
A 
entered se
ond-order �nite volume s
heme for theheterogeneous Maxwell equations in three dimensions onarbitrary unstru
tured meshesSerge Piperno1 Malika Remaki Loula FezouiAbstra
tNous dmontrons une 
ondition de stabilit L2 de type CFL pour un s
hma en volumes �nis du se
ond-ordre propos par Remaki pour la rsolution des quations de Maxwell en domaine temporel, en milieuhtrogne et ave
 des 
onditions aux limites mtalliques ou absorbantes. Nous donnons une 
onditionsuÆsante de stabilit de forme trs gnrale, valide pour des partitions en volumes �nis arbitraires, en deuxou trois dimensions d'espa
e. Des simulations numriques montrent le potentiel de 
ette nouvelle mthode.Un s
hma en volumes-�nis non-stru
turs 
entr et du se
ond-ordre pour larsoluttion des quations de Maxwell tridimensionnelles en milieu htrogneR�esum�eWe prove a suÆ
ient CFL-like 
ondition for the L2 stability of the se
ond-order a

urate �nite volumes
heme proposed by Remaki for the time-domain solution of Maxwell equations in heterogenous media,with metalli
 and absorbing boundary 
onditions. We yield a very general suÆ
ient 
ondition, valid forany �nite volume partition in two and three spa
e dimensions. Numeri
al tests show the potential ofthis original �nite volume s
heme in one, two and three spa
e dimensions for the numeri
al solution ofMaxwell equations in the time domain.
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1 Introdu
tionThe modeling of systems involving ele
tromagneti
 waves has known a kind of "reinvention" [24℄ throughthe resolution of the time-domain Maxwell equations on spa
e grids. Many di�erent types of methodshave been used. Finite Di�eren
e Time-Domain (FDTD) methods (based on Yee's s
heme [30℄ or on im-pli
it time s
hemes [21℄), are eÆ
ient mostly on stru
tured regular grids, whereas �nite element methods,based on unstru
tured meshes, 
an deal with naturally 
omplex geometries [8℄, but indu
e heavy 
om-putations of mass matri
es. Gathering many advantages, Finite Volume Time-Domain (FVTD)methods
an also be based on unstru
tured meshes and get rid of di�erential operators (and �nite element massmatri
es) using Green's formula for the integration over �nite volumes (see [9℄ for a review of numeri
almethods used in Computational Ele
tromagneti
s and [25℄ for an a

urate review of FDTD and FVTDmethods).We are interested here in FVTD methods, as have been developed in the past years, not ne
essarilyon body-�tted 
oordinates [22, 23℄ but on unstru
tured �nite element triangulations [6, 7, 8, 20℄ or ontotally destru
tured meshes [3℄. More pre
isely, we 
onsider a standard �nite volume approximation, i.e.a pie
ewise 
onstant, dis
ontinuous, Galerkin-type �nite element approximation [14℄. As the Maxwellsystem in transient state is hyperboli
 and may be rewritten in 
onservative form, it is natural to usea numeri
al approximation based on 
onservative s
hemes, in a �rst step dire
tly inspired by previousworks in the �eld of Computational Fluid Dynami
s. The 
onvergen
e of �rst-order 
onservative upwinds
hemes has been established for di�erent hyperboli
 equations in any dimension [11℄, and L1 errorestimates of h1=2 (where h is a 
hara
teristi
 mesh size) have been proved re
ently for a general hyperboli
equation [27℄.The stability of �nite volume s
hemes has been investigated sin
e many years, for regular grids usingthe Von Neumann analysis [1℄ or the modi�ed equation analysis [29℄. Both analyses do not deal eitherwith boundary 
onditions or with non regular grids. The 
on
ept of Total Variation Diminishing (TVD)s
heme, proposed by Harten [12℄, leads to L1-stability results for �nite volume s
hemes on non regulargrids only in one spa
e dimension, and 
an be related to the idea of Lo
al Extremum Diminishing(LED) s
heme, proposed by Jameson [13℄, whi
h extends some properties to several dimensions. In aprevious paper [17℄, we have investigated the L2-stability of �rst-order upwind �nite volume s
hemes intwo and three spa
e dimensions on unstru
tured meshes, for the numeri
al solution of the time-domainMaxwell equations. Quasi-optimal suÆ
ient stability 
onditions were obtained on arbitrary �nite-volumepartitions, whi
h were mentioned and a
tually used [3℄, and whi
h extend a general 
ondition derivedfor Friedri
hs' systems in general [28℄.However, upwind s
hemes are very disappointing when used for the numeri
al simulation of ele
-tromagneti
 waves propagation, sin
e the numeri
al di�usion indu
ed by upwinding { ne
essary inComputational Fluid Dynami
s to limit unphysi
al os
illations { makes long-run 
omputations (at leastover several periods) very ina

urate. In this paper, we investigate a new �nite volume method proposedby Remaki [19℄ for the numeri
al solution of Maxwell equations in heterogeneous media. In that hetero-geneous framework, a result of existen
e and uniqueness of the solution is now available [18℄. Remaki'sFVTD method is based on a se
ond-order leap-frog time s
heme and on se
ond-order 
entered numeri
al
uxes. This s
heme yields a original 
onservative �nite volume method, with no numeri
al di�usion.Finite volumes of arbitrary shape are 
onsidered, as well as two types of boundary 
onditions (absorb-ing and metalli
 boundary 
onditions). As done previously for upwind s
hemes on arbitrary meshes, anenergy-type method, drawn from some �nite element proofs [5℄, is used to prove the L2-stability of thes
heme.This paper is organized has follows. In se
tion 2, we introdu
e a pseudo-
onservative form of Maxwellequations in three dimensions for heterogeneous media, We also introdu
e some notations. In se
tion 3,we re
all the 
entered leap-frog se
ond-order �nite-volume s
heme proposed by Remaki for the timedomain solution of Maxwell equations. In se
tion 4, we prove the suÆ
ient stability 
ondition for thiss
heme. This proof is based on the de�nition of a dis
rete ele
tromagneti
 energy. We also prove inthis se
tion that this energy is exa
tly 
onserved if no absorbing boundaries are present. Finally, wepresent in se
tion 5 some numeri
al results in two and three dimensions, both for homogeneous andheterogeneous media. 2



2 The heterogeneous 3D Maxwell equationsWe 
onsider Maxwell equations in three spa
e dimensions (heterogeneous linear isotropi
 medium withno sour
e, with spa
e varying ele
tri
 permittivity �(x) and magneti
 permeability �(x), the lo
al lightspeed 
(x) being given by �(x)�(x)
(x)2 = 1). The ele
tri
 �eld E = t(Ex; Ey; Ez) and the magneti
�eld H = t(Hx; Hy; Hz) verify 8><>: ��E�t = r�H;��H�t = �r� E:These equations are set in a bounded polyhedral domain 
 of R3 . Everywhere on the domain boundary�
, exa
tly one of the two possible boundary 
onditions is set: a metalli
 boundary 
ondition (on �
m,around a metalli
 obje
t or inside a 
avity for example) or an absorbing boundary 
ondition (on �
a,possibly on the outer boundary of the domain �
1, see Figure 1).
Ωm

δΩ

8δΩ δΩa
⇔

Ω

δΩm

RCS of a wing Cavity resonanceFigure 1: Domain 
 and domain boundaryIn three spa
e dimensions, the metalli
 boundary 
ondition writes ~n � E = ~0, with ~n the unitaryoutwards normal. In the following, a �rst-order Silver-Mller absorbing 
ondition is used on the absorbingboundary �
a, whi
h writes ~n�E = �
� ~n� (~n�H) : (1)The Maxwell system 
an be transformed into a pseudo-
onservative form:8><>: ��E�t +Nx �H�x +Ny �H�y +Nz �H�z = 0;��H�t �Nx �E�x �Ny �E�y �Nz �E�z = 0; (2)where the anti-symmetri
 matri
es Nx, Ny and Nz are given byNx = 0� 0 0 00 0 10 �1 0 1A ; Ny = 0� 0 0 �10 0 01 0 0 1A ; Nz = 0� 0 1 0�1 0 00 0 0 1A :For any ve
tor ~n = t(nx; ny; nz), the matrix N~n = nxNx+nyNy +nzNz is anti-symmetri
 and operatesas N~nX = �~n�X .3 The 
entered leap-frog FVTD method3.1 Introdu
tionWe assume we dispose of an arbitrary partition of the domain 
 into a �nite number of 
onne
tedpolyhedral �nite volumes (ea
h one with a �nite number of fa
es). For example, this assumption 
overs3



the two 
ases of vertex-
entered and element-
entered �nite volumes [7℄. For ea
h �nite volume or "
ell"Ti, Vi denotes its volume, and �i and �i are respe
tively the lo
al ele
tri
 permittivity and magneti
permeability of the medium, whi
h are assumed 
onstant in the 
ell Ti.We 
all interfa
e between two �nite volumes their interse
tion, whenever it is a polyhedral sur-fa
e. For ea
h internal interfa
e aij = TiT Tj , we denote by ~nij = t (nijx; nijy ; nijz) the integralover the interfa
e of the unitary normal, oriented from Ti towards Tj . The same de�nitions are ex-tended to boundary interfa
es (in the interse
tion of the domain boundary �
mS �
a with a bound-ary �nite volume), the index j 
orresponding to a �
titious 
ell outside the domain. We denote by~~nij = t(~nijx; ~nijy ; ~nijz) the normalized normals ~~nij = ~nij=k~nijk. For the sake of simpli
ity, we use thenotations Nij = N~nij = k~nijk N~~nij .Finally, we denote by Vi the set of indi
es of the neighboring �nite volumes of the �nite volume Ti(having an interfa
e in 
ommon). We denote by Pi the dis
rete measure of the boundary of a �nitevolume 
ell, whi
h is de�ned by Pi = Xj2Vi k~nijk: (3)3.2 Conservative �nite volume s
hemeThe 
onservative �nite volume s
heme proposed by Remaki [19℄ is written:8>>>><>>>>: �iViEn+1i �Eni�t + Xj2Vi Fn+1/2ij = 0;�iViHn+3/2i �Hn+1/2i�t � Xj2Vi Gn+1ij = 0; (4)where the index i is linked to the 
ell Ti, �t is the time step, Eni (resp. Hn+1/2i ) is an approximate for theaverage of the ele
tri
 (resp. magneti
) �eld over the 
ell Ti at time tn = n �t (resp. tn+1/2 = (n+ 12 ) �t).The word average has to be understood as a spa
e-mean value, whi
h is de�ned for any �eld X andea
h 
ell Ti by Xi = 1Vi ZTi X(s) ds:Finally, Fn+1/2ij and Gn+1ij are 
entered numeri
al 
uxes. The reader 
an 
he
k that the �nite volumes
heme (4) is written as a leap-frog s
heme: numeri
al values Eni and Hn+1/2i are used in numeri
al 
uxesto obtain a new set of numeri
al values En+1i and Hn+3/2i .The numeri
al 
uxes are de�ned as follows:� the 
uxes Fn+1/2ij and Gn+1ij are given for internal interfa
es byFn+1/2ij = Nij Hn+1/2i +Hn+1/2j2 ; Gn+1ij = Nij En+1i +En+1j2 : (5)� for a metalli
 boundary interfa
e, we use the following numeri
al 
uxes:Fn+1/2ij = Nij Hn+1/2i ; Gn+1ij = 0; (6)whi
h 
ould be obtained using a �
titious 
ell with Hn+1/2j = Hn+1/2i and En+1j = �En+1i . The
hoi
e for Gn+1ij is 
learly a se
ond-order approximation of the 
ondition ~n�E = 0 at the interfa
e,whereas the 
hoi
e for Fn+1/2ij is 
lassi
ally used in FDTD methods. For Maxwell equations in one-dimension, this weak treatment leads to an a

urate re
e
tion of in
oming waves.� �nally, for an interfa
e aij on the absorbing boundary 
a, the numeri
al 
uxes Fn+1/2ij and Gn+1ijwill be detailed in the sequel. 4



3.3 Matri
ial propertiesThe following elementary equalities hold:~nji = �~nij ; Nji = �Nij : (7)At the same time, geometri
al properties hold for ea
h 
ell Ti:Xinterfa
es of Ti ~nij = ~0; Xinterfa
es of Ti Nij = 0: (8)4 A suÆ
ient stability 
ondition4.1 Energy estimatesWe aim at giving and proving a ne
essary and/or suÆ
ient 
ondition for the L2-stability of the �nitevolume s
heme (4-5-6) with absorbing boundary 
uxes to be determined. We use the same kind ofenergy approa
h as in [17℄, where a quadrati
 form plays the role of a Lyapunov fun
tion of the wholeset of numeri
al unknowns. We �rst propose the following dis
rete energy, dire
tly derived from theexpression of the total numeri
al ele
tromagneti
 energy:En =Xi Vi ��itEni Eni + �itHn-1/2i Hn+1/2i � : (9)We re
all here that the ele
tromagneti
 energy in the 
ontinuous 
ase veri�es some 
onservation equation(Poynting's theorem) for the Maxwell system with no 
urrent. This theorem states thatZV �E�t dx+ Z�V ~P � ~nds = 0;for any 
losed volume V with a regular boundary �V , where W the ele
tromagneti
 energy (for anisotropi
 medium) and Poynting's ve
tor ~P are respe
tively given byE = 12"E2 + 12�H2; ~P = E �H:For a given metalli
 
avity, sin
e E � n = 0 at the boundary, Poynting's theorem yields that theele
tromagneti
 energy is exa
tly 
onserved in the 
avity. Following this idea, we naturally try to usethe proposed dis
rete energy (9) as a Lyapunov fun
tion.It is absolutely not obvious why the dis
rete energy (9) should be a positive de�nite quadrati
 formof all numeri
al unknowns (let us say, the Eni and the Hn-1/2i ). We noti
e here that the situation isquite di�erent from the proof of the L2-stability of the �rst-order upwind �nite-volume s
heme of [17℄,where the energy was obviously a positive de�nite quadrati
 form of all unknowns. At the same time,the energy proposed here depends expli
itly on the numeri
al s
heme, sin
e it 
an be only written asa quadrati
 form of all unknowns (Eni ; Hn-1/2i ) through the use of the se
ond part of the s
heme (4).Finally, the variation of this dis
rete energy during a time step might lead to tedious 
omputations, asfor the �rst-order upwind s
heme.In the following, we shall prove that the proposed energy, with additional boundary 
orre
tionterms, is both non-in
reasing during a time step and a positive de�nite quadrati
 form of allunknowns under a CFL-like 
ondition on the time-step �t. This will yield the proof that the s
hemeis L2-stable (with the proposed energy) under a stability 
ondition on �t.We propose for the energy variation �E = En+1 � En theLemma 4.1 Using the s
heme (4-5-6), with some absorbing boundary 
uxes Fn+1/2ij and Gn+1ij (to bede�ned), we have the following estimation for �E:�E = �t absorbingXinterfa
es h�t�Eni +En+1i � �Fn+1/2ij �NijHn+1/2i �+ tHn+1/2i (Gnij +Gn+1ij )i :5



Proof: We have:�E = Xi t�Eni +En+1i ���iVi(En+1i �Eni )�+ �iVitHn+1/2i �Hn+3/2i �Hn+1/2i +Hn+1/2i �Hn-1/2i �= �t Xi Xj2Vi h�t�Eni +En+1i �Fn+1/2ij + tHn+1/2i �Gnij +Gn+1ij �i :All terms in the double summation above 
orrespond to �nite volume interfa
es. These terms 
an thenbe distributed on volume interfa
es. We have:�E = �t : �Tinternal + Tmetalli
 + Tabsorbing� ; withTinternal = internalXinterfa
es h�t�Eni +En+1i �Fn+1/2ij � t�Enj +En+1j �Fn+1/2ji+tHn+1/2i (Gnij +Gn+1ij ) + tHn+1/2j (Gnji +Gn+1ji )i ;Tmetalli
 = metalli
Xinterfa
es h�t�Eni +En+1i �Fn+1/2ij + tHn+1/2i (Gnij +Gn+1ij )i ;Tabsorbing = absorbingXinterfa
es h�t�Eni +En+1i �Fn+1/2ij + tHn+1/2i (Gnij +Gn+1ij )i :For the internal interfa
e term, we 
an repla
e the 
entered numeri
al 
uxes by the formula (5). Usingthe identities tNij = �Nij = Nji, we �nd:Tinternal = internalXinterfa
es htHn+1/2i Nij �Eni +En+1i �+ tHn+1/2j Nji �Enj +En+1j �i :For the metalli
 interfa
e term, we 
an repla
e the metalli
 
uxes by the formula (6). We easily �nd:Tmetalli
 = metalli
Xinterfa
es htHn+1/2i Nij �Eni +En+1i �i :Finally, we �nd that many terms vanish, sin
eabsorbingXinterfa
es htHn+1/2i Nij �Eni +En+1i �i+ Tmetalli
 + Tinternal =internalXinterfa
es htHn+1/2i Nij �Eni +En+1i �+ tHn+1/2j Nji �Enj +En+1j �i+metalli
Xinterfa
es htHn+1/2i Nij �Eni +En+1i �i+ absorbingXinterfa
es htHn+1/2i Nij �Eni +En+1i �i =Xi 24Xj2Vi tHn+1/2i Nij �Eni +En+1i �35 =Xi 24tHn+1/2i 0�Xj2Vi Nij1A�Eni +En+1i �35 = 0:We then have�E = �t absorbingXinterfa
es h�t�Eni +En+1i � �Fn+1/2ij �NijHn+1/2i �+ tHn+1/2i (Gnij +Gn+1ij )i ;6



whi
h is exa
tly the result of the lemma.The lemma above shows that the energy variation is only due to absorbing boundaries. One 
onsequen
eis that with only metalli
 boundaries, the dis
rete energy is exa
tly 
onserved. We 
an noti
e that were
over the exa
t 
onservation of the ele
tromagneti
 energy of the 
ontinuous 
ase for a metalli
 
avity.If some absorbing boundary 
onditions are present, in view of the result of the pre
eding lemma, we 
annow propose some 
hoi
es for the absorbing boundary 
uxes Fn+1/2ij and Gn+1ij :8>><>>: Fn+1/2ij =Nij2 Hn+1/2i +r �i�i k~nijk2 EinTij ; with EinTij = Eni � �t~~nij :Eni �~~nij ;Gn+1ij =Nij2 En+1i �r�i�i k~nijk2 Hin+1/2Tij ; with Hin+1/2Tij = Hn+1/2i � �t~~nij :Hn+1/2i �~~nij : (10)In these de�nitions, EinTij and Hin+1/2Tij are respe
tively the tangential (orthogonally to the normal ~nij)parts of the ve
tors Eni and Hn+1/2i . The reader 
an also noti
e that the �elds Eni and Hn+1/2i are availablewhen the boundary 
ux Fn+1/2ij is used, and then that the �elds En+1i and Hn+1/2i are also available whenthe boundary 
ux Gn+1ij is used.The origin of these 
uxes might seem not really obvious. In fa
t, they 
orrespond to upwind 
uxesat the absorbing boundary. More pre
isely, the reader 
an 
he
k that the 
ux Fn+1/2ij proposed above
orresponds to the three ele
tri
 �eld 
omponents of the six-
omponent upwind 
ux M+ij t�Eni ; Hn+1/2i �,where Mij = Axnijx + Aynij y + Aznij z, the matri
es Ax, Ay, Az 
orrespond to the operators in the
onservative form of the Maxwell equations in fun
tion of the 
omplete ele
tromagneti
 �eld t(E;H), andthe supers
ript + 
orresponds to the positive part via diagonalization of a matrix (see [17℄ for 
ompletedetails). Similarly, Gn+1ij 
orresponds to the three magneti
 
omponents of the six-
omponent upwind
ux M+ij t�En+1i ; Hn+1/2i �.The reader 
an noti
e that these 
uxes lead to a genuinely �rst-order treatment of the absorbing
ondition, sin
e the approximation is �rst order both in spa
e (upwind 
uxes) and in time (Fn+1/2ij isbased on Eni and Gn+1ij on Hn+1/2i ). With some time-interpolation, these 
uxes 
an be 
orre
ted to rea
hse
ond-order a

ura
y for Maxwell equations in one dimension. We plan to 
ompare these treatmentsof the absorbing 
ondition with Berenger's Perfe
tly Mat
hed Layers [4℄, whi
h are largely used in
omputational ele
tromagneti
s simulations [2, 10, 16, 15℄. However, our main goal here is to get astability result, and we are a
tually able to rea
h that goal only for these �rst-order a

urate absorbing
uxes, as will be shown in the sequel.With the 
hoi
e (10) for the boundary 
uxes, a value for the variation �E of the dis
rete energy (9)deriving from Lemma 4.1 is given in theLemma 4.2 Using the s
heme (4-5-6-10), we have the following estimation for �E:�E = ��tabsorbingXinterfa
es k~nijk2 �r �i�i tEinTij (EinTij +Ein+1Tij ) +r�i�i tHin+1/2Tij (Hin-1/2Tij +Hin+1/2Tij )�

7



Proof: Lemma 4.1 yields�E = �t absorbingXinterfa
es h�t�Eni +En+1i � �Fn+1/2ij �NijHn+1/2i �+ tHn+1/2i (Gnij +Gn+1ij )i= �t absorbingXinterfa
es �t�Eni +En+1i � Nij2 Hn+1/2i � t�Eni +En+1i �r �i�i k~nijk2 EinTij+ tHn+1/2i Nij2 �Eni +En+1i �� tHn+1/2i r�i�i k~nijk2 (Hin-1/2Tij +Hin+1/2Tij )�= ��tabsorbingXinterfa
es k~nijk2 �r �i�i tEinTij (EinTij +Ein+1Tij ) +r�i�i tHin+1/2Tij (Hin-1/2Tij +Hin+1/2Tij )�whi
h is the result of the lemma.4.2 A 
orre
ted dis
rete energyThe dis
rete energy En proposed in (9) depends expli
itly on the "updating s
heme" for the magneti
�eld, and therefore on the parti
ular 
hoi
e for Gn+1ij . Then it is not really surprising that this energywill have to be 
orre
ted to help us in our proof. Let us then introdu
e a 
orre
ted dis
rete energy Fn,given by Fn = En ��t absorbingXinterfa
es k~nijk4 �r �i�i kEinTijk2 �r�i�i kHin-1/2Tij k2� : (11)The physi
al meaning of this 
orre
ted dis
rete energy is not straightforward. Corre
tion terms areonly related to absorbing boundaries (whi
h means that Fn = En if there are none). The additionalterms probably �nd their origin in the temporal in
onsisten
y of boundary numeri
al 
uxes.We 
an now prove that the dis
rete energy Fn is non-in
reasing, when our 
entered �nite volumes
heme is used. This is summed up in the followingLemma 4.3 Using the s
heme (4-5-6-10), the dis
rete energy Fn given by (9-11) is non-in
reasing.More pre
isely, the energy variation �F = Fn+1 �Fn is given by�F = ��t absorbingXinterfa
es k~nijk24r �i�i 




EinTij +Ein+1Tij2 




2 +r�i�i 




Hin-1/2Tij +Hin+1/2Tij2 




235 � 0:Proof: The proof is elementary. We simply add terms deriving from the 
orre
tion in Fn to the resultof Lemma 4.2 for �E . We have�F = ��tabsorbingXinterfa
es k~nijk2 �r �i�i tEinTij (EinTij +Ein+1Tij ) +r�i�i tHin+1/2Tij (Hin-1/2Tij +Hin+1/2Tij )���t absorbingXinterfa
es k~nijk4 �r �i�i kEin+1Tij k2 �r�i�i kHin+1/2Tij k2�+�t absorbingXinterfa
es k~nijk4 �r �i�i kEinTijk2 �r�i�i kHin-1/2Tij k2�= ��t absorbingXinterfa
es k~nijk24r �i�i 




EinTij +Ein+1Tij2 




2 +r�i�i 




Hin-1/2Tij +Hin+1/2Tij2 




235 :We have proved that the s
heme (4-5-6-10) is su
h that the dis
rete energy Fn is non-in
reasing, hen
eit is bounded by its initial value. We 
an noti
e here that this result is valid independently of the valueof the time step �t. 8



4.3 A suÆ
ient stability 
onditionIn order to prove that our s
heme is stable, we �nally show that the dis
rete energy Fn, under a stability
ondition on �t, is a positive de�nite quadrati
 form of the numeri
al values Hn-1/2i and Eni . This leadsto the result of this paper, taking the form of the following stabilityTheorem 4.1 Using the s
heme (4-5-6-10) on arbitrary polygonal �nite volumes as des
ribed in thisse
tion, the energy Fn de�ned in (11) is a non-in
reasing, positive de�nite quadrati
 form of all un-knowns (Eni ; Hn-1/2i ), and therefore the s
heme is L2-stable, if the time step �t is su
h that8 interfa
e aij ; �t2 < 16 ViVjPiPj min(�j�i; �i�j);(with the 
onvention that j should be repla
ed by i in the above formula for boundary interfa
es aij).Proof: We get ba
k to the de�nition of the dis
rete energy Fn. We haveFn =Xi Vi ��itEni Eni + �itHn-1/2i Hn+1/2i ���tabsorbingXinterfa
es k~nijk4 �r �i�i kEinTijk2 �r�i�i kHin-1/2Tij k2�The magneti
 �eld Hn+1/2i is given by (4) and depends linearly on Hn-1/2i and the 
uxes Gnij . The latterdepend linearly in all 
ases on the Eni and for the absorbing boundary on the Hn-1/2i through (10). Thenit is 
lear that Fn and En as well are quadrati
 forms of the unknowns (Eni ; Hn-1/2i ). We now need alower bound for Fn. We haveEn = Xi Vi ��itEni Eni + �itHn-1/2i Hn+1/2i �= Xi 24Vi�ikEni k2 + �iVikHn-1/2i k2 +�t tHn-1/2i Xj2Vi Gnij35= Xi 24Vi�ikEni k2 + �iVikHn-1/2i k2 +�t tHn-1/2i Xj2Vi �Gnij � Nij2 Eni �35= Xi Xj2Vi �Vi�iPi k~nijkkEni k2 + �iViPi k~nijkkHn-1/2i k2 +�t tHn-1/2i �Gnij � Nij2 Eni �� :In the above expression, the double summation over 
ells and 
ell neighbors 
an be redistributed over
ell interfa
es (internal interfa
es will gather two 
ontributions from neighboring 
ells, whereas boundaryinterfa
es will gather only one inwards 
ontribution). We then haveEn = internalXinterfa
es � Vi�iPi k~nijkkEni k2 + �iViPi k~nijkkHn-1/2i k2 + �t2 tHn-1/2i NijEnj+Vj�jPj k~nijkkEnj k2 + �jVjPj k~nijkkHn-1/2j k2 � �t2 tHn-1/2j NijEni �+metalli
Xinterfa
es �Vi�iPi k~nijkkEni k2 + �iViPi k~nijkkHn-1/2i k2 � �t2 tHn-1/2i NijEni �+absorbingXinterfa
es �Vi�iPi k~nijkkEni k2 + �iViPi k~nijkkHn-1/2i k2 � �t2 k~nijkr�i�i 


Hin-1/2Tij 


2� :9



Using elementary minorations of s
alar produ
ts, the de�nition of the matrix Nij and adding 
orre
tionterms in Fn, we �nd thatFn � internalXinterfa
esk~nijk� �Vj�jPj kEnj k2 + �iViPi kHn-1/2i k2 � �t2 kHn-1/2i kkEnj k�+�Vi�iPi kEni k2 + �jVjPj kHn-1/2j k2 � �t2 kHn-1/2j kkEni k��+metalli
Xinterfa
esk~nijk�Vi�iPi kEni k2 + �iViPi kHn-1/2i k2 � �t2 kEni kkHn-1/2i k�+absorbingXinterfa
esk~nijk�Vi�iPi kEni k2 + �iViPi kHn-1/2i k2 ��t4 r�i�i 


Hin-1/2Tij 


2 ��t4 r �i�i 


EinTij


2�Thus, if all dis
riminants are stri
tly negative, i.e. the time step �t is su
h that8><>: i) 8 internal interfa
e aij ; �t2 < 16 ViVjPiPj min(�j�i; �i�j);ii) 8 metalli
 interfa
e near 
ell Ci; �t < 4 Vi
iPi ;iii) 8 absorbing interfa
e near 
ell Ci; �t < 4 Vi
iPi ;it is 
lear that Fn � 0 and that Fn = 0 ) (8 i; Eni = 0; Hn-1/2i = 0). This 
on
ludes the proof thatunder the 
ondition of Theorem 4.1, the dis
rete energy Fn is a positive de�nite quadrati
 form of allnumeri
al unknowns. It is also non-in
reasing, then bounded and the s
heme is L2-stable.Remark 4.1 Comparison with Yee's s
hemeThe 
omparison of the suÆ
ient stability 
ondition given in Theorem 4.1 with the stability limit obtainedby a Von Neumann analysis of Fourier eigenmodes for a stru
tured orthogonal regular grid yields anestimation of the optimality of this suÆ
ient 
ondition. For an orthogonal Cartesian grid made ofsquare hexahedra �x ��y ��z, Remaki [19℄ has proven that the 
entered �nite volume s
heme (foran homogeneous medium) is stable if and only if
�tr 1�x2 + 1�y2 + 1�z2 � 2;whi
h makes possible the use of a time step twi
e bigger than with Yee's s
heme [30℄ (see [26℄ for a
orre
t proof). For the same Cartesian grid, our general suÆ
ient stability 
ondition is
�t� 1�x + 1�y + 1�z� � 2;whi
h is more restri
tive, but note that it is only suÆ
ient and not ne
essary. Although the new FVTDs
heme with a twi
e �ner grid re
overs the same stability limit and dispersion as Yee's s
heme, the mainproperty of this s
heme is its ability to handle 
omplex geometries using unstru
tured grids. In thesequel, some numeri
al results show the basi
 property of the s
heme, in
luding on unstru
tured gridsaround 
omplex geometries.5 Numeri
al results5.1 A re
tangular waveguide with a 
urrent sour
e (2D)We 
onsider a 
urrent jz over the 
ross se
tion of a re
tangular waveguide at x = 0 (see Figure 2), givenby jz(y) = p2 sin(�y=d) 
os(2�ft), where d = 1m is the waveguide width and f = 0:3Ghz the signalfrequen
y. The grid used here 
orresponds to 12 points per wavelength. Figure 3 and Figure 4 representthe ele
tri
 and the magneti
 �elds produ
ed by the 
urrent jz. We 
an see on Figure 3 the good qualityof the approximate solutions, whi
h 
ompare very well with exa
t solutions.10
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Figure 2: A 
urrent sheet in a re
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Figure 3: Se
tion at y=d2 , Ez (left) and Hy (right). Numeri
al and exa
t solutions.

                                                                                

                                                                                

Figure 4: Numeri
al Ez (above) and Hy (down).5.2 S
attered waves a
ross a diele
tri
 
oated airfoil (2D)We simulate s
attering problems a
ross airfoils in heterogeneous 
ases. We �rst illuminate a 
oatedNACA0012 airfoil pro�le (diele
tri
 layer of thi
kness Æ = 0:1�, with " = 4 and �=1) by a mono
hromati
11



wave lo
ated rightwards (with frequen
y f = 1:2Ghz). The spa
e dis
retization is unstru
tured and
orresponds to 15 points per wavelength (see Figure 5). Figure 6 represents the 
ontours of the s
atteredele
tri
 �eld. We 
an noti
e that the numeri
al solution has no spurious os
illation at the interfa
ebetween the two materials.5.3 S
attered waves a
ross a 
oated 
ylinder (2D)We present here as an example the 
omputed result for the magneti
 �eld s
attered by a model antenna(here an heterogeneous 
ir
ular diele
tri
 
ylinder s
atterer), whi
h is pi
tured on Figure 7.The frequen
yof the in
ident wave 
oming from the right side of the obje
t is f = 0:15Ghz. The radius of the largemetalli
 
ylinder is R = 0:459m, while the radius of small metalli
 
ylindri
al in
lusions is R = 0:025m(the 
enters are regularly spa
ed with an interval of 0:1m) , the thi
kness of the diele
tri
 layer isÆ = 0:1m. The perfe
t diele
tri
 material is de�ned by "r = 2:56 and �r=1. In this test 
ase, the meshis rather 
oarse, sin
e we have only 14 points per wavelength.5.4 Ele
tromagneti
 
ompatibilityWe 
onsider an airfoil's window with a slit as in Figure 8. The relative parameters of the diele
tri
layer are "r = 2 and �r = 1. We 
onsider di�erent imperfe
tly 
ondu
ting materials (di�erent �). Wesend a mono
hromati
 wave with in
iden
e angle � = 90o, and frequen
y f = 0:3Ghz. We 
omputethe wave propagation a
ross the material (Figures 9 and 10). These simulations were produ
ed with anexponential time s
heme for the treatment of the additional loss terms. Depending on the 
ondu
tivity� of the non perfe
t 
ondu
tor, we get di�erent total ele
tri
 �eld with a smooth transition from anapparent perfe
t diele
tri
 (� = 0) to an almost symmetri
 solution (for � = 100, we have almost twoperfe
t 
ondu
tors).5.5 Eigenmodes in a three-dimensional metalli
 
avityWe present here preliminary results for the numeri
al simulation of the time evolution of an eigenmodein a 
ubi
 metalli
 
avity, We 
onsider the (1,1,1) mode. The 
ubi
 
avity is dis
retized by a stru
turedorthogonal regular 
ubes, with twenty 
ells in ea
h dire
tion. We have 
hosen to present on Figure 11 theverti
al 
omponentHz of the magneti
 �eld at the 
enter of the 
avity in fun
tion of the time. Numeri
alresults obtained by Yee's s
heme and our �nite volume s
heme (with 
ubi
 elementary volumes) are
omparable : no numeri
al dissipation is arti�
ially produ
ed and the L2 error with the exa
t solution(pointwise di�eren
es for both grids) is very small. For ea
h numeri
al s
heme, we have plotted theexa
t and approximate value 
orresponding to the 
onsidered degree of freedom. Sin
e Yee's s
hemeinvolves a staggered grid, both "exa
t" 
urves di�er. We 
an observe that, on this parti
ular 
ase of

Figure 5: The unstru
tured dis
retization for the 
oated NACA0012 airfoil (the diele
tri
 material
orresponds to triangles inside the marked line). 12



Figure 6: The s
attered ele
tri
 �elda regular orthogonal grid, the numeri
al dispersions and the 
omputational 
osts of both FVTD andFDTD methods are 
omparable.6 Con
lusionIn this paper, we have proposed a suÆ
ient 
ondition for the stability of the se
ond order �nite volumes
heme proposed by Remaki for the time domain solution of Maxwell equations in two and three di-mensions in heterogenous media. Energy estimates lead us to a suÆ
ient CFL-like stability 
onditionson arbitrary �nite volumes with metalli
 or absorbing boundary 
onditions, for whi
h weak treatmentswith at least 
onsistent numeri
al 
uxes have been used. The stability 
ondition happens to be morerestri
tive { but with a 
omparable limit time step { on regular grids than that obtained with Fourieranalysis. However, this 
ondition is general. Some numeri
al results in two and three dimensionsproved the large potential of the method, for whi
h several works are still ahead: proof of 
onvergen
eand se
ond-order a

ura
y on unstru
tured grids, 
oupling with PML medium, multi-s
ale 
oupling ofmultiple subdomains with di�erent mesh sizes and time steps.Referen
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