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Abstract. We consider a generalized Boltzmann equation for dilute isotropic gas mix-
tures with chemical reactions. Depending on the ratio of characteristic times between
reactive and inert collisions, various chemical regimes are obtained in the first order En-
skog expansion and their compatibility with Boltzmann’s H-theorem is investigated. We
then review the mathematical structure of the transport linear systems obtained from a
Galerkin approximation of the integral equations for the species perturbed distribution
functions. In the framework of this theory, the multicomponent transport coefficients
are written as convergent series and accurate approximate expressions are obtained by
truncation. Numerical results are presented for various combustion applications in-
cluding laminar flame propagation, counterflow flame extinction and multidimensional
bunsen flames.

1 INTRODUCTION

Chemically reactive gas mixtures arise in several applications including combus-
tion engines, industrial or commercial burners, chemical reactors, spacecraft flights
and plasma physics. In most of these applications, the kinetic theory of reactive gas
mixtures may improve the fundamental understanding of the macroscopic phenomena
involved and also enhance accuracy and robustness of the numerical models used by
engineers. In this work, we are concerned with dilute isotropic gas mixtures. We con-
sider an arbitrary number of chemical species having internal degrees of freedom and
participating in an arbitrary number of chemical reactions. With an eye towards com-
bustion applications, our goal is to address some physical, mathematical and numerical
aspects of the kinetic theory of reactive gas mixtures and the associated Navier-Stokes
regime obtained in the first order Enskog expansion.

In Section 2, we investigate a reactive Boltzmann equation and the first order
Enskog expansion. The kinetic theory of inert, dilute, isotropic, polyatomic gas mix-
tures has been derived in [1] in a semiclassical framework, i.e. translational motion
was treated classically and internal degrees of freedom were treated quantum mechan-
ically. We also refer to classical textbooks on kinetic theory [2-4]. The Boltzmann
equations derived in [1] can be generalized to reactive gas mixtures by considering an
additional reactive source term introduced in [5] and further investigated in [6-11].
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Both the inert and the reactive source terms yield a positive contribution to the kinetic
entropy production at the microscopic level. Depending on the ratio of characteristic
times between reactive and inert collisions, various chemical regimes can be obtained
in the first order Enskog expansion. The kinetic chemical equilibrium regime, based
on the assumption that both characteristic times are of the same order of magnitude,
has been introduced in [5] and further investigated in [10] where, in particular, it was
shown that this regime was compatible with Boltzmann’s H-theorem. On the other
hand, the Maxwellian reaction regime, recovered for large characteristic time ratios,
is also compatible with Boltzmann’s H-theorem. In several applications, the previous
assumptions on characteristic times are not met and one may consider an intermediate
regime in which the first order macroscopic equations contain two additional terms with
respect to the Maxwellian reaction regime: a chemical pressure first pointed out in [5]
and a perturbation to the chemistry source term [5,8,12]. However, as detailed below,
these perturbations do not yield positive entropy production. Since several estimates
[12-18] indicate that these perturbations are generally small, combustion applications
will be modeled using the Maxwellian reaction regime.

In Section 3, we investigate the mathematical structure of the transport linear
systems. These systems result from a Galerkin approximation of the integral equations
satisfied by the species perturbed distribution functions. The mathematical structure
only relies on the dissipative nature of inelastic collisions and some simple properties
of the variational space selected to approximate the species perturbed distribution
functions [8,19]. In particular, it is valid independently of the particular form of the
transition probabilities or the intermolecular potentials. As a direct consequence of
the mathematical structure, it is shown that the multicomponent transport coefficients
may be expanded as convergent series. Cost effective and accurate approximations are
then obtained by truncation [20].

Finally, in Section 4, we present numerical results illustrating the impact of mul-
ticomponent transport modeling on combustion phenomena, including laminar flame
propagation, counterflow flame extinction and multidimensional bunsen flames. We fo-
cus on the Soret effect associated with species diffusion due to temperature gradients.
Although this effect may impact flame structures because it plays an important role in
the mass balance of active radicals such as H, O and OH near the flame front, it has
seldom been accounted for in combustion applications. One reason for that was the
extremely high computational cost involved with the evaluation of thermal diffusion
coefficients. The algorithms presented in this paper are much more cost effective and
thus enable the combustion scientist to quantify the role played by the Soret effect in
several flame structures.

2 KINETIC THEORY OF REACTIVE GAS MIXTURES

In this section, we present a generalized Boltzmann equation valid for dilute poly-
atomic gas mixtures with chemical reactions and investigate some properties of the first
order Enskog expansion, in particular the compatibility with Boltzmann’s H-theorem.
For the sake of simplicity, the analysis is restricted to isotropic gas mixtures, thus
excluding for instance the presence of strong external magnetic fields.
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2.1 Reactive Boltzmann equations

We consider a dilute isotropic reactive gas mixture with n chemical species having
internal degrees of freedom. The state of the mixture is described by the species
distribution functions f;(¢,z,c;, 1) where ¢ is the time, x the three-dimensional spatial
coordinate, ¢; the velocity of the ith species and 1 the index for internal energy states.
For a family of functions (; only depending on ¢; and 1, we use the notation ¢ = ((;)ics
where S = [1,n]. We introduce the scalar product

(=Y [&ada
1€ES
IeQ;
where @; is the set of quantum state indices for the ith species. Let also Z be the
space spanned by the n + 4 collisional invariants associated with species, momentum
and energy
F = (5ki)i€S7 ke S7
¢n+l/ = (micui)iES'; V= 17 2737
"t = (Imic} + Eir)ies,
where dg; is the Kronecker symbol, m; the mass of the ith species, c,; the vth coordinate
of ¢; and E;; the energy of internal state I for the ¢th species.

The family of species distribution functions f = (f;)ics is the solution of general-
ized Boltzmann equations in the form

Di(fi) = Si(f) +Ci(f), i€, (1)

where D;(f;) is the usual streaming differential operator, S;(f) the scattering source
term and C;(f) the chemistry source term. The scattering source term has been derived
in [1] for dilute, inert, isotropic, polyatomic gas mixtures and reads

=¥ / T W dejdelde, (2)
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where primes denote values after collision, a;; the degeneracy of the rth quantum energy
shell of the ith species and W,/ '7" the transition probability for an inert collision
between species pair (i, j) going from energy states (1, ) to energy states (', 7). The
transition probabilities satisfy the rec1pr001ty relations W’ 1! airQj; = Wz’; 1 Qi1 Qg
The scattering source term satisfies (1!, S(f)) = 0 for 1 <l < n+ 4, yielding the
macroscopic conservation equations in the form

(", DN = (' C(), 1<i<n+4.

Since chemical reacions conserve momentum and energy, we have {(!,C(f))) = 0 for
n+1 <1 < n+4. The chemistry source term is also orthogonal to the atomic invariants
(niq)ics where n;, is the number of atoms a in species 1.
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We consider a chemical mechanism with an arbitrary number of elementary re-
actions. Although triple nonreactive collisions have been neglected in the scattering
source term, the chemistry source term involves bimolecular and trimolecular reactions.
The latter are indeed important in several applications since recombination reactions
cannot often proceed otherwise [6,9,10]. Elementary reactions are written in the form
Z esi Xj = D ke b Xk for r € R, where S/ and S? are, respectively, the index sets
in the forward and backward reaction and R the indexing set for reactions. Indices
in S,f and Sf,’ are counted with their order of multiplicity. We adopt the notational
convention that an index set with a subscript in parenthesis means that the index has
been removed only once from this set. The reactive source term for the ¢th species may

then be written as C;(f) = >_, ¢ Ci (f) where

ersgﬂkff
HjeS{ Bjs
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(3)
where Vf and v?, are the stoichiometric coefficient of the ith species in the rth elemen-

tary reactlon ,6“ = h3,/(a;;m3) and hp is the Planck constant. Furthermore, W;;Zg

denotes the transition probability for a reactive collision in which the reactants Sf with
internal energy states F, are transformed into products Sf,’ with internal energy states
B,. The reactive transition probabilities satisfy the reciprocity relations

Weigr 11 Bee =Wergr 11 85

kesSt jESf

For bimolecular reactions, these transition probabilities may be expressed in terms of
reactive collision cross-sections but the link between both formalisms is more complex
for three body reactions. Conservation of atomic elements, mass, momentum and
energy is taken into account using Dirac delta functions in the transition probabilities
[5,7,9]. As a simple illustration, the source term for a bimolecular reaction x; + x; &=
Xk + X1 reads

-3 /(fkfl%’ffj“ FoF YW deydegder.
JGQ 11 J

KeQ,
Le@,

Further examples are given in [10].
A fundamental aspect of the kinetic theory of gases is Boltzmann’s H-theorem.
The kinetic entropy is defined as

= —kp Z /fz log(Bir fi) — 1) dc,

1€S
IeQ;



where kp is the Boltzmann constant. The source term in the kinetic entropy conser-
vation equation ¢ may be split into an inert and a reactive contribution

a:J‘S—i-aC,

with O'S = —k‘B leeeg fSZ(f) 10g(,3,'1fi) dCi, O'C = —k‘B leeeg sz(f) log(ﬁufi) dCi.
A straightforward calculation yields Z

0 >0 and o° >0,

showing that the scattering and reactive source terms are compatible with the H-
theorem. Since both contributions are nonnegative independently, particle collisions
always increase entropy regardless of the reactive aspect.

2.2 Chemical regimes in the Enskog expansion

We now seek an approximate solution to the generalized Boltzmann equations (1)
in the framework of the Enskog expansion [2-4]. We rewrite (1) as

Di(f) =SSP+, i€, @
where ¢ is the formal expansion parameter and a depends on the chemical regime under
consideration.

The case a = —1 corresponds to the kinetic equilibrium regime in which chemsitry
characteristic times are of the same order as inert collision times. This regime has been
introduced formally in [5] and further investigated in [10]. Both the zero and first order
macroscopic equations (Euler and Navier-Stokes regimes) express conservation of atom
densities (as opposed to chemical species), momentum and energy. Furthermore, the
entropy source term in the Navier-Stokes regime is shown to be nonnegative [10]. The
kinetic chemical equilibrium regime will not be further discussed here and we refer to
[10] for more details regarding in particular multicomponent transport coefficients.

We now discuss the chemical regimes associated with a = 0 and a = 1, termed
respectively the strong reaction regime and the Maxwellian reaction regime. Expanding
the species distribution functions in the form

fi= (1 +ep; + O(?)),

one readily sees that S;(f%) = 0 for ¢ € S showing that f° = (f?);cs are Maxwellian
distribution functions. The zero order macroscopic equations read

<<¢I’D(f0)>> = 040 «'@blac(fo)»a 1<l <n+4,

and express conservation of species mass for 1 <! < n, momentum for n+1 <[ <n+3
and energy for [ = n + 4. The species source term only arises in the strong reaction
regime which yields the reactive FKuler equations whereas the inert FKuler equations
(', D(fO) =0, 1 <1 < n+ 4, are recovered for the Maxwellian reaction regime.
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Introducing the linearized scattering operator £°

L= > / PG+ ¢ — ¢ = CHWE T desddidd,,
jES TEQ;
I'eQ;
J'EQ;

we define the integral bracket operator as

[€, ¢TI = (f°6 L3O

It is well known that this operator is symmetric [£, (] = [(,&], positive [¢,£] > 0 and
its kernel is spanned by the collisional invariants, i.e. [£,&] = 0 if and only if £ € 7.
The first order perturbation ¢ = (¢;);cs is then shown to be the solution of constrained
integral equations in the form

{ L3(9) = — Di(f2)/ £2 + 6a0Ci(fO)/f2, i€ S,

(5)
(e 9 =0, 1<i<n+4

One can show that ¢ can be written in the form ¢ = ¢° + 6,0¢¢ with obvious notation.

The first order macroscopic equations read

(", D(fO) +D(f°0%) +0a0D(f¢°)) = (', C(f°) +0a00sC(f) fO8), 1<I<n+4.

In the left member, the first term corresponds to the Euler fluxes, the second to the inert
Navier-Stokes fluxes and the third to a chemistry perturbation of the Navier-Stokes
fluxes. This last term yields an additional chemical pressure in the macroscopic pressure
tensor [5,8,11]. In the right member, the first term corresponds to the chemistry source
term evaluated from Maxwellian distributions and is compatible with the law of mass
action while the second term, which is only present in the strong reaction regime,
is a perturbation due to the chemistry source term C;(f®). In terms of macroscopic
variables, this perturbation is the sum of a polynomial in the species number densities
n;, ¢ € S, of degree lower than 2ng plus a polynomial in n;, ¢ € S, of degree lower
than np multiplied by the divergence of the hydrodynamic velocity, where ng is the
maximum number of reactants in reactive collisions (typically 2 or 3). The perturbed
terms are discussed in [12] for monatomic species and in [5,8,11] for polyatomic species.
At second order, the kinetic entropy is given by [21]

E=—kp Y /f;)(log(ﬂuf;)) 1) dei + O(2).
IZEGSZ

An asymptotic expression of the entropy source term is obtained by expanding the
scattering and reactive source terms yielding

0% =e710%, + %5 +etof + O(e?),
0¢ =€%§ +e'of + 0(e?).
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In the Maxwellian reaction regime where a = 1, one easily finds that
02, =0y =04 =0, 0‘1920, 0?20.

As a result, both inert and reactive contributions are nonnegative and have the same
order of magnitude. On the other hand, in the strong reaction regime where a = 0,
only 0%, and o§ vanish, but the reactive contribution o§ + 0§ has no clear sign, in
contradiction with the underlying kinetic framework.

In the rest of this work, we focus on the regime a = 1 or, equivalently, on the
regime ¢ = 0 with the chemical pressure and the perturbation of the chemistry source
term neglected. This latter assumption is in agreement with estimates published in the
literature [12-18]. In terms of macroscopic variables, the Navier-Stokes equations read

Or(pi) + V-(piv) + V-(piVi) =w;, 1 €S,

Or(pv) + V-(pv@v + pI) + V-IL = > b;,
i€ES

B:(pe) + V-((pe + p)v) + V-(Q +TIv) = Y " bi-(v + V),
i€ES

where p; is the density of the ith species, V; its diffusion velocity, w; its mass production
rate, v the hydrodynamic flow velocity, p = Zie g p; the mixture density, p the pressure,
I1 the pressure tensor, b; the external force acting on the ¢th species, e the specific total
energy and () the heat flux. The multicomponent transport fluxes V;, () and II depend
linearly on the macroscopic variable gradients in the form

= =Y  Dij(dj+x;VlogT), i€S,
JjES

| @= _)\VT_pZXjVj‘i‘ZHjVja

JeES jES

( O = —n(Vv+ Vo' — 2(V)l) — 6(V)l,

with d; = (Vp; — bj)/p, p; being the partial pressure of the jth species, H; its vol-
umetric enthalpy and T the temperature. The multicomponent transport coefficients
are the diffusion matrix D = (D;;); jes which is symmetric by construction, the ther-
mal diffusion ratios x = (x;)ics, the thermal conductivity A, the shear viscosity n and
the volume viscosity «. These coefficients depend on the solution of the constrained

integral equations (5). The positivity of the entropy source term of implies that

k>0, n>0, A>0,

Ve = (z1,...,%n), (Dz,z) >0 and ((Dz,2)=0<=2z=c(p1,---,pn))-



3 TRANSPORT LINEAR SYSTEMS

3.1 Mathematical structure

An approximate solution of the constrained integral equations (5) is sought in a
finite dimensional functional space

A = span{ ¢k (r k) € B },

spanned by Laguerre-Sonine polynomials in the translational energy and Wang Chang
and Uhlenbeck polynomials in the internal energy. B is the set of function indices
depending on the energy mode r and species k. Using a standard Galerkin method,
(5) is transformed in a constrained singular system in the form

{Ga:ﬁ’ ©)

a e C,

where G is a matrix of size w, a and 3 are vectors and C' is a vector space, typically of
dimension 0 or 1. In the first case, the matrix GG is nonsingular and in the second case
it has a one-dimensional nullspace. A generic transport coefficient p is then given by
the scalar product of the solution vector « with a given vector 3

p= (o, B,

The transport linear system (6) has several important mathematical properties
which are now briefly reviewed. For more details we refer to [19]. All the following
properties are directly deduced from the kinetic theory framework. They are also
independent of the particular form of the transition probabilities or the interaction
potentials of the molecules.

As a direct consequence of the properties of the bracket operator, we first deduce
that G is symmetric positive semidefinite and positive definite on C' and that the vector
B is in the range of G. Furthermore, the transport linear system (6) admits a unique
solution if and only if the following perpendicularity property holds

I=INA® INA-.

In addition, we point out that the symmetry of G, which is a simple and natural
consequence of the kinetic framework, is important mathematically and numerically.
However, several authors have destroyed artificially this natural symmetry [22,23].

With an eye toward iterative methods to solve approximately the transport linear
systems, we introduce the sparse transport matrix db(G) which only retains couplings
between energy modes for each species

db(Q)y; = Giidri, (r k), (s,1) € B.



For instance, when the index r takes two possible values, the matrix G consists of four
blocks. Assuming for simplicity that these blocks are of size n, we have

o (G2 )
L) G

The sparse transport matrix db(G) has important mathematical properties: the matrix
2db(G) — G is symmetric positive definite for n > 3 and the matrix db(G) is symmetric
positive definite for n > 2. These results are valid assuming the perpendicularity
property and the following two assumptions:

- species localization property

verk e A, TR =0for k #1,
- species orthogonality property
Vies, ofe At

As shown in [19], these 3 assumptions are met for the classical choices of the functional
space A.

3.2 Efficient algorithms for numerical evaluation

The mathematical structure of the transport linear systems derived in the previous
section leads to fast and accurate algorithms for multicomponent transport property
evaluation [20]. Indeed, using the sparse transport matrix db(G), the transport coef-
ficients can be expanded as convergent series which yield approximate expressions by
truncation.

A first family of algorithms relies on standard or projected relaxation methods.
Letting M = db(G), T = I — MG and P = P n(g) the linear projector onto the
contraint space C parallel to the nullspace N(G) of G, one obtains the approximate
expression

1
i = O _(PTYPM™'P'8,8).

3=0

Convergence of this series directly results from the fact that 2db(G) — G is positive
definite. A second family of algorithms uses the conjugate gradient method with the
sparse transport matrix db(G) serving as preconditioner. Note that the symmetry of
the system matrix G is essential in the conjugate gradient method.

In addition to truncated iterative methods, it may be interesting in some situations
to consider a direct numerical inversion of the transport linear system. In this case,
the most computationally effective strategy consists in using the symmetric positive
semidefinite form of the transport linear system. Introducing appropriate symmetric
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rank one perturbations of the system matrix [20], it is then possible to perform a direct
numerical inversion at half the cost with respect to a direct solve of any nonsymmetric
rank one perturbation version of the matrix G.

Truncated iterative methods and direct numerical inversions for all the multi-
component transport coefficients have been implemented in the EGIlib package [24].
EGIib is a multi-purpose fortran library with scalar and vector optimization and is
distributed freely for research purposes. For completeness, several mixture averaged
empirical expressions are also included. The package also handles the case of vanishing
concentrations by considering rescaled versions of the transport linear systems [8,11].

4 ILLUSTRATION: IMPACT ON COMBUSTION APPLICATIONS

In order to illustrate numerically the theoretical results of the previous sections,
we investigate the impact of multicomponent transport on several combustion applica-
tions. We focus on the Soret effect arising from the presence of the thermal diffusion
ratios in the diffusion velocities. The Soret effect tends to drive light species towards
the hot zones of the flow and heavy molecules towards the cold zones. It may thus
play a significant role near flame fronts where strong temperature gradients develop.
After discussing briefly the numerical methods, we study laminar flame propagation,
counterflow flame extinction and multidimensional bunsen flames.

4.1 Numerical model for transport coefficients

In our numerical applications, the collisional cross-sections arising in the transport
linear systems have been estimated using the Mason and Monchick approximations [25].
Although the validity of these approximations appears sometimes questionnable in con-
front to more accurate treatments involving for instance classical or quantal trajectory
methods on potential energy surfaces [26,27], they have been retained in the numerical
simulations because data is available for all the species relevant to combustion. Col-
lisional cross-sections estimated with more advanced methods can be incorporated in
the flame simulations whenever the relevant chemical species have been investigated.

The shear viscosity n is evaluated by considering a system of size n which is
symmetric positive definite. An accurate approximation is obtained after one conjugate
gradient iteration preconditioned by the matrix diagonal

2
(Xies X7 /Hii)
> ijes Xi Xj Hij/(HiiHjj)'

’]7:

where (H;j); jes is the system matrix and X; the mole fraction of the ith species. For
typical mixtures arising in combustion applications, the above expression is at the same
time more accurate and cheaper than the Wilke empirical expression. On the other
hand, the volume viscosity is neglected in the present work since we only consider
low Mach flows where the volume viscosity can be treated as a perturbation of the
hydrodynamic pressure.
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Figure 1. Laminar flame speed (in cm/s) as a function of equivalence ratio.

In order to evaluate the diffusion matrix, we consider the standard transport lin-
ear system of size n, often referred to as Stefan-Maxwell-Boltzmann equations, and a
projected relaxation method. The first iterate reads

Dy = Pdiag(Dp, )ies P*

where D,, ; is a mixture averaged diffusion coefficient of the ith species which can be
evaluated from the binary diffusion coefficients [28]. The projector P ensures overall
mass conservation, i.e. that the sum of the mass diffusion fluxes is zero. In the results
reported below, we consider the second iterate given by

Dy = PZP*.

The matrix Z is dense thus accounting for cross diffusion effects and is detailed in [28].
The thermal conductivity and the thermal diffusion ratios are evaluated from a
transport linear system of size n. This system, derived in [29], is obtained by consider-
ing basis functions in the variational space A which only involve the total energy of the
molecules instead of separating the translational and internal contributions [4,30,31].
Accurate approximations are obtained by performing three conjugate gradient itera-
tions preconditionned by the matrix diagonal. For more details, we refer to [28,29].

4.2 Impact on laminar flame propagation

Freely propagating laminar flames are obtained experimentally by igniting a fuel
and oxydizer mixture inside a tube with negligible heat losses. Under most experimental
conditions, a deflagration wave is observed separating fresh from burnt gases. The
propagation speed is called the laminar flame speed and only depends on the fresh
mixture characteristics. In particular, we are interested in the flame speed as a function
of the equivalence ratio = defined by the molar ratio of fuel to oxydizer in the fresh gases.
= = 1 corresponds to stoichiometric flames, Z > 1 to rich flames where the fuel is in
excess and = < 1 to lean flames where the oxydizer is in excess. The governing equations
for freely propagating flames express conservation of species mass and temperature in
one space dimension and are completed with appropriate boundary conditions [32].
The solution method combines finite difference discretization on locally refined adaptive
grids, Newton iterations and a pseudo-arclength continuation procedure [32,33].
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Figure 2. Counterflow flames; left: peak temperature (K) versus equivalence ratio for
methane/air flames at a strain rate of 1000 s—1; right: peak temperature (K) versus
strain rate for rich hydrogen/air flames with 70 percent hydrogen in mole fraction.

Figure 1 presents the laminar flame speed for hydrogen/air mixtures as a function
of equivalence ratio. The results obtained with and without thermal diffusion are
compared. We observe that flame speeds are lower with thermal diffusion since active
radicals in the reaction zone are less prone to diffuse into the colder ignition zone
thus making flame propagation slower. Flame speeds peak for an equivalence ratio
of 1.6 where the relative difference between both model predictions is 5%. For very
rich flames, flame speeds are slightly higher with thermal diffusion because the thermal
diffusion ratio for the O and OH radicals changes sign at the flame front [32].

4.3 Impact on counterflow flame extinction

We consider symmetric counterflow flames in a laminar, stagnation point flow be-
tween two opposing premixed jets containing both fuel and oxydizer. This configuration
leads to two symmetric counterflow flames. The governing equations expressing conser-
vation of species mass, momentum and energy admit a similarity solution which is given
by a boundary value problem in one space dimension [32]. Flame extinction is con-
trolled by two operating parameters: the equivalence ratio and the strain rate imposed
on the flame by the stagnation point flow. For a given set of operating parameters, a
numerical solution is obtained using the same numerical methods as before.

Numerical results are presented in figure 2. In the left part we consider methane/air
flames at a strain rate of 1000 s—! and for various equivalence ratios. Turning points
indicate extinction (or flammability) limits with the upper solution branch correspond-
ing to stable solutions and the lower branch to unstable solutions. We observe some
differences caused by thermal diffusion in both the lean and rich flammability limits.
For instance, the rich lammability limit is = = 1.21 when the Soret effect is neglected
whereas flames extinguish at Z = 1.17 when the Soret effect is accounted for. In the
right part of figure 2, we consider rich hydrogen/air flames with 70 percent hydrogen in
mole fraction for various strain rates. Again, turning points indicate extinction limits.
We observe the strong impact of the Soret effect on extinction strain rates which are
over 30% lower when the Soret effect is acccounted for.
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Figure 3. Isotherms between 298 and 1732 K for the lean hydrogen/air bunsen flame;
left: with thermal diffusion, right: without thermal diffusion

4.4 Impact on multidimensional bunsen flames

As an illustration for multidimensional flame structures, we consider an axisym-
metric hydrogen/air bunsen flame. A lean premixed hydrogen/air mixture is flown
through a cylindrical injector. When the jet velocity is larger than the laminar flame
speed, a flame of conical shape stabilizes above the lip of the cylindrical burner. The
governing equations for bunsen flames express conservation of species mass, momen-
tum and energy in axisymmetric form and are completed with appropriate boundary
conditions [28]. A numerical solution is obtained using finite difference discretizations,
Newton-Krylov iterations and adaptive gridding techniques.

Isotherms obtained with and without thermal diffusion are presented in figure 3.
We observe that the angle at the cone tip is smaller when thermal diffusion is included,
as a result of slower flame propagation with thermal diffusion. Thermal diffusion also
impacts the spatial distribution of several chemical radicals. For instance, peak values
of H and OH along the symmetry axis are respectively a factor of 4 and 2 lower when
thermal diffusion is included.

5 CONCLUSIONS

In this paper, we considered a generalized Boltzmann equation valid for dilute,
isotropic, polyatomic gas mixtures with chemical reactions. Several chemical regimes
have been investigated in the framework of the first order Enskog regime. Two of
these regimes are compatible with the H-theorem, the kinetic chemical equilibrium
regime and the Maxwellian reaction regime. However, the intermediate regime where
the ratio of reactive to inert characteristic times is large but not too much does not
yield a positive entropy production. We then reviewed the mathematical properties of
the transport linear systems obtained in the Maxwellian reaction regime and presented
efficient approximate expressions based on these properties. Finally, the impact of
multicomponent transport was illustrated in several combustion applications.
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