
Error Propagation and Sensitivityin Finanial CalulusClassial models and European optionsNiolas Bouleau∗Juin 2001AbstratWe study the sensitivity of priing and hedging formulas of simple �nanialmodels to hanges of parameters and, that is the main fous, to perturbationsof the underlying Brownian motion. The method we apply is not spei� to�nane, it is a general setting of the so-alled Malliavin alulus based on thetheory of Dirihlet forms. This approah to error alulus is explained hereboth intuitively and mathematially.1 IntrodutionOne a model is hosen and used to prie ontingent laims and to hedgea position, the main question remains at time t : what is our exposureto hanges in the market ? This risk assessment is usually done in termsof sensitivity of the portfolios to variations of the �nanial quantitiesand parameters of the model. For example the volatility, onstant in�rst approximation, seems to vary proportionally to itself in seondapproximation, as it were erroneous with a onstant relative error.As long as these sensitivity omputations onern the role of �nitedimensional quantities, the lassial di�erential alulus an be per-formed either in a deterministi framework or almost surely (path bypath) in the random ase.Now what allows the theory of Dirihlet forms is to take in aounta perturbation of the stohasti proess (e.g. the Brownian motion)itself with whih the model is mathematially onstruted.This derivation of a random variable with respet to the sample pathof an underlying proess is the entral idea of the so-alled Malliavinalulus, f. [M℄, but the theory of Dirihlet forms gives a general formto this kind of omputation in a lose onnetion with the interpretationin terms of errors.We take the ase of �nanial models as an example to expose thismethod. This explains the hoie of simple models. The �rst part (se-tion 2) is devoted to intuitive ideas and to the formal de�nitions. The
∗Eole des Ponts et Chaussées, Paris, bouleau�enp.fr1



following part (setion 3) onerns the in�nite dimensional error stru-tures on the Wiener spae. Then the Blak-Sholes ase is examinedand, in the last part (setion 5), a di�usion model is studied. Finallywe mention some ways of researh.2 Error alulus based on Dirihlet formsThis part begins with a short historial and intuitive introdution. Itis not here for ultural reasons but as the simplest way to help thereader in improving his personal idea of the tools developed later. Next,we give the mathematial framework that we will apply to �nanialmodels and explain its main properties. Finally a omparison withother approahes is ommented for larity.2.1 Error alulus à la GaussTwelve years after his argument showing the importane of the nor-mal law as probability law for the errors (Theoria motus orporumoelestium 1809), Gauss was interested in the propagation of errors(Theoria Combinationis 1821). He has to be onsidered as the founderof error alulus. Given a quantity U = F (V1, V2, . . .) funtion of othererroneous quantities V1, V2, . . . he states the problem of omputing thequadrati error to fear on U knowing the quadrati errors σ2
1 , σ

2
2, . . .on V1, V2, . . . , these errors being supposed small and independent. Hisanswer is the following formula
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2+ (1)he gives also the ovariane between the error on F and the error of another funtion of the Vi's.Formula (1) possesses a property whih makes it highly better, inseveral questions, than other formulas used here and there in textbooksduring the 19th and 20th enturies. It is a oherene property. With aformula suh that
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|σ2 + . . . (2)errors an depend on the manner the funtion F is written : in dimen-sion 2 already omposing an injetive linear map with its inverse leadswith formula (2) to the fat that the identity map inreases the errorswhat is hardly aeptable.This doesn't happen in Gauss' alulus. Introduing the operator
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and supposing the funtions smooth, we remark that formula (1) anbe written
σ2

U = LF 2 − 2FLFand the oherene of this alulus omes from the oherene of thetransport of a differential operator by a funtion : if L is suh anoperator, u and v injetive regular maps, denoting the operator ϕ →
L(ϕ ◦ u) ◦ u−1 by θuL we have θv◦uL = θv(θuL).The errors on V1, V2, . . . are not neessarily supposed to be inde-pendent nor onstant, they an depend on V1, V2, . . . : Let be given a�eld of symmetri positive matries (σij(v1, v2, . . .)) on R

d representingthe onditional varianes and ovarianes on V1, V2, . . . given the values
v1, v2, . . . of V1, V2, . . . then the error on U = F (V1, V2, . . .) is

σ2
F =

∑

ij

∂F

∂Vi

(v1, v2, . . .)
∂F

∂Vj

(v1, v2, . . .)σij(v1, v2, . . .) (3)whih depends solely on F as mapping, provided F be suitably regular.2.2 Extension tool using Dirihlet formsThe error alulus of Gauss has the limitation that it has no mean ofextension. If the error on (V1, V2, V3) is known it gives the error on anydifferentiable funtion of (V1, V2, V3) but that's all.Now, in the usual probabilisti situations where a sequene of quan-titiesX1, X2, . . . , Xn, . . . is given and where the errors are known on theregular funtions of a �nite number of them, we would like to deduethe error on a funtion of an in�nite number of the Xi's or at least onsome suh funtions.It is atually possible to reinfore this error alulus giving it a pow-erful extension tool and preserving the oherene property. In addition,it will give us the omfortable possibility to handle Lipshitz funtionsas well.For this we ome bak to the idea that the erroneous quantities arethemselves random, as Gauss had supposed for his proof of the `lawof errors', say de�ned on (Ω,A,P). The quadrati error on a randomvariable X is then itself a random variable that we will denote by Γ[X].Intuitively we still suppose the errors are in�nitely small although thisdoesn't appear in the notation. It is as we had an in�nitely small unitto measure errors �xed in the whole problem. The extension tool is thefollowing, we assume that if Xn → X in L2(Ω,A,P) and if the error
Γ[Xm−Xn] onXm−Xn an be made as small as we want in L1(Ω,A,P)for m,n large enough, then the error Γ[Xn−X] on Xn−X goes to zeroin L1.It is a reinfored oherene priniple sine this means that the erroron a random variable X is attahed to X and that furthermore if the3



sequene of pairs (Xn, error on Xn) onverges in a suitable sense, itonverges neessarily to (X, error on X).This an be axiomatized as follows : we all error struture a prob-ability spae equipped with a loal Dirihlet form possessing a arré duhamp. Thus an error struture is a term
(Ω,A,P,D,Γ)where (Ω,A,P) is a probability spae, satisfying the four properties :1.) D is a dense subvetorspae of L2(Ω,A,P)2.) Γ is a positive symmetri bilinear map from D × D into L1(P)ful�lling the funtional alulus of lass C1 ∩ Lip, what means that if

u ∈ D
m and v ∈ D

n for F and G of lass C1 and Lipshitz from R
m[resp. R

n℄ into R, one has F ◦ u ∈ D and G ◦ v ∈ D and
Γ[F ◦ u,G ◦ v] =

∑

i,j

F ′
i (u)G

′
j(v)Γ[ui, vj] P-p.s..3.) the bilinear form E [f, g] = EΓ[f, g] is losed, i.e. D is ompleteunder the norm ‖ . ‖D = (‖ . ‖2

L2(P) + E [ . , . ])
1

2 .4.) 1 ∈ D and Γ[1, 1] = 0.We always write E [f ] for E [f, f ] and Γ[f ] for Γ[f, f ].With this de�nition, the form E de�ned at point 3.) is a Dirihletform. This notion has been introdued by A. Beurling and J. Denyas a tool in potential theory, f. [B-D℄ [F℄ [S℄, and reeived a proba-bilisti interpretation in terms of symmetri Markov proesses by M.L. Silverstein and M. Fukushima, f. [F-O-T℄ [M-R℄. The operator Γis the arré du hamp or squared �eld operator assoiated with E , ithas been studied by several authors in more general ontext, f. [D-M℄[B-H℄. Here we refer to Γ as the quadrati error operator of the errorstruture. Its intuitive meaning is the onditional variane of the error.First examples. (a) A simple example of error struture is the term
(R,B(R), µ,H1(m), γ)where m is the normal law N(0, 1) and

H1(m) = {f ∈ L2(m) : f ′ in the sense of distributions ∈ L2(m)}with γ[f ] = f ′2 for f ∈ H1(m). This struture is assoiated to the realvalued Ornstein-Uhlenbek proess.(b) Let D be a onneted open set of �nite volume in R
d, λd be theLebesgue measure, let us take (Ω,A,P) = (D,B(D), 1

λd(D)
λd) and
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where the aij's are maps from D into R suh that
aij ∈ L2

loc(D), aij = aji,
∂aij

∂xk

∈ L2
loc(D),

∑

ij

aij(x)ξiξj ≥ 0 ∀ξ ∈ R
d ∀x ∈ D.Then it an be shown that the form E [u, v] = EΓ[u, v] with

u, v ∈ C∞
K (D) is losable, f. [F-O-T℄ [M-R℄, i.e. there exists anextension of Γ to a subvetorspae D of L2, D ⊃ C∞

K (D) suh that
(Ω, A, P, D, Γ) be an error struture.2.3 First order and seond order alulusThe following remark, although very simple, is important to understandthe role of the error alulus à la Gauss that will used in the sequel inthe extended form allowed by Dirihlet forms.Let us start with a quantity x with a small entred error Y , on whihats a non-linear regular funtion f . Thus we have at the beginning arandom variable that we an write x+εY , it has no bias (entred at thetrue value x) and its variane is ε2σ2

Y : thus bias0 = 0, variane0 = ε2σ2
Y .After having applied the funtion f , using Taylor formula shows thatthe error is no more entred. The bias has the same order of magnitudeas the variane :bias1 = E[f(x+ εY ) − f(x)] = ε2σ2

Y
1
2
f ′′(x) + ε30(1)variane1 = E[(f(x+ εY ) − f(x))2] − (bias1)2

= ε2σ2
Y f

′2(x) + ε30(1)then applying a new regular non-linear funtion g gives us a reurreneformula : bias2 = bias1g′(f(x)) + 1
2
variane1g′′(f(x)) + ε30(1)variane2 = variane1g′2(f(x)) + ε30(1)whih ould be easily extended to appliations from R

p to R
q (for thegeneral formulas on the bias and the variane of the error under regularmappings see [B-H℄ hapter I paragraph 6 orollaries 6.1.3 and 6.1.4).We see that the alulus on the bias is a seond order alulus in-volving the variane. Instead, the alulus on the varianes is a �rstorder alulus not involving the bias.Thus, the error alulus on the varianes appears to be neessarilythe �rst step in an analysis of errors propagation based on di�erentialmethods and supposing small errors.2.4 Comparison of approahesBefore looking at the in�nite dimensional examples needed in �nane,let us try to give an outlook over the di�erent approahes to erroralulus. 5



Table 1: Main lasses of error alulideterministi probabilisti approahesapproahSensitivity Extended error alulus using Probabilityalulus: Dirihlet formsderivation withrespet to theparameters ofthe model �rst order alulusonly dealing withvarianes seond order al-ulus with vari-anes and bias theoryin�nitesimal errors �nite errorsAt the extreme right-hand side of the table we have the usual proba-bility alulus in whih the errors are random variables. The knowledgeof the joint laws of the quantities and their errors is supposed to beyielded by statistial methods. The errors are �nite, the propagationof the errors needs omputation of image probability laws.At the extreme left-hand side the sensitivity alulus onsists ofomputing derivatives with respet to parameters, inluding Gateauxor Fréhet derivatives in funtional spaes to get the sensitivity withrespet to a funtional data.Between these two purely probabilisti and purely deterministi ap-proahes lies the extended error alulus based on Dirihlet forms. Itsupposes the errors are in�nitely small but takes in aount some fea-tures of the probabilisti approah allowing to put the omputationsand the arguments inside a powerful mathematial theory: the theoryof Dirihlet forms. In the same framework an be performed either a�rst order alulus on varianes whih is simple and signi�ant enoughfor most appliations or a seond order alulus dealing with both vari-ane and bias whih is more ompliated and in lose onnetion withthe so-alled stohasti di�erential geometry. We annot here go fur-ther to explain this onnetion in more details. We will rather desribethe main properties this alulus reeives from Dirihlet forms theory.Let us add just a omment. On one hand the error alulus basedon Dirihlet forms an be seen as a speial ase of more general mathe-matial theories of di�erential alulus in metri or abstrat spaes, seee.g. [A-K℄ [W℄. On the other hand it an be enrihed and made morepreise by geometri additional hypotheses, see e.g. [M℄ [C-M℄ [St℄. Webelieve that the level of axiomatisation of error strutures is the bestadapted to error analysis for stohasti models.2.5 The methodThe onstrution of an error struture on a stohasti model an bedone in two steps1) If there are, as usually, deterministi parameters whih an beerroneous or with respet to whih a sensitivity is wished, these param-eters have to be randomized with a priori laws.6



2) errors operators must be hosen to at on random quantities (ini-tially random or randomized parameters) in order to desribe errors, insuh a way that we obtain mathematially an error struture as de�nedabove.As we will see further, the hoie of the a priori law is not so ruialas it ould be thought beause the omputations are done almost surely.Several properties of error strutures make it easier suh a onstru-tion.1) The operation of taking the image of an error struture by amapping is quite natural and gives an error struture as soon asthe mapping, even non injetive, satis�es some rather weak ondi-tions. In partiular if (Ω,A,P,D,Γ) is an error struture and if Xis a random variable with values in R
d whose omponents are in D,

(Rd,B(Rd),PX ,DX ,ΓX) is an error struture where PX is the law of X,
DX = {f ∈ L2(PX) : f ◦X ∈ D}

ΓX [f ] = E[Γ[f ◦X]|X=x], f ∈ D2) If f ∈ D and F is Lipshitz from R to R then F ◦ f ∈
D and Γ[F ◦ f ] ≤ Γ[f ]. For example the struture of exam-ple (a) (R,B(R), µ,H1(µ), γ) possesses an image by the map x →
| sin

√

1 + |x|| whih is an error struture on [0, 1]. Suh a use of non in-jetive funtions is triky in the deterministi sensitivity alulus. Moregenerally if F is a ontration from R
d into R in the following sense

|F (x) − F (y)| ≤
d

∑

in1

|xi − yi|then for f1, f2, . . . , fd ∈ D one has F (f1, f2, . . . , fd) ∈ D and
Γ[F (f1, f2, . . . , fd)]

1

2 ≤
d

∑

i=1

Γ[fi]
1

2 .This property allows to onsider more general images with values inmetri spaes as soon as a suitable density property is preserved, see[B-H℄ hapter V paragraph 1.3 p 197.3) The produt of two or ountably many error strutures is an errorstruture. It is the mathematial expression of the independene ofthe random variables and the non-orrelation of the errors. By thisway error strutures on in�nite dimensional spaes are easily obtained,e.g. on the Wiener spae, as we will see in the next part, or on thegeneral Poisson spae or other spaes of stohasti proesses, see [B-H℄[M-R℄[B1℄.For later referene we give the following statement (see [B-H℄ and[M-R℄ for more general ases).Theorem 2.1 Produt strutures 7



Let Sn = (Ωn,Fn, mn,Dn,Γn), n ≥ 0 be error strutures.The term S = (Ω,F , m,D,Γ) de�ned below is an error struturedenoted S =
∏∞

n=1 Sn and alled the produt struture of the Sn:
(Ω,F , m) = (

∞
∏

n=0

Ωn,

∞
⊗

n=0

Fn,

∞
∏

n=0

mn)

D = {f ∈ L2(m) : ∀n, for m-a.e. ω = (ω0, ω1, . . .)the funtion x→ f(ω0, . . . , ωn−1, x, ωn+1, . . .) ∈ Dnand ∫

∑

n Γn[f ] dm < +∞}and for f ∈ D Γ[f ] =
∑

n Γn[f ].Thanks these properties, is possible the onstrution of a variety oferror strutures on a given probabilisti model. Now for a rationaltreatment of a pratial ase these error hypotheses should be obtainedby statistial methods. This is onneted with the Fisher informationtheory, see [B2℄ for the main ideas. Anyhow, these statistial methodsare not yet su�iently studied to be exposed here, espeially in thein�nite dimensional ase we have to use in �nane. Thus we limitourselves to error omputations with a priori errors hosen the mostlikely we an. We onsider it is signi�ant already.3 Error strutures on the Wiener spaeLet us �rst reall the lassial onstrution of the Brownian motionthanks the Wiener integral.3.1 The Wiener spae as Gaussian produt spaeSine we aim here at appliations to simple �nanial models we will on-sider only the ase where a given measured spae (E, E , µ) is given whihis either (R+,B(R+), dt) or ([0, 1],B([0, 1]), dt) and a one-dimensionalBrownian motion, beause produts are easily done as we have seenjust above (for the abstrat Wiener spae setting see [B-H℄).Let (χn) be an orthonormal basis of L2(E, E , µ) and let (gn) bea sequene of i.i.d. redued Gaussian variables de�ned on a proba-bility spae (Ω,A,P). To eah f ∈ L2(E, E , µ) we assoiate I(f) ∈
L2(Ω,A,P) by

I(f) =
∑

n

< f, χn > gn.then I is an isometri homomorphism from the Hilbert spae L2(E, E , µ)into the Hilbert spae L2(Ω,A,P). If f and g are orthogonal in
L2(E, E , µ), I(f) and I(g) are independent Gaussian random variablesand putting

Bt =
∑

n

< 1[0,t], χn > gn (t ∈ [0, 1] or t ∈ R+) (4)8



de�nes a Gaussian stohasti proess whih is easily shown to be astandard Brownian motion. By extending the ase where f is a stepfuntion, the random variable I(f) is denoted by
∫

f(s) dBsand de�nes the Wiener integral of f .In this onstrution we an suppose the spae (Ω,A,P) be a produtspae :
(Ω,A,P) = (R,B(R), m)N m = N(0, 1)and the gn's be the oordinate maps. Thus ω = (ω0, . . . , ωn, . . .) and

gn(ω) = ωn. By the theorem on produts of error strutures, as soon aserrors strutures are de�ned on the fator spaes (R,B(R), m,dn, γn)this de�nes an error struture
(Ω,A,P,D,Γ) =

∞
∏

n=0

((R,B(R), m,dn, γn)whose domain D is expliitely given in theorem 1.3.2 The Ornstein-Uhlenbek strutureLet us take for eah fator the one-dimensional struture of example(a) i.e.
γn[f ] = f ′2

dn = H1(m) m = N(0, 1)hene the assoiated form is
ǫn(f) =

∫

f ′2 dmThe struture (Ω,A,P,D,Γ) is the in�nite dimensional Ornstein-Uhlenbek struture. Let f ∈ L2(R+) then
I(f) =

∫

f(s) dBs =
∑

n

< f, χn > gnand by the theorem 1 we have
Γ[gn] = 1

Γ[gm, gn] = 0 if m 6= nand I(f) ∈ D with
Γ[I(f)] =

∑

n

< f, χn >
2 Γ[gn] = ‖f‖2

L2(R+
.

9



This property Γ[
∫

f(s) dBs] = ‖f‖2
L2(R+) araterizes the Ornstein-Uhlenbek error struture on (Ω,A,P) = (R,B(R), m)N beause it fol-lows that if F ∈ C1 ∩ Lip(Rk)

Γ[F (
∫

f1dB, . . . ,
∫

fkdB)] =
∑k

i,j=1 F ′
i (

∫

f1dB, . . .)F
′
j(

∫

f1dB, . . .)Γ[
∫

fidB,
∫

fjdB]and the random variables
F (

∫

f1dB, . . . ,
∫

fkdB)for F ∈ C1 ∩ Lip(Rk) and fi ∈ L2(R+) are a dense subspae of L2(P)sine ontaining ylindrial funtions of lass C1 ∩ Lip.It an be shown that a rather large lass of random variables ob-tained by stohasti alulus are in the domain D, espeially the solu-tions of stohasti di�erential equations with Lipshitz oe�ients, f.[B-H℄ hapter IV.3.3 Other strutures on the Wiener spaeVariants of the preeding onstrution yield other error strutures. Forexample let us onsider the ase (E, E , µ) = ([0, 1],B([0, 1]), dt) and let
(χn) be the following basis of L2([0, 1], dt)

χn(t) =
√

2 cos(nt) if n > 0
χ0(t) = 1

χn(t) =
√

2 sin(nt) if n < 0and for the error struture let us take
(Ω,A,P,D,Γ) =

∏

n∈Z(R,B(R), m,H1(m), γn)where γn[u] = (2πn)2qu′2 for u ∈ H1(m), q being a �xed naturalnumber. Denoting as before the oordinate maps by gn, we have
Γ[gn] = (2πn)2q and Γ[gm, gn] = 0 if m 6= n. For f ∈ L2([0, 1], dt)whose Fourier series representation is f =

∑

n∈Z f̂nχn we obtain
Γ[

∫ 1

0
f(s) dBs]Γ[

∑

n∈Z f̂nχn] =
∑

n∈Z f̂n

2
(2πn)2qfrom whih it is easily shown that for f ∈ L2([0, 1], dt), ∫

f dB belongsto D if and only if the q-th derivative f (q) in the sens of distributionsbelongs to L2([0, 1], dt) and then
Γ[

∫

f dB] =
∫

f (q)2(s) ds.As explained for the Ornstein-Uhlenbek ase, the above formula de-termines uniquely the error struture on (Ω,A,P).More generally this an be extended in onnetion with the so-alled seond quantization. Let pt be a strongly ontinuous ontra-tion semi-group on L2([0, 1], dt) with generator (a,Da), let us onsider10



the assoiated losed positive quadrati form (ε,D(
√
−a)) de�ned by

ε[f ] = ‖
√
−af‖2, then the struture on the Wiener spae indued bythe formula

Γ[
∫ ∞
0
f(s) dBs] = ε[f ], f ∈ D(

√

(−a))is losable and thus de�nes an error struture, see [B-R℄. It is worthnoting that the semi-group pt is not supposed to at positively on posi-tive funtions (i.e. the form ε is not neessarily Dirihlet) and the form
ε does not need to be loal.3.4 The gradient operator and the derivativeLet us ome bak to the Ornstein-Uhlenbek struture for simpliity.

(Ω,A,P,D,Γ)(R,B(R), m,H1(m), γ)Nwith m = N(0, 1) and γ[u] = u′2. The same ideas extend to more gen-eral strutures, in fat to any error struture whose spae D is separable,see [B-H℄ hapter V exerise 5.9.Let ω = (ω1, . . . , ωn, . . .) and let gn be the oordinate mapsas before. By theorem 1 we know that if U ∈ D then
∂U
∂ωn

(ω1, . . . , ωn−1, ., ωn+1, . . .) exists in the sense of distributions for al-most every ω1, . . . , ωn−1, ωn+1, . . . and ∑

n( ∂U
∂ωn

)2 ∈ L1(P).Thus we an de�ne the gradient operator D on D with values in
L2(P, H) with H = L2(R+) byDe�nition 3.1

DU =
∑

n

∂U

∂ωn

χn(t).Proposition 3.2 D is a ontinuous appliation from D into L2(P, H)suh that1) ∀U, V ∈ D < DU,DV >H= Γ[U, V ]2) ∀F ∈ C1 ∩ Lip(Rd), ∀X ∈ D

D(F ◦X) =

d
∑

i=1

F ′
i ◦X.DXi P − a.s.Proof : The ontinuity omes from the equalities

‖DU‖L2(P,H) = ‖ ‖DU‖H‖L2(P) =
√

E‖DU‖2
H =

√

E [U ]where E [.] is the form assoiated with Γ (de�nition of an error strutureitem 3).Then immediately
< DU,DV >H=

∑

n

∂U

∂ωn

∂V

∂ωn

= Γ[U, V ]11



and for F and X as in the statement
‖D(F ◦X) −

∑

i F
′
i ◦XDXi‖2

H

= Γ[F ◦X] − 2
∑

i F
′
i ◦XΓ[F ◦X,Xi] +

∑

i,j F
′
i ◦XF ′

j ◦XΓ[Xi, Xj]whih is zero by the funtional alulus satis�ed by Γ (de�nition of anerror struture item 2).The operator D satis�es the following properties. ∀h ∈ L2(R+) D[
∫ ∞
0
h(s) dBs] = h. D ∩ L∞ is an algebra and if U, V ∈ D ∩ L∞

D(UV ) = DU.V + U.DV. with suitable hypotheses on the adapted proess Ht

D[
∫ ∞
0
Hs dBs](t) = Ht +

∫ ∞
0

(DHs)(t) dBs.For properties and use of the gradient operator we refer to the bookof D. Nualart [N℄, in partiular for the so-alled Clark formula :Let U ∈ D and Ft = σ(Bs, s ≤ t)

U = EU +

∫ ∞

0

E[DU(t)|Ft] dBtf. [N℄ hapter I p42.Now a slight variant of the gradient operator, the notion of `deriva-tive', is useful when omputing errors on solutions of stohasti dif-ferential equations thanks the tool of Ito's formula (this notion wastheoretially introdued by e.g. [F-laP℄).De�nition 3.3 Let (B̂t)t≥0 be an auxiliary independent Brownian mo-tion. For U ∈ D the derivative U# is a random variable depending on
ω and ω̂ de�ned by

U# =

∫ ∞

0

(DU)(ω, t) dB̂t.>From the properties of the gradient one gets. Γ[U ] = Ê[U#2]. For F ∈ C1 ∩ Lip (F ◦ U)# = F ′ ◦ U.U#. With suitable hypotheses on the adapted proess Ht

(
∫

Hs dBs)
# =

∫

H#
s dBs +

∫

Hs dB̂ssee [B-H℄ hapter III paragraph 2.Let us mention two lemmas that we will use in the sequel. Theirproofs are straightforward. They onern the weighted Ornstein-Uhlenbek ase :
Γ[

∫ ∞
0
f(s) dBs] =

∫ ∞
0
α(t)f 2(t) dt f ∈ D(R+) (5)12



where α is non negative. For this struture if f ∈ L2(R+, (α+ 1)dt)

D(
∫

f(s) dBs)(t) =
√

α(t)f(t)

(
∫

f(s) dBs)
# =

∫ ∞
0

√

α(t)f(t) dB̂t.Lemma 3.4 The onditional expetation operators E[ . |Ft] are orthog-onal projetors in D on errors sub-strutures (losed sub-vetor-spaesof D stable by Lipshitz funtions).Lemma 3.5 Under the same hypotheses, let Γt be de�ned from Γ by
Γt[(

∫

f(s) dBs)] = Γ[(
∫

1[0,t]f(s) dBs)]and let U → U#t the derivation operator assoiated with Γt, then for
U ∈ D:

(E[U |Ft])
# = E[U#t |Ft].4 Error alulus on the Blak-Sholes modelLet us reall for ompleteness the main features of the Blak-Sholesmodel, for the �nanial theory and formulas we refer to [L-L℄ [D-J℄[El-K℄.The interest rate for the bond is onstant, the asset (St)t≥0 is mod-elised as the solution of the equation

dSt = St(µdt+ σdBt)where (Bt) is a Brownian motion.For a European option of the form f(ST ), T �xed deterministi time,the value at time t ∈ [0, T ] of the option is Vt = F (t, St, σ, r) with
F (t, x, σ, r) = e−r(T−t)

∫R f(xe(r−
σ2

2
)(T−t)+σy

√
T−t)

e−
y2

2

√
2π
dy. (6)If f is Borel with linear growth, the funtion F is C1 in t ∈ [0, T [, C2and Lipshitz in x ∈]0,∞[.Let us put deltat =

∂F

∂x
(t, St, σ, r)gammat =

∂2F

∂x2
(t, St, σ, r)

F satis�es the equation
∂F

∂t
+
σ2x2

2

∂2F

∂x2
+ rx

∂F

∂x
− rF = 0. (7)We shall evaluate the errors on signi�ant quantities of the modelsupposing 13



a) an error on (Bt)t≥0 represented by the Ornstein-Uhlenbek errorstruture with the multipliative onstant eBb) errors on the initial value S0, o�n the volatility σ, on the rate r,whih are `onstant relative errors' in the sense of physiists :
Γ[φ(S0)] = φ′2(S0)S

2
0 e0

Γ[ψ(σ)] = ψ′2(σ) σ2 e1
Γ[ξ(r)] = ξ′2(r) r2 e1) we hose a priori laws on S0, on σ, on r whih are for exampleexponential laws or lognormal laws, et.d) and we suppose (Bt)t≥0 and the randomized quantities are inde-pendent and their errors unorrelated.In other words the error on a regular funtion
F ((Bt)t≥0, S0, σ, r)will be represented by the produt error struture i.e.

Γ[F ((Bt)t≥0, S0, σ, r)]ΓOU [F (., S0, σ, r)]eB +F ′2
S0
S2

0e0 +F ′2
σ σ

2e1 +F ′2
r r

2e2where eB, e0, e1, e2 are positive onstants and ΓOU the Ornstein-Uhlenbek quadrati error operator.Atually, the theory tells us that hedging and priing formulas donot involve the drift oe�ient µ. So we may take µ = r, i.e. we workunder the probability P suh that S̃t = e−rtSt, the disounted stokprie, is a martingale. sine St = S0e
σBt+(r−σ2

2
)t we have

Γ[St] = S2
t {σ2teB + e0 + (Bt − σt)2σ2e1 + t2e2}The relative standard deviation of the error √

Γ[St]

St
writes

√

Γ[St]

St

= {σ2teB + e0 + [log
St

S0
− (

σ2

2
+ r)t]2e1 + t2e2}

1

2 .We see that the part of the error oming from S0 does not depend on
t, that one from (Bt) is proportional to √

t, that ones from σ and r areof the order of t.4.1 European optionsLet us onsider an option of the form f(ST ) where f is Lipshitz.By the independene hypothesis, the errors on B, S0, σ, r an bemanaged separately. Let us denote ΓB, Γ0, Γσ, Γr the orrespondingquadrati operators.a) Error the value of the optionThe value of the option is Vt = F (t, St, σ, r) with F given by (6)a1)Error due to B. 14



B being present only in St, we have ΓB[Vt] = (∂F
∂x

(St, σ, r))
2ΓB[St]so

ΓB[Vt] = deltat
2 ΓB[St]

ΓB[Vs, Vt] = deltasdeltat ΓB[Ss, St]
(8)with ΓB[Ss, St] = SsStσ

2 s ∧ t.Proposition 4.1 If f is Lipshitz, Vt is in DB and when t ↑ T
Vt = F (t, St, σ, r) → f(ST ) in DB and P − a.s.

ΓB[Vt] = (deltat)
2ΓB[St] → f ′2(ST )ΓB[ST ] in L1 and P − a.s.Proof : Let us suppose �rst f ∈ C1 ∩ Lip. By the relation
Vt = E[e−r(T−t)f(ST )|Ft]it follows that Vt → f(ST ) in Lp 1 ≤ p <∞ and a.s.A omputation that we shall do in a more general framework later,and that we do not repete here, gives

Vt
# = e−r(T−t)

E[f ′(ST )ST |Ft]σB̂tthus
Vt

# → f ′(ST )STσB̂T in L2(P, L2(Ω̂, P̂))and thanks f(ST )# = f ′(ST )STσB̂T we ontain
Vt → f(ST ) in DB and P − a.s.and

ΓB[Vt] = e−2r(T−t)(E[f ′(ST )ST |Ft])
2σ2t→ f ′2(ST )ΓB[ST ]in L1 and P-a.s.The ase f only Lipshitz omes from a speial property of the one-dimentional funtional alulus in error strutures (see [B-H℄ hapterIII prop. 2.1.5) making the preeding argument remains valid.a2)Error due to σ.We suppose here f ∈ C1 ∩ Lip. As Vt = F (t, St, σ, r)

Γσ[Vt] = {F ′
x((t, St, σ, r)

∂St

∂σ
+ F ′

σ((t, St, σ, r)}2 σ2e1and the omputation an be done using the integral representation (6),puting S̃t = e−rtSt and
F̃ (t, x) = e−rtF (t, St, σ, r)

Ṽt = e−rtVt = F̃ (t, S̃t)15



and remarking that by (6) we have
∂F̃

∂σ
(t, x) = −2

√
T − t

∂F̃

∂t
(t, x)we have using the di�erential equation (7)

Γσ[Vt] = {
√
T − tσ2S2

t gammat + St(Bt − σt)deltat}2 σ2 e1 (9)a3)Error due to r.We have similarly
Γr[Vt] = {F ′

x((t, St, σ, r)
∂St

∂r
+ F ′

r((t, St, σ, r)}2 r2e2and we obtain
Γr[Vt] = {Tdeltat − (T − t)Vt}2 r2 e2 (10)a3)Error oming from the exerise prie.In the ase of a all or a put, it is possible to evaluate the sensitivitydue to the exerise prie. One an use the lassial expliit formulasor remark that if we denote Fall the funtion F in the ase f(ST ) =

(ST −K)+ then
ΓK [Vt] = {∂Fall

∂K
(t, St)}2ΓK [IK ]where IK is the identity funtion of K, we have ∂VT

∂K
= −1{ST ≥K} and

∂Fall
∂K

(t, St) is, up to the sign, the value at time t of the digital option
1{ST ≥K} for whih the integral representation (6) applies.b) Error on the hedging portfolioHere we limit ourselves to the error due to (Bt). We suppose f and
f ′ in C1 ∩ Lip. The hedging equation is

e−rtF (t, St, σ, r) = F (0, S0, σ, r) +
∫ t

0
Hs dS̃swhere the adapted proess Ht is the quantity of stok in the portfolio :

Ht = deltat =
∂F

∂x
(t, St, σ, r) = e−r(T−t)

E[f ′(ST )ST |Ft]
1

St

.By the same method as for Vt we obtain
ΓB[Ht] = (gammat)

2ΓB[St]
ΓB[Hs, Ht] = gammasgammatΓB[Ss, St]

(11)Proposition 4.2 If f, f ′ ∈ C1 ∩ Lip, then Ht ∈ D and as t ↑ T
Ht → f ′(ST ) in DB and a.s.

ΓB[Ht] → f ′′2(ST )ΓB[ST ] in L1(P) and a.s.16



) More general errors on (Bt)These results show that the quantities deltat and gammat introduedby pratitioners have a diret sense as sensitivity of the value Vt and ofthe hedging Ht to a perturbation of the stok oming from an error onthe Brownian motion.Some relations still hold if we onsider more general error strutureson the Wiener spae. Let us onsider, as mentioned above, a strutureindued by a losed positive quadrati form ε on L2(R+, dt) with
ΓB[

∫

f dB] = ε[f ]for f in the domain of ε with, for example,a) ε[f ] =
∫ ∞
0
α(t)f 2(t) dtb) ε[f ] =

∫ ∞
0

∫ ∞
0

(f(s) − f(t))2β(s)β(t) dsdtthen the formulas
ΓB[Vt] = (deltat)

2 ΓB[St]
ΓB[Ht] = (gammat)

2ΓB[St]remain valid as soon as St ∈ D i.e.in ase a) if α ∈ L1lo(R+, dt) and ΓB[St] = S2
t σ

2
∫ t

0
α(s)dsin ase b) if β ∈ L1(R+, dt) and ΓB[St] = S2

t σ
22

∫ ∞
t
β(s)ds

∫ t

∞ β(s)ds.Now in the ase) ε[f ] =

∫ ∞

0

(
d

∑

i=1

ai(s)f
(i)(s))2 ds a1 6= 0we do not have anymore 1[0,t] ∈ dom(ε), hene Bt doesn't belong to D.Suh error strutures seem to be more onvenient to modelize errors onproesses with �nite variation. For example in a model suh that

dSt = Stσ(St)dBt + StR(t)dtwe ould modelize the rate R(t) by
R(t) = ϕ(

∫ t

0
B̃sds)where B̃t is an independent Brownian motion de�ned on (Ω̃, Ã, P̃) and

ϕ a regular funtion. If on (Ω̃, Ã, P̃) we onsider the error struture
(Ω̃, Ã, P̃, D̃, Γ̃) satisfying

Γ̃[
∫ ∞
0
f dB̃] =

∫ ∞
0
f ′2(s) ds f ∈ H1(R+, dt)we have R(t) ∈ D̃ and

Γ̃[Rs, Rt] = ϕ′(
∫ s

0
B̃u du)ϕ

′(
∫ t

0
B̃v dv)s ∧ t.17



4.2 Amerian optionsHere we will just install the problem.To ways are a priori possible. In the ase of an option of the form
f(ST ), the prie of the option at time t an be obtained by solving thefollowing system of partial di�erential inequalities







∂u
∂t

+ Au− ru ≤ 0, u ≥ f in [0, T ] × R

(∂u
∂t

+ Au− ru)(f − u) = 0 in [0, T ] × R

u(T, x) = f(x) in R

(12)where A = σ2

2
x2 ∂2

∂x
+rx ∂

∂x
and taking Vt = u(t, St). Then errors dependon the analyti problem of the regularity of the funtion u with respetto x, σ, r.An other way onsists to use the stohasti form of the optimalstopping problem, maximazing an expetation over the stopping timeswith values in [0, T ]. This seond way seems less onvenient than the�rst to deal with errors.We return now to the European ase for di�usion models whih anbe managed, as we will see, by stohasti alulus.5 Di�usion modelsWe will display the method in the ase of a omplete market, the prob-ability being a martingale measure and for a simple one-dimensionaldi�usion model.The stok is supposed to be the solution of the equation

dXt = Xtσ(t, Xt) dBt +Xtr(t) dt.We limit the study to the error due to (Bt) whih is a weighted Ornstein-Uhlenbek struture:
Γ[

∫ ∞
0
h(s) dBs] =

∫ ∞
0
α(s)h2(s) ds

α positive and bounded. The rate is deterministi, the funtion σ(t, x)will be supposed bounded with bounded derivative in x uniformly for
t ∈ [0, T ].Let f(XT ) be a European option. Its value at time t is

Vt = E[exp(−
∫ T

t
r(s)ds)f(XT )|Ft]the hedging portfolio is given by the adapted proess Ht whih satis�es

Ṽt = exp(−
∫ t

0
r(s)ds)Vt = V0 +

∫ t

0
Hs dX̃s (13)where X̃s = exp(−

∫ t

0
r(s)ds)Xt.We proeed as follows: from the equation

Xt = X0 +

∫ t

0

Xsσ(s,Xs)dBs +

∫ t

0

r(s)Xsds18



we obtain
X#

u =

∫ u

0

(σ(Xs)+Xsσ
′
x(Xs))X

#
s dBs+

∫ u

0

√

α(s)Xsσ(Xs) dB̂s+

∫ u

0

r(s)X#
s dsthis equation is solved by putting

Ks = σ(s,Xs) +Xsσ
′
x(s,Xs)

Mu = exp
{∫ u

0
Ks dBs − 1

2

∫ u

0
K2

sds+
∫ u

0
r(s)ds

}and remarking that
X#

u = Mu

∫ u

0

√

α(s)Xsσ(Xs)

Ms

dB̂s.a) Let us �rst suppose f ∈ C1 ∩ Lip and let us de�ne Y =

exp(−
∫ T

t
r(s)ds)f(XT ). To ompute (E[Y |Ft])

# we will apply thelemma 2 of setion 3:
Y #t = exp(−

∫ T

t
r(s)ds)f ′(XT )X#t

Tand
(E[Y |Ft])

# = exp(−
∫ T

t
r(s)ds)E[f ′(XT )X#t

T |Ft]

= exp(−
∫ T

t
r(s)ds)E[f ′(XT )MT |Ft]

∫ t

0

√

α(s)Xsσ(Xs)

Ms

dB̂sand applying the lemma 2 gives
Γ[Vt] = Γ[E[Y |Ft]]

= exp(−2
∫ T

t
r(s)ds)(E[f ′(XT )MT |Ft])

2
∫ t

0
α(s)X2

s σ2(Xs)
M2

s
ds(14)this yields also the ross error of Vs and Vt whih is usefull to omputeerrors on random variables suh that ∫ T

0
h(s)dVs

Γ[Vs, Vt] = exp(−
∫ T

s
r(s)ds−

∫ T

t
r(s)ds)

E[f ′(XT )MT |Fs]E[f ′(XT )MT |Ft]
∫ s∧t

0
α(u)X2

uσ2(Xu)
M2

u
du.

(15)With our hypotheses as t ↑ T
Γ[Vt] → f ′2(XT )M2

T

∫ T

0

α(s)X2
sσ

2(Xs)

M2
s

ds = f ′2(XT )Γ[XT ]in L1(P) and a.s.b) Now to deal with Ht, let us remark �rst that Ht is easily obtainedby the Clark formula, see [N℄. Formula 13 gives
Htexp(−

∫ t

0
r(s)ds)Xtσ(Xt) = Dad[exp(−

∫ T

0
r(s)ds)f(XT )]where Dad is the adapted gradient de�ned by

Dad[Z](t) = E[DZ(t)|Ft].19



Sine
D[exp(−

∫ T

0
r(s)ds)f(XT )] = exp(−

∫ T

0
r(s)ds)f ′(XT )(DXT )(t)we have by the omputation done for Vt

D[exp(−
∫ T

0
r(s)ds)f(XT )] = exp(−

∫ T

0
r(s)ds)E[f ′(XT )MT |Ft]

Xtσ(Xt)

Mt

.Thus
Ht = exp(−

∫ T

t
r(s)ds)E[f ′(XT )MT |Ft]

1

Mt

.Now supposing f and f ′ ∈ C1 ∩ Lip we apply the same method as forobtaining Γ[Vt] whih leads to
Γ[Ht] = exp(−2

∫ T

t
r(s)ds)

(

E[MT

Mt
(f ′′(XT )MT + f ′(XT )ZT

t |Ft]
)2

∫ t

0
α(u)X2

uσ2(Xu)
M2

u
duwith ZT

t =
∫ T

t
LsdBs −

∫ T

t
KsLsMsdsand Ks = σ(Xs) +Xsσ

′(Xs)
Ls = 2σ′(Xs) +Xsσ

′′(Xs).

(16)
If we introdue the following notation whih extends the Blak-Sholesase deltat = Ht = exp(−

∫ T

t
r(s)ds)E[f ′(XT )MT |Ft]

1
Mtgammat = exp(−

∫ T

t
r(s)ds)E[

M2
T

M2
t

(f ′′(XT ) + MT

M2
t

f ′(XT )ZT
t |Ft]we an summarize the formulas of this di�usion ase by

V
#
t = deltatX

#
t

H
#
t = gammatX

#
t

Γ[Vt] = delta2
tΓ[Xt]

Γ[Vs, Vt] = deltasdeltatΓ[Xs, Xt]

Γ[Ht] = gamma2
tΓ[Xt]

Γ[Hs, Ht] = gammasgammatΓ[Xs, Xt]
Γ[Vs, Ht] = deltasgammatΓ[Xs, Xt]

Γ[Xt] = M2
t

∫ t

0
α(u)X2

uσ2(Xu)
M2

u
du

Γ[Xs, Xt] = MsMt

∫ s∧t

0
α(u)X2

uσ2(Xu)
M2

u
du

.

Of ourse the priniple of the method applies to more general ases.6 Conlusiona) Let us sketh shortly what would be the seond order alulus withvarianes and bias mentionned above in the table 1 of setion 2. On an20



error struture (Ω,A,P,D,Γ) the bias of the error on a random vari-able X (i.e. the onditional expetation of the error) is represented bythe generator A of the semi-group anonially assoiated with the errorstruture, see [B-H℄. It has a domain DA smaller than D. The fun-tional alulus on A follows the following rules: for all F ∈ C2(Rd)with bounded �rst and seond derivates, ∀fi ∈ DA, i = 1, . . . , d,
F (f1, . . . , fd) ∈ DA and

A[F (f)] =
d

∑

i=1

F ′
i (f)Afi +

1

2

d
∑

i,j=1

F ′′
ij(f)Γ[fi, fj]On the Blak-Sholes model, onerning solely the error due to (Bt),we obtain :

AB[St] = StσeB(Bt + 1
2
σt)

ΓB[St] = S2
t σ

2eBt

AB[Vt] = deltatAB[St] + 1
2
gammatΓB[St].b) What we have done ould be relatively easily extended to d-dimensional models and to ross errors of several priings and hedgingportfolios, also to inomplete models with ontinuous underlying pro-esses, see [K℄ part 2. The diretion of improvement needing really newresearh seem at present to be the following:- The means of obtaining Γ from statistis and the onnetion withthe Fisher information theory, see [B2℄, espeially to get Γ on theWiener spae.- To study the errors and the sensitivity of Amerian options tovariations of the Brownian motion used in the modeling of the stokprie.- The extension of the method to models with jumps in onnetionwith stohasti alulus of variation on the general Poisson spae, see[B-G-J℄ [B1℄ [P℄.Referenes[A-K℄ Ambrosio, L., Kirhheim, B., Currents in metri spaes, preprint,(to appear).[B-D℄ Beurling, A., Deny, J.: Espaes de Dirihlet, I. le as élémentaire.Ata Math. 99, 203-224 (1958); Dirihlet spaes. Pro. Nat. Aad. Si.U.S.A. 45, 206-215 (1959)[B-G-J℄ Bihteler, K., Gravereaux, J. B., Jaod, J.: Malliavin aluluswith jumps. Gordon and Breah, 1987[B-R℄ Bogahev, V. I., Roekner, M.: Mehler formula and apaitiesfor in�nite dimensional Ornstein-Uhlenbek proesses with generallinear drift. Osaka J. Math. 32, 237-274 (1995)21
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