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eAbstra
tWe present a mathemati
al formulation and a numeri
al investigation of a thermo-magneti
 problem arising in 
rystal growth appli
ations. The governing equationsare the quasi-stati
, time harmoni
, axisymmetri
 Maxwell equations 
oupled withan energy 
onservation equation. Multiple re
e
tion radiant energy transfer is mod-eled by an integral equation yielding a strongly nonlinear and nonlo
al problem.Key issue is the a

urate and 
ost e�e
tive evaluation of the multiple re
e
tion ra-diation 
ux. The present method uses a dis
ontinuous Galerkin method with lo
alazimuthal re�nement near shadowing obsta
les and an appropriate renormalizationof the view fa
tor matrix whi
h guarantees mathemati
ally under some assumptionsthat the dis
rete problem is well posed. Numeri
al results are presented for rea
torswith simple geometry where the solution is 
ompared to previous numeri
al workand for an industrial prototype involving several non
onvex radiating surfa
es.Key words: Finite elements, dis
ontinuous Galerkin, grey body radiation, 
rystalgrowth1 Introdu
tionDuring the last de
ade, sili
on 
arbide (SiC) has sparked extensive interestin the semi
ondu
tor industry. Indeed, important advan
es have been a

om-plished in the manufa
turing of high power and high temperature SiC basedoptoele
troni
 devi
es. However, one 
ru
ial step still restri
ting the industrialprodu
tion of SiC devi
es is the s
ar
e availability of single 
rystal SiC waferswith a high enough level of 
rystalline perfe
tion in terms of mi
ropipe anddislo
ation density. Su
h wafers are 
ommonly grown using a modi�ed Lelymethod (see e.g. [18℄ for a review). Growth takes pla
e inside a radiofrequen
y(RF) heated graphite 
ru
ible with a single 
rystalline seed �xed at the topPreprint submitted to Elsevier Preprint 19 July 2001



and SiC powder pla
ed at the bottom. The thermal gradient in the growth
avity must be 
ontrolled in su
h a way that sublimation o

urs in the powderand deposition on the 
rystal seed. Typi
al temperature gradients are of theorder of 100 K
m�1. Temperatures range between 2300 and 3000 K in the
ru
ible and between 2700 and 2800 K in the 
rystal seed.Equipment design and operating parameters for wafer produ
tion have beensteadily improved over the years mainly by engineers' experimental knowledgeof the growth pro
ess. More re
ently, numeri
al modeling has emerged as anadditional tool 
omplementing experimental results and providing valuable in-sight into the physi
al and 
hemi
al phenomena involved inside the 
ru
ible.Several resear
h groups have developed 
omprehensive numeri
al models a
-
ounting for magneti
, thermal and 
hemi
al phenomena (see, among others,[1,3,11,13,17℄). A re
ent state of the art review [10℄ indi
ates that thermomag-neti
 
oupled with simpli�ed 
hemi
al modeling has rea
hed a 
ertain levelof maturity while detailed knowledge of surfa
e pro
esses and defe
t forma-tion still 
hallenges the resear
h 
ommunity. Current resear
h developmentsin numeri
al modeling in
lude among others optimal 
ontrol te
hniques to im-prove 
ru
ible design [7℄, impa
t of sour
e material on growth 
onditions [21℄and thermoelasti
 stresses in the bulk 
rystal and their 
orrelation to defe
tformation [16℄.The goal of this paper is to fo
us on the part of the model whi
h has rea
hedmaturity (the thermomagneti
 problem) and to derive an a

urate and stablenumeri
al method to 
al
ulate the temperature distribution inside a 
ru
iblewith multiple re
e
tion radiant energy transfer in a 
omplex geometry. Itsmain 
ontribution is thus to yield a robust methodology for thermomagneti
modeling to be ultimately 
oupled with more 
omprehensive 
hemi
al andthermome
hani
al models. The emphasis on the thermomagneti
 problem isstrongly motivated by the fa
t that temperature gradient 
ontrol around the
rystal seed is a key issue in produ
t quality. Radiative heat transfer has beenextensively dealt with in the 
rystal growth literature. However, to the au-thors' knowledge, the radiation problem has always been 
onsidered only inits dis
rete form. In these approa
hes, the radiant surfa
e is divided into a�nite number of 
ells and 
on�guration fa
tors (or view fa
tors) need to beevaluated for all the 
ell 
ouples. For simple geometries, the 
on�guration fa
-tors 
an be evaluated analyti
ally using tabulated values and 
lassi
al viewfa
tor algebra [4,5℄. In most pra
ti
al 
ases, a numeri
al evaluation is needed,as detailed for instan
e in [6℄. The methodology derived in the present pa-per is based on the 
ontinuous formulation of the radiation problem throughan integral equation. An approximate integral equation is derived using adis
ontinuous Galerkin method and Gaussian quadrature. Besides a

ura
yand stability, another important advantage of the method is its 
ompatibil-ity with the �nite element formulation of the global 
onservation equationssin
e it yields the dis
rete radiation 
ux at the quadrature nodes. Further-2



more, the 
omputational 
osts are redu
ed signi�
antly by lo
al re�nement inthe azimuthal dire
tion in the neighborhood of shadowing obsta
les. Finally,introdu
ing an appropriate renormalization of the view matrix, we establishunder some assumptions the existen
e of a solution to the dis
rete problem.This paper is organized as follows. In the next se
tion, we formulate math-emati
ally the governing equations. The numeri
al method is des
ribed andanalyzed in se
tion 3. Finally, in se
tion 4 we present numeri
al results assess-ing both a

ura
y and 
omputational eÆ
ien
y of the proposed method.2 Problem Formulation2.1 Physi
al modelingA s
hemati
 representation of a 
rystal growth rea
tor with idealized geom-etry is presented in Figure 1. A graphite 
ru
ible 
oated with an insulatingfoam 
ontains the SiC powder and the growth 
avity. A RF sour
e 
urrentis imposed in the indu
tion 
oils. The 
ondu
tive materials (graphite, foamand SiC powder) are heated by the indu
tive 
urrents through Joule's e�e
t.The temperature distribution inside the growth rea
tor results from a balan
ebetween 
ondu
tive and radiative heat transfer with multiple re
e
tions o
-
urring inside the growth 
avity. Conve
tive heat transfer inside the 
avitymay be negle
ted for typi
al operating 
onditions [3,11℄.The three-dimensional ele
tromagneti
 �eld is modeled by the Maxwell equa-tions with some simplifying assumptions. First, we assume that the ele
tro-magneti
 �eld is time harmoni
 with angular velo
ity ! and frequen
y f . Inaddition, for low frequen
y eddy 
urrent problems (with f typi
ally lower than1 Mhz), the displa
ement 
urrents may be negle
ted leading to the quasi-stati
approximation. Finally, we restri
t ourselves to axisymmetri
 
on�gurationswith (r; z) denoting the radial and axial 
oordinates respe
tively. With theseassumptions, the Maxwell equations redu
e to8><>: rot � 1� rot�A� = ji!A+ E = 0with rot�A = (��zA; 1r�r(rA)) and i2 = �1. Here, A and E are s
alar �eldsdenoting the magneti
 potential and the azimuthal 
omponent of the ele
tri
�eld respe
tively, � is the magneti
 permeability and j the 
urrent density.The indu
tion 
oils are modeled by imposing the 
urrent density to a pre-s
ribed value. This approximation is 
lassi
al in this 
ontext. Sin
e the 
urrent3
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Fig. 1. S
hemati
 representation of a 
rystal growth rea
tor with idealized geometry.density is not 
onstant is spa
e through the indu
tion 
oils, the a
tual se
tionof the 
oils are repla
ed by equivalent se
tions in the model [11℄. In the other
ondu
ting media, we assume Ohm's law j = �E where � is the (temperaturedependent) ele
tri
 
ondu
tivity. Upon formally setting the ele
tri
 
ondu
-tivity to zero in the indu
tion 
oils, we may write an equation valid in thewhole spa
e whi
h readsrot � 1� rot�A�+ i�!A = Jd; (1)where Jd is zero everywhere ex
ept in the indu
tion 
oils where it takes aspe
i�ed value.The indu
tive 
urrents in 
ondu
tive media yield a volumetri
 heat releasethrough Joule dissipation in the form Q = 12�!2jAj2. Di�usive heat balan
einside the various materials thus reads� div (k(T )rT ) = 12�!2jAj2; (2)where k(T ) is the (temperature dependent) thermal 
ondu
tivity.An important aspe
t of energy balan
e in the growth 
avity is radiant energytransfer in
luding emission, re
e
tion and adsorption. Radiant surfa
es areassumed to behave like grey bodies (i.e., the radiative ex
hanges are indepen-4
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Fig. 2. Radiant energy transfer with re
e
tion.dent of the wavelength) and are 
hara
terized by an emissivity 
oeÆ
ient "[4℄. We also assume that the radiant surfa
es are separated by non parti
ipat-ing media, i.e. that the gases inside the 
avity do not a�e
t radiant energytransfers.In a non
onvex 
avity, three-dimensional e�e
ts arise sin
e 
ouples of pointsmay not see ea
h other depending on their respe
tive azimuthal position. Wewill denote by � the radiant surfa
e in the three-dimensional physi
al spa
eand by �m its meridian in the (r; z) plane. On a given point in �, let T be thetemperature and i the in
ident 
ux of radiant energy. A fra
tion of it, "i, istransmitted towards the exterior of the 
avity and the remaining part, (1�")i,is re
e
ted ba
k towards the interior (see �gure 2). As a result, the radiosity,de�ned as the total 
ux of radiant energy leaving � towards the interior, readsw = (1� ")i+ "�T 4; (3)where � = 5:67�10�8 Wm�2K�4 is the Stefan-Boltzmann 
onstant. Further-more, the in
ident energy 
ux is related to the radiosity by Lambert's law inthe form i = Fw: (4)Here, we have introdu
ed the integral operator F : Lp(�) ! Lp(�) ! (1 �p � 1) de�ned as Fu(x) = Z� f(x; y) u(y) dy; 8x 2 �:The integral kernel readsf(x; y) = V(x; y) �(x; y); x; y 2 �;where V(x; y) = 1� nx�(x� y) ny�(y � x)kx� yk4 ;nx and ny are the outward normal to � at x and y respe
tively and�(x; y) = 8<:1 if the points x and y see ea
h other;0 otherwise:5



The integral kernel f satis�es the following two important properties of sym-metry and normalization:f(x; y) = f(y; x); 8x; y 2 � and Z� f(x; y) dy = 1; 8x 2 �:In the sequel, it will be 
onvenient to introdu
e the total energy 
ux fromthe exterior to the interior of the 
avity. This 
ux, denoted by �, satis�es theintegral equation 1"�� F �1�"" �� = �T 4 � F (�T 4):From the properties of the kernel f , we readily dedu
e that8>><>>: (�T 4 
onstant over �) =) (� = 0 over �)8T; R�� = 0:Energy balan
e between radiant and di�usive transfer may then be expressedas [krT ℄�n� = � over �; (5)where n� denotes the outward normal to � and [krT ℄�n� the di�eren
e be-tween exterior and interior values.The magneti
 and thermal problems are posed on di�erent domains. Referringto �gure 1, subdomain 
1 denotes the SiC powder, 
2 the growth 
avity, 
3the graphite 
ru
ible, 
4 the insulating foam, 
5 the indu
tion 
oils and 
6the ambient air. The magneti
 problem is then posed over 
A = 
1 [ : : :[
6and the thermal problem over 
T = 
1[ : : :[
4. Boundary 
onditions for themagneti
 problem imposeA = 0 on the symmetry axis and far enough from theindu
tion 
oils. On the other hand, boundary 
onditions for the temperaturemay take various forms. Introdu
ing the de
omposition �
T = �d [ �n [ �e,we 
onsider a Diri
hlet 
ondition T = Td on �d, an homogeneous Neumannon �n (typi
ally the symmetry axis) and a detailed radiative, 
onve
tive anddi�usive energy balan
e on �e in the formk(T )rT �ne + �(T � T1) + "�(T 4 � T 41) = 0; (6)where ne is the outward normal to �e, T1 the ambient air temperature and �an empiri
al heat transfer 
oeÆ
ient. 6



2.2 Mathemati
al formulationIn weak form, the governing equations read8>>>>>><>>>>>>:Find A 2 V A;R
A 1�(1r�r(rAr)�r(r�r) + r�zAz�z�z) drdz + i! R
A �(T )A � � rdrdz= R
A Jd � � rdrdz; 8� 2 V A; (7)and8>>>>>><>>>>>>:Find T 2 V TTd;R
T k(T )rT � r� rdrdz + R�m �(T )� rdl+ R�e(�T + "�	(T ))� rdl= R
T 12�!2jAj2� rdrdz + R�e(�T1 + "�	(T1))� rdl; 8� 2 V T0 ; (8)where V A and V Tg are suitable fun
tional spa
es des
ribed below. The integralequation giving the 
ux � is rewritten as1"�� F �1�"" �� = �	(T )� F (�	(T )) with 	(T ) = jT j3 T: (9)With su
h modi�
ation, it is straightforward to 
he
k using H�older's inequalityand the fa
t that kFkLp(�m) � 1 that R�m �(T )T rdl � 0. Note also thatmultiple solutions of (8) may be 
onstru
ted when T 4 is not repla
ed by 	(T )[15℄.For the magneti
 problem, one may take the Hilbert spa
e V A = H10 (
A)2.For the thermal problem, one may 
onsider the aÆne spa
eV Tg = nT 2 H1(
T ); Tj�m 2 L5(�m); Tj�d = g o :Indeed, assuming T 2 V Tg , one easily shows that the integral equation (9) ad-mits a unique solution � 2 L5=4(�m) so that the surfa
e integral R�m �(T )� rdlis well de�ned owing to H�older's inequality [19,20℄. Problems (7) and (8) are
oupled together through the temperature dependen
e of the ele
tri
 
ondu
-tivity. Problem (8) is strongly nonlinear and nonlo
al. From a mathemati
alviewpoint, existen
e and uniqueness of its solution is still an open problemwhi
h will not be further investigated in this paper. DiÆ
ulties arise for 
losedinterior 
avities with radiant energy transfer over their whole boundary forwhi
h the norm of the asso
iated integral operator is equal to one. Existen
eand uniqueness 
an be proved when the temperature is �xed on part of the ra-diant boundary [8,9℄ or when the existen
e of suitable super and subsolutions
an be established a priori [19,20℄. 7



Remark. In the spe
ial 
ase of temperature independent ele
tri
 
ondu
tivi-ties, the thermomagneti
 problem simpli�es into a two step resolution: �rst, alinear magneti
 problem yielding the magneti
 potential A; se
ond, a stronglynonlinear and nonlo
al problem for the temperature T .3 Numeri
al MethodologyThe numeri
al method derived in this work involves �nite element dis
retiza-tion of the partial di�erential equations (PDEs), a dis
ontinuous Galerkinapproximation to the integral equation, an a

urate three-dimensional raymethod with lo
al azimuthal re�nement near shadowing obsta
les to evaluatethe view fa
tors for 
omplex non
onvex geometries and a Newton's methodembedded in a �xed point iteration to handle the nonlinearities in the tem-perature equation and the thermomagneti
 
oupling respe
tively.3.1 Finite element approximationThe domain for the magneti
 problem is trun
ated at a �nite radius R andis denoted by 
AR. Given a triangulation of 
AR and 
T , we 
onsider linearsimpli
ial 
ontinuous �nite element spa
es for the magneti
 potential and thetemperature denoted by V AhR and V Th . The Galerkin approximation reads8>>>>>><>>>>>>:Find Ah 2 V AhR;R
AR 1�(1r�r(rAhr)�r(r�hr) + r�zAhz�z�hz) drdz + i! R
AR �(Th)Ah � �h rdrdz= R
AR Jd � �h rdrdz; 8�h 2 V AhR; (10)and8>>>>>><>>>>>>:Find Th 2 V TTdh;R
T k(Th)rTh � r�h rdrdz + R�m �h(Th)�h rdl + R�e(�Th + "�	(Th))�h rdl= R
T 12�!2jAhj2�h rdrdz + R�e(�T1 + "�	(T1))�h rdl; 8�h 2 V T0h:(11)Volume (resp. surfa
e) integrals are evaluated with a numeri
al quadratureinvolving 3 (resp. 2) Gauss points. The numeri
al evaluation of the multiplere
e
tion radiative 
ux �h(Th) is dis
ussed in the next se
tion.8
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Fig. 3. Azimuthal integration of view fa
tors.3.2 Approximate integral equationThe triangulation of 
T indu
es a mesh of the meridian �m. We use a dis
on-tinuous Galerkin method of degree one to dis
retize the integral equation andevaluate the dis
ontinuous pie
ewise linear fun
tion �h. If two Gauss pointsper element of �m are used to approximate all the integrals, the resulting prob-lem is equivalent to a 
ollo
ation method at the Gauss points, the unknownbeing the value of �h at those points. Note that the formalism 
an be read-ily extended to approximations of higher degree while the zero degree methodwhere �h is approximated by a pie
ewise 
onstant fun
tion 
orresponds to themethod usually reported in the engineering literature (see for instan
e [1,6℄).Let ng be the total number of Gauss points on �m and al be the lth Gausspoint. Set !l = �lrl=2 where �l is the length of the segment where al is lo
atedand rl the radial 
oordinate of al. Upon introdu
ing the view matrix F 2 Rng ;ngwith 
oeÆ
ientsFll0 = faxi(al; al0)!l0; faxi(al; al0) = 2 Z �0 f�al; al0(�)� d�;the ve
tor �h 2 Rng with 
omponents �hl = �h(al) and the ve
tor b 2 Rngwith 
omponents bl = �	(T (al)), we obtain the linear systemdiag(1")�h � F �diag(1�"" )�h� = (I � F )b; (12)where I is the identity matrix, diag(1")ll0 = 1"(al)Æll0 , diag(1�"" )ll0 = 1�"(al)"(al) Æll0 andÆll0 the Krone
ker delta. Note that we have taken advantage of axial symmetryby averaging f over the azimuthal 
oordinate. Three-dimensional e�e
ts stillarise in the a
tual 
omputation of faxi as detailed in the next se
tion.Besides its a

ura
y and stability properties, the dis
ontinuous Galerkin methodo�ers the important advantage that it yields dire
tly the quantities �h(al),9



1 � l � ng, whi
h are needed to evaluate the surfa
e integral R�m �h(Th)�hin (8). Note also that dis
ontinuous Galerkin is a natural way to dis
retizethe integral equation whi
h from a mathemati
al viewpoint is posed on theBana
h spa
e L5=4(�m) where no 
ontinuity assumptions 
an be made a priori.Be
ause of the numeri
al quadratures involved, the quantitiesSl = ngXl0=1Fll0;may di�er from unity. Indeed, we haveSl = ngXl0=1 faxi(al; al0)!l0 ' Z�m faxi(al; y) dy = Z� f(al; z) dz = 1:If the radiating surfa
e is smooth, Sl 
onverges to unity with third order in hbe
ause the trun
ation error is fourth order on ea
h segment, two Gauss pointsbeing used lo
ally. However, if 
orners are present, singularities may arise.Spe
i�
ally, for a given x 2 �, the fun
tion fx : z 7! f(x; z) is dis
ontinuouswhen z passes through a 
orner that 
an be seen from x and has a 1kx�zk2singularity if x is lo
ated at a 
onvex 
orner where the two neighboring edgessee ea
h other. As a result, when a 
onvex 
orner is present, Sl does not
onverge to unity if al is lo
ated next to a 
onvex 
orner and 
onverges tounity with �rst order otherwise.It may then be interesting to introdu
e a renormalization of the view matrix.Upon setting Gll0 = 1SlFll0;and introdu
ing the ve
tors U and W 2 Rng with 
omponents U = (1; : : : ; 1)and W = (!1S1; : : : ; !ngSng), one readily sees thatGU = U and GtW = W:Therefore, the solution �h of the res
aled linear systemdiag(1")�h �G �diag(1�"" )�h� = (I �G)b; (13)satis�es the following two properties, whi
h are important from a physi
alviewpoint:� (b 2 RU) =) (�h = 0) sin
e GU = U ;� approximate overall 
onservation of radiant energy over �m in the formZ�m �h ' ngXl=1 !lSl �hl = 0;sin
e GtW = W . 10



Other renormalizations may be 
onsidered as for instan
e a single modi�
ationof the largest 
oeÆ
ient [6℄. The present renormalization o�ers the advantageto ensure both physi
al properties above. However, the fundamental advantageof (13) is that it yields under some assumptions the existen
e of a solution tothe dis
rete problem.Proposition 1. Assume that the dis
rete 
ux �h is given by (13). Assumethat the emissivity is 
onstant and that the thermal 
ondu
tivity is su
h thatk(T ) � k0 > 0. Then there exists a solution to the dis
rete problem (11).Proof. For simpli
ity, we assume homogeneous Diri
hlet 
onditions, the gen-eral 
ase being treated with additional te
hni
al steps. From the renormaliza-tion (13) and Gers
hgorin's theorem, we dedu
e that the spe
tral radius of Gis less or equal to one. Let us then establish that R�m �h Th rdl � 0. In the
ase where " = 1, we have �h = (I �G)b and introdu
ing the dis
rete normskvk = (Pngl=1 !ljvljp)1=p, 1 � p � 1, we getR�m �h Th rdl = �Pngl=1 !ljTh(al)j5 �Pngl=1 !l(Gb)lTh(al)� �kThk55 � kThk5kGbk5=4� �kThk55 � kThk5kGk5=4kbk5=4� �(1� kGk5=4)kThk55 � 0;sin
e kGk5=4 is lower than the spe
tral radius of G. In the 
ase where " < 1,we may write �h = Eb� E(I � E)�1 1Xi=1(I � E)iGiEbwith E = diag("). The series in the rhs is normally 
onvergent and we 
on
ludeas before using again kGk � 1. Having established that R�m �h Th rdl � 0, wededu
e an a priori H1 estimate of the solution Th by multiplying (11) byTh and using the 
oer
ivity of R
T k(Th)rTh � r�h rdrdz. The existen
e of asolution to (11) then follows from Brouwer's �xed point theorem.Remark. It turns out that in appli
ations with high demands on a

ura
y,renormalization has a noti
eable impa
t on model predi
tions. Numeri
al as-pe
ts of renormalization will be investigated in se
tion 4.3.3 Numeri
al evaluation of the view matrixLet x and y be two points in the (r; z) plane with 
oordinates (rx; zx) and(ry; zy). Let my(�) be the point in the physi
al three-dimensional spa
e ob-tained with a rotation of angle � of point y around the symmetry axis. In11



order to evaluate the fun
tion faxi(x; y) we need to determine the set of angles� su
h that my(�) sees x. For symmetry reasons, it is suÆ
ient to 
onsider� 2 [0; �℄.Any point along the ray linking points x and my(�) 
an be rotated ba
k tothe (r; z) plane. This operation maps the original straight ray in the three-dimensional physi
al spa
e into a 
urved hyperboli
 ray in the (r; z) plane.The 
urved ray, denoted by R�, is parametrized byt 2 [0; 1℄ 7! 0B�qt2r2x + (1� t2)r2y + 2t(1� t)rxry 
os �tzx + (1� t)zy 1CA :In axisymmetri
 
on�gurations, the meridian se
tion of the 
avity is simply
onne
ted. As a result, the set of � 2 [0; �℄ su
h that R� lies inside the 
avityen
losed by �m is 
onnex (see �gure 4). Denoting by [�min; �max℄ the maximalsubset of [0; �℄ su
h that 8� 2 [�min; �max℄, R� lies inside the 
avity, we havefaxi(x; y) = 2 Z �max�min V(x;my(�)) d�: (14)From a 
omputational viewpoint, this approa
h is attra
tive be
ause it only in-volves the two-dimensionalmesh in the (r; z) plane to solve a three-dimensionalshadowing problem.The evaluation of faxi is based on a ray sear
h method whi
h is performed inthree steps:� bra
keting: arithmeti
 sweep of interval [0; �℄ yielding an initial bra
ketingof the interval [�min; �max℄;� lo
al re�nement: sharp determination of �min and �max using a bise
tionmethod;� numeri
al quadrature: evaluation of faxi as given by (14) using Romberg'squadrature. High a

ura
y is a
hieved sin
e V(x; y) is smooth over the in-tegration interval.Ea
h 
urved ray involved in the algorithm is dis
retized in a �nite numberof steps whose length is evaluated adaptively as a fun
tion of the lo
al meshtriangle that the ray is 
urrently 
rossing. Several parameters 
ontrol the nu-meri
al performan
e of the ray sear
h method, realizing a 
ompromise betweena

ura
y and 
omputational 
ost. This issue will be further investigated in thetest 
ases presented in se
tion 4. 12
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Fig. 4. Curved rays in (r; z) plane and the determination of angles �min and �max.3.4 Fixed point and Newton iterationThe above approximation methods lead to a system of nonlinear equations8><>:LA(Ah; Th) = 0LT (Ah; Th) = 0with obvious notation. The thermomagneti
 
oupling is handled using a �xedpoint iteration. Given a dis
rete temperature �eld T nh , we �rst obtain themagneti
 potential from LA(An+1h ; T nh ) = 0 and then update the temperature�eld from LT (An+1h ; T n+1h ) = 0.The �rst step in the �xed point method is simply a linear system solved usinga GMRes iteration with an ILU pre
onditionner [14℄. The temperature up-date requires the solution of a nonlinear system of equations using a dampedNewton iteration. The Ja
obian matrix is evaluated numeri
ally using divideddi�eren
es. Nonlo
al 
ouplings due to radiant energy transfer are fully a
-
ounted for in the 
ompressed stru
ture of the matrix. At ea
h Newton step,the linear system is solved approximately using a GMRes iteration with anILU pre
onditionner.4 Numeri
al resultsIn this se
tion we present numeri
al results obtained on three test 
ases ofin
reasing diÆ
ulty.� Test 
ase 1 
onsists of a simpli�ed geometri
 
on�guration with multiplere
e
tion radiant energy transfer o

urring in a single 
onvex 
avity. In ad-13



dition, ele
tri
 
ondu
tivities are temperature independent thus un
ouplingthe magneti
 potential from the temperature. This test 
ase has been 
hosenbe
ause previous numeri
al results are available for 
omparison;� Test 
ase 2 is the same as test 
ase 1 ex
ept that the radiant 
avity is nownon
onvex. The numeri
al methods used in the approximation of radiantenergy transfer are assessed here;� Test 
ase 3 is a prototype for an industrial growth rea
tor 
ontaining up to5 radiant 
avities (of whi
h 3 are non
onvex).4.1 Test 
ase 1: 
onvex 
avityThe model growth rea
tor 
onsidered in this test 
ase is the one shown in�gure 1 ex
ept that the indu
tion 
oils are globally modeled as a re
tangularse
tion 0.5 
m wide and 12 
m high. The growth 
avity is 2 
m wide and 5 
mhigh. The thi
kness of the graphite 
ru
ible is 1 
m while that of the insulatingfoam is 2 
m at its top and bottom and 1 
m laterally. For all materials,the magneti
 permeability is that of va
uum � = 4��10�7 H/m. Ele
tri

ondu
tivities are 2�104 in the graphite en
losure, 2�103 in the insulatingfoam and 1�104 in the powder (units of 
�1m�1). The frequen
y of the eddy
urrents is 50 kHz. Two values are 
onsidered for the 
urrent density: Jd =3:128�106 for test 
ase 1a and Jd = 4:716�106 for test 
ase 1b (units of Am�2).The �rst 
hoi
e 
orresponds to Joule losses of 3 kW in the three 
ondu
tingmaterials while the se
ond to Joule losses of 3 kW in the graphite. Thermal
ondu
tivities are set to 10 for the graphite 
ru
ible, 1 for the insulatingfoam, 25 for the powder and 0:01 for the growth 
avity (units of Wm�1K�1).Emissivities are 0:7 for the 
ru
ible, 0:9 for the foam and 0:5 for the powder.Ambient air temperature is set to T1 = 573 K. The temperature is Td = T1at the basis of the insulating foam and (6) is imposed elsewhere with theempiri
al 
oeÆ
ient � set to zero.We 
onsider four triangulations 
hara
terized by an average mesh size h andthe trun
ation radius R (both measured in 
m). The maximal value of theJoule dissipation and temperature is presented in table 1. No signi�
ant dif-feren
e is observed among the four 
al
ulations showing that the meshes areadequately re�ned and that the trun
ation radius R is large enough. A 
om-parison between the results obtained on the �nest mesh (h = 0:1, R = 100)and previous numeri
al results [2,12℄ shows ex
ellent agreement. As a furtherillustration, �gure 5 presents 
ontours for the real part of the magneti
 po-tential and the temperature for test 
ase 1a. Figure 6 presents the multiplere
e
tion 
ux along the meridian �m for test 
ases 1a and 1b. Note the 
uxdis
ontinuity at the powder/graphite interfa
e where the emissivity 
hangesvalue. 14



mesh test 
ase 1a test 
ase 1bh R np ne Joule losses temperature Joule losses temperature0.2 60 5382 10554 27.61 2459.6 62.75 3291.20.1 60 20304 40190 27.93 2461.9 63.50 3296.20.2 100 6418 12572 27.65 2462.3 62.85 3295.30.1 100 24111 24694 27.98 2464.4 63.59 3300.2CSC (error in %) 0.9 0.05 0.7 0.1LTPCM (error in %) 1.0 0.3 1.3 1.2Table 1Maximal value of Joule dissipation (MW/m3) and temperature (K) for test 
ases1a and 1b on 4 di�erent meshes; h and R are given in 
m while np and ne denotethe number of nodes and elements in the mesh; 
omparison with previous numeri
alresults [2,12℄.
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Fig. 5. Test 
ase 1a: 
ontours for real part of magneti
 potential (left) and temper-ature (right).We next investigate the impa
t of view matrix renormalization on numeri
alresults. To this purpose, two series of 
al
ulations are performed, the �rstone with renormalization and the se
ond one without. For ea
h series, threemeshes are 
onsidered: the (h = 0:2; R = 60) mesh, the (h = 0:1; R = 60)mesh, and the (h = 0:1; R = 60) mesh with lo
al re�nement near the 
avity
orners (h = 0:025). Maximum temperatures are reported in table 2 while thetemperature distribution as a fun
tion of the 
urvilinear abs
issa along �m is15
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Fig. 6. Multiple re
e
tion 
ux along meridian �m as a fun
tion of 
urvilinear ab-s
issa starting at the 
avity/powder interfa
e at the symmetry axis; test 
ase 1a(left) and 1b (right).mesh parameters with withouth = 0:2, R = 60 2459.6 2553.8h = 0:1, R = 60 2461.9 2504.6h = 0:1, R = 60 + 
orner ref. 2461.8 2472.1Table 2Test 
ase 1a: maximum temperature (K) on three di�erent meshes with and withoutnormalization of the view matrix.reported in �gure 7. We observe that without renormalization the numeri
alresults are mu
h more sensitive to mesh re�nement and that they 
onverge to-wards the values obtained with renormalization as the mesh is re�ned near the
orners where singularities arise. The multiple re
e
tion 
ux is presented in�gure 8 as a fun
tion of the 
urvilinear abs
issa for the six 
al
ulations. With-out normalization, the 
ux exhibits a singularity at the two 
onvex 
orners.This singularity disappears with normalization.4.2 Test 
ase 2: non
onvex 
avityTest 
ase 2 is a modi�ed version of test 
ase 1 in whi
h a graphite s
reen isintrodu
ed inside the 
avity so that it is no longer 
onvex. The temperaturedistribution with a zoom near the tip of the s
reen is presented in �gure 9.As for test 
ase 1, we investigate the impa
t of view matrix normalization16
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Fig. 7. Test 
ase 1a: temperature distribution along the 
avity as a fun
tion of
urvilinear abs
issa.
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Fig. 8. Test 
ase 1a. Left: multiple re
e
tion 
ux as a fun
tion of 
urvilinear abs
issas. Right: zoom for 0:03 � s � 0:06.on solution quality. Temperature distribution along the 
urvilinear abs
issaand peak temperatures are reported in �gure 10 and table 3 respe
tively. Themultiple re
e
tion 
ux along the 
urvilinear abs
issa is presented in �gure 11.The 
on
lusions drawn for test 
ase 1 are 
on�rmed: without normalization,we observe a high sensitivity to mesh re�nement, a singularity of the multiplere
e
tion 
ux near the 
onvex 
orners (4 in total) and a nonsingular butina

urate temperature pro�le.As a further investigation of view matrix normalization, we present in �gure 12the quantities j1� Slj as a fun
tion of 
urvilinear abs
issa. The four singular
onvex 
orners are 
learly visible. The zoom around a 
onvex 
orner 
learly
on�rms that no 
onvergen
e of Sl to unity is observed for the Gauss points17
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Fig. 9. Test 
ase 2: isotherms. Left: whole domain, 550K � T � 2500, �T = 40K.Right: zoom around the s
reen tip, 2350K � T � 2500, �T = 5K.mesh parameters with withouth = 0:2, R = 100 2491.4 2730.3h = 0:1, R = 100 2492.1 2589.9h = 0:1, R = 100 + 
orner ref. 2492.6 2513.9Table 3Test 
ase 2: maximum temperature (K) on three di�erent meshes with and withoutnormalization of the view matrix.lo
ated next to su
h 
orners. The zoom near one of the s
reen tip 
orners
on�rms that no singular behavior is obtained. Be
ause of large variations of�min and �max in this region, the deviation of Sl from unity is larger at those
orners than at points lo
ated inside the 
avity edges. The deviation 
onvergesto zero almost quadrati
ally when the mesh is re�ned.The tradeo� between 
ost and a

ura
y in the numeri
al evaluation of theview matrix is 
ontrolled by three numeri
al parameters :� nray: the maximum number of rays in the bra
keting step (see se
tion 3.3).Small values of nray save 
omputational time but may 
ause the sear
halgorithm to miss small obsta
les;� ��: the a

ura
y of the bise
tion method for determining �min and �max;� Æ: relative step size along ray between obsta
le 
he
ks; values 
lose to unity18
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Fig. 10. Test 
ase 2: temperature distribution along the 
avity as a fun
tion of
urvilinear abs
issa.
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Fig. 11. Test 
ase 2. Left: multiple re
e
tion 
ux as a fun
tion of 
urvilinear abs
issas. Right: zoom for 0:03 � s � 0:08.
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Fig. 12. Error in view matrix normalization as a fun
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urvilinear abs
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orner 0:015 � s � 0:025. Right: zoom around the s
reen tip,0:072 � s � 0:082. 19



numeri
al parameters speedupsnray �� S1 S210 10�2 1.34 3910 10�4 1.34 3318100 10�4 1.67 506Table 4Test 
ase 2: speedups S1 and S2 for various numeri
al strategies in evaluating theview fa
tor matrix.
orrespond to step sizes of the order of the lo
al mesh size and may 
rosssmall obsta
les.Let n1 denote the total number of rays 
onsidered in the bra
keting stepand n2 the total number of rays 
onsidered in the lo
al re�nement step. Setntot = n1 + n2. Then the total 
ost s
ales as ntot=Æ. We 
onsider the speedupsS1 = nray n2gn1 ; S2 = ��� n2gntot :S1 represents the speedup a
hieved using the 
onnexity of the integration in-terval with respe
t to an approa
h where the whole radiating surfa
e is a prioridis
retized. S2 represents the overall speedup with respe
t to a dis
retization ofthe whole radiating surfa
e a
hieving the same a

ura
y. These quantities arepresented in table 4 for various numeri
al strategies on the (h = 0:1; R = 100)mesh where n2g = 57600. The parameter Æ is set to 0.1 in all 
al
ulations.The 
onnexity speedup S1 indi
ates that a signi�
ant amount of 
omputa-tion is saved by �rst bra
keting the interval [�min; �max℄. The se
ond speedupillustrates the advantage of lo
al re�nement when high a

ura
y is required.4.3 Test 
ase 3: industrial growth rea
torAs an illustration for industrial appli
ations, we �nally 
onsider the 
rystalgrowth rea
tor presented in �gure 13. The 
omputational domain 
onsists of 15subdomains of whi
h 5 are multiple re
e
tion radiant 
avities: the 2 pyromet-ri
 holes (whi
h are 
onvex) and the 3 argon 
avities (whi
h are non
onvex).Eddy 
urrents are imposed at an angular velo
ity of ! = 105 rad/s and a 
ur-rent density of Jd = 1:65�106 A/m2 yielding a total Joule dissipation in the
ru
ible of 9:86 kW. Ele
tri
 
ondu
tivities are temperature dependent fun
-tions given by 7�1043:5�10�4T+0:375+ 144:7T in the graphite 
ru
ible, 4003:5�10�4T+0:375+ 144:7Tin the insulating foam, and 770 in the SiC powder and seed (units of 
�1m�1,T given in Celsius) [11℄. The thermal 
ondu
tivity is also temperature depen-dent and given by 1201+2�10�3T in the graphite 
ru
ible, 0:17�10�6T 2 + 0:08 in20
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Fig. 13. S
hemati
s of an industrial prototype rea
tor (not in s
ale); 1: lower py-rometri
 hole, 2: graphite lid, 3: insulating foam, 4: water-
ooled quartz tube, 5:graphite 
ru
ible, 6: �rst SiC powder reservoir, 7: graphite ring, 8: se
ond SiC pow-der reservoir, 9: primary argon 
avity where growth o

urs, 10: se
ond argon 
avity,11: SiC seed, 12: third argon 
avity, 13: upper pyrometri
 hole, 14: indu
tion 
oils,15: ambient air.the insulating foam, 0:51�10�2 + 0:454�10�4T � 0:944�10�8T 2 in the argon
avities, 2 in the quartz and SiC powder, and 10 in the SiC seed (units ofWm�1K�1, T again given in Celsius). The emissivities of radiating materialsare set to 0:9. On the outer boundary of the quartz tube, the temperature isset to Td = 300 K while an homogeneous Neumann 
ondition is imposed atthe bottom and top of the quartz tube. On the boundaries 
orresponding tothe insulating foam and the graphite lid, (6) is used with the empiri
al 
oef-�
ient � set to 10 and an ambient air temperature of T1 = 300 K. The lowerand upper pyrometri
 holes are open radiating 
avities whi
h are modeled byadding an arti�
ial boundary at temperature T1.Numeri
al results are presented in �gure 14. The mesh extends to R = 1 m.The mesh size is around h = 0:3 
m in most parts of the rea
tor des
endingdown to 0:03 
m in the SiC seed. Temperature peaks in the graphite 
ru
ible
lose to the SiC powder reservoirs. We also note that a fairly verti
al temper-ature gradient is a
hieved inside the primary argon 
avity. For these type ofproblems, 5 �xed point iterations are required to handle the thermomagneti

oupling and less than 10 Newton iterations to 
ope with the nonlinearitiesin radiant energy transfer. Finally, we point out that for this problem, peaktemperatures would be up to 400 K higher if the view matrix was not normal-ized. This numeri
al eviden
e further supports the theoreti
al importan
e ofrenormalization. 21
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Fig. 14. Prototype for an industrial growth rea
tor: isopleths for real part of mag-neti
 potential (left), isotherms for the whole rea
tor (middle) and zoom around
rystal seed (right).5 Con
lusionsWe have investigated a thermomagneti
 problem with multiple re
e
tion radi-ant energy transfer arising in 
rystal growth rea
tors. The governing equations
onsist of three PDEs 
oupled with a nonlinear integral equation. The numer-i
al methodology derived in this paper relies on a dis
ontinuous Galerkin ap-proximation to the integral equation and uses a lo
al re�nement strategy in theazimuthal dire
tion around shadowing obsta
les. Furthermore, a renormaliza-tion of the view fa
tor matrix is introdu
ed in order to 
ope with singularitiesat Gauss nodes near 
onvex 
orners. The present thermomagneti
 model al-lows for an a

urate and robust evaluation of the temperature �eld aroundthe 
rystal seed and is now ready to be embedded in more 
omprehensivemodels of the growth pro
ess a

ounting for multi
omponent mass transferin the gas phase, surfa
e rea
tivity at the moving gas/
rystal interfa
e anddefe
t in
orporation due to thermal stresses.A
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