violating the strictly acute condition. Such meshes are often
considered in practice because they are easy to generate since they are often
associated with an underlying tensorial mesh. We consider here four meshes
obtained by splitting into two triangles the square cells of a tensor product
uniform mesh with respectively 5, 10, 20 and 40 nodes per side of the com-
putational domain. For these meshes, & = 0 and it is therefore impossible
to apply directly the theoretical results of section 3. In our numerical exper-
iments, we set ax = /6 for all triangles when evaluating the approximate
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Fig. 10. Numerical solutions obtained with six different crosswind diffusion operators
for test case 1 on the finest mesh violating the strictly acute condition; from left to
right and top to bottom: SD, O(k), O(h3/?), Codina, f1, fo.

crosswind diffusion operators (24) and (25). Notice that a lower value for a
should increase the amount of numerical diffusion. We present results for test
case 1, showing the solutions on the finest mesh for the different methods in
figure 10 and the location of the overshoots in figure 11. In table 5 we re-
port the maximum overshoots observed on the four meshes. The linear first
order method still satisfies the DMP, at the expense however of an excessively
smeared internal layer. The performance of the linear O(h*?) method dete-
riorates substantially on finer meshes, indicating that in some elements the
crosswind diffusion has less and less effect. All the nonlinear methods fail to
wipe out the overshoots completely. However, the approximate operators f;
and fy yield relatively better results than Codina’s. Finally, in order to as-
sess the computational cost of the methods, we present in figure 12 the layer
width as a function of linear algebra cost normalized as before. The cost for
obtaining a given resolution of the internal layer is comparable for all three
nonlinear methods, with f; slightly less expensive.

To sum up, our numerical experiments on linear convection-diffusion equations
show that among the three nonlinear methods considered, the approximate
operator fy yields the most attractive compromise between solution quality
and computational cost. In the next section, we investigate the numerical
performance of the approximate operator f, on a strongly nonlinear problem.
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Fig. 11. Overshoots obtained with six different crosswind diffusion operators for test
case 1 on the finest mesh violating the strictly acute condition; from left to right
and top to bottom: SD, O(k), O(h3/?), Codina, f1, fo.

Nodes | SD | O(h) | O(h*?) | Codina | f1 | fo
36 | 12.2| 0.00 1.3 55 | 18|15
121 14.3 | 0.00 4.5 6.5 23|23
441 | 14.8 | 0.00 7.1 6.6 |21]|24
1681 | 14.8 | 0.00 9.0 6.6 | 17|24

Table 5
Maximum overshoot (%) obtained with six different crosswind diffusion operators
for test case 1 on four meshes violating the strictly acute condition.

4.8 A nonlinear example: the Bunsen flame

The theory underlying the nonlinear crosswind diffusion operator (22) does
not extend to nonlinear problems. A somewhat natural extension of (22) to
nonlinear problems is to consider the operator

7 (U) | (Ir(U)|x + |VU|k + tan ag|Us. | k)
(|r(U)|k + tan g |Uss|k) VU +|r(U)|x ’
(26)

fU) =
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Fig. 12. Layer width as a function of normalized linear algebra cost; test case 1 on
meshes violating the strictly acute condition.
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Fig. 13. Schematic of the Bunsen flame configuration.

where 7(U) is the nonlinear finite element residual. This expression presents
two advantages. First it preserves consistency since f(U) vanishes whenever
r(U) = 0. Second, for convection dominated flows where r(U) ~ Ug, we
recover the theoretical expression (22). The operator (26) appears therefore
as a reasonable extension to nonlinear problems of the theory developed in the
linear case. However, its numerical performance must be carefully assessed.

As an illustration, we consider a methane/air Bunsen flame obtained by flow-
ing a stoichiometric methane/air mixture through a cylindrical tube (see figure
13). The fuel tube has radius 4 mm and the inflow velocity profile is parabolic
with a peak velocity of 1.5 m/s. The flame is surrounded by an air coflow with
velocity 1 m/s. Reactants and air are flown at room temperature (298 K)
so that we expect the temperature to be larger than 298 K throughout the
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flame. The governing equations are the compressible Navier-Stokes equations
coupled with a system of convection-diffusion-reaction equations for the chem-
ical species and the temperature. We treat a simplified reaction model with
four chemical species. Thus, the total number of dependent unknowns is 8:
radial and axial velocity components, pressure, temperature and the mass
fractions of the 4 chemical species. More details on Bunsen flame modeling
may be found for instance in [19].

We compare two numerical methods to approximate the flame problem:

e SD: classical streamline diffusion stabilization. Denoting by ¢ a dependent
unknown except the pressure, the streamline diffusion coefficient for the
corresponding governing equation reads n = %ﬁ where ¢ is the convection
velocity arising in the conservation equation for &;

e f5: streamline diffusion as above plus nonlinear crosswind diffusion for the
velocities, temperature and species. For the velocity equations, the cross-
wind diffusion operator is linear and such that nf = O(h*?). For the tem-
perature and species, the nonlinear crosswind diffusion operator (26) is con-
sidered with the same regularization of absolute values and cutoff functions

as fo.

The flame governing equations are discretized on a Delaunay triangulation
containing about 3300 nodes. Most of the triangles are almost equilateral
but a few triangles do not satisfy the strictly acute condition. For practical
purposes, the expression (26) is implemented using o/ = max(ag, 10°).

In table 6 we show the main flame charateristics obtained with and without
nonlinear crosswind diffusion. The SD method yields an important undershoot
in the temperature field thus confirming the need for additional stabilization.
The nonlinear crosswind diffusion operator succeeds in removing all the un-
dershoot for temperature. The flame length (resp. width) is however smaller
since this quantity decreases (resp. increases) with enhanced diffusion.

A more detailed investigation of the temperature field is presented in figure
14. The temperature undershoot computed by the SD method is quite signifi-
cant and is due to two combined effects: (i) the convective shear layer between
the premixed reactant flow and the air coflow and (ii) the stiff reaction terms
arising near the burner lip and at the tip of the flame cone. The temperature
undershoot is convected downstream up to the outflow boundary of burnt
gases. The nonlinear crosswind diffusion operator handles both phenomena,
yielding a numerical solution without undershoot. However, the crosswind sta-
bilized flame is lower and more smeared. We also point out that the convective
layer between combustion products and air is resolved in both computations
even in the upper part of the domain where the mesh is coarse. This is possible
thanks to the nonlinear character of the crosswind operator. Any linear choice

25



SD | f
Min. temperature (K) | 246 | 298
Max. temperature (K) | 2172 | 2232
Flame length (cm) 0.91 | 0.69
Flame width (cm) 0.26 | 0.48
Liftoff (cm) 0.02 | 0.03

Table 6
Main characteristics of Bunsen flame computed with and without nonlinear cross-
wind diffusion.
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Fig. 14. Top: temperature field as computed without (left) and with nonlinear cross-
wind diffusion (right); bottom: isotherms in the interval [245,298] computed by the
SD method and zoom of the mesh near the burner.

of f would cause excessive smearing of this layer. As a conclusion, for Bunsen
flame models, nonlinear crosswind diffusion schemes appear to have a strong
influence on solution quality. A more thorough investigation will be presented
in a forthcoming paper.
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Fig. 15. Comparison of various nonlinear crosswind diffusion operators: solid (21),
dashed (27) and dotted (7); from left to right and top to bottom: a = 30°, a = 20°,
a=10° and a = 1°.

Remark 4.1 Since the theoretical results do not extend to nonlinear problems,
other ad hoc modifications of the nonlinear crosswind diffusion operator may
be considered, as for instance

r(U)| |
\/r(U)2 + (tan ag f+ - VU)?

f(U) = (27)

For pure convection problems, this expression coincides with the crosswind
diffusion operator suggested by Codina when taking o = 45°. In addition, (27)
yields a fairly reasonable approzimation of the theoretical operator (21) as
illustrated in figure 15. A regqularized version of f3 has been implemented for
the Bunsen flame problem and appears to produce results similar to those of
method f5.

5 Conclusions

In this paper, we have derived a new nonlinear crosswind diffusion operator
which guarantees rigorously the DMP in the case of the linear homogeneous
convection-diffusion equation discretized on a strictly acute triangulation with
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linear finite elements. From a numerical viewpoint, the stronger one wishes to
enforce the DMP the more ill behaved the nonlinear discrete equations be-
come. We have thus derived various approximate forms of the new crosswind
diffusion operator suitable for numerical implementation. Numerical results
on linear test problems have shown that the new approximate operators offer
a quite competitive compromise between solution quality and computational
cost with respect to existing methods. Finally, we have applied the new cross-
wind diffusion operator to a strongly nonlinear case: the computation of a
Bunsen flame. In this case the DMP was still satisfied both in domains where
oscillations were due to dominating convection and in domains where the re-
action terms caused numerical oscillations.
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