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Abstract

We present a mathematical formulation and a numerical investigation of a thermo-
magnetic problem arising in crystal growth applications. The governing equations
are the quasi-static, time harmonic, axisymmetric Maxwell equations coupled with
an energy conservation equation. Multiple reflection radiant energy transfer is mod-
eled by an integral equation yielding a strongly nonlinear and nonlocal problem.
Key issue is the accurate and cost effective evaluation of the multiple reflection ra-
diation flux. The present method uses a discontinuous Galerkin method with local
azimuthal refinement near shadowing obstacles and an appropriate renormalization
of the view factor matrix which guarantees mathematically under some assumptions
that the discrete problem is well posed. Numerical results are presented for reactors
with simple geometry where the solution is compared to previous numerical work
and for an industrial prototype involving several nonconvex radiating surfaces.

Key words: Finite elements, discontinuous Galerkin, grey body radiation, crystal
growth

1 Introduction

During the last decade, silicon carbide (SiC) has sparked extensive interest
in the semiconductor industry. Indeed, important advances have been accom-
plished in the manufacturing of high power and high temperature SiC based
optoelectronic devices. However, one crucial step still restricting the industrial
production of SiC devices is the scarce availability of single crystal SiC wafers
with a high enough level of crystalline perfection in terms of micropipe and
dislocation density. Such wafers are commonly grown using a modified Lely
method (see e.g. [18] for a review). Growth takes place inside a radiofrequency
(RF) heated graphite crucible with a single crystalline seed fixed at the top
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and SiC powder placed at the bottom. The thermal gradient in the growth
cavity must be controlled in such a way that sublimation occurs in the powder
and deposition on the crystal seed. Typical temperature gradients are of the
order of 100 Kem™!. Temperatures range between 2300 and 3000 K in the
crucible and between 2700 and 2800 K in the crystal seed.

Equipment design and operating parameters for wafer production have been
steadily improved over the years mainly by engineers’ experimental knowledge
of the growth process. More recently, numerical modeling has emerged as an
additional tool complementing experimental results and providing valuable in-
sight into the physical and chemical phenomena involved inside the crucible.
Several research groups have developed comprehensive numerical models ac-
counting for magnetic, thermal and chemical phenomena (see, among others,
[1,3,11,13,17]). A recent state of the art review [10] indicates that thermomag-
netic coupled with simplified chemical modeling has reached a certain level
of maturity while detailed knowledge of surface processes and defect forma-
tion still challenges the research community. Current research developments
in numerical modeling include among others optimal control techniques to im-
prove crucible design [7], impact of source material on growth conditions [21]
and thermoelastic stresses in the bulk crystal and their correlation to defect
formation [16].

The goal of this paper is to focus on the part of the model which has reached
maturity (the thermomagnetic problem) and to derive an accurate and stable
numerical method to calculate the temperature distribution inside a crucible
with multiple reflection radiant energy transfer in a complex geometry. Its
main contribution is thus to yield a robust methodology for thermomagnetic
modeling to be ultimately coupled with more comprehensive chemical and
thermomechanical models. The emphasis on the thermomagnetic problem is
strongly motivated by the fact that temperature gradient control around the
crystal seed is a key issue in product quality. Radiative heat transfer has been
extensively dealt with in the crystal growth literature. However, to the au-
thors’ knowledge, the radiation problem has always been considered only in
its discrete form. In these approaches, the radiant surface is divided into a
finite number of cells and configuration factors (or view factors) need to be
evaluated for all the cell couples. For simple geometries, the configuration fac-
tors can be evaluated analytically using tabulated values and classical view
factor algebra [4,5]. In most practical cases, a numerical evaluation is needed,
as detailed for instance in [6]. The methodology derived in the present pa-
per is based on the continuous formulation of the radiation problem through
an integral equation. An approximate integral equation is derived using a
discontinuous Galerkin method and Gaussian quadrature. Besides accuracy
and stability, another important advantage of the method is its compatibil-
ity with the finite element formulation of the global conservation equations
since it yields the discrete radiation flux at the quadrature nodes. Further-



more, the computational costs are reduced significantly by local refinement in
the azimuthal direction in the neighborhood of shadowing obstacles. Finally,
introducing an appropriate renormalization of the view matrix, we establish
under some assumptions the existence of a solution to the discrete problem.

This paper is organized as follows. In the next section, we formulate math-
ematically the governing equations. The numerical method is described and
analyzed in section 3. Finally, in section 4 we present numerical results assess-
ing both accuracy and computational efficiency of the proposed method.

2 Problem Formulation
2.1 Physical modeling

A schematic representation of a crystal growth reactor with idealized geom-
etry is presented in Figure 1. A graphite crucible coated with an insulating
foam contains the SiC powder and the growth cavity. A RF source current
is imposed in the induction coils. The conductive materials (graphite, foam
and SiC powder) are heated by the inductive currents through Joule’s effect.
The temperature distribution inside the growth reactor results from a balance
between conductive and radiative heat transfer with multiple reflections oc-
curring inside the growth cavity. Convective heat transfer inside the cavity
may be neglected for typical operating conditions [3,11].

The three-dimensional electromagnetic field is modeled by the Maxwell equa-
tions with some simplifying assumptions. First, we assume that the electro-
magnetic field is time harmonic with angular velocity w and frequency f. In
addition, for low frequency eddy current problems (with f typically lower than
1 Mhz), the displacement currents may be neglected leading to the quasi-static
approximation. Finally, we restrict ourselves to axisymmetric configurations
with (7, z) denoting the radial and axial coordinates respectively. With these
assumptions, the Maxwell equations reduce to

rot (i rot* A) =7
iwA+E =0
with rot* A = (—0,4, 19,(rA)) and i? = —1. Here, A and E are scalar fields

denoting the magnetic potential and the azimuthal component of the electric
field respectively, u is the magnetic permeability and j the current density.

The induction coils are modeled by imposing the current density to a pre-
scribed value. This approximation is classical in this context. Since the current
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Fig. 1. Schematic representation of a crystal growth reactor with idealized geometry.

density is not constant is space through the induction coils, the actual section
of the coils are replaced by equivalent sections in the model [11]. In the other
conducting media, we assume Ohm’s law j = o E where o is the (temperature
dependent) electric conductivity. Upon formally setting the electric conduc-
tivity to zero in the induction coils, we may write an equation valid in the
whole space which reads

rot (i rot” A) +iowA = Jy, (1)
where J; is zero everywhere except in the induction coils where it takes a
specified value.

The inductive currents in conductive media yield a volumetric heat release
through Joule dissipation in the form @ = fow?|A[?. Diffusive heat balance
inside the various materials thus reads

—div (k(T)VT) = sow?| AP, (2)
where k(7)) is the (temperature dependent) thermal conductivity.

An important aspect of energy balance in the growth cavity is radiant energy
transfer including emission, reflection and adsorption. Radiant surfaces are
assumed to behave like grey bodies (i.e., the radiative exchanges are indepen-
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Fig. 2. Radiant energy transfer with reflection.

dent of the wavelength) and are characterized by an emissivity coefficient &
[4]. We also assume that the radiant surfaces are separated by non participat-
ing media, i.e. that the gases inside the cavity do not affect radiant energy
transfers.

In a nonconver cavity, three-dimensional effects arise since couples of points
may not see each other depending on their respective azimuthal position. We
will denote by ¥ the radiant surface in the three-dimensional physical space
and by X, its meridian in the (r, z) plane. On a given point in 3, let T be the
temperature and ¢ the incident flux of radiant energy. A fraction of it, ¢i, is
transmitted towards the exterior of the cavity and the remaining part, (1 —¢)i,
is reflected back towards the interior (see figure 2). As a result, the radiosity,
defined as the total flux of radiant energy leaving ¥ towards the interior, reads

w=(1—¢)i+eoT?, (3)

where o = 5.67x1078 Wm™=2K~* is the Stefan-Boltzmann constant. Further-
more, the incident energy flux is related to the radiosity by Lambert’s law in
the form

1 = Fw. (4)

Here, we have introduced the integral operator F' : LF(X) — LP(X) — (1 <
p < 00) defined as

Fu() = [ f@y)uly)dy, ¥res.
The integral kernel reads

f(z,y) =V(z,y)E(z,y), =z,y€ZX,

where
1ng(z—y)ny(y — )
™ |z —yll*

V(z,y) =

n, and n, are the outward normal to ¥ at x and y respectively and

’

_ 1 if the points x and y see each other,
E(z,y) = :
0 otherwise.



The integral kernel f satisfies the following two important properties of sym-
metry and normalization:

flz,y) = f(y,z), Vo,y €¥  and /Ef(w,y)dyzl, Vo € X.

In the sequel, it will be convenient to introduce the total energy flux from
the exterior to the interior of the cavity. This flux, denoted by ®, satisfies the
integral equation

Lo — F (120) = oT* — F(oT").

From the properties of the kernel f, we readily deduce that

(oT* constant over ¥) = (® = 0 over X)

VT, [ @ =0.

Energy balance between radiant and diffusive transfer may then be expressed
as

[kVT]ng =@ over X, (5)

where ny denotes the outward normal to ¥ and [kVT|-ny the difference be-
tween exterior and interior values.

The magnetic and thermal problems are posed on different domains. Referring
to figure 1, subdomain €2, denotes the SiC powder, €25 the growth cavity, (23
the graphite crucible, €2, the insulating foam, {25 the induction coils and (g
the ambient air. The magnetic problem is then posed over Q4 = Q, U... U
and the thermal problem over Q7 = Q,U...UQ,. Boundary conditions for the
magnetic problem impose A = 0 on the symmetry axis and far enough from the
induction coils. On the other hand, boundary conditions for the temperature
may take various forms. Introducing the decomposition Q7 =T'; U T, U T,
we consider a Dirichlet condition 7" = T, on 'y, an homogeneous Neumann
on I[';, (typically the symmetry axis) and a detailed radiative, convective and
diffusive energy balance on I'; in the form

E(T)VT-n,+n(T —Ty) +co(T* —TL) =0, (6)

where n, is the outward normal to ['c, T, the ambient air temperature and 7
an empirical heat transfer coefficient.



2.2 Mathematical formulation

In weak form, the governing equations read

Find A € V4,
Joa 220, (r 4,)0,(rG,) + 10, A.0.C.) drdz + iw [oa o(T)A - (rdrdz - (7)
= fgu Ja- Crdrdz, V(e VA,
and
Find T € Vi,
Jor K(T)VT -VOrdrdz + [, ®(T)Ordl+ [r (nT +e0¥(T))Ordl  (8)

= [or 30w*|APOrdrdz + [p, (1Tw + 0¥ (T))O rdl, Ve e Vi,

where V4 and VgT are suitable functional spaces described below. The integral
equation giving the flux ® is rewritten as

Lo - F(20) = oU(T) - F(oW(T)) with W(T)=[T]PT.  (9)

With such modification, it is straightforward to check using Holder’s inequality
and the fact that ||F||t(s,) < 1 that [y ®(T)Trdl > 0. Note also that
multiple solutions of (8) may be constructed when 7" is not replaced by ¥(T')
[15].

For the magnetic problem, one may take the Hilbert space V4 = H{(Q4)2.
For the thermal problem, one may consider the affine space
v/ ={TeHn Q") s, € L*(Sn), Tr, =g } -

Indeed, assuming T' € V;]T, one easily shows that the integral equation (9) ad-
mits a unique solution ® € L54(X,,) so that the surface integral [y, ®(T) O rdl
is well defined owing to Hélder’s inequality [19,20]. Problems (7) and (8) are
coupled together through the temperature dependence of the electric conduc-
tivity. Problem (8) is strongly nonlinear and nonlocal. From a mathematical
viewpoint, existence and uniqueness of its solution is still an open problem
which will not be further investigated in this paper. Difficulties arise for closed
interior cavities with radiant energy transfer over their whole boundary for
which the norm of the associated integral operator is equal to one. Existence
and uniqueness can be proved when the temperature is fixed on part of the ra-

diant boundary [8,9] or when the existence of suitable super and subsolutions
can be established a priori [19,20].



Remark. In the special case of temperature independent electric conductivi-
ties, the thermomagnetic problem simplifies into a two step resolution: first, a
linear magnetic problem yielding the magnetic potential A; second, a strongly
nonlinear and nonlocal problem for the temperature 7.

3 Numerical Methodology

The numerical method derived in this work involves finite element discretiza-
tion of the partial differential equations (PDEs), a discontinuous Galerkin
approximation to the integral equation, an accurate three-dimensional ray
method with local azimuthal refinement near shadowing obstacles to evaluate
the view factors for complex nonconvex geometries and a Newton’s method
embedded in a fixed point iteration to handle the nonlinearities in the tem-
perature equation and the thermomagnetic coupling respectively.

3.1 Finite element approximation

The domain for the magnetic problem is truncated at a finite radius R and
is denoted by Q4. Given a triangulation of Q4 and QT we consider linear
simplicial continuous finite element spaces for the magnetic potential and the
temperature denoted by V,} and V;I'. The Galerkin approximation reads

Find A, € Vi,
fﬂﬁ i(%@, (rApe)0r (rChy) + 10, Ap,0,Ch,) drdz + iw f% o(Tp) Ay - (prdrdz

= Joa Ja- Gurdrdz, VG, € Vi,
(10)

and
Find T, € V4,
fQT k(Th)VTh . VGh rdrdz + fEm (I)h (Th) @h rdl + fFe (77Th + 60'\11(Th))@h rdl

= [or 30w?| A4 20, rdrdz + [r (NTo + 0¥ (T))Op rdl, VO, € V.
(11)
Volume (resp. surface) integrals are evaluated with a numerical quadrature

involving 3 (resp. 2) Gauss points. The numerical evaluation of the multiple
reflection radiative flux ®,(7}) is discussed in the next section.
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Fig. 3. Azimuthal integration of view factors.

3.2 Approzimate integral equation

The triangulation of Q7 induces a mesh of the meridian ¥,,. We use a discon-
tinuous Galerkin method of degree one to discretize the integral equation and
evaluate the discontinuous piecewise linear function ®;. If two Gauss points
per element of ¥, are used to approximate all the integrals, the resulting prob-
lem is equivalent to a collocation method at the Gauss points, the unknown
being the value of ®; at those points. Note that the formalism can be read-
ily extended to approximations of higher degree while the zero degree method
where ®,, is approximated by a piecewise constant function corresponds to the
method usually reported in the engineering literature (see for instance [1,6]).

Let ng be the total number of Gauss points on X, and a; be the [th Gauss
point. Set w; = A;r;/2 where ) is the length of the segment where a; is located
and r; the radial coordinate of a;. Upon introducing the view matrix F' € R"s"s
with coefficients

Fy = fawi(ala al')wl’a fawi(ala al') = 2/0 f(al7 al'(e)) de,

the vector ®;, € R" with components ®,; = ®p(q;) and the vector b € R
with components b, = oW (T'(¢;)), we obtain the linear system

diag(1)®, — F' (diag(*s%) @) = (I — F)b, (12)

where I is the identity matrix, diag(L),, = ﬁéw, diag(:==)w = lg%a(l“)’)dll/ and
0, the Kronecker delta. Note that we have taken advantage of axial symmetry
by averaging f over the azimuthal coordinate. Three-dimensional effects still
arise in the actual computation of f,;; as detailed in the next section.

Besides its accuracy and stability properties, the discontinuous Galerkin method
offers the important advantage that it yields directly the quantities ®,(a;),



1 <1 < ny, which are needed to evaluate the surface integral [, @5, (1}) O
in (8). Note also that discontinuous Galerkin is a natural way to discretize
the integral equation which from a mathematical viewpoint is posed on the
Banach space L%/*(,,) where no continuity assumptions can be made a priori.

Because of the numerical quadratures involved, the quantities

Sl - Z El’a

=1
may differ from unity. Indeed, we have

g

Sy = Z fazi(ar, ap)wy ~ /

=1 z

Fazi(ar,y) dy = /E Fla,2) dz = 1.

If the radiating surface is smooth, S; converges to unity with third order in h
because the truncation error is fourth order on each segment, two Gauss points
being used locally. However, if corners are present, singularities may arise.
Specifically, for a given x € X, the function f, : z — f(z, z) is discontinuous
when z passes through a corner that can be seen from x and has a W
singularity if x is located at a conver corner where the two neighboring edges
see each other. As a result, when a convex corner is present, S; does not
converge to unity if a; is located next to a convex corner and converges to
unity with first order otherwise.

It may then be interesting to introduce a renormalization of the view matrix.
Upon setting

1
G — —F r,
w =g tu
and introducing the vectors U and W € R™ with components U = (1,...,1)

and W = (w51, ... ,wn, Sy, ), one readily sees that
GU =U and G'W = W.
Therefore, the solution &, of the rescaled linear system

diag(1)®y — G (diag(*:%) @) = (I - G)b, (13)

B
satisfies the following two properties, which are important from a physical
viewpoint:

e (beRU) = (P, =0) since GU = U,

e approximate overall conservation of radiant energy over ¥, in the form

g
(I)h >~ ZwlSl (I)hl = 0,

Xm =1

since G'W = W.

10



Other renormalizations may be considered as for instance a single modification
of the largest coefficient [6]. The present renormalization offers the advantage
to ensure both physical properties above. However, the fundamental advantage
of (13) is that it yields under some assumptions the existence of a solution to
the discrete problem.

Proposition 1. Assume that the discrete flur @, is given by (13). Assume
that the emissivity s constant and that the thermal conductivity is such that
k(T) > ko > 0. Then there exists a solution to the discrete problem (11).

Proof. For simplicity, we assume homogeneous Dirichlet conditions, the gen-
eral case being treated with additional technical steps. From the renormaliza-
tion (13) and Gerschgorin’s theorem, we deduce that the spectral radius of G
is less or equal to one. Let us then establish that [y, @7} rdl > 0. In the
case where € = 1, we have ¢, = (I — G)b and introducing the discrete norms
[o]l = (i wilwl?) /7, 1 < p < o0, we get

Js, @nThrdl = o 2 wi|Th(a) P — S5, wi(Gb), T ()
> of|Tull = 1 Tulls[|Gblls/a
> o||Thll3 = 1 Talls[|Gll5/al1ll5/4
> (1 = ||Gllsa)ITwll2 > 0,

since ||G'||5/4 is lower than the spectral radius of G. In the case where £ < 1,

we may write
o0

®,=Eb—E(I—E)"") (I - E)G'Eb
i=1
with E' = diag(e). The series in the rhs is normally convergent and we conclude
as before using again ||G|| < 1. Having established that [, @, T, rdl > 0, we
deduce an a priori H' estimate of the solution 7}, by multiplying (11) by
T}, and using the coercivity of [or k(1},)VT}, - VO, rdrdz. The existence of a
solution to (11) then follows from Brouwer’s fixed point theorem. O

Remark. It turns out that in applications with high demands on accuracy,
renormalization has a noticeable impact on model predictions. Numerical as-
pects of renormalization will be investigated in section 4.

3.3  Numerical evaluation of the view matrix

Let = and y be two points in the (r,z) plane with coordinates (r,, z;) and
(ry, zy). Let m,(6) be the point in the physical three-dimensional space ob-
tained with a rotation of angle 6 of point y around the symmetry axis. In

11



order to evaluate the function f,.;(x,y) we need to determine the set of angles
6 such that m, () sees x. For symmetry reasons, it is sufficient to consider
6 € [0,n].

Any point along the ray linking points « and m, () can be rotated back to
the (r,z) plane. This operation maps the original straight ray in the three-
dimensional physical space into a curved hyperbolic ray in the (r,z) plane.
The curved ray, denoted by Ry, is parametrized by

202 4 (1 — £2)r2 4 2t(1 — t)r,r, cos
te0,1] Ve ! ’
12y + (1 o t)Zy

In axisymmetric configurations, the meridian section of the cavity is simply
connected. As a result, the set of # € [0, 7] such that Ry lies inside the cavity
enclosed by X, is connex (see figure 4). Denoting by [fmin, @max] the maximal
subset of [0, 7] such that V0 € [fiin, Omax], Re lies inside the cavity, we have

Fowi(, ) = 2 /0 " w, my (9)) db. (14)

min

From a computational viewpoint, this approach is attractive because it only in-
volves the two-dimensional mesh in the (r, z) plane to solve a three-dimensional
shadowing problem.

The evaluation of f,;; is based on a ray search method which is performed in
three steps:

e bracketing: arithmetic sweep of interval [0, 7] yielding an initial bracketing
of the interval [0min, Omax);

e local refinement. sharp determination of f;, and 6.,., using a bisection
method;

e numerical quadrature: evaluation of f,,; as given by (14) using Romberg’s
quadrature. High accuracy is achieved since V(z,y) is smooth over the in-
tegration interval.

Each curved ray involved in the algorithm is discretized in a finite number
of steps whose length is evaluated adaptively as a function of the local mesh
triangle that the ray is currently crossing. Several parameters control the nu-
merical performance of the ray search method, realizing a compromise between
accuracy and computational cost. This issue will be further investigated in the
test cases presented in section 4.

12



Fig. 4. Curved rays in (7, z) plane and the determination of angles 0,i, and Oy ,x.

3.4 Fized point and Newton iteration

The above approximation methods lead to a system of nonlinear equations

La(An,Th) =0
ET(AhyTh) — O

with obvious notation. The thermomagnetic coupling is handled using a fixed
point iteration. Given a discrete temperature field 7}', we first obtain the
magnetic potential from L£,(A7", T7) = 0 and then update the temperature
field from Lp(Ap™ T = 0.

The first step in the fixed point method is simply a linear system solved using
a GMRes iteration with an ILU preconditionner [14]. The temperature up-
date requires the solution of a nonlinear system of equations using a damped
Newton iteration. The Jacobian matrix is evaluated numerically using divided
differences. Nonlocal couplings due to radiant energy transfer are fully ac-
counted for in the compressed structure of the matrix. At each Newton step,
the linear system is solved approximately using a GMRes iteration with an
ILU preconditionner.

4 Numerical results

In this section we present numerical results obtained on three test cases of
increasing difficulty.

e Test case 1 consists of a simplified geometric configuration with multiple
reflection radiant energy transfer occurring in a single convex cavity. In ad-

13



dition, electric conductivities are temperature independent thus uncoupling
the magnetic potential from the temperature. This test case has been chosen
because previous numerical results are available for comparison;

e Test case 2 is the same as test case 1 except that the radiant cavity is now
nonconver. The numerical methods used in the approximation of radiant
energy transfer are assessed here;

e Test case 3 is a prototype for an industrial growth reactor containing up to
5 radiant cavities (of which 3 are nonconvex).

4.1 Test case 1: convex cavity

The model growth reactor considered in this test case is the one shown in
figure 1 except that the induction coils are globally modeled as a rectangular
section 0.5 cm wide and 12 cm high. The growth cavity is 2 cm wide and 5 cm
high. The thickness of the graphite crucible is 1 cm while that of the insulating
foam is 2 c¢m at its top and bottom and 1 cm laterally. For all materials,
the magnetic permeability is that of vacuum pu = 47x1077 H/m. Electric
conductivities are 2x10* in the graphite enclosure, 2x10? in the insulating
foam and 1x10* in the powder (units of Q 'm™1!). The frequency of the eddy
currents is 50 kHz. Two values are considered for the current density: J; =
3.128 x10° for test case la and J; = 4.716x10° for test case 1b (units of Am~2).
The first choice corresponds to Joule losses of 3 kW in the three conducting
materials while the second to Joule losses of 3 kW in the graphite. Thermal
conductivities are set to 10 for the graphite crucible, 1 for the insulating
foam, 25 for the powder and 0.01 for the growth cavity (units of Wm K1),
Emissivities are 0.7 for the crucible, 0.9 for the foam and 0.5 for the powder.
Ambient air temperature is set to T, = 573 K. The temperature is Ty = T,
at the basis of the insulating foam and (6) is imposed elsewhere with the
empirical coefficient 7 set to zero.

We consider four triangulations characterized by an average mesh size h and
the truncation radius R (both measured in ¢cm). The maximal value of the
Joule dissipation and temperature is presented in table 1. No significant dif-
ference is observed among the four calculations showing that the meshes are
adequately refined and that the truncation radius R is large enough. A com-
parison between the results obtained on the finest mesh (h = 0.1, R = 100)
and previous numerical results [2,12] shows excellent agreement. As a further
illustration, figure 5 presents contours for the real part of the magnetic po-
tential and the temperature for test case la. Figure 6 presents the multiple
reflection flux along the meridian ¥, for test cases la and 1b. Note the flux
discontinuity at the powder/graphite interface where the emissivity changes
value.

14



mesh test case la test case 1b
h R np ne | Joule losses temperature | Joule losses temperature
0.2 60 5382 10554 27.61 2459.6 62.75 3291.2
0.1 60 20304 40190 27.93 2461.9 63.50 3296.2
0.2 100 6418 12572 27.65 2462.3 62.85 3295.3
0.1 100 24111 24694 27.98 2464.4 63.59 3300.2
CSC (error in %) 0.9 0.05 0.7 0.1
LTPCM (error in %) 1.0 0.3 1.3 1.2
Table 1

Maximal value of Joule dissipation (MW /m?) and temperature (K) for test cases
la and 1b on 4 different meshes; h and R are given in cm while np and ne denote
the number of nodes and elements in the mesh; comparison with previous numerical
results [2,12].

02 da = 0.00025, 0 < Ar < 0.00040 o Oc’DT=50K, between 550K and 2500K
E T T T . T T T T
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Fig. 5. Test case la: contours for real part of magnetic potential (left) and temper-
ature (right).

We next investigate the impact of view matrix renormalization on numerical
results. To this purpose, two series of calculations are performed, the first
one with renormalization and the second one without. For each series, three
meshes are considered: the (h = 0.2, R = 60) mesh, the (h = 0.1, R = 60)
mesh, and the (h = 0.1, R = 60) mesh with local refinement near the cavity
corners (h = 0.025). Maximum temperatures are reported in table 2 while the
temperature distribution as a function of the curvilinear abscissa along ¥, is

15
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Fig. 6. Multiple reflection flux along meridian ¥,, as a function of curvilinear ab-
scissa starting at the cavity/powder interface at the symmetry axis; test case la
(left) and 1b (right).

mesh parameters with  without
h=0.2, R =60 2459.6  2553.8
h=0.1, R =60 2461.9  2504.6

h =0.1, R =60 + corner ref. | 2461.8  2472.1

Table 2
Test case la: maximum temperature (K) on three different meshes with and without
normalization of the view matrix.

reported in figure 7. We observe that without renormalization the numerical
results are much more sensitive to mesh refinement and that they converge to-
wards the values obtained with renormalization as the mesh is refined near the
corners where singularities arise. The multiple reflection flux is presented in
figure 8 as a function of the curvilinear abscissa for the six calculations. With-
out normalization, the flux exhibits a singularity at the two convex corners.
This singularity disappears with normalization.

4.2 Test case 2: nonconver cavity

Test case 2 is a modified version of test case 1 in which a graphite screen is
introduced inside the cavity so that it is no longer convex. The temperature
distribution with a zoom near the tip of the screen is presented in figure 9.

As for test case 1, we investigate the impact of view matrix normalization
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Fig. 7. Test case la: temperature distribution along the cavity as a function of
curvilinear abscissa.
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Fig. 8. Test case la. Left: multiple reflection flux as a function of curvilinear abscissa
s. Right: zoom for 0.03 < s < 0.06.

on solution quality. Temperature distribution along the curvilinear abscissa
and peak temperatures are reported in figure 10 and table 3 respectively. The
multiple reflection flux along the curvilinear abscissa is presented in figure 11.
The conclusions drawn for test case 1 are confirmed: without normalization,
we observe a high sensitivity to mesh refinement, a singularity of the multiple
reflection flux near the convex corners (4 in total) and a nonsingular but
inaccurate temperature profile.

As a further investigation of view matrix normalization, we present in figure 12
the quantities |1 — ;| as a function of curvilinear abscissa. The four singular
convex corners are clearly visible. The zoom around a convex corner clearly
confirms that no convergence of S; to unity is observed for the Gauss points

17



o
o
<

0.05

)

0.04

0.031

R
j//))

0.02

0 0.01 0.02

o

.02

Fig. 9. Test case 2: isotherms. Left: whole domain, 550K < T < 2500, AT = 40K.
Right: zoom around the screen tip, 2350K < T < 2500, AT = 5K.

mesh parameters with  without
h=0.2, R =100 2491.4  2730.3
h=0.1, R=100 2492.1  2589.9

h =0.1, R =100 + corner ref. | 2492.6  2513.9

Table 3
Test case 2: maximum temperature (K) on three different meshes with and without
normalization of the view matrix.

located next to such corners. The zoom near one of the screen tip corners
confirms that no singular behavior is obtained. Because of large variations of
Omin and O,,« in this region, the deviation of S; from unity is larger at those
corners than at points located inside the cavity edges. The deviation converges
to zero almost quadratically when the mesh is refined.

The tradeoff between cost and accuracy in the numerical evaluation of the
view matrix is controlled by three numerical parameters :

® 1,,: the maximum number of rays in the bracketing step (see section 3.3).
Small values of n,,, save computational time but may cause the search
algorithm to miss small obstacles;

e ¢y: the accuracy of the bisection method for determining 0,,;, and @.y;

e J: relative step size along ray between obstacle checks; values close to unity
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Fig. 11. Test case 2. Left: multiple reflection flux as a function of curvilinear abscissa
s. Right: zoom for 0.03 < s < 0.08.
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Fig. 12. Error in view matrix normalization as a function of curvilinear abscissa ob-
served on three different meshes. Left: global representation. Center: zoom around
the bottom corner 0.015 < s < 0.025. Right: zoom around the screen tip,
0.072 < s < 0.082.
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numerical parameters | speedups

Tray €9 S S2
10 102 1.34 39
10 104 1.34 3318
100 10~* 1.67 506

Table 4
Test case 2: speedups &1 and So for various numerical strategies in evaluating the
view factor matrix.

correspond to step sizes of the order of the local mesh size and may cross
small obstacles.

Let n; denote the total number of rays considered in the bracketing step
and ny the total number of rays considered in the local refinement step. Set
Nt = N1 + no. Then the total cost scales as nyy/d. We consider the speedups

2 T A2
Npay T —n
— g __ € 9
S =—, Sy = 4—.
ni Not

&1 represents the speedup achieved using the connexity of the integration in-
terval with respect to an approach where the whole radiating surface is a priori
discretized. S, represents the overall speedup with respect to a discretization of
the whole radiating surface achieving the same accuracy. These quantities are
presented in table 4 for various numerical strategies on the (h = 0.1, R = 100)
mesh where ng = 57600. The parameter 0 is set to 0.1 in all calculations.
The connexity speedup &; indicates that a significant amount of computa-
tion is saved by first bracketing the interval [0in, Omax]. The second speedup

illustrates the advantage of local refinement when high accuracy is required.
4.8 Test case 3: industrial growth reactor

As an illustration for industrial applications, we finally consider the crystal
growth reactor presented in figure 13. The computational domain consists of 15
subdomains of which 5 are multiple reflection radiant cavities: the 2 pyromet-
ric holes (which are convex) and the 3 argon cavities (which are nonconvex).
Eddy currents are imposed at an angular velocity of w = 10° rad/s and a cur-
rent density of J; = 1.65x10° A/m? yielding a total Joule dissipation in the
crucible of 9.86 kW. Electric conductivities are temperature dependent func-

: : 7x104 : : : 400
tions given by 3EX10-T7 103757 1T in the graphite crucible, 3EX 1017103757 1T

in the insulating foam, and 770 in the SiC powder and seed (units of 2 'm—1,
T given in Celsius) [11]. The thermal conductivity is also temperature depen-

dent and given by H&% in the graphite crucible, 0.17x107%72 + 0.08 in
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13
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Fig. 13. Schematics of an industrial prototype reactor (not in scale); 1: lower py-
rometric hole, 2: graphite lid, 3: insulating foam, 4: water-cooled quartz tube, 5:
graphite crucible, 6: first SiC powder reservoir, 7: graphite ring, 8: second SiC pow-
der reservoir, 9: primary argon cavity where growth occurs, 10: second argon cavity,
11: SiC seed, 12: third argon cavity, 13: upper pyrometric hole, 14: induction coils,
15: ambient air.

the insulating foam, 0.51x1072 + 0.454x 10747 — 0.944x 107377 in the argon
cavities, 2 in the quartz and SiC powder, and 10 in the SiC seed (units of
Wm~'K~! T again given in Celsius). The emissivities of radiating materials
are set to 0.9. On the outer boundary of the quartz tube, the temperature is
set to T; = 300 K while an homogeneous Neumann condition is imposed at
the bottom and top of the quartz tube. On the boundaries corresponding to
the insulating foam and the graphite lid, (6) is used with the empirical coef-
ficient 1 set to 10 and an ambient air temperature of T, = 300 K. The lower
and upper pyrometric holes are open radiating cavities which are modeled by
adding an artificial boundary at temperature 7.

Numerical results are presented in figure 14. The mesh extends to R = 1 m.
The mesh size is around A = 0.3 cm in most parts of the reactor descending
down to 0.03 cm in the SiC seed. Temperature peaks in the graphite crucible
close to the SiC powder reservoirs. We also note that a fairly vertical temper-
ature gradient is achieved inside the primary argon cavity. For these type of
problems, 5 fixed point iterations are required to handle the thermomagnetic
coupling and less than 10 Newton iterations to cope with the nonlinearities
in radiant energy transfer. Finally, we point out that for this problem, peak
temperatures would be up to 400 K higher if the view matrix was not normal-
ized. This numerical evidence further supports the theoretical importance of
renormalization.
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Fig. 14. Prototype for an industrial growth reactor: isopleths for real part of mag-
netic potential (left), isotherms for the whole reactor (middle) and zoom around
crystal seed (right).

5 Conclusions

We have investigated a thermomagnetic problem with multiple reflection radi-
ant energy transfer arising in crystal growth reactors. The governing equations
consist of three PDEs coupled with a nonlinear integral equation. The numer-
ical methodology derived in this paper relies on a discontinuous Galerkin ap-
proximation to the integral equation and uses a local refinement strategy in the
azimuthal direction around shadowing obstacles. Furthermore, a renormaliza-
tion of the view factor matrix is introduced in order to cope with singularities
at Gauss nodes near convex corners. The present thermomagnetic model al-
lows for an accurate and robust evaluation of the temperature field around
the crystal seed and is now ready to be embedded in more comprehensive
models of the growth process accounting for multicomponent mass transfer
in the gas phase, surface reactivity at the moving gas/crystal interface and
defect incorporation due to thermal stresses.
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