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Abstract

Nous dmontrons une condition de stabilit L? de type CFL pour un schma en volumes finis du second-
ordre propos par Remaki pour la rsolution des quations de Maxwell en domaine temporel, en milieu
htrogne et avec des conditions aux limites mtalliques ou absorbantes. Nous donnons une condition
suffisante de stabilit de forme trs gnrale, valide pour des partitions en volumes finis arbitraires, en deux
ou trois dimensions d’espace. Des simulations numriques montrent le potentiel de cette nouvelle mthode.

Un schma en volumes-finis non-structurs centr et du second-ordre pour la
rsoluttion des quations de Maxwell tridimensionnelles en milieu htrogne

Résumé

We prove a sufficient CFL-like condition for the L? stability of the second-order accurate finite volume
scheme proposed by Remaki for the time-domain solution of Maxwell equations in heterogenous media,
with metallic and absorbing boundary conditions. We yield a very general sufficient condition, valid for
any finite volume partition in two and three space dimensions. Numerical tests show the potential of
this original finite volume scheme in one, two and three space dimensions for the numerical solution of
Maxwell equations in the time domain.
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1 Introduction

The modeling of systems involving electromagnetic waves has known a kind of ”reinvention” [24] through
the resolution of the time-domain Maxwell equations on space grids. Many different types of methods
have been used. Finite Difference Time-Domain (FDTD) methods (based on Yee’s scheme [30] or on im-
plicit time schemes [21]), are efficient mostly on structured regular grids, whereas finite element methods,
based on unstructured meshes, can deal with naturally complex geometries [8], but induce heavy com-
putations of mass matrices. Gathering many advantages, Finite Volume Time-Domain (FVTD)methods
can also be based on unstructured meshes and get rid of differential operators (and finite element mass
matrices) using Green’s formula for the integration over finite volumes (see [9] for a review of numerical
methods used in Computational Electromagnetics and [25] for an accurate review of FDTD and FVTD
methods).

We are interested here in FVTD methods, as have been developed in the past years, not necessarily
on body-fitted coordinates [22, 23] but on unstructured finite element triangulations [6, 7, 8, 20] or on
totally destructured meshes [3]. More precisely, we consider a standard finite volume approximation, i.e.
a piecewise constant, discontinuous, Galerkin-type finite element approximation [14]. As the Maxwell
system in transient state is hyperbolic and may be rewritten in conservative form, it is natural to use
a numerical approximation based on conservative schemes, in a first step directly inspired by previous
works in the field of Computational Fluid Dynamics. The convergence of first-order conservative upwind
schemes has been established for different hyperbolic equations in any dimension [11], and L' error
estimates of h'/2 (where h is a characteristic mesh size) have been proved recently for a general hyperbolic
equation [27].

The stability of finite volume schemes has been investigated since many years, for regular grids using
the Von Neumann analysis [1] or the modified equation analysis [29]. Both analyses do not deal either
with boundary conditions or with non regular grids. The concept of Total Variation Diminishing (TVD)
scheme, proposed by Harten [12], leads to L*-stability results for finite volume schemes on non regular
grids only in one space dimension, and can be related to the idea of Local Extremum Diminishing
(LED) scheme, proposed by Jameson [13], which extends some properties to several dimensions. In a
previous paper [17], we have investigated the L?-stability of first-order upwind finite volume schemes in
two and three space dimensions on unstructured meshes, for the numerical solution of the time-domain
Maxwell equations. Quasi-optimal sufficient stability conditions were obtained on arbitrary finite-volume
partitions, which were mentioned and actually used [3], and which extend a general condition derived
for Friedrichs’ systems in general [28].

However, upwind schemes are very disappointing when used for the numerical simulation of elec-
tromagnetic waves propagation, since the numerical diffusion induced by upwinding — necessary in
Computational Fluid Dynamics to limit unphysical oscillations — makes long-run computations (at least
over several periods) very inaccurate. In this paper, we investigate a new finite volume method proposed
by Remaki [19] for the numerical solution of Maxwell equations in heterogeneous media. In that hetero-
geneous framework, a result of existence and uniqueness of the solution is now available [18]. Remaki’s
FVTD method is based on a second-order leap-frog time scheme and on second-order centered numerical
fluxes. This scheme yields a original conservative finite volume method, with no numerical diffusion.
Finite volumes of arbitrary shape are considered, as well as two types of boundary conditions (absorb-
ing and metallic boundary conditions). As done previously for upwind schemes on arbitrary meshes, an
energy-type method, drawn from some finite element proofs [5], is used to prove the L2-stability of the
scheme.

This paper is organized has follows. In section 2, we introduce a pseudo-conservative form of Maxwell
equations in three dimensions for heterogeneous media, We also introduce some notations. In section 3,
we recall the centered leap-frog second-order finite-volume scheme proposed by Remaki for the time
domain solution of Maxwell equations. In section 4, we prove the sufficient stability condition for this
scheme. This proof is based on the definition of a discrete electromagnetic energy. We also prove in
this section that this energy is exactly conserved if no absorbing boundaries are present. Finally, we
present in section 5 some numerical results in two and three dimensions, both for homogeneous and
heterogeneous media.
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2 The heterogeneous 3D Maxwell equations

We consider Maxwell equations in three space dimensions (heterogeneous linear isotropic medium with
no source, with space varying electric permittivity e(z) and magnetic permeability u(x), the local light
speed c(z) being given by e(x)u(z)c(x)? = 1). The electric field E = *(E,, E,, E.) and the magnetic
field H = *(H,, H,, H.) verify

eag—l;{:VxH,
ME:—VXE.

These equations are set in a bounded polyhedral domain 2 of R®. Everywhere on the domain boundary
09, exactly one of the two possible boundary conditions is set: a metallic boundary condition (on 9,
around a metallic object or inside a cavity for example) or an absorbing boundary condition (on 91,
possibly on the outer boundary of the domain 9., see Figure 1).
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Figure 1: Domain ? and domain boundary

In three space dimensions, the metallic boundary condition writes i@ x E = 0, with 7@ the unitary
outwards normal. In the following, a first-order Silver-Mller absorbing condition is used on the absorbing
boundary 9€,, which writes

AXE=—cuix(ixH). (1)

The Maxwell system can be transformed into a pseudo-conservative form:

oF OH OH OH

—+N,—+N,— +N,— = 0,
NN @
— - N,— - N,— —N,— = 0,
K5t ar Yy B
where the anti-symmetric matrices N, N, and N, are given by
0 0 O 0 0 -1 0 1 0
N,=(0 0 1|, Ny=[00 0 , N.=| -1 0 0
0 -1 0 1 0 O 0 0 O

For any vector @7 = (ng,ny,n.), the matrix Nz = n,N, + n,N, + n.N, is anti-symmetric and operates
as Nz X = -7 x X.

3 The centered leap-frog FVTD method

3.1 Introduction

We assume we dispose of an arbitrary partition of the domain 2 into a finite number of connected
polyhedral finite volumes (each one with a finite number of faces). For example, this assumption covers



the two cases of vertex-centered and element-centered finite volumes [7]. For each finite volume or ”cell”
7;, Vi denotes its volume, and €; and p; are respectively the local electric permittivity and magnetic
permeability of the medium, which are assumed constant in the cell 7;.

We call interface between two finite volumes their intersection, whenever it is a polyhedral sur-
face. For each internal interface a;; = 7;(7;, we denote by 7;; = t (Nijz, Mijy,Mij-) the integral
over the interface of the unitary normal, oriented from 7; towards 7;. The same definitions are ex-
tended to boundary interfaces (in the intersection of the domain boundary 0Q,, | 99, with a bound-
ary finite volume), the index j corresponding to a fictitious cell outside the domain. We denote by
ﬁij = t(ﬁijx,ﬁijy,ﬁijz) the normalized normals ﬁij = 1;;/||7:;||. For the sake of simplicity, we use the
notations N;; = Ny, = ||7i5;]| Nz .-

Finally, we denote by V; the set of indices of the neighboring finite volumes of the finite volume 7;
(having an interface in common). We denote by P; the discrete measure of the boundary of a finite
volume cell, which is defined by

Pi= Ity (3)

JEV:

3.2 Conservative finite volume scheme

The conservative finite volume scheme proposed by Remaki [19] is written:

E?H — Ezn n+1/2
Vimex t Z B =0
n+3/2 Hn+1]/’>EVi (4)
H " —H ™7
I VA R SR § : n+l _
,ufv,‘/l At 4 G” - 07
JEVi

where the index i is linked to the cell 7;, At is the time step, E (resp. H'*"?) is an approximate for the
average of the electric (resp. magnetic) field over the cell 7; at time ¢" = n At (resp. t"*2 = (n+3) At).
The word average has to be understood as a space-mean value, which is defined for any field X and

each cell 7; by
1
X; = vi/ﬁX(s) ds.

Finally, /7" and G};*' are centered numerical fluxes. The reader can check that the finite volume

scheme (4) is written as a leap-frog scheme: numerical values E* and H'*"* are used in numerical fluxes
to obtain a new set of numerical values E"*' and H]**".

The numerical fluxes are defined as follows:

e the fluxes )" and G7;"" are given for internal interfaces by

n+41/2 n+41/2
H'"'" + H]

n+1 n+1
BT+ E)
2 ’ ’

n+1/2 _ a7 n+l _ a7
FIHe = N, Gt = N .

e for a metallic boundary interface, we use the following numerical fluxes:
/2 /2 n+l __
Fir]L'H = Ni; HZHI ) Gij =0, (6)

which could be obtained using a fictitious cell with H*"* = H*** and EI*" = —E?*'. The
choice for GZ“ is clearly a second-order approximation of the condition 7 x E = 0 at the interface,

whereas the choice for F};*"* is classically used in FDTD methods. For Maxwell equations in one-
dimension, this weak treatment leads to an accurate reflection of incoming waves.

e finally, for an interface a;; on the absorbing boundary ,, the numerical fluxes FZ-T]L-“/2 and ijﬂ
will be detailed in the sequel.



3.3 Matricial properties

The following elementary equalities hold:
fiji = =fij,  Nji = —Nij. (7)

At the same time, geometrical properties hold for each cell 7;:

> ity =0, > Ny=o. (8)

interfaces of 7; interfaces of 7;

4 A sufficient stability condition

4.1 Energy estimates

We aim at giving and proving a necessary and/or sufficient condition for the L2-stability of the finite
volume scheme (4-5-6) with absorbing boundary fluxes to be determined. We use the same kind of
energy approach as in [17], where a quadratic form plays the role of a Lyapunov function of the whole
set of numerical unknowns. We first propose the following discrete energy, directly derived from the
expression of the total numerical electromagnetic energy:

& =S Vi (& EPED + i HIHI). 9)

We recall here that the electromagnetic energy in the continuous case verifies some conservation equation
(Poynting’s theorem) for the Maxwell system with no current. This theorem states that

/a—gdx—l— 13~ﬁd5:O,
v ot v

for any closed volume V' with a regular boundary 0V, where W the electromagnetic energy (for an
isotropic medium) and Poynting’s vector P are respectively given by

1 ., 1 ., =
€=eB" + JuH?, P=ExH.

For a given metallic cavity, since £ x n = 0 at the boundary, Poynting’s theorem yields that the
electromagnetic energy is exactly conserved in the cavity. Following this idea, we naturally try to use
the proposed discrete energy (9) as a Lyapunov function.

It is absolutely not obvious why the discrete energy (9) should be a positive definite quadratic form
of all numerical unknowns (let us say, the E and the H""?). We notice here that the situation is
quite different from the proof of the L?-stability of the first-order upwind finite-volume scheme of [17],
where the energy was obviously a positive definite quadratic form of all unknowns. At the same time,
the energy proposed here depends explicitly on the numerical scheme, since it can be only written as
a quadratic form of all unknowns (EP, H""*) through the use of the second part of the scheme (4).
Finally, the variation of this discrete energy during a time step might lead to tedious computations, as
for the first-order upwind scheme.

In the following, we shall prove that the proposed energy, with additional boundary correction
terms, is both non-increasing during a time step and a positive definite quadratic form of all
unknowns under a CFL-like condition on the time-step At¢. This will yield the proof that the scheme
is L2-stable (with the proposed energy) under a stability condition on At.

We propose for the energy variation AE = 7T — €™ the

LeEMMA 4.1 Using the scheme (4-5-6), with some absorbing boundary fluzes Fg"w and G?fl (to be
defined), we have the following estimation for AE:

absorbing
AE = At Z I:—t(Eln + E;’L«I»l) (Fi’rjl_+1/2 _ NininH/Q) + 1H;L+1/2(G% + G,Z+1) .

interfaces



Proof: We have:

AE = BT+ B VB - ED)] gl VI (H o -

t n 1 n n n 1
At Z Z [_ (Ei —f—E{” )Fij+1/2 + 3{1 +1/2 (Gij + G;Lj+ )] )
i jEV;
All terms in the double summation above correspond to finite volume interfaces. These terms can then

be distributed on volume interfaces. We have:

AE = At . (Tinterna.l + Tmetallic + Ta.bsorbing) ) with

internal . .
Tinternal = Z |:_ (Eln +Ein+1) FiT]L_+1/2 _ (E]n +E]T_H—1) Fjrz+1/2
interfaces
FHIPE(GL + G + G+ G
metallic .
Tmetallic = Z |:_ (Ezn + Ein+1) FiT]L'+1/2 + ?{?H/Z(G% + G?j-l—l)] )
interfaces

absorbing
t n n 2 o n n
Tabsorbing = Z |:— (El + Ei +1) F;J‘,*l/ + ?Jinﬂ/ (Gij + Gij+1)] )

interfaces

For the internal interface term, we can replace the centered numerical fluxes by the formula (5). Using
the identities *N;; = —N;; = Nj;, we find:

internal
Tinternal = Z I:?{ZHI/QNij (Eln + Ein-l_l) + ?J;Hl/zNji (E]n + E;L+1):| )

interfaces
For the metallic interface term, we can replace the metallic fluxes by the formula (6). We easily find:

metallic
Tyetallic = Z [?I{L“”Nij (Er + Ein+1)] _

interfaces

Finally, we find that many terms vanish, since

absorbing
Z I:?{inHﬂNij (E-Ln + Ez'n-l_l)] + Tetallic + Linternal =
interfaces
internal
S [EreNG (B + B 4 BN (B + B +
interfaces
metallic absorbing
S [Ereng (BB 4 Y [N (B + B =
interfaces interfaces
oD HENG (Br+ EPTY| =0 | HE | YN | (BEHEMY)| =0,
v | JEV: i JEV:

We then have

absorbing
AE=Ar Y [FE B (- NG G + )

interfaces



which is exactly the result of the lemma.

The lemma above shows that the energy variation is only due to absorbing boundaries. One consequence
is that with only metallic boundaries, the discrete energy is exactly conserved. We can notice that we
recover the exact conservation of the electromagnetic energy of the continuous case for a metallic cavity.
If some absorbing boundary conditions are present, in view of the result of the preceding lemma, we can
now propose some choices for the absorbing boundary fluxes F;;*** and G75H:

. Nij 2 € |75 . t> =4
FiPP=—L g 4 & Il i, with B = El — ( nij.Egl) i,
2 pi 2 ’ ’ (10)
N i |74 . t= =
Gr_z_+1: () E_n+1 _ i3 “ l]“ Hinj{-.1/2 with Hinj{-.1/2 — H-n+1/2 _ ni‘.H-n+1/2 Tiii.
17 2 7 € 2 T by 7 J 7 J
3

In these definitions, Ei%j and H/TL:;W are respectively the tangential (orthogonally to the normal 7;;)

parts of the vectors EI* and H!'*"*. The reader can also notice that the fields E* and H'*** are available
when the boundary flux F}*** is used, and then that the fields £/"*' and H["*"* are also available when
the boundary flux G?j"'l is used.

The origin of these fluxes might seem not really obvious. In fact, they correspond to upwind fluxes

at the absorbing boundary. More precisely, the reader can check that the flux FZ-T]L-“/2 proposed above

corresponds to the three electric field components of the six-component upwind flux Mi‘;t(Ein, Hin“/z),
where M;; = Agznij, + Aynijy + A.n;j, the matrices A,, Ay, A, correspond to the operators in the
conservative form of the Maxwell equations in function of the complete electromagnetic field fE, H), and
the superscript T corresponds to the positive part via diagonalization of a matrix (see [17] for complete
details). Similarly, GZ—“ corresponds to the three magnetic components of the six-component upwind
flux M (EPT HPR),

The reader can notice that these fluxes lead to a genuinely first-order treatment of the absorbing
condition, since the approximation is first order both in space (upwind fluxes) and in time (F[]L-Jrl/2 is
based on E}* and GZ—“ on H""*). With some time-interpolation, these fluxes can be corrected to reach
second-order accuracy for Maxwell equations in one dimension. We plan to compare these treatments
of the absorbing condition with Berenger’s Perfectly Matched Layers [4], which are largely used in
computational electromagnetics simulations [2, 10, 16, 15]. However, our main goal here is to get a
stability result, and we are actually able to reach that goal only for these first-order accurate absorbing
fluxes, as will be shown in the sequel.

With the choice (10) for the boundary fluxes, a value for the variation AE of the discrete energy (9)
deriving from Lemma 4.1 is given in the

LeEMMA 4.2 Using the scheme (4-5-6-10), we have the following estimation for AE:

absorbing ||’r_i “ m
— ij € +1 i 2 -
se—-ae Yo Vb [y g v mh v 2 e e
interfaces



Proof: Lemma 4.1 yields

absorbing
AE = A Z [—t(Ein +E@_n+1) (Fir;ﬂ/z _ Nininﬂ/z) _'_?_Iinﬂ/Z(Glnj + G;Lj+1)]
interfaces
absorbing N - ||ﬁ “
= at Y |(Er+EMY SLH (Bp +EMY) S ERES,
interfaces pi =

Ny . [H 15 . .
n tHZLJrl/,_ ] (E:L +E1’;n+1) _ ?Iinﬂ/“ & ||m]|| (H_n_u_ + Higv:/“)]

2 € 2 T
absorbing ||’r_i “ m
_ ij € 4 +1 i / -1y /
= —At Y = { m Eir,; (B, + B )+ =P (H +H@-§‘{;”)]
interfaces

which is the result of the lemma.

4.2 A corrected discrete energy

The discrete energy £" proposed in (9) depends explicitly on the "updating scheme” for the magnetic

field, and therefore on the particular choice for G, Then it is not really surprising that this energy

17
will have to be corrected to help us in our proof. Let us then introduce a corrected discrete energy F",
given by
absorbing

n n ||ﬁ7-|| €i n 2 i n-1212
Fr=Er—At Y 4] " 1Bz, 17 = /= 15217 - (11)

interfaces
The physical meaning of this corrected discrete energy is not straightforward. Correction terms are
only related to absorbing boundaries (which means that F™ = £" if there are none). The additional
terms probably find their origin in the temporal inconsistency of boundary numerical fluxes.
We can now prove that the discrete energy F™ is non-increasing, when our centered finite volume
scheme is used. This is summed up in the following

LeEMMA 4.3 Using the scheme (4-5-6-10), the discrete energy F™ given by (9-11) is non-increasing.
More precisely, the energy variation AF = Frt1 — F" is given by

absorbing n n+1 |2 n-y n+1e||?
o € E’Tiy‘ + ElTij i HlTij + HlTij
AF=-At Y gl | S|P g g T
interfaces

Proof: The proof is elementary. We simply add terms deriving from the correction in " to the result
of Lemma 4.2 for AE. We have

absorbing ||’r_i ”
. € -
AF =-aty, {,/—fﬁ%,( iy + B + B e (HZ-%;HHZ-’TL;”)]
interfaces i €
absorbing “ N ”
s €; 112 i 12
~a 3 WAL [ ]
interfaces
absorbing ||ﬁ ” m
. P - o
vae Y B S g g [ g
interfaces ¢ ¢
H 2 _ 2
absorbing R & Ei%j +E1%+1 R Hi?’i,l-/Z_'_Hig:':—,-l/Z
D S L Y e e L e
. i 2 €5 2
interfaces

We have proved that the scheme (4-5-6-10) is such that the discrete energy F™ is non-increasing, hence
it is bounded by its initial value. We can notice here that this result is valid independently of the value
of the time step At.



4.3 A sufficient stability condition

In order to prove that our scheme is stable, we finally show that the discrete energy F™, under a stability
condition on At, is a positive definite quadratic form of the numerical values H;""* and EP. This leads
to the result of this paper, taking the form of the following stability

THEOREM 4.1 Using the scheme (4-5-6-10) on arbitrary polygonal finite volumes as described in this
section, the energy F™ defined in (11) is a non-increasing, positive definite quadratic form of all un-
knowns (E*, HI"™), and therefore the scheme is L?-stable, if the time step At is such that

Vivy .
Y interface a;;, At < 16 P-P] min(e;p;, €it5),

by

(with the convention that j should be replaced by i in the above formula for boundary interfaces a;j).
Proof: We get back to the definition of the discrete energy ™. We have

absorbing ||ﬁ “ c m

. , - ; ) 2

Fr=>V (GiEnEin +pH] 1/“Hin+l/) —AtY % [ = ||E P - 6—1 15z | ]
v interfaces Hi ¢

The magnetic field H*"* is given by (4) and depends linearly on H;""* and the fluxes G7;. The latter

depend linearly in all cases on the E* and for the absorbing boundary on the H."** through (10). Then
it is clear that " and £ as well are quadratic forms of the unknowns (E", H""*). We now need a
lower bound for 7. We have

£ = SV ()

2 1212 -1/2 n
= Vel BPP + Vil HP2 )+ A EH Y G
p JEV:

. e N;j
= S Vel B 4wVl R+ A S (G?j— p B )
] JEVi

‘/7:67; — n|2 :U/l‘/l - n-1/212 n-1/2 n N'L n
= S X [l + S e+ s (o - e |
i JEV:

In the above expression, the double summation over cells and cell neighbors can be redistributed over
cell interfaces (internal interfaces will gather two contributions from neighboring cells, whereas boundary
interfaces will gather only one inwards contribution). We then have

internal Ve MV 5 At
ASU TN 2 Vi > -1/2 -1/2
e = | e+ e - G
interfaces ¢ ¢
Vie;i Vi ez At .
P IE I + S e~ 5 ey +
J J
metallic
Viei ., Vi en2 At i
S B Im B + S ) - S H NG Er | +
) P; P; 2
interfaces
absorbing
Viei 2, Vi o ez At i a)|?
> | + B - Sl e
interfaces ¢ ¢ -




Using elementary minorations of scalar products, the definition of the matrix N;; and adding correction
terms in F", we find that

internal

— Viej 2 /Jfl‘/l _1212 At -1/2
Foz 3 il (SnEe iR - e
interfaces J ¢ -
Viei o WiV mae2 At
+ (S + B - S e | +
i J
metallic Vie iV, > At
- €1 2 A n- n-
> il | S BN + e - SEr | +
interfaces ’ ’

Vi

i€ i Vi
P;

P;

n||2 -1/2
1B + ==l H

> il

interfaces

Ty

absorbing |:
iT[j

2 At ﬂHn-l/ﬁz_ﬂ Sillgn 2
4 €; 4 i

Thus, if all discriminants are strictly negative, i.e. the time step At is such that

1) V internal interface a;;, At? < 16 % min(e;p;, €ip5),
]

i1) V metallic interface near cell C;, At < 4 CV;;{ ,

1i1) V absorbing interface near cell C;, At <4 %,

it is clear that ™ > 0 and that 7™ =0 = (V i, E" = 0,H" = 0). This concludes the proof that
under the condition of Theorem 4.1, the discrete energy F" is a positive definite quadratic form of all
numerical unknowns. It is also non-increasing, then bounded and the scheme is L2-stable.

REMARK 4.1 Comparison with Yee’s scheme

The comparison of the sufficient stability condition given in Theorem 4.1 with the stability limit obtained
by a Von Neumann analysis of Fourier eigenmodes for a structured orthogonal regular grid yields an
estimation of the optimality of this sufficient condition. For an orthogonal Cartesian grid made of
square hexahedra Az x Ay x Az, Remaki [19] has proven that the centered finite volume scheme (for
an homogeneous medium) is stable if and only if

At ! + ! + ! <2
& 5 -~ ~ 5
Ax?  Ay?  Az?2 T
which makes possible the use of a time step twice bigger than with Yee’s scheme [30] (see [26] for a
correct proof). For the same Cartesian grid, our general sufficient stability condition is

At ! + ! + L <2
& A A N )

Ar Ay  Az) —
which is more restrictive, but note that it is only sufficient and not necessary. Although the new FVTD
scheme with a twice finer grid recovers the same stability limit and dispersion as Yee’s scheme, the main
property of this scheme is its ability to handle complex geometries using unstructured grids. In the

sequel, some numerical results show the basic property of the scheme, including on unstructured grids
around complex geometries.

5 Numerical results

5.1 A rectangular waveguide with a current source (2D)

We consider a current j, over the cross section of a rectangular waveguide at © = 0 (see Figure 2), given
by j.(y) = V2sin(ry/d) cos(2n ft), where d = 1m is the waveguide width and f = 0.3Ghz the signal
frequency. The grid used here corresponds to 12 points per wavelength. Figure 3 and Figure 4 represent
the electric and the magnetic fields produced by the current j,. We can see on Figure 3 the good quality
of the approximate solutions, which compare very well with exact solutions.

10
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Figure 2: A current sheet in a rectangular waveguide
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Figure 3: Section at y=%, E. (left) and H, (right). Numerical and exact solutions.

Figure 4: Numerical E. (above) and H, (down).

5.2 Scattered waves across a dielectric coated airfoil (2D)

We simulate scattering problems across airfoils in heterogeneous cases. We first illuminate a coated
NACAO0012 airfoil profile (dielectric layer of thickness 6 = 0.1\, with ¢ = 4 and p=1) by a monochromatic

11



wave located rightwards (with frequency f = 1.2Ghz). The space discretization is unstructured and
corresponds to 15 points per wavelength (see Figure 5). Figure 6 represents the contours of the scattered
electric field. We can notice that the numerical solution has no spurious oscillation at the interface
between the two materials.

5.3 Scattered waves across a coated cylinder (2D)

We present here as an example the computed result for the magnetic field scattered by a model antenna
(here an heterogeneous circular dielectric cylinder scatterer), which is pictured on Figure 7.The frequency
of the incident wave coming from the right side of the object is f = 0.15Ghz. The radius of the large
metallic cylinder is R = 0.459m, while the radius of small metallic cylindrical inclusions is R = 0.025m
(the centers are regularly spaced with an interval of 0.1m) , the thickness of the dielectric layer is
6 = 0.1m. The perfect dielectric material is defined by ¢, = 2.56 and p,.=1. In this test case, the mesh
is rather coarse, since we have only 14 points per wavelength.

5.4 Electromagnetic compatibility

We consider an airfoil’s window with a slit as in Figure 8. The relative parameters of the dielectric
layer are ¢, = 2 and p,, = 1. We consider different imperfectly conducting materials (different o). We
send a monochromatic wave with incidence angle 8 = 90°, and frequency f = 0.3Ghz. We compute
the wave propagation across the material (Figures 9 and 10). These simulations were produced with an
exponential time scheme for the treatment of the additional loss terms. Depending on the conductivity
o of the non perfect conductor, we get different total electric field with a smooth transition from an
apparent perfect dielectric (¢ = 0) to an almost symmetric solution (for ¢ = 100, we have almost two
perfect conductors).

5.5 Eigenmodes in a three-dimensional metallic cavity

We present here preliminary results for the numerical simulation of the time evolution of an eigenmode
in a cubic metallic cavity, We consider the (1,1,1) mode. The cubic cavity is discretized by a structured
orthogonal regular cubes, with twenty cells in each direction. We have chosen to present on Figure 11 the
vertical component H, of the magnetic field at the center of the cavity in function of the time. Numerical
results obtained by Yee’s scheme and our finite volume scheme (with cubic elementary volumes) are
comparable : no numerical dissipation is artificially produced and the L? error with the exact solution
(pointwise differences for both grids) is very small. For each numerical scheme, we have plotted the
exact and approximate value corresponding to the considered degree of freedom. Since Yee’s scheme
involves a staggered grid, both ”exact” curves differ. We can observe that, on this particular case of

Figure 5: The unstructured discretization for the coated NACAQ0012 airfoil (the dielectric material
corresponds to triangles inside the marked line).
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Figure 6: The scattered electric field

a regular orthogonal grid, the numerical dispersions and the computational costs of both FVTD and
FDTD methods are comparable.

6 Conclusion

In this paper, we have proposed a sufficient condition for the stability of the second order finite volume
scheme proposed by Remaki for the time domain solution of Maxwell equations in two and three di-
mensions in heterogenous media. Energy estimates lead us to a sufficient CFL-like stability conditions
on arbitrary finite volumes with metallic or absorbing boundary conditions, for which weak treatments
with at least consistent numerical fluxes have been used. The stability condition happens to be more
restrictive — but with a comparable limit time step — on regular grids than that obtained with Fourier
analysis. However, this condition is general. Some numerical results in two and three dimensions
proved the large potential of the method, for which several works are still ahead: proof of convergence
and second-order accuracy on unstructured grids, coupling with PML medium, multi-scale coupling of
multiple subdomains with different mesh sizes and time steps.
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