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Abstract

We study the sensitivity of pricing and hedging formulas of simple financial
models to changes of parameters and, that is the main focus, to perturbations
of the underlying Brownian motion. The method we apply is not specific to
finance, it is a general setting of the so-called Malliavin calculus based on the
theory of Dirichlet forms. This approach to error calculus is explained here
both intuitively and mathematically.

1 Introduction

Once a model is chosen and used to price contingent claims and to hedge
a position, the main question remains at time ¢ : what is our exposure
to changes in the market 7 This risk assessment is usually done in terms
of sensitivity of the portfolios to variations of the financial quantities
and parameters of the model. For example the volatility, constant in
first approximation, seems to vary proportionally to itself in second
approximation, as it were erroneous with a constant relative error.

As long as these sensitivity computations concern the role of finite
dimensional quantities, the classical differential calculus can be per-
formed either in a deterministic framework or almost surely (path by
path) in the random case.

Now what allows the theory of Dirichlet forms is to take in account
a perturbation of the stochastic process (e.g. the Brownian motion)
itself with which the model is mathematically constructed.

This derivation of a random variable with respect to the sample path
of an underlying process is the central idea of the so-called Malliavin
calculus, cf. [M], but the theory of Dirichlet forms gives a general form
to this kind of computation in a close connection with the interpretation
in terms of errors.

We take the case of financial models as an example to expose this
method. This explains the choice of simple models. The first part (sec-
tion 2) is devoted to intuitive ideas and to the formal definitions. The
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following part (section 3) concerns the infinite dimensional error struc-
tures on the Wiener space. Then the Black-Scholes case is examined
and, in the last part (section 5), a diffusion model is studied. Finally
we mention some ways of research.

2 Error calculus based on Dirichlet forms

This part begins with a short historical and intuitive introduction. It
is not here for cultural reasons but as the simplest way to help the
reader in improving his personal idea of the tools developed later. Next,
we give the mathematical framework that we will apply to financial
models and explain its main properties. Finally a comparison with
other approaches is commented for clarity.

2.1 Error calculus a la Gauss

Twelve years after his argument showing the importance of the nor-
mal law as probability law for the errors (Theoria motus corporum
coelestium 1809), Gauss was interested in the propagation of errors
(Theoria Combinationis 1821). He has to be considered as the founder
of error calculus. Given a quantity U = F(V7, Vs, .. .) function of other

erroneous quantities V7, V5, ... he states the problem of computing the
quadratic error to fear on U knowing the quadratic errors o, 03, ...
on Vi, Vs, ..., these errors being supposed small and independent. His
answer is the following formula
oF oF
2 2 2 2 2
og = 5m5)01 + (55 )05+ 1

he gives also the covariance between the error on F' and the error of an
other function of the V’s.

Formula (1) possesses a property which makes it highly better, in
several questions, than other formulas used here and there in textbooks
during the 19th and 20th centuries. It is a coherence property. With a
formula such that

or
oV

oy = ‘01+|§—‘2|0’2+... (2)
errors can depend on the manner the function F'is written : in dimen-
sion 2 already composing an injective linear map with its inverse leads
with formula (2) to the fact that the identity map increases the errors
what is hardly acceptable.

This doesn’t happen in Gauss’ calculus. Introducing the operator
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and supposing the functions smooth, we remark that formula (1) can
be written
ot = LF* - 2FLF

and the coherence of this calculus comes from the coherence of the
transport of a differential operator by a function : if L is such an
operator, u and v injective regular maps, denoting the operator ¢ —
L(powu)ou! by 6,L we have 0,,L = 0,(0,L).

The errors on Vi, V5, ... are not necessarily supposed to be inde-
pendent nor constant, they can depend on Vi, V5, ... : Let be given a
field of symmetric positive matrices (o;;(vy, v, . ..)) on R? representing
the conditional variances and covariances on Vi, V5, ... given the values
v1, Vg, ... of V1, V5, ... then the error on U = F(Vj, V5, ...) is

, OF OF

Op = —(’01,1}2,...)—(Ul,’UQ,...)O'Z'j(’Ul,UQ,...) (3)

B — 0V, oV

which depends solely on F' as mapping, provided F' be suitably regular.

2.2 Extension tool using Dirichlet forms

The error calculus of Gauss has the limitation that it has no mean of
extension. If the error on (Vj, V5, V3) is known it gives the error on any
differentiable function of (V1, V5, V3) but that’s all.

Now, in the usual probabilistic situations where a sequence of quan-
tities Xy, Xo, ..., X, ... is given and where the errors are known on the
regular functions of a finite number of them, we would like to deduce
the error on a function of an infinite number of the X,’s or at least on
some such functions.

It is actually possible to reinforce this error calculus giving it a pow-
erful extension tool and preserving the coherence property. In addition,
it will give us the comfortable possibility to handle Lipschitz functions
as well.

For this we come back to the idea that the erroneous quantities are
themselves random, as Gauss had supposed for his proof of the ‘law
of errors’, say defined on (£2,.4,P). The quadratic error on a random
variable X is then itself a random variable that we will denote by T'[X].
Intuitively we still suppose the errors are infinitely small although this
doesn’t appear in the notation. It is as we had an infinitely small unit
to measure errors fixed in the whole problem. The extension tool is the
following, we assume that if X,, — X in L?(Q2, A, P) and if the error
I'[X,,—X,] on X,,— X, can be made as small as we want in L'(Q, A, P)
for m, n large enough, then the error I'X,, — X] on X,, — X goes to zero
in L.

It is a reinforced coherence principle since this means that the error
on a random variable X is attached to X and that furthermore if the



sequence of pairs (X, error on X,,) converges in a suitable sense, it
converges necessarily to (X, error on X).

This can be axiomatized as follows : we call error structure a prob-
ability space equipped with a local Dirichlet form possessing a carré du
champ. Thus an error structure is a term

(Q,APD,T)

where (0, A, P) is a probability space, satisfying the four properties :

1.) D is a dense subvectorspace of L*(Q, A, P)

2.) T is a positive symmetric bilinear map from D x D into L'(P)
fulfilling the functional calculus of class C* N Lip, what means that if
uw € D™ and v € D" for F and G of class C* and Lipschitz from R™
[resp. R™| into R, one has Fou €D and Gov €D and

T[Fou,Gouv] =Y F/(u)Gv)l[u;v;] P-p.s..
(2]

3.) the bilinear form E[f, g| = EU[f, g] is closed, i.e. D is complete
1
under the norm || . |lp = (|| . H%Q(P) +£&[.,.])z.
4.)1eDandI'[1,1] =0.
We always write £[f] for E[f, f] and T'[f] for I'[f, f].

With this definition, the form & defined at point 3.) is a Dirichlet
form. This notion has been introduced by A. Beurling and J. Deny
as a tool in potential theory, cf. [B-D] [F] [S], and received a proba-
bilistic interpretation in terms of symmetric Markov processes by M.
L. Silverstein and M. Fukushima, cf. [F-O-T] [M-R]. The operator I'
is the carré du champ or squared field operator associated with &, it
has been studied by several authors in more general context, cf. [D-M]|
|B-H|. Here we refer to I' as the quadratic error operator of the error
structure. Its intuitive meaning is the conditional variance of the error.
First examples. (a) A simple example of error structure is the term

(R, B(R), p, H'(m),7)
where m is the normal law N (0, 1) and
H'(m) = {f € L*(m) : f' in the sense of distributions € L*(m)}

with y[f] = f” for f € H'(m). This structure is associated to the real
valued Ornstein-Uhlenbeck process.
(b) Let D be a connected open set of finite volume in R? \; be the

Lebesgue measure, let us take (2, 4,P) = (D, B(D), ﬁ)\d) and
ou v -
[lu,v] = %: e (9—%-6% for u,v € CF(D)



where the a;;’s are maps from D into R such that

Qi c leoc(D)7 Q5 = Qjiy S leoc(D)7 ZGZ](I)gzé-] 2 0 V§ c Rd YV S D.
8xk p

Then it can be shown that the form Efu,v] = El[u,v] with

u,v € C¥(D) is closable, cf. [F-O-T| [M-R]|, i.e. there exists an

extension of T' to a subvectorspace D of L?, D D C¥(D) such that

(Q, A, P, D, T") be an error structure.

2.3 First order and second order calculus

The following remark, although very simple, is important to understand
the role of the error calculus a la Gauss that will used in the sequel in
the extended form allowed by Dirichlet forms.

Let us start with a quantity « with a small centred error Y, on which
acts a non-linear regular function f. Thus we have at the beginning a
random variable that we can write x+¢cY’, it has no bias (centred at the
true value z) and its variance is e20% : thus biasy = 0, variancey = £20%.

After having applied the function f, using Taylor formula shows that
the error is no more centred. The bias has the same order of magnitude
as the variance :

bias; = E[f(z+eY)— f(z)] =2op5f"(x) +£0(1)
variance; = E[(f(z+¢Y) — f(z))?] — (bias;)?
= 20 f?(x) +%0(1)
then applying a new regular non-linear function g gives us a recurrence
formula :

biasy, = bias;¢'(f(z)) +
variance, = variance;g”(f(x

variance, g”(f(z)) + 30(1)
) +%0(1)

N[

~—

which could be easily extended to applications from R? to R? (for the
general formulas on the bias and the variance of the error under regular
mappings see |B-H| chapter I paragraph 6 corollaries 6.1.3 and 6.1.4).

We see that the calculus on the bias is a second order calculus in-
volving the variance. Instead, the calculus on the variances is a first
order calculus not involving the bias.

Thus, the error calculus on the variances appears to be necessarily
the first step in an analysis of errors propagation based on differential
methods and supposing small errors.

2.4 Comparison of approaches

Before looking at the infinite dimensional examples needed in finance,
let us try to give an outlook over the different approaches to error
calculus.



Table 1: Main classes of error calculi

deterministic probabilistic approaches
approach
Sensitivity Extended error calculus using Probability
calculus: Dirichlet forms
derivation with | first order calculus | second order cal- theory
respect to the | only dealing with | culus with vari-
parameters of | variances ances and bias
the model
infinitesimal errors finite errors

At the extreme right-hand side of the table we have the usual proba-
bility calculus in which the errors are random variables. The knowledge
of the joint laws of the quantities and their errors is supposed to be
yielded by statistical methods. The errors are finite, the propagation
of the errors needs computation of image probability laws.

At the extreme left-hand side the sensitivity calculus consists of
computing derivatives with respect to parameters, including Gateaux
or Fréchet derivatives in functional spaces to get the sensitivity with
respect to a functional data.

Between these two purely probabilistic and purely deterministic ap-
proaches lies the extended error calculus based on Dirichlet forms. It
supposes the errors are infinitely small but takes in account some fea-
tures of the probabilistic approach allowing to put the computations
and the arguments inside a powerful mathematical theory: the theory
of Dirichlet forms. In the same framework can be performed either a
first order calculus on variances which is simple and significant enough
for most applications or a second order calculus dealing with both vari-
ance and bias which is more complicated and in close connection with
the so-called stochastic differential geometry. We cannot here go fur-
ther to explain this connection in more details. We will rather describe
the main properties this calculus receives from Dirichlet forms theory.

Let us add just a comment. On one hand the error calculus based
on Dirichlet forms can be seen as a special case of more general mathe-
matical theories of differential calculus in metric or abstract spaces, see
e.g. |A-K| [W]. On the other hand it can be enriched and made more
precise by geometric additional hypotheses, see e.g. |M] [C-M]| [St]. We
believe that the level of axiomatisation of error structures is the best
adapted to error analysis for stochastic models.

2.5 The method

The construction of an error structure on a stochastic model can be
done in two steps

1) If there are, as usually, deterministic parameters which can be
erroneous or with respect to which a sensitivity is wished, these param-
eters have to be randomized with a prior: laws.



2) errors operators must be chosen to act on random quantities (ini-
tially random or randomized parameters) in order to describe errors, in
such a way that we obtain mathematically an error structure as defined
above.

As we will see further, the choice of the a priorilaw is not so crucial
as it could be thought because the computations are done almost surely.

Several properties of error structures make it easier such a construc-
tion.

1) The operation of taking the image of an error structure by a
mapping is quite natural and gives an error structure as soon as
the mapping, even non injective, satisfies some rather weak condi-
tions. In particular if (©2,.4,P,D,T") is an error structure and if X
is a random variable with values in R? whose components are in D,
(R?, B(RY), Px,Dx,'x) is an error structure where Py is the law of X,

Dy = {f€L?Px): foX €D}
I'x[f] = E[l[foX][X=z], feD

2) If f € D and F is Lipschitz from R to R then F o f €
D and I'[F o f] < T[f]. For example the structure of exam-
ple (a) (R,B(R),u, H'(11),y) possesses an image by the map z —
| sin y/1 + |z|| which is an error structure on [0, 1]. Such a use of non in-
jective functions is tricky in the deterministic sensitivity calculus. More
generally if F' is a contraction from R? into R in the following sense

|F(x) = F(y)l < Y i — i

inl

then for fi, fo,..., f4 € D one has F(f1, fo,..., fq) € D and

< Zr[fi] .

This property allows to consider more general images with values in
metric spaces as soon as a suitable density property is preserved, see
|B-H| chapter V paragraph 1.3 p 197.

3) The product of two or countably many error structures is an error
structure. It is the mathematical expression of the independence of
the random variables and the non-correlation of the errors. By this
way error structures on infinite dimensional spaces are easily obtained,
e.g. on the Wiener space, as we will see in the next part, or on the
general Poisson space or other spaces of stochastic processes, see |B-
H|[M-R||B1].

For later reference we give the following statement (see [B-H| and
|[M-R] for more general cases).

N[
N[ =

LIE(f1 far -5 fa)]

Theorem 2.1 Product structures



Let S, = (Q, Frymp, D, ), n >0 be error structures.
The term S = (Q,F,m,D,T") defined below is an error structure
denoted S = [[2; Sn and called the product structure of the S, :

(Q, F,m) HQH,®Fn,Hmn

D= {f e L*m): Vn, for m-a.e. w= (wp,ws,...)
the function r — f(wo,...,wWn_1,%, Wni1,...) € Dy

d/znl“n[f] dm < 400}
and for feD T[f] =, Tulfl.

Thanks these properties, is possible the construction of a variety of
error structures on a given probabilistic model. Now for a rational
treatment of a practical case these error hypotheses should be obtained
by statistical methods. This is connected with the Fisher information
theory, see |B2| for the main ideas. Anyhow, these statistical methods
are not yet sufficiently studied to be exposed here, especially in the
infinite dimensional case we have to use in finance. Thus we limit
ourselves to error computations with a priori errors chosen the most
likely we can. We consider it is significant already.

3 Error structures on the Wiener space

Let us first recall the classical construction of the Brownian motion
thanks the Wiener integral.

3.1 The Wiener space as Gaussian product space

Since we aim here at applications to simple financial models we will con-
sider only the case where a given measured space (F, &, ) is given which
is either (R, B(R,),dt) or ([0,1],B([0,1]),dt) and a one-dimensional
Brownian motion, because products are easily done as we have seen
just above (for the abstract Wiener space setting see |B-HJ).

Let (x») be an orthonormal basis of L?(E,&, ) and let (g,) be
a sequence of i.i.d. reduced Gaussian variables defined on a proba-
bility space (2, 4,P). To each f € L*(E,&,u) we associate I(f) €
L*(Q, A, P) by

=> < fiXn > -

then I is an isometric homomorphism from the Hilbert space L?(E, £, 1)
into the Hilbert space L*(Q, A,P). If f and g are orthogonal in
L*(E, &, ), I(f) and I(g) are independent Gaussian random variables
and putting

Bi=) <logxn>gn (t€[0,1]orteRy) (4)



defines a Gaussian stochastic process which is easily shown to be a
standard Brownian motion. By extending the case where f is a step
function, the random variable I(f) is denoted by

| fts) .

and defines the Wiener integral of f.
In this construction we can suppose the space (€2, A, P) be a product
space :
(Q,A,P) = (R,BR),m)"  m=N(0,1)

and the g,’s be the coordinate maps. Thus w = (wo,...,wy,...) and
gn(w) = wy,. By the theorem on products of error structures, as soon as
errors structures are defined on the factor spaces (R, B(R),m,d,, V)
this defines an error structure

(Q,APDTI) = ﬁ((R,B(R),m, d,, V)

n=0

whose domain D is explicitely given in theorem 1.

3.2 The Ornstein-Uhlenbeck structure

Let us take for each factor the one-dimensional structure of example
(a) i.e.
Tn [f] = f/2
d,= H!'(m) m = N(0,1)

hence the associated form is

lf) = [ £ dm

The structure (Q, A, P, D, T) is the infinite dimensional Ornstein-
Uhlenbeck structure. Let f € L?(R,) then

1) = [ £ a8 =32 < x> g0

and by the theorem 1 we have

F[gn] =1
Llgm,gn] = 0 ifm#n

and I(f) € D with

LA =D < fixn > Tlgal = |1 £l 72w,



This property T'[[ f(s) dB] £ ) caracterizes the Ornstein-

Uhlenbeck error structure on (€2, A, IP’) (R B(R), m)N because it fol-
lows that if F' € C' N Lip(R¥)

F(J fidB...... ] fidB)| =
Sty F/([ fdB,..)Fi[ fidB,..)T[[ f:dB, [ f;dB]

and the random variables

F([ fdB,..., [ fxdB)

for I € C* N Lip(R*) and f; € L?*(R,) are a dense subspace of L*(IP)
since containing cylindrical functions of class C' N Lip.

It can be shown that a rather large class of random variables ob-
tained by stochastic calculus are in the domain D, especially the solu-

tions of stochastic differential equations with Lipschitz coefficients, cf.
|B-H| chapter IV.

3.3 Other structures on the Wiener space

Variants of the preceding construction yield other error structures. For
example let us consider the case (E, &, u) = ([0, 1], B([0,1]),dt) and let
(Xn) be the following basis of L?([0, 1], dt)

Xn(t) = V/2cos(nt) ifn>0
Xo(t) = 1
Xn(t) = V2sin(nt) ifn<0

and for the error structure let us take

(QaAa ]P)>]D)>F) - H(R>B(R)>ma Hl(m)>7n>
neZ
where v,[u] = (27n)%w? for v € H'(m), ¢ being a fixed natural
number. Denoting as before the coordinate maps by g,, we have
[(g.] = (27n)** and T[gm,g,] = 0 if m # n. For f € L3([0,1],dt)
whose Fourier series representation is f =" _, ann we obtain

T £(5) dBIT[E en foXn) = Sen fo (27m)%

from which it is easily shown that for f € L*([0,1],dt), [ f dB belongs
to D if and only if the g-th derivative (@ in the sens of distributions
belongs to L?([0,1],dt) and then

L[f fdB] = [ f@*

As explained for the Ornstein-Uhlenbeck case, the above formula de-
termines uniquely the error structure on (2, .4, P).

More generally this can be extended in connection with the so-
called second quantization. Let p; be a strongly continuous contrac-
tion semi-group on L?([0, 1], dt) with generator (a, Da), let us consider

10



the associated closed positive quadratic form (¢, D(y/—a)) defined by
elf] = |lWV/—af]|?, then the structure on the Wiener space induced by
the formula

Plfy" f(s)dB] =c¢lfl,  feD(/(-a))

is closable and thus defines an error structure, see |B-R]. It is worth
noting that the semi-group p; is not supposed to act positively on posi-
tive functions (i.e. the form e is not necessarily Dirichlet) and the form
¢ does not need to be local.

3.4 The gradient operator and the derivative
Let us come back to the Ornstein-Uhlenbeck structure for simplicity.
(Q7 A? IED? D? F) (R7 B(R)7 m? Hl(m)7 ’Y)N

with m = N(0,1) and y[u] = u”®. The same ideas extend to more gen-
eral structures, in fact to any error structure whose space DD is separable,
see |B-H| chapter V exercise 5.9.

Let w = (wi,...,wn,...) and let g, be the coordinate maps
as before. By theorem 1 we know that if U €& D then

gTU(wl, ey Wno1, - Wnat, - - -) exists in the sense of distributions for al-
oU \2 1
MOSt every wy, ..., Wn—1,Wny1,--- and Y, (5-)* € LY(P).

Thus we can define the gradient operator D on D with values in
L*(P, H) with H = L*(R,) by

Definition 3.1

Proposition 3.2 D is a continuous application from D into L*(P, H)
such that

1)VU,VeD < DU DV >y=TI[U,V]

2)VF € C' N Lip(R?), VX € D

d
D(FoX)=> F/oXDX, P-as.

i=1

Proof : The continuity comes from the equalities

IDU || 2.y = || I1DUm || 22y = \/El DU |3 = v/ E[U]

where &[] is the form associated with I' (definition of an error structure
item 3).
Then immediately
ou v

<DU,DV >p=>_ oo = LUV

11



and for ' and X as in the statement

ID(FoX) =3 F o XDXi|}
=[[FoX]-23 F/oXI'[FoX, X;] +3,F oXF oXTIX,; Xj]|

which is zero by the functional calculus satisfied by ' (definition of an
error structure item 2). i

The operator D satisfies the following properties
. Vh € L*(R,) D[foOo h(s) dBs] = h
. DN L*is an algebra and if U,V € DN L*®

DUV)= DUV +U.DV
. with suitable hypotheses on the adapted process H;
D[foOO H, dB|(t) = Hy + fOOO(DHS)(t) dB;.

For properties and use of the gradient operator we refer to the book
of D. Nualart [N], in particular for the so-called Clark formula :
Let U € D and F; = 0(Bs,s < t)

U =EU +/ E[DU(t)| 5] dB,
0
cf. [N] chapter I p42.

Now a slight variant of the gradient operator, the notion of ‘deriva-
tive’, is useful when computing errors on solutions of stochastic dif-
ferential equations thanks the tool of Ito’s formula (this notion was
theoretically introduced by e.g. [F-laP]).

Definition 3.3 Let (Bt)tzo be an auziliary independent Brownian mo-
tion. For U € D the derivative U* is a random variable depending on
w and w defined by

U# = /OO(DU)(w,t) dB,.

>From the properties of the gradient one gets
. T[U] = E[U#?]
.ForFeC'nLip (FoU)#*=FoUU#
. With suitable hypotheses on the adapted process H,

([ Hy dB,)* = [ H¥# dB, + [ H, dB,

see |B-H]| chapter III paragraph 2.
Let us mention two lemmas that we will use in the sequel. Their

proofs are straightforward. They concern the weighted Ornstein-
Uhlenbeck case :

P f(s) dB) = [Pa (0 de - feDERY)  (3)

12



where « is non negative. For this structure if f € L*(R,, (o + 1)dt)

U 1030~ s
10y By = Jo a0 ab.

Lemma 3.4 The conditional expectation operators E[.|F;] are orthog-
onal projectors in D on errors sub-structures (closed sub-vector-spaces
of D stable by Lipschitz functions).

Lemma 3.5 Under the same hypotheses, let I'y be defined from I' by

Lu[(f f(s) dBy)] = T(([ Lo f(s) dBs)]

and let U — U7t the derivation operator associated with T'y, then for
UeD:
(EU|FRD* = E[U*|F].

4 FError calculus on the Black-Scholes model

Let us recall for completeness the main features of the Black-Scholes
model, for the financial theory and formulas we refer to [L-L| [D-J]
[EL-K].

The interest rate for the bond is constant, the asset (S;);>o is mod-
elised as the solution of the equation

dSt = St(ﬂdt + O'dBt>

where (B;) is a Brownian motion.
For a European option of the form f(Sr), T fixed deterministic time,
the value at time ¢ € [0, T] of the option is V; = F(t, S;, o,r) with

y2

2
V2T

If f is Borel with linear growth, the function F is C' in ¢t € [0, T, C?
and Lipschitz in x €]0, oo.

F(t,z,0,r)=e "I /f el F) T +ouy/T ) dy.  (6)

Let us put
oF
deltat = %(t, St, g, 7’)
O?*F
gamma; = —- —(t, St,0,7)

F satisfies the equation

OF o022 0*°F oF
E‘FT%—FT.@%—TF—O. (7)

We shall evaluate the errors on significant quantities of the model
supposing

13



a) an error on (By);>o represented by the Ornstein-Uhlenbeck error
structure with the multiplicative constant eg

b) errors on the initial value Sy, oLn the volatility o, on the rate r,
which are ‘constant relative errors’ in the sense of physicists :

L(6(So)] = ¢™(S0) S5 eo
Ll(o)] = ¥2(0) 0 e
LlE(r)] = &2(r)r?e

c¢) we chose a priori laws on Sy, on o, on r which are for example
exponential laws or lognormal laws, etc.

d) and we suppose (Bi);>o and the randomized quantities are inde-
pendent and their errors uncorrelated.

In other words the error on a regular function

F((Bt)tZOa SO7 g, ’l")
will be represented by the product error structure i.e.
L[F((Bt)20, S0, 0, 7)]CoulF (., So, 0,7)]es + Fg Sieo + Fy o’er + FrPe,

where eg, eg, €1, es are positive constants and I'py the Ornstein-
Uhlenbeck quadratic error operator.

Actually, the theory tells us that hedging and pricing formulas do
not involve the drift coefficient p. So we may take u = r, i.e. we work
under the probability P such that S; = e "S5, the discounted stock

2
. . . . _o-
price, is a martingale. since S; = Spe?P T =%t we have

F[St] = 53{0'21563 +eg + (Bt — Ut)202€1 + t2@2}

The relative standard deviation of the error l;ist] writes
s S, o2
S[ J = {o?tep + eo + [log S—t — (? + 7)t)%e; + t2€2}%.
t 0

We see that the part of the error coming from Sy does not depend on
t, that one from (B,) is proportional to v/¢, that ones from o and r are
of the order of ¢.

4.1 European options

Let us consider an option of the form f(S7) where f is Lipschitz.

By the independence hypothesis, the errors on B, Sy, o, r can be
managed separately. Let us denote I'g, I'g, 'y, ', the corresponding
quadratic operators.

a) Error the value of the option
The value of the option is V; = F(t, S, 0,r) with F' given by (6)
al)Error due to B.
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B being present only in S;, we have I'[Vy] = (2£(S;, 0,7))*T 5[5}
SO
Ip[Vi] = delta,” Tp[S)] s)
Lp[Vs, Vi] = deltagdelta, I'g[Ss, St

with Tz[Ss, Si| = SsSia? s At.
Proposition 4.1 If f is Lipschitz, V; is in Dg and when t T T
V= F(t,S;,0,7) — f(Sr) inDg and P — a.s.
[p[Vi] = (delta,)’T [S;] — f?(Sp)Ts[Sr] in L' and P — a.s.

Proof : Let us suppose first f € C' N Lip. By the relation
Vi = Ele" T f(S7)|F]

it follows that V; — f(Sr) in LP 1 <p < oo and a.s.
A computation that we shall do in a more general framework later,
and that we do not repete here, gives

Vi# = e "OR[f(Sr) Syl Filo By
thus
Vi# — f'(Sr)SroBr in LA(P, L*(Q,P))
and thanks f(S7)# = f/(Sr)SpoBr we ontain
V, - f(Sy) inDp and P— a.s.
and
LpVi] = e T (E[f'(S1)Sr|F]) 0t — f2(S7)T s[S7]

in L' and P-a.s.

The case f only Lipschitz comes from a special property of the one-
dimentional functional calculus in error structures (see [B-H| chapter
III prop. 2.1.5) making the preceding argument remains valid. | |

a2)Error due to o.
We suppose here f € C1 N Lip. AsV, = F(t,S;,0,7)

08,
T, [Vi] = {FL((t, S, 0, r)a—t + FL((t, Spo,m) )2 0P
o
and the computation can be done using the integral representation (6),
puting S; = e "S; and

F(t,x) = e "F(t,S;,0,7)

f/t = e_rt‘/t = F(ta St)

15



and remarking that by (6) we have

OF OF
a—o_(t, .Z’) = —2\/ T — ta(t, .Z’)

we have using the differential equation (7)
[, [Vi] = {VT — to*SZgamma, + S;(B; — ot)delta;}* 0% e;  (9)

a3) Error due to r.
We have similarly

0 Vi) = (EL((E S00,m) 0 4 FU((1 Si0, )Y e

and we obtain
[, [Vi] = {Tdelta; — (T — t)V;}* r* e, (10)

a3) Error coming from the exercise price.

In the case of a call or a put, it is possible to evaluate the sensitivity
due to the exercise price. One can use the classical explicit formulas
or remark that if we denote F.,}) the function F' in the case f(Sr) =
(ST - K)+ then

oF
DilVi) = {552 (1, 5P Tl
where [k is the identity function of K, we have %% = —1ys,>k} and

OF
8(3[?11 (t,S;) is, up to the sign, the value at time ¢ of the digital option

Lisy>x} for which the integral representation (6) applies.
b) Error on the hedging portfolio

Here we limit ourselves to the error due to (B;). We suppose f and
f"in C' N Lip. The hedging equation is

e " F(t, Sy, 0,r) = F(0,Sy,0,7) + fot H, dS,

where the adapted process H; is the quantity of stock in the portfolio :

F 1
H, = delta, = g—(t, Sy, 0,1) = e "TOE[f'(S1)Sr|Fi =
X St

By the same method as for V; we obtain

I'g[H;] = (gamma,)’T g[Sy

I'plH,, H| = gamma,gamma,['g[S, Sy (11)

Proposition 4.2 If f, f' € C* N Lip, then H, € D and ast 1T

Hy — f'(Sr) inDg and a.s.
Lg[H] — f"(Sr)Ts[S7] in L'(P) and a.s.

16



¢) More general errors on (By)

These results show that the quantities delta; and gamma, introduced
by practitioners have a direct sense as sensitivity of the value V; and of
the hedging H; to a perturbation of the stock coming from an error on
the Brownian motion.

Some relations still hold if we consider more general error structures
on the Wiener space. Let us consider, as mentioned above, a structure
induced by a closed positive quadratic form ¢ on L?(R,, dt) with

L[ f dB] = e[f]

for f in the domain of £ with, for example,

a) elf] = fo(:ag)ﬂ(t) dt
b elfl = I ) — )00 dsde

then the formulas

[p[Vi] = (delta;)? T[S
I'p[H;] = (gamma,)’T [S;]

remain valid as soon as S; € D i.e.

in case a) if & € Ly (R4, dt) and T'p[S] = Sjo” 7 a(s)ds

in case b) if 8 € L'(Ry,dt) and Tp[S;] = SZo?2 [ B(s)ds [. (s)ds.
Now in the case

d

) QH:AM< ()OS ds  ar #0

i=1

we do not have anymore 1}y, € dom(e), hence B, doesn’t belong to D.
Such error structures seem to be more convenient to modelize errors on
processes with finite variation. For example in a model such that

dSt = StO'(St)dBt + StR(t)dt
we could modelize the rate R(t) by
R(t) = ¢( fy Bds)

where B, is an independent Brownian motion defined on (Q, .»Zl, I@’) and
¢ a regular function. If on (Q, A,P) we consider the error structure
(Q, A, P, D,T) satisfying

T[f° fdB) = [° f*(s)ds  fe H'(R.,dt)
we have R(t) € D and

TR, R = ¢'([S Buduw)¢' ([, B, dv)s At.
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4.2 American options

Here we will just install the problem.

To ways are a priori possible. In the case of an option of the form
f(St), the price of the option at time ¢ can be obtained by solving the
following system of partial differential inequalities

Bt Au—ru<0, u>f in[0,7]xR
(%4 Au—ru)(f—w)=0 in[0,T] xR (12)
ul(T,2) = f(z) in R
where A = 7:17 8:2 —i—m"a and taking V; = u(t,S;). Then errors depend
on the analytic problem of the regularity of the function u with respect
toz, o, r.

An other way consists to use the stochastic form of the optimal
stopping problem, maximazing an expectation over the stopping times
with values in [0, 7). This second way seems less convenient than the
first to deal with errors.

We return now to the European case for diffusion models which can
be managed, as we will see, by stochastic calculus.

5 Diffusion models

We will display the method in the case of a complete market, the prob-
ability being a martingale measure and for a simple one-dimensional
diffusion model.

The stock is supposed to be the solution of the equation

dXt = XtO'(t, Xt) dBt + Xt'l"(t) dt.

We limit the study to the error due to (B;) which is a weighted Ornstein-
Uhlenbeck structure:

F[fooo h(s) fo s)ds

a positive and bounded. The rate is determlnlstlc, the function o(t, )
will be supposed bounded with bounded derivative in z uniformly for

te0,7].
Let f(Xr) be a European option. Its value at time ¢ is

‘/t eXp ft XT) |ft]
the hedging portfolio is given by the adapted process H; which satisfies
Vi = exp(— [y r(s)ds)V, = Vo + [y HydX, (13)

where X, = exp(— fo s)ds) X;.
We proceed as follows from the equation

t t
X, =X, + / Xso(s, Xs)dBs + / r(s)Xqds
0 0

18



we obtain
X# = / (0(X)+X,00(X,)) X dB,+ / Va(s)X.o(X,) dB+ / r(s)X¥ds
0 0

this equation is solved by putting

Ky = o(s,X;) + Xs00(s, Xs)
M, = exp{[,'K,dB,— 1 [ KZds+ [, r(s)ds}

and remarking that

S

Yy a(s)Xso(Xs) A
— o, [ RS g

a) Let us ﬁrst suppose f € C'n Lip and let us define ¥ =
exp(— ft f(X7). To compute (E[Y|F])# we will apply the
lemma 2 of sectlon 3:

Y#t = exp(— ft s)ds) f'(Xp) X7

and
(E[Y|F))# = exp(— [ r [f(Xp) XT | F

:mmafmwwmuwGMqulvasﬁf ) g,

and applying the lemma 2 gives
Ivi]= TE [Ylft]]

— exp(=2["r E[f'(Xr) Mr| F])? [y 222 () g
(14)
this yields also the cross error of V; and Vt which is usefull to compute
errors on random variables such that fo s)dVy
Vi Vil = exp(= [, r(s)ds — [ r(s)ds)
E[f'(X7) Mp| FE[f'(X7) Mr|F] (15)
sAt au) X202 (Xy,)
I S du.

With our hypotheses as ¢t T T

L ds = f2(Xr)T[Xq]

T
M) — Mg [ 25

in L'(P) and a.s.
b) Now to deal with Hy, let us remark first that H, is easily obtained
by the Clark formula, see [N]. Formula 13 gives

Hyexp(— fo $)ds) X0 (Xy) = Dgglexp(— fo f(X7)]

where D, is the adapted gradient defined by
D.qZ](t) = E[DZ(t)|F].
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Since

Dlexp(— fo f(Xr)] = exp(— fo f'(Xr)(DX7)(t)
we have by the computation done for V;
Xio (X,
Dlexp(— fo f(X7)] = exp(— fo (XT)MT\}}]%.
t
Thus
H; = exp(— ]; (XT)MT‘E]M
t

Now supposing f and f' € C' N Lip we apply the same method as for
obtaining I'[V;] which leads to

[[H = exp(—2 ftTr(s)ds
2
(B (" (Xr) M + ['(X) 2] | 7]
Jo 2 ek du (16)
with  2z7' = [' LB, — [ K,L,Mds
and K= o(X;)+ Xs0'(Xs)
Ly = 20'(X,)+ X0"(X5).

If we introduce the following notation which extends the Black-Scholes
case

deltat = Ht = eXp ft (XT)MT|ft]
gamma, = exp(— [, r(s)ds)E[5 (f”(XT) gf/(XT)ZtT | Fi]
we can summarize the formulas of this diffusion case by
Vi = delta, X}
Ht# = gamma%Xt#
V] = delta’l'[X,]
L[V;, Vi = deltagdelta,I'[ X, X
[[H;] = gamma’l'[X}] ‘
['[H,, H)] = gammagamma,['[ X, X/
Vs, Hy] = deltaggamma,I'[ X, X;]
LX) = M2 [} elXuclX) XL‘; Xu)
DX, X)) = MM, [ eXieiot g,

Of course the principle of the method applies to more general cases.

6 Conclusion

a) Let us sketch shortly what would be the second order calculus with
variances and bias mentionned above in the table 1 of section 2. On an
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error structure (2, 4,P,D,I") the bias of the error on a random vari-
able X (i.e. the conditional expectation of the error) is represented by
the generator A of the semi-group canonically associated with the error
structure, see |[B-H|. It has a domain DA smaller than . The func-
tional calculus on A follows the following rules: for all F' € C?(R%)
with bounded first and second derivates, Vf; € DA, ¢« = 1,....d,
F(fi,...,fs) € DA and

d 1 d

AIF(f) = D F(NASi+5 Y FS(HT1 1)

i=1 ij=1

On the Black-Scholes model, concerning solely the error due to (B;),
we obtain :

AB[St] = StO'eB(Bt + %O't)
g[S = S2o2ept
AplV)] = delta,AplS)] + sgamma, T [Sy].

b) What we have done could be relatively easily extended to d-
dimensional models and to cross errors of several pricings and hedging
portfolios, also to incomplete models with continuous underlying pro-
cesses, see |K| part 2. The direction of improvement needing really new
research seem at present to be the following:

- The means of obtaining I" from statistics and the connection with
the Fisher information theory, see [B2|, especially to get I' on the
Wiener space.

- To study the errors and the sensitivity of American options to
variations of the Brownian motion used in the modeling of the stock
price.

- The extension of the method to models with jumps in connection

with stochastic calculus of variation on the general Poisson space, see
[B-G-J| |B1] [P].
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