
Aurate numerial simulation of radiativetransfer with appliation to rystal growthAlexandre Ern a Jean-Lu Guermond baCERMICS, Eole Nationale des Ponts et Chauss�ees, 6 et 8 avenue Blaise Pasal,77455 Marne la Vall�ee edex 2, FranebLIMSI, CNRS, BP133, 91403 Orsay edex, FraneAbstratWe present a mathematial formulation and a numerial investigation of a thermo-magneti problem arising in rystal growth appliations. The governing equationsare the quasi-stati, time harmoni, axisymmetri Maxwell equations oupled withan energy onservation equation. Multiple reetion radiant energy transfer is mod-eled by an integral equation yielding a strongly nonlinear and nonloal problem.Key issue is the aurate and ost e�etive evaluation of the multiple reetion ra-diation ux. The present method uses a disontinuous Galerkin method with loalazimuthal re�nement near shadowing obstales and an appropriate renormalizationof the view fator matrix whih guarantees mathematially under some assumptionsthat the disrete problem is well posed. Numerial results are presented for reatorswith simple geometry where the solution is ompared to previous numerial workand for an industrial prototype involving several nononvex radiating surfaes.Key words: Finite elements, disontinuous Galerkin, grey body radiation, rystalgrowth1 IntrodutionDuring the last deade, silion arbide (SiC) has sparked extensive interestin the semiondutor industry. Indeed, important advanes have been aom-plished in the manufaturing of high power and high temperature SiC basedoptoeletroni devies. However, one ruial step still restriting the industrialprodution of SiC devies is the sare availability of single rystal SiC waferswith a high enough level of rystalline perfetion in terms of miropipe anddisloation density. Suh wafers are ommonly grown using a modi�ed Lelymethod (see e.g. [18℄ for a review). Growth takes plae inside a radiofrequeny(RF) heated graphite ruible with a single rystalline seed �xed at the topPreprint submitted to Elsevier Preprint 19 July 2001



and SiC powder plaed at the bottom. The thermal gradient in the growthavity must be ontrolled in suh a way that sublimation ours in the powderand deposition on the rystal seed. Typial temperature gradients are of theorder of 100 Km�1. Temperatures range between 2300 and 3000 K in theruible and between 2700 and 2800 K in the rystal seed.Equipment design and operating parameters for wafer prodution have beensteadily improved over the years mainly by engineers' experimental knowledgeof the growth proess. More reently, numerial modeling has emerged as anadditional tool omplementing experimental results and providing valuable in-sight into the physial and hemial phenomena involved inside the ruible.Several researh groups have developed omprehensive numerial models a-ounting for magneti, thermal and hemial phenomena (see, among others,[1,3,11,13,17℄). A reent state of the art review [10℄ indiates that thermomag-neti oupled with simpli�ed hemial modeling has reahed a ertain levelof maturity while detailed knowledge of surfae proesses and defet forma-tion still hallenges the researh ommunity. Current researh developmentsin numerial modeling inlude among others optimal ontrol tehniques to im-prove ruible design [7℄, impat of soure material on growth onditions [21℄and thermoelasti stresses in the bulk rystal and their orrelation to defetformation [16℄.The goal of this paper is to fous on the part of the model whih has reahedmaturity (the thermomagneti problem) and to derive an aurate and stablenumerial method to alulate the temperature distribution inside a ruiblewith multiple reetion radiant energy transfer in a omplex geometry. Itsmain ontribution is thus to yield a robust methodology for thermomagnetimodeling to be ultimately oupled with more omprehensive hemial andthermomehanial models. The emphasis on the thermomagneti problem isstrongly motivated by the fat that temperature gradient ontrol around therystal seed is a key issue in produt quality. Radiative heat transfer has beenextensively dealt with in the rystal growth literature. However, to the au-thors' knowledge, the radiation problem has always been onsidered only inits disrete form. In these approahes, the radiant surfae is divided into a�nite number of ells and on�guration fators (or view fators) need to beevaluated for all the ell ouples. For simple geometries, the on�guration fa-tors an be evaluated analytially using tabulated values and lassial viewfator algebra [4,5℄. In most pratial ases, a numerial evaluation is needed,as detailed for instane in [6℄. The methodology derived in the present pa-per is based on the ontinuous formulation of the radiation problem throughan integral equation. An approximate integral equation is derived using adisontinuous Galerkin method and Gaussian quadrature. Besides aurayand stability, another important advantage of the method is its ompatibil-ity with the �nite element formulation of the global onservation equationssine it yields the disrete radiation ux at the quadrature nodes. Further-2



more, the omputational osts are redued signi�antly by loal re�nement inthe azimuthal diretion in the neighborhood of shadowing obstales. Finally,introduing an appropriate renormalization of the view matrix, we establishunder some assumptions the existene of a solution to the disrete problem.This paper is organized as follows. In the next setion, we formulate math-ematially the governing equations. The numerial method is desribed andanalyzed in setion 3. Finally, in setion 4 we present numerial results assess-ing both auray and omputational eÆieny of the proposed method.2 Problem Formulation2.1 Physial modelingA shemati representation of a rystal growth reator with idealized geom-etry is presented in Figure 1. A graphite ruible oated with an insulatingfoam ontains the SiC powder and the growth avity. A RF soure urrentis imposed in the indution oils. The ondutive materials (graphite, foamand SiC powder) are heated by the indutive urrents through Joule's e�et.The temperature distribution inside the growth reator results from a balanebetween ondutive and radiative heat transfer with multiple reetions o-urring inside the growth avity. Convetive heat transfer inside the avitymay be negleted for typial operating onditions [3,11℄.The three-dimensional eletromagneti �eld is modeled by the Maxwell equa-tions with some simplifying assumptions. First, we assume that the eletro-magneti �eld is time harmoni with angular veloity ! and frequeny f . Inaddition, for low frequeny eddy urrent problems (with f typially lower than1 Mhz), the displaement urrents may be negleted leading to the quasi-statiapproximation. Finally, we restrit ourselves to axisymmetri on�gurationswith (r; z) denoting the radial and axial oordinates respetively. With theseassumptions, the Maxwell equations redue to8><>: rot � 1� rot�A� = ji!A+ E = 0with rot�A = (��zA; 1r�r(rA)) and i2 = �1. Here, A and E are salar �eldsdenoting the magneti potential and the azimuthal omponent of the eletri�eld respetively, � is the magneti permeability and j the urrent density.The indution oils are modeled by imposing the urrent density to a pre-sribed value. This approximation is lassial in this ontext. Sine the urrent3
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Fig. 1. Shemati representation of a rystal growth reator with idealized geometry.density is not onstant is spae through the indution oils, the atual setionof the oils are replaed by equivalent setions in the model [11℄. In the otheronduting media, we assume Ohm's law j = �E where � is the (temperaturedependent) eletri ondutivity. Upon formally setting the eletri ondu-tivity to zero in the indution oils, we may write an equation valid in thewhole spae whih readsrot � 1� rot�A�+ i�!A = Jd; (1)where Jd is zero everywhere exept in the indution oils where it takes aspei�ed value.The indutive urrents in ondutive media yield a volumetri heat releasethrough Joule dissipation in the form Q = 12�!2jAj2. Di�usive heat balaneinside the various materials thus reads� div (k(T )rT ) = 12�!2jAj2; (2)where k(T ) is the (temperature dependent) thermal ondutivity.An important aspet of energy balane in the growth avity is radiant energytransfer inluding emission, reetion and adsorption. Radiant surfaes areassumed to behave like grey bodies (i.e., the radiative exhanges are indepen-4
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Fig. 2. Radiant energy transfer with reetion.dent of the wavelength) and are haraterized by an emissivity oeÆient "[4℄. We also assume that the radiant surfaes are separated by non partiipat-ing media, i.e. that the gases inside the avity do not a�et radiant energytransfers.In a nononvex avity, three-dimensional e�ets arise sine ouples of pointsmay not see eah other depending on their respetive azimuthal position. Wewill denote by � the radiant surfae in the three-dimensional physial spaeand by �m its meridian in the (r; z) plane. On a given point in �, let T be thetemperature and i the inident ux of radiant energy. A fration of it, "i, istransmitted towards the exterior of the avity and the remaining part, (1�")i,is reeted bak towards the interior (see �gure 2). As a result, the radiosity,de�ned as the total ux of radiant energy leaving � towards the interior, readsw = (1� ")i+ "�T 4; (3)where � = 5:67�10�8 Wm�2K�4 is the Stefan-Boltzmann onstant. Further-more, the inident energy ux is related to the radiosity by Lambert's law inthe form i = Fw: (4)Here, we have introdued the integral operator F : Lp(�) ! Lp(�) ! (1 �p � 1) de�ned as Fu(x) = Z� f(x; y) u(y) dy; 8x 2 �:The integral kernel readsf(x; y) = V(x; y) �(x; y); x; y 2 �;where V(x; y) = 1� nx�(x� y) ny�(y � x)kx� yk4 ;nx and ny are the outward normal to � at x and y respetively and�(x; y) = 8<:1 if the points x and y see eah other;0 otherwise:5



The integral kernel f satis�es the following two important properties of sym-metry and normalization:f(x; y) = f(y; x); 8x; y 2 � and Z� f(x; y) dy = 1; 8x 2 �:In the sequel, it will be onvenient to introdue the total energy ux fromthe exterior to the interior of the avity. This ux, denoted by �, satis�es theintegral equation 1"�� F �1�"" �� = �T 4 � F (�T 4):From the properties of the kernel f , we readily dedue that8>><>>: (�T 4 onstant over �) =) (� = 0 over �)8T; R�� = 0:Energy balane between radiant and di�usive transfer may then be expressedas [krT ℄�n� = � over �; (5)where n� denotes the outward normal to � and [krT ℄�n� the di�erene be-tween exterior and interior values.The magneti and thermal problems are posed on di�erent domains. Referringto �gure 1, subdomain 
1 denotes the SiC powder, 
2 the growth avity, 
3the graphite ruible, 
4 the insulating foam, 
5 the indution oils and 
6the ambient air. The magneti problem is then posed over 
A = 
1 [ : : :[
6and the thermal problem over 
T = 
1[ : : :[
4. Boundary onditions for themagneti problem imposeA = 0 on the symmetry axis and far enough from theindution oils. On the other hand, boundary onditions for the temperaturemay take various forms. Introduing the deomposition �
T = �d [ �n [ �e,we onsider a Dirihlet ondition T = Td on �d, an homogeneous Neumannon �n (typially the symmetry axis) and a detailed radiative, onvetive anddi�usive energy balane on �e in the formk(T )rT �ne + �(T � T1) + "�(T 4 � T 41) = 0; (6)where ne is the outward normal to �e, T1 the ambient air temperature and �an empirial heat transfer oeÆient. 6



2.2 Mathematial formulationIn weak form, the governing equations read8>>>>>><>>>>>>:Find A 2 V A;R
A 1�(1r�r(rAr)�r(r�r) + r�zAz�z�z) drdz + i! R
A �(T )A � � rdrdz= R
A Jd � � rdrdz; 8� 2 V A; (7)and8>>>>>><>>>>>>:Find T 2 V TTd;R
T k(T )rT � r� rdrdz + R�m �(T )� rdl+ R�e(�T + "�	(T ))� rdl= R
T 12�!2jAj2� rdrdz + R�e(�T1 + "�	(T1))� rdl; 8� 2 V T0 ; (8)where V A and V Tg are suitable funtional spaes desribed below. The integralequation giving the ux � is rewritten as1"�� F �1�"" �� = �	(T )� F (�	(T )) with 	(T ) = jT j3 T: (9)With suh modi�ation, it is straightforward to hek using H�older's inequalityand the fat that kFkLp(�m) � 1 that R�m �(T )T rdl � 0. Note also thatmultiple solutions of (8) may be onstruted when T 4 is not replaed by 	(T )[15℄.For the magneti problem, one may take the Hilbert spae V A = H10 (
A)2.For the thermal problem, one may onsider the aÆne spaeV Tg = nT 2 H1(
T ); Tj�m 2 L5(�m); Tj�d = g o :Indeed, assuming T 2 V Tg , one easily shows that the integral equation (9) ad-mits a unique solution � 2 L5=4(�m) so that the surfae integral R�m �(T )� rdlis well de�ned owing to H�older's inequality [19,20℄. Problems (7) and (8) areoupled together through the temperature dependene of the eletri ondu-tivity. Problem (8) is strongly nonlinear and nonloal. From a mathematialviewpoint, existene and uniqueness of its solution is still an open problemwhih will not be further investigated in this paper. DiÆulties arise for losedinterior avities with radiant energy transfer over their whole boundary forwhih the norm of the assoiated integral operator is equal to one. Existeneand uniqueness an be proved when the temperature is �xed on part of the ra-diant boundary [8,9℄ or when the existene of suitable super and subsolutionsan be established a priori [19,20℄. 7



Remark. In the speial ase of temperature independent eletri ondutivi-ties, the thermomagneti problem simpli�es into a two step resolution: �rst, alinear magneti problem yielding the magneti potential A; seond, a stronglynonlinear and nonloal problem for the temperature T .3 Numerial MethodologyThe numerial method derived in this work involves �nite element disretiza-tion of the partial di�erential equations (PDEs), a disontinuous Galerkinapproximation to the integral equation, an aurate three-dimensional raymethod with loal azimuthal re�nement near shadowing obstales to evaluatethe view fators for omplex nononvex geometries and a Newton's methodembedded in a �xed point iteration to handle the nonlinearities in the tem-perature equation and the thermomagneti oupling respetively.3.1 Finite element approximationThe domain for the magneti problem is trunated at a �nite radius R andis denoted by 
AR. Given a triangulation of 
AR and 
T , we onsider linearsimpliial ontinuous �nite element spaes for the magneti potential and thetemperature denoted by V AhR and V Th . The Galerkin approximation reads8>>>>>><>>>>>>:Find Ah 2 V AhR;R
AR 1�(1r�r(rAhr)�r(r�hr) + r�zAhz�z�hz) drdz + i! R
AR �(Th)Ah � �h rdrdz= R
AR Jd � �h rdrdz; 8�h 2 V AhR; (10)and8>>>>>><>>>>>>:Find Th 2 V TTdh;R
T k(Th)rTh � r�h rdrdz + R�m �h(Th)�h rdl + R�e(�Th + "�	(Th))�h rdl= R
T 12�!2jAhj2�h rdrdz + R�e(�T1 + "�	(T1))�h rdl; 8�h 2 V T0h:(11)Volume (resp. surfae) integrals are evaluated with a numerial quadratureinvolving 3 (resp. 2) Gauss points. The numerial evaluation of the multiplereetion radiative ux �h(Th) is disussed in the next setion.8
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Fig. 3. Azimuthal integration of view fators.3.2 Approximate integral equationThe triangulation of 
T indues a mesh of the meridian �m. We use a dison-tinuous Galerkin method of degree one to disretize the integral equation andevaluate the disontinuous pieewise linear funtion �h. If two Gauss pointsper element of �m are used to approximate all the integrals, the resulting prob-lem is equivalent to a olloation method at the Gauss points, the unknownbeing the value of �h at those points. Note that the formalism an be read-ily extended to approximations of higher degree while the zero degree methodwhere �h is approximated by a pieewise onstant funtion orresponds to themethod usually reported in the engineering literature (see for instane [1,6℄).Let ng be the total number of Gauss points on �m and al be the lth Gausspoint. Set !l = �lrl=2 where �l is the length of the segment where al is loatedand rl the radial oordinate of al. Upon introduing the view matrix F 2 Rng ;ngwith oeÆientsFll0 = faxi(al; al0)!l0; faxi(al; al0) = 2 Z �0 f�al; al0(�)� d�;the vetor �h 2 Rng with omponents �hl = �h(al) and the vetor b 2 Rngwith omponents bl = �	(T (al)), we obtain the linear systemdiag(1")�h � F �diag(1�"" )�h� = (I � F )b; (12)where I is the identity matrix, diag(1")ll0 = 1"(al)Æll0 , diag(1�"" )ll0 = 1�"(al)"(al) Æll0 andÆll0 the Kroneker delta. Note that we have taken advantage of axial symmetryby averaging f over the azimuthal oordinate. Three-dimensional e�ets stillarise in the atual omputation of faxi as detailed in the next setion.Besides its auray and stability properties, the disontinuous Galerkin methodo�ers the important advantage that it yields diretly the quantities �h(al),9



1 � l � ng, whih are needed to evaluate the surfae integral R�m �h(Th)�hin (8). Note also that disontinuous Galerkin is a natural way to disretizethe integral equation whih from a mathematial viewpoint is posed on theBanah spae L5=4(�m) where no ontinuity assumptions an be made a priori.Beause of the numerial quadratures involved, the quantitiesSl = ngXl0=1Fll0;may di�er from unity. Indeed, we haveSl = ngXl0=1 faxi(al; al0)!l0 ' Z�m faxi(al; y) dy = Z� f(al; z) dz = 1:If the radiating surfae is smooth, Sl onverges to unity with third order in hbeause the trunation error is fourth order on eah segment, two Gauss pointsbeing used loally. However, if orners are present, singularities may arise.Spei�ally, for a given x 2 �, the funtion fx : z 7! f(x; z) is disontinuouswhen z passes through a orner that an be seen from x and has a 1kx�zk2singularity if x is loated at a onvex orner where the two neighboring edgessee eah other. As a result, when a onvex orner is present, Sl does notonverge to unity if al is loated next to a onvex orner and onverges tounity with �rst order otherwise.It may then be interesting to introdue a renormalization of the view matrix.Upon setting Gll0 = 1SlFll0;and introduing the vetors U and W 2 Rng with omponents U = (1; : : : ; 1)and W = (!1S1; : : : ; !ngSng), one readily sees thatGU = U and GtW = W:Therefore, the solution �h of the resaled linear systemdiag(1")�h �G �diag(1�"" )�h� = (I �G)b; (13)satis�es the following two properties, whih are important from a physialviewpoint:� (b 2 RU) =) (�h = 0) sine GU = U ;� approximate overall onservation of radiant energy over �m in the formZ�m �h ' ngXl=1 !lSl �hl = 0;sine GtW = W . 10



Other renormalizations may be onsidered as for instane a single modi�ationof the largest oeÆient [6℄. The present renormalization o�ers the advantageto ensure both physial properties above. However, the fundamental advantageof (13) is that it yields under some assumptions the existene of a solution tothe disrete problem.Proposition 1. Assume that the disrete ux �h is given by (13). Assumethat the emissivity is onstant and that the thermal ondutivity is suh thatk(T ) � k0 > 0. Then there exists a solution to the disrete problem (11).Proof. For simpliity, we assume homogeneous Dirihlet onditions, the gen-eral ase being treated with additional tehnial steps. From the renormaliza-tion (13) and Gershgorin's theorem, we dedue that the spetral radius of Gis less or equal to one. Let us then establish that R�m �h Th rdl � 0. In thease where " = 1, we have �h = (I �G)b and introduing the disrete normskvk = (Pngl=1 !ljvljp)1=p, 1 � p � 1, we getR�m �h Th rdl = �Pngl=1 !ljTh(al)j5 �Pngl=1 !l(Gb)lTh(al)� �kThk55 � kThk5kGbk5=4� �kThk55 � kThk5kGk5=4kbk5=4� �(1� kGk5=4)kThk55 � 0;sine kGk5=4 is lower than the spetral radius of G. In the ase where " < 1,we may write �h = Eb� E(I � E)�1 1Xi=1(I � E)iGiEbwith E = diag("). The series in the rhs is normally onvergent and we onludeas before using again kGk � 1. Having established that R�m �h Th rdl � 0, wededue an a priori H1 estimate of the solution Th by multiplying (11) byTh and using the oerivity of R
T k(Th)rTh � r�h rdrdz. The existene of asolution to (11) then follows from Brouwer's �xed point theorem.Remark. It turns out that in appliations with high demands on auray,renormalization has a notieable impat on model preditions. Numerial as-pets of renormalization will be investigated in setion 4.3.3 Numerial evaluation of the view matrixLet x and y be two points in the (r; z) plane with oordinates (rx; zx) and(ry; zy). Let my(�) be the point in the physial three-dimensional spae ob-tained with a rotation of angle � of point y around the symmetry axis. In11



order to evaluate the funtion faxi(x; y) we need to determine the set of angles� suh that my(�) sees x. For symmetry reasons, it is suÆient to onsider� 2 [0; �℄.Any point along the ray linking points x and my(�) an be rotated bak tothe (r; z) plane. This operation maps the original straight ray in the three-dimensional physial spae into a urved hyperboli ray in the (r; z) plane.The urved ray, denoted by R�, is parametrized byt 2 [0; 1℄ 7! 0B�qt2r2x + (1� t2)r2y + 2t(1� t)rxry os �tzx + (1� t)zy 1CA :In axisymmetri on�gurations, the meridian setion of the avity is simplyonneted. As a result, the set of � 2 [0; �℄ suh that R� lies inside the avityenlosed by �m is onnex (see �gure 4). Denoting by [�min; �max℄ the maximalsubset of [0; �℄ suh that 8� 2 [�min; �max℄, R� lies inside the avity, we havefaxi(x; y) = 2 Z �max�min V(x;my(�)) d�: (14)From a omputational viewpoint, this approah is attrative beause it only in-volves the two-dimensionalmesh in the (r; z) plane to solve a three-dimensionalshadowing problem.The evaluation of faxi is based on a ray searh method whih is performed inthree steps:� braketing: arithmeti sweep of interval [0; �℄ yielding an initial braketingof the interval [�min; �max℄;� loal re�nement: sharp determination of �min and �max using a bisetionmethod;� numerial quadrature: evaluation of faxi as given by (14) using Romberg'squadrature. High auray is ahieved sine V(x; y) is smooth over the in-tegration interval.Eah urved ray involved in the algorithm is disretized in a �nite numberof steps whose length is evaluated adaptively as a funtion of the loal meshtriangle that the ray is urrently rossing. Several parameters ontrol the nu-merial performane of the ray searh method, realizing a ompromise betweenauray and omputational ost. This issue will be further investigated in thetest ases presented in setion 4. 12
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Fig. 4. Curved rays in (r; z) plane and the determination of angles �min and �max.3.4 Fixed point and Newton iterationThe above approximation methods lead to a system of nonlinear equations8><>:LA(Ah; Th) = 0LT (Ah; Th) = 0with obvious notation. The thermomagneti oupling is handled using a �xedpoint iteration. Given a disrete temperature �eld T nh , we �rst obtain themagneti potential from LA(An+1h ; T nh ) = 0 and then update the temperature�eld from LT (An+1h ; T n+1h ) = 0.The �rst step in the �xed point method is simply a linear system solved usinga GMRes iteration with an ILU preonditionner [14℄. The temperature up-date requires the solution of a nonlinear system of equations using a dampedNewton iteration. The Jaobian matrix is evaluated numerially using divideddi�erenes. Nonloal ouplings due to radiant energy transfer are fully a-ounted for in the ompressed struture of the matrix. At eah Newton step,the linear system is solved approximately using a GMRes iteration with anILU preonditionner.4 Numerial resultsIn this setion we present numerial results obtained on three test ases ofinreasing diÆulty.� Test ase 1 onsists of a simpli�ed geometri on�guration with multiplereetion radiant energy transfer ourring in a single onvex avity. In ad-13



dition, eletri ondutivities are temperature independent thus unouplingthe magneti potential from the temperature. This test ase has been hosenbeause previous numerial results are available for omparison;� Test ase 2 is the same as test ase 1 exept that the radiant avity is nownononvex. The numerial methods used in the approximation of radiantenergy transfer are assessed here;� Test ase 3 is a prototype for an industrial growth reator ontaining up to5 radiant avities (of whih 3 are nononvex).4.1 Test ase 1: onvex avityThe model growth reator onsidered in this test ase is the one shown in�gure 1 exept that the indution oils are globally modeled as a retangularsetion 0.5 m wide and 12 m high. The growth avity is 2 m wide and 5 mhigh. The thikness of the graphite ruible is 1 m while that of the insulatingfoam is 2 m at its top and bottom and 1 m laterally. For all materials,the magneti permeability is that of vauum � = 4��10�7 H/m. Eletriondutivities are 2�104 in the graphite enlosure, 2�103 in the insulatingfoam and 1�104 in the powder (units of 
�1m�1). The frequeny of the eddyurrents is 50 kHz. Two values are onsidered for the urrent density: Jd =3:128�106 for test ase 1a and Jd = 4:716�106 for test ase 1b (units of Am�2).The �rst hoie orresponds to Joule losses of 3 kW in the three ondutingmaterials while the seond to Joule losses of 3 kW in the graphite. Thermalondutivities are set to 10 for the graphite ruible, 1 for the insulatingfoam, 25 for the powder and 0:01 for the growth avity (units of Wm�1K�1).Emissivities are 0:7 for the ruible, 0:9 for the foam and 0:5 for the powder.Ambient air temperature is set to T1 = 573 K. The temperature is Td = T1at the basis of the insulating foam and (6) is imposed elsewhere with theempirial oeÆient � set to zero.We onsider four triangulations haraterized by an average mesh size h andthe trunation radius R (both measured in m). The maximal value of theJoule dissipation and temperature is presented in table 1. No signi�ant dif-ferene is observed among the four alulations showing that the meshes areadequately re�ned and that the trunation radius R is large enough. A om-parison between the results obtained on the �nest mesh (h = 0:1, R = 100)and previous numerial results [2,12℄ shows exellent agreement. As a furtherillustration, �gure 5 presents ontours for the real part of the magneti po-tential and the temperature for test ase 1a. Figure 6 presents the multiplereetion ux along the meridian �m for test ases 1a and 1b. Note the uxdisontinuity at the powder/graphite interfae where the emissivity hangesvalue. 14



mesh test ase 1a test ase 1bh R np ne Joule losses temperature Joule losses temperature0.2 60 5382 10554 27.61 2459.6 62.75 3291.20.1 60 20304 40190 27.93 2461.9 63.50 3296.20.2 100 6418 12572 27.65 2462.3 62.85 3295.30.1 100 24111 24694 27.98 2464.4 63.59 3300.2CSC (error in %) 0.9 0.05 0.7 0.1LTPCM (error in %) 1.0 0.3 1.3 1.2Table 1Maximal value of Joule dissipation (MW/m3) and temperature (K) for test ases1a and 1b on 4 di�erent meshes; h and R are given in m while np and ne denotethe number of nodes and elements in the mesh; omparison with previous numerialresults [2,12℄.
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Fig. 5. Test ase 1a: ontours for real part of magneti potential (left) and temper-ature (right).We next investigate the impat of view matrix renormalization on numerialresults. To this purpose, two series of alulations are performed, the �rstone with renormalization and the seond one without. For eah series, threemeshes are onsidered: the (h = 0:2; R = 60) mesh, the (h = 0:1; R = 60)mesh, and the (h = 0:1; R = 60) mesh with loal re�nement near the avityorners (h = 0:025). Maximum temperatures are reported in table 2 while thetemperature distribution as a funtion of the urvilinear absissa along �m is15
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Fig. 6. Multiple reetion ux along meridian �m as a funtion of urvilinear ab-sissa starting at the avity/powder interfae at the symmetry axis; test ase 1a(left) and 1b (right).mesh parameters with withouth = 0:2, R = 60 2459.6 2553.8h = 0:1, R = 60 2461.9 2504.6h = 0:1, R = 60 + orner ref. 2461.8 2472.1Table 2Test ase 1a: maximum temperature (K) on three di�erent meshes with and withoutnormalization of the view matrix.reported in �gure 7. We observe that without renormalization the numerialresults are muh more sensitive to mesh re�nement and that they onverge to-wards the values obtained with renormalization as the mesh is re�ned near theorners where singularities arise. The multiple reetion ux is presented in�gure 8 as a funtion of the urvilinear absissa for the six alulations. With-out normalization, the ux exhibits a singularity at the two onvex orners.This singularity disappears with normalization.4.2 Test ase 2: nononvex avityTest ase 2 is a modi�ed version of test ase 1 in whih a graphite sreen isintrodued inside the avity so that it is no longer onvex. The temperaturedistribution with a zoom near the tip of the sreen is presented in �gure 9.As for test ase 1, we investigate the impat of view matrix normalization16
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Fig. 10. Test ase 2: temperature distribution along the avity as a funtion ofurvilinear absissa.
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numerial parameters speedupsnray �� S1 S210 10�2 1.34 3910 10�4 1.34 3318100 10�4 1.67 506Table 4Test ase 2: speedups S1 and S2 for various numerial strategies in evaluating theview fator matrix.orrespond to step sizes of the order of the loal mesh size and may rosssmall obstales.Let n1 denote the total number of rays onsidered in the braketing stepand n2 the total number of rays onsidered in the loal re�nement step. Setntot = n1 + n2. Then the total ost sales as ntot=Æ. We onsider the speedupsS1 = nray n2gn1 ; S2 = ��� n2gntot :S1 represents the speedup ahieved using the onnexity of the integration in-terval with respet to an approah where the whole radiating surfae is a prioridisretized. S2 represents the overall speedup with respet to a disretization ofthe whole radiating surfae ahieving the same auray. These quantities arepresented in table 4 for various numerial strategies on the (h = 0:1; R = 100)mesh where n2g = 57600. The parameter Æ is set to 0.1 in all alulations.The onnexity speedup S1 indiates that a signi�ant amount of omputa-tion is saved by �rst braketing the interval [�min; �max℄. The seond speedupillustrates the advantage of loal re�nement when high auray is required.4.3 Test ase 3: industrial growth reatorAs an illustration for industrial appliations, we �nally onsider the rystalgrowth reator presented in �gure 13. The omputational domain onsists of 15subdomains of whih 5 are multiple reetion radiant avities: the 2 pyromet-ri holes (whih are onvex) and the 3 argon avities (whih are nononvex).Eddy urrents are imposed at an angular veloity of ! = 105 rad/s and a ur-rent density of Jd = 1:65�106 A/m2 yielding a total Joule dissipation in theruible of 9:86 kW. Eletri ondutivities are temperature dependent fun-tions given by 7�1043:5�10�4T+0:375+ 144:7T in the graphite ruible, 4003:5�10�4T+0:375+ 144:7Tin the insulating foam, and 770 in the SiC powder and seed (units of 
�1m�1,T given in Celsius) [11℄. The thermal ondutivity is also temperature depen-dent and given by 1201+2�10�3T in the graphite ruible, 0:17�10�6T 2 + 0:08 in20
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