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1 IntrodutionThe modeling of systems involving eletromagneti waves has known a kind of "reinvention" [24℄ throughthe resolution of the time-domain Maxwell equations on spae grids. Many di�erent types of methodshave been used. Finite Di�erene Time-Domain (FDTD) methods (based on Yee's sheme [30℄ or on im-pliit time shemes [21℄), are eÆient mostly on strutured regular grids, whereas �nite element methods,based on unstrutured meshes, an deal with naturally omplex geometries [8℄, but indue heavy om-putations of mass matries. Gathering many advantages, Finite Volume Time-Domain (FVTD)methodsan also be based on unstrutured meshes and get rid of di�erential operators (and �nite element massmatries) using Green's formula for the integration over �nite volumes (see [9℄ for a review of numerialmethods used in Computational Eletromagnetis and [25℄ for an aurate review of FDTD and FVTDmethods).We are interested here in FVTD methods, as have been developed in the past years, not neessarilyon body-�tted oordinates [22, 23℄ but on unstrutured �nite element triangulations [6, 7, 8, 20℄ or ontotally destrutured meshes [3℄. More preisely, we onsider a standard �nite volume approximation, i.e.a pieewise onstant, disontinuous, Galerkin-type �nite element approximation [14℄. As the Maxwellsystem in transient state is hyperboli and may be rewritten in onservative form, it is natural to usea numerial approximation based on onservative shemes, in a �rst step diretly inspired by previousworks in the �eld of Computational Fluid Dynamis. The onvergene of �rst-order onservative upwindshemes has been established for di�erent hyperboli equations in any dimension [11℄, and L1 errorestimates of h1=2 (where h is a harateristi mesh size) have been proved reently for a general hyperboliequation [27℄.The stability of �nite volume shemes has been investigated sine many years, for regular grids usingthe Von Neumann analysis [1℄ or the modi�ed equation analysis [29℄. Both analyses do not deal eitherwith boundary onditions or with non regular grids. The onept of Total Variation Diminishing (TVD)sheme, proposed by Harten [12℄, leads to L1-stability results for �nite volume shemes on non regulargrids only in one spae dimension, and an be related to the idea of Loal Extremum Diminishing(LED) sheme, proposed by Jameson [13℄, whih extends some properties to several dimensions. In aprevious paper [17℄, we have investigated the L2-stability of �rst-order upwind �nite volume shemes intwo and three spae dimensions on unstrutured meshes, for the numerial solution of the time-domainMaxwell equations. Quasi-optimal suÆient stability onditions were obtained on arbitrary �nite-volumepartitions, whih were mentioned and atually used [3℄, and whih extend a general ondition derivedfor Friedrihs' systems in general [28℄.However, upwind shemes are very disappointing when used for the numerial simulation of ele-tromagneti waves propagation, sine the numerial di�usion indued by upwinding { neessary inComputational Fluid Dynamis to limit unphysial osillations { makes long-run omputations (at leastover several periods) very inaurate. In this paper, we investigate a new �nite volume method proposedby Remaki [19℄ for the numerial solution of Maxwell equations in heterogeneous media. In that hetero-geneous framework, a result of existene and uniqueness of the solution is now available [18℄. Remaki'sFVTD method is based on a seond-order leap-frog time sheme and on seond-order entered numerialuxes. This sheme yields a original onservative �nite volume method, with no numerial di�usion.Finite volumes of arbitrary shape are onsidered, as well as two types of boundary onditions (absorb-ing and metalli boundary onditions). As done previously for upwind shemes on arbitrary meshes, anenergy-type method, drawn from some �nite element proofs [5℄, is used to prove the L2-stability of thesheme.This paper is organized has follows. In setion 2, we introdue a pseudo-onservative form of Maxwellequations in three dimensions for heterogeneous media, We also introdue some notations. In setion 3,we reall the entered leap-frog seond-order �nite-volume sheme proposed by Remaki for the timedomain solution of Maxwell equations. In setion 4, we prove the suÆient stability ondition for thissheme. This proof is based on the de�nition of a disrete eletromagneti energy. We also prove inthis setion that this energy is exatly onserved if no absorbing boundaries are present. Finally, wepresent in setion 5 some numerial results in two and three dimensions, both for homogeneous andheterogeneous media. 2



2 The heterogeneous 3D Maxwell equationsWe onsider Maxwell equations in three spae dimensions (heterogeneous linear isotropi medium withno soure, with spae varying eletri permittivity �(x) and magneti permeability �(x), the loal lightspeed (x) being given by �(x)�(x)(x)2 = 1). The eletri �eld E = t(Ex; Ey; Ez) and the magneti�eld H = t(Hx; Hy; Hz) verify 8><>: ��E�t = r�H;��H�t = �r� E:These equations are set in a bounded polyhedral domain 
 of R3 . Everywhere on the domain boundary�
, exatly one of the two possible boundary onditions is set: a metalli boundary ondition (on �
m,around a metalli objet or inside a avity for example) or an absorbing boundary ondition (on �
a,possibly on the outer boundary of the domain �
1, see Figure 1).
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RCS of a wing Cavity resonanceFigure 1: Domain 
 and domain boundaryIn three spae dimensions, the metalli boundary ondition writes ~n � E = ~0, with ~n the unitaryoutwards normal. In the following, a �rst-order Silver-Mller absorbing ondition is used on the absorbingboundary �
a, whih writes ~n�E = �� ~n� (~n�H) : (1)The Maxwell system an be transformed into a pseudo-onservative form:8><>: ��E�t +Nx �H�x +Ny �H�y +Nz �H�z = 0;��H�t �Nx �E�x �Ny �E�y �Nz �E�z = 0; (2)where the anti-symmetri matries Nx, Ny and Nz are given byNx = 0� 0 0 00 0 10 �1 0 1A ; Ny = 0� 0 0 �10 0 01 0 0 1A ; Nz = 0� 0 1 0�1 0 00 0 0 1A :For any vetor ~n = t(nx; ny; nz), the matrix N~n = nxNx+nyNy +nzNz is anti-symmetri and operatesas N~nX = �~n�X .3 The entered leap-frog FVTD method3.1 IntrodutionWe assume we dispose of an arbitrary partition of the domain 
 into a �nite number of onnetedpolyhedral �nite volumes (eah one with a �nite number of faes). For example, this assumption overs3



the two ases of vertex-entered and element-entered �nite volumes [7℄. For eah �nite volume or "ell"Ti, Vi denotes its volume, and �i and �i are respetively the loal eletri permittivity and magnetipermeability of the medium, whih are assumed onstant in the ell Ti.We all interfae between two �nite volumes their intersetion, whenever it is a polyhedral sur-fae. For eah internal interfae aij = TiT Tj , we denote by ~nij = t (nijx; nijy ; nijz) the integralover the interfae of the unitary normal, oriented from Ti towards Tj . The same de�nitions are ex-tended to boundary interfaes (in the intersetion of the domain boundary �
mS �
a with a bound-ary �nite volume), the index j orresponding to a �titious ell outside the domain. We denote by~~nij = t(~nijx; ~nijy ; ~nijz) the normalized normals ~~nij = ~nij=k~nijk. For the sake of simpliity, we use thenotations Nij = N~nij = k~nijk N~~nij .Finally, we denote by Vi the set of indies of the neighboring �nite volumes of the �nite volume Ti(having an interfae in ommon). We denote by Pi the disrete measure of the boundary of a �nitevolume ell, whih is de�ned by Pi = Xj2Vi k~nijk: (3)3.2 Conservative �nite volume shemeThe onservative �nite volume sheme proposed by Remaki [19℄ is written:8>>>><>>>>: �iViEn+1i �Eni�t + Xj2Vi Fn+1/2ij = 0;�iViHn+3/2i �Hn+1/2i�t � Xj2Vi Gn+1ij = 0; (4)where the index i is linked to the ell Ti, �t is the time step, Eni (resp. Hn+1/2i ) is an approximate for theaverage of the eletri (resp. magneti) �eld over the ell Ti at time tn = n �t (resp. tn+1/2 = (n+ 12 ) �t).The word average has to be understood as a spae-mean value, whih is de�ned for any �eld X andeah ell Ti by Xi = 1Vi ZTi X(s) ds:Finally, Fn+1/2ij and Gn+1ij are entered numerial uxes. The reader an hek that the �nite volumesheme (4) is written as a leap-frog sheme: numerial values Eni and Hn+1/2i are used in numerial uxesto obtain a new set of numerial values En+1i and Hn+3/2i .The numerial uxes are de�ned as follows:� the uxes Fn+1/2ij and Gn+1ij are given for internal interfaes byFn+1/2ij = Nij Hn+1/2i +Hn+1/2j2 ; Gn+1ij = Nij En+1i +En+1j2 : (5)� for a metalli boundary interfae, we use the following numerial uxes:Fn+1/2ij = Nij Hn+1/2i ; Gn+1ij = 0; (6)whih ould be obtained using a �titious ell with Hn+1/2j = Hn+1/2i and En+1j = �En+1i . Thehoie for Gn+1ij is learly a seond-order approximation of the ondition ~n�E = 0 at the interfae,whereas the hoie for Fn+1/2ij is lassially used in FDTD methods. For Maxwell equations in one-dimension, this weak treatment leads to an aurate reetion of inoming waves.� �nally, for an interfae aij on the absorbing boundary 
a, the numerial uxes Fn+1/2ij and Gn+1ijwill be detailed in the sequel. 4



3.3 Matriial propertiesThe following elementary equalities hold:~nji = �~nij ; Nji = �Nij : (7)At the same time, geometrial properties hold for eah ell Ti:Xinterfaes of Ti ~nij = ~0; Xinterfaes of Ti Nij = 0: (8)4 A suÆient stability ondition4.1 Energy estimatesWe aim at giving and proving a neessary and/or suÆient ondition for the L2-stability of the �nitevolume sheme (4-5-6) with absorbing boundary uxes to be determined. We use the same kind ofenergy approah as in [17℄, where a quadrati form plays the role of a Lyapunov funtion of the wholeset of numerial unknowns. We �rst propose the following disrete energy, diretly derived from theexpression of the total numerial eletromagneti energy:En =Xi Vi ��itEni Eni + �itHn-1/2i Hn+1/2i � : (9)We reall here that the eletromagneti energy in the ontinuous ase veri�es some onservation equation(Poynting's theorem) for the Maxwell system with no urrent. This theorem states thatZV �E�t dx+ Z�V ~P � ~nds = 0;for any losed volume V with a regular boundary �V , where W the eletromagneti energy (for anisotropi medium) and Poynting's vetor ~P are respetively given byE = 12"E2 + 12�H2; ~P = E �H:For a given metalli avity, sine E � n = 0 at the boundary, Poynting's theorem yields that theeletromagneti energy is exatly onserved in the avity. Following this idea, we naturally try to usethe proposed disrete energy (9) as a Lyapunov funtion.It is absolutely not obvious why the disrete energy (9) should be a positive de�nite quadrati formof all numerial unknowns (let us say, the Eni and the Hn-1/2i ). We notie here that the situation isquite di�erent from the proof of the L2-stability of the �rst-order upwind �nite-volume sheme of [17℄,where the energy was obviously a positive de�nite quadrati form of all unknowns. At the same time,the energy proposed here depends expliitly on the numerial sheme, sine it an be only written asa quadrati form of all unknowns (Eni ; Hn-1/2i ) through the use of the seond part of the sheme (4).Finally, the variation of this disrete energy during a time step might lead to tedious omputations, asfor the �rst-order upwind sheme.In the following, we shall prove that the proposed energy, with additional boundary orretionterms, is both non-inreasing during a time step and a positive de�nite quadrati form of allunknowns under a CFL-like ondition on the time-step �t. This will yield the proof that the shemeis L2-stable (with the proposed energy) under a stability ondition on �t.We propose for the energy variation �E = En+1 � En theLemma 4.1 Using the sheme (4-5-6), with some absorbing boundary uxes Fn+1/2ij and Gn+1ij (to bede�ned), we have the following estimation for �E:�E = �t absorbingXinterfaes h�t�Eni +En+1i � �Fn+1/2ij �NijHn+1/2i �+ tHn+1/2i (Gnij +Gn+1ij )i :5



Proof: We have:�E = Xi t�Eni +En+1i ���iVi(En+1i �Eni )�+ �iVitHn+1/2i �Hn+3/2i �Hn+1/2i +Hn+1/2i �Hn-1/2i �= �t Xi Xj2Vi h�t�Eni +En+1i �Fn+1/2ij + tHn+1/2i �Gnij +Gn+1ij �i :All terms in the double summation above orrespond to �nite volume interfaes. These terms an thenbe distributed on volume interfaes. We have:�E = �t : �Tinternal + Tmetalli + Tabsorbing� ; withTinternal = internalXinterfaes h�t�Eni +En+1i �Fn+1/2ij � t�Enj +En+1j �Fn+1/2ji+tHn+1/2i (Gnij +Gn+1ij ) + tHn+1/2j (Gnji +Gn+1ji )i ;Tmetalli = metalliXinterfaes h�t�Eni +En+1i �Fn+1/2ij + tHn+1/2i (Gnij +Gn+1ij )i ;Tabsorbing = absorbingXinterfaes h�t�Eni +En+1i �Fn+1/2ij + tHn+1/2i (Gnij +Gn+1ij )i :For the internal interfae term, we an replae the entered numerial uxes by the formula (5). Usingthe identities tNij = �Nij = Nji, we �nd:Tinternal = internalXinterfaes htHn+1/2i Nij �Eni +En+1i �+ tHn+1/2j Nji �Enj +En+1j �i :For the metalli interfae term, we an replae the metalli uxes by the formula (6). We easily �nd:Tmetalli = metalliXinterfaes htHn+1/2i Nij �Eni +En+1i �i :Finally, we �nd that many terms vanish, sineabsorbingXinterfaes htHn+1/2i Nij �Eni +En+1i �i+ Tmetalli + Tinternal =internalXinterfaes htHn+1/2i Nij �Eni +En+1i �+ tHn+1/2j Nji �Enj +En+1j �i+metalliXinterfaes htHn+1/2i Nij �Eni +En+1i �i+ absorbingXinterfaes htHn+1/2i Nij �Eni +En+1i �i =Xi 24Xj2Vi tHn+1/2i Nij �Eni +En+1i �35 =Xi 24tHn+1/2i 0�Xj2Vi Nij1A�Eni +En+1i �35 = 0:We then have�E = �t absorbingXinterfaes h�t�Eni +En+1i � �Fn+1/2ij �NijHn+1/2i �+ tHn+1/2i (Gnij +Gn+1ij )i ;6



whih is exatly the result of the lemma.The lemma above shows that the energy variation is only due to absorbing boundaries. One onsequeneis that with only metalli boundaries, the disrete energy is exatly onserved. We an notie that wereover the exat onservation of the eletromagneti energy of the ontinuous ase for a metalli avity.If some absorbing boundary onditions are present, in view of the result of the preeding lemma, we annow propose some hoies for the absorbing boundary uxes Fn+1/2ij and Gn+1ij :8>><>>: Fn+1/2ij =Nij2 Hn+1/2i +r �i�i k~nijk2 EinTij ; with EinTij = Eni � �t~~nij :Eni �~~nij ;Gn+1ij =Nij2 En+1i �r�i�i k~nijk2 Hin+1/2Tij ; with Hin+1/2Tij = Hn+1/2i � �t~~nij :Hn+1/2i �~~nij : (10)In these de�nitions, EinTij and Hin+1/2Tij are respetively the tangential (orthogonally to the normal ~nij)parts of the vetors Eni and Hn+1/2i . The reader an also notie that the �elds Eni and Hn+1/2i are availablewhen the boundary ux Fn+1/2ij is used, and then that the �elds En+1i and Hn+1/2i are also available whenthe boundary ux Gn+1ij is used.The origin of these uxes might seem not really obvious. In fat, they orrespond to upwind uxesat the absorbing boundary. More preisely, the reader an hek that the ux Fn+1/2ij proposed aboveorresponds to the three eletri �eld omponents of the six-omponent upwind ux M+ij t�Eni ; Hn+1/2i �,where Mij = Axnijx + Aynij y + Aznij z, the matries Ax, Ay, Az orrespond to the operators in theonservative form of the Maxwell equations in funtion of the omplete eletromagneti �eld t(E;H), andthe supersript + orresponds to the positive part via diagonalization of a matrix (see [17℄ for ompletedetails). Similarly, Gn+1ij orresponds to the three magneti omponents of the six-omponent upwindux M+ij t�En+1i ; Hn+1/2i �.The reader an notie that these uxes lead to a genuinely �rst-order treatment of the absorbingondition, sine the approximation is �rst order both in spae (upwind uxes) and in time (Fn+1/2ij isbased on Eni and Gn+1ij on Hn+1/2i ). With some time-interpolation, these uxes an be orreted to reahseond-order auray for Maxwell equations in one dimension. We plan to ompare these treatmentsof the absorbing ondition with Berenger's Perfetly Mathed Layers [4℄, whih are largely used inomputational eletromagnetis simulations [2, 10, 16, 15℄. However, our main goal here is to get astability result, and we are atually able to reah that goal only for these �rst-order aurate absorbinguxes, as will be shown in the sequel.With the hoie (10) for the boundary uxes, a value for the variation �E of the disrete energy (9)deriving from Lemma 4.1 is given in theLemma 4.2 Using the sheme (4-5-6-10), we have the following estimation for �E:�E = ��tabsorbingXinterfaes k~nijk2 �r �i�i tEinTij (EinTij +Ein+1Tij ) +r�i�i tHin+1/2Tij (Hin-1/2Tij +Hin+1/2Tij )�
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Proof: Lemma 4.1 yields�E = �t absorbingXinterfaes h�t�Eni +En+1i � �Fn+1/2ij �NijHn+1/2i �+ tHn+1/2i (Gnij +Gn+1ij )i= �t absorbingXinterfaes �t�Eni +En+1i � Nij2 Hn+1/2i � t�Eni +En+1i �r �i�i k~nijk2 EinTij+ tHn+1/2i Nij2 �Eni +En+1i �� tHn+1/2i r�i�i k~nijk2 (Hin-1/2Tij +Hin+1/2Tij )�= ��tabsorbingXinterfaes k~nijk2 �r �i�i tEinTij (EinTij +Ein+1Tij ) +r�i�i tHin+1/2Tij (Hin-1/2Tij +Hin+1/2Tij )�whih is the result of the lemma.4.2 A orreted disrete energyThe disrete energy En proposed in (9) depends expliitly on the "updating sheme" for the magneti�eld, and therefore on the partiular hoie for Gn+1ij . Then it is not really surprising that this energywill have to be orreted to help us in our proof. Let us then introdue a orreted disrete energy Fn,given by Fn = En ��t absorbingXinterfaes k~nijk4 �r �i�i kEinTijk2 �r�i�i kHin-1/2Tij k2� : (11)The physial meaning of this orreted disrete energy is not straightforward. Corretion terms areonly related to absorbing boundaries (whih means that Fn = En if there are none). The additionalterms probably �nd their origin in the temporal inonsisteny of boundary numerial uxes.We an now prove that the disrete energy Fn is non-inreasing, when our entered �nite volumesheme is used. This is summed up in the followingLemma 4.3 Using the sheme (4-5-6-10), the disrete energy Fn given by (9-11) is non-inreasing.More preisely, the energy variation �F = Fn+1 �Fn is given by�F = ��t absorbingXinterfaes k~nijk24r �i�i EinTij +Ein+1Tij2 2 +r�i�i Hin-1/2Tij +Hin+1/2Tij2 235 � 0:Proof: The proof is elementary. We simply add terms deriving from the orretion in Fn to the resultof Lemma 4.2 for �E . We have�F = ��tabsorbingXinterfaes k~nijk2 �r �i�i tEinTij (EinTij +Ein+1Tij ) +r�i�i tHin+1/2Tij (Hin-1/2Tij +Hin+1/2Tij )���t absorbingXinterfaes k~nijk4 �r �i�i kEin+1Tij k2 �r�i�i kHin+1/2Tij k2�+�t absorbingXinterfaes k~nijk4 �r �i�i kEinTijk2 �r�i�i kHin-1/2Tij k2�= ��t absorbingXinterfaes k~nijk24r �i�i EinTij +Ein+1Tij2 2 +r�i�i Hin-1/2Tij +Hin+1/2Tij2 235 :We have proved that the sheme (4-5-6-10) is suh that the disrete energy Fn is non-inreasing, heneit is bounded by its initial value. We an notie here that this result is valid independently of the valueof the time step �t. 8



4.3 A suÆient stability onditionIn order to prove that our sheme is stable, we �nally show that the disrete energy Fn, under a stabilityondition on �t, is a positive de�nite quadrati form of the numerial values Hn-1/2i and Eni . This leadsto the result of this paper, taking the form of the following stabilityTheorem 4.1 Using the sheme (4-5-6-10) on arbitrary polygonal �nite volumes as desribed in thissetion, the energy Fn de�ned in (11) is a non-inreasing, positive de�nite quadrati form of all un-knowns (Eni ; Hn-1/2i ), and therefore the sheme is L2-stable, if the time step �t is suh that8 interfae aij ; �t2 < 16 ViVjPiPj min(�j�i; �i�j);(with the onvention that j should be replaed by i in the above formula for boundary interfaes aij).Proof: We get bak to the de�nition of the disrete energy Fn. We haveFn =Xi Vi ��itEni Eni + �itHn-1/2i Hn+1/2i ���tabsorbingXinterfaes k~nijk4 �r �i�i kEinTijk2 �r�i�i kHin-1/2Tij k2�The magneti �eld Hn+1/2i is given by (4) and depends linearly on Hn-1/2i and the uxes Gnij . The latterdepend linearly in all ases on the Eni and for the absorbing boundary on the Hn-1/2i through (10). Thenit is lear that Fn and En as well are quadrati forms of the unknowns (Eni ; Hn-1/2i ). We now need alower bound for Fn. We haveEn = Xi Vi ��itEni Eni + �itHn-1/2i Hn+1/2i �= Xi 24Vi�ikEni k2 + �iVikHn-1/2i k2 +�t tHn-1/2i Xj2Vi Gnij35= Xi 24Vi�ikEni k2 + �iVikHn-1/2i k2 +�t tHn-1/2i Xj2Vi �Gnij � Nij2 Eni �35= Xi Xj2Vi �Vi�iPi k~nijkkEni k2 + �iViPi k~nijkkHn-1/2i k2 +�t tHn-1/2i �Gnij � Nij2 Eni �� :In the above expression, the double summation over ells and ell neighbors an be redistributed overell interfaes (internal interfaes will gather two ontributions from neighboring ells, whereas boundaryinterfaes will gather only one inwards ontribution). We then haveEn = internalXinterfaes � Vi�iPi k~nijkkEni k2 + �iViPi k~nijkkHn-1/2i k2 + �t2 tHn-1/2i NijEnj+Vj�jPj k~nijkkEnj k2 + �jVjPj k~nijkkHn-1/2j k2 � �t2 tHn-1/2j NijEni �+metalliXinterfaes �Vi�iPi k~nijkkEni k2 + �iViPi k~nijkkHn-1/2i k2 � �t2 tHn-1/2i NijEni �+absorbingXinterfaes �Vi�iPi k~nijkkEni k2 + �iViPi k~nijkkHn-1/2i k2 � �t2 k~nijkr�i�i Hin-1/2Tij 2� :9



Using elementary minorations of salar produts, the de�nition of the matrix Nij and adding orretionterms in Fn, we �nd thatFn � internalXinterfaesk~nijk� �Vj�jPj kEnj k2 + �iViPi kHn-1/2i k2 � �t2 kHn-1/2i kkEnj k�+�Vi�iPi kEni k2 + �jVjPj kHn-1/2j k2 � �t2 kHn-1/2j kkEni k��+metalliXinterfaesk~nijk�Vi�iPi kEni k2 + �iViPi kHn-1/2i k2 � �t2 kEni kkHn-1/2i k�+absorbingXinterfaesk~nijk�Vi�iPi kEni k2 + �iViPi kHn-1/2i k2 ��t4 r�i�i Hin-1/2Tij 2 ��t4 r �i�i EinTij2�Thus, if all disriminants are stritly negative, i.e. the time step �t is suh that8><>: i) 8 internal interfae aij ; �t2 < 16 ViVjPiPj min(�j�i; �i�j);ii) 8 metalli interfae near ell Ci; �t < 4 ViiPi ;iii) 8 absorbing interfae near ell Ci; �t < 4 ViiPi ;it is lear that Fn � 0 and that Fn = 0 ) (8 i; Eni = 0; Hn-1/2i = 0). This onludes the proof thatunder the ondition of Theorem 4.1, the disrete energy Fn is a positive de�nite quadrati form of allnumerial unknowns. It is also non-inreasing, then bounded and the sheme is L2-stable.Remark 4.1 Comparison with Yee's shemeThe omparison of the suÆient stability ondition given in Theorem 4.1 with the stability limit obtainedby a Von Neumann analysis of Fourier eigenmodes for a strutured orthogonal regular grid yields anestimation of the optimality of this suÆient ondition. For an orthogonal Cartesian grid made ofsquare hexahedra �x ��y ��z, Remaki [19℄ has proven that the entered �nite volume sheme (foran homogeneous medium) is stable if and only if�tr 1�x2 + 1�y2 + 1�z2 � 2;whih makes possible the use of a time step twie bigger than with Yee's sheme [30℄ (see [26℄ for aorret proof). For the same Cartesian grid, our general suÆient stability ondition is�t� 1�x + 1�y + 1�z� � 2;whih is more restritive, but note that it is only suÆient and not neessary. Although the new FVTDsheme with a twie �ner grid reovers the same stability limit and dispersion as Yee's sheme, the mainproperty of this sheme is its ability to handle omplex geometries using unstrutured grids. In thesequel, some numerial results show the basi property of the sheme, inluding on unstrutured gridsaround omplex geometries.5 Numerial results5.1 A retangular waveguide with a urrent soure (2D)We onsider a urrent jz over the ross setion of a retangular waveguide at x = 0 (see Figure 2), givenby jz(y) = p2 sin(�y=d) os(2�ft), where d = 1m is the waveguide width and f = 0:3Ghz the signalfrequeny. The grid used here orresponds to 12 points per wavelength. Figure 3 and Figure 4 representthe eletri and the magneti �elds produed by the urrent jz. We an see on Figure 3 the good qualityof the approximate solutions, whih ompare very well with exat solutions.10
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Figure 3: Setion at y=d2 , Ez (left) and Hy (right). Numerial and exat solutions.

                                                                                

                                                                                

Figure 4: Numerial Ez (above) and Hy (down).5.2 Sattered waves aross a dieletri oated airfoil (2D)We simulate sattering problems aross airfoils in heterogeneous ases. We �rst illuminate a oatedNACA0012 airfoil pro�le (dieletri layer of thikness Æ = 0:1�, with " = 4 and �=1) by a monohromati11



wave loated rightwards (with frequeny f = 1:2Ghz). The spae disretization is unstrutured andorresponds to 15 points per wavelength (see Figure 5). Figure 6 represents the ontours of the satteredeletri �eld. We an notie that the numerial solution has no spurious osillation at the interfaebetween the two materials.5.3 Sattered waves aross a oated ylinder (2D)We present here as an example the omputed result for the magneti �eld sattered by a model antenna(here an heterogeneous irular dieletri ylinder satterer), whih is pitured on Figure 7.The frequenyof the inident wave oming from the right side of the objet is f = 0:15Ghz. The radius of the largemetalli ylinder is R = 0:459m, while the radius of small metalli ylindrial inlusions is R = 0:025m(the enters are regularly spaed with an interval of 0:1m) , the thikness of the dieletri layer isÆ = 0:1m. The perfet dieletri material is de�ned by "r = 2:56 and �r=1. In this test ase, the meshis rather oarse, sine we have only 14 points per wavelength.5.4 Eletromagneti ompatibilityWe onsider an airfoil's window with a slit as in Figure 8. The relative parameters of the dieletrilayer are "r = 2 and �r = 1. We onsider di�erent imperfetly onduting materials (di�erent �). Wesend a monohromati wave with inidene angle � = 90o, and frequeny f = 0:3Ghz. We omputethe wave propagation aross the material (Figures 9 and 10). These simulations were produed with anexponential time sheme for the treatment of the additional loss terms. Depending on the ondutivity� of the non perfet ondutor, we get di�erent total eletri �eld with a smooth transition from anapparent perfet dieletri (� = 0) to an almost symmetri solution (for � = 100, we have almost twoperfet ondutors).5.5 Eigenmodes in a three-dimensional metalli avityWe present here preliminary results for the numerial simulation of the time evolution of an eigenmodein a ubi metalli avity, We onsider the (1,1,1) mode. The ubi avity is disretized by a struturedorthogonal regular ubes, with twenty ells in eah diretion. We have hosen to present on Figure 11 thevertial omponentHz of the magneti �eld at the enter of the avity in funtion of the time. Numerialresults obtained by Yee's sheme and our �nite volume sheme (with ubi elementary volumes) areomparable : no numerial dissipation is arti�ially produed and the L2 error with the exat solution(pointwise di�erenes for both grids) is very small. For eah numerial sheme, we have plotted theexat and approximate value orresponding to the onsidered degree of freedom. Sine Yee's shemeinvolves a staggered grid, both "exat" urves di�er. We an observe that, on this partiular ase of

Figure 5: The unstrutured disretization for the oated NACA0012 airfoil (the dieletri materialorresponds to triangles inside the marked line). 12



Figure 6: The sattered eletri �elda regular orthogonal grid, the numerial dispersions and the omputational osts of both FVTD andFDTD methods are omparable.6 ConlusionIn this paper, we have proposed a suÆient ondition for the stability of the seond order �nite volumesheme proposed by Remaki for the time domain solution of Maxwell equations in two and three di-mensions in heterogenous media. Energy estimates lead us to a suÆient CFL-like stability onditionson arbitrary �nite volumes with metalli or absorbing boundary onditions, for whih weak treatmentswith at least onsistent numerial uxes have been used. The stability ondition happens to be morerestritive { but with a omparable limit time step { on regular grids than that obtained with Fourieranalysis. However, this ondition is general. Some numerial results in two and three dimensionsproved the large potential of the method, for whih several works are still ahead: proof of onvergeneand seond-order auray on unstrutured grids, oupling with PML medium, multi-sale oupling ofmultiple subdomains with di�erent mesh sizes and time steps.Referenes[1℄ D.A. Anderson, J.C. Tannehill, and R.H. Plether. Computational uid mehanis and heat transfer.Hemisphere. MGraw-Hill, New York, 1984.[2℄ Jean-David Benamou and Bruno Despres. A domain deomposition method for the helmholtzequation and related optimal ontrol problems. J. Comput. Phys., 136(1):68{82, 1997.[3℄ F. Bourdel, P.-A. Mazet, and Helluy. P. Resolution of the non-stationary or harmoni Maxwellequations by a disontinuous �nite element method. Appliation to an E.M.I. (eletromagneti im-pulse) ase, pages 405{422. Computing Methods in Applied Sienes and Engineering. Nova SienePublishers, In., New-York, 1991.[4℄ J.P. Brenger. Three-dimensional perfetly mathed layer for the absorption of eletromagnetiwaves. J. Comput. Phys., 127:363{379, 1996.[5℄ P. G. Ciarlet and J.-L. Lions, editors. Handbook of Numerial Analysis, volume 1/2. North Holland-Elsevier Siene Publishers, Amsterdam, New York, Oxford, 1991.13
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Figure 7: Geometry(above, left), zoom of the mesh (above, right) and sattered magneti �eld (down).
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Figure 9: Total eletri �eld - � = 0 (left) and � = 100 (right)
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