
Error Propagation and Sensitivityin Finan
ial Cal
ulusClassi
al models and European optionsNi
olas Bouleau∗Juin 2001Abstra
tWe study the sensitivity of pri
ing and hedging formulas of simple �nan
ialmodels to 
hanges of parameters and, that is the main fo
us, to perturbationsof the underlying Brownian motion. The method we apply is not spe
i�
 to�nan
e, it is a general setting of the so-
alled Malliavin 
al
ulus based on thetheory of Diri
hlet forms. This approa
h to error 
al
ulus is explained hereboth intuitively and mathemati
ally.1 Introdu
tionOn
e a model is 
hosen and used to pri
e 
ontingent 
laims and to hedgea position, the main question remains at time t : what is our exposureto 
hanges in the market ? This risk assessment is usually done in termsof sensitivity of the portfolios to variations of the �nan
ial quantitiesand parameters of the model. For example the volatility, 
onstant in�rst approximation, seems to vary proportionally to itself in se
ondapproximation, as it were erroneous with a 
onstant relative error.As long as these sensitivity 
omputations 
on
ern the role of �nitedimensional quantities, the 
lassi
al di�erential 
al
ulus 
an be per-formed either in a deterministi
 framework or almost surely (path bypath) in the random 
ase.Now what allows the theory of Diri
hlet forms is to take in a

ounta perturbation of the sto
hasti
 pro
ess (e.g. the Brownian motion)itself with whi
h the model is mathemati
ally 
onstru
ted.This derivation of a random variable with respe
t to the sample pathof an underlying pro
ess is the 
entral idea of the so-
alled Malliavin
al
ulus, 
f. [M℄, but the theory of Diri
hlet forms gives a general formto this kind of 
omputation in a 
lose 
onne
tion with the interpretationin terms of errors.We take the 
ase of �nan
ial models as an example to expose thismethod. This explains the 
hoi
e of simple models. The �rst part (se
-tion 2) is devoted to intuitive ideas and to the formal de�nitions. The
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following part (se
tion 3) 
on
erns the in�nite dimensional error stru
-tures on the Wiener spa
e. Then the Bla
k-S
holes 
ase is examinedand, in the last part (se
tion 5), a di�usion model is studied. Finallywe mention some ways of resear
h.2 Error 
al
ulus based on Diri
hlet formsThis part begins with a short histori
al and intuitive introdu
tion. Itis not here for 
ultural reasons but as the simplest way to help thereader in improving his personal idea of the tools developed later. Next,we give the mathemati
al framework that we will apply to �nan
ialmodels and explain its main properties. Finally a 
omparison withother approa
hes is 
ommented for 
larity.2.1 Error 
al
ulus à la GaussTwelve years after his argument showing the importan
e of the nor-mal law as probability law for the errors (Theoria motus 
orporum
oelestium 1809), Gauss was interested in the propagation of errors(Theoria Combinationis 1821). He has to be 
onsidered as the founderof error 
al
ulus. Given a quantity U = F (V1, V2, . . .) fun
tion of othererroneous quantities V1, V2, . . . he states the problem of 
omputing thequadrati
 error to fear on U knowing the quadrati
 errors σ2
1 , σ

2
2, . . .on V1, V2, . . . , these errors being supposed small and independent. Hisanswer is the following formula

σ2
U = (

∂F

∂V1
)2σ2

1 + (
∂F

∂V2
)2σ2

2+ (1)he gives also the 
ovarian
e between the error on F and the error of another fun
tion of the Vi's.Formula (1) possesses a property whi
h makes it highly better, inseveral questions, than other formulas used here and there in textbooksduring the 19th and 20th 
enturies. It is a 
oheren
e property. With aformula su
h that
σU = | ∂F

∂V1
|σ1 + | ∂F

∂V2
|σ2 + . . . (2)errors 
an depend on the manner the fun
tion F is written : in dimen-sion 2 already 
omposing an inje
tive linear map with its inverse leadswith formula (2) to the fa
t that the identity map in
reases the errorswhat is hardly a

eptable.This doesn't happen in Gauss' 
al
ulus. Introdu
ing the operator

L =
1

2
σ2

1

∂2

∂V 2
1

+
1
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and supposing the fun
tions smooth, we remark that formula (1) 
anbe written
σ2

U = LF 2 − 2FLFand the 
oheren
e of this 
al
ulus 
omes from the 
oheren
e of thetransport of a differential operator by a fun
tion : if L is su
h anoperator, u and v inje
tive regular maps, denoting the operator ϕ →
L(ϕ ◦ u) ◦ u−1 by θuL we have θv◦uL = θv(θuL).The errors on V1, V2, . . . are not ne
essarily supposed to be inde-pendent nor 
onstant, they 
an depend on V1, V2, . . . : Let be given a�eld of symmetri
 positive matri
es (σij(v1, v2, . . .)) on R

d representingthe 
onditional varian
es and 
ovarian
es on V1, V2, . . . given the values
v1, v2, . . . of V1, V2, . . . then the error on U = F (V1, V2, . . .) is

σ2
F =

∑

ij

∂F

∂Vi

(v1, v2, . . .)
∂F

∂Vj

(v1, v2, . . .)σij(v1, v2, . . .) (3)whi
h depends solely on F as mapping, provided F be suitably regular.2.2 Extension tool using Diri
hlet formsThe error 
al
ulus of Gauss has the limitation that it has no mean ofextension. If the error on (V1, V2, V3) is known it gives the error on anydifferentiable fun
tion of (V1, V2, V3) but that's all.Now, in the usual probabilisti
 situations where a sequen
e of quan-titiesX1, X2, . . . , Xn, . . . is given and where the errors are known on theregular fun
tions of a �nite number of them, we would like to dedu
ethe error on a fun
tion of an in�nite number of the Xi's or at least onsome su
h fun
tions.It is a
tually possible to reinfor
e this error 
al
ulus giving it a pow-erful extension tool and preserving the 
oheren
e property. In addition,it will give us the 
omfortable possibility to handle Lips
hitz fun
tionsas well.For this we 
ome ba
k to the idea that the erroneous quantities arethemselves random, as Gauss had supposed for his proof of the `lawof errors', say de�ned on (Ω,A,P). The quadrati
 error on a randomvariable X is then itself a random variable that we will denote by Γ[X].Intuitively we still suppose the errors are in�nitely small although thisdoesn't appear in the notation. It is as we had an in�nitely small unitto measure errors �xed in the whole problem. The extension tool is thefollowing, we assume that if Xn → X in L2(Ω,A,P) and if the error
Γ[Xm−Xn] onXm−Xn 
an be made as small as we want in L1(Ω,A,P)for m,n large enough, then the error Γ[Xn−X] on Xn−X goes to zeroin L1.It is a reinfor
ed 
oheren
e prin
iple sin
e this means that the erroron a random variable X is atta
hed to X and that furthermore if the3



sequen
e of pairs (Xn, error on Xn) 
onverges in a suitable sense, it
onverges ne
essarily to (X, error on X).This 
an be axiomatized as follows : we 
all error stru
ture a prob-ability spa
e equipped with a lo
al Diri
hlet form possessing a 
arré du
hamp. Thus an error stru
ture is a term
(Ω,A,P,D,Γ)where (Ω,A,P) is a probability spa
e, satisfying the four properties :1.) D is a dense subve
torspa
e of L2(Ω,A,P)2.) Γ is a positive symmetri
 bilinear map from D × D into L1(P)ful�lling the fun
tional 
al
ulus of 
lass C1 ∩ Lip, what means that if

u ∈ D
m and v ∈ D

n for F and G of 
lass C1 and Lips
hitz from R
m[resp. R

n℄ into R, one has F ◦ u ∈ D and G ◦ v ∈ D and
Γ[F ◦ u,G ◦ v] =

∑

i,j

F ′
i (u)G

′
j(v)Γ[ui, vj] P-p.s..3.) the bilinear form E [f, g] = EΓ[f, g] is 
losed, i.e. D is 
ompleteunder the norm ‖ . ‖D = (‖ . ‖2

L2(P) + E [ . , . ])
1

2 .4.) 1 ∈ D and Γ[1, 1] = 0.We always write E [f ] for E [f, f ] and Γ[f ] for Γ[f, f ].With this de�nition, the form E de�ned at point 3.) is a Diri
hletform. This notion has been introdu
ed by A. Beurling and J. Denyas a tool in potential theory, 
f. [B-D℄ [F℄ [S℄, and re
eived a proba-bilisti
 interpretation in terms of symmetri
 Markov pro
esses by M.L. Silverstein and M. Fukushima, 
f. [F-O-T℄ [M-R℄. The operator Γis the 
arré du 
hamp or squared �eld operator asso
iated with E , ithas been studied by several authors in more general 
ontext, 
f. [D-M℄[B-H℄. Here we refer to Γ as the quadrati
 error operator of the errorstru
ture. Its intuitive meaning is the 
onditional varian
e of the error.First examples. (a) A simple example of error stru
ture is the term
(R,B(R), µ,H1(m), γ)where m is the normal law N(0, 1) and

H1(m) = {f ∈ L2(m) : f ′ in the sense of distributions ∈ L2(m)}with γ[f ] = f ′2 for f ∈ H1(m). This stru
ture is asso
iated to the realvalued Ornstein-Uhlenbe
k pro
ess.(b) Let D be a 
onne
ted open set of �nite volume in R
d, λd be theLebesgue measure, let us take (Ω,A,P) = (D,B(D), 1

λd(D)
λd) and

Γ[u, v] =
∑

ij

∂u

∂xi

∂v

∂xj

aij for u, v ∈ C∞
K (D)4



where the aij's are maps from D into R su
h that
aij ∈ L2

loc(D), aij = aji,
∂aij

∂xk

∈ L2
loc(D),

∑

ij

aij(x)ξiξj ≥ 0 ∀ξ ∈ R
d ∀x ∈ D.Then it 
an be shown that the form E [u, v] = EΓ[u, v] with

u, v ∈ C∞
K (D) is 
losable, 
f. [F-O-T℄ [M-R℄, i.e. there exists anextension of Γ to a subve
torspa
e D of L2, D ⊃ C∞

K (D) su
h that
(Ω, A, P, D, Γ) be an error stru
ture.2.3 First order and se
ond order 
al
ulusThe following remark, although very simple, is important to understandthe role of the error 
al
ulus à la Gauss that will used in the sequel inthe extended form allowed by Diri
hlet forms.Let us start with a quantity x with a small 
entred error Y , on whi
ha
ts a non-linear regular fun
tion f . Thus we have at the beginning arandom variable that we 
an write x+εY , it has no bias (
entred at thetrue value x) and its varian
e is ε2σ2

Y : thus bias0 = 0, varian
e0 = ε2σ2
Y .After having applied the fun
tion f , using Taylor formula shows thatthe error is no more 
entred. The bias has the same order of magnitudeas the varian
e :bias1 = E[f(x+ εY ) − f(x)] = ε2σ2

Y
1
2
f ′′(x) + ε30(1)varian
e1 = E[(f(x+ εY ) − f(x))2] − (bias1)2

= ε2σ2
Y f

′2(x) + ε30(1)then applying a new regular non-linear fun
tion g gives us a re
urren
eformula : bias2 = bias1g′(f(x)) + 1
2
varian
e1g′′(f(x)) + ε30(1)varian
e2 = varian
e1g′2(f(x)) + ε30(1)whi
h 
ould be easily extended to appli
ations from R

p to R
q (for thegeneral formulas on the bias and the varian
e of the error under regularmappings see [B-H℄ 
hapter I paragraph 6 
orollaries 6.1.3 and 6.1.4).We see that the 
al
ulus on the bias is a se
ond order 
al
ulus in-volving the varian
e. Instead, the 
al
ulus on the varian
es is a �rstorder 
al
ulus not involving the bias.Thus, the error 
al
ulus on the varian
es appears to be ne
essarilythe �rst step in an analysis of errors propagation based on di�erentialmethods and supposing small errors.2.4 Comparison of approa
hesBefore looking at the in�nite dimensional examples needed in �nan
e,let us try to give an outlook over the di�erent approa
hes to error
al
ulus. 5



Table 1: Main 
lasses of error 
al
ulideterministi
 probabilisti
 approa
hesapproa
hSensitivity Extended error 
al
ulus using Probability
al
ulus: Diri
hlet formsderivation withrespe
t to theparameters ofthe model �rst order 
al
ulusonly dealing withvarian
es se
ond order 
al-
ulus with vari-an
es and bias theoryin�nitesimal errors �nite errorsAt the extreme right-hand side of the table we have the usual proba-bility 
al
ulus in whi
h the errors are random variables. The knowledgeof the joint laws of the quantities and their errors is supposed to beyielded by statisti
al methods. The errors are �nite, the propagationof the errors needs 
omputation of image probability laws.At the extreme left-hand side the sensitivity 
al
ulus 
onsists of
omputing derivatives with respe
t to parameters, in
luding Gateauxor Fré
het derivatives in fun
tional spa
es to get the sensitivity withrespe
t to a fun
tional data.Between these two purely probabilisti
 and purely deterministi
 ap-proa
hes lies the extended error 
al
ulus based on Diri
hlet forms. Itsupposes the errors are in�nitely small but takes in a

ount some fea-tures of the probabilisti
 approa
h allowing to put the 
omputationsand the arguments inside a powerful mathemati
al theory: the theoryof Diri
hlet forms. In the same framework 
an be performed either a�rst order 
al
ulus on varian
es whi
h is simple and signi�
ant enoughfor most appli
ations or a se
ond order 
al
ulus dealing with both vari-an
e and bias whi
h is more 
ompli
ated and in 
lose 
onne
tion withthe so-
alled sto
hasti
 di�erential geometry. We 
annot here go fur-ther to explain this 
onne
tion in more details. We will rather des
ribethe main properties this 
al
ulus re
eives from Diri
hlet forms theory.Let us add just a 
omment. On one hand the error 
al
ulus basedon Diri
hlet forms 
an be seen as a spe
ial 
ase of more general mathe-mati
al theories of di�erential 
al
ulus in metri
 or abstra
t spa
es, seee.g. [A-K℄ [W℄. On the other hand it 
an be enri
hed and made morepre
ise by geometri
 additional hypotheses, see e.g. [M℄ [C-M℄ [St℄. Webelieve that the level of axiomatisation of error stru
tures is the bestadapted to error analysis for sto
hasti
 models.2.5 The methodThe 
onstru
tion of an error stru
ture on a sto
hasti
 model 
an bedone in two steps1) If there are, as usually, deterministi
 parameters whi
h 
an beerroneous or with respe
t to whi
h a sensitivity is wished, these param-eters have to be randomized with a priori laws.6



2) errors operators must be 
hosen to a
t on random quantities (ini-tially random or randomized parameters) in order to des
ribe errors, insu
h a way that we obtain mathemati
ally an error stru
ture as de�nedabove.As we will see further, the 
hoi
e of the a priori law is not so 
ru
ialas it 
ould be thought be
ause the 
omputations are done almost surely.Several properties of error stru
tures make it easier su
h a 
onstru
-tion.1) The operation of taking the image of an error stru
ture by amapping is quite natural and gives an error stru
ture as soon asthe mapping, even non inje
tive, satis�es some rather weak 
ondi-tions. In parti
ular if (Ω,A,P,D,Γ) is an error stru
ture and if Xis a random variable with values in R
d whose 
omponents are in D,

(Rd,B(Rd),PX ,DX ,ΓX) is an error stru
ture where PX is the law of X,
DX = {f ∈ L2(PX) : f ◦X ∈ D}

ΓX [f ] = E[Γ[f ◦X]|X=x], f ∈ D2) If f ∈ D and F is Lips
hitz from R to R then F ◦ f ∈
D and Γ[F ◦ f ] ≤ Γ[f ]. For example the stru
ture of exam-ple (a) (R,B(R), µ,H1(µ), γ) possesses an image by the map x →
| sin

√

1 + |x|| whi
h is an error stru
ture on [0, 1]. Su
h a use of non in-je
tive fun
tions is tri
ky in the deterministi
 sensitivity 
al
ulus. Moregenerally if F is a 
ontra
tion from R
d into R in the following sense

|F (x) − F (y)| ≤
d

∑

in1

|xi − yi|then for f1, f2, . . . , fd ∈ D one has F (f1, f2, . . . , fd) ∈ D and
Γ[F (f1, f2, . . . , fd)]

1

2 ≤
d

∑

i=1

Γ[fi]
1

2 .This property allows to 
onsider more general images with values inmetri
 spa
es as soon as a suitable density property is preserved, see[B-H℄ 
hapter V paragraph 1.3 p 197.3) The produ
t of two or 
ountably many error stru
tures is an errorstru
ture. It is the mathemati
al expression of the independen
e ofthe random variables and the non-
orrelation of the errors. By thisway error stru
tures on in�nite dimensional spa
es are easily obtained,e.g. on the Wiener spa
e, as we will see in the next part, or on thegeneral Poisson spa
e or other spa
es of sto
hasti
 pro
esses, see [B-H℄[M-R℄[B1℄.For later referen
e we give the following statement (see [B-H℄ and[M-R℄ for more general 
ases).Theorem 2.1 Produ
t stru
tures 7



Let Sn = (Ωn,Fn, mn,Dn,Γn), n ≥ 0 be error stru
tures.The term S = (Ω,F , m,D,Γ) de�ned below is an error stru
turedenoted S =
∏∞

n=1 Sn and 
alled the produ
t stru
ture of the Sn:
(Ω,F , m) = (

∞
∏

n=0

Ωn,

∞
⊗

n=0

Fn,

∞
∏

n=0

mn)

D = {f ∈ L2(m) : ∀n, for m-a.e. ω = (ω0, ω1, . . .)the fun
tion x→ f(ω0, . . . , ωn−1, x, ωn+1, . . .) ∈ Dnand ∫

∑

n Γn[f ] dm < +∞}and for f ∈ D Γ[f ] =
∑

n Γn[f ].Thanks these properties, is possible the 
onstru
tion of a variety oferror stru
tures on a given probabilisti
 model. Now for a rationaltreatment of a pra
ti
al 
ase these error hypotheses should be obtainedby statisti
al methods. This is 
onne
ted with the Fisher informationtheory, see [B2℄ for the main ideas. Anyhow, these statisti
al methodsare not yet su�
iently studied to be exposed here, espe
ially in thein�nite dimensional 
ase we have to use in �nan
e. Thus we limitourselves to error 
omputations with a priori errors 
hosen the mostlikely we 
an. We 
onsider it is signi�
ant already.3 Error stru
tures on the Wiener spa
eLet us �rst re
all the 
lassi
al 
onstru
tion of the Brownian motionthanks the Wiener integral.3.1 The Wiener spa
e as Gaussian produ
t spa
eSin
e we aim here at appli
ations to simple �nan
ial models we will 
on-sider only the 
ase where a given measured spa
e (E, E , µ) is given whi
his either (R+,B(R+), dt) or ([0, 1],B([0, 1]), dt) and a one-dimensionalBrownian motion, be
ause produ
ts are easily done as we have seenjust above (for the abstra
t Wiener spa
e setting see [B-H℄).Let (χn) be an orthonormal basis of L2(E, E , µ) and let (gn) bea sequen
e of i.i.d. redu
ed Gaussian variables de�ned on a proba-bility spa
e (Ω,A,P). To ea
h f ∈ L2(E, E , µ) we asso
iate I(f) ∈
L2(Ω,A,P) by

I(f) =
∑

n

< f, χn > gn.then I is an isometri
 homomorphism from the Hilbert spa
e L2(E, E , µ)into the Hilbert spa
e L2(Ω,A,P). If f and g are orthogonal in
L2(E, E , µ), I(f) and I(g) are independent Gaussian random variablesand putting

Bt =
∑

n

< 1[0,t], χn > gn (t ∈ [0, 1] or t ∈ R+) (4)8



de�nes a Gaussian sto
hasti
 pro
ess whi
h is easily shown to be astandard Brownian motion. By extending the 
ase where f is a stepfun
tion, the random variable I(f) is denoted by
∫

f(s) dBsand de�nes the Wiener integral of f .In this 
onstru
tion we 
an suppose the spa
e (Ω,A,P) be a produ
tspa
e :
(Ω,A,P) = (R,B(R), m)N m = N(0, 1)and the gn's be the 
oordinate maps. Thus ω = (ω0, . . . , ωn, . . .) and

gn(ω) = ωn. By the theorem on produ
ts of error stru
tures, as soon aserrors stru
tures are de�ned on the fa
tor spa
es (R,B(R), m,dn, γn)this de�nes an error stru
ture
(Ω,A,P,D,Γ) =

∞
∏

n=0

((R,B(R), m,dn, γn)whose domain D is expli
itely given in theorem 1.3.2 The Ornstein-Uhlenbe
k stru
tureLet us take for ea
h fa
tor the one-dimensional stru
ture of example(a) i.e.
γn[f ] = f ′2

dn = H1(m) m = N(0, 1)hen
e the asso
iated form is
ǫn(f) =

∫

f ′2 dmThe stru
ture (Ω,A,P,D,Γ) is the in�nite dimensional Ornstein-Uhlenbe
k stru
ture. Let f ∈ L2(R+) then
I(f) =

∫

f(s) dBs =
∑

n

< f, χn > gnand by the theorem 1 we have
Γ[gn] = 1

Γ[gm, gn] = 0 if m 6= nand I(f) ∈ D with
Γ[I(f)] =

∑

n

< f, χn >
2 Γ[gn] = ‖f‖2

L2(R+
.

9



This property Γ[
∫

f(s) dBs] = ‖f‖2
L2(R+) 
ara
terizes the Ornstein-Uhlenbe
k error stru
ture on (Ω,A,P) = (R,B(R), m)N be
ause it fol-lows that if F ∈ C1 ∩ Lip(Rk)

Γ[F (
∫

f1dB, . . . ,
∫

fkdB)] =
∑k

i,j=1 F ′
i (

∫

f1dB, . . .)F
′
j(

∫

f1dB, . . .)Γ[
∫

fidB,
∫

fjdB]and the random variables
F (

∫

f1dB, . . . ,
∫

fkdB)for F ∈ C1 ∩ Lip(Rk) and fi ∈ L2(R+) are a dense subspa
e of L2(P)sin
e 
ontaining 
ylindri
al fun
tions of 
lass C1 ∩ Lip.It 
an be shown that a rather large 
lass of random variables ob-tained by sto
hasti
 
al
ulus are in the domain D, espe
ially the solu-tions of sto
hasti
 di�erential equations with Lips
hitz 
oe�
ients, 
f.[B-H℄ 
hapter IV.3.3 Other stru
tures on the Wiener spa
eVariants of the pre
eding 
onstru
tion yield other error stru
tures. Forexample let us 
onsider the 
ase (E, E , µ) = ([0, 1],B([0, 1]), dt) and let
(χn) be the following basis of L2([0, 1], dt)

χn(t) =
√

2 cos(nt) if n > 0
χ0(t) = 1

χn(t) =
√

2 sin(nt) if n < 0and for the error stru
ture let us take
(Ω,A,P,D,Γ) =

∏

n∈Z(R,B(R), m,H1(m), γn)where γn[u] = (2πn)2qu′2 for u ∈ H1(m), q being a �xed naturalnumber. Denoting as before the 
oordinate maps by gn, we have
Γ[gn] = (2πn)2q and Γ[gm, gn] = 0 if m 6= n. For f ∈ L2([0, 1], dt)whose Fourier series representation is f =

∑

n∈Z f̂nχn we obtain
Γ[

∫ 1

0
f(s) dBs]Γ[

∑

n∈Z f̂nχn] =
∑

n∈Z f̂n

2
(2πn)2qfrom whi
h it is easily shown that for f ∈ L2([0, 1], dt), ∫

f dB belongsto D if and only if the q-th derivative f (q) in the sens of distributionsbelongs to L2([0, 1], dt) and then
Γ[

∫

f dB] =
∫

f (q)2(s) ds.As explained for the Ornstein-Uhlenbe
k 
ase, the above formula de-termines uniquely the error stru
ture on (Ω,A,P).More generally this 
an be extended in 
onne
tion with the so-
alled se
ond quantization. Let pt be a strongly 
ontinuous 
ontra
-tion semi-group on L2([0, 1], dt) with generator (a,Da), let us 
onsider10



the asso
iated 
losed positive quadrati
 form (ε,D(
√
−a)) de�ned by

ε[f ] = ‖
√
−af‖2, then the stru
ture on the Wiener spa
e indu
ed bythe formula

Γ[
∫ ∞
0
f(s) dBs] = ε[f ], f ∈ D(

√

(−a))is 
losable and thus de�nes an error stru
ture, see [B-R℄. It is worthnoting that the semi-group pt is not supposed to a
t positively on posi-tive fun
tions (i.e. the form ε is not ne
essarily Diri
hlet) and the form
ε does not need to be lo
al.3.4 The gradient operator and the derivativeLet us 
ome ba
k to the Ornstein-Uhlenbe
k stru
ture for simpli
ity.

(Ω,A,P,D,Γ)(R,B(R), m,H1(m), γ)Nwith m = N(0, 1) and γ[u] = u′2. The same ideas extend to more gen-eral stru
tures, in fa
t to any error stru
ture whose spa
e D is separable,see [B-H℄ 
hapter V exer
ise 5.9.Let ω = (ω1, . . . , ωn, . . .) and let gn be the 
oordinate mapsas before. By theorem 1 we know that if U ∈ D then
∂U
∂ωn

(ω1, . . . , ωn−1, ., ωn+1, . . .) exists in the sense of distributions for al-most every ω1, . . . , ωn−1, ωn+1, . . . and ∑

n( ∂U
∂ωn

)2 ∈ L1(P).Thus we 
an de�ne the gradient operator D on D with values in
L2(P, H) with H = L2(R+) byDe�nition 3.1

DU =
∑

n

∂U

∂ωn

χn(t).Proposition 3.2 D is a 
ontinuous appli
ation from D into L2(P, H)su
h that1) ∀U, V ∈ D < DU,DV >H= Γ[U, V ]2) ∀F ∈ C1 ∩ Lip(Rd), ∀X ∈ D

D(F ◦X) =

d
∑

i=1

F ′
i ◦X.DXi P − a.s.Proof : The 
ontinuity 
omes from the equalities

‖DU‖L2(P,H) = ‖ ‖DU‖H‖L2(P) =
√

E‖DU‖2
H =

√

E [U ]where E [.] is the form asso
iated with Γ (de�nition of an error stru
tureitem 3).Then immediately
< DU,DV >H=

∑

n

∂U

∂ωn

∂V

∂ωn

= Γ[U, V ]11



and for F and X as in the statement
‖D(F ◦X) −

∑

i F
′
i ◦XDXi‖2

H

= Γ[F ◦X] − 2
∑

i F
′
i ◦XΓ[F ◦X,Xi] +

∑

i,j F
′
i ◦XF ′

j ◦XΓ[Xi, Xj]whi
h is zero by the fun
tional 
al
ulus satis�ed by Γ (de�nition of anerror stru
ture item 2).The operator D satis�es the following properties. ∀h ∈ L2(R+) D[
∫ ∞
0
h(s) dBs] = h. D ∩ L∞ is an algebra and if U, V ∈ D ∩ L∞

D(UV ) = DU.V + U.DV. with suitable hypotheses on the adapted pro
ess Ht

D[
∫ ∞
0
Hs dBs](t) = Ht +

∫ ∞
0

(DHs)(t) dBs.For properties and use of the gradient operator we refer to the bookof D. Nualart [N℄, in parti
ular for the so-
alled Clark formula :Let U ∈ D and Ft = σ(Bs, s ≤ t)

U = EU +

∫ ∞

0

E[DU(t)|Ft] dBt
f. [N℄ 
hapter I p42.Now a slight variant of the gradient operator, the notion of `deriva-tive', is useful when 
omputing errors on solutions of sto
hasti
 dif-ferential equations thanks the tool of Ito's formula (this notion wastheoreti
ally introdu
ed by e.g. [F-laP℄).De�nition 3.3 Let (B̂t)t≥0 be an auxiliary independent Brownian mo-tion. For U ∈ D the derivative U# is a random variable depending on
ω and ω̂ de�ned by

U# =

∫ ∞

0

(DU)(ω, t) dB̂t.>From the properties of the gradient one gets. Γ[U ] = Ê[U#2]. For F ∈ C1 ∩ Lip (F ◦ U)# = F ′ ◦ U.U#. With suitable hypotheses on the adapted pro
ess Ht

(
∫

Hs dBs)
# =

∫

H#
s dBs +

∫

Hs dB̂ssee [B-H℄ 
hapter III paragraph 2.Let us mention two lemmas that we will use in the sequel. Theirproofs are straightforward. They 
on
ern the weighted Ornstein-Uhlenbe
k 
ase :
Γ[

∫ ∞
0
f(s) dBs] =

∫ ∞
0
α(t)f 2(t) dt f ∈ D(R+) (5)12



where α is non negative. For this stru
ture if f ∈ L2(R+, (α+ 1)dt)

D(
∫

f(s) dBs)(t) =
√

α(t)f(t)

(
∫

f(s) dBs)
# =

∫ ∞
0

√

α(t)f(t) dB̂t.Lemma 3.4 The 
onditional expe
tation operators E[ . |Ft] are orthog-onal proje
tors in D on errors sub-stru
tures (
losed sub-ve
tor-spa
esof D stable by Lips
hitz fun
tions).Lemma 3.5 Under the same hypotheses, let Γt be de�ned from Γ by
Γt[(

∫

f(s) dBs)] = Γ[(
∫

1[0,t]f(s) dBs)]and let U → U#t the derivation operator asso
iated with Γt, then for
U ∈ D:

(E[U |Ft])
# = E[U#t |Ft].4 Error 
al
ulus on the Bla
k-S
holes modelLet us re
all for 
ompleteness the main features of the Bla
k-S
holesmodel, for the �nan
ial theory and formulas we refer to [L-L℄ [D-J℄[El-K℄.The interest rate for the bond is 
onstant, the asset (St)t≥0 is mod-elised as the solution of the equation

dSt = St(µdt+ σdBt)where (Bt) is a Brownian motion.For a European option of the form f(ST ), T �xed deterministi
 time,the value at time t ∈ [0, T ] of the option is Vt = F (t, St, σ, r) with
F (t, x, σ, r) = e−r(T−t)

∫R f(xe(r−
σ2

2
)(T−t)+σy

√
T−t)

e−
y2

2

√
2π
dy. (6)If f is Borel with linear growth, the fun
tion F is C1 in t ∈ [0, T [, C2and Lips
hitz in x ∈]0,∞[.Let us put deltat =

∂F

∂x
(t, St, σ, r)gammat =

∂2F

∂x2
(t, St, σ, r)

F satis�es the equation
∂F

∂t
+
σ2x2

2

∂2F

∂x2
+ rx

∂F

∂x
− rF = 0. (7)We shall evaluate the errors on signi�
ant quantities of the modelsupposing 13



a) an error on (Bt)t≥0 represented by the Ornstein-Uhlenbe
k errorstru
ture with the multipli
ative 
onstant eBb) errors on the initial value S0, o�n the volatility σ, on the rate r,whi
h are `
onstant relative errors' in the sense of physi
ists :
Γ[φ(S0)] = φ′2(S0)S

2
0 e0

Γ[ψ(σ)] = ψ′2(σ) σ2 e1
Γ[ξ(r)] = ξ′2(r) r2 e1
) we 
hose a priori laws on S0, on σ, on r whi
h are for exampleexponential laws or lognormal laws, et
.d) and we suppose (Bt)t≥0 and the randomized quantities are inde-pendent and their errors un
orrelated.In other words the error on a regular fun
tion
F ((Bt)t≥0, S0, σ, r)will be represented by the produ
t error stru
ture i.e.

Γ[F ((Bt)t≥0, S0, σ, r)]ΓOU [F (., S0, σ, r)]eB +F ′2
S0
S2

0e0 +F ′2
σ σ

2e1 +F ′2
r r

2e2where eB, e0, e1, e2 are positive 
onstants and ΓOU the Ornstein-Uhlenbe
k quadrati
 error operator.A
tually, the theory tells us that hedging and pri
ing formulas donot involve the drift 
oe�
ient µ. So we may take µ = r, i.e. we workunder the probability P su
h that S̃t = e−rtSt, the dis
ounted sto
kpri
e, is a martingale. sin
e St = S0e
σBt+(r−σ2

2
)t we have

Γ[St] = S2
t {σ2teB + e0 + (Bt − σt)2σ2e1 + t2e2}The relative standard deviation of the error √

Γ[St]

St
writes

√

Γ[St]

St

= {σ2teB + e0 + [log
St

S0
− (

σ2

2
+ r)t]2e1 + t2e2}

1

2 .We see that the part of the error 
oming from S0 does not depend on
t, that one from (Bt) is proportional to √

t, that ones from σ and r areof the order of t.4.1 European optionsLet us 
onsider an option of the form f(ST ) where f is Lips
hitz.By the independen
e hypothesis, the errors on B, S0, σ, r 
an bemanaged separately. Let us denote ΓB, Γ0, Γσ, Γr the 
orrespondingquadrati
 operators.a) Error the value of the optionThe value of the option is Vt = F (t, St, σ, r) with F given by (6)a1)Error due to B. 14



B being present only in St, we have ΓB[Vt] = (∂F
∂x

(St, σ, r))
2ΓB[St]so

ΓB[Vt] = deltat
2 ΓB[St]

ΓB[Vs, Vt] = deltasdeltat ΓB[Ss, St]
(8)with ΓB[Ss, St] = SsStσ

2 s ∧ t.Proposition 4.1 If f is Lips
hitz, Vt is in DB and when t ↑ T
Vt = F (t, St, σ, r) → f(ST ) in DB and P − a.s.

ΓB[Vt] = (deltat)
2ΓB[St] → f ′2(ST )ΓB[ST ] in L1 and P − a.s.Proof : Let us suppose �rst f ∈ C1 ∩ Lip. By the relation
Vt = E[e−r(T−t)f(ST )|Ft]it follows that Vt → f(ST ) in Lp 1 ≤ p <∞ and a.s.A 
omputation that we shall do in a more general framework later,and that we do not repete here, gives

Vt
# = e−r(T−t)

E[f ′(ST )ST |Ft]σB̂tthus
Vt

# → f ′(ST )STσB̂T in L2(P, L2(Ω̂, P̂))and thanks f(ST )# = f ′(ST )STσB̂T we ontain
Vt → f(ST ) in DB and P − a.s.and

ΓB[Vt] = e−2r(T−t)(E[f ′(ST )ST |Ft])
2σ2t→ f ′2(ST )ΓB[ST ]in L1 and P-a.s.The 
ase f only Lips
hitz 
omes from a spe
ial property of the one-dimentional fun
tional 
al
ulus in error stru
tures (see [B-H℄ 
hapterIII prop. 2.1.5) making the pre
eding argument remains valid.a2)Error due to σ.We suppose here f ∈ C1 ∩ Lip. As Vt = F (t, St, σ, r)

Γσ[Vt] = {F ′
x((t, St, σ, r)

∂St

∂σ
+ F ′

σ((t, St, σ, r)}2 σ2e1and the 
omputation 
an be done using the integral representation (6),puting S̃t = e−rtSt and
F̃ (t, x) = e−rtF (t, St, σ, r)

Ṽt = e−rtVt = F̃ (t, S̃t)15



and remarking that by (6) we have
∂F̃

∂σ
(t, x) = −2

√
T − t

∂F̃

∂t
(t, x)we have using the di�erential equation (7)

Γσ[Vt] = {
√
T − tσ2S2

t gammat + St(Bt − σt)deltat}2 σ2 e1 (9)a3)Error due to r.We have similarly
Γr[Vt] = {F ′

x((t, St, σ, r)
∂St

∂r
+ F ′

r((t, St, σ, r)}2 r2e2and we obtain
Γr[Vt] = {Tdeltat − (T − t)Vt}2 r2 e2 (10)a3)Error 
oming from the exer
ise pri
e.In the 
ase of a 
all or a put, it is possible to evaluate the sensitivitydue to the exer
ise pri
e. One 
an use the 
lassi
al expli
it formulasor remark that if we denote F
all the fun
tion F in the 
ase f(ST ) =

(ST −K)+ then
ΓK [Vt] = {∂F
all

∂K
(t, St)}2ΓK [IK ]where IK is the identity fun
tion of K, we have ∂VT

∂K
= −1{ST ≥K} and

∂F
all
∂K

(t, St) is, up to the sign, the value at time t of the digital option
1{ST ≥K} for whi
h the integral representation (6) applies.b) Error on the hedging portfolioHere we limit ourselves to the error due to (Bt). We suppose f and
f ′ in C1 ∩ Lip. The hedging equation is

e−rtF (t, St, σ, r) = F (0, S0, σ, r) +
∫ t

0
Hs dS̃swhere the adapted pro
ess Ht is the quantity of sto
k in the portfolio :

Ht = deltat =
∂F

∂x
(t, St, σ, r) = e−r(T−t)

E[f ′(ST )ST |Ft]
1

St

.By the same method as for Vt we obtain
ΓB[Ht] = (gammat)

2ΓB[St]
ΓB[Hs, Ht] = gammasgammatΓB[Ss, St]

(11)Proposition 4.2 If f, f ′ ∈ C1 ∩ Lip, then Ht ∈ D and as t ↑ T
Ht → f ′(ST ) in DB and a.s.

ΓB[Ht] → f ′′2(ST )ΓB[ST ] in L1(P) and a.s.16




) More general errors on (Bt)These results show that the quantities deltat and gammat introdu
edby pra
titioners have a dire
t sense as sensitivity of the value Vt and ofthe hedging Ht to a perturbation of the sto
k 
oming from an error onthe Brownian motion.Some relations still hold if we 
onsider more general error stru
tureson the Wiener spa
e. Let us 
onsider, as mentioned above, a stru
tureindu
ed by a 
losed positive quadrati
 form ε on L2(R+, dt) with
ΓB[

∫

f dB] = ε[f ]for f in the domain of ε with, for example,a) ε[f ] =
∫ ∞
0
α(t)f 2(t) dtb) ε[f ] =

∫ ∞
0

∫ ∞
0

(f(s) − f(t))2β(s)β(t) dsdtthen the formulas
ΓB[Vt] = (deltat)

2 ΓB[St]
ΓB[Ht] = (gammat)

2ΓB[St]remain valid as soon as St ∈ D i.e.in 
ase a) if α ∈ L1lo
(R+, dt) and ΓB[St] = S2
t σ

2
∫ t

0
α(s)dsin 
ase b) if β ∈ L1(R+, dt) and ΓB[St] = S2

t σ
22

∫ ∞
t
β(s)ds

∫ t

∞ β(s)ds.Now in the 
ase
) ε[f ] =

∫ ∞

0

(
d

∑

i=1

ai(s)f
(i)(s))2 ds a1 6= 0we do not have anymore 1[0,t] ∈ dom(ε), hen
e Bt doesn't belong to D.Su
h error stru
tures seem to be more 
onvenient to modelize errors onpro
esses with �nite variation. For example in a model su
h that

dSt = Stσ(St)dBt + StR(t)dtwe 
ould modelize the rate R(t) by
R(t) = ϕ(

∫ t

0
B̃sds)where B̃t is an independent Brownian motion de�ned on (Ω̃, Ã, P̃) and

ϕ a regular fun
tion. If on (Ω̃, Ã, P̃) we 
onsider the error stru
ture
(Ω̃, Ã, P̃, D̃, Γ̃) satisfying

Γ̃[
∫ ∞
0
f dB̃] =

∫ ∞
0
f ′2(s) ds f ∈ H1(R+, dt)we have R(t) ∈ D̃ and

Γ̃[Rs, Rt] = ϕ′(
∫ s

0
B̃u du)ϕ

′(
∫ t

0
B̃v dv)s ∧ t.17



4.2 Ameri
an optionsHere we will just install the problem.To ways are a priori possible. In the 
ase of an option of the form
f(ST ), the pri
e of the option at time t 
an be obtained by solving thefollowing system of partial di�erential inequalities







∂u
∂t

+ Au− ru ≤ 0, u ≥ f in [0, T ] × R

(∂u
∂t

+ Au− ru)(f − u) = 0 in [0, T ] × R

u(T, x) = f(x) in R

(12)where A = σ2

2
x2 ∂2

∂x
+rx ∂

∂x
and taking Vt = u(t, St). Then errors dependon the analyti
 problem of the regularity of the fun
tion u with respe
tto x, σ, r.An other way 
onsists to use the sto
hasti
 form of the optimalstopping problem, maximazing an expe
tation over the stopping timeswith values in [0, T ]. This se
ond way seems less 
onvenient than the�rst to deal with errors.We return now to the European 
ase for di�usion models whi
h 
anbe managed, as we will see, by sto
hasti
 
al
ulus.5 Di�usion modelsWe will display the method in the 
ase of a 
omplete market, the prob-ability being a martingale measure and for a simple one-dimensionaldi�usion model.The sto
k is supposed to be the solution of the equation

dXt = Xtσ(t, Xt) dBt +Xtr(t) dt.We limit the study to the error due to (Bt) whi
h is a weighted Ornstein-Uhlenbe
k stru
ture:
Γ[

∫ ∞
0
h(s) dBs] =

∫ ∞
0
α(s)h2(s) ds

α positive and bounded. The rate is deterministi
, the fun
tion σ(t, x)will be supposed bounded with bounded derivative in x uniformly for
t ∈ [0, T ].Let f(XT ) be a European option. Its value at time t is

Vt = E[exp(−
∫ T

t
r(s)ds)f(XT )|Ft]the hedging portfolio is given by the adapted pro
ess Ht whi
h satis�es

Ṽt = exp(−
∫ t

0
r(s)ds)Vt = V0 +

∫ t

0
Hs dX̃s (13)where X̃s = exp(−

∫ t

0
r(s)ds)Xt.We pro
eed as follows: from the equation

Xt = X0 +

∫ t

0

Xsσ(s,Xs)dBs +

∫ t

0

r(s)Xsds18



we obtain
X#

u =

∫ u

0

(σ(Xs)+Xsσ
′
x(Xs))X

#
s dBs+

∫ u

0

√

α(s)Xsσ(Xs) dB̂s+

∫ u

0

r(s)X#
s dsthis equation is solved by putting

Ks = σ(s,Xs) +Xsσ
′
x(s,Xs)

Mu = exp
{∫ u

0
Ks dBs − 1

2

∫ u

0
K2

sds+
∫ u

0
r(s)ds

}and remarking that
X#

u = Mu

∫ u

0

√

α(s)Xsσ(Xs)

Ms

dB̂s.a) Let us �rst suppose f ∈ C1 ∩ Lip and let us de�ne Y =

exp(−
∫ T

t
r(s)ds)f(XT ). To 
ompute (E[Y |Ft])

# we will apply thelemma 2 of se
tion 3:
Y #t = exp(−

∫ T

t
r(s)ds)f ′(XT )X#t

Tand
(E[Y |Ft])

# = exp(−
∫ T

t
r(s)ds)E[f ′(XT )X#t

T |Ft]

= exp(−
∫ T

t
r(s)ds)E[f ′(XT )MT |Ft]

∫ t

0

√

α(s)Xsσ(Xs)

Ms

dB̂sand applying the lemma 2 gives
Γ[Vt] = Γ[E[Y |Ft]]

= exp(−2
∫ T

t
r(s)ds)(E[f ′(XT )MT |Ft])

2
∫ t

0
α(s)X2

s σ2(Xs)
M2

s
ds(14)this yields also the 
ross error of Vs and Vt whi
h is usefull to 
omputeerrors on random variables su
h that ∫ T

0
h(s)dVs

Γ[Vs, Vt] = exp(−
∫ T

s
r(s)ds−

∫ T

t
r(s)ds)

E[f ′(XT )MT |Fs]E[f ′(XT )MT |Ft]
∫ s∧t

0
α(u)X2

uσ2(Xu)
M2

u
du.

(15)With our hypotheses as t ↑ T
Γ[Vt] → f ′2(XT )M2

T

∫ T

0

α(s)X2
sσ

2(Xs)

M2
s

ds = f ′2(XT )Γ[XT ]in L1(P) and a.s.b) Now to deal with Ht, let us remark �rst that Ht is easily obtainedby the Clark formula, see [N℄. Formula 13 gives
Htexp(−

∫ t

0
r(s)ds)Xtσ(Xt) = Dad[exp(−

∫ T

0
r(s)ds)f(XT )]where Dad is the adapted gradient de�ned by

Dad[Z](t) = E[DZ(t)|Ft].19



Sin
e
D[exp(−

∫ T

0
r(s)ds)f(XT )] = exp(−

∫ T

0
r(s)ds)f ′(XT )(DXT )(t)we have by the 
omputation done for Vt

D[exp(−
∫ T

0
r(s)ds)f(XT )] = exp(−

∫ T

0
r(s)ds)E[f ′(XT )MT |Ft]

Xtσ(Xt)

Mt

.Thus
Ht = exp(−

∫ T

t
r(s)ds)E[f ′(XT )MT |Ft]

1

Mt

.Now supposing f and f ′ ∈ C1 ∩ Lip we apply the same method as forobtaining Γ[Vt] whi
h leads to
Γ[Ht] = exp(−2

∫ T

t
r(s)ds)

(

E[MT

Mt
(f ′′(XT )MT + f ′(XT )ZT

t |Ft]
)2

∫ t

0
α(u)X2

uσ2(Xu)
M2

u
duwith ZT

t =
∫ T

t
LsdBs −

∫ T

t
KsLsMsdsand Ks = σ(Xs) +Xsσ

′(Xs)
Ls = 2σ′(Xs) +Xsσ

′′(Xs).

(16)
If we introdu
e the following notation whi
h extends the Bla
k-S
holes
ase deltat = Ht = exp(−

∫ T

t
r(s)ds)E[f ′(XT )MT |Ft]

1
Mtgammat = exp(−

∫ T

t
r(s)ds)E[

M2
T

M2
t

(f ′′(XT ) + MT

M2
t

f ′(XT )ZT
t |Ft]we 
an summarize the formulas of this di�usion 
ase by

V
#
t = deltatX

#
t

H
#
t = gammatX

#
t

Γ[Vt] = delta2
tΓ[Xt]

Γ[Vs, Vt] = deltasdeltatΓ[Xs, Xt]

Γ[Ht] = gamma2
tΓ[Xt]

Γ[Hs, Ht] = gammasgammatΓ[Xs, Xt]
Γ[Vs, Ht] = deltasgammatΓ[Xs, Xt]

Γ[Xt] = M2
t

∫ t

0
α(u)X2

uσ2(Xu)
M2

u
du

Γ[Xs, Xt] = MsMt

∫ s∧t

0
α(u)X2

uσ2(Xu)
M2

u
du

.

Of 
ourse the prin
iple of the method applies to more general 
ases.6 Con
lusiona) Let us sket
h shortly what would be the se
ond order 
al
ulus withvarian
es and bias mentionned above in the table 1 of se
tion 2. On an20



error stru
ture (Ω,A,P,D,Γ) the bias of the error on a random vari-able X (i.e. the 
onditional expe
tation of the error) is represented bythe generator A of the semi-group 
anoni
ally asso
iated with the errorstru
ture, see [B-H℄. It has a domain DA smaller than D. The fun
-tional 
al
ulus on A follows the following rules: for all F ∈ C2(Rd)with bounded �rst and se
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∑
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1

2

d
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ΓB[St] = S2
t σ

2eBt
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