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Abstract

We consider a financial model with mild conditions on the dynamic of the underly-
ing asset. The trading is only allowed at some fixed discrete times and the strategy is
constrained to lie in a closed convex cone. In this context, we derive closed formulae to
compute the super-replication prices of any contingent claim which depends on the values
of the underlying at the discrete times above. As an application, when the underlying
follows a stochastic differential equation including stochastic volatility or Poisson jumps,
we compute those super-replication prices for a range of European and American style
options, including Asian, Lookback or Barrier Options.
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Introduction

We consider a financial market consisting of d risky assets with discounted price process denoted
by S, and one risk-less bond: the trading is allowed only at fixed discrete times. We assume
that the trading strategies are also subject to portfolio constraints. Namely, given a closed
convex cone K with vertex in 0, the vector of number of shares invested in the risky assets
is constrained to lie in K. Such formalization includes in particular incomplete markets and
markets with short-selling constraints. It is well-known that in those contexts, it is not possible
to define an unique fair price, i.e the initial cost of a strategy replicating a given contingent
claim, as in the context of complete markets. A possible way of defining a price is to consider
the minimal initial wealth needed to hedge without risk the contingent claim. This is called
the super-replication cost and has been introduced in the binomial setup for transaction costs
by Bensaid-Lesne-Pages-Scheinkman (1992), in a £? setup for transaction costs and short-
sales constraints by Jouini-Kallal (1995a, 1995b) and in the diffusion setup for incomplete
markets by El Karoui-Quenez (1995). In the context of convex constraints, this notion has been
studied among others by Cvitani¢-Karatzas (1993), Karatzas-Kou (1996), Broadie-Cvitani¢-
Soner (1998) and in a great generality by Follmer-Kramkov (1997). In those papers a dual
formulation is given. Namely, the super-replication cost of an European contingent claim,
H, is essentially the supremum over a given set of probability of the expectation of H (or a
modification of H). Nevertheless this dual formulation does not enable in general to effectively
compute the super-replication price.

Our aim is to provide a closed formula for European and American style options under general
assumptions on the underlying S (namely, an usual non degeneracy condition), and also to give
the hedging strategy. We will see that, in the case of European vanilla options, finding the
super-replication price reduces to compute some concave envelop of the payoff function. For
more general options, it involves recursive computations using again kind of concave envelops.
The coefficients of the affine function which appears in the concave envelop give the hedging
strategy. The application of this algorithm turns to be simple to derive the super-replication
prices of all usual options. Simultaneously and independently from our work, Patry (2001)
obtains a similar formula, in the Black-Scholes case, for an European vanilla option.

Our effective computation shows that in most of cases, the super-replication prices are trivial in
the sense that they correspond to basic strategies such as ”Buy and Hold”. In particular, for an
European call option, the super-replication price is equal to the initial price of the underlying:
this result has been already obtained in the context of transaction costs by Cvitani¢-Shreve-
Soner (1995) and Cvitani¢-Pham-Touzi (1999a), and for a continuous time stochastic volatility
model by Cvitani¢-Pham-Touzi (1999b).

The paper is organized as follows. In section 1, we describe the financial model and give the
notation of the paper. Then, we recall the notion of No Arbitrage and state a dual formulation
for the super-replication problem: while this result is standard, it has not been yet stated in



our context (this is Theorem 1.2, which proof is postponed in Appendix). Section 2 is devoted
to the main results of the paper, i.e. closed formulae for the super-replication prices, and
their proofs. In Section 3, we effectively compute the super-replication price for European
and American style exotic options (including Asian, Lookback or Barrier options), when there
is only one risky asset without cone constraints (See table 1 for those explicit computations).
These results hold true if the underlying asset law admits a positive density w.r.t. the Lebesgue
measure: it includes for example Black-Scholes model, general stochastic differential equations,
stochastic volatility models, or models governed by Brownian motion and Poisson process. We
will also see that increasing the number of hedging dates does not modify the super-replication
prices.

1 The financial model and super-replication theorem

1.1 Notations and definitions

Let T > 0 be a finite time horizon and set 7 = {0,1,...,T}: the financial market model
consists of one risk-less asset with price process normalized to one and d risky assets with price
process S = {S; = (S},...,59)*,t = 0,...,T} valued in (0,00)% Here the notation * is for the
transposition. The stochastic price process (Sy)ie7 is defined on a complete probability space
(Q, F, P) equipped with the filtration IF' = {F;,t € T}, where the o-field F; is generated by the
random variables Sy, Sy, -, 5;. We make the usual assumption that g is trivial and Fp = F.
A trading portfolio is a IR%-valued IF-adapted process ¢ = {¢; = (¢},... ,¢{)*,t =0,...,T —1},
where ¢! represents the amount of wealth invested in the i-th risky asset at time ¢. The IR-
valued IF-adapted process C' = {C},t € T} represents the cumulative consumption process. We
assume that Cy = 0 and that C' is non-decreasing. We also use the notation AS;, = S; — S;_1
and AC, =Cy — Cy_q, fort=1,...,T.

Given an initial wealth x € IR, a trading portfolio ¢, and a cumulative consumption process C',
the wealth process X®%¢ is governed by :

C
Xga¢) — T

X200 = XPOC 4 gr AS, - AC,, fort=1,... T (1.1)

The induction equation (1.1) leads to

t
XPPC =2+ ¢n AS,—Cy, teT.
u=1
The condition C' = 0 means that the portfolio ¢ is self-financed. We now impose some con-

straints on the trading portfolios. Let K be a closed convex cone of IR? with vertex in 0. For
any x € [0,00), we say that a trading strategy (x, ¢, C') is admissible, and we denote (z, ¢, C)



€ A, ifforallt =0,...,T — 1, ¢; € K a.s. Such constraints cover in particular the case of
incomplete markets (K = {k € IR? : k; = 0,i = 1,...,n} : it is impossible to trade in the n
first risky assets) and short-sales constraints (K = [0, 00)?).

Let H be an European contingent claim, i.e., a Fpr-measurable random variable. Following
Follmer and Kramkov (1997), we introduce the notion of minimal hedging strategy for H.
First, an European H hedging strategy is a strategy (z, ¢, C') € A such that X;i"z”c > H a.s.
We will denote by Aj the set of European H hedging strategies. Then, (z,0,C) € A is
minimal if for all (z,,C) € Ay X7 > X" asfor all t € T. Note that Z is then the
so-called super-replication cost p®(H) of H, i.e the minimal initial capital needed for hedging
without risk H:

p’(H)=inf{zx € R : 3 (¢,C) s.t. (z,0,C) € Ay}

It is straighforward that £ > p(H). Conversely, set x € IR such that there exists (®,C') with
(z,®,C) € A%, then by minimality of X®*C z > & and taking the infimum over such z, we
get the reverse inequality.

We now define the same notion for American contingent claim (H;);e7. An American H
hedging strategy is some (z, ¢, C') € A such that for all t € T, Xg:,¢>,C > H; a.s. We will denote
by Af the set of American H hedging strategies. Then (z, ¢,C) € A% is minimal if for all
(z,0,C) € A%, XPPC > Xf’¢’é a.s, for all t € T. Again Z is the super-replication cost p®(H)
of H,ie

p*(H)=inf{z e R : 3 (¢,C) s.t. (z,9,C) € AY}.
We now recall the usual notion of No-Arbitrage, which characterization is meaningful for super-
replication theorem 1.2.

Definition 1.1 We say that there is no arbitrage opportunity if, for all trading strategies ®
such that (0,®,0) € A, we have

X%@,o >0 as — X%@,o =0 as.

In Pham and Touzi (1999), a characterization of this no-arbitrage condition is provide and to
state it, we introduce the following two sets:

K = {xEJRd :¢*x§0,V¢EK}.

d .
P = {Q ~ P d—g € LOO, ASt € Ll(Q) and EQ[ASAft,l] € K, 1 S t S T P — a.s.} .
We also need a non-degeneracy assumption. This assumption is essential to prove Theorem 1.1
below: if it fails to hold, the set of final dominated payoffs may not be closed, see Brannath

(1997).



Assumption 1.1 Lett =1,...,T. Then for all F;_1-measurable random variables ¢ valued
n K,

P*AS(w) = 0 = pw) =0 for a.e. we Q).
Models studied in section 3 fulfill the above assumption.

Theorem 1.1 (Pham-Touzi, 1999).
Under Assumption 1.1, the no arbitrage condition is equivalent to P # ().

Finally, let S, be the set of all stopping w.r.t. the filtration ' such that ¢ <7 < T

1.2 Super-replication Theorem

Our starting point to derive closed formulae for super-replication prices is the dual formulation
of the super-replication theorem. It states that the super-replication cost of an European
(resp. American) contingent claim, H (resp (H;)ie7), is essentially the supremum over any
probability measure @ in given set P (resp. and every stopping time 7 less than T) of E9(H)
(resp E9(H,)): this is given by Theorem 1.2. We give the proof of this non surprising result,
since to our knowledge, it has not been done before in our context.

Indeed, Follmer and Kramkov (1997) obtain, via an Optional Decomposition Theorem, for
continuous time asset price process and convex constrained the super-replication Theorem (this
is no longer the expectation of H but of a modification of H which takes into account the
convex constraints). But to deal with this great generality, they have to assume first that
the wealth process is non negative; second, the strategy ¢ has to be chosen so that the set
{2, 6% AS,) =11} is locally bounded from below: in a discrete setup, with say 7' = 1, this
boundedness Assumption implies to choose ¢y > 0 or S; bounded, which is rather restrictive.
The works of Follmer-Kabanov (1998), Schil (1999) and Pham (2000) show that the discrete
time structure should allow to avoid this two Assumptions. More precisely, Schél (1999) proved
the super-replication Theorem for European and American Claims, for a L?-setup but without
constraints on the strategy and Pham (2000) for a LP setup with cone constraints on the
strategy but only for European Claims.

Our proof is a bit original since the result for American claims is obtained thanks to that for
European ones.

Theorem 1.2 Suppose that Assumption 1.1 and the no arbitrage condition hold.
Let H be an FEuropean contingent claim, assume that

sup B9 [H] < oo.
QeP

Then, there exists a minimal hedging strategy (z, é, C’) e A5, such that

Xf’qg’é = esssup EY[H | F].
QeP
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In particular,

p¢(H) =% = sup EY[H].
QeP

Let (Hy)er be an American contingent claim, assume that,

sup  E9[H,] < oo,
T€80,7,QEP

Then, there exists a minimal hedging strategy (, é, C’) € A% such that

Xf"?”é = ess sup FE9[H,|F].
TESt,T,QE'P

In particular,

p(H)=& =  sup E°[H].
7€8So,T,QEP

Proof. See Appendix.

2 The main results

Our main objective now is to derive closed formulae for the super-replication prices in the
mathematical background defined above: while the essential supremum involved in Theorem
1.2 are difficult to be directly evaluated because of the set P, the prices given by formulae from
Theorems 2.1 and 2.2 are simple to compute.

Let us introduce two notations:

e we will denote by 1;(So, ... Sj_1), the conditional law of S; knowing F;_.

e the law of the vector (S,...,S;) will be denoted by IP;.

First we treat the European case. For a measurable function A from (IR%)7*! into IR, we define
a sequence of operator, based on kinds of concave envelops, by

F%h(l‘o,... ,.Z'T) = h(l‘o,... ,.Z'T) (21)

: e, h :
[Sh(xo, ... ,x5) = ess (aﬁ)%ﬂf%XK{fafﬂ“ (zg,...,xj) 0<j<T—1 (2.2)

where, for u from (IR%)7*? into IR, one has

u a+ B*x; if pig(zg,...,x)){z: a+ *z2 <u(xg,...,x;,2)} =0
fa,ﬁ(xo,...,xj):{ By i pya (o, 2p) { Bz < ulxo,... x;,2)}

+00 otherwise.
(2.3)

The essential infimum in (2.2) is related to the measure /P;. Then the following theorem holds.
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Theorem 2.1 Assume Assumption 1.1 and the no arbitrage condition.
Let H = h(Sy, ... ,Sr) be an European contingent claim, for some measurable function h from
(RH)T* into IR. Assume that

sup B [H] < oo.
QeP

Then, there exists a minimal hedging strategy (& é C’) % and its value at time t < T is
X5PC = Ten(Sy,...,S) P —a.s.
In particular,
p'(H) = TGh(So).

We now turn to the American case, by considering (h;);e7 a family of measurable functions
such that for t € T, hy maps (IR?)"*! into IR. We define a new sequence of operator I'* replacing
the equations (2.1) and (2.2) by

F%h(xﬁa"' ,.ZUT) = hT(‘TOV" 7*TT) (24)

a,f)eRxK

F?h(l‘g,.-- ,.’Ej) = <eSS( 51nf { J+1 }\/h ) (.1'0,... ,.Z'j) 0<73<T —1. (25)
Then we get

Theorem 2.2 Assume Assumption 1.1 and the no arbitrage condition.
Let H = (Hy)ie be an American contingent claim, such that

sup  EY[H,] < co.
TESO,T,QE/P

Fort € T, we denote by hy a measurable function from (IR%)*' into [0,00) such that H; =
ht(So, C 7St) a.s.
Then, there exists a minimal hedging strategy (z, ¢, C) € A} and its value at time t < T is

XPC = Teh(Sp,....S)) as. (2.6)
In particular,
p*(H) = TGh(So).

Theorem 1.2 proves the existence of an optimal strategy and thus, from Theorems 2.1 and 2.2,
we can easily deduce that the essential infima, involved in the definition of operators ['* and ['?,
are attained. It turns that the optimal portfolio is the optimal £ from (2.2) and (2.5), which is
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easy to compute in the practical examples (see section 3).

Proof of Theorems 2.1 and 2.2

We only give the proof for American contingent claims, since the European case is very similar.
In the following we will denote

I(xo,...,z;)) ={(a,B) € R X K | pjs1(zo,...,z){z|a+ 02 <u(xzy,...,z;,2)} =0}
(2.7)

First, it is easy to check that the measurability of u implies that of the functions fj ;. Thus,
recursively, by definition of the essential infimum and remembering that each h; is measurable,
we can prove that each ['?h is also measurable.

First step: Xf’é’é < I'¢h(So,-+-Sy) IP,— a.s.

Conditionally on Fr_ 1, let (o, B) € I1.(So, ... ,Sr_1); then, by (2.7)
hr(So,...,S71,2) < a+ [z, pur(So, ... ,Sr_1) — a.e.

Let () € P; since () is in particular equivalent to P on Fr_;, one gets

Q [hT(Sg, Ce ,ST) | fol] JEQ[OC =+ ﬂ*ST | fol]

o+ 5*ST,1 ]PT,1 — a.s.
using that EQ[AS,|F, 1] € K. By (2.3), it follows that

Clhr(So, - St) | Froal < f25(So, .., Sro1)  Pra—as. Vo, fERXK.

and thus,
E[hp(So, ..., Sr) | Froa] < ess inf  {fM3(Sy,...,Sr1)  Pry—a.s.
(a,B)ERXK
S FTilh,(Sg, e ;ST—I) PT—I — a.s. . (28)

Let 7 € Syr. Writing H, = H,;1,<7—1 + Hyl,5p_4, it follows from (2.5) and (2.8), that
IPr_q a.s. one has

EC[H, | Froi] < Liepoil®h(Sp, ..., S;) + LspiI%_1h(Sp, ... , Sr—1)
< F‘(J‘T 1) /\Th(SOJ s JS(T—I)/\T)-
Recursively, repeating the same kinds of arguments with I'7._,h,--- | I'f, | h, we get

[H | ft] < Ft/\Th(SO; C 7St/\7') = F?h(SO, Ce 7St) Pt a.s. .



Now, take the essential supremum on ) € P and 7 € S;r, and recall that by Theorem 1.2,

there exists (z, ¢, C) € A% such that X*¢ =ess sup E9[H, | F]: the first inequality is
TE€S,1,QEP
completed.

Second step: X®“ > T'9h(Sy,---S,) IP, — a.s., for any (z,®,C) € AY.

-1 _
Let (z,®,C) € A}Y. Put a = =z + Z o (AS; — @5 Sy 1 and f = Pr ;: remark that

conditionally on Fr_i, (@, 3) belongs to th(So, ..., S7r_1). Thus, one has IPy_; — a.s.

Xp%e > a+ Z O AS; = a+ Sr 1 = f25(S, .-, Sr1)
> ess 1nf {f }(So, RN ,STfl),

( 76 EIRXK

and by definition of a H hedging portfolio of an American contingent claim, we conclude
XE%C >T% h(S,...,Sr1)  IPr_i—a.s. .

Repeating this process, one gets the result for the second step. In particular, this holds true
for the minimal strategy and Theorem 2.2 is proved.

3 Application: some super-replication prices

In this section, we restrict to one risky asset (d = 1) and we consider the unconstrained case
(K = IR).

3.1 Specification of the models

The explicit prices put together in table 1 are available if for each j € {1,...,T}, the measure
15 (So, ..., Sj—1) is equivalent to the Lebesgue measure on (0,00): in that case, Assumption 1.1
is fulfilled and all the measures involved in the essential infima can be taken as the Lebesgue
measure. Actually, the existence of a positive density for the corresponding law is very often
satisfied: we list some examples, illustrating by the way that the results cover a wide class of
financial models. Note that tree models do not satisfy this condition of existence of a density
w.r.t. the Lebesgue measure.

e The well-known stochastic differential equation of Black-Scholes:

d
L ——
S;

For o # 0, it is clear that this process satisfies the required condition.

8



e A non Markovian generalized version of the model above:

s,

? = N(ta (SS)USSSt)dt + U(ta (SS)OSSSt)tha
t

with the non degeneracy condition o(.,.) > og > 0.
For the existence of the positive density, see Kusuoka-Stroock (1984).

e A stochastic volatility model:

dS

—L — pdt + o dW,

St
where (04)i>0 is a continuous time process with oy # 0, independent of the Brownian
motion W. It is easy to check the existence of the positive density.

e Merton’s model with jumps (1976): this is a generalization of Black-Scholes model in-
cluding Poisson type jumps. It is defined by

Nt
51 = Sy (H(f(Yj) + 1>> T,

=1

where (f(Y}));>1 are i.i.d. random variables, strictly greater than —1, IV, is a Poisson
process with arrival rate A, and W; is a standard Brownian motion, all of them being
independent. For this homogeneous Markov process, it is easy to prove the existence of
a positive density w.r.t. Lebesgue measure on (0, 00) assuming o # 0.

3.2 Computation of the prices

We sketch the proofs of some results of table 1: it somehow reduces to compute iterative concave
envelops (w.r.t. the lebesgue measure on (0,00)), which is easy for the usual options.

3.2.1 Vanilla Options

We first consider the case of an European Call option whose payoff is h(xg, ... ,z1) = (v —
K),. Applying formulae (2.2), one first gets 'S h(xg,... ,x7_1) = zr_1 (see figure 1); by a
straightforward iteration, it follows that ['h(wy, ... ,z;) = x4, and thus p*(H) = ['§h(Sy) = So.
Analogously, for the European Put h(zo, ... ,2r) = (K — 27)4, one gets I'th(xy, ... ,z;) = K
and thus p®(H) = K. These results have already been obtained by Patry (2001).

For the American style options, analogous computations provide the same prices as above.

Y



h(x)=(x-K)+

X
T-1
X

Figure 1: Computation of concave envelops for the Call option.

a e
I h(x ,..x JF hix ....x =
U—K 4 T_l 0 T-1 T—l( 0Ty )

1 X 1, (1-K/U
XO<U,___')(T71<U Tl( )

X—-K)+
1X0<Uv---yx'r71<U X<U( )

Figure 2: Computation of concave envelops for the Up and Out Call option
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3.2.2 Barrier Options

Let us consider, for example, the case of an European Up and Out Call whose payoff is

T

h(xo, ... ,xp) = [] 1s,<v(zyr — K)4, assuming Sy < U and K < U. For given xy,... ,zp_
i=0

less than U, the concave envelop of the function (zy — K) 1,y is given by the function = —

-1
(zAU)(1—K/U); hence, one has I'S. | h(xg, ... ,xp—1) = [] lo,<cvrr—1(1—K/U) (see figure 2).
i=0
J
For the associated American claim for which h;(zo, ... ,z;) = [ 1s,<v(x; — K)4, one also gets
i=0
T—1
U5 1 h(xo, ... yoro1) = [] 1a,<cvmr—1(1 — K/U). Iteratively, one obtains ['h(z, ..., 7;) =
i=0

J
LSh(zo, ... ,25) = 1:[0 1,,<vx;(1 — K/U). Finally, this proves p°(H) = p*(H) = Sy(1 — K/U).

3.2.3 Extension

Assume that the contingent claim H = h(Sy, -, Sr) can be trade at some extra dates. Then,
the definition of the super-replication price should imply more rebalancing dates. But, it is
easy to prove, in our context of conditional laws equivalent to the Lebesgue measure, that the
super-replication prices are unchanged. For example, consider a monthly monitored barrier
option with expiration date equal to one year: if we are allowed to hedge each month, or each
day, or even each hour, the super-replication price will be the same.

4 Conclusion

Under mild conditions on the underlying assets (Assumption 1.1), when the trading is discrete
and constrained to lie in a closed convex cone, we give a recursive formula to compute the
super-replication price and the optimal strategy for European and American contingent claims.
In contrast with the usual dual formulation of Theorem 1.2, this closed formula is tractable.
When the conditional law of the asset process is equivalent to the Lebesgue measure, we perform
explicit computations for the usual options. What clearly happens is that the super-replication
prices are somehow very high. It is already known that in the context of imperfect continuous
financial markets, the super-replication price of an European call is equal to Sy. Our results
show that even in the very simple context of the Black-Scholes model when only discrete
time strategies are allowed, a seller of an European call will not be able to hedge his position
without risk, if he requires an initial wealth smaller than Sy. It reinforces the necessity to
turn to other concepts to price options such as minimization of shortfall risk or prices based on
utility functions (see Follmer-Leukert (1999), and Hodges-Neuberger (1989) among others).
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Name Payoff European Price American Price
Call (Sr—K); So So
Put (K — Sr)+ K K
T T T—1
Asian Call (Fixed strike) (Z a;S; — K> So (Z ai> (Z I+ %) So
i=1 i=1 i=2
0<gq i (a; =1/T)
T T—1 T
Asian Call (Floating Strike) (Z a;S; — ST) So (Z ai> (Z %) So
i=1 i=1 i=2
0<a; <1 ' (a; =1/T)
Asian Put (Fixed strike) (K - XT: aiSl> K K
i=1
0 <ay "
T
Asian Put (Floating Strike) (ST -> aiSZ) So(1 —ar) So(1 —ar)
i=1
0<a; <1 "
Partial Lookback Call (Sp — Amin(Sy,...,S1))+ So So
A€ [0,1]
Call on maximum (max(Sy,...,5) — K)4 T Sy T Sy
Barrier Up and Out Call [[1ls,<v(Sr— K). So(1— K/U) So(1 — K/U)
(K <U,Sy<U)
Barrier Up and Out Put [[1ls,<v(K —Sr), K K
(So < U)
Barrier Up and In Call 15,550 (St — K)+ So So
Barrier Up and In Put 15;/5,50 (K — Sr)+ SoK /U SoK /U
(So < U)
Barrier Down and Out Call [[1ls,50(Sr — K)4 So So
(So > L)
Barrier Down and Out Put [11ls50(K —S7) K—-L K—-L

(So>L,K>1L)

Barrier Down and In Call

Lsis,<0(Sr — K) 4
(SO > L)

L1,k + Solpsk

L1,k + Solpsk

Barrier Down and In Put

1si/s,< (K — Sr)+
(SO > L)

K

K

Table 1: Explicit super-replication prices of some options
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Appendix: Proof of theorem 1.2

The proof of the European case is a straightforward adaptation of Pham (2000) (see appendix
A, p.679) who is working in the £? setup. Indeed, the difficult point is to show that the set of
random variables dominated by the terminal wealth of admissible strategies starting from 0 is
closed in probability and this has been proved by Brannath (1997) in a general context. We
omit details.

For the American case, let (H;)i 7 be an American payoff such that

sup  IEC[H,] < . (4.9)
QEP,TESO,T

By analogy with the usual dynamic programming equation, we introduce the process Y; defined
by

YT:HT

Y, = H/Vesssup E?[Y, ., |F] fort=0,...,T —1.
QEP

Set A, = {H; > esssup IE? Yy, | Fi]} and
QeP

TT:T

T = tlAt +Tt+11,4§.

Note that each 7, belongs to S;: 79 will play the role of an optimal stopping time. Actually,
the proof of the American part of Theorem 1.2 follows from the following lemma.

Lemma 4.1 With the above notation and Assumption 4.9, there exists a minimal strategy
(Yo, ¢, C) € AY; such that

X700 =y, = ess sup E°(H,, | Fi) =ess sup EY[H, | F].
QcP QEP,rES, T

We now turn to its proof.

Step 1: X7?“ > ess sup IE9[H, | F) for any (z,¢,C) € A%. The result is clear using
QGIP,TESLT

the admissibility of the American strategy and the super-martingale property of X%%¢ under

any Q € P.

Step 2: esssup ]EQ[HTt | Fi] > Y;. We proceed by induction. Clearly, the property holds
QeP

when ¢ = 7. Assume now that it holds for ¢ + 1, and let denote by (p¢(H,,,,), """, C**') the
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minimal strategy for the European claim H;

.11, using Theorem 1.2. Thus, one deduces from
the definition of Y; that

Y, = 1, Hy+ 14 esssup E9[Y,y | F

QeP
< 14, Hy+ 14 esssup IE9ess sup IE9[H,,,, | Fi41] | 74 by induction

QeP QeP

e HT ,~t+17c~rt+1

< 1a, Hi+ 1ag esssup EQ[Xerg S | Fi]

QeP

pe(Hrpy )@t HL,00H .
< 1a Hy 41, Xy using the super-martingale property
< 14, Hy+ 14 esssup JEQ[HRH | Fi] = esssup IE[H,, | Fi].
QeP

QeP

Step 3: there exists a strategy (Yg, ¢, C) € A% such that X, =Y. Let (z, ¢, C") be the
minimal strategy associated to the European contingent claim Y;: we can take ¢!, = AC._ ; =0
for u > t, so that Xft’d’t’ct = X;it’d’t’ct >Y;. Set

o = ot fort=0,...,T—1
AC, = Y, =Y, + ¢l *AS, for t=1,...,T.

We first prove that AC, is non negative. Theorem 1.2 for the European claim Y; yields

AC; > —Xﬁ’l(bt’m + Y1+ AC, = —esssup E°Y; | Fii] + Y1 + ACY
QEP

which is non negative by definition of Y; ;. This proves that (Y5, o, CA’) € A. We now show by
induction that X;*”% = ¥;: this will also complete the proof of (Yo, o, C’) € A%. For t =0,
this is obvious. If the property holds true at time ¢, we deduce that

Xﬁ’fb’c = XtYO’(Z)’C + (irASt—l—l — Aét_H = Y;g + (%Jrl *ASt—i—l — Aét+1 = Y;H—l;

by definition of the consumption AC,, ;.

The combination of the three steps leads to the equality of Lemma 4.1; taking into account
Step 1, we prove the minimality of the strategy (Yo, ¢, C).

References

[BCS98] M. Broadie, J. Cvitanic, and M. Soner. Optimal replication of contingent claims
under portfolio constraints. Rev. of Financial Studies, 11:59-79, 1998.

[BLPS92] B. Bensaid, J.P. Lesne, H. Pages, and J. Scheinkman. Derivative asset pricing with
transaction costs. Math. Finance, 2(2):63-86, 1992.

14



[Bra97]

[CK93]

[CPT99a]

[CPT99b)

[CSS95)

[FK97]

[FK98]

[FL99)

[HN89]

[JK95a]

[JK95b]

[KK96]

[KQU3)

[KS84]

[Mer76]

W. Brannath. No-Arbitrage amd Martingale Measures in Option Pricing. PhD
thesis, Universitdt Wien, Vienna, Austria, 1997.

J. Cvitani¢ and 1. Karatzas. Hedging contingent claims with constrained portfolios.
Ann. Appl. Probab., 3(3):652-681, 1993.

J. Cvitani¢, H. Pham, and N. Touzi. A closed formula for the problem of super-
replication under transaction costs. Finance Stoch., 3(1):35-54, 1999.

J. Cvitani¢, H. Pham, and N. Touzi. Super-replication in stochastic volatility models
under portfolio constraints. J. Appl. Probab., 36(2):523-545, 1999.

J. Cvitani¢, S.E. Shreve, and H.M. Soner. There is no nontrivial hedging portfolio
for option pricing with transaction costs. Ann. Appl. Probab., 5(2):327-355, 1995.

H. Follmer and D. Kramkov. Optional decompositions under constraints. Probab.
Theory Related Fields, 109(1):1-25, 1997.

H. Follmer and Y.M. Kabanov. Optional decomposition and Lagrange multipliers.
Finance Stoch., 2(1):69-81, 1998.

H. Follmer and P. Leukert. Quantile hedging. Finance Stoch., 3(3):251-273, 1999.

S.D. Hodges and A. Neuberger. Optimal replication of contingent claims under
transaction costs. Review of Futures Markets, 8:222-239, 1989.

E. Jouini and H. Kallal. Arbitrage in securities markets with short-sales constraints.
Math. Finance, 5(3):197-232, 1995.

E. Jouini and H. Kallal. Martingales and arbitage in securities markets with trans-
action costs. J. Econ. Theory, 66(1):178-197, 1995.

I. Karatzas and S.G. Kou. On the pricing of contingent claims under constraints.
Ann. Appl. Probab., 6(2):321-369, 1996.

N. El Karoui and M.C. Quenez. Dynamic programming and pricing of contingent
claims in an incomplete market. SIAM J. Control Optim., 33(1):29-66, 1995.

S. Kusuoka and D. Stroock. Applications of the Malliavin calculus 1. in: K.Ito,
ed., Stochastic Analysis, Proc. Taniguchi Internatl. Symp. Katata and Kyoto 1982,
Kinokuniya, Tokyo, pages 271-306, 1984.

R.C. Merton. Option pricing when underlying stock returns are discontinuous. Jour-
nal of Financial Economics, 3:125—144, 1976.

15



[Pat01]  C. Patry. Couverture apporchée optimale des options europénnes. PhD thesis, Uni-
versité Paris Dauphine, Paris, France, 2001.

[Pha00] H. Pham. Dynamic [P-hedging in discrete time under cone constraints. SIAM J.
Control Optimization, 38(3):665-682, 2000.

[PT99]  H. Pham and N. Touzi. The fundamental theorem of asset pricing with cone con-
straints. J. Math. Econom., 31(2):265-279, 1999.

[Sch99] M. Schil. Martingale measures and hedging for discrete-time financial markets.
Math. Oper. Res., 24(2):509-528, 1999.

16



