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eAbstra
tWe investigate nonlinear 
rosswind di�usion in the framework of stabilized Galerkinapproximations of linear and nonlinear model problems. In parti
ular, for linear
onve
tion-di�usion problems, we derive rigorously suÆ
ient 
onditions for a dis-
rete maximum prin
iple to be satis�ed. These 
onditions apply on stri
tly a
utetriangulations for linear simpli
ial �nite elements. The new 
rosswind di�usion op-erator is 
ompared numeri
ally to other dis
ontinuity 
apturing s
hemes whi
h la
ktheoreti
al justi�
ation. The numeri
al results are investigated in terms of bothsolution quality (violation of maximum prin
iple, smearing of internal layers) and
omputational 
ost.Key words: Finite elements, maximum prin
iple, nonlinear di�usion,Petrov-Galerkin method, 
onve
tion-di�usion, 
ombustionPACS: 02.70.Dh, 02.60.Cb, 02.60.Lj, 47.11.+j1 Introdu
tionThe main motivation for this work is the 
omputation of 
hemi
ally rea
t-ing 
ows using stabilized Galerkin methods. The governing equations for su
h
ows 
onsist of the 
ompressible Navier-Stokes equations 
oupled with a sys-tem of 
onve
tion-di�usion-rea
tion equations for the thermo
hemistry. Usu-ally the 
ow is 
onve
tion dominated with very sharp internal layers near
ame fronts. It is well known that the standard Galerkin method is ill suitedfor the 
omputation of su
h 
ows. In order to get a stable numeri
al s
heme, aleast squares perturbation may be added to the standard formulation yieldinga Petrov-Galerkin method like the SUPG method or the streamline di�usionPreprint submitted to Elsevier Preprint 18 May 2001



method [1{4℄. Su
h modi�
ations yield high order methods with reasonablestability properties. However, near sharp fronts, small spurious os
illationsremain and will so until the lo
al Pe
let number is small enough. These over-shoots or undershoots, even if they are relatively small, may have a dramati
e�e
t in 
hemi
ally rea
ting 
ows where it is stringent from both a physi-
al and numeri
al viewpoint to guarantee that all the spe
ies 
on
entrationsremain positive.Be
ause of the 
omplexity of 
hemi
ally rea
ting 
ow equations, the method-ology of this paper is to fo
us on a mu
h simpler problem, a linear homoge-neous stationary 
onve
tion-di�usion equation with non homogeneous bound-ary data. For this model problem, it is well known that a maximum prin
ipleholds, i.e. under some assumptions on the data, the solution attains its max-imum and minimum on the boundary. We will say that an approximationmethod for the 
onve
tion-di�usion equation satis�es a dis
rete maximumprin
iple (DMP in short) if the above property is transferred to the dis
reteproblem. The DMP is not only important for the physi
al reasons mentionedabove but it has also important 
onsequen
es 
on
erning L1 
onvergen
e,pointwise stability estimates, and L2 uniform 
onvergen
e when the di�usion
oeÆ
ient tends to zero [5{7℄. For maximum prin
iples applied to general el-lipti
 partial di�erential equations of se
ond order, we refer to [8℄.The approximation of the 
onve
tion-di�usion equation in the framework ofstabilized Galerkin methods has already been studied extensively in the liter-ature. As a remedy for the presen
e of overshoots or undershoots near sharplayers, various 
rosswind di�usion terms have been proposed, either linear[4,7℄ or nonlinear [2,3,9{11℄. Although extensive numeri
al experimentationhas been reported on a wide range of 
rosswind di�usion operators, a DMPfor stabilized Galerkin methods has only been rigorously established when the
rosswind dissipation is an order one perturbation [12,10℄. In this 
ase, an ap-proximation method with a �rst order isotropi
 vis
osity is re
overed. Thus,establishing a DMP for high order stabilized Galerkin methods is still an openproblem. To this purpose, it seems reasonable to 
onsider nonlinear 
rosswinddi�usion. Indeed, in the framework of unsteady problems, Godunov's theoremestablishes that a linear, monotoni
ity preserving method is at most �rst ordera

urate [13, p. 177℄.The goal of this paper is to study a 
ertain 
lass of methods based on non-linear 
rosswind di�usion for the 
onve
tion-di�usion equation and to derivesuÆ
ient 
onditions that will guarantee a DMP. These 
onditions apply tolinear simpli
ial elements on stri
tly a
ute triangulations. More spe
i�
ally,upon writing the �nite element residual as a sum over the neighboring ele-ments, we prove that it is possible to 
hoose the nonlinear 
rosswind di�usionoperator in su
h a way that all the terms have the same sign if the dis
retesolution presents lo
ally a minimum or a maximum. Using this te
hnique2



of proof for linear problems, one re
overs the 
lassi
al requirement that thesti�ness matrix be diagonally dominant with negative o�-diagonal entries [5℄.For Poisson type problems, this latter property holds for instan
e when usingstri
tly a
ute meshes. The a
ute type 
ondition on the mesh, however, maybe weakened as pointed out for instan
e in [14℄ and more re
ently in [15℄ fortetrahedral triangulations, but these aspe
ts will not be further investigatedhere in the framework of nonlinear problems.In the next se
tion, we provide a brief ba
kground on stabilized Galerkin meth-ods and the DMP. In se
tion three we present our theoreti
al results. Finally,in se
tion four, we present numeri
al results for various linear and nonlin-ear 
rosswind di�usion operators. We 
onsider two model problems : a linear
onve
tion-di�usion equation and a nonlinear Bunsen 
ame. We investigateviolation of the maximum prin
iple, smearing of internal layers and numeri
al
ost.2 Stabilized Galerkin methods and the DMPLet 
 be an open bounded 
onne
ted subset of Rd with a Lips
hitz bound-ary �
. We 
onsider the two-dimensional homogeneous 
onve
tion-di�usionequation �"�u+ � � ru = 0 in 
; (1)u = g on �
; (2)where � 2 L1(
)d is a given 
ow velo
ity �eld, " a di�usion 
oeÆ
ient and gis given in H1=2(�
). We assume that � is solenoidal, i.e. r � � = 0 and that" > 0 so that the above problem is well posed.Hereafter, we will use the notation e� = �j�j where j � j is the Eu
lidean norm.For any fun
tion v, we denote its streamline derivative by v� = e� �rv so that� � rv = j�jv�. Moreover, letting P�? = I� �
�j�j2 be the orthogonal proje
toronto the hyperplane �? along the line R�, we denote the 
rosswind derivativeof any fun
tion v by v�? = P� � rv.Let T be a triangulation of 
 with no overlapping nodes. For any simplexK 2T , we denote hK its diameter, mK its measure and we set h = maxK2T hK .For a fun
tion v 2 L1(
)m (m � 1), jvjK denotes the L1(K)m norm of itsrestri
tion to K.Let V gh and V 0h be the �nite element spa
es de�ned byV gh = fv 2 C0(�
); vjK 2 P1(K); 8K 2 T ; v = Pg on �
g;3



V 0h = fv 2 C0(�
); vjK 2 P1(K); 8K 2 T ; v = 0 on �
g;where P denotes the L2-proje
tion onto the spa
e of pie
ewise aÆne fun
tionson the boundary. We may then formulate the streamline di�usion method for(1)-(2) as follows: �nd U 2 V gh su
h thatasd(U; v) = 0; 8v 2 V 0h ;where the bilinear form asd(U; v) is given byasd(U; v) = ("rU;rv) + (j�jU�; v) + (�U�; v�): (3)Here, (�; �) denotes the L2(
) inner produ
t. The streamline di�usion 
oeÆ-
ient � is 
onstant elementwise with �K proportional to j�jKhK . The linearsystem (3) has positive de�nite symmetri
 part and the dis
rete solution U isunique.It is well known that the streamline di�usion method is a

urate but pro-du
es una

eptable os
illations near sharp layers. As a remedy, an additional
rosswind di�usion term, often 
alled sho
k 
apturing term or dis
ontinuity
apturing term may be added in the formb
d(U ; v) = (�f(U)U�?; v�?) = (�f(U)rU; P� � rv)where f(U) is some fun
tion of the �nite element solution U . The streamline-
rosswind di�usion method may then be formulated as follows: �nd U 2 V ghsu
h that asd(U; v) + b
d(U ; v) = 0; 8v 2 V 0h : (4)Note that f(U) represents the relative amount of 
rosswind di�usion intro-du
ed in the method with respe
t to the streamline di�usion. With f = 0 were
over the usual streamline di�usion method while the 
hoi
e f = 1 yields a�rst order method with isotropi
 di�usion of order h.The question addressed in this paper is how to 
hose f(U) so that a DMP
an be rigorously proven for (4) while retaining high a

ura
y. For the modelproblem (1)-(2), the DMP is formulated as follows:8x 2 
; miny2�
 g(y) � U(x) � maxy2�
 g(y):When the triangulation is stri
tly a
ute, it was proven in [10℄ that upon taking�K = 
K j�jKhK2 and f = 1; (5)where 
K is a 
ertain fun
tion of the angles of K, the method (4) satis�esthe DMP. Thus unphysi
al os
illations are fully wiped out, but at the pri
e ofa

ura
y sin
e the method is only �rst order.4



Di�erent 
hoi
es of f(U) preserving a

ura
y have been proposed in the lit-erature. They may be split into two broad 
ategories. In the �rst one, thefun
tion f does not depend on U so that the dis
rete system retains the linearfeatures of the model problem. Furthermore, �f is usually of order 3=2 withrespe
t to h in order to preserve a

ura
y. For instan
e, the 
hoi
e�f = max(h3=2 � "; 0);was introdu
ed by Johnson et al. [16,4℄ and generalized by Lube [17℄. In amore re
ent 
ontribution, Shih and Elman [7℄ 
onsider�f = �
dh3=2 (6)and the stabilization parameters � and �
d are 
hosen in su
h a way as to giveuniform 
onvergen
e in ".In the se
ond 
ategory, f(U) depends on U so that the dis
rete system isnonlinear regardless of the model problem. In the 
ame problems we are even-tually interested in, this is not a severe penalty sin
e one has already to 
opewith highly nonlinear sour
e terms for the thermo
hemistry. The most re
entf(U) in this 
ategory is the one suggested by Codina [10℄ and given byf(U) = jr(U)jj�j jrU j ; (7)where r(U) is the �nite element residual, i.e. the �nite element solution in-serted in the di�erential equation. Numeri
al experiments showed reasonablenumeri
al behavior of the proposed method but there is no guarantee for aDMP.In the following, we shall restri
t ourselves to the 
ase where the velo
ity �eld� is 
onstant elementwise and 
onsider a parti
ular form of 
rosswind di�usionwhere f(U) only depends on the angle between rU jK and �jK. Upon denotingby �K this angle, the 
rosswind di�usion term now readsb
d(�K ;U; v) = (�f(�K)U�?; v�?): (8)For instan
e, when using linear simpli
ial elements, the 
rosswind di�usionterm proposed by Codina takes on the simple formf(�K) = j 
os �K j:The streamline-
rosswind di�usion method we shall 
onsider is thus: �nd U 2V gh su
h that asd(U; v) + b
d(�K;U; v) = 0; 8v 2 V 0h : (9)5



In the next se
tion, we will obtain an expli
it expression for f su
h that aDMP holds for (9) on stri
tly a
ute meshes.Remark 2.1 The formulation (9) 
an be rewritten in a Petrov-Galerkin form("rU;rv) + (� � rU; v) + (�0� � rU; e� � rv) = 0; 8v 2 V 0h ;where �0 is a renormalized streamline di�usion 
oeÆ
ient given elementwiseby �0K = �Kj�j2K and e� = � + f(�K)(tan �K)�?1 :The ve
tor �?1 is given by the rotation of � with angle +�2 in the plane spannedby rU and �. The above expression results from (U�?; v�?) = 1j�j2 (�?1 �rU; �?1 �rv) and �?1 � rU = tan �K j�jU�. As a result, (9) may also be viewed as aGalerkin/least squares formulation with a modi�ed adve
tion dire
tion for thestabilization term.3 Main resultsIn this se
tion, we �rst present some preliminary results on stri
tly a
ute tri-angulations, then obtain suÆ
ient 
onditions for the DMP with �rst orderisotropi
 vis
osity and �nally prove the main results for the nonlinear formu-lation.3.1 Stri
tly a
ute triangulations and preliminary resultsOn a given simplex K 2 T , we denote by ( K0 ; : : : ;  Kd ) the lo
al shapefun
tions (also termed nodal fun
tions or bary
entri
 
oordinates) and setei = r Kijr Ki j for 0 � i � d. Hereafter we shall assume that the triangulation Tis stri
tly a
ute in the following sense:8K 2 T ; 9�K > 0; max0�i<j�d ( Ki ;  Kj )j Ki j j Kj j � � sin�K:In two spa
e dimensions, �K is simply given by �2 minus the largest angle ofthe triangle K while in three spa
e dimensions one has to 
onsider the largestangle among the six pairs of fa
es of the tetrahedron.Lemma 3.1 Let T be a stri
tly a
ute triangulation, U 2 V gh and K 2 T . Leti0 be the vertex number where U is minimal on K, set rUKk = (rU jK � ei0)ei06



and rUK? = rU jK �rUKk . Then we havejrUKk j � tan�K jrUK? j: (10)In addition, the same result holds for the vertex where U is maximal on K.Proof Without loss of generality, we assume that U is minimal on K atthe vertex i0 = 0. Introdu
e the Gram matrix Gij = (ei; ej), 0 � i; j � d,and the quantities Æi = Ui � U0 � 0 for 1 � i � d. We may then writerU jK = Pdi=1 Æiei, rUKk = (Pdi=1 ÆiG0i)e0 and rUK? = Pdi=1 Æi(ei �G0ie0). Astraightforward 
al
ulation then yieldsjrUKk j2 = dXi=1 Æ2iG20i + 2Xi<j ÆiÆjG0iG0j;and jrUK? j2 = dXi=1 Æ2i (1�G20i) + 2Xi<j ÆiÆj(Gij �G0iG0j):Sin
e the triangulation is stri
tly a
ute, we have G20i � (tan�K)2(1 � G20i).Moreover, the last term in the expression for jrUKk j2 is positive whereas it isnegative for jrUK? j2. The estimate (10) is then easily obtained. 2Corollary 3.2 Keep the assumptions and notation of lemma 3.1. Assumefurther that rU jK 6= 0 and denote by !K;i0 the angle between rU jK and ei0 .If i0 
orresponds to a minimum, we have�2 + �K � !K;i0 � 3�2 � �K; (11)and 
orrespondingly in the 
ase of a maximum��2 + �K � !K;i0 � �2 � �K ; (12)Proof Dire
t 
onsequen
e of lemma 3.1. 2
3.2 DMP for �rst order isotropi
 vis
osityWe present here suÆ
ient 
onditions for the DMP to hold in the 
ase of �rstorder isotropi
 vis
osity. The result is analogous to the one obtained in [10℄but the te
hnique of proof is slightly di�erent.7



Proposition 3.3 Let T be a stri
tly a
ute triangulation. For K 2 T , let
K = j�jKhK2" be the lo
al Pe
let number, set �K = hK min0�i�d jr Ki j and let
K be su
h that 8K 2 T ; 
K � 2(d+ 1) �K sin�K � 1
K : (13)Then the formulation (9) with�K = 
K j�jK hK2 and f = 1; (14)satis�es the DMP.Proof For a given vertex S0 in the triangulation, we denote by V (S0)the set of elements K in T sharing this vertex. Assume that U rea
hes itsminimum on the vertex S0 and that S0 2 
. Let v0 2 V 0h be the global shapefun
tion asso
iated with vertex S0 (i.e. v0(S0) = 1 and v0 vanishes at all theother verti
es of T ). Denote by !K the angle between rU jK and rv0 on K.Then, testing (9) with v = v0 yieldsXK2V (S0)BK � 1d+ 1 
os �K + (CK +DK) 
os!K� = 0; (15)where BK = mK j�jK jrU jK, CK = � jrv0jj�jK and DK = " jrv0jj�jK . From 
orollary3.2, we dedu
e that 
os!K � � sin�K. We thus have(CK +DK) 
os!K � � sin�K(CK +DK)� � sin�K hK jrv0j2 (
K + 1
K )� � sin�K �K2 (
K + 1
K );and we readily see using (13) that all the terms in the sum (15) are negative.Hen
e they all vanish, whi
h implies that rU jK = 0 for all K 2 V (S0). Wethen easily dedu
e that U 
an only rea
h its minimum at the boundary. Theproof for the 
ase of a maximum is similar. 2
Remark 3.4 The 
onstant 
K in (13) explodes as �K ! 0+.8
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onsidered in the proof of theorem 3.5.3.3 DMP for nonlinear 
rosswind di�usionTheorem 3.5 Let T be a stri
tly a
ute triangulation. For K 2 T , let 
K and�K be de�ned as in proposition 3.3, let 
K be su
h that8K 2 T ; 
K � 2(d+ 1)�K sin�K ;and set e
K = 
K
K. Then the formulation (9) with�K = 
K j�jK hK2 ;andf(�K) = max 1 + tan�K tan(~�K=2)1 + tan�K tan ~�K � 1e
K sin�K
os(~�K � �K) sin ~�K ; 0! ; (16)with ~�K = min(b�K ; � � b�K) and b�K = �K mod� satis�es the DMP.Proof (i) Let S0 be a vertex of T in 
 and v0 the 
orresponding globalshape fun
tion. Re
alling that �?1 is given by the rotation of � with angle +�2in the plane spanned by rU and �, we denote by !K the angle between rU jKand rv0, by 'K the angle between � and rv0 and by e'K the angle between�?1 and rv0 (see �gure 1). We may then write
os'K = 
os �K 
os!K + sin �K sin!K 
os �
os e'K = � sin �K 
os!K + 
os �K sin!K 
os �for a 
ertain � 2 [0; 2�℄ and thus
os!K = 
os �K 
os'K � sin �K 
os e'K :9
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Fig. 2. The di�erent domains in the (�K ; 'K) plane for potential overshoot or un-dershoot (diagonal lines have slope �1).Using the above notation, (9) may be 
ast into the formXK2V (S0)B0K (�K sin�K 
os �K + �1 + 1e
K � 
os �K 
os'K� �f + 1e
K � sin �K 
os e'K� = 0; (17)with B0K = mK �K jrU jK jrv0jK and �K = �KhK jrv0jK � 1. In parti
ular, in the2D 
ase we simply have 
os e'K = sin'K and (17) readsXK2V (S0)B0K��K sin�K 
os �K + F(�K ; 'K)� = 0;with F(�K; 'K) =  1 + 1e
K! 
os �K 
os'K �  f + 1e
K! sin �K sin'K:(ii) We now study some properties of the fun
tional F(�K; 'K) with the non-linear 
rosswind di�usion f 
hosen as in (16). Consider the domains D1 to D4in the (�K ; 'K) plane as illustrated on �gure 2. Let us show that if (�K ; 'K)lies in D1 [D2, we have��K sin�K 
os �K + F(�K ; 'K) � 0; (18)10



whereas if (�K; 'K) lies in D3 [D4, we have��K sin�K 
os �K + F(�K; 'K) � 0: (19)Assume �rst that (�K; 'K) 2 D1. Sin
e sin �K sin'K � 0 and 
os �K � 0, asuÆ
ient 
ondition for (18) to hold is that f + 1e
K �  ('K) 
ot �K with ('K) = sin�Ksin'K +  1 + 1e
K! 
ot'K:Sin
e the fun
tion  is de
reasing, a suÆ
ient 
ondition for (18) to hold isthat f + 1e
K �  ��2 + �K � �K� 
ot �K ;and a straightforward 
al
ulation yieldsf � 1 + tan�K tan(�K=2)1 + tan�K tan �K � 1e
K sin�K
os(�K � �K) sin �K :Thus the 
hoi
e (16) guarantees (18). Assume next that (�K ; 'K) 2 D2. Thena straightforward 
al
ulation shows that in order to guarantee (18), it suÆ
esto have f � 1. Indeed, in su
h 
ase, we get��K sin�K 
os �K + F(�K; 'K) � ��K sin�K 
os �K + �1 + 1e
K � 
os(�K + 'K)� ��K sin�K 
os �K � �1 + 1e
K � sin�K� 0:Moreover f � 1 trivially results from (16) so that inequality (18) is alsoestablished for (�K ; 'K) 2 D2. The proof of (19) when (�K ; 'K) lies in D3[D4is similar and is omitted for brevity.(iii) Consider now �K 2 [�2 ; �℄ and the domainsD5 to D8 illustrated in �gure 2.It is readily seen that domains D5 to D8 are re
overed from D1 to D4 usingthe symmetry �K ! � � �K and 'K ! �'K . Sin
e F(�K ; 'K) 
hanges signunder su
h symmetry, we dedu
e that if (�K ; 'K) lies in D5 [D6, we have��K sin�K 
os �K + F(�K; 'K) � 0;whereas if (�K; 'K) lies in D7 [D8, we have��K sin�K 
os �K + F(�K; 'K) � 0:Moreover, if �K 2 [�; 2�℄, we 
onsider the translation �K ! �K � � and'K ! 'K � � whi
h leaves F(�K ; 'K) invariant. To sum up, we have proventhat for all �K 2 [0; 2�℄, letting b�K = �K mod�, we have(b�K; 'K) 2 D1 [D2 [D5 [D6 =) ��K sin�K 
os �K + F(�K ; 'K) � 0;11



and(b�K; 'K) 2 D3 [D4 [D7 [D8 =) ��K sin�K 
os �K + F(�K ; 'K) � 0:(iv) DMP in the 2D 
ase. Assume that U rea
hes its minimum on vertex S0.We then dedu
e from 
orollary 3.2 that for all K 2 V (S0), the pairs (b�K ; 'K)lie in D1 [ D2 [ D5 [ D6. Therefore, from the above inequalities, we dedu
ethat all the elements K 2 V (S0) yield a negative 
ontribution to the sum (17).Thus the dis
rete solution U is ne
essarily 
onstant on V (S0) and from thisproperty it readily follows that miny2
 U(y) � miny2�
 g(y). The 
ase whereU rea
hes its maximum on vertex S0 is treated similarly.(v) DMP for arbitrary spa
e dimension. We noti
e that (17) 
an be re
ast intothe form XK2V (S0)B0K (�K sin�K 
os �K + �1 + 1e
K � 
os!K� (f � 1) sin �K 
os e'K) = 0;whi
h we rewrite for 
onvenien
e asXK2V (S0)B0K�aK + bK + 
K(�)� = 0;where the angle � has been introdu
ed in part (i) of the proof. Re
alling theexpression for 
os e'K, it is readily seen that 
K(�) takes its extreme valuesfor � = 0mod� in whi
h 
ase rv0 lies in the plane spanned by rU and � sothat a 2D situation is re
overed. Assume now that U rea
hes its minimum onvertex S0. Sin
eaK + bK + 
K(�) � aK + bK +max�
(0); 
(�)�;we dedu
e from the 2D 
ase that aK + bK + 
K(�) � 0. Thus all the elementsK 2 V (S0) yield a negative 
ontribution to the sum and the proof is 
ompletedas before. The 
ase of a maximum is treated similarly by noti
ing thataK + bK + 
K(�) � aK + bK +min�
(0); 
(�)� � 0;thanks to the 2D 
ase. 2
Remark 3.6 A straightforward 
al
ulation shows that the nonlinear 
ross-12



wind di�usion operator given by (16) may be equivalently re
ast into the formf(�K) = max0BB�1 + tan�Kr1�j 
os �K j1+j 
os �K j1 + tan�K j tan �K j � 1e
K tan�Kj 
os �K sin �K j+ tan�K sin2 �K ; 01CCA ;(20)the above expression being valid for all �K 2 [0; 2�℄.Corollary 3.7 Keep the notation and assumptions of theorem 3.5 ex
ept forthe fun
tion f(�K) whi
h is now given byf(�K) = 1 + tan�Kr1�j 
os �K j1+j 
os �K j1 + tan�K j tan �K j ; (21)or, equivalently, byf(�K) = jU�jK(jU�jK + tan�KjU�?jK) (jU�jK + jrU jK + tan�K jU�?jK)jrU jK + jU�jK : (22)Then the formulation (9) satis�es the DMP.Proof The equivalen
e between (21) and (22) simply results from therelations jU�jK = j 
os �K j jrU jK and jU�?jK = j sin �K j jrU jK thanks tosome little algebra. On the other hand, the DMP is a dire
t 
onsequen
e ofthe proof of theorem 3.5. 2Remark 3.8 Noti
e that the fun
tion f(�K) given by either (16) or (21) islower than one. Thus the amount of 
rosswind di�usion is always lower thanthat of streamline di�usion. In addition, (16) yields a lower amount of 
ross-wind di�usion with respe
t to (21) sin
e it takes into a

ount the physi
alisotropi
 di�usion through the res
aled Pe
let number e
K.Remark 3.9 It is easily seen that f(�K) ! 0+ when �K ! �2 . Thus for
onve
tion dominated 
ows, the 
rosswind di�usion term vanishes when theresidual goes to zero. This ensures that the formulation (9) retains an a

ura
ysimilar to the original streamline di�usion method.In �gure 3, we illustrate the fun
tion (21) for various values of the parameter�K. The solid line 
orresponds to �K = 30Æ (the largest possible value for �K
orresponding to an equilateral triangle), the dashed line to �K = 10Æ and thedotted line to �K = 1Æ. Noti
e how the well at �K = 90Æ be
omes steeper withde
reasing �K. 13



0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. The nonlinear 
rosswind di�usion operator (21) as a fun
tion of �K fordi�erent values of �K ; solid line: �K = 30Æ, dashed line: �K = 10Æ, dotted line:�K = 1Æ.4 Numeri
al resultsIn this se
tion we dis
uss the numeri
al implementation of the nonlinear 
ross-wind di�usion operator derived from theoreti
al 
onsiderations in the previousse
tion. We 
onsider 
onve
tion dominated 
ows where the lo
al Pe
let num-ber is small on all pra
ti
al meshes. The 
orre
tion due to the 
oeÆ
ient e
Kis not 
onsidered and we fo
us on the nonlinear 
rosswind di�usion operator(22). Its numeri
al performan
e is investigated on various test problems, lin-ear and nonlinear, and 
ompared to that of other methods. The test 
ases we
onsider are the solution of (1)-(2) on stri
tly a
ute and orthogonal mesheswith di�erent 
ow dire
tions and the 
omputation of a Bunsen 
ame withsimple 
hemistry.4.1 Numeri
al implementationThe dis
rete problem (9) yields a nonlinear system of equations of the formF (X) = 0. A numeri
al solution is obtained using a damped Newton's method:given an initial guess X0, a sequen
e of iterates Xn is generated a

ording toJ(Xn)(Xn+1 �Xn) = ��nF (Xn); (23)where J(Xn) denotes the Ja
obian matrix of the nonlinear residual F at Xnand �n the damping parameter. The Ja
obian matrix is evaluated numeri
allyusing perturbed residual evaluations and the linear system (23) is solved nu-meri
ally with a Krylov iterative method with an appropriate pre
onditionner(typi
ally BiCGStab with an ILU pre
onditionner). Convergen
e of Newton'smethod is a
hieved when the normalized Eu
lidean norm of the update ve
tor14



Xn+1 �Xn is less than a pres
ribed toleran
e (typi
ally 10�5).With the 
rosswind di�usion operator given by (22), Newton's method exhibitspoor stability properties and its 
onvergen
e domain is extremely narrow. Su
hdiÆ
ulties stem on the one hand from the presen
e of absolute values whi
hmust be di�erentiated in the Ja
obian matrix and on the other hand from thefa
t that the angle �K is ill de�ned in the regions where rU is very small.In order to enhan
e 
onvergen
e of Newton's method, we introdu
e in thenumeri
al experiments reported below the following two modi�
ations of thenonlinear 
rosswind di�usion operator. First we 
onsider a regularized absolutevalue jxjreg = x tanh( x�reg ), so that (22) be
omesf1(�K ; �reg) = jU�jreg(jU�jreg + tan�KjU�?jreg) (jU�jreg + jrU jK + tan�K jU�?jreg)jrU jK + jU�jreg :(24)Sin
e we treat here a 2D 
ase, we have U�? = �?1 � rU and jrU jK =qU2� + U2�?. In addition, we also introdu
e a 
uto� fun
tion 
(x) = exp(��
utx�2)that \turns o�" the 
rosswind di�usion operator when the gradient of the dis-
rete solution is small, so that (24) be
omesf2(�K ; �reg; �
ut) = f1(�K; �reg) 
(jrU jK): (25)The approximate 
rosswind di�usion operators f1 and f2 do not guarantee aDMP. However, from a numeri
al viewpoint, su
h modi�
ations of the original
rosswind di�usion operator f are attra
tive be
ause the numeri
al 
ost forobtaining a dis
rete solution is mu
h lower. In addition, in our numeri
al exper-iments (see below), we observed only a slight degradation in over/undershootswhen using (24) and (25). Noti
e also that f1 and f2 tend to f when �reg and�
ut tend to zero so that a DMP is re
overed.4.2 Linear test 
ases: 
onve
tion-di�usion problemsWe 
onsider the 
onve
tion-di�usion problem (1)-(2) with di�usion 
oeÆ
ient" = 10�5 and 
onstant 
ow velo
ity of norm j�j = 1 with two di�erent 
owangles. The problem is posed on the unit 2D square. Flow angles and boundary
onditions are shown in �gure 4. The boundary values on the right edge of thesquare step from U = 0 to U = 1 at y = 45 . The Diri
hlet boundary 
onditions
reate an internal layer whi
h is 
onve
ted a
ross the domain and an out
owlayer near the out
ow boundary.For the 
onve
tion-di�usion problem (1)-(2), the quality of the numeri
al so-15
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Fig. 4. Flow angle and boundary 
onditions for test 
ase 1 (left) and 2 (right).lution will be investigated in terms of layer width and over/undershoots. Thelayer width �x will be measured at y = 0:5 (x = 0:5 for test 
ase two) and isde�ned as �x = jx1% � x99%jwhere x1% is the lowest 
oordinate where U(x1%; 0:5) = 0:01 Umax. Similarly,x99% is the largest 
oordinate where U(x99%; 0:5) = 0:99 Umax. Over/undershootswill be measured in per
entage of the maximal variation of the solution,Uvar = Umax � Umin = maxx2�
 U(x)�minx2�
 U(x), a

ording toUshoot = max(jmaxx2
 U(x)� Umaxj; jminx2
 U(x)� minx2�
U(x)j)=Uvar:Numeri
al solutions will be obtained on four di�erent stri
tly a
ute mesheswhi
h are presented in �gure 5. The meshes are Delaunay triangulations ob-tained with the Bowyer-Watson algorithm as des
ribed in [18℄. On all meshes,the majority of the triangles are 
lose to equilateral. The number of degreesof freedom together with the largest and lowest value for � on ea
h mesh arereported in Table 1.We �rst study the impa
t of the regularization parameter �reg on the behaviorof the stabilized method obtained using the approximate 
rosswind di�usionoperator (24). The solution is 
omputed for test 
ase 1 on the se
ond to �nestmesh. Solution quality is reported in Table 2 for di�erent values of �reg. For
omparison purposes, the last line gives the 
orresponding results obtainedwith the standard streamline di�usion method. We noti
e that even for valuesas large as �reg = 100, overshoots amount to less than 1%. Furthermore,os
illations de
rease signi�
antly when �reg tends to zero. For �reg = 10, theovershoots and undershoots are within the 
onvergen
e range of Newton'smethod. Finally, we noti
e that the value of �reg has only a minor in
uen
e onthe layer width, lower values of �reg yielding slightly wider layers sin
e they
orrespond to enhan
ed numeri
al di�usion.16



Fig. 5. Delaunay triangulations of stri
tly a
ute type used for the 
onve
-tion-di�usion problems. nodes min �K max �K42 6.6 29.5135 11.7 29.9503 11.6 30.01925 9.9 30.0Table 1Number of nodes together with the greatest and lowest value of �K for the meshesof �gure 5.We next 
ompare six di�erent 
rosswind di�usion operators, three linear andthree nonlinear. We 
onsider� SD: the standard SD method 
orresponding to � = j�jh2 and f = 0;� O(h): � = j�jh2 and f = 1 yielding a �rst order isotropi
 vis
osity;� O(h3=2): � as before and f = 
h1=2 (
 = 15) 
orresponding to a sho
k 
ap-turing method with high a

ura
y;17



�reg overshoot % undershoot % layer width100 0.97 0.003 0.2650 0.40 0.002 0.2625 0.03 0.001 0.2710 0.002 0.0007 0.295 0.0002 0.0005 0.32SD 16.8 3.4 0.36Table 2Impa
t of regularization parameter �reg on solution quality.� Codina: � as before and f(U) = 
 jU�jj�jjrU j (
 = 0:7) as suggested by [10℄;� f1: the approximate nonlinear 
rosswind di�usion operator (24) with �reg =10;� f2: the approximate nonlinear 
rosswind di�usion operator (25) with �reg =0:8h�1K and �
ut = 5 �10�4h�2K . Both regularization parameters are taken herein mesh dependent form in order to yield the same order of regularizationon all meshes.Numeri
al solutions on the �nest mesh are shown in �gure 6 for test 
ase 1.The O(h) method leads to a dramati
 smearing of the internal layer whilethe O(h3=2) method yields a slightly larger layer than the nonlinear methods.Overshoots obtained on the �nest mesh are presented in �gure 7 while table3 reports the maximum overshoot observed on ea
h of the four meshes. Wenoti
e that our proposed method f1 together with the linear O(h) methodare the only ones that satisfy the DMP, the latter however at the expense ofex
essive smearing. The linear method of order O(h3=2) also performs well withrespe
t to the DMP but the violations tend to in
rease on the �ner meshes,an e�e
t one may also noti
e in the f2 
ase. Finally, we noti
e that for thistest 
ase, Codina's method yields a fair amount of overshoot, indi
ating thatthe nonlinear 
rosswind di�usion whi
h it introdu
es is not large enough. Asa further illustration, we present in �gure 8 for the se
ond to �nest meshand a typi
al numeri
al solution, a 
loud of points obtained as follows. Forea
h element K of the mesh, we plot the point with 
oordinates �K and theminimal amount of 
rosswind di�usion needed to guarantee a DMP. The solid
urve 
orresponds to the theoreti
al 
rosswind di�usion given by (21) whilethe dotted line 
orresponds to Codina's method, i.e. f(�K) = j 
os �K j. Asexpe
ted, all the points lie below the solid 
urve but a fairly large amount ofpoints lies above the dotted 
urve, indi
ating potential violation of the DMP.It is also interesting to assess the numeri
al 
ost of the various 
rosswinddi�usion operators. To this purpose, we present in �gure 9 the layer width as18



Fig. 6. Numeri
al solutions obtained with six di�erent 
rosswind di�usion operatorsfor test 
ase 1 on the �nest mesh of �gure 5; from left to right and top to bottom:SD, O(h), O(h3=2), Codina, f1, f2.

Fig. 7. Overshoots obtained with six di�erent 
rosswind di�usion operators for test
ase 1 on the �nest mesh of �gure 5; from left to right and top to bottom: SD, O(h),O(h3=2), Codina, f1, f2.
19



Nodes SD O(h) O(h3=2) Codina f1 f242 16.5 0 0 4.0 0 0135 17.6 0 0 3.0 0 0.07503 16.8 0 0 2.4 0 0.481925 16.2 0 0.94 2.1 0.03 0.51Table 3Maximum overshoot (%) obtained with six di�erent 
rosswind di�usion operatorsfor test 
ase 1 on the four meshes of �gure 5.
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Fig. 8. Comparison of 
rosswind di�usion operators (21) (solid) and (7) (dotted);all the points must lie below a 
urve to guarantee a DMP for the 
orrespondingmethod; points above a 
urve indi
ate potential violation of the DMP.a fun
tion of linear algebra 
ost normalized by the 
ost asso
iated with theSD method on the �nest mesh. On a given mesh, the linear algebra 
ost isestimated by the total number of BiCGStab iterations in Newton's methodmultiplied by the square of the number of nodes. For a sharp resolution of thelayer width (e.g. 0.2), the method providing the best solution quality, namelyf1, yields a 
omputational 
ost two orders of magnitude larger than that ofthe linear, SD method. In this 
ontext, the approximate operator f2 given by(25) appears to o�er an attra
tive 
ompromise between 
omputational 
ostand solution quality. Indeed, it yields only a minor degradation in terms ofovershoots with respe
t to f1 while de
reasing the 
omputational 
ost by morethan an order of magnitude.Turning next to test 
ase 2, we report in table 4 the maximum overshoot ob-20



-210 -110 010 110 210

-110

010

SD             
O(h)           
O(h^{3/2})     
Theory, reg,  f_1
Theory, reg+cut,  f_2
Codina         

Fig. 9. Layer width as a fun
tion of normalized linear algebra 
ost; test 
ase 1 onstri
tly a
ute meshes.Nodes SD O(h) O(h3=2) Codina f1 f242 13.2 0.00 0.00 2.1 0.00 0.00135 13.8 0.00 0.00 0.56 1.38 0.27503 13.5 0.00 0.17 0.39 0.05 0.331925 13.7 0.00 1.69 0.48 0.13 0.43Table 4Maximum overshoot (%) obtained with six di�erent 
rosswind di�usion operatorsfor test 
ase 2 on the four meshes of �gure 5.tained on the four meshes of �gure 5. The results are similar to those obtainedfor test 
ase 1. We noti
e however that the three nonlinear methods now yieldovershoots of the same order of magnitude on the �ner meshes.We 
on
lude this se
tion by investigating the performan
e of the various meth-ods on meshes violating the stri
tly a
ute 
ondition. Su
h meshes are often
onsidered in pra
ti
e be
ause they are easy to generate sin
e they are oftenasso
iated with an underlying tensorial mesh. We 
onsider here four meshesobtained by splitting into two triangles the square 
ells of a tensor produ
tuniform mesh with respe
tively 5, 10, 20 and 40 nodes per side of the 
om-putational domain. For these meshes, � = 0 and it is therefore impossibleto apply dire
tly the theoreti
al results of se
tion 3. In our numeri
al exper-iments, we set �K = �=6 for all triangles when evaluating the approximate21



Fig. 10. Numeri
al solutions obtained with six di�erent 
rosswind di�usion operatorsfor test 
ase 1 on the �nest mesh violating the stri
tly a
ute 
ondition; from left toright and top to bottom: SD, O(h), O(h3=2), Codina, f1, f2.
rosswind di�usion operators (24) and (25). Noti
e that a lower value for �Kshould in
rease the amount of numeri
al di�usion. We present results for test
ase 1, showing the solutions on the �nest mesh for the di�erent methods in�gure 10 and the lo
ation of the overshoots in �gure 11. In table 5 we re-port the maximum overshoots observed on the four meshes. The linear �rstorder method still satis�es the DMP, at the expense however of an ex
essivelysmeared internal layer. The performan
e of the linear O(h3=2) method dete-riorates substantially on �ner meshes, indi
ating that in some elements the
rosswind di�usion has less and less e�e
t. All the nonlinear methods fail towipe out the overshoots 
ompletely. However, the approximate operators f1and f2 yield relatively better results than Codina's. Finally, in order to as-sess the 
omputational 
ost of the methods, we present in �gure 12 the layerwidth as a fun
tion of linear algebra 
ost normalized as before. The 
ost forobtaining a given resolution of the internal layer is 
omparable for all threenonlinear methods, with f2 slightly less expensive.To sum up, our numeri
al experiments on linear 
onve
tion-di�usion equationsshow that among the three nonlinear methods 
onsidered, the approximateoperator f2 yields the most attra
tive 
ompromise between solution qualityand 
omputational 
ost. In the next se
tion, we investigate the numeri
alperforman
e of the approximate operator f2 on a strongly nonlinear problem.22



Fig. 11. Overshoots obtained with six di�erent 
rosswind di�usion operators for test
ase 1 on the �nest mesh violating the stri
tly a
ute 
ondition; from left to rightand top to bottom: SD, O(h), O(h3=2), Codina, f1, f2.Nodes SD O(h) O(h3=2) Codina f1 f236 12.2 0.00 1.3 5.5 1.8 1.5121 14.3 0.00 4.5 6.5 2.3 2.3441 14.8 0.00 7.1 6.6 2.1 2.41681 14.8 0.00 9.0 6.6 1.7 2.4Table 5Maximum overshoot (%) obtained with six di�erent 
rosswind di�usion operatorsfor test 
ase 1 on four meshes violating the stri
tly a
ute 
ondition.4.3 A nonlinear example: the Bunsen 
ameThe theory underlying the nonlinear 
rosswind di�usion operator (22) doesnot extend to nonlinear problems. A somewhat natural extension of (22) tononlinear problems is to 
onsider the operatorf(U) = jr(U)jK(jr(U)jK + tan�KjU�?jK) (jr(U)jK + jrU jK + tan�KjU�?jK)jrU jK + jr(U)jK ;(26)23
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Fig. 12. Layer width as a fun
tion of normalized linear algebra 
ost; test 
ase 1 onmeshes violating the stri
tly a
ute 
ondition.
coflow coflow
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flame front

Fig. 13. S
hemati
 of the Bunsen 
ame 
on�guration.where r(U) is the nonlinear �nite element residual. This expression presentstwo advantages. First it preserves 
onsisten
y sin
e f(U) vanishes wheneverr(U) = 0. Se
ond, for 
onve
tion dominated 
ows where r(U) ' U�, were
over the theoreti
al expression (22). The operator (26) appears thereforeas a reasonable extension to nonlinear problems of the theory developed in thelinear 
ase. However, its numeri
al performan
e must be 
arefully assessed.As an illustration, we 
onsider a methane/air Bunsen 
ame obtained by 
ow-ing a stoi
hiometri
 methane/air mixture through a 
ylindri
al tube (see �gure13). The fuel tube has radius 4 mm and the in
ow velo
ity pro�le is paraboli
with a peak velo
ity of 1.5 m/s. The 
ame is surrounded by an air 
o
ow withvelo
ity 1 m/s. Rea
tants and air are 
own at room temperature (298 K)so that we expe
t the temperature to be larger than 298 K throughout the24




ame. The governing equations are the 
ompressible Navier-Stokes equations
oupled with a system of 
onve
tion-di�usion-rea
tion equations for the 
hem-i
al spe
ies and the temperature. We treat a simpli�ed rea
tion model withfour 
hemi
al spe
ies. Thus, the total number of dependent unknowns is 8:radial and axial velo
ity 
omponents, pressure, temperature and the massfra
tions of the 4 
hemi
al spe
ies. More details on Bunsen 
ame modelingmay be found for instan
e in [19℄.We 
ompare two numeri
al methods to approximate the 
ame problem:� SD: 
lassi
al streamline di�usion stabilization. Denoting by � a dependentunknown ex
ept the pressure, the streamline di�usion 
oeÆ
ient for the
orresponding governing equation reads � = ��h2 where �� is the 
onve
tionvelo
ity arising in the 
onservation equation for �;� f2: streamline di�usion as above plus nonlinear 
rosswind di�usion for thevelo
ities, temperature and spe
ies. For the velo
ity equations, the 
ross-wind di�usion operator is linear and su
h that �f = O(h3=2). For the tem-perature and spe
ies, the nonlinear 
rosswind di�usion operator (26) is 
on-sidered with the same regularization of absolute values and 
uto� fun
tionsas f2.The 
ame governing equations are dis
retized on a Delaunay triangulation
ontaining about 3300 nodes. Most of the triangles are almost equilateralbut a few triangles do not satisfy the stri
tly a
ute 
ondition. For pra
ti
alpurposes, the expression (26) is implemented using �0K = max(�K ; 10Æ).In table 6 we show the main 
ame 
harateristi
s obtained with and withoutnonlinear 
rosswind di�usion. The SD method yields an important undershootin the temperature �eld thus 
on�rming the need for additional stabilization.The nonlinear 
rosswind di�usion operator su

eeds in removing all the un-dershoot for temperature. The 
ame length (resp. width) is however smallersin
e this quantity de
reases (resp. in
reases) with enhan
ed di�usion.A more detailed investigation of the temperature �eld is presented in �gure14. The temperature undershoot 
omputed by the SD method is quite signi�-
ant and is due to two 
ombined e�e
ts: (i) the 
onve
tive shear layer betweenthe premixed rea
tant 
ow and the air 
o
ow and (ii) the sti� rea
tion termsarising near the burner lip and at the tip of the 
ame 
one. The temperatureundershoot is 
onve
ted downstream up to the out
ow boundary of burntgases. The nonlinear 
rosswind di�usion operator handles both phenomena,yielding a numeri
al solution without undershoot. However, the 
rosswind sta-bilized 
ame is lower and more smeared. We also point out that the 
onve
tivelayer between 
ombustion produ
ts and air is resolved in both 
omputationseven in the upper part of the domain where the mesh is 
oarse. This is possiblethanks to the nonlinear 
hara
ter of the 
rosswind operator. Any linear 
hoi
e25



SD f2Min. temperature (K) 246 298Max. temperature (K) 2172 2232Flame length (
m) 0.91 0.69Flame width (
m) 0.26 0.48Lifto� (
m) 0.02 0.03Table 6Main 
hara
teristi
s of Bunsen 
ame 
omputed with and without nonlinear 
ross-wind di�usion.

Fig. 14. Top: temperature �eld as 
omputed without (left) and with nonlinear 
ross-wind di�usion (right); bottom: isotherms in the interval [245,298℄ 
omputed by theSD method and zoom of the mesh near the burner.of f would 
ause ex
essive smearing of this layer. As a 
on
lusion, for Bunsen
ame models, nonlinear 
rosswind di�usion s
hemes appear to have a strongin
uen
e on solution quality. A more thorough investigation will be presentedin a forth
oming paper. 26
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Fig. 15. Comparison of various nonlinear 
rosswind di�usion operators: solid (21),dashed (27) and dotted (7); from left to right and top to bottom: � = 30Æ, � = 20Æ,� = 10Æ and � = 1Æ.Remark 4.1 Sin
e the theoreti
al results do not extend to nonlinear problems,other ad ho
 modi�
ations of the nonlinear 
rosswind di�usion operator maybe 
onsidered, as for instan
ef3(U) = jr(U)jqr(U)2 + (tan�K�? � rU)2 : (27)For pure 
onve
tion problems, this expression 
oin
ides with the 
rosswinddi�usion operator suggested by Codina when taking � = 45Æ. In addition, (27)yields a fairly reasonable approximation of the theoreti
al operator (21) asillustrated in �gure 15. A regularized version of f3 has been implemented forthe Bunsen 
ame problem and appears to produ
e results similar to those ofmethod f2.5 Con
lusionsIn this paper, we have derived a new nonlinear 
rosswind di�usion operatorwhi
h guarantees rigorously the DMP in the 
ase of the linear homogeneous
onve
tion-di�usion equation dis
retized on a stri
tly a
ute triangulation with27



linear �nite elements. From a numeri
al viewpoint, the stronger one wishes toenfor
e the DMP the more ill behaved the nonlinear dis
rete equations be-
ome. We have thus derived various approximate forms of the new 
rosswinddi�usion operator suitable for numeri
al implementation. Numeri
al resultson linear test problems have shown that the new approximate operators o�era quite 
ompetitive 
ompromise between solution quality and 
omputational
ost with respe
t to existing methods. Finally, we have applied the new 
ross-wind di�usion operator to a strongly nonlinear 
ase: the 
omputation of aBunsen 
ame. In this 
ase the DMP was still satis�ed both in domains whereos
illations were due to dominating 
onve
tion and in domains where the re-a
tion terms 
aused numeri
al os
illations.A
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