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We investigate adaptive finite element methods for low Mach, steady,
laminar combustion. The finite element discretization of the flame equa-
tions involves least squares control of streamline derivatives and pressure-
velocity coupling as well as a new shock capturing term based on nonlinear
crosswind diffusion yielding a suitable discrete maximum principle for the
discrete solution. A posteriori error estimates derived from a dual weighted
residual method are used to refine the mesh adaptively. Numerical results
are presented for a Bunsen flame with simple chemistry on locally refined
as well as fully unstructured Delaunay meshes. Solution quality is evalu-
ated in terms of overall flame characteristics—including length, lift off and
width—and undershoots in species and temperature profiles.
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1. INTRODUCTION

The numerical computation of reactive flows is a challenging field of research with
many applications in science and engineering. Most combustion applications involve
strongly nonlinear phenomena, such as reaction fronts, boundary layers, turbulence
or shocks. The computational work involved in flame simulations is extremely high
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because of the wide spectrum of spatial and time scales to be resolved, the large
number of degrees of freedom and strong nonlinearities resulting from chemical
reactions.

The goal of this paper is to derive suitable numerical methods for flame simula-
tion. Targeted combustion applications are low Mach, steady, laminar flames such
as those encountered in Bunsen flames and other commercial burners. Key issue in
a numerical method is reliability: once an approximate solution has been obtained,
there should be a computable estimate of the numerical error indicating whether or
not the computed solution meets the user’s accuracy requirements. An additional
important feature of a numerical method is efficiency, i.e., to achieve reliability at
low computational costs.

An attractive approach to achieve efficiency in flame simulations is to resort to
adaptive methods where the computational mesh adjusts itself to fit the nature
of the numerical solution. A first strategy for adaptive mesh refinement relies
on one-dimensional mesh equidistribution using local estimates of the gradient and
curvature of the numerical solution as error indicators [KN80, Che94]. This method-
ology has been applied to steady [GS89, CP93, dd94, Mdvd95, Sd95] and unsteady
[PHB198, Pax99, DB00] flame simulations. Recent developments include local rect-
angular refinement techniques with finite difference discretizations [BS99, BS98]. In
most applications involving several nonlinear partial differential equations (PDEs),
the error indicators lack theoretical justification and therefore strongly rely on prob-
lem oriented heuristics. Another drawback is that no reliable criterion for stopping
the simulation is available due to the lack of computable estimates of the actual
numerical error.

One alternative approach toward adaptive error control has been developed re-
cently in the framework of finite element methods and optimal control techniques
[BR96, BRO1]. Let u be the exact unknown solution and w, a numerical approxi-
mation. Given a functional J(-) representing the physical quantities that the user
wishes to control, an upper bound for J(u) — J(up) is obtained using the dual
weighted residual method. The estimate involves the residual, defined as the nu-
merical solution reinjected into the differential equation, and appropriate weight
factors. Such factors, which can also be interpreted as sensitivity coefficients, are
computed from the solution of a linearized dual problem and provide information
on where the error is actually generated. The dual weighted residual method ex-
ploits the Galerkin orthogonality in deriving the local weights. This property is
satisfied by finite element approximations but usually not by standard finite differ-
ence or finite volume discretizations. The dual weighted residual method offers the
important advantage to address both reliability and efficiency. Indeed, it provides a
reliable criterion for stopping the simulation and it also yields practical information
for adaptive mesh refinement. The error estimator is localized as a sum over all
the mesh elements and a refinement/derefinement algorithm can be readily set up
for instance by equidistributing the element contributions. This method has been
applied to combustion problems in [Bra98, BBR99]. Linear quadrangular finite el-
ements with streamline and velocity-pressure stabilization were used on adaptively
refined meshes with local tensor product structure and hanging nodes.

In this paper, we present an adaptive finite element method to simulate low
Mach, steady, laminar flames. The flame equations are discretized with linear sim-
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plicial conforming elements on either locally refined or fully unstructured Delaunay
meshes. The stabilization involves streamline diffusion, pressure-velocity coupling
as well as a new shock capturing term. This term is based on a nonlinear cross-
wind diffusion operator ensuring a suitable form of the discrete maximum principle
for temperature and species profiles [BE0O1]. Although this work is restricted to
steady flames, the finite element method presented hereafter is readily extendable
to unsteady problems. The paper is organized as follows. In section 2 we present
the governing equations. The stabilized finite element discretization is presented in
section 3. Section 4 describes the dual weighted residual method for adaptive mesh
generation. Both theoretical aspects and practical implementation are highlighted.
Finally, computational results are presented in section 5. We investigate solution
quality in terms of undershoots for temperature and species profiles, flame length,
lift off and width. Various shock capturing techniques based on crosswind diffusion
are compared.

2. GOVERNING EQUATIONS

The governing equations of chemically reacting flows express conservation of
species mass, momentum and energy. We focus on low Mach, steady, laminar
flames such as those arising in Bunsen and other commercial burners (see figure 1).
A premixed fuel/oxidizer jet is flown through a cylindrical tube surrounded by an
air coflow. When the jet velocity exceeds the planar flame speed, it is possible
under certain experimental conditions to stabilize a flame of conical shape sitting
above the burner lip.

flame front

coflow : coflow

fuel/oxidizer
mixture

FIG. 1. Schematic of a Bunsen flame.

Since the flow velocity is much smaller than the sound speed, we approximate
the fully compressible flow equations using the isobaric flame model [MS85, Wil85,
Gi099]. The pressure is split into a thermodynamic part and a spatially varying
hydrodynamic perturbation which scales as the square of the Mach number. For
through flow problems, the thermodynamic pressure is constant in the computa-
tional domain and is specified by the outflow conditions. Density changes only occur
because of temperature variations due to strong heat release at the flame front. In
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addition, viscous dissipation and hydrodynamic pressure work can be neglected in
the energy conservation equation.

The dependent unknowns are written as u = (Y1,...,Y,s, T, v1,-.. ,v4,p) where
(Y1,...,Yns) are the species mass fractions, ns the number of species, T the tem-
perature, v = (vy,...,vq) the velocity components, d the number of space dimen-
sions and p the hydrodynamic pressure. Let 0; denote derivation along the jth
spatial coordinate and V = (0y,...,04)t. The governing equations expressed in
nonconservative form read

er(u) = BV +V-Fi—w = 0, 1<1<ns,
enst1(u) = Brs+1- V)T +V-Q —wr = 0, B
enst14j(u) = (Bnsy145-V)o; +0p+(V-V); —pg; = 0, 1<j<d,
enstarz(u) = V- (pv) = 0.

Here, F; denotes the mass diffusion flux of the Ith species, w; its mass production
rate, Q the thermal part of the heat flux, wr the temperature source term, V
the viscous stress tensor, (V - V); the jth component of its divergence, g; the jth
component of the gravity vector and p the density given by the ideal gas law

Pom

where pg is the thermodynamic pressure, m the mean molecular weight of the
mixture given by m = (3", ¥;/m;) ', my; the molecular weight of the Ith species
and R the universal gas constant. The advection velocities 8;, 1 <i < ns+d+ 1,
are given by 3; = pv for ¢ # ns + 1 and Bpsy1 = pcpv where ¢, is the mixture
specific heat capacity at constant pressure. The species and temperature source
terms w; and wr are given by Arrhenius type expressions and depend exponentially
on the temperature. These terms will be detailed in section 5.1.
The multicomponent transport fluxes F;, Q and V read

Fi = —aqVY¥%, 1<I<ns-—1,
Q —A\VT, (3)
V= —u(w+wt—§(v-u)f),

while the last species flux ensures overall mass conservation in the form »;, F; =
0. Here, ¢; is the diffusion coefficient for the /th species, A the thermal conductivity
and p the shear viscosity. The expressions in (3) are derived from the kinetic
theory of gases with some simplifying assumptions [EG94]. The volume viscosity
is not included in the viscous stress tensor since for low Mach flows it can be
treated as a perturbation of the hydrodynamic pressure. Furthermore, although
Soret and Dufour effects are important in some flame structures [EG98], thermal
diffusion coefficients have been neglected for the sake of simplicity. Finally, the
mass diffusion fluxes have been taken in the dilution limit in terms of mass fraction
gradients. The domain of validity of this assumption is discussed in [EG94, Gio99].

The flame model consists of nc = ns + d + 2 coupled nonlinear PDEs equipped
with appropriate boundary conditions. In abstract form, its weak formulation reads:
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find v € V such that
a(u;0) =0, VpeV, (4)

where V is a suitable subspace of H'(Q)"¢. Proper modifications of V accounting
for essential boundary conditions are not detailed for brevity. We have

nc

a(u; ) = Y (rf(u), 95) + (r} (u), Vi),

i=1
with the residual expressions
i (u) = (B-V)Y —w rp ==, 1<1< ns,
rost1 () = (Bnsy1-V)T —wr o1 (u) = —9Q,
P sr1ri (@) = Basr115 Vv + 00— pgj  Tpery;j(W) = =Vie, 1<5<d,
Tstat2(u) =V - (pv) Thsrape(w) =0,

()

Vje € R? being the vector with components (V;;/)1<j <q. The form a(-;-) is non-
linear with respect to its first argument and linear with respect to the second.
Here and in the sequel we use the convention that semi-linear forms are linear with
respect to all arguments on the right of the semicolon.

3. STABILIZED FINITE ELEMENT APPROXIMATION

This section describes the stabilized finite element method used to approximate
the flame problem and how the discrete equations are solved iteratively.

3.1. Standard Galerkin formulation
Let 73 denote a conform triangulation of the polygonal computational domain
Q consisting of non-overlapping triangles K. On 7, we define the finite element
space V}, consisting of continuous piecewise affine functions

Vi ={n € C°(Q)" opx € PI(K)",VK € Ty, }.

Note that the same order of interpolation is used for all physical variables.
In the standard Galerkin approximation, one seeks up € V}, such that

a(un;on) =0, Vop € Vi (6)

This method needs to be stabilized in order to cope with (i) advection instabilities
due to high Peclet numbers, (ii) pressure-velocity couplings in the low Mach number
regime and (iii) spurious oscillations near the flame front causing violation of the
discrete maximum principle for the species mass fractions and the temperature.
Appropriate stabilizations for the first two effects are rather well known and will
only be briefly reviewed. The third effect is less classical in flame modeling and will
be discussed in more detail.

3.2. Streamline and pressure-velocity stabilization



6 ERIK BURMAN, ALEXANDRE ERN AND VINCENT GIOVANGIGLI

For the convection dominated, incompressible Navier-Stokes equations, stable fi-
nite element discretizations have been derived using least squares control of the dis-
crete pressure gradient, the incompressibility constraint and the convective deriva-
tives of the dependent variables [BH82, JNP84, Joh87, FF92, TV96]. In this case,
energy type stability estimates guarantee the well posedness of the discrete problem.
In the low Mach number case, there are no corresponding estimates, but even so
the formulation has proved to perform well in several applications [Bra98, BBR99].
The stabilized formulation for low Mach number flames reads: find u; € V}, such
that

a(un; on) + 0" (un; on) =0, Vn € Vi, (7)
with b*¥(up;n) = Yk b33 (un; ¢n) and the local stabilizing terms given by

ns+1

bid(unson) = Y (er(un), 57*(B-V) 1)k
ns i1

+ Z (ej(un), 054 (B;-V)@j + Vonstata) K
j=ns+2
+ (enstar2(un), 6,5;§+d+2v COu)K s

with (-,-)x denoting the L2(K) inner product. The components of the test function
®n are denoted by (‘1017 s 790ns+d+2) and Pov = (90n5+27 s 790n3+d+1) are the test
functions associated with velocity. The stabilization is fully consistent since the
exact solution u of (4) also satisfies the approximate problem (7). The stabilizing
coefficients are evaluated locally elementwise and given by

5Sd— 2|Bz|+& - 1<i< +d+1 (8)
i h h2 ) StTSns )

and 0%, , = 4h|pv|. Here, h is the mesh size, p; = ¢; for the species, pins11 = A
for the temperature and pnsy1+; = p for the d velocity components.

3.3. Nonlinear crosswind diffusion

Despite its least squares control of streamline derivatives and pressure-velocity
coupling, the above method fails to produce a numerical solution satisfying a dis-
crete maximum principle (DMP). More precisely, the species and temperature pro-
files exhibit minima which sometimes lie significantly below physically acceptable
values. This difficulty is particularly severe in combustion problems where negative
mass fractions may render the chemistry production terms completely meaningless.
In order to quench DMP violations, we introduce an additional stabilization term
based on crosswind diffusion (CD). In the literature, such term, also called shock
or discontinuity capturing term, has been investigated following two approaches:

e the linear approach where the amount of crosswind diffusion does not depend
on the approximate solution. In order to preserve accuracy, the crosswind diffusion
scales as h®/2. This approach has been introduced in [JSW87] and further extended
in [Lub92, SE99];



ADAPTIVE FEM FOR LOW MACH, STEADY, LAMINAR COMBUSTION 7

e the nonlinear approach where the amount of crosswind diffusion depends on
the approximate solution. In this context, a new nonlinear crosswind operator has
been investigated recently in [BEO1]. In particular, for linear advection-diffusion
equations discretized on strictly acute meshes, a DMP was rigorously proven.

In the present work, we adapt to flame models the nonlinear approach derived
in [BEO1] for linear advection-diffusion problems. Nonlinear crosswind diffusion is
considered for the temperature and species equations. The fully stabilized Galerkin
approximation now reads: find uy € V}, such that

a(un; pn) + b* (un;on) + b (un;on) =0, Vou € Vi, 9)

with b°(un; n) = 3k b% (un; n) and

ns+1
b5 (un; ) = D ((BV)un,i, 674 (un) (B V) i)k,
i=1
where up, = (up1,... ,Uhnstdt2).- The bilinear form ((8:-V)-, (8i+-V)-) corre-

sponds to diffusion in the hyperplane orthogonal to the advection vector 3;.
The crosswind diffusion parameter takes the form

5% (up) = 67 fi(un), 1<i<ms+1,

where

fi(up) = min ( les (up )| ch1/2) . (10)

(ei(un)2+(vBE-Vun 1)2)'/*

All the quantities are evaluated locally elementwise. The numerical parameters
~ and ¢ are set to 1 and 0.5 respectively. The nonlinear term in (10) has been
considered in [BEO1] and is a heuristic simplification of the theoretical crosswind
diffusion operator guaranteeing a DMP for linear advection-diffusion problems. The
linear term is mainly active at the flame front where nonlinear effects are dominant.
Indeed, in regions where the flame front is practically orthogonal to streamlines,
we have 3;"-Vuyp, ; < e;(up) and therefore, the nonlinear contribution alone would
yield a first order isotropic viscosity resulting in excessive smearing of the flame
front. We also point out that the functions f;(up) satisfy two important properties:

e 0 < fi(up) <1, so that the amount of crosswind diffusion is always lower than
that of streamline diffusion;

e fi(up) = 0if e;(up) = 0 thus preserving consistency of the discrete problem.

3.4. Newton’s method
The discrete flame equations resulting from the stabilized Galerkin formulation
(9) read

F(Uy) =0, (11)
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where U, € RV% are the nodal components of the discrete solution uy, Ny, is the
dimension of V3, and F a nonlinear mapping from RV» to R™V». An approximate
solution to (11) is obtained using a damped Newton’s method in the form

JHUI —UE) = =N F(UF),

where ¥ is a damping parameter. The matrix J* € RV»Nr is an approximation to
oF

the Jacobian matrix 5= (Uf). The matrix J* is sparse and is computed numerically
using perturbed function evaluations. All of its entries, resulting both from spatial
and nonlinear local couplings, are retained and stored in compressed form. At
each Newton step, the linear system is solved approximately using BiCGStab and
a Gauss-Seidel preconditionner blocked at the node level. On structured meshes,
larger blocking is also used, e.g., at the row level. Convergence of Newton’s method
is achieved when the rescaled Euclidean norm of the update vector U ,’f“ - U,’f is
less than some prescribed tolerance (typically 107°).

In order to bring the initial solution estimate into the convergence domain of New-
ton’s method, a time marching algorithm is employed. A discontinuous Galerkin
method of degree 0 in time is used resulting in a backward Euler scheme: given u},

find u;:“ € V}, such that

(up™™ —uf, on)
+ 7™ (a(upt s on) + 0wt on) + 0N Uit 0n)) =0, Vop € Vi,

where 7™ is the time step. These equations are treated in a fully implicit fashion
and are solved approximately using Newton’s method. For transient iterations,
Newton’s method generally converges within a couple of iterations.

4. ADAPTIVE MESH GENERATION

Once a numerical solution has been obtained on a given mesh, a key issue is to
determine in a reliable way whether this solution is acceptable. In other words,
one wishes to make sure that the error concerning physical quantities of interest
has been brought below a prescribed tolerance. If this is not the case, one also
wishes to use the current numerical solution to generate a new computational mesh
on which an improved approximation to the exact solution can be obtained. The
dual weighted residual method offers a suitable theoretical framework to achieve
these goals. In this section, we highlight the main ideas underlying the method and
discuss its practical implementation in the context of flame problems.

4.1. The dual weighted residual method

The dual weighted residual method uses nonlinear optimal control techniques
to estimate a given functional of the numerical error in terms of local residuals
of the approximate solution. The residuals are weighted by coefficients resulting
from a linearized dual problem providing information on where the error is actually
generated. We refer to [BRO1] for a recent review of the theoretical framework with
various numerical examples.

Let ¥(-) be a user specified functional defined on the solution space V repre-
senting some quantity of physical interest, e.g. in combustion applications, fuel
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mass fraction, temperature or a pollutant flux averaged over a region where mea-
surements are performed. We assume that the functional J is differentiable and
denote by ¥'(-;-) its derivative. Similarly, for a semi-linear form a(-;-) which is
differentiable with respect to its first argument, we denote by a'(-;-, ) its derivative.

We present the dual weighted residual method in an abstract setting and will
discuss the validity of the assumptions for flame problems further below. We assume
that the continuous problem (4) and the discrete problem (9) are well posed (at
least locally). Let u and up, denote their respective solutions and let e = u — uy, be
the error. We introduce the fully stabilized semi-linear form a,q/.q(-;-) = a(-;-) +
b%4(-5-) + b°4(-;-) and assume that

(h1) the semi-linear form a,q/.q(-;-) is differentiable.
We then introduce the linearized dual problem: find z € V' such that
1 1
/0 a'sd/cd(uh +se;p,2)ds = /0 U'(up, + se;p)ds, Vo€V, (12)
and assume that
(h2) the linearized dual problem (12) is well posed.

In order to obtain an error representation in terms of the dual problem (12), we
assume that

(h3) the discrete problem (9) is consistent, i.e., the exact solution u of (4) satisfies
asd/cd(u; ‘Ph) =0, VSOh € Vh.

These assumptions lead to the following result [BRO1].

PROPOSITION 4.1. Assuming (h1)-(h3), we have the error representation

U(u) — ¥(up) = min azq/.q4(un; 2 — @n), (13)
YnhEWL

where z is the solution of the linearized dual problem (12).

We next split the right member of (13) as a sum over the mesh triangles of a local
residual of the approximate solution up weighted by a coefficient depending on the
local regularity of the dual solution z. To this purpose, we make the following two
assumptions:

(h4) the finite element space V}, has optimal interpolation properties: there ex-
ists a dense subspace W of V with a local seminorm | - |w,x, an interpolation
constant ¢; and an interpolation operator i, : W — V} such that

Vw € W, Vh, VK € Ty,
(14)

lw — inwllx + hi |V (w — inw)llx + bl llw — inwllox < e B wlw,x,

where 0K is the boundary of K;
(h5) the solution of the linearized dual problem (12) is in W.
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ProposITION 4.2. Assume (h1)—(h5). For 1 <l < nc and K € Ty, define the
weights

wa =C; hK |ZI|W,K7 (15)

where 2 = (21, - . - , Znc) 18 the solution of the linearized dual problem (12). We then
have the a posteriori error estimate

W) = (up)| < D (Ek +Ek +ER +EF), (16)
KeTy
with

( ns+d+2
Ex= Y hxlle(un)lkwi

=1
ns+d+1

k= 3" B It )] || e W
=1

ns+d+1

&= thilleun)llk i + Ej—y hic cllenst it (un) | xwie ™4+
=1
d .
+ i Cicllensyara(un)llx Y wim T
i=1
ns+1
£ =" Lhic I8V )unllx whe
\ =1

where [-] is the jump across 0K, ck = 1/(2|pnvn|x + p/hK), pr and vy are the
discrete density and velocity evaluated from up, and ¢y = 4|ppon|k.

Proof.  Upon choosing ¢, = ipz in (13), splitting integrals over elements, in-
tegrating by parts the first order residuals r] (up) and using the interpolation in-
equality (14), the standard Galerkin part a(up,z — ip2) is readily estimated by
Y ker, €k + Ek)- On the other hand, using (8) we get §;%h/B; < 5. Therefore,
owing to the fact that the CD operator is such that f;(uy) < 1, the stabilizing terms

b**(up, z—inz) and b (up, z—iy2) are readily estimated by Y- o7 (34 +E58). W

The validity of assumptions (h1)—(h5) in the context of flame modeling re-
quires some discussion. (h4) is a classical property of finite element interpolation
valid for instance on regular meshes with the Sobolev space W = H?(f) and
lwlw,k = (Xi<j<ji<a 10;5wl|%)'/2. (h3) is also satisfied since both streamline
and crosswind diffusion terms vanish for the exact solution. Concerning (h1), one
potential difficulty is the use of absolute values in the stabilizing coefficients. How-
ever, such singularities often occur in regions of low physical interest and should
have a minor impact on the error estimator. Absolute values can also be regular-
ized. Assumptions (h2) and (h5) are more difficult to establish mathematically
since the adjoint solution z may only exist in a weak sense. Nevertheless this is not
too critical since in practical implementations one considers a finite dimensional
approximate dual problem and its solution usually exhibits more regularity. In ad-
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dition, the discrete dual problem may be interpreted as a stabilized approximation
of a formal dual problem.

Finally, we point out that for first degree polynomial interpolation and constant
diffusion coefficients, the quantities e;(up) can be replaced by r{(up) in the error
indicator £%. Furthermore, the residual terms should be dominated by the jump
terms £} [CV99, BRO1]. The stabilizing contributions £§¢ and £§¢ should also
be small at least on the finer meshes. These issues will be further investigated in
section 5.

4.2. Practical implementation
Concessions to practicality need to be made in order to use the theoretical results
of section 4.1 for adaptive mesh generation in combustion applications.
Owing to the nonlinear character of the original problem (4), the linearized dual
problem (12) depends on the exact solution u. Therefore, we consider the following
approximate dual problem: find Z € V such that

@q/ca(un; 9, 2) = '(un; ), Vo €V, (17)

which results from (12) by using the approximate quadrature fol f(s)ds ~ f(0).
An error representation can also be obtained directly from the dual problem (17)
[BRO1]. It involves the minimal residual as in (13) plus a remainder term which is
quadratic in the error. This term may be viewed as a measure of the nonlinearities
of the problem and should be small whenever the approximate solution uy is close
to the exact solution w.

Since (17) is posed in the infinite dimensional space V, we need to consider a
discrete version of the approximate dual problem. The simplest approach is to use
a Galerkin method on V}, so that we now seek Z; € V}, such that

Ggq/ca(Uni Phy Zn) = ' (uns on),  Von € Vi (18)

More elaborate strategies include considering approximations to Z obtained by a
higher order method or on a finer mesh and are discussed for instance in [BRO1].
The present approach offers the advantage that it does not increase memory size
requirements which in combustion problems are already at high demand. Another
advantage of (18) is that the transpose of last Jacobian used in Newton’s method
can be used as stiffness matrix in (18).

Second order derivatives of the approximate dual solution Zj need to be evaluated
in order to compute the weights w in (15). These quantities are approximated by
second-order divided difference quotients D;-’j,ih, 1 < j,j' < d. The a posteriori
error estimate (16) is thus used with the approximate weights

1/2
She =Rk | D (Dhizng)? ; (19)

1<j<j'<d

the interpolation constant ¢; being estimated by 1 (which is generally an upper
bound).
The adaptive solution algorithm reads:
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(A) chose an initial coarse mesh 7(g). Set i = 0;

(B) solve the approximate flame problem (9) on 7;. Let u(; be the solution;

(C) solve the approximate dual problem (18) and evaluate the approximate
weights (19). Compute the local error indicators £%, £k, €38 and £§;

(D) if the global error ZKeT(,-)(gIO( + EL + £ + £59) is below a prescribed
tolerance TOL, stop; otherwise, use the local error indicators to generate a new
mesh 7(;11), set 4 :=4 + 1 and go back to step (B).

Several methods can be designed to generate the new mesh 7(;;;) depending on
the type of data structure considered:

e locally refined triangulations: starting from an initial triangulation derived
from a tensor product mesh of quadrangles of size hg, such meshes consist of tri-
angles belonging to quadrangles of size 27Phg, 0 < p < P, where P is the number
of local refinements already performed. In locally refined triangulations, the local
error indicators are conveniently evaluated on the underlying quadrangles which
are marked for refinement or derefinement by equidistributing the error indicators;

o fully unstructured triangulations: the local error indicators are evaluated on
the triangles and are used to define a control function specifying the desired mesh
size h(z) locally. This function, in turn, can be used as input for a Delaunay mesh
generator.

In the next section, we present numerical results for both locally refined and fully
unstructured triangulations.

5. NUMERICAL RESULTS

We apply the numerical methods described in the previous sections to a methane/air
Bunsen flame in axisymmetric configuration (see figure 1). We first specify the
chemical model and the boundary conditions. We then study numerically the adap-
tive algorithm based on a posteriori error estimates and investigate the impact of
nonlinear crosswind diffusion on numerical results. Solution quality is assessed in
terms of overall flame characteristics, including height, lift off and width and also
in terms of undershoots in species and temperature profiles.

5.1. The Bunsen flame problem

The flame is obtained by flowing a stoichiometric methane/air mixture through
a cylindrical tube. The fuel tube has a radius of 4 mm and a width of 0.5 mm. The
inflow velocity profile is parabolic with a peak velocity of 1.5 m/s. The flame is
surrounded by an air coflow given by v (r) = vo(1 — exp(—(r — 79)/d)) with peak
velocity vp = 1 m/s and parameters rg = 4.5 mm and § = 2 mm. Reactants and
air are flown at room temperature (298 K).

We consider a simplified chemistry model [CKM83] based on the overall reaction

CH4 + 205 — CO5 + 2H50.

Three species mass fractions are retained among the dependent unknowns, namely
Ycn,, Yo, and Y04, the latter associated with the combustion products. Nitrogen
is also present in the mixture as an inert dilutant. Its mass fraction is conveniently
evaluated from Yy, =1 —Ycn, — Yo, — Yorod-
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The mixture specific heat capacity is assumed to be constant and equal to
cpm = 0.323 cal/g/K. The energy conservation equation is rescaled by cpp. The
temperature source term then reads

wr = i-E'(payvla ---;YnsaT)a

pm

where we have introduced
E(p,Y1,....,Yns,T) = (pYcn,) (PY02)2 Aqgr exp (—Eor/(RucT)),

with Q = 11355 cal/g, A, = 1.01- 10 (cgs units), E,» = 29100 cal/mol and
Ry = 1.9872 cal/mol/K. On the other hand, the species source terms are given by

Wy = mlE(p,Yi, ---;Yns;T); 1<1<3,

with 1 = —1, My = —2m02/mCH4, ms = mprod/mCH4 and Mprod = 2MH,0 +
mco,- The molecular weights are mcp, = 16.043, mo, = 31.9988, mco, = 44.01,
mu,o = 18.0153 and my, = 28.0134 in g/mol. Finally, the thermal conductivity
is given by A = R;/(pcpm) with R, = 5.61 - 1078 (cgs units), the shear viscosity by
u = P\ with P. = 0.7 and the species diffusion coefficients by ¢; = A\/(pLe;) with
the Lewis numbers set to Lecu, = 0.96, Leo, = 1.1 and Leproq = 0.83.

Boundary conditions are as follows:

e inflow (z = 0): Dirichlet for both velocity components and temperature, flux
condition for the species in the form

le’Uz + -ﬂ iz pin/U,ian'lina 1 < l < 37

where the superscript denotes inflow conditions and e, the upward unit vector. For
stoichiometric methane/air flames, we have Y = 0.05515 and Y = 0.22;

e outflow (z = Z): homogeneous Dirichlet for hydrodynamic pressure and radial
velocity, homogeneous Neumann for axial velocity, temperature and species;

e axis of symmetry and far field (r = 0 and 7 = R): homogeneous Dirichlet for
radial velocity, homogeneous Neumann for axial velocity, temperature and species.

All the results reported below have been obtained on the computational domain
[0,3] x [0,25] in cm.

5.2. The adaptive algorithm
In this section we investigate numerically the adaptive algorithm discussed in
section 4.2. For the sake of illustration, we have chosen to control the mean error
in methane mass fraction

lIl(u) :/YCH4C1$'. (20)

The control domain is set to w = [0,1] x [0,1] in cm and covers the entire flame
region since flame lengths are typically 0.9 cm for the present operating conditions.
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Other error functionals may be easily selected depending on the user’s specific re-
quirements. The tolerance for the adaptive algorithm was set to TOL = 10~3. The
adaptive algorithm was started from a coarse initial mesh of locally refined type.
This mesh, referred to as level 0, contained 895 nodes and 1617 triangles with 20
elements of size 0.25 mm (half the tube width) located around the burner lip and a
maximal element size of 0.4 cm (see figure 2). To bring the error below the tolerance
threshold, three adaptive refinement steps were needed. The corresponding locally
refined meshes will be referred to as level 1, 2 and 3. We then refined an additional
level to obtain a reference solution permitting us to compare the a posteriori er-
ror estimate with the error between the reference solution and a given numerical
approximation. Locally refined meshes at levels 2 and 4 are also shown in figure 2.

FIG. 2. Examples of locally refined meshes at levels 0, 2 and 4

The adaptive algorithm has also been investigated on fully unstructured trian-
gulations. Such meshes are of Delaunay type and have been generated using the
algorithm described in [Reb93]. On a given refinement level, the interior control
function specifying the desired element size has been obtained from the a posteriori
error estimates computed on the locally refined mesh where second order deriva-
tives are easier to evaluate. Fully unstructured triangulations at levels 0, 2 and 4
are illustrated in figure 3.
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FIG. 3. Examples of fully unstructured meshes at levels 0, 2 and 4

The number of degrees of freedom for all the meshes considered is reported in
table 1. For high refinement levels, fully unstructured meshes result in less degrees
of freedom than locally refined ones (the ratio is more than two on level 4) because
the equilateral triangles in the Delaunay meshes appear to cover the computational
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domain more efficiently and because of the sharper transition to the outer coarse
mesh in the fully unstructured case.

TABLE 1
Number of nodes for the locally refined and the fully unstructured
meshes at various refinement levels

| level | o 1 2 3 4 |

locally refined 895 1694 3568 7728 16570
fully unstructured | 839 1337 2155 4338 7257

The numerical solution of the approximate dual problem (18) obtained on the
locally refined mesh of level 0 is presented in figure 4. We consider the components
associated with methane, temperature, axial velocity and pressure. Although the
data for the dual problem is nonzero for methane only, all the physical components
of the dual solution are important because of the strongly coupled nature of the
flame problem. In particular, refinement of the flame front is mainly driven by
temperature and pressure on coarser meshes while velocity components are active
above the burner lip where the flow has stagnation points. The methane compo-
nent is also active in the shear flow layer outside the flame developing from the
hydrodynamic interaction between the jet flow and the air coflow. In figure 5 we
show the dual solution for level 3. We observe that the dual solution profiles have
become much smoother indicating that the theoretical assumptions (h2) and (h5)
are reasonable as higher resolution is achieved.

FIG. 4. Dual solution on locally refined mesh of level 0; from left to right: methane,
temperature, axial velocity and pressure

FIG. 5. Dual solution on locally refined mesh of level 3; from left to right: methane,
temperature, axial velocity and pressure



16 ERIK BURMAN, ALEXANDRE ERN AND VINCENT GIOVANGIGLI

The a posteriori error estimate is presented in figure 6 as a function of the total
number of degrees of freedom N for the locally refined meshes. Similar results are
obtained for the fully unstructured meshes. The overall convergence rate scales as
N—3/2_ Since N is inversely proportional to Amin, the lowest mesh size, we deduce
that the error indicator decreases as hm/in in agreement with theoretical estimates
valid for simpler problems. In figure 6 we also report estimates of the mean error
and the L' error obtained using the numerical solution on level 4 as a reference.
Denoting by w4 this reference solution, we plot the quantities | fw u(4) — U] and
fw |uigy — ug;)| for 0 < i < 3. We observe that the a posteriori error estimate
nevers underpredicts the error. The estimate also appears to be rather sharp since
the ratio between the a posteriori estimate and the L! error is only 1.3 on level
3. Moreover, we note that the mean error and the L! error are very similar, thus
indicating that the error is globally of the same sign over the control domain w.
Finally, we point out that the three error estimates exhibit a similar convergence
rate on finer meshes.

+—+ A posteriori estimate |
x Mean error 1
#---+L_lerror

FIG. 6. A posteriori error estimate as a function of total degrees of freedom on locally
refined meshes; comparison with the mean error and the ! error evaluated using the numerical
solution on level 4 as reference

In figure 7 we plot the relative contribution from the different error terms to the
a posteriori error estimate. On finer meshes, the term corresponding to the jump
in the gradients, £}, dominates the error estimate. This result is in agreement
with theoretical estimates [CV99, BRO1]. A significant contribution to this term
arises near the burner lip where the inflow velocity profile exhibits discontinuous
normal derivatives. We also point out that the streamline diffusion contribution,
&34 is half the lower order residual contribution, £%, while the crosswind diffusion
contribution, £§4, is approximately an order of magnitude smaller than the others
on all meshes.

Finally, we present in figure 8 contours for temperature, methane, velocity norm
and pressure obtained from the reference solution on level 4. For each physical com-
ponent we compare the locally refined and fully unstructured results and observe
very good agreement.
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FIG. 8. Comparison of the reference flame solution obtained on the locally refined (left) and
fully unstructured (right) meshes of level 4; from top left to bottom right: temperature, methane,
velocity norm and pressure

5.3. Impact of crosswind diffusion on solution quality

The numerical results presented in the previous section have been obtained us-
ing the nonlinear CD operator (10) presented in section 3.3. As already pointed
out in section 3.2, the stabilization for pressure-velocity coupling is based on the
implicit assumption that the flow locally has the same stability properties as the
incompressible Navier-Stokes equations. This assumption is clearly not valid near
the flame front where the density undergoes significant changes. A mathematical
study of pressure-velocity stabilization with strong density gradients is beyond the
scope of this paper. To avoid pressure oscillations and smooth the velocity field
in zones with strong underresolved temperature gradients, a linear CD operator is
always considered for the momentum equations. To preserve accuracy, such term
scales as h%/2. With this modification, the semi-linear form b°%(-;-) = 0 is no longer
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TABLE 2

Flame height computed on various meshes

mesh locally refined fully unstructured
method | SD  linear nonlinear | SD  linear nonlinear
level 0 | 0.77  0.70 0.74 — 0.64 0.5
level 1 0.86 0.83 0.85 0.87 0.79 0.83
level 2 | 0.89 0.87 0.88 0.88 0.85 0.87
level 3 | 0.89 0.89 0.89 0.90 0.89 0.89
level 4 | 0.89 0.88 0.89 0.90 0.89 0.90

consistent but its contribution to the a posteriori estimate is expected to be small
at least on finer meshes.

In order to investigate the impact of CD on solution quality, we compare the
numerical solutions obtained from 3 sets of results labelled as follows:

e SD: no CD stabilization, simply f;(un) =0for 1 <i<mns+1;
o linear: f;(up) = ch'/? with ¢ =0.5for 1 <i<mns+1;
e nonlinear: f;(up) given by (10) for 1 <i <ns+1.

On coarser meshes, CD stabilization is critical in improving convergence rates. The
SD method failed to converge on the fully unstructured mesh of level 0, with a
temperature undershoot in the Newton iterates of 168 K. Before further discussion
of computational costs, we investigate solution quality. We consider first overall
flame characteristics such as height, lift off and width and then undershoots in
species and temperature profiles.

Flame heights, defined as point on the z-axis where half of the injected com-
bustible has been consumed, are reported in table 2. On level 4, all the numerical
solutions agree within 0.1 mm, i.e., within 1%, independently of the type of mesh
and CD operator. However, important fluctuations due to the underresolution are
observed on coarse meshes. As expected, CD methods yield shorter flames than
the SD method on coarse meshes because upstream flame propagation is enhanced
by diffusion so that more diffusive flames stabilize closer to the premixed fuel jet.
The flame lift off, defined as the lowest z-coordinate where the temperature reaches
1000 K, is presented in table 3. Conclusions are similar to those drawn for the flame
height. We note however a much stronger sensitivity to flame resolution, the ratio
between lift off at level 0 and 4 being roughly 3. In table 4, we consider the radial
flame width at z = 0.4 mm. Drawing a horizontal line at z = 0.4 mm, we denote
by xlm% the position on the left side of the flame where the heat production reaches
ten percent of its maximum value and by z7,o, the corresponding point on the right
side. The flame width is then evaluated as z7;, — ;cllo% . On coarse meshes, flame
width is expected to be larger when CD is included, but on level 4 flame widths
agree to within a few percent.

Figure 9 compares temperature profiles computed on fully unstructured meshes
at levels 1 and 2. Left plots are obtained with nonlinear CD and right ones with SD
only. On level 1, the SD method predicts a flame front with a somewhat irregular
shape near the flame tip whereas the nonlinear CD method yields a more conical
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TABLE 3

Flame lift off computed on various meshes

Radial flame width at z = 4 mm computed on various meshes

mesh locally refined fully unstructured
method SD linear nonlinear SD  linear nonlinear
level 0 0.072  0.085 0.080 — 0.047 0.095
level 1 0.043 0.048 0.044 0.044 0.067 0.047
level 2 0.031 0.031 0.031 0.032  0.033 0.032
level 3 0.026  0.027 0.027 0.027  0.028 0.027
level 4 0.024 0.024 0.025 0.026 0.026 0.026
TABLE 4

mesh locally refined fully unstructured
method SD linear nonlinear SD linear nonlinear
level 0 0.077 0.088 0.075 — 0.11 0.11
level 1 0.049 0.051 0.052 0.064 0.084 0.064
level 2 0.052 0.052 0.052 0.056  0.059 0.057
level 3 0.051  0.050 0.051 0.053 0.052 0.050
level 4 0.052 0.051 0.052 0.053 0.051 0.053
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shape. On level 2, both methods capture a similar shape for the flame front. We
also observe how the flames move closer to the burner lip as resolution is improved.

We next study how well the different CD operators handle undershoots in the
solution. In figure 10 we present the maximal undershoot for temperature and
methane as a function of the total number of degrees of freedom on the locally
refined meshes. The methane undershoot is quenched as soon as the mesh is re-
fined. This result is coherent with the present choice of the error functional where
methane is the targeted quantity. On the other hand, temperature undershoots at
physically unacceptable values persist with the SD method even on finer meshes.
Undershoots for temperature, methane and product obtained from the three CD
operators on all meshes are reported in tables 5-7. For fully unstructured meshes on
level 0, significant temperature undershoots are present even with CD stabilization,
a phenomenon not observed for locally refined meshes. Temperature undershoots
are quenched at level 2 or 3 depending on the type of mesh. For methane, the linear
and nonlinear CD operators yield similar results while the nonlinear one appears
to be more effective to wipe out product undershoots.

The geometric location of temperature undershoots is presented in figure 11 (left)
for the solution obtained with nonlinear CD on the locally refined mesh of level 4.
The undershoots, 1 K in magnitude, are present both in the flame front and in the
shear layer between inner and outer jets. Figure 11 (right) shows which contribution
to the minimum in equation (10) is active with black corresponding to the linear
one. As expected, the nonlinear contribution is mainly active in the convective
layer outside the flame while the h3/2? term dominates in most triangles covering
the flame front. The linear CD method is too diffusive in the downstream region
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TABLE 5

Temperature undershoots computed on various meshes

mesh locally refined fully unstructured
method | SD linear nonlinear | SD linear nonlinear
level 0 237 297 296 — 256 277
level 1 255 298 297 239 280 271
level 2 262 298 297 258 292 293
level 3 265 298 297 255 297 297
level 4 265 297 297 268 298 297
TABLE 6

Methane undershoots computed on various meshes

mesh locally refined fully unstructured
method SD linear nonlinear SD linear nonlinear
level 0 -0.001 -0.003 -0.002 — -0.0029 -0.0045

level 1 -38E6 -24E6 -22E6 |-13E5 -46E-6 -2.6E-6
level 2 -12E6 -76E-7 -74E-7 |-1.1E6 -7T9E-7 -42E-7
level 3 -1.7E-6 -63E-7 -26E-7 |-72E-7 -13E-7 -21E-7
level 4 -11E6 -30E-7 -13E-7 |-62E7 -14E-7 -26E-7

TABLE 7

Product undershoots computed on various meshes

mesh locally refined fully unstructured
method SD linear  nonlinear SD linear  nonlinear
level 0 | -0.009 -0.0001  -0.0003 — -0.012 -0.0029

level 1 -0.006 -0.0005 -7.8 E-5 | -0.008 -0.0055 -0.0026
level 2 -0.006 -0.0001 -6.6 E-5 | -0.0056 -0.0030 -0.00047
level 3 -0.006 -0.0002 -2.5E-5 | -0.005 -0.0012 -0.0001
level 4 -0.005 -0.0002 -7.2E-5 | -0.004 -0.0002 -8.7E-5

the nonlinear CD method offers a reasonable compromise between resolution of the
downstream thermal layer and undershoot quenching.

We finally assess the computational overhead associated with CD operators, lin-
ear or nonlinear. To this purpose, we use the SD solution on level 2 as an initial
estimate to obtain a converged solution with linear or nonlinear CD. We take 75
time steps and then solve the stationary system. Table 8 reports the total number
of Jacobian evaluations and the linear algebra cost. The latter is estimated as the
number of BiCGStab iterations times the square of the total degrees of freedom
and is normalized by the linear algebra cost for achieving convergence with the SD
method on the locally refined mesh of level 2 starting from the converged solution
on level 1. On locally refined meshes, the linear algebra overhead of the nonlinear
method is significant but is only slightly higher than that of the linear method on
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FIG. 11. Locally refined mesh of level 4; left: regions where the temperature exhibits an
undershoot of 1 K; right: the linear CD operator dominates the nonlinear term in the black zone

fully unstructured meshes. On the other hand, the total number of Jacobians is
comparable for all cases, although their evaluation is cheaper on fully unstructured
meshes which have less degrees of freedom than locally refined ones.

TABLE 8

Comparison of computational cost for linear and nonlinear CD

mesh type locally refined fully unstructured
method linear | nonlinear | linear | nonlinear
Jacobians 76 83 80 85

linear algebra cost | 1.22 2.56 0.74 0.87

6. CONCLUSIONS

In this paper we derived a stabilized finite element discretization for low Mach,
steady, laminar flames. The adaptive mesh methodology relies on the dual weighted
residual method. We presented an abstract analysis of the method including SD
and CD contributions to the error indicators and discussed the validity of the un-
derlying assumptions for flame problems. Numerical results have been presented
for a stoichiometric methane/air Bunsen flame with simple chemistry. The adap-
tive algorithm performs well on both locally refined and fully unstructured meshes,
the latter achieving similar accuracy with less degrees of freedom. In addition,
various CD operators have been compared in terms of solution quality and compu-
tational costs. The SD method without any CD stabilization produces physically
unacceptable temperature undershoots and has severe convergence difficulties es-
pecially on coarse, fully unstructured meshes. Linear and nonlinear CD methods
yield similar results in terms of solution quality, the latter being more expensive on
locally refined meshes but yielding a sharper resolution of the downstream thermal
layer. Forthcoming work includes extension of the present methodology to finite
rate kinetics and further investigation of least squares control for low Mach flows.
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