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IntrodutionWe onsider a �nanial market onsisting of d risky assets with disounted prie proess denotedby S, and one risk-less bond: the trading is allowed only at �xed disrete times. We assumethat the trading strategies are also subjet to portfolio onstraints. Namely, given a losedonvex one K with vertex in 0, the vetor of number of shares invested in the risky assetsis onstrained to lie in K. Suh formalization inludes in partiular inomplete markets andmarkets with short-selling onstraints. It is well-known that in those ontexts, it is not possibleto de�ne an unique fair prie, i.e the initial ost of a strategy repliating a given ontingentlaim, as in the ontext of omplete markets. A possible way of de�ning a prie is to onsiderthe minimal initial wealth needed to hedge without risk the ontingent laim. This is alledthe super-repliation ost and has been introdued in the binomial setup for transation ostsby Bensaid-Lesne-Pag�es-Sheinkman (1992), in a L2 setup for transation osts and short-sales onstraints by Jouini-Kallal (1995a, 1995b) and in the di�usion setup for inompletemarkets by El Karoui-Quenez (1995). In the ontext of onvex onstraints, this notion has beenstudied among others by Cvitani�-Karatzas (1993), Karatzas-Kou (1996), Broadie-Cvitani�-Soner (1998) and in a great generality by F�ollmer-Kramkov (1997). In those papers a dualformulation is given. Namely, the super-repliation ost of an European ontingent laim,H, is essentially the supremum over a given set of probability of the expetation of H (or amodi�ation of H). Nevertheless this dual formulation does not enable in general to e�etivelyompute the super-repliation prie.Our aim is to provide a losed formula for European and Amerian style options under generalassumptions on the underlying S (namely, an usual non degeneray ondition), and also to givethe hedging strategy. We will see that, in the ase of European vanilla options, �nding thesuper-repliation prie redues to ompute some onave envelop of the payo� funtion. Formore general options, it involves reursive omputations using again kind of onave envelops.The oeÆients of the aÆne funtion whih appears in the onave envelop give the hedgingstrategy. The appliation of this algorithm turns to be simple to derive the super-repliationpries of all usual options. Simultaneously and independently from our work, Patry (2001)obtains a similar formula, in the Blak-Sholes ase, for an European vanilla option.Our e�etive omputation shows that in most of ases, the super-repliation pries are trivial inthe sense that they orrespond to basi strategies suh as "Buy and Hold". In partiular, for anEuropean all option, the super-repliation prie is equal to the initial prie of the underlying:this result has been already obtained in the ontext of transation osts by Cvitani�-Shreve-Soner (1995) and Cvitani�-Pham-Touzi (1999a), and for a ontinuous time stohasti volatilitymodel by Cvitani�-Pham-Touzi (1999b).The paper is organized as follows. In setion 1, we desribe the �nanial model and give thenotation of the paper. Then, we reall the notion of No Arbitrage and state a dual formulationfor the super-repliation problem: while this result is standard, it has not been yet stated in1



our ontext (this is Theorem 1.2, whih proof is postponed in Appendix). Setion 2 is devotedto the main results of the paper, i.e. losed formulae for the super-repliation pries, andtheir proofs. In Setion 3, we e�etively ompute the super-repliation prie for Europeanand Amerian style exoti options (inluding Asian, Lookbak or Barrier options), when thereis only one risky asset without one onstraints (See table 1 for those expliit omputations).These results hold true if the underlying asset law admits a positive density w.r.t. the Lebesguemeasure: it inludes for example Blak-Sholes model, general stohasti di�erential equations,stohasti volatility models, or models governed by Brownian motion and Poisson proess. Wewill also see that inreasing the number of hedging dates does not modify the super-repliationpries.1 The �nanial model and super-repliation theorem1.1 Notations and de�nitionsLet T > 0 be a �nite time horizon and set T = f0; 1; : : : ; Tg: the �nanial market modelonsists of one risk-less asset with prie proess normalized to one and d risky assets with prieproess S = fSt = (S1t ; :::; Sdt )�; t = 0; :::; Tg valued in (0;1)d. Here the notation � is for thetransposition. The stohasti prie proess (St)t2T is de�ned on a omplete probability spae(
;F ; P ) equipped with the �ltration IF = fFt; t 2 T g, where the �-�eld Ft is generated by therandom variables S0; S1; � � � ; St. We make the usual assumption that F0 is trivial and FT = F .A trading portfolio is a IRd-valued IF -adapted proess � = f�t = (�1t ; : : : ; �dt )�; t = 0; :::; T �1g,where �it represents the amount of wealth invested in the i-th risky asset at time t. The IR-valued IF -adapted proess C = fCt; t 2 T g represents the umulative onsumption proess. Weassume that C0 = 0 and that C is non-dereasing. We also use the notation �St = St � St�1and �Ct = Ct � Ct�1, for t = 1; :::; T:Given an initial wealth x 2 IR, a trading portfolio �; and a umulative onsumption proess C,the wealth proess Xx;�;C is governed by :Xx;�;C0 = xXx;�;Ct = Xx;�;Ct�1 + ��t�1�St ��Ct; for t = 1; : : : ; T: (1.1)The indution equation (1.1) leads toXx;�;Ct = x + tXu=1 ��u�1�Su � Ct; t 2 T :The ondition C = 0 means that the portfolio � is self-�naned. We now impose some on-straints on the trading portfolios. Let K be a losed onvex one of IRd with vertex in 0. Forany x 2 [0;1), we say that a trading strategy (x; �; C) is admissible, and we denote (x; �; C)2



2 A; if for all t = 0; : : : ; T � 1, �t 2 K a.s. Suh onstraints over in partiular the ase ofinomplete markets (K = fk 2 IRd : ki = 0; i = 1; :::; ng : it is impossible to trade in the n�rst risky assets) and short-sales onstraints (K = [0;1)d).Let H be an European ontingent laim, i.e., a FT -measurable random variable. FollowingF�ollmer and Kramkov (1997), we introdue the notion of minimal hedging strategy for H.First, an European H hedging strategy is a strategy (x; �; C) 2 A suh that Xx;�;CT � H a.s.We will denote by AeH the set of European H hedging strategies. Then, (x̂; �̂; Ĉ) 2 AeH isminimal if for all (x; �; C) 2 AeH Xx;�;Ct � X x̂;�̂;Ĉt a.s for all t 2 T . Note that x̂ is then theso-alled super-repliation ost pe(H) of H, i.e the minimal initial apital needed for hedgingwithout risk H: pe(H) = inffx 2 IR : 9 (�; C) s.t. (x; �; C) 2 AeHg:It is straighforward that x̂ � p(H). Conversely, set x 2 IR suh that there exists (�; C) with(x;�; C) 2 AeH , then by minimality of X x̂;�̂;Ĉ, x � x̂ and taking the in�mum over suh x, weget the reverse inequality.We now de�ne the same notion for Amerian ontingent laim (Ht)t2T . An Amerian Hhedging strategy is some (x; �; C) 2 A suh that for all t 2 T , Xx;�;Ct � Ht a.s. We will denoteby AaH the set of Amerian H hedging strategies. Then (x̂; �̂; Ĉ) 2 AaH is minimal if for all(x; �; C) 2 AaH , Xx;�;Ct � X x̂;�̂;Ĉt a.s, for all t 2 T . Again x̂ is the super-repliation ost pa(H)of H, i.e pa(H) = inffx 2 IR : 9 (�; C) s.t. (x; �; C) 2 AaHg:We now reall the usual notion of No-Arbitrage, whih haraterization is meaningful for super-repliation theorem 1.2.De�nition 1.1 We say that there is no arbitrage opportunity if, for all trading strategies �suh that (0;�; 0) 2 A, we haveX0;�;0T � 0 a.s =) X0;�;0T = 0 a.s.In Pham and Touzi (1999), a haraterization of this no-arbitrage ondition is provide and tostate it, we introdue the following two sets:K̂ = �x 2 IRd : ��x � 0; 8� 2 K	 :P = �Q � P : dQdP 2 L1; �St 2 L1(Q) and EQ[�StjFt�1℄ 2 K̂; 1 � t � T P � a.s.� :We also need a non-degeneray assumption. This assumption is essential to prove Theorem 1.1below: if it fails to hold, the set of �nal dominated payo�s may not be losed, see Brannath(1997). 3



Assumption 1.1 Let t = 1; : : : ; T . Then for all Ft�1-measurable random variables ' valuedin K, '��St(!) = 0 =) '(!) = 0 for a.e. ! 2 
 :Models studied in setion 3 ful�ll the above assumption.Theorem 1.1 (Pham-Touzi, 1999).Under Assumption 1.1, the no arbitrage ondition is equivalent to P 6= ;:Finally, let St;T be the set of all stopping w.r.t. the �ltration IF suh that t � � � T .1.2 Super-repliation TheoremOur starting point to derive losed formulae for super-repliation pries is the dual formulationof the super-repliation theorem. It states that the super-repliation ost of an European(resp. Amerian) ontingent laim, H (resp (Ht)t2T ), is essentially the supremum over anyprobability measure Q in given set P (resp. and every stopping time � less than T ) of EQ(H)(resp EQ(H� )): this is given by Theorem 1.2. We give the proof of this non surprising result,sine to our knowledge, it has not been done before in our ontext.Indeed, F�ollmer and Kramkov (1997) obtain, via an Optional Deomposition Theorem, forontinuous time asset prie proess and onvex onstrained the super-repliation Theorem (thisis no longer the expetation of H but of a modi�ation of H whih takes into aount theonvex onstraints). But to deal with this great generality, they have to assume �rst thatthe wealth proess is non negative; seond, the strategy � has to be hosen so that the setf(Ptu=1 ��u�1�Su)t=1:::Tg is loally bounded from below: in a disrete setup, with say T = 1, thisboundedness Assumption implies to hoose �0 � 0 or S1 bounded, whih is rather restritive.The works of F�ollmer-Kabanov (1998), Sh�al (1999) and Pham (2000) show that the disretetime struture should allow to avoid this two Assumptions. More preisely, Sh�al (1999) provedthe super-repliation Theorem for European and Amerian Claims, for a L2-setup but withoutonstraints on the strategy and Pham (2000) for a Lp setup with one onstraints on thestrategy but only for European Claims.Our proof is a bit original sine the result for Amerian laims is obtained thanks to that forEuropean ones.Theorem 1.2 Suppose that Assumption 1.1 and the no arbitrage ondition hold.Let H be an European ontingent laim, assume thatsupQ2P EQ [H℄ <1:Then, there exists a minimal hedging strategy (x̂; �̂; Ĉ) 2 AeH suh thatX x̂;�̂;Ĉt = ess supQ2P EQ [H j Ft℄ :4



In partiular, pe(H) = x̂ = supQ2P EQ [H℄ :Let (Ht)t2T be an Amerian ontingent laim, assume that,sup�2S0;T ;Q2PEQ [H� ℄ <1;Then, there exists a minimal hedging strategy (x̂; �̂; Ĉ) 2 AaH suh thatX x̂;�̂;Ĉt = ess sup�2St;T ;Q2P EQ [H� j Ft℄ :In partiular, pa(H) = x̂ = sup�2S0;T ;Q2PEQ [H� ℄ :Proof. See Appendix.2 The main resultsOur main objetive now is to derive losed formulae for the super-repliation pries in themathematial bakground de�ned above: while the essential supremum involved in Theorem1.2 are diÆult to be diretly evaluated beause of the set P, the pries given by formulae fromTheorems 2.1 and 2.2 are simple to ompute.Let us introdue two notations:� we will denote by �j(S0; : : : Sj�1), the onditional law of Sj knowing Fj�1.� the law of the vetor (S0; : : : ; Sj) will be denoted by IPj.First we treat the European ase. For a measurable funtion h from (IRd)T+1 into IR, we de�nea sequene of operator, based on kinds of onave envelops, by�eTh(x0; : : : ; xT ) = h(x0; : : : ; xT ) (2.1)�ejh(x0; : : : ; xj) = ess inf(�;�)2IR�Kff�ej+1h�;� g(x0; : : : ; xj) 0 � j � T � 1 (2.2)where, for u from (IRd)j+2 into IR, one hasfu�;�(x0; : : : ; xj) = � � + ��xj if �j+1(x0; : : : ; xj) fz : � + ��z < u(x0; : : : ; xj; z)g = 0+1 otherwise. (2.3)The essential in�mum in (2.2) is related to the measure IPj. Then the following theorem holds.5



Theorem 2.1 Assume Assumption 1.1 and the no arbitrage ondition.Let H = h(S0; : : : ; ST ) be an European ontingent laim, for some measurable funtion h from(IRd)T+1 into IR. Assume that supQ2P EQ [H℄ <1:Then, there exists a minimal hedging strategy (x̂; �̂; Ĉ) 2 AeH and its value at time t � T isX x̂;�̂;Ĉt = �eth(S0; : : : ; St) IPt � a:s:In partiular, pe(H) = �e0h(S0):We now turn to the Amerian ase, by onsidering (ht)t2T a family of measurable funtionssuh that for t 2 T , ht maps (IRd)t+1 into IR. We de�ne a new sequene of operator �a replaingthe equations (2.1) and (2.2) by�aTh(x0; : : : ; xT ) = hT (x0; : : : ; xT ) (2.4)�ajh(x0; : : : ; xj) = �ess inf(�;�)2IR�Kff�aj+1h�;� g _ hj� (x0; : : : ; xj) 0 � j � T � 1: (2.5)Then we getTheorem 2.2 Assume Assumption 1.1 and the no arbitrage ondition.Let H = (Ht)t2T be an Amerian ontingent laim, suh thatsup�2S0;T ;Q2PEQ [H� ℄ <1:For t 2 T , we denote by ht a measurable funtion from (IRd)t+1 into [0;1) suh that Ht =ht(S0; : : : ; St) a:s:Then, there exists a minimal hedging strategy (x̂; �̂; Ĉ) 2 AaH and its value at time t � T isX x̂;�̂;Ĉt = �at h(S0; : : : ; St) a:s: (2.6)In partiular, pa(H) = �a0h(S0):Theorem 1.2 proves the existene of an optimal strategy and thus, from Theorems 2.1 and 2.2,we an easily dedue that the essential in�ma, involved in the de�nition of operators �e and �a,are attained. It turns that the optimal portfolio is the optimal � from (2.2) and (2.5), whih is6



easy to ompute in the pratial examples (see setion 3).Proof of Theorems 2.1 and 2.2We only give the proof for Amerian ontingent laims, sine the European ase is very similar.In the following we will denoteIu(x0; : : : ; xj) = f(�; �) 2 IR�K j �j+1(x0; : : : ; xj)fz j � + ��z < u(x0; : : : ; xj; z)g = 0g:(2.7)First, it is easy to hek that the measurability of u implies that of the funtions fu�;�. Thus,reursively, by de�nition of the essential in�mum and remembering that eah ht is measurable,we an prove that eah �ath is also measurable.First step: X x̂;�̂;Ĉt � �at h(S0; � � �St) IPt � a:s:Conditionally on FT�1, let (�; �) 2 IhT (S0; : : : ; ST�1); then, by (2.7)hT (S0; : : : ; ST�1; z) � �+ ��z ; �T (S0; : : : ; ST�1)� a:e:Let Q 2 P; sine Q is in partiular equivalent to P on FT�1, one getsIEQ [hT (S0; : : : ; ST ) j FT�1℄ � IEQ[� + ��ST j FT�1℄� � + ��ST�1 IPT�1 � a:s:using that EQ[�StjFt�1℄ 2 K̂. By (2.3), it follows thatIEQ [hT (S0; : : : ; ST ) j FT�1℄ � fhT�;�(S0; : : : ; ST�1) IPT�1 � a:s: 8 �; � 2 IR�K:and thus,IEQ [hT (S0; : : : ; ST ) j FT�1℄ � ess inf(�;�)2IR�KffhT�;�g(S0; : : : ; ST�1) IPT�1 � a:s:� �aT�1h(S0; : : : ; ST�1) IPT�1 � a:s: : (2.8)Let � 2 St;T . Writing H� = H�1��T�1 + HT1�>T�1, it follows from (2.5) and (2.8), thatIPT�1 a:s: one hasIEQ [H� j FT�1℄ � 1��T�1�a�h(S0; : : : ; S� ) + 1�>T�1�aT�1h(S0; : : : ; ST�1)� �a(T�1)^�h(S0; : : : ; S(T�1)^� ):Reursively, repeating the same kinds of arguments with �aT�1h; � � � ;�at+1h, we getIEQ[H� j Ft℄ � �at^�h(S0; : : : ; St^� ) = �ath(S0; : : : ; St) IPt a:s: :7



Now, take the essential supremum on Q 2 P and � 2 St;T , and reall that by Theorem 1.2,there exists (x̂; �̂; Ĉ) 2 AaH suh that X x̂;�̂;Ĉt = ess sup�2St;T ;Q2P EQ [H� j Ft℄: the �rst inequality isompleted.Seond step: Xx;�;Ct � �at h(S0; � � �St) IPt � a:s:, for any (x;�; C) 2 AaH .Let (x;�; C) 2 AaH. Put �� = x + T�1Pi=1 ��i�1�Si � ��T�1ST�1 and �� = �T�1: remark thatonditionally on FT�1, (��; ��) belongs to IhT (S0; : : : ; ST�1). Thus, one has IPT�1 � a:s:Xx;�;CT�1 � x+ T�1Xi=1 ��i�1�Si = �� + ���ST�1 = fhT��;��(S0; : : : ; ST�1)� ess inf(�;�)2IR�KffhT�;�g(S0; : : : ; ST�1);and by de�nition of a H hedging portfolio of an Amerian ontingent laim, we onludeXx;�;CT�1 � �aT�1h(S0; : : : ; ST�1) IPT�1 � a:s: :Repeating this proess, one gets the result for the seond step. In partiular, this holds truefor the minimal strategy and Theorem 2.2 is proved.3 Appliation: some super-repliation priesIn this setion, we restrit to one risky asset (d = 1) and we onsider the unonstrained ase(K = IR).3.1 Spei�ation of the modelsThe expliit pries put together in table 1 are available if for eah j 2 f1; :::; Tg, the measure�j(S0; :::; Sj�1) is equivalent to the Lebesgue measure on (0;1): in that ase, Assumption 1.1is ful�lled and all the measures involved in the essential in�ma an be taken as the Lebesguemeasure. Atually, the existene of a positive density for the orresponding law is very oftensatis�ed: we list some examples, illustrating by the way that the results over a wide lass of�nanial models. Note that tree models do not satisfy this ondition of existene of a densityw.r.t. the Lebesgue measure.� The well-known stohasti di�erential equation of Blak-Sholes:dStSt = �dt+ �dWt:For � 6= 0, it is lear that this proess satis�es the required ondition.8



� A non Markovian generalized version of the model above:dStSt = �(t; (Ss)0�s�t)dt+ �(t; (Ss)0�s�t)dWt;with the non degeneray ondition �(:; :) � �0 > 0.For the existene of the positive density, see Kusuoka-Strook (1984).� A stohasti volatility model: dStSt = �dt+ �tdWtwhere (�t)t�0 is a ontinuous time proess with �0 6= 0, independent of the Brownianmotion W . It is easy to hek the existene of the positive density.� Merton's model with jumps (1976): this is a generalization of Blak-Sholes model in-luding Poisson type jumps. It is de�ned bySt = S0 NtYj=1(f(Yj) + 1)! e�Wt+(���2=2)t;where (f(Yj))j�1 are i.i.d. random variables, stritly greater than �1, Nt is a Poissonproess with arrival rate �, and Wt is a standard Brownian motion, all of them beingindependent. For this homogeneous Markov proess, it is easy to prove the existene ofa positive density w.r.t. Lebesgue measure on (0;1) assuming � 6= 0.3.2 Computation of the priesWe sketh the proofs of some results of table 1: it somehow redues to ompute iterative onaveenvelops (w.r.t. the lebesgue measure on (0;1)), whih is easy for the usual options.3.2.1 Vanilla OptionsWe �rst onsider the ase of an European Call option whose payo� is h(x0; : : : ; xT ) = (xT �K)+. Applying formulae (2.2), one �rst gets �eT�1h(x0; : : : ; xT�1) = xT�1 (see �gure 1); by astraightforward iteration, it follows that �ejh(x0; : : : ; xj) = xj, and thus pe(H) = �e0h(S0) = S0.Analogously, for the European Put h(x0; : : : ; xT ) = (K � xT )+, one gets �ejh(x0; : : : ; xj) = K,and thus pe(H) = K. These results have already been obtained by Patry (2001).For the Amerian style options, analogous omputations provide the same pries as above.
9
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Figure 1: Computation of onave envelops for the Call option.

x
T−1

x
T−1

< U,...,< Ux
0

1 x T−1 (1−K/U)

0 K xU

U−K T−1
Γ e(x  ,...,x     ) = 

T−10 h (x  ,...,x     ) = 
T−10

a
h

T−1
Γ

< Ux
0

1
T−10

(x  ,...,x    ,x)h                         =

x
T−1

< U,...,            , x < U (x−K)+

Figure 2: Computation of onave envelops for the Up and Out Call option.
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3.2.2 Barrier OptionsLet us onsider, for example, the ase of an European Up and Out Call whose payo� ish(x0; : : : ; xT ) = TQi=0 1xi<U(xT � K)+, assuming S0 < U and K < U . For given x0; : : : ; xT�1less than U , the onave envelop of the funtion (xT �K)+1xT<U is given by the funtion x 7!(x^U)(1�K=U); hene, one has �eT�1h(x0; : : : ; xT�1) = T�1Qi=0 1xi<UxT�1(1�K=U) (see �gure 2).For the assoiated Amerian laim for whih hj(x0; : : : ; xj) = jQi=0 1xi<U(xj�K)+, one also gets�aT�1h(x0; : : : ; xT�1) = T�1Qi=0 1xi<UxT�1(1 � K=U). Iteratively, one obtains �ejh(x0; : : : ; xj) =�ajh(x0; : : : ; xj) = jQi=0 1xi<Uxj(1�K=U). Finally, this proves pe(H) = pa(H) = S0(1�K=U).3.2.3 ExtensionAssume that the ontingent laim H = h(S0; � � � ; ST ) an be trade at some extra dates. Then,the de�nition of the super-repliation prie should imply more rebalaning dates. But, it iseasy to prove, in our ontext of onditional laws equivalent to the Lebesgue measure, that thesuper-repliation pries are unhanged. For example, onsider a monthly monitored barrieroption with expiration date equal to one year: if we are allowed to hedge eah month, or eahday, or even eah hour, the super-repliation prie will be the same.4 ConlusionUnder mild onditions on the underlying assets (Assumption 1.1), when the trading is disreteand onstrained to lie in a losed onvex one, we give a reursive formula to ompute thesuper-repliation prie and the optimal strategy for European and Amerian ontingent laims.In ontrast with the usual dual formulation of Theorem 1.2, this losed formula is tratable.When the onditional law of the asset proess is equivalent to the Lebesgue measure, we performexpliit omputations for the usual options. What learly happens is that the super-repliationpries are somehow very high. It is already known that in the ontext of imperfet ontinuous�nanial markets, the super-repliation prie of an European all is equal to S0. Our resultsshow that even in the very simple ontext of the Blak-Sholes model when only disretetime strategies are allowed, a seller of an European all will not be able to hedge his positionwithout risk, if he requires an initial wealth smaller than S0. It reinfores the neessity toturn to other onepts to prie options suh as minimization of shortfall risk or pries based onutility funtions (see F�ollmer-Leukert (1999), and Hodges-Neuberger (1989) among others).
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Name Payo� European Prie Amerian PrieCall (ST �K)+ S0 S0Put (K � ST )+ K KAsian Call (Fixed strike) � TPi=1 aiSi �K�+ S0� TPi=1 ai� �T�1Pi=2 1i + 2T�S00 � ai (ai = 1=T )Asian Call (Floating Strike) � TPi=1 aiSi � ST�+ S0�T�1Pi=1 ai� � TPi=2 1i�S00 � ai � 1 (ai = 1=T )Asian Put (Fixed strike) �K � TPi=1 aiSi�+ K K0 � aiAsian Put (Floating Strike) �ST � TPi=1 aiSi�+ S0(1� aT ) S0(1� aT )0 � ai � 1Partial Lookbak Call (ST � �min(S1; : : : ; ST ))+ S0 S0� 2 [0; 1℄Call on maximum (max(S1; : : : ; ST )�K)+ T S0 T S0Barrier Up and Out Call Q 1Si<U(ST �K)+ S0(1�K=U) S0(1�K=U)(K < U; S0 < U)Barrier Up and Out Put Q 1Si<U(K � ST )+ K K(S0 < U)Barrier Up and In Call 19i=Si>U(ST �K)+ S0 S0Barrier Up and In Put 19i=Si>U(K � ST )+ S0K=U S0K=U(S0 < U)Barrier Down and Out Call Q 1Si>L(ST �K)+ S0 S0(S0 > L)Barrier Down and Out Put Q 1Si>L(K � ST )+ K � L K � L(S0 > L;K > L)Barrier Down and In Call 19i=Si<L(ST �K)+ L1L<K + S01L>K L1L<K + S01L>K(S0 > L)Barrier Down and In Put 19i=Si<L(K � ST )+ K K(S0 > L)Table 1: Expliit super-repliation pries of some options
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Appendix: Proof of theorem 1.2The proof of the European ase is a straightforward adaptation of Pham (2000) (see appendixA, p.679) who is working in the Lp setup. Indeed, the diÆult point is to show that the set ofrandom variables dominated by the terminal wealth of admissible strategies starting from 0 islosed in probability and this has been proved by Brannath (1997) in a general ontext. Weomit details.For the Amerian ase, let (Ht)t2T be an Amerian payo� suh thatsupQ2P;�2S0;T IEQ[H� ℄ <1: (4.9)By analogy with the usual dynami programming equation, we introdue the proess Yt de�nedby YT = HTYt = Ht _ ess supQ2P IEQ [Yt+1 j Ft℄ for t = 0; : : : ; T � 1:Set At = fHt � ess supQ2P IEQ [Yt+1 j Ft℄g and�T = T�t = t1At + �t+11At :Note that eah �t belongs to St;T : �0 will play the role of an optimal stopping time. Atually,the proof of the Amerian part of Theorem 1.2 follows from the following lemma.Lemma 4.1 With the above notation and Assumption 4.9, there exists a minimal strategy(Y0; �̂; Ĉ) 2 AaH suh thatXY0;�̂;Ĉt = Yt = ess supQ2P IEQ[H�t j Ft℄ = ess supQ2P;�2St;T IEQ[H� j Ft℄:We now turn to its proof.Step 1: Xx;�;Ct � ess supQ2P;�2St;T IEQ[H� j Ft℄ for any (x; �; C) 2 AaH . The result is lear usingthe admissibility of the Amerian strategy and the super-martingale property of Xx;�;C underany Q 2 P.Step 2: ess supQ2P IEQ[H�t j Ft℄ � Yt. We proeed by indution. Clearly, the property holdswhen t = T . Assume now that it holds for t + 1, and let denote by (pe(H�t+1); ~�t+1; ~Ct+1) the13



minimal strategy for the European laim H�t+1, using Theorem 1.2. Thus, one dedues fromthe de�nition of Yt thatYt = 1At Ht + 1At ess supQ2P IEQ[Yt+1 j Ft℄� 1At Ht + 1At ess supQ2P IEQ[ess supQ2P IEQ[H�t+1 j Ft+1℄ j Ft℄ by indution� 1At Ht + 1At ess supQ2P IEQ[Xpe(H�t+1);~�t+1; ~Ct+1t+1 j Ft℄� 1At Ht + 1At Xpe(H�t+1 );~�t+1; ~Ct+1t using the super-martingale property� 1At Ht + 1At ess supQ2P IEQ[H�t+1 j Ft℄ = ess supQ2P IEQ[H�t j Ft℄:Step 3: there exists a strategy (Y0; �̂; Ĉ) 2 AaH suh that XY0;�̂;Ĉt = Yt. Let (xt; �t; Ct) be theminimal strategy assoiated to the European ontingent laim Yt: we an take �tu = �Ctu+1 = 0for u � t, so that Xxt;�t;Ctt = Xxt;�t;CtT � Yt. Set�̂t = �t+1t for t = 0; : : : ; T � 1�Ĉt = Yt�1 � Yt + �tt�1��St for t = 1; : : : ; T:We �rst prove that �Ĉt is non negative. Theorem 1.2 for the European laim Yt yields�Ĉt � �Xxt;�t;Ctt�1 + Yt�1 +�Ctt = �ess supQ2P IEQ[Yt j Ft�1℄ + Yt�1 +�Cttwhih is non negative by de�nition of Yt�1. This proves that (Y0; �̂; Ĉ) 2 A. We now show byindution that XY0;�̂;Ĉt = Yt: this will also omplete the proof of (Y0; �̂; Ĉ) 2 AaH . For t = 0,this is obvious. If the property holds true at time t, we dedue thatXY0;�̂;Ĉt+1 = XY0;�̂;Ĉt + �̂�t�St+1 ��Ĉt+1 = Yt + �̂t+1t ��St+1 ��Ĉt+1 = Yt+1;by de�nition of the onsumption �Ĉt+1.The ombination of the three steps leads to the equality of Lemma 4.1; taking into aountStep 1, we prove the minimality of the strategy (Y0; �̂; Ĉ).Referenes[BCS98℄ M. Broadie, J. Cvitani, and M. Soner. Optimal repliation of ontingent laimsunder portfolio onstraints. Rev. of Finanial Studies, 11:59{79, 1998.[BLPS92℄ B. Bensaid, J.P. Lesne, H. Pages, and J. Sheinkman. Derivative asset priing withtransation osts. Math. Finane, 2(2):63{86, 1992.14



[Bra97℄ W. Brannath. No-Arbitrage amd Martingale Measures in Option Priing. PhDthesis, Universit�at Wien, Vienna, Austria, 1997.[CK93℄ J. Cvitani� and I. Karatzas. Hedging ontingent laims with onstrained portfolios.Ann. Appl. Probab., 3(3):652{681, 1993.[CPT99a℄ J. Cvitani�, H. Pham, and N. Touzi. A losed formula for the problem of super-repliation under transation osts. Finane Stoh., 3(1):35{54, 1999.[CPT99b℄ J. Cvitani�, H. Pham, and N. Touzi. Super-repliation in stohasti volatility modelsunder portfolio onstraints. J. Appl. Probab., 36(2):523{545, 1999.[CSS95℄ J. Cvitani�, S.E. Shreve, and H.M. Soner. There is no nontrivial hedging portfoliofor option priing with transation osts. Ann. Appl. Probab., 5(2):327{355, 1995.[FK97℄ H. F�ollmer and D. Kramkov. Optional deompositions under onstraints. Probab.Theory Related Fields, 109(1):1{25, 1997.[FK98℄ H. F�ollmer and Y.M. Kabanov. Optional deomposition and Lagrange multipliers.Finane Stoh., 2(1):69{81, 1998.[FL99℄ H. F�ollmer and P. Leukert. Quantile hedging. Finane Stoh., 3(3):251{273, 1999.[HN89℄ S.D. Hodges and A. Neuberger. Optimal repliation of ontingent laims undertransation osts. Review of Futures Markets, 8:222{239, 1989.[JK95a℄ E. Jouini and H. Kallal. Arbitrage in seurities markets with short-sales onstraints.Math. Finane, 5(3):197{232, 1995.[JK95b℄ E. Jouini and H. Kallal. Martingales and arbitage in seurities markets with trans-ation osts. J. Eon. Theory, 66(1):178{197, 1995.[KK96℄ I. Karatzas and S.G. Kou. On the priing of ontingent laims under onstraints.Ann. Appl. Probab., 6(2):321{369, 1996.[KQ95℄ N. El Karoui and M.C. Quenez. Dynami programming and priing of ontingentlaims in an inomplete market. SIAM J. Control Optim., 33(1):29{66, 1995.[KS84℄ S. Kusuoka and D. Strook. Appliations of the Malliavin alulus I. in: K.Itô,ed., Stohasti Analysis, Pro. Taniguhi Internatl. Symp. Katata and Kyoto 1982,Kinokuniya, Tokyo, pages 271{306, 1984.[Mer76℄ R.C. Merton. Option priing when underlying stok returns are disontinuous. Jour-nal of Finanial Eonomis, 3:125{144, 1976.15
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