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AbstratThis paper is dediated to the probabilisti interpretation of the mass-�ow equation whihis assoiated with the disrete Smoluhowski oagulation fragmentation equation. The mass-�ow equation desribes the evolution in time of the distribution of the mass with respetto the size of the lusters when the expeted numbers of lusters follow Smoluhowski'sequation. Under various assumptions on the oagulation and the fragmentation kernels, weonstrut nonlinear proesses linked with the mass-�ow equation : the time-marginals oftheir law solve this equation. When possible, we approximate these proesses thanks tosimulable interating partile systems. We dedue some existene and uniqueness resultsonerning the disrete Smoluhowski oagulation fragmentation equation whih seem to benew.The disrete Smoluhowski oagulation fragmentation equation desribes the evolution of theexpeted number i(t) of lusters with mass i 2 N� when two lusters with respetive masses jand k oagulate at rate Kj;k to form a luster with mass j+ k whereas a luster with mass j+ kbreaks up at rate Fj;k into two lusters with masses j and k :(�tt(i) = 12Pi�1j=1 (Ki�j;jt(i� j)t(j) � Fi�j;jt(i)) �Pj2N� (Ki;jt(j)t(i)� Fi;jt(i+ j))0(i) = (i): (0.1)We assume that the initial distribution  2 RN�+ has �nite mass i.e Pi2N� i(i) < +1. Thekernels Kj;k and Fj;k are supposed to be non-negative and symmetri : Kj;k = Kk;j and Fj;k =Fk;j. Sine both in the oagulation phenomenom (j; k) ! j + k and the reverse fragmentationreation j + k ! (j; k), the mass is onserved, one would expet a solution of (0.1) to satisfy8t � 0; Pi2N� it(i) = Pi2N� i(i). In the pure fragmentation ase (Kj;k � 0), it is possibleto onstrut solutions with inreasing mass (see [3℄). These solutions have to be rejeted forobvious physial reasons. In the pure oagulation ase (Fj;k = 0), it may happen that the massdereases after a �nite time. Intuitively, this phenomenom alled gelation orresponds to theformation of an in�nite luster. That is why we onsider solutions of Smoluhowski's equationin the following sense : for T 2 (0;+1℄, we say t 2 [0; T ) ! t 2 f : N� ! R+ ; Pi2N� i(i) �Pi2N� i(i)g solves this equation on [0; T ) if 8i 2 N� , 8t 2 [0; T ), s ! Pj2N� Ki;js(j) and�ENPC-CERMICS, 6-8 av Blaise Pasal, Cité Desartes, Champs sur Marne, 77455 Marne-la-Vallée Cedex 2,Frane - e-mail : jourdain�ermis.enp.fr 1



s!Pj2N� Fi;js(i+ j) are integrable on (0; t) andt(i) = (i)+Z t0 12 i�1Xj=1 (Ki�j;js(i� j)s(j) � Fi�j;js(i))�Xj2N� (Ki;js(j)s(i)� Fi;js(i+ j)) ds:Sine t solves (0.1) if and only if t=Pi2N� i(i) solves the same equation but with oagulationkernel Kj;k multiplied by Pi2N� i(i) and initial data =Pi2N� i(i), we an suppose withoutrestrition that Pi2N� i(i) = 1 i.e. that (�(i) = i(i))i2N� is a probability distribution on N� .By symmetry of the kernels K and F ,i2 i�1Xj=1Ki�j;js(i� j)s(j) = 12 i�1Xj=1((i� j) + j)Ki�j;js(i� j)s(j)= i�1Xj=1 Ki�j;jj (js(j))((i � j)s(i� j));and 12 i�1Xj=1 Fi�j;j = 12 i�1Xj=1 (i� j) + ji Fi�j;j = i�1Xj=1 i� ji Fi�j;j:Hene setting ~Kk;j = Kk;jj and ~Fk;j = kFk;jj + k ;we obtain that (t(i)) solves (0.1) if and only if (pt(i) = it(i)) solves the mass-�ow equation(see [2℄ [10℄ where this link is made respetively for the disrete and the general Smoluhowskiequation without fragmentation)8>><>>:p0(i) = �(i)�tpt(i) =Pi�1j=1 � ~Ki�j;jpt(i� j)pt(j) � ~Fi�j;jpt(i)��Pj2N� � ~Ki;jpt(i)pt(j) � ~Fi;jpt(i+ j)�=Pi�1j=1Wi�j;j(pt)�Pj2N� Wi;j(pt) forWk;j(pt) = ~Kk;jpt(k)pt(j)� ~Fk;jpt(k + j) (0.2)in the following sense :De�nition 0.1 Let T 2 (0;+1℄. We say that t! pt solves (0.2) on [0; T ) if 8t 2 (0; T ),(i) pt 2 fq : N� ! R+ ; Pi2N� q(i) � 1g(ii) 8i 2 N� , s!Pj2N� ~Ki;jps(j) and s!Pj2N� ~Fi;jps(i+ j) are integrable on (0; t) andpt(i) = �(i)+Z t0 i�1Xj=1 � ~Ki�j;jps(i� j)ps(j) � ~Fi�j;jps(i)��Xj2N� � ~Ki;jps(j)ps(i)� ~Fi;jps(i+ j)� ds:In this paper, we are going to study (0.2) under various kind of assumptions on the oagulationand fragmentation kernels. Following [7℄, we say that(K�) holds for some � 2 (1=2; 1℄ if 9� > 0 s.t. 8i; j � 1; Ki;j � �i�j� i.e. ~Ki;j � �i�j��1.(F) holds for some  > 0 if 8� � 0, 9C(�) > 0, 8i � 3, P[(i�1)=2℄j=1 j�Fj;i�j � C(�)i+� where[x℄ denotes the integer part of x. 2



Hypothesis (F) is the so-alled strong fragmentation ondition and is satis�ed for the kernelFj;k = (jk)� with � = ( � 1)=2 and for the kernel Fj;k = (j + k)� with � =  � 1. Notethat when (K�) holds for � 2 (1=2; 1℄ then for q : N� ! R+ suh that Pj2N� q(j) � 1,Pj2N� ~Ki;jq(j) � �i�Pj2N� j��1q(j) � �i� and in de�nition 0.1, the integrability ondition onPj2N� ~Ki;jps(j) in (ii) is a onsequene of (i).Many mathematial studies have been devoted to the Smoluhowski oagulation equation par-tiularly in the absene of fragmentation (Fi;j � 0) : see for instane the survey of Aldous [1℄ andthe referenes ited therein. In the presene of fragmentation, less is known. In [17℄, assumingKi;j � '(i)'(j) with '(i)=i ! 0 as i ! +1 and boundedness of the total fragmentation rate12Pi�1j=1 Fi�j;j, Spouge proved existene of a global non-negative solution to (0.1). Ball and Carr[3℄ proved existene of a global mass-onserving solution in ase Ki;j � �(i + j) but withoutany assumption on the fragmentation kernel. To obtain uniqueness, further assumptions wereneeded, in partiular, some restritions on the growth of the fragmentation oe�ients. In theso-alled strong fragmentation ase, assuming that for some � 2 (1=2; 1℄ and  > � hypotheses(K�) and (F) hold, Da Costa [7℄ obtained existene of a unique global solution : see Proposi-tion 2.1 below. Guias [12℄ and Jeon [13℄ studied probabilisti approximations of (0.1) based onMarkov jump proesses. Assuming boundedness of the oagulation kernel and of the total frag-mentation rate sequene (12Pi�1j=1 Fi�j;j)i, Guias obtained existene of a unique mass-onservingsolution of (0.1) and onvergene of the probabilisti approximations. Among other studies ofthe approximate Markov jumps proesses, Jeon proved onvergene to a solution of (0.1) in aselimi+j!+1 Ki;jij + Fi;j = 0.More reently, in the absene of fragmentation, Babovski [2℄, Eibek and Wagner [10℄ and Dea-onu Fournier Tanré [8℄ [9℄ have worked on the probabilisti interpretation of the mass-�ow equa-tion (0.2). Papers [10℄, [8℄ and [9℄ are devoted to the general mass-�ow equation orresponding tothe non-neessarily disrete Smoluhowski oagulation equation but we are only going to presenttheir results in the disrete ase. In [8℄, Deaonu, Fournier and Tanré prove existene of a non-linear proess linked with (0.2) in asePi2N� i2�(i) < +1 and Ki;j � �ij (resp. Ki;j � �(i+j)): the time-marginals of the law of this proess provide a loal (resp. global) solution of (0.2). Inase Ki;j � '(i)'(j) with '(i)=i non-inreasing and limi+j!+1 Ki;j'(i)'(j) = 0, Eibek and Wagner[10℄ prove onvergene to a solution of (0.2) of approximations based on Markov jump proesses.In [9℄, the authors prove onvergene of similar stohasti approximations in ase Ki;j � �(i+ j)and Pi2N� i2�(i) < +1.In the �rst setion of this paper, we introdue a lass of Markov jump proesses whih enables usto take into aount the possible formation of in�nite lusters alled gelation in the probabilistiinterpretation and approximation of (0.2).The seond setion is devoted to the strong fragmentation ase introdued by Da Costa [7℄. Theregularizing e�et of the fragmentation prevents gelation. We introdue a nonlinear martingaleproblem suh that the time-marginals of any solution provide a solution of (0.2). After hekingexistene and uniqueness for this martingale problem thanks to the results given in [7℄, we provepropagation of haos to its solution for a sequene of simulable interating partile systems.In the third setion, we do not make any assumption on the fragmentation kernel. In balane, wesuppose that (K1) holds and that the initial data is small in the following sense : Pi2N� i�(i) <+1. We obtain a loal (in time) existene and uniqueness result for (0.2). Moreover we onstrutan assoiated nonlinear proess. In ase the oagulation satis�es the stronger upper-boundKi;j � �(i+ j), the existene and uniqueness results turn out to be global and the propagationof haos result introdued in the strong framentation ase still holds. Translated in terms of theSmoluhowski equation (0.1), our existene and uniqueness results seem to be new.In the last setion, we suppose that 8i 2 N� ; limj!+1(Ki;j + Fi;j)=j = 0. We obtain a global3



existene result for (0.2) and onsequently for (0.1) by onsidering the limit behaviour of thepartile system introdued in the seond setion as the total number of partiles goes to +1. Ourhypothesis on the fragmentation (resp. oagulation) kernel is far (resp. slightly) less restritivethan the ones made by Jeon [13℄ who assumes that limi+j!+1 Ki;jij +Fi;j = 0 to obtain existenefor (0.1). Moreover we an deal with oagulation kernels suh as Ki;j = (ij)� with 1=2 < � < 1,for whih the existene result of Ball and Carr [3℄ does not apply.1 A Class of jump proessesLet E = N� [ f+1g. In order to be able to take into aount the geli�ation phenomenom,we introdue for N 2 N� a lass of Markov jump proesses on EN suh that some oordinatesbeome in�nite when jumps aumulate. We prove existene and weak uniqueness for proessesamong this lass.More preisely we endow EN with the metri d((x1; : : : ; xN ); (y1; : : : ; yN )) = PNn=1 ��� 1xn � 1yn ���(onvention : 1+1 = 0) and setDN = �X : t 2 R+ ! Xt = (X1t ; : : : ;XNt ) 2 EN àdlàg suh that for 1 � n � N; X is ontinuousat �n = inffs � 0; Xns� _Xns = +1g and satis�es 8s 2 [�n;+1); Xns = +1�: (1.1)The spae DN is endowed with the trae of the Skorokhod topology on the spae D([0;+1); EN )of àdlàg funtions from R+ to EN and with the orresponding Borel sigma �eld. We haveD([0;+1);N�N ) � DN � D([0;+1); EN ).De�nition 1.1 A funtion � : (s; x; y) 2 R+ �EN �EN ! �(s; x; y) 2 R+ is alled a transitionfuntion on EN if(i) 8x 2 EN ; sups�0Py2EN �(s; x; y) = �(x) < +1(ii) 8x; y 2 EN with xn = +1 and yn < +1 for some 1 � n � N;8s � 0; �(s; x; y) = �(s; y; x) = 0:(iii) 81 � n � N; 8i 2 N� ; sups�0 supx2EN :xn=iPy2EN :yn 6=i �(s; x; y) < +1.De�nition 1.2 For a probability measure � on N�N and a transition funtion � on EN , we saythat the D-valued proess (Xt)t�0 is a jump proess with transition funtion � starting from � if1. X0 is distributed aording to �,2. 8' : EN ! R bounded and s.t. for some m 2 N� , 8x 2 EN ; '(x) = '((x1^m; : : : ; xN^m)),M't = '(Xt)� '(X0)� Z t0 Xy2E('(y)� '(Xs))�(s;Xs; y)ds is a martingale:4



Proposition 1.3 For any probability measure � on N�N and any transition funtion � on EN ,there exists a jump proess with transition funtion � starting from � on a well-hosen probabilityspae. Moreover two jump proesses with transition funtion � starting from � have the samelaw.1.1 Proof of existeneLet X0 be a random variable with law � independent of a sequene of independent Poissonproesses with marks (T xk ; Uxk )k�1 indexed by x 2 EN . More preisely for �xed x 2 EN , wesuppose that (T xk )k is the sequene of suessive jump times of a Poisson proess with rate �(x)given by De�nition 1.1 (ii) independent of the marks (Uxk )k whih are i.i.d. aording to theuniform distribution on [0; 1℄.The proess Xt is onstruted by indution. We set �0 = 0. Supposing that the proess isonstruted up to time �l, we de�ne L = inffk : TX�lk > �lg. We set �l+1 = TX�lL , �x Xt = X�lfor all t 2 [�l; �l+1) and X�l+1 =  (�l+1;X�l ; UX�lL ) with  : R+ � EN � [0; 1℄ ! EN de�ned by (s; x; u) = (y if Pz<y �(s; x; z) � �(x)u <Py�z �(s; x; z)x if Pz2EN �(s; x; z) � �(x)uwhere EN is endowed with the lexiographial order. This way the proess Xt is onstrutedon the time interval [0; liml �l). We have to deal with the ase liml �l < +1. For x 2 EN ,we introdue the Poisson random measure N(x; ds; du) = Pk�1 Æ(Txk ;Uxk ) on R+ � [0; 1℄. Let1 � n � N and i 2 N� . The number of jumps leading from Xns� = i to Xns 6= i on [0; t ^ �l℄ isequal to Xx:xn=i Xy:yn 6=i ZR+�[0;1℄ 1fs��l^tg1x(Xs�)1y( (s; x; u))N(x; ds; du):By ompensation of the Poisson random measures, its expetation is equal toE 0�ZR+�[0;1℄ 1fs��l^tg1i(Xns ) Xy2EN :yn 6=i�(s;Xs; y)ds1A � t sups�0 supx2EN :xn=i Xy2EN :yn 6=i �(s; x; y):With assumption (iii) onerning the transition funtion �, we easily dedue that 8t > 0, a.s.there are at most �nitely many jumps leading from Xns� = i to Xns 6= i on [0; liml �l ^ t). Henea.s. on fliml �l < +1g, 81 � n � N , 8i 2 N� , there are at most �nitely many jumps leadingfrom Xns� = i to Xns 6= i for s 2 [0; liml �l). As a onsequene a.s. on fliml �l < +1g, limlX�lexists in EN . We set Xliml �l = limlX�l and arry on the onstrution : the next jump time isgiven by TXliml �lL where L = inffk : TXliml �lk > liml �lg and so on. By assumptions (i) and (ii)onerning the transition funtion �, a.s. on liml �l < +1,91 � n � N; 8s 2 [0; liml �l); Xns < +1 and liml Xn�l = +1: (1.2)Beause of assumption (ii) on �, the oordinates whih beome in�nite at time liml �l remain soafterwards. More generally, in the onstrution of the proess Xt, a.s. at eah �nite aumulationpoint of jump times, at least one of the oordinates whih was �nite so far beomes in�nite andremains so afterwards. As a onsequene, there are at most N suh �nite aumulation pointsand the proess is onstruted for t 2 [0;+1).Beause of assumption (ii) on �, up to time liml �l, the proess Xt only depends on the variable5



X0 and the Poisson proesses with indexes in N�N . Hene using (1.2) and the independeneassumptions on the initial variable X0 and Poisson proesses, we haveP�liml �l < +1; 9k : TXliml �lk = liml �l� � NXn=1 Xx:xn=+1P�liml �l < +1; 9k : T xk = liml �l� = 0:Sine the same property holds for all the �nite aumulation points of jump times, we easilyhek that a.s.8t � 0; Xt = X0 + Xx2EN Z[0;t℄�[0;1℄ 1x(Xs�)( (s;Xs� ; u)�Xs�)N(x; ds; du): (1.3)We are now going to hek that ondition 2. in De�nition 1.2 is satis�ed by ompensation ofthe Poisson measures. Let ' : EN ! R bounded and m 2 N� be suh that 8x 2 EN ; '(x) ='((x1 ^m; : : : ; xn ^m)). For t > 0, in the omputation of '(Xt) from (1.3), only the jumpssuh that for some 1 � n � N , Xns� < m and Xns 6= Xns� or Xns� � m and Xns < m ontribute.For �xed n, the total number of suh jumps on [0; t℄ is neessarily smaller than one plus twiethe number of jumps of the �rst ategory (those leading from Xns� < m to Xns 6= Xns�), theexpetation of whih is smaller than tPm�1i=1 sups�0 supx2EN :xn=iPy2EN :yn 6=i �(s; x; y) < +1.Hene the expetation of the number of jumps on [0; t℄ ontributing to '(Xt) is �nite. As aonsequene, a.s.,8t � 0; '(Xt) = '(X0) + Xx2EN Z[0;t℄�[0;1℄ 1x(Xs�)('( (s;Xs� ; u)) � '(Xs�))N(x; ds; du)and M't is a martingale by ompensation of the Poisson random measures. Hene Xt is a jumpproess with transition funtion � starting from �.1.2 Proof of weak uniquenessLet P and Q denote the respetive laws of two jump proesses with transition funtion � startingfrom �. We denote by (Xt)t�0 the anonial proess on D and by Ft = �(Xs; s � t) (F1 =�(Xs; s � 0)) its natural �ltration. For a stopping time � relative to (Ft), we de�ne F� = fA 2F1 : 8t � 0; A \ f� � tg 2 Ftg. Aording to [16℄ Exerise (4.21) p.45, F� = �(Xs^� ; s � 0).We need to introdue the suessive times when some of the oordinates of the proess (Xt)t�0beome in�nite. Let T1 = inffs � 0 : 91 � n � N; Xns� _Xns = +1g (onvention inf ; = +1).On fT1 < +1g, we set N1 = f1 � n � N : XnT�1 _XnT1 < +1g and T2 = inffs � T1 : 9n 2N1; Xns�_Xns = +1g. On the ontrary event, N1 = ;, T2 = +1. Indutively we obtain stoppingtimes T1 � T2 � : : : � TN+1 = +1 and sets of indexes ; = NN � : : : � N1 � f1; : : : ; Ng withfor 1 � k � N , Nk = ;; Tk+1 = +1 if Tk = +1 and Nk = fn 2 Nk�1 : XnT�k _XnTk < +1g,Tk+1 = inffs � Tk : 9n 2 Nk; Xns� _Xns = +1g otherwise.We also introdue another inreasing sequene of loalizing stopping times. For m 2 N� , let�m = inffs � 0 : 91 � n � N; Xns � mg. Clearly limm �m = T1. By De�nition 1.2, the imagesof P and Q by the mapping (Xt)t 2 D ! (Xt ^ �m)t both solve a martingale problem withjump rates bounded beause of assumption (i) on the transition funtion �. Aording to [11℄Theorem 7.3 p.223, uniqueness holds for this problem. Hene P and Q oinide on �(Xs^�m ; s �0) = F�m � FT1 for any m and therefore on the sigma algebra _m�(Xs^�m ; s � 0) � FT1 . OnfT1 < +1g, by de�nition of D (see (1.1)), t! Xt is ontinuous at T1. As a onsequene 8s � 0,Xs^T1 = limmXs^�m is mesurable w.r.t. the sigma algebra _m�(Xs^�m ; s � 0) whih thereforeontains FT1 = �(Xs^T1 ; s � 0). Hene P and Q oinide on FT1 . Again by (1.1), on T1 < +1,6



8n 2 f1; : : : ; Ng n N1, 8s � T1, Xns = +1. Thanks to property (ii) of the transition funtion�, we hek that on fT1 < +1g, P and Q a.s., onditionally on FT1 , (XnT1+s; n 2 N1)s�0 isa jump proess on (N� [ f+1g)ard(N1) starting from the Dira mass at (XnT1 ; n 2 N1) andwith modi�ed transition funtion �1(s;{; �) = �(T1 + s; x; y) where x; y 2 EN are obtainedfrom {; � 2 (N� [ f+1g)ard(N1) by setting the oordinates in f1; : : : ; Ng n N1 equal to +1.Moreover, T2 � T1 is the �rst time when a oordinate of this proess beomes in�nite. Usingthe partial uniqueness result already obtained, we dedue that P and Q oinide on FT2 . Byindution, we onlude that P and Q oinide on FTN+1 = F1.2 The strong fragmentation ase : for � 2 (1=2; 1℄ and  > � (K�)and (F) hold.Beause of the link between (0.1) and (0.2), Theorem 5.1 [7℄ yields existene for (0.2). Moreover,sine we assume in our de�nition of solutions that the mass at time t is smaller than the initialmass 1, by an easy adaptation of the proof of Theorem 6.1 [7℄, uniqueness also holds.Proposition 2.1 There is a unique solution pt of (0.2) on [0;+1). This solution is massonserving (i.e. 8t � 0; Pi2N� pt(i) = 1) and suh that 8� > 0,8t; Xi2N� i�� Z t0 ps(i)ds < +1:Beause of the mass-onserving property of the solution pt of (0.2), the paths of the proess thatwe are going to assoiate with it belong to the spae D([0;+1);N� ) of àdlàg funtions from[0;+1) to N� whih is stritly inluded in D1. We endow D([0;+1);N� ) with the Skorokhodtopology. Let P(D([0;+1);N�)), (Xt)t�0 denote respetively the set of probability measuresand the anonial proess on this spae. We assoiate the following nonlinear martingale problemwith (0.2) :De�nition 2.2 A probability measure P on D([0;+1);N�) with time-marginals (Pt)t�0 solvesthe nonlinear martingale problem (MP) if(i)P0 = � i.e. 8i 2 N� ; P0(i) = �(i)(ii)8' : N� ! R s.t. 9m 2 N� , 8l � m; '(l) = '(m),M't = '(Xt)� '(X0)� Z t0 � Xj2N� ~KXs;j('(Xs + j)� '(Xs))Ps(j)+ Xs�1Xj=1 ~FXs�j;j('(Xs � j)� '(Xs))�ds is a P -martingale:
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If P is a probability measure on D([0;+1);N� ), then 8t � 0, Pt satis�es ondition (i) inDe�nition 0.1. For i 2 N� , let '(l) = 1i(l). By (K�),������Xj2N� ~KXs;j(1i(Xs + j) � 1i(Xs))Ps(j) � Xs�1Xj=1 ~FXs�j;j1i(Xs)������� max0� max1�j�i�1 ~Ki�j;jPs(j); Xj2N� ~Ki;jPs(j) + i�1Xj=1 ~Fi�j;j1A � �i� + i�1Xj=1 ~Fi�j;j:Hene if P solves problem (MP), the integrability ofM't yields that E (R t0 PXs�1j=1 ~FXs�j;j1i(Xs�j)ds) = R t0 Pj2N� ~Fi;jPs(i + j)ds < +1. Moreover, by the onstany of the expetation of theP -martingale M't , we getPt(i) = P0(i)+ Z t0 i�1Xj=1 ~Ki�j;jPs(i� j)Ps(j) � Xj2N� ~Ki;jPs(i)Ps(j)ds+ Z t0 Xj2N� ~Fi;jPs(i+ j)� i�1Xj=1 ~Fi�j;jPs(i)dsHene we have established the following link between problem (MP) and equation (0.2):Lemma 2.3 If P solves problem (MP) then t! Pt solves (0.2) on [0;+1).2.1 Existene and uniqueness for problem (MP)Theorem 2.4 The martingale problem (MP) has a unique solution P . Moreover, Pt is theunique solution of (0.2) on [0;+1).Proof of uniqueness : If P and Q both solve (MP), then aording to Lemma 2.3, Pt andQt both solve (0.2) on [0;+1) and we dedue from Proposition 2.1 that 8t � 0; Pt = Qt = pt.Hene under both P and Q, the anonial proess is a jump proess starting from � and withtransition funtion8(s; i; j) 2 R+ � E � E ; �(s; i; j) = 1fi<+1g � ~Fj;i�j1f1�j<ig + ~Ki;j�ips(j � i)1fi<j<+1g� :(2.1)Aording to the weak uniqueness result in Proposition 1.3, P = Q.We still have to prove existene. Aording to Proposition 2.1, (0.2) has a solution t! pt. LetX be a jump proess with transition funtion given by (2.1) starting from � and qs denote thelaw of Xs on N� [ f+1g. The fat that the law of the proess X solves problem (MP) is aonsequene of the following Proposition :Proposition 2.5 8t � 0; 8i � 1; qt(i) = pt(i).8



Sine by Proposition 2.1, 8t � 0; Pi2N� pt(i) = 1, this result implies in partiular that 8t � 0,a.s. Xt < +1. By de�nition of D1, we dedue that 8t � 0, a.s. 8s 2 [0; t℄; Xs� _Xs < +1 i.e.sups2[0;t℄Xs < +1. Therefore a.s. X 2 D([0;+1);N�).Proof of Proposition 2.5 : Aording to 2. in De�nition 1.2, for i 2 N� , 1i(Xt)� 1i(X0)�R t0 Pj2N� (1i(j)� 1i(Xs))�(s;Xs; j)ds is a martingale. Following the same line of reasoning as inthe proof of Lemma 2.3, we dedue from the onstany of its expetation that t! qt solves thefollowing linear equation(�tqt(i) =Pi�1j=1 � ~Ki�j;jqt(i� j)pt(j)� ~Fi�j;jqt(i)� �Pj2N� � ~Ki;jqt(i)pt(j)� ~Fi;jqt(i+ j)�q0(i) = �(i): (2.2)So does the solution pt of (0.2). Hene it is enough to prove uniqueness for this equation toonlude. Without the fragmentation terms, we ould prove that t ! pt(i) and t ! qt(i) areequal by indution on i. Here, we take advantage of the strong fragmentation hypotheses (F)and (K�) with  > � 2 (12 ; 1℄ and adapt ideas developped by Da Costa [7℄ in order to proveuniqueness for (0.1) in the same framework. Let sgs(i) denote the sign of ps(i) � qs(i). Sinewhen s! f(s) is absolutely ontinuous with derivative g(s), jf(s)j is absolutely ontinuous withderivative sign(f(s))g(s), ombining (0.2) and (2.2), we havenXi=1 jpt(i)� qt(i)j = Z t0 nXi=1 sgs(i)� i�1Xj=1( ~Ki�j;jps(j)(ps(i� j) � qs(i� j))� ~Fi�j;j(ps(i)� qs(i)))� Xj2N�( ~Ki;jps(j)(ps(i) � qs(i))� ~Fi;j(ps(i+ j)� qs(i+ j)))�dsExhanging summations over i and j in Pni=1 sgs(i)Pi�1j=1( ~Ki�j;jps(j)(ps(i � j) � qs(i � j)) �~Fi�j;j(ps(i)�qs(i))), then setting k = i� j and exhanging summations over j and k we get thatthis term writes Pn�1k=1Pn�kj=1 sgs(k + j)( ~Kk;jps(j)(ps(k) � qs(k)) � ~Fk;j(ps(k + j) � qs(k + j))).Hene Pni=1 jpt(i) � qt(i)j = R t0 Un(s) + Vn(s)ds whereUn(s) = n�1Xi=1 n�iXj=1(sgs(i+ j) � sgs(i))( ~Ki;jps(j)(ps(i)� qs(i))� ~Fi;j(ps(i+ j) � qs(i+ j))) � 0sine (sgs(i+ j)� sgs(i))(ps(i)� qs(i)) � 0 and (sgs(i+ j) � sgs(i))(ps(i+ j) � qs(i+ j)) � 0,and Vn(s) = � nXi=1 Xj�n+1�i sgs(i)( ~Ki;jps(j)(ps(i) � qs(i)) � ~Fi;j(ps(i+ j)� qs(i+ j)))� nXi=1 Xj�n+1�i ~Fi;j(ps(i+ j) + qs(i+ j)):Integrating (0.2) on [0; t℄ and summing the obtained result for 1 � i � n, we getZ t0 nXi=1 Xj�n+1�i ~Fi;jps(i+ j)ds = nXi=1 pt(i)� nXi=1 �(i) + Z t0 nXi=1 Xj�n+1�i ~Ki;jps(j)ps(i)ds:Sine � < , ombining (K�), the onservation of mass for pt (8s � 0; Pj2N� ps(j) = 1) andthe estimation given in Proposition 2.1, we getZ t0 Xi;j2N� ~Ki;jps(j)ps(i)ds � �Z t0 Xi2N� i�ps(i)ds < +1:9



We dedue that R t0 Pni=1Pj�n+1�i ~Ki;jps(j)ps(i)ds and R t0 Pni=1Pj�n+1�i ~Fi;jps(i + j)ds on-verge to 0 as n! +1. By the following estimation the proof of whih is postponed,Lemma 2.6 8� > 0; 8t � 0; R t0 Pi2N� i��qs(i)ds < +1we obtain similarly that R t0 Pni=1Pj�n+1�i ~Fi;jqs(i + j)ds onverges to Pi2N� qt(i) � 1 � 0.Hene lim supn!+1 R t0 Vn(s)ds � 0. We onlude that 8t � 0; Pi2N� jpt(i)� qt(i)j = 0.Proof of Lemma 2.6 : Let � 2 [�1; 0). Integrating (2.2) on [0; t℄ summing the obtainedresult multiplied by i� for 1 � i � n and removing one of the two oagulations terms and theterm involving the initial ondition �, we getZ t0 0� nXi=1 i� Xj2N� ~Fi;jqs(i+ j)� nXi=1 i�qs(i) i�1Xj=1 ~Fi�j;j1A ds �Z t0 nXi=1 i� Xj2N� ~Ki;jqs(i)ps(j)ds+ nXi=1 i�qt(i) (2.3)Setting l = i+ j, exhanging summations then replaing indexes (l; i) by (i; j) we getnXi=1 i� Xj2N� ~Fi;jqs(i+ j) =Xl�2 qs(l) n^(l�1)Xi=1 i� ~Fi;l�i � nXi=2 qs(i) i�1Xj=1 j� ~Fj;i�j:Inserting this bound, (K�) and Pi2N� i�qt(i) � Pi2N� qt(i) � 1 in (2.3) and using moreoverPi�1j=1 ~Fi�j;j =Pi�1j=1 ~Fj;i�j we obtain thatZ t0 nXi=1 qs(i) i�1Xj=1(j� � i�) ~Fj;i�jds � 1 + �Z t0 Xi2N� i�+�qs(i)ds:By the strong fragmentation hypothesis (F), for C� > 0, 8i � 3,i�1Xj=1(j� � i�) ~Fj;i�j = 1i i�1Xj=1 j1+� 1�� ij��!Fj;i�j � 1� 2�i [(i�1)=2℄Xj=1 j1+�Fj;i�j � C�i�+ :Hene for � = �+ � 2 [�1 + �; �),C��� Z t0 X3�i<+1 i�+��qs(i)ds � 1 + �2� + �Z t0 X3�i<+1 i�qs(i)ds: (2.4)We have  � � > 0. Let �l = l( � �) and L = inffl : �l � �g. Sine 8s � 0; Pi2N� qs(i) � 1,R t0 P3�i<+1 i�0qs(i)ds < t. Using (2.4), we dedue indutively that for any l smaller than L,R t0 P3�i<+1 i�lqs(i)ds < +1. Hene R t0 P3�i<+1 i�qs(i)ds < +1. We omplete the proof byhoosing � = �� � in (2.4).
10



2.2 Propagation of haos2.2.1 The system of N partilesThe partile system (Y 1;Nt ; : : : ; Y N;Nt ) that we onsider is a jump proess on EN starting from�
N and with time-homogeneous transition funtion equal to zero for transitions modifying morethan one oordinate and for transitions involving an in�nite oordinate. If (e1; : : : ; eN ) denotesthe anonial basis on RN , the transitions involving the n-th oordinate when �nite are given by8y 2 EN with yn < +1; 81 � j � yn � 1; �(y; y � jen) = ~Fyn�j;jand 81 � m � N with ym < +1; �(y; y + ymen) = 1N ~Kyn;ym : (2.5)Without fragmentation and with oagulation kernel Ki;j = �i�j� for � 2 (1=2; 1℄, partiles maybeome in�nite in �nite time. For N = 1 and Y 1;10 = 1, at eah jump the size of the partiledoubles and onsequently the times between the suessive jumps are independent exponentialvariables with suessive expetations ( 1�2�(2��1)n)n�0. Sine this sequene is summable, a.s.the partile beomes in�nite in �nite time.2.2.2 TightnessWe are �rst going to prove that the hypotheses on the oagulation and fragmentation kernelsimply that a.s. no partile beomes in�nite in �nite time. As a onsequene, the empirialmeasure �N = 1N PNn=1 ÆY n;N of the partile system is a r.v. with values in P(D([0;+1);N�)).Then, we are going to prove tightness of the sequene of the laws of these variables �N .Sine the initial measure �
N and the transition funtion (2.5) are symmetri, by the weakuniqueness result in Proposition 1.3, the partiles are exhangeable. Hene for �xed N � 2,P(Y n;Nt = i) (resp P(Y n;Nt = i; Y m;Nt = j)) is independent of n 2 [1; N ℄ (resp independent of(n;m) with n 6= m 2 [1; N ℄). Let p1;Nt (i) and p2;Nt (i; j) denote respetively this one-partile(resp. two partiles) measure. By a reasoning analogous to the one made to obtain (2.2), wehek that for i 2 N� ,�tp1;Nt (i) = i�1Xj=1� 1N ~Ki�j;j �(N � 1)p2;Nt (i� j; j) + 1fi�j=jgp1;Nt (j)� � ~Fi�j;jp1;Nt (i)�� Xj2N� � 1N ~Ki;j �(N � 1)p2;Nt (i; j) + 1fi=jgp1;Nt (i)�� ~Fi;jp1;Nt (i+ j)� : (2.6)Sine beause of the possibility for partiles to beome in�nite, Pj2N� p2;Nt (i; j) � p1;Nt (i),by (K�); Xj2N� 1N ~Ki;j �(N � 1)p2;Nt (i; j) + 1fi=jgp1;Nt (i)� � �i�p1;Nt (i):Hene by an easy adaptation of the proof of Lemma 2.6, we obtain that (2.4) still holds with qsreplaed by p1;Ns and dedue the �rst assertion in the following Lemma :Lemma 2.7 8� > 0; 8t � 0; supN�1 R t0 Pi2N� i��p1;Ns (i)ds < +1.Moreover, 8t � 0; 81 � n � N; P(Y n;Nt < +1) = 1.Lastly,8<:if � 2 (12 ; 1); 8t � 0; supN sup1�n�N E �sups�t(Y n;Ns )1�� � (Y n;N0 )1��� < +1if � = 1; 8t � 0; supN sup1�n�N E �ln�sups�t Y n;Ns =Y n;N0 �� < +111



Proof : We only have to prove the seond and last assertions. Integrating (2.6) on [0; t℄,summing the obtained result for 1 � i � I and removing the fragmentation terms, we getIXi=1 p1;Nt (i) + Z t0 IXi=1 Xj�I�i+1 1N ~Ki;j �(N � 1)p2;Ns (i; j) + 1fi=jgp1;Ns (i)� ds � IXi=1 �(i)Sine by (K�), Pi2N�Pj2N� 1N ~Ki;j �(N � 1)p2;Ns (i; j) + 1fi=jgp1;Ns (i)� ds � �Pi2N� i�p1;Ns (i)whih is integrable on [0; t℄ by the �rst assertion, the seond term of the left-hand-side onvergesto 0 as I ! +1. Hene Pi2N� p1;Nt (i) �Pi2N� �(i) = 1 and the seond assertion holds.Let us now suppose that � 2 (12 ; 1). Then 1 � � 2 (0; 12). By exhangeability of the partiles,we only need to hek the upper-bound for n = 1. The variable sups�t(Y 1;Ns )1�� is smaller thanthe sum of (Y 1;N0 )1�� and of the ontributions of the a.s. �nite (otherwise Y 1;Nt would be equalto +1) number of jumps of s 2 [0; t℄! Y 1;Ns with Y 1;Ns > Y 1;Ns� i.e.sups�t (Y 1;Ns )1�� � (Y 1;N0 )1�� �Xs�t 1fY 1;Ns >Y 1;Ns� g �(Y 1;Ns )1�� � (Y 1;Ns� )1��� :Taking expetations, using the inequality (y + y0)1�� � y1�� � (y0)1��, hypothesis (K�), weobtainE �sups�t (Y 1;Ns )1�� � (Y 1;N0 )1��� � E  Z t0 1N NXm=1 ~KY 1;Ns ;Ym;Ns �(Y 1;Ns + Y m;Ns )1�� � (Y 1;Ns )1��� ds!� �N Z t0 NXm=1 E((Y 1;Ns )�(Y m;Ns )��1(Y m;Ns )1��)ds� �Z t0 Xi2N� i�p1;Ns (i)ds < +1 sine � < :In ase � = 1, the onlusion is obtained in the same way by using the inequality 8y; y0 2N� ; ln(y + y0)� ln(y) � y0=y.Proposition 2.8 The sequene of the laws of the empirial measures �N onsidered as randomvariables with values in P(D([0;+1);N�)) is tight.Proof : By exhangeability of the partiles, aording to [18℄ and the referenes therein, theProposition is equivalent to the tightness of the laws of the variables (Y 1;N )N in D([0;+1);N� ).Sine D([0;+1);N� ) is a losed subset of D([0;+1);R) endowed with the Skorokhod topology,it is enough to prove the tightness of the laws of the variables (Y 1;N )N in D([0;+1);R). Indeedby the losed sets haraterization of weak onvergene ([4℄ Theorem 2.1 (iii)), when probabilitymeasures on D([0;+1);R) giving full weight to D([0;+1);N�) onverge weakly, their restri-tions to D([0;+1);N�) also onverge weakly. We are going to do so by heking that Aldoustightness riterion (see for instane [14℄ p.35) is satis�ed.12



Let t � 0 and M 2 N� . Supposing that � < 1, we haveP�sups�t Y 1;Ns > M� = P�sups�t (Y 1;Ns )1�� > M1���� P�(Y 1;N0 )1�� > M1��2 �+ P�sups�t (Y 1;Ns )1�� � (Y 1;N0 )1�� > M1��2 �� P�Y 1;N0 > M21=(1��)�+ 2M1�� E �sups�t (Y 1;Ns )1�� � (Y 1;N0 )1���By the third assertion in Lemma 2.7, we dedue that when � < 1,8t � 0; limM!+1 supN P�sups�t Y 1;Ns �M� = 0: (2.7)We hek this property for � = 1 by replaing y ! y1�� by y ! ln(y) in the above omputation.As a onsequene 8s � 0 the laws of the real variables (Y 1;Ns )N are tight.Let T > 0 and for N � 1, �N be a stopping time of the �ltration FNt = �((Y 1;Ns ; : : : ; Y N;Ns ); s �t) smaller than T . For Æ; � > 0,sup�2[0;Æ℄P(jY 1;N�N+� � Y 1;N�N j > �) � P sup�2[0;Æ℄ jY 1;N�N+� � Y 1;N�N j > �!� P sups�T Y 1;Ns �M!+ P�Y 1;N�N �M and 9� 2 [0; Æ℄ s.t. Y 1;N�N+� 6= Y 1;N�N � (2.8)By (2.7), the �rst term of the right-hand-side is arbitrarily small uniformly in N for M bigenough. Therefore it is enough to hek that for �xed M the seond term is arbitrarily smalluniformly in (N; �N ) for Æ small to onlude that Aldous tightness riterion holds. Let 1 � i �M ,�i = inffs � �N : Y 1;Ns 6= ig and '(y1; : : : ; yN ) = 1i(y1). For the jump proess (Y 1;N ; : : : ; Y N;N )with transition funtion de�ned by (2.5), the martingale M't given by De�nition 1.2 is suh thata.s. on fY 1;N�N = ig,M'�i^(�N+Æ) �M'�N = �1f�i��N+Æg + Z �i^(�N+Æ)�N 1N NXn=1 ~Ki;Y n;Ns + i�1Xj=1 ~Fi�j;jds:As E �1fY 1;N�N =ig(M'�i^(�N+Æ) �M'�N )� = 0, we dedue thatP�Y 1;N�N = i and 9� 2 [0; Æ℄ s.t. Y 1;N�N+� 6= Y 1;N�N � � Æ��i� + i�1Xj=1 ~Fi�j;j�P(Y 1;N�N = i):By summation over i 2 [1; N ℄, we dedue that the seond term of the r.h.s. of (2.8) is smallerthan Æ��M� +max1�i�MPi�1j=1 ~Fi�j;j� whih onludes the proof.
2.2.3 Identi�ation of the limitTheorem 2.9 We assume (K�) and (F) with  > � 2 (12 ; 1℄. The empirial measures �Nonverge in law to the unique solution P of the nonlinear martingale problem (MP) as N ! +1.13



Proof : Let �N denote the law of the empirial measure �N . Aording to Proposition 2.8 thesequene (�N )N is tight. Let �1 be the limit of a weakly onvergent subsequene that we stillindex by N for notational simpliity. Denoting by Q with time-marginals (Qs)s�0 the anonialvariable on P(D([0;+1);N�)), we are going to hek that �1 a.s., Q solves the nonlinearmartingale problem (MP). Sine the oordinates of the initial vetor (Y 1;N0 ; : : : ; Y N;N0 )N arei.i.d. aording to the probability measure � on N� , we easily hek that �1 a.s., Q0 = �i.e. Q satis�es ondition (i) in de�nition 2.2. To onlude, we have to hek that �1 a.s.,ondition (ii) is satis�ed. Sine a funtion ' : N� ! R suh that 8l � m; '(l) = '(m) writes'(l) = '(m) +Pm�1i=1 1i(l)('(i) � '(m)) it is enough to prove that 8i 2 N� , �1 a.s.�it(X;Q) =1i(Xt)� 1i(X0)� Z t0 Xj2N� ~KXs;j(1i(Xs + j)� 1i(Xs))Qs(j)ds+ Z t0 i�1Xj=1 ~Fi�j;j1i(Xs)ds� Z t0 Xj2N� ~Fi;j1i+j(Xs)ds is a Q-martingale. (2.9)Using (K�), we bound the absolute value of the sum of the four �rst terms in the above expressionof �it(X;Q) by 1 + (�i� +Pi�1j=1 ~Fi�j;j)t.Hene the integrability ondition �1 a.s. < Q; j�it(X;Q)j >< +1 an be proved by hekingthat E�1 �R t0 Pj2N� ~Fi;jQs(i+ j)ds� is �nite. By ontinuity of Q ! R t0 PJj=1 ~Fi;jQs(i + j)dsfor J 2 N� and exhangeability of the partiles Y 1;N ; : : : ; Y N;N we obtain that this expetationis smaller than the supremum over N of E �R t0 Pj2N� ~Fi;j1i+j(Y 1;Ns )ds�. Sine the number ofjumps on [0; t℄ leading from Y 1;Ns� > i to Y 1;Ns = i is by onstrution smaller than the number ofjumps on [0; t℄ leading from Y 1;Ns� = i to Y 1;Ns 6= i plus 1, taking expetations we onlude thatE�1�Z t0 Xj2N� ~Fi;jQs(i+ j)ds� � supN E� Z t0 Xj2N� ~Fi;j1i+j(Y 1;Ns )ds� � 1 +��i� + i�1Xj=1 ~Fi�j;j�t:(2.10)For l 2 N� , g : N� l ! R+ bounded and 0 � s1 � s2 � ::: � sl � r � t, we setG : Q 2 P(D([0;+1);N�))!< Q; (�it(X;Q) ��ir(X;Q))g(Xs1 ; : : : ;Xsl) >2 R [ f�1g:Our aim is to prove that E�1 jG(Q)j = 0. For 1 � n � N , the proessesMn;Nt = 1i(Y n;Nt )� 1i(Y n;N0 )� Z t0 1N NXm=1 ~KY n;Ns ;Ym;Ns (1i(Y n;Ns + Y m;Ns )� 1i(Y n;Ns ))+ Z t0 i�1Xj=1 ~Fi�j;j1i(Y n;Ns )ds� Z t0 Xj2N� ~Fi;j1i+j(Y n;Ns )dsare square integrable martingales with brakets< Mn;N ;Mn0;N >t= 1fn=n0g�Z t0 1N NXm=1 ~KY n;Ns ;Ym;Ns (1i(Y n;Ns + Y m;Ns )� 1i(Y n;Ns ))2ds+ Z t0 i�1Xj=1 ~Fi�j;j1i(Y n;Ns )ds+ Z t0 Xj2N� ~Fi;j1i+j(Y n;Ns )ds�satisfying E (< Mn;N ;Mn0;N >t) � 1fn=n0g�1 + 2��i� + i�1Xj=1 ~Fi�j;j�t� by (K�) and (2.10):14



Sine G(�N) = 1N PNn=1(Mn;Nt �Mn;Nr )g(Y n;Ns1 ; : : : ; Y n;Nsl ), we dedue that(E�N jG(Q)j)2 � E (G2(�N ))) � CN !N!+1 0: (2.11)The funtion G being neither ontinuous nor bounded, the onvergene of the sequene (�N )Nto �1 is not enough to dedue that E�1 jG(Q)j = 0. Weak onvergene of a sequene (Qn)n toQ implies that for t =2 DQ = fs � 0; Q(fXs� 6= Xsg) > 0g, limn!+1Pi2N� jQnt (i)�Qt(i)j = 0.Hene for s1; : : : ; sl; r; t =2 DQ, the ontribution in G of the �rst four terms in the de�nition(2.9) of �it is ontinuous at Q. And the funtion GJ obtained by replaing the �fth termR tr Pj2N� ~Fi;j1i+j(Xs)ds by R tr PJj=1 ~Fi;j1i+j(Xs)ds is bounded and ontinuous at Q. We �xs1; : : : ; sl; r; t outside of the at most ountable set fs � 0; �1(fQ : s 2 DQg) > 0g. Then �1gives full weight to ontinuity points of GJ and limN E�N jGJ(Q)j = E�1 jGJ(Q)j. With (2.11),we dedue E�1 jG(Q)j � lim supJ!+1 E�1 jG�GJ j(Q) + lim supJ!+1 lim supN!+1 E�N jG�GJ j(Q)Applying Lebesgue theorem thanks to the upper-bound (2.10), we get that the �rst term ofthe r.h.s. is nil. To deal with the seond one, we use suessively the exhangeability of theproesses Y 1;N ; : : : ; Y N;N , Cauhy-Shwarz inequality, the above de�nition of M1;Nt and boundof E(< M1;N ;M1;N >t) :�E�N jG�GJ j(Q)�2 � C�E�1fsups�t Y 1;Ns >i+Jg Z t0 Xj�J+1 ~Fi;j1i+j(Y 1;Ns )ds��2� CP� sups�t Y 1;Ns > i+ J�E��Z t0 Xj2N� ~Fi;j1i+j(Y 1;Ns )ds�2�� CP� sups�t Y 1;Ns > i+ J�E��jM1;Nt j+ 1 +��i� + i�1Xj=1 ~Fi�j;j�t�2�� CP� sups�t Y 1;Ns > i+ J� where C does not depend on N .By (2.7), we dedue that for any l 2 N� , g : N� l ! R+ bounded and s1; : : : ; sl; r; t outside of theat most ountable set fs � 0; �1(fQ : s 2 DQg) > 0g, �1 a.s.,< Q; (�it(X;Q)� �ir(X;Q))g(Xs1 ; : : : ;Xsl) >= 0:The proess X being àdlàg, we dedue that �1 a.s. (�it(X;Q))t is a Q-martingale, whihompletes the proof.
3 Coagulation kernel satisfying (K1) and small initial data(Pi2N� i�(i) <1):We only suppose that (K1) holds and do not make any assumption on the fragmentation kernel.Instead we assume that Pi2N� i�(i) < +1 i.e. Pi2N� i2(i) < +1.15



3.1 Existene for (0.2)Sine by (K1), Ki;j � '(i)'(j) for the linear funtion '(i) = p� i and pt solves (0.2) if and onlyif t(i) = pt(i)=i solves (0.1), the following de�nition of strong solutions to (0.2) is onsistentwith the de�nition of strong solutions of the non neessarily disrete Smoluhowski oagulationequation introdued by Norris [15℄De�nition 3.1 A solution t 2 [0; T ) ! pt of (0.2) in the sense of De�nition 0.1 is alled astrong solution if 8t < T , R t0 Pi2N� ips(i)ds < +1.Remark 3.2 Any strong solution is mass-onserving. Indeed if pt is a strong solution on [0; T ),integrating (0.2) on [0; t℄ for t < T and summing the obtained result for 1 � i � n, we getnXi=1 pt(i) = nXi=1 �(i)� Z t0 nXi=1 Xj�n+1�iWi;j(ps)ds � nXi=1 �(i)� Z t0 nXi=1 Xj�n+1�i ~Ki;jps(i)ps(j)ds:By (K1) and the strong solution assumption, the seond term of the r.h.s. onverges to 0 as n!+1 and Pi2N� pt(i) � Pi2N� �(i) = 1. The onverse inequality holds aording to De�nition0.1.Proposition 3.3 If Pi2N� i�(i) < +1 then equation (0.2) admits a strong solution pt on[0; T�) where T� = (�Pi2N� i�(i))�1 (� is the onstant in assumption (K1)) satisfying 8t 2[0; T�); Pi2N� ipt(i) � (�(T� � t))�1.The proof follows ideas developped in [7℄ and onsists in taking the limit n! +1 in the followingn-dimensional density onserving trunation of (0.2) :8i � n; pn0 (i) = �(i) and �tpnt (i) = i�1Xj=1Wi�j;j(pnt )� n�iXj=1Wi;j(pnt ) (3.1)This system has a unique solution on [0;+1) with pnt (i) � 0 andPni=1 pnt (i) =Pni=1 �(i). Indeedloal existene and uniqueness an be proved by a standard �xed-point approah. Sine pnt (i) isa fator in all terms with sign minus in the right-hand-side of (3.1), pnt (i) remains non-negative.With the mass onservation, whih writes Pni=1 �tpnt (i) = 0 and is a onsequene of the LemmaLemma 3.4 For 1 � m � n, Pni=m �Pi�1j=1 ai�j;j �Pn�ij=1 ai;j� =Pm�1i=1 Pn�ij=m�i ai;j:for the hoie m = 1 and ai;j = Wi;j(pnt ), we dedue that 81 � i � n; 0 � pnt (i) � Pni=1 �(i).This bound allows to iterate the �xed-point tehnique to obtain a unique global solution.Proof of Lemma 3.4 : Exhanging summations over i and j and setting k = i� j yieldsnXi=m i�1Xj=1 ai�j;j = n�1Xj=1 n�jXk=(m�j)_1 ak;j = nXk=1 n�kXj=(m�k)_1 ak;j = m�1Xk=1 n�kXm�k ak;j + nXk=mn�kXj=1 ak;j:and the onlusion follows readily.Before proving Proposition 3.3 let us hek that the estimation given in this Proposition for ptholds for pnt . 16



Lemma 3.5 8t 2 [0; T�); Pni=1 ipnt (i) � (�(T� � t))�1:Proof : To prove this result, we bound Pni=1 i�tpnt (i). Sine the fragmentation terms have anon-positive ontribution,nXi=1 i�tpnt (i) � nXi=1 i i�1Xj=1 ~Ki�j;jpnt (i� j)pnt (j) � n�1Xi=1 i n�iXj=1 ~Ki;jpnt (i)pnt (j)= n�1Xj=1 n�jXk=1(k + j) ~Kk;jpnt (k)pnt (j) � n�1Xi=1 i n�iXj=1 ~Ki;jpnt (i)pnt (j)= n�1Xi=1 n�iXj=1 j ~Ki;jpnt (i)pnt (j) � �( nXi=1 ipnt (i))2 sine by (K1), ~Ki;j = Ki;j=j � �i.We onlude by omparison with the solution of the O.D.E. �ty(t) = �y2(t); y(0) =Pni=1 i�(i):Proof of Proposition 3.3 : We set 8i > n; 8t � 0; pnt (i) = 0.Aording to Lemma 2.3 [3℄, for m 2 N� , ddtPni=m pnt (i) is smaller than a onstant independentof n � m. Sine Pni=m pnt (i) 2 [0; 1℄, we dedue that for �xed m the funtions (Pni=m pnt (i))n�mand onsequently (pnt (m))n are of uniform bounded variation on [0;+1). Combining Helly'stheorem (see [5℄ p.130) and a diagonal extration proedure, we obtain a subsequene, that westill index by n for notational simpliity, suh that 8m 2 N� ; 8t � 0; pnt (m) ! pt(m). ByLemma 3.5 and Fatou lemma,8t � 0; Xi2N� pt(i) � lim infn Xi2N� pnt (i) = 1 and 8t 2 [0; T�);Xi2N� ipt(i) � (�(T� � t))�1: (3.2)The remainder of the proof onsists in heking that pt is a solution of (0.2) on [0; T�).Integration of (3.1) yieldspnt (i) = �(i) + Z t0 i�1Xj=1Wi�j;j(pns )ds� Z t0 pns (i) Xj2N� ~Ki;jpns (j)ds+ Z t0 Xj2N� ~Fi;jpns (i+ j)ds:Sine 8i 2 N� ; pnt (i) 2 [0; 1℄, aording to Lebesgue theorem, the seond term of the right-hand-side onverges to R t0 Pij=1Wi�j;j(ps)ds. Combining (K1) and Lemma 3.5, we hek that fort 2 [0; T�) the series (R t0 pns (i) ~Ki;jpns (j)ds)j2N� are summable over j uniformly in n. Hene 8t 2[0; T�), the third term of the r.h.s. onverges to � R t0 ps(i)Pj2N� ~Ki;jps(j)ds. As a onsequenefor t 2 [0; T�) the last term of the r.h.s. has a limit ft(i) that we still have to identify. Let t < T�.Sine for n� k � m � 1,Z t0 n�kXj=m ~Fk;jpns (k + j)ds = Z t0 Xj2N� ~Fk;jpns (k + j)ds� Z t0 m�1Xj=1 ~Fk;jpns (k + j)ds;lim supm!+1 lim supn!+1 Z t0 n�kXj=m ~Fk;jpns (k + j)ds = ft(k)� Z t0 Xj2N� ~Fk;jps(k + j)ds:17



We are going to prove that the l.h.s. is nil. We suppose that n� k � m � k + 1.n�kXj=m ~Fk;jpns (k+j) � m�1Xi=1 n�iXj=m�i ~Fi;jpns (i+j) = nXi=m0� i�1Xj=1 ~Fi�j;jpns (i)� n�iXj=1 ~Fi;jpns (i+ j)1A by Lemma 3.4:Integrating (3.1) w.r.t. the time variable, summing the result for m � i � n and using Lemma3.4, we dedue thatZ t0 n�kXj=m ~Fk;jpns (k + j)ds � nXi=m �(i) + Z t0 m�1Xi=1 n�iXj=m�i ~Ki;jpns (i)pns (j)ds� nXi=m �(i) + �Z t0 m�1Xi=1 ipns (i) n�iXj=m�i pns (j)ds (3.3)Sine, by the mass-onservation for (3.1), Pm�1i=1 ipns (i)Pn�ij=m�i pns (j) � m � 1, applying Fatoulemma, we obtainlim supn!+1 Z t0 m�1Xi=1 ipns (i) n�iXj=m�i pns (j)ds � Z t0 m�1Xi=1 ips(i) lim supn!+1 n�iXj=m�i pns (j)ds:Using Lemma 3.5, we hek that Pn�ij=m�i pns (j) !Pj�m�i ps(j) as n! +1. Henelim supn!+1 Z t0 m�1Xi=1 ipns (i) n�iXj=m�i pns (j)ds � Z t0 Xi+j�m ips(i)ps(j)ds:As by (3.2) 8t 2 [0; T�); R t0 Pi;j2N� ips(i)ps(j)ds � ln(1 + t=(T� � t))=�,lim supm!+1 lim supn!+1 Z t0 m�1Xi=1 ipns (i) n�iXj=m�i pns (j)ds = 0:By (3.3), we onlude that 8t 2 [0; T�), lim supm lim supn R t0 Pn�kj=m ~Fk;jpns (k + j)ds = 0 i.e. ptsolves (0.2) on [0; T�).Remark 3.6 In ase (K1) is replaed by the stronger assumption Ki;j � �(i + j), using thisbound in the proof of Lemma 3.5, we obtain �tPni=1 ipnt (i) � 2�Pni=1 ipnt (i) and onlude byGronwall lemma that 8t � 0; Pni=1 ipnt (i) � e2�tPi2N� i�(i). Following the proof of Proposition3.3, we dedue that if Pi2N� i�(i) < +1, then (0.2) has a strong solution on [0;+1) satisfying8t � 0; Pi2N� ipt(i) � e2�tPi2N� i�(i), whih is also a onsequene of the ombination of [3℄Theorem 2.4 and [6℄ Theorem 3.2 onerning the original Smoluhowski equation (0.1).3.2 Nonlinear proess and uniqueness for (0.2)Given t 2 [0; T ) ! ut 2 fq : N� ! R+ : Pi2N� q(i) � 1g, let Xu denote a one-dimensional jumpproess starting from � and with transition funtion8(s; i; j) 2 R+ � E � E ; �(s; i; j) = 1fi<+1g � ~Fj;i�j1f1�j<ig + ~Ki;j�ius(j � i)1fi<j<+1g� :18



Proposition 3.7 When ut solves (0.2) on [0; T ), the proess Xu is nonlinear in the followingsense : 8t 2 [0; T ^ T�); 8i 2 N� ; P(Xut = i) = ut(i).This result is obtained by an adaptation of the proof of Proposition 2.5. The estimations givenin Proposition 2.1 and Lemma 2.6 are replaed by the following one8t 2 [0; T ^ T�); max Xi2N� iut(i);Xi2N� iP(Xut = i)! � (�(T� � t))�1; (3.4)whih is dedued from omparison with the mass-onserving solution (vt)t2[0;T�) of the equationwith multipliative oagulation kernel �ij and no fragmentation given by Proposition 3.3:8i 2 N� ; vt(i) = �(i) + �Z t0 � i�1Xj=1(i� j)vs(i� j)vs(j) � ivs(i)Xj�1 vs(j)�ds: (3.5)Sine Xi2N� ivt(i) = Xn2N�Xi�n vt(i) = Xn2N�(1� n�1Xi=1 vt(i))and Pi2N� iut(i) (resp. Pi2N� iP(Xut = i))) is smaller than Pn2N� (1 � Pn�1i=1 ut(i)) (resp.Pn2N� (1 �Pn�1i=1 P(Xut = i))), estimation (3.4) is obtained by ombination of the estimationPi2N� ivt(i) � (�(T� � t))�1 given in Proposition 3.3 and the following omparison between vt,ut and the law of Xut :Lemma 3.8 If ut solves (0.2) on [0; T ) then8t 2 [0; T ^ T�); 8n 2 N� ; nXi=1 vt(i) � min nXi=1 ut(i); nXi=1 P(Xut = i)! :The proof of this lemma is postponed to the next setion. We are now ready to state our mainresult onerning general fragmentation kernels and oagulation kernels satisfying (K1) :Theorem 3.9 Suppose that Pi2N� i�(i) < +1. If ut and pt solve (0.2) on [0; T ) and pt is astrong solution then ut = pt on [0; T ). Moreover (0.2) admits a unique maximal strong solutionpt on [0;T ) with T � T� = (�Pi2N� i�(i))�1 and the proess Xp is nonlinear on [0;T ) :8t 2 [0;T ); 8i 2 N� ; P(Xpt = i) = pt(i).Translated on Smoluhowski's equation (0.1), this result is similar to [15℄ Theorem 2.1 for thehoie '(i) = p� i.With remark 3.6, we easily dedue :Corollary 3.10 Assume that Pi2N� i�(i) < +1 and that Ki;j � �(i+ j) then uniqueness holdsfor (0.2) and therefore for (0.1).In their uniqueness result (Theorem 4.1), Ball and Carr [3℄ make more stringent assumptions onboth the oagulation and the fragmentation kernels : they suppose that for some � 2 [0; 1=2℄,(K�) holds and that 9C > 0; 8i � 2; P[(i+1)=2℄j=1 j1��Fi�j;j � Ci1��. On the other hand,19



we suppose that the initial data  is suh that Pi2N� i2(i) < +1 whereas they only assumePi2N� i(i) < +1.Proof of Theorem 3.9 : The proof of the uniqueness statement is based on a ouplingargument. Let (Xt; Yt)t2[0;T ) denote a two-dimensional jump proess starting from the image of� by i 2 N� ! (i; i) 2 N��N� and with transition funtion equal to zero for transitions involvingan in�nite oordinate and de�ned otherwise by8x 2 N� ; 81 � j � x� 1; �(s; (x; x); (x � j; x� j)) = ~Fx�j;j8j 2 N� ; �(s; (x; x); (x + j; x+ j)) = ~Kx;j min(ps(j); us(j))�(s; (x; x); (x + j; x)) = ~Kx;j(ps(j)�min(ps(j); us(j)))�(s; (x; x); (x; x + j)) = ~Kx;j(us(j)�min(ps(j); us(j)))8(x; y) 2 N� � E with x 6= y;81 � j � x� 1; �(s; (x; y); (x � j; y)) = �(s; (y; x); (y; x � j)) = ~Fx�j;j8j 2 N� ; �(s; (x; y); (x + j; y)) = ~Kx;jps(j)�(s; (y; x); (y; x + j)) = ~Kx;jus(j):We easily hek that X (resp. Y ) is a jump proess starting from � with transition funtion�(s; i; j) = 1fi<+1g � ~Fj;i�j1f1�j<ig + ~Ki;j�ips(j � i)1fi<j<+1g� (resp. the previous one with psreplaed by us). By the weak uniqueness result in Proposition 1.3 and by Proposition 3.7, wededue that 8t 2 [0; T ^ T�), 8i 2 N� , P(Xt = i) = pt(i) and P(Yt = i) = ut(i).Therefore for t < T ^ T�,Xj2N� jpt(j) � ut(j)j = Xj2N� jP(Xt = j)� P(Yt = j)j � Xj2N� P(Xt = j; Yt 6= j) + P(Xt 6= j; Yt = j)� 2P(Xt 6= Yt) � 2P(9s � t; Xs 6= Ys):For t < T ^ T�, the probability that for some s � t, Xs 6= Ys is smaller than the expe-tation E �R t0 Pi2N� 1fXs=Ys=igPj2N� ~Ki;j jps(j) � us(j)jds� of the number of jumps on [0; t℄leading form Xs� = Ys� to Xs 6= Ys, whih by (K1) is smaller than � R t0 Pj2N� jps(j) �us(j)jPi2N� ips(i)ds.Hene 8t 2 [0; T ^ T�); Xj2N� jpt(j) � ut(j)j � 2�Z t0 Xj2N� jps(j)� us(j)jXi2N� ips(i)ds:As pt is a strong solution, we onlude by Gronwall lemma that 8t 2 [0; T ^ T�); pt = ut andonsequently P(Xt = Yt) = 1.Let tu = supft < T : 8s 2 [0; t℄; 8i 2 N� ; P(Xs = i) = ps(i) = us(i) = P(Ys = i) and P(Xs =Ys) = 1g. Assuming that tu < T , we are going to obtain a ontradition. We have 0 < T� �tu < T . Sine pt is a strong solution, R tu0 Pi2N� ips(i)ds < +1. Hene for some s 2 (0; tu),Tps = (�Pi2N� ips(i))�1 > tu � s. Both t ! us+t and t ! ps+t solve (0.2) on [0; T � s) withinitial ondition � replaed by ps. Moreover, ps+t is a strong solution and P(Xs = Ys) = 1. Bythe reasoning we have just made, we dedue that 8t 2 [0; (T � s)^Tps); 8i 2 N� ; P(Xs+t = i) =ps+t(i) = us+t(i) = P(Ys+t = i) and P(Xs+t = Ys+t) = 1. Sine T ^ (s+ Tps) > tu this gives thedesired ontradition and tu = T .With Proposition 3.3 we easily dedue the last assertion in the Theorem.
20



3.3 Proof of Lemma 3.8For t 2 [0; T ) ! qt 2 fq : N� ! R+ : Pi2N� q(i) � 1g, let Y q denote a jump proess startingfrom � and with transition funtion8(s; i; j) 2 [0; T )� E � E ; �(s; i; j) = 1fi<j<+1g� i qs(j � i):We easily hek that8i 2 N� ; P(Y qt = i) = �(i) + �Z t0 � i�1Xj=1(i� j)P(Y qs = i� j)qs(j) � iP(Y qs = i)Xj�1 qs(j)�ds:(3.6)For the solution ut of (0.2) on [0; T ) onsidered in Lemma 3.8, we haveLemma 3.11 8t 2 [0; T ); 8n 2 N� , P(Y ut � n) � min (Pni=1 ut(i);P(Xut � n)).Proof : Combining (0.2) and (3.6), then using (K1), we get�t nXi=1(P(Y ut = i)� ut(i)) = nXi=1 Xj�n�i+1�� ~Fi;jut(i+ j) + ~Ki;jut(i)ut(j) � �iP(Y ut = i)ut(j)�� � nXi=1(ut(i)� P(Y ut = i))i Xj�n�i+1 ut(j): (3.7)For n = 1, this equation writes �t(P(Y ut = 1)�ut(1)) � �Pj2N� ut(j)(ut(1)�P(Y ut = 1)). Sineu0(1) = �(1) = P(Y ut = 1), we dedue that 8t 2 [0; T ); P(Y ut = 1) � ut(1).Supposing indutively that for 1 � m � n � 1, 8t 2 [0; T ), Pmi=1(ut(i) � P(Y ut = i)) � 0 andusing that i! iPj�n�i+1 ut(j) is non-dereasing on f1; : : : ; ng, we obtainnXi=1 �nXj2N� ut(j) � i Xj�n�i+1ut(j)�(ut(i)� P(Y ut = i))= n�1Xm=1�(m+ 1) Xj�n�mut(j) �m Xj�n�m+1ut(j)� mXi=1(ut(i)� P(Y ut = i)) � 0and dedue from (3.7)�t nXi=1(P(Y ut = i)� ut(i)) � �nXj2N� ut(j) nXi=1(ut(i)� P(Y ut = i)):WithPni=1 u0(i) =Pni=1 P(Y u0 = i), we onlude that 8t 2 [0; T ); Pni=1 P(Y ut = i) �Pni=1 ut(i).Replaing (0.2) by the linear equation analogous to (2.2) satis�ed by the law of Xut and followingthe same line of reasoning, we get that Pni=1 P(Y ut = i) �Pni=1 P(Xut = i).As a onsequene, for t 2 [0; T ), the funtionu1t (i) = 1fi=1gP(Y ut = 1) + 1fi=2g(ut(2) + ut(1)� P(Y ut = 1)) + 1fi>2gut(i)21



belongs to fq : N� ! R+ ; Pi2N� q(i) = Pi2N� ut(i)g and satis�es 8n 2 N� ; Pni=1 u1t (i) �Pni=1 ut(i). We assume indutively that we have onstruted u1t ; : : : ; ukt 2 fq : N� ! R+ ; Pi2N� q(i) =Pi2N� ut(i)g suh that 8t 2 [0; T ), 8n 2 N� ,P(Y uk�1t � n) � : : : � P(Y u1t � n) � P(Y ut � n) � min P(Xut � n); nXi=1 ut(i)! ;nXi=1 ukt (i) � nXi=1 uk�1t (i) � : : : � nXi=1 u1t (i) � nXi=1 ut(i):and for 0 � l � k � 1 (onvention u0 = u),ul+1t (i) = 8>><>>:P(Y ult = i) if 1 � i � l + 1�Pl+2j=1 ut(j) �Pl+1j=1 P(Y ult = i)� if i = l + 2ut(i) if i > l + 2 : (3.8)Lemma 3.12 8t 2 [0; T ); 8n 2 N� ; P(Y ukt � n) � P(Y uk�1t � n).Proof : This result as well as the omparison between P(Y ut � n) and P(Xut � n) given inLemma 3.11 ould be proved by a probabilisti oupling argument but we give a shorter analytiproof. By the hypothesis onerning uk�1 and uk, we have 8t 2 [0; T ); 8n 2 N� ;Xj�nuk�1t (j) = Xj2N� ut(j) � n�1Xj=1 uk�1t (j) � Xj2N� ut(j)� n�1Xj=1 ukt (j) =Xj�nukt (j):Using (3.6) and then the previous upper-bound, we obtain�t(P(Y ukt � n)� P(Y uk�1t � n)) = � nXi=1 i0�P(Y uk�1t = i) Xj�n�i+1uk�1t (j)� P(Y ukt = i) Xj�n�i+1 ukt (j)1A� � nXi=1 �P(Y uk�1t = i)� P(Y ukt = i)� i Xj�n�i+1ukt (j):We onlude like in the proof of lemma 3.11.We dedue that the funtion uk+1t de�ned by (3.8) for l = k belongs to fq : N� ! R+ ; Pi2N� q(i) =Pi2N� ut(i)g and satis�es 8t 2 [0; T ); 8n 2 N� ; Pni=1 uk+1t (i) �Pni=1 ukt (i).By indution we obtain for t 2 [0; T ) a sequene (ukt )k2N 2 fq : N� ! R+ ; Pi2N� q(i) =Pi2N� ut(i)g suh that 8n 2 N� , (Pni=1 ukt (i))k is non-inreasing and for k � n, P(Xut � n) �P(Y uk�1t � n) =Pni=1 ukt (i). We dedue that 8i 2 N� , ukt (i) onverges to a limit u1t (i) suh thatu1t 2 fq : N� ! R+ ; Xi2N� q(i) � Xi2N� ut(i)g and 8n 2 N� ; nXi=1 u1t (i) � min nXi=1 ut(i);P(Xut � n)! :Hene to onlude the proof of Lemma 3.8 it is enough to hek thatLemma 3.13 8t 2 [0; T ^ T�); u1t = vt: 22



Proof : For k � i 2 N� , 81 � j � i; P(Y uk�1t = j) = ukt (j) and (3.6) writesukt (i) = �(i) + �Z t0 i�1Xj=1(i� j)uks (i� j)uk�1s (j) � iuks(i) Xj2N� us(j)ds:Taking the limit k ! +1 in this equation, we obtain that 8t 2 [0; T ); 8i 2 N� ;u1t (i) = �(i) + �Z t0 i�1Xj=1(i� j)u1s (i� j)u1s (j) � iu1s (i) Xj2N� us(j)ds:This equation also writesu1t (i) = �(i)e��i R t0 Pj2N� ur(j)dr + �Z t0 e��i R ts Pj2N� ur(j)dr i�1Xj=1(i� j)u1s (i� j)u1s (j)ds:Sine by Remark 3.2 vt is mass-onserving on [0; T�), we have similarly8t 2 [0; T�); 8i 2 N� ; vt(i) = �(i)e��it + �Z t0 e��i(t�s) i�1Xj=1(i� j)vs(i� j)vs(j)ds:Using that 8r 2 [0; T ); Pj2N� ur(j) � 1, we hek by indution on i 2 N� that 8t 2 [0; T ^T�); vt(i) � u1t (i).By Fatou Lemma, 8t 2 [0; T ); Pi2N� u1t (i) �Pi2N� ut(i) � 1. Sine for t 2 [0; T�),Pi2N� vt(i) =1, we onlude that 8t 2 [0; T ^ T�); u1t = vt.
3.4 Propagation of haos in ase Ki;j � �(i+ j)Combining Remarks 3.2, 3.6, Theorem 3.9 and Corollary 3.10, we obtain :Proposition 3.14 Assume that Pi2N� i�(i) < +1 and Ki;j � �(i + j). Then the nonlinearmartingale problem (MP) (see De�nition 2.2) has a unique solution P . Moreover, t 2 [0;+1)!Pt is the unique solution of (0.2).If Y 1;N ; : : : ; Y N;N denotes the system ofN -partiles introdued in Setion 2.2.1, replaing Lemma2.7 by the following estimationLemma 3.15 If Ki;j � �(i+ j), 8N 2 N� ; 8t � 0; E �sups�t Y 1;Ns � � e2�tPi2N� i�(i):in the Proofs of Proposition 2.8 and Theorem 2.9, we get :Theorem 3.16 Assume that Pi2N� i�(i) < +1 and Ki;j � �(i + j). Then as N ! +1,the empirial measures �N = 1N PNn=1 ÆY n;N onsidered as P(D([0;+1);N� )) random variablesonverge in law to the onstant P where P denotes the unique solution of the nonlinear martingaleproblem (MP). 23



Proof of Lemma 3.15 : Let M 2 N� , sups�t Y 1;Ns ^M is neessarily smaller than the sumof Y 1;N0 and of the ontributions of the a.s. �nite number of jumps of s 2 [0; t℄ ! Y 1;Ns leadingfrom Y 1;Ns� �M to Y 1;Ns > Y 1;Ns� i.e.sups�t Y 1;Ns ^M � 0�Y 1;N0 +Xs�t 1fY 1;Ns� <Y 1;Ns g1fY 1;Ns� �Mg(Y 1;Ns � Y 1;Ns� )1A ^M� Y 1;N0 +Xs�t 1fY 1;Ns� <Y 1;Ns g1fY 1;Ns� �Mg((Y 1;Ns � Y 1;Ns� ) ^M):Taking expetations, using (2.5) then Ki;j � �(i + j) and the exhangeability of the proesses(Y n;N )1�n�N , we dedueE �sups�t Y 1;Ns ^M� � E (Y 1;N0 ) + Z t0 E  1fY 1;Ns �Mg 1N NXn=1 ~KY 1;Ns ;Y n;Ns (Y n;Ns ^M)! ds� Xi2N� i�(i) + �Z t0 E  1fY 1;Ns �MgY 1;Ns + 1N NXn=1(Y n;Ns ^M)! ds� Xi2N� i�(i) + 2�Z t0 E �supr�s Y 1;Nr ^M� ds:We apply Gronwall's lemma then let M ! +1 to onlude.
4 Existene for (0.2) in ase 8i 2 N � ; limj!+1(Ki;j + Fi;j)=j = 0The existene result that we are going to prove implies existene for (0.1). It is obtained byonsidering the limit behaviour as N ! +1 of the partile system (Y 1;N ; : : : ; Y N;N ) introduedin setion 2.2.1. We �rst hek a tightness result.We endow the spae D([0;+1); E) of àdlàg funtions from [0;+1) to E with the Skorokhodtopology. Note that D1 � D([0;+1); E).Lemma 4.1 Assume that 8i 2 N� ; supj2N� (Ki;j + Fi;j)=j < +1. Then the sequene (�N )N ofthe laws of the empirial measures �N = 1N PNn=1 ÆY n;N onsidered as P(D([0;+1); E)) valuedrandom variables is tight.Proof : Like in the Proof of Proposition 2.8, it is enough to hek the tightness of the laws ofthe D([0;+1); E)-valued proesses (Y 1;N )N thanks to Aldous riterion.We reall that E = N� [f+1g is endowed with the metri d(x; y) = ��� 1x � 1y ��� where by onvention1+1 = 0. Sine this spae is ompat, for any s � 0 the laws of the E valued variables (Y 1;Ns )Nare tight.Let T > 0 and for N � 1, �N be a stopping time of the �ltration FNt = �((Y 1;Ns ; : : : ; Y N;Ns ); s �24



t) smaller than T . For Æ; � > 0,sup�2[0;Æ℄P(d(Y 1;N�N+�; Y 1;N�N ) > �) � P sup�2[0;Æ℄d(Y 1;N�N+�; Y 1;N�N ) > �!� P�Y 1;N�N � 1� and 9� 2 [0; Æ℄ s.t. Y 1;N�N+� 6= Y 1;N�N �+ P�Y 1;N�N > 1� and 9� 2 [0; Æ℄ s.t. Y 1;N�N+� � 1��Let [1=�℄ denote the integer part of 1=�. Like in the proof of Proposition 2.8, we upper-boundthe �rst term of the right-hand-side by Æmax1�i�[1=�℄ �supj2N� ~Ki;j +Pi�1j=1 ~Fj;i�j�.To deal with the seond term, we introdue the stopping time �N = inffs � �N : Y 1;Ns � 1=�gand set '(y1; : : : ; yN ) = 1fy1�1=�g. For the jump proess (Y 1;N ; : : : ; Y N;N ) with transitionfuntion de�ned by (2.5), the martingaleM't given by De�nition 1.2 is suh that a.s. on fY 1;N�N >1=�g, M'�N^(�N+Æ) �M'�N = 1f�N��N+Æg � Z �N^(�N+Æ)�N Xj>[1=�℄ 1j(Y 1;Ns ) [1=�℄Xi=1 ~Fi;j�ids:As E �1fY 1;N�N >1=�g(M'�N^(�N+Æ) �M'�N )� = 0, we easily dedue that the seond term is smallerthan Æ supj>[1=�℄P[1=�℄i=1 ~Fi;j�i.By the assumption made on the kernels, we dedue that sup�2[0;Æ℄ P(d(Y 1;N�N+�; Y 1;N�N ) > �) isarbitrarily small uniformly in (N; �N ) for Æ small, whih puts an end to the proof.Under more stringent assumptions on the kernels, we are able to give the following partialharaterization for weak limits of the sequene (�N )N .Proposition 4.2 Assume that 8i 2 N� ; limj!+1(Ki;j + Fi;j)=j = 0. Then any weak limit ofthe sequene (�N )N gives full weight to the subset of P(D([0;+1); E)) onsisting in probabilitymeasures Q with marginals (Qt)t suh that Q0 = � and for any ' : N� ! R satisfying '(l) ='(l ^m) for some m 2 N� ,M't = '(Xt)� '(X0)� Z t0 � Xj2N� ~KXs;j('(Xs + j) � '(Xs))Qs(j)+ Xs�1Xj=1 ~FXs�j;j('(Xs � j)� '(Xs))�ds is a Q-martingale (4.1)where Xt denotes the anonial proess on D([0;+1); E).Writing for i 2 N� the onstany of the expetation of the Q-martingale (M1it )t, we dedue :Corollary 4.3 If 8i 2 N� ; limj!+1(Ki;j + Fi;j)=j = 0, then any weak limit of the sequene(�N )N gives full weight to the subset of P(D([0;+1); E)) onsisting in probability measures Qsuh that t! Qt solves (0.2) on [0;+1).Translated in terms of the original Smoluhowki's oagulation fragmentation equation, this pro-vides a global existene result. 25



Proof of Proposition 4.2 : Let �1 denote the weak limit of a onverging subsequene of(�N )N that we still index by N for simpliity. Like in the proof of Theorem 2.9, it is enough tohek that 8i 2 N� , �1 a.s.,�it(X;Q) =1i(Xt)� 1i(X0)� Z t0 Xj2N� ~KXs;j(1i(Xs + j)� 1i(Xs))Qs(j)ds+ Z t0 i�1Xj=1 ~Fi�j;j1i(Xs)ds� Z t0 Xj2N� ~Fi;j1i+j(Xs)ds is a Q-martingale.By the assumptions made on the kernelsK and F , the funtion �it is bounded on D([0;+1); E)�P(D([0;+1); E)) :8(X;Q); j�it(X;Q)j � 1 + t0�maxk�i supj2N� ~Kk;j +max0� i�1Xj=1 ~Fi�j;j; supj2N� ~Fi;j1A1A :For l 2 N� , g : E l ! R ontinuous and bounded and 0 � s1 � s2 � ::: � sl � r � t,we de�ne the bounded funtion G : P(D([0;+1); E)) ! R by G(Q) =< Q; (�it(X;Q) ��ir(X;Q))g(Xs1 ; : : : ;Xsl) >.By a reasoning similar to the one made in the Proof of Theorem 2.9, we obtain thatlimN!+1 E�N jG(Q)j = 0:When Qn onverges weakly in P(D([0;+1); E)) to Q then for t =2 DQ = fs � 0; Q(Xs 6=Xs�) > 0g, Qnt onverges weakly to Qt in P(E) i.e. 8i 2 N� , Qnt (i) ! Qt(i) (but Qnt (+1) doesnot neessarily onverge to Qt(+1)). With the assumptions on the kernels, we dedue that fors1; : : : ; sl; r; t =2 DQ, G is ontinuous at Q. Hene for s1; : : : ; sl; r; t outside the at most ountableset fs � 0; �1(fQ : s 2 DQg) > 0g, E�1 jG(Q)j = limN!+1 E�N jG(Q)j = 0. The anonialproess X being àdlàg, we easily dedue that �1 a.s., (�it(X;Q))t is a Q-martingale.An interesting question is whether any weak limit of the sequene (�N )N gives full weight tofQ 2 P(D([0;+1); E)) : Q(D1) = 1g. As D1 is not a losed subset of D([0;+1); E), theanswer is not obvious. But in ase the sequene of total fragmentation rates (Pi�1j=1 Fj;i�j)i2N�is bounded, it turns out to be positive :Lemma 4.4 Assume that 8i 2 N� ; supj2N� Fi;j=j < +1 and supi2N�Pi�1j=1 Fj;i�j < +1. Thenany Q 2 P(D([0;+1); E)) suh that for any ' : N� ! R satisfying '(l) = '(l ^m) for somem 2 N� (4.1) holds gives full weight to D1.Proof : We introdue the stopping times � = inffs � 0; Xs� _ Xs = +1g, �k = inffs �0; Xs � kg and �k = inffs � �; Xs � kg where k 2 N� . We also set � = limk!+1 �k = inffs ��; Xs < +1g. Let t > 0 and 1 � i < k,M1i�^t �M1i�k^t � 1f��tg1i(X�)� supj2N� �1fj<ig ~Ki�j;j + 1fj>ig ~Fi;j�i� (� ^ t� �k ^ t):By the optional stopping Theorem, the expetation under Q of the left-hand-side is nil. ThereforeQ(� � t;X� = i) � supj2N� �1fj<ig ~Ki�j;j + 1fj>ig ~Fi;j�i� < Q;�^t��k^t >. Letting k ! +1,26



we dedue that Q(� � t;X� = i) = 0. Hene Q(� � t;X� < +1) = 0. As a onsequene setting'(l) = 1fl�kg and using that Xt = +1 on (�; �), we getQ a.s., M'�k^t �M'�^t = 1f�k�tg � Z �k^t�^t Xi�k+1 1i(Xs) kXj=1 ~Fj;i�jds:By the optional stopping Theorem, we dedue thatQ(�k � t) � supk2N� supi�k+1 kXj=1 ~Fj;i�j < Q; �k ^ t� � ^ t > :Using the de�nition of ~F , we obtain thatsupk2N� supi�k+1 kXj=1 ~Fj;i�j = supi�2 sup1�k�i�1 kXj=1 ~Fj;i�j = 12 supi�2 i�1Xj=1 Fj;i�j < +1:Letting k ! +1 we get Q(� < t) = 0. As t is arbitrary, we onlude that Q(� < +1) = 0.
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