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Introdu
tionWe 
onsider a �nan
ial market 
onsisting of d risky assets with dis
ounted pri
e pro
ess denotedby S, and one risk-less bond: the trading is allowed only at �xed dis
rete times. We assumethat the trading strategies are also subje
t to portfolio 
onstraints. Namely, given a 
losed
onvex 
one K with vertex in 0, the ve
tor of number of shares invested in the risky assetsis 
onstrained to lie in K. Su
h formalization in
ludes in parti
ular in
omplete markets andmarkets with short-selling 
onstraints. It is well-known that in those 
ontexts, it is not possibleto de�ne an unique fair pri
e, i.e the initial 
ost of a strategy repli
ating a given 
ontingent
laim, as in the 
ontext of 
omplete markets. A possible way of de�ning a pri
e is to 
onsiderthe minimal initial wealth needed to hedge without risk the 
ontingent 
laim. This is 
alledthe super-repli
ation 
ost and has been introdu
ed in the binomial setup for transa
tion 
ostsby Bensaid-Lesne-Pag�es-S
heinkman (1992), in a L2 setup for transa
tion 
osts and short-sales 
onstraints by Jouini-Kallal (1995a, 1995b) and in the di�usion setup for in
ompletemarkets by El Karoui-Quenez (1995). In the 
ontext of 
onvex 
onstraints, this notion has beenstudied among others by Cvitani�
-Karatzas (1993), Karatzas-Kou (1996), Broadie-Cvitani�
-Soner (1998) and in a great generality by F�ollmer-Kramkov (1997). In those papers a dualformulation is given. Namely, the super-repli
ation 
ost of an European 
ontingent 
laim,H, is essentially the supremum over a given set of probability of the expe
tation of H (or amodi�
ation of H). Nevertheless this dual formulation does not enable in general to e�e
tively
ompute the super-repli
ation pri
e.Our aim is to provide a 
losed formula for European and Ameri
an style options under generalassumptions on the underlying S (namely, an usual non degenera
y 
ondition), and also to givethe hedging strategy. We will see that, in the 
ase of European vanilla options, �nding thesuper-repli
ation pri
e redu
es to 
ompute some 
on
ave envelop of the payo� fun
tion. Formore general options, it involves re
ursive 
omputations using again kind of 
on
ave envelops.The 
oeÆ
ients of the aÆne fun
tion whi
h appears in the 
on
ave envelop give the hedgingstrategy. The appli
ation of this algorithm turns to be simple to derive the super-repli
ationpri
es of all usual options. Simultaneously and independently from our work, Patry (2001)obtains a similar formula, in the Bla
k-S
holes 
ase, for an European vanilla option.Our e�e
tive 
omputation shows that in most of 
ases, the super-repli
ation pri
es are trivial inthe sense that they 
orrespond to basi
 strategies su
h as "Buy and Hold". In parti
ular, for anEuropean 
all option, the super-repli
ation pri
e is equal to the initial pri
e of the underlying:this result has been already obtained in the 
ontext of transa
tion 
osts by Cvitani�
-Shreve-Soner (1995) and Cvitani�
-Pham-Touzi (1999a), and for a 
ontinuous time sto
hasti
 volatilitymodel by Cvitani�
-Pham-Touzi (1999b).The paper is organized as follows. In se
tion 1, we des
ribe the �nan
ial model and give thenotation of the paper. Then, we re
all the notion of No Arbitrage and state a dual formulationfor the super-repli
ation problem: while this result is standard, it has not been yet stated in1



our 
ontext (this is Theorem 1.2, whi
h proof is postponed in Appendix). Se
tion 2 is devotedto the main results of the paper, i.e. 
losed formulae for the super-repli
ation pri
es, andtheir proofs. In Se
tion 3, we e�e
tively 
ompute the super-repli
ation pri
e for Europeanand Ameri
an style exoti
 options (in
luding Asian, Lookba
k or Barrier options), when thereis only one risky asset without 
one 
onstraints (See table 1 for those expli
it 
omputations).These results hold true if the underlying asset law admits a positive density w.r.t. the Lebesguemeasure: it in
ludes for example Bla
k-S
holes model, general sto
hasti
 di�erential equations,sto
hasti
 volatility models, or models governed by Brownian motion and Poisson pro
ess. Wewill also see that in
reasing the number of hedging dates does not modify the super-repli
ationpri
es.1 The �nan
ial model and super-repli
ation theorem1.1 Notations and de�nitionsLet T > 0 be a �nite time horizon and set T = f0; 1; : : : ; Tg: the �nan
ial market model
onsists of one risk-less asset with pri
e pro
ess normalized to one and d risky assets with pri
epro
ess S = fSt = (S1t ; :::; Sdt )�; t = 0; :::; Tg valued in (0;1)d. Here the notation � is for thetransposition. The sto
hasti
 pri
e pro
ess (St)t2T is de�ned on a 
omplete probability spa
e(
;F ; P ) equipped with the �ltration IF = fFt; t 2 T g, where the �-�eld Ft is generated by therandom variables S0; S1; � � � ; St. We make the usual assumption that F0 is trivial and FT = F .A trading portfolio is a IRd-valued IF -adapted pro
ess � = f�t = (�1t ; : : : ; �dt )�; t = 0; :::; T �1g,where �it represents the amount of wealth invested in the i-th risky asset at time t. The IR-valued IF -adapted pro
ess C = fCt; t 2 T g represents the 
umulative 
onsumption pro
ess. Weassume that C0 = 0 and that C is non-de
reasing. We also use the notation �St = St � St�1and �Ct = Ct � Ct�1, for t = 1; :::; T:Given an initial wealth x 2 IR, a trading portfolio �; and a 
umulative 
onsumption pro
ess C,the wealth pro
ess Xx;�;C is governed by :Xx;�;C0 = xXx;�;Ct = Xx;�;Ct�1 + ��t�1�St ��Ct; for t = 1; : : : ; T: (1.1)The indu
tion equation (1.1) leads toXx;�;Ct = x + tXu=1 ��u�1�Su � Ct; t 2 T :The 
ondition C = 0 means that the portfolio � is self-�nan
ed. We now impose some 
on-straints on the trading portfolios. Let K be a 
losed 
onvex 
one of IRd with vertex in 0. Forany x 2 [0;1), we say that a trading strategy (x; �; C) is admissible, and we denote (x; �; C)2



2 A; if for all t = 0; : : : ; T � 1, �t 2 K a.s. Su
h 
onstraints 
over in parti
ular the 
ase ofin
omplete markets (K = fk 2 IRd : ki = 0; i = 1; :::; ng : it is impossible to trade in the n�rst risky assets) and short-sales 
onstraints (K = [0;1)d).Let H be an European 
ontingent 
laim, i.e., a FT -measurable random variable. FollowingF�ollmer and Kramkov (1997), we introdu
e the notion of minimal hedging strategy for H.First, an European H hedging strategy is a strategy (x; �; C) 2 A su
h that Xx;�;CT � H a.s.We will denote by AeH the set of European H hedging strategies. Then, (x̂; �̂; Ĉ) 2 AeH isminimal if for all (x; �; C) 2 AeH Xx;�;Ct � X x̂;�̂;Ĉt a.s for all t 2 T . Note that x̂ is then theso-
alled super-repli
ation 
ost pe(H) of H, i.e the minimal initial 
apital needed for hedgingwithout risk H: pe(H) = inffx 2 IR : 9 (�; C) s.t. (x; �; C) 2 AeHg:It is straighforward that x̂ � p(H). Conversely, set x 2 IR su
h that there exists (�; C) with(x;�; C) 2 AeH , then by minimality of X x̂;�̂;Ĉ, x � x̂ and taking the in�mum over su
h x, weget the reverse inequality.We now de�ne the same notion for Ameri
an 
ontingent 
laim (Ht)t2T . An Ameri
an Hhedging strategy is some (x; �; C) 2 A su
h that for all t 2 T , Xx;�;Ct � Ht a.s. We will denoteby AaH the set of Ameri
an H hedging strategies. Then (x̂; �̂; Ĉ) 2 AaH is minimal if for all(x; �; C) 2 AaH , Xx;�;Ct � X x̂;�̂;Ĉt a.s, for all t 2 T . Again x̂ is the super-repli
ation 
ost pa(H)of H, i.e pa(H) = inffx 2 IR : 9 (�; C) s.t. (x; �; C) 2 AaHg:We now re
all the usual notion of No-Arbitrage, whi
h 
hara
terization is meaningful for super-repli
ation theorem 1.2.De�nition 1.1 We say that there is no arbitrage opportunity if, for all trading strategies �su
h that (0;�; 0) 2 A, we haveX0;�;0T � 0 a.s =) X0;�;0T = 0 a.s.In Pham and Touzi (1999), a 
hara
terization of this no-arbitrage 
ondition is provide and tostate it, we introdu
e the following two sets:K̂ = �x 2 IRd : ��x � 0; 8� 2 K	 :P = �Q � P : dQdP 2 L1; �St 2 L1(Q) and EQ[�StjFt�1℄ 2 K̂; 1 � t � T P � a.s.� :We also need a non-degenera
y assumption. This assumption is essential to prove Theorem 1.1below: if it fails to hold, the set of �nal dominated payo�s may not be 
losed, see Brannath(1997). 3



Assumption 1.1 Let t = 1; : : : ; T . Then for all Ft�1-measurable random variables ' valuedin K, '��St(!) = 0 =) '(!) = 0 for a.e. ! 2 
 :Models studied in se
tion 3 ful�ll the above assumption.Theorem 1.1 (Pham-Touzi, 1999).Under Assumption 1.1, the no arbitrage 
ondition is equivalent to P 6= ;:Finally, let St;T be the set of all stopping w.r.t. the �ltration IF su
h that t � � � T .1.2 Super-repli
ation TheoremOur starting point to derive 
losed formulae for super-repli
ation pri
es is the dual formulationof the super-repli
ation theorem. It states that the super-repli
ation 
ost of an European(resp. Ameri
an) 
ontingent 
laim, H (resp (Ht)t2T ), is essentially the supremum over anyprobability measure Q in given set P (resp. and every stopping time � less than T ) of EQ(H)(resp EQ(H� )): this is given by Theorem 1.2. We give the proof of this non surprising result,sin
e to our knowledge, it has not been done before in our 
ontext.Indeed, F�ollmer and Kramkov (1997) obtain, via an Optional De
omposition Theorem, for
ontinuous time asset pri
e pro
ess and 
onvex 
onstrained the super-repli
ation Theorem (thisis no longer the expe
tation of H but of a modi�
ation of H whi
h takes into a

ount the
onvex 
onstraints). But to deal with this great generality, they have to assume �rst thatthe wealth pro
ess is non negative; se
ond, the strategy � has to be 
hosen so that the setf(Ptu=1 ��u�1�Su)t=1:::Tg is lo
ally bounded from below: in a dis
rete setup, with say T = 1, thisboundedness Assumption implies to 
hoose �0 � 0 or S1 bounded, whi
h is rather restri
tive.The works of F�ollmer-Kabanov (1998), S
h�al (1999) and Pham (2000) show that the dis
retetime stru
ture should allow to avoid this two Assumptions. More pre
isely, S
h�al (1999) provedthe super-repli
ation Theorem for European and Ameri
an Claims, for a L2-setup but without
onstraints on the strategy and Pham (2000) for a Lp setup with 
one 
onstraints on thestrategy but only for European Claims.Our proof is a bit original sin
e the result for Ameri
an 
laims is obtained thanks to that forEuropean ones.Theorem 1.2 Suppose that Assumption 1.1 and the no arbitrage 
ondition hold.Let H be an European 
ontingent 
laim, assume thatsupQ2P EQ [H℄ <1:Then, there exists a minimal hedging strategy (x̂; �̂; Ĉ) 2 AeH su
h thatX x̂;�̂;Ĉt = ess supQ2P EQ [H j Ft℄ :4



In parti
ular, pe(H) = x̂ = supQ2P EQ [H℄ :Let (Ht)t2T be an Ameri
an 
ontingent 
laim, assume that,sup�2S0;T ;Q2PEQ [H� ℄ <1;Then, there exists a minimal hedging strategy (x̂; �̂; Ĉ) 2 AaH su
h thatX x̂;�̂;Ĉt = ess sup�2St;T ;Q2P EQ [H� j Ft℄ :In parti
ular, pa(H) = x̂ = sup�2S0;T ;Q2PEQ [H� ℄ :Proof. See Appendix.2 The main resultsOur main obje
tive now is to derive 
losed formulae for the super-repli
ation pri
es in themathemati
al ba
kground de�ned above: while the essential supremum involved in Theorem1.2 are diÆ
ult to be dire
tly evaluated be
ause of the set P, the pri
es given by formulae fromTheorems 2.1 and 2.2 are simple to 
ompute.Let us introdu
e two notations:� we will denote by �j(S0; : : : Sj�1), the 
onditional law of Sj knowing Fj�1.� the law of the ve
tor (S0; : : : ; Sj) will be denoted by IPj.First we treat the European 
ase. For a measurable fun
tion h from (IRd)T+1 into IR, we de�nea sequen
e of operator, based on kinds of 
on
ave envelops, by�eTh(x0; : : : ; xT ) = h(x0; : : : ; xT ) (2.1)�ejh(x0; : : : ; xj) = ess inf(�;�)2IR�Kff�ej+1h�;� g(x0; : : : ; xj) 0 � j � T � 1 (2.2)where, for u from (IRd)j+2 into IR, one hasfu�;�(x0; : : : ; xj) = � � + ��xj if �j+1(x0; : : : ; xj) fz : � + ��z < u(x0; : : : ; xj; z)g = 0+1 otherwise. (2.3)The essential in�mum in (2.2) is related to the measure IPj. Then the following theorem holds.5



Theorem 2.1 Assume Assumption 1.1 and the no arbitrage 
ondition.Let H = h(S0; : : : ; ST ) be an European 
ontingent 
laim, for some measurable fun
tion h from(IRd)T+1 into IR. Assume that supQ2P EQ [H℄ <1:Then, there exists a minimal hedging strategy (x̂; �̂; Ĉ) 2 AeH and its value at time t � T isX x̂;�̂;Ĉt = �eth(S0; : : : ; St) IPt � a:s:In parti
ular, pe(H) = �e0h(S0):We now turn to the Ameri
an 
ase, by 
onsidering (ht)t2T a family of measurable fun
tionssu
h that for t 2 T , ht maps (IRd)t+1 into IR. We de�ne a new sequen
e of operator �a repla
ingthe equations (2.1) and (2.2) by�aTh(x0; : : : ; xT ) = hT (x0; : : : ; xT ) (2.4)�ajh(x0; : : : ; xj) = �ess inf(�;�)2IR�Kff�aj+1h�;� g _ hj� (x0; : : : ; xj) 0 � j � T � 1: (2.5)Then we getTheorem 2.2 Assume Assumption 1.1 and the no arbitrage 
ondition.Let H = (Ht)t2T be an Ameri
an 
ontingent 
laim, su
h thatsup�2S0;T ;Q2PEQ [H� ℄ <1:For t 2 T , we denote by ht a measurable fun
tion from (IRd)t+1 into [0;1) su
h that Ht =ht(S0; : : : ; St) a:s:Then, there exists a minimal hedging strategy (x̂; �̂; Ĉ) 2 AaH and its value at time t � T isX x̂;�̂;Ĉt = �at h(S0; : : : ; St) a:s: (2.6)In parti
ular, pa(H) = �a0h(S0):Theorem 1.2 proves the existen
e of an optimal strategy and thus, from Theorems 2.1 and 2.2,we 
an easily dedu
e that the essential in�ma, involved in the de�nition of operators �e and �a,are attained. It turns that the optimal portfolio is the optimal � from (2.2) and (2.5), whi
h is6



easy to 
ompute in the pra
ti
al examples (see se
tion 3).Proof of Theorems 2.1 and 2.2We only give the proof for Ameri
an 
ontingent 
laims, sin
e the European 
ase is very similar.In the following we will denoteIu(x0; : : : ; xj) = f(�; �) 2 IR�K j �j+1(x0; : : : ; xj)fz j � + ��z < u(x0; : : : ; xj; z)g = 0g:(2.7)First, it is easy to 
he
k that the measurability of u implies that of the fun
tions fu�;�. Thus,re
ursively, by de�nition of the essential in�mum and remembering that ea
h ht is measurable,we 
an prove that ea
h �ath is also measurable.First step: X x̂;�̂;Ĉt � �at h(S0; � � �St) IPt � a:s:Conditionally on FT�1, let (�; �) 2 IhT (S0; : : : ; ST�1); then, by (2.7)hT (S0; : : : ; ST�1; z) � �+ ��z ; �T (S0; : : : ; ST�1)� a:e:Let Q 2 P; sin
e Q is in parti
ular equivalent to P on FT�1, one getsIEQ [hT (S0; : : : ; ST ) j FT�1℄ � IEQ[� + ��ST j FT�1℄� � + ��ST�1 IPT�1 � a:s:using that EQ[�StjFt�1℄ 2 K̂. By (2.3), it follows thatIEQ [hT (S0; : : : ; ST ) j FT�1℄ � fhT�;�(S0; : : : ; ST�1) IPT�1 � a:s: 8 �; � 2 IR�K:and thus,IEQ [hT (S0; : : : ; ST ) j FT�1℄ � ess inf(�;�)2IR�KffhT�;�g(S0; : : : ; ST�1) IPT�1 � a:s:� �aT�1h(S0; : : : ; ST�1) IPT�1 � a:s: : (2.8)Let � 2 St;T . Writing H� = H�1��T�1 + HT1�>T�1, it follows from (2.5) and (2.8), thatIPT�1 a:s: one hasIEQ [H� j FT�1℄ � 1��T�1�a�h(S0; : : : ; S� ) + 1�>T�1�aT�1h(S0; : : : ; ST�1)� �a(T�1)^�h(S0; : : : ; S(T�1)^� ):Re
ursively, repeating the same kinds of arguments with �aT�1h; � � � ;�at+1h, we getIEQ[H� j Ft℄ � �at^�h(S0; : : : ; St^� ) = �ath(S0; : : : ; St) IPt a:s: :7



Now, take the essential supremum on Q 2 P and � 2 St;T , and re
all that by Theorem 1.2,there exists (x̂; �̂; Ĉ) 2 AaH su
h that X x̂;�̂;Ĉt = ess sup�2St;T ;Q2P EQ [H� j Ft℄: the �rst inequality is
ompleted.Se
ond step: Xx;�;Ct � �at h(S0; � � �St) IPt � a:s:, for any (x;�; C) 2 AaH .Let (x;�; C) 2 AaH. Put �� = x + T�1Pi=1 ��i�1�Si � ��T�1ST�1 and �� = �T�1: remark that
onditionally on FT�1, (��; ��) belongs to IhT (S0; : : : ; ST�1). Thus, one has IPT�1 � a:s:Xx;�;CT�1 � x+ T�1Xi=1 ��i�1�Si = �� + ���ST�1 = fhT��;��(S0; : : : ; ST�1)� ess inf(�;�)2IR�KffhT�;�g(S0; : : : ; ST�1);and by de�nition of a H hedging portfolio of an Ameri
an 
ontingent 
laim, we 
on
ludeXx;�;CT�1 � �aT�1h(S0; : : : ; ST�1) IPT�1 � a:s: :Repeating this pro
ess, one gets the result for the se
ond step. In parti
ular, this holds truefor the minimal strategy and Theorem 2.2 is proved.3 Appli
ation: some super-repli
ation pri
esIn this se
tion, we restri
t to one risky asset (d = 1) and we 
onsider the un
onstrained 
ase(K = IR).3.1 Spe
i�
ation of the modelsThe expli
it pri
es put together in table 1 are available if for ea
h j 2 f1; :::; Tg, the measure�j(S0; :::; Sj�1) is equivalent to the Lebesgue measure on (0;1): in that 
ase, Assumption 1.1is ful�lled and all the measures involved in the essential in�ma 
an be taken as the Lebesguemeasure. A
tually, the existen
e of a positive density for the 
orresponding law is very oftensatis�ed: we list some examples, illustrating by the way that the results 
over a wide 
lass of�nan
ial models. Note that tree models do not satisfy this 
ondition of existen
e of a densityw.r.t. the Lebesgue measure.� The well-known sto
hasti
 di�erential equation of Bla
k-S
holes:dStSt = �dt+ �dWt:For � 6= 0, it is 
lear that this pro
ess satis�es the required 
ondition.8



� A non Markovian generalized version of the model above:dStSt = �(t; (Ss)0�s�t)dt+ �(t; (Ss)0�s�t)dWt;with the non degenera
y 
ondition �(:; :) � �0 > 0.For the existen
e of the positive density, see Kusuoka-Stroo
k (1984).� A sto
hasti
 volatility model: dStSt = �dt+ �tdWtwhere (�t)t�0 is a 
ontinuous time pro
ess with �0 6= 0, independent of the Brownianmotion W . It is easy to 
he
k the existen
e of the positive density.� Merton's model with jumps (1976): this is a generalization of Bla
k-S
holes model in-
luding Poisson type jumps. It is de�ned bySt = S0 NtYj=1(f(Yj) + 1)! e�Wt+(���2=2)t;where (f(Yj))j�1 are i.i.d. random variables, stri
tly greater than �1, Nt is a Poissonpro
ess with arrival rate �, and Wt is a standard Brownian motion, all of them beingindependent. For this homogeneous Markov pro
ess, it is easy to prove the existen
e ofa positive density w.r.t. Lebesgue measure on (0;1) assuming � 6= 0.3.2 Computation of the pri
esWe sket
h the proofs of some results of table 1: it somehow redu
es to 
ompute iterative 
on
aveenvelops (w.r.t. the lebesgue measure on (0;1)), whi
h is easy for the usual options.3.2.1 Vanilla OptionsWe �rst 
onsider the 
ase of an European Call option whose payo� is h(x0; : : : ; xT ) = (xT �K)+. Applying formulae (2.2), one �rst gets �eT�1h(x0; : : : ; xT�1) = xT�1 (see �gure 1); by astraightforward iteration, it follows that �ejh(x0; : : : ; xj) = xj, and thus pe(H) = �e0h(S0) = S0.Analogously, for the European Put h(x0; : : : ; xT ) = (K � xT )+, one gets �ejh(x0; : : : ; xj) = K,and thus pe(H) = K. These results have already been obtained by Patry (2001).For the Ameri
an style options, analogous 
omputations provide the same pri
es as above.
9
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ave envelops for the Call option.
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3.2.2 Barrier OptionsLet us 
onsider, for example, the 
ase of an European Up and Out Call whose payo� ish(x0; : : : ; xT ) = TQi=0 1xi<U(xT � K)+, assuming S0 < U and K < U . For given x0; : : : ; xT�1less than U , the 
on
ave envelop of the fun
tion (xT �K)+1xT<U is given by the fun
tion x 7!(x^U)(1�K=U); hen
e, one has �eT�1h(x0; : : : ; xT�1) = T�1Qi=0 1xi<UxT�1(1�K=U) (see �gure 2).For the asso
iated Ameri
an 
laim for whi
h hj(x0; : : : ; xj) = jQi=0 1xi<U(xj�K)+, one also gets�aT�1h(x0; : : : ; xT�1) = T�1Qi=0 1xi<UxT�1(1 � K=U). Iteratively, one obtains �ejh(x0; : : : ; xj) =�ajh(x0; : : : ; xj) = jQi=0 1xi<Uxj(1�K=U). Finally, this proves pe(H) = pa(H) = S0(1�K=U).3.2.3 ExtensionAssume that the 
ontingent 
laim H = h(S0; � � � ; ST ) 
an be trade at some extra dates. Then,the de�nition of the super-repli
ation pri
e should imply more rebalan
ing dates. But, it iseasy to prove, in our 
ontext of 
onditional laws equivalent to the Lebesgue measure, that thesuper-repli
ation pri
es are un
hanged. For example, 
onsider a monthly monitored barrieroption with expiration date equal to one year: if we are allowed to hedge ea
h month, or ea
hday, or even ea
h hour, the super-repli
ation pri
e will be the same.4 Con
lusionUnder mild 
onditions on the underlying assets (Assumption 1.1), when the trading is dis
reteand 
onstrained to lie in a 
losed 
onvex 
one, we give a re
ursive formula to 
ompute thesuper-repli
ation pri
e and the optimal strategy for European and Ameri
an 
ontingent 
laims.In 
ontrast with the usual dual formulation of Theorem 1.2, this 
losed formula is tra
table.When the 
onditional law of the asset pro
ess is equivalent to the Lebesgue measure, we performexpli
it 
omputations for the usual options. What 
learly happens is that the super-repli
ationpri
es are somehow very high. It is already known that in the 
ontext of imperfe
t 
ontinuous�nan
ial markets, the super-repli
ation pri
e of an European 
all is equal to S0. Our resultsshow that even in the very simple 
ontext of the Bla
k-S
holes model when only dis
retetime strategies are allowed, a seller of an European 
all will not be able to hedge his positionwithout risk, if he requires an initial wealth smaller than S0. It reinfor
es the ne
essity toturn to other 
on
epts to pri
e options su
h as minimization of shortfall risk or pri
es based onutility fun
tions (see F�ollmer-Leukert (1999), and Hodges-Neuberger (1989) among others).
11



Name Payo� European Pri
e Ameri
an Pri
eCall (ST �K)+ S0 S0Put (K � ST )+ K KAsian Call (Fixed strike) � TPi=1 aiSi �K�+ S0� TPi=1 ai� �T�1Pi=2 1i + 2T�S00 � ai (ai = 1=T )Asian Call (Floating Strike) � TPi=1 aiSi � ST�+ S0�T�1Pi=1 ai� � TPi=2 1i�S00 � ai � 1 (ai = 1=T )Asian Put (Fixed strike) �K � TPi=1 aiSi�+ K K0 � aiAsian Put (Floating Strike) �ST � TPi=1 aiSi�+ S0(1� aT ) S0(1� aT )0 � ai � 1Partial Lookba
k Call (ST � �min(S1; : : : ; ST ))+ S0 S0� 2 [0; 1℄Call on maximum (max(S1; : : : ; ST )�K)+ T S0 T S0Barrier Up and Out Call Q 1Si<U(ST �K)+ S0(1�K=U) S0(1�K=U)(K < U; S0 < U)Barrier Up and Out Put Q 1Si<U(K � ST )+ K K(S0 < U)Barrier Up and In Call 19i=Si>U(ST �K)+ S0 S0Barrier Up and In Put 19i=Si>U(K � ST )+ S0K=U S0K=U(S0 < U)Barrier Down and Out Call Q 1Si>L(ST �K)+ S0 S0(S0 > L)Barrier Down and Out Put Q 1Si>L(K � ST )+ K � L K � L(S0 > L;K > L)Barrier Down and In Call 19i=Si<L(ST �K)+ L1L<K + S01L>K L1L<K + S01L>K(S0 > L)Barrier Down and In Put 19i=Si<L(K � ST )+ K K(S0 > L)Table 1: Expli
it super-repli
ation pri
es of some options
12



Appendix: Proof of theorem 1.2The proof of the European 
ase is a straightforward adaptation of Pham (2000) (see appendixA, p.679) who is working in the Lp setup. Indeed, the diÆ
ult point is to show that the set ofrandom variables dominated by the terminal wealth of admissible strategies starting from 0 is
losed in probability and this has been proved by Brannath (1997) in a general 
ontext. Weomit details.For the Ameri
an 
ase, let (Ht)t2T be an Ameri
an payo� su
h thatsupQ2P;�2S0;T IEQ[H� ℄ <1: (4.9)By analogy with the usual dynami
 programming equation, we introdu
e the pro
ess Yt de�nedby YT = HTYt = Ht _ ess supQ2P IEQ [Yt+1 j Ft℄ for t = 0; : : : ; T � 1:Set At = fHt � ess supQ2P IEQ [Yt+1 j Ft℄g and�T = T�t = t1At + �t+11A
t :Note that ea
h �t belongs to St;T : �0 will play the role of an optimal stopping time. A
tually,the proof of the Ameri
an part of Theorem 1.2 follows from the following lemma.Lemma 4.1 With the above notation and Assumption 4.9, there exists a minimal strategy(Y0; �̂; Ĉ) 2 AaH su
h thatXY0;�̂;Ĉt = Yt = ess supQ2P IEQ[H�t j Ft℄ = ess supQ2P;�2St;T IEQ[H� j Ft℄:We now turn to its proof.Step 1: Xx;�;Ct � ess supQ2P;�2St;T IEQ[H� j Ft℄ for any (x; �; C) 2 AaH . The result is 
lear usingthe admissibility of the Ameri
an strategy and the super-martingale property of Xx;�;C underany Q 2 P.Step 2: ess supQ2P IEQ[H�t j Ft℄ � Yt. We pro
eed by indu
tion. Clearly, the property holdswhen t = T . Assume now that it holds for t + 1, and let denote by (pe(H�t+1); ~�t+1; ~Ct+1) the13



minimal strategy for the European 
laim H�t+1, using Theorem 1.2. Thus, one dedu
es fromthe de�nition of Yt thatYt = 1At Ht + 1A
t ess supQ2P IEQ[Yt+1 j Ft℄� 1At Ht + 1A
t ess supQ2P IEQ[ess supQ2P IEQ[H�t+1 j Ft+1℄ j Ft℄ by indu
tion� 1At Ht + 1A
t ess supQ2P IEQ[Xpe(H�t+1);~�t+1; ~Ct+1t+1 j Ft℄� 1At Ht + 1A
t Xpe(H�t+1 );~�t+1; ~Ct+1t using the super-martingale property� 1At Ht + 1A
t ess supQ2P IEQ[H�t+1 j Ft℄ = ess supQ2P IEQ[H�t j Ft℄:Step 3: there exists a strategy (Y0; �̂; Ĉ) 2 AaH su
h that XY0;�̂;Ĉt = Yt. Let (xt; �t; Ct) be theminimal strategy asso
iated to the European 
ontingent 
laim Yt: we 
an take �tu = �Ctu+1 = 0for u � t, so that Xxt;�t;Ctt = Xxt;�t;CtT � Yt. Set�̂t = �t+1t for t = 0; : : : ; T � 1�Ĉt = Yt�1 � Yt + �tt�1��St for t = 1; : : : ; T:We �rst prove that �Ĉt is non negative. Theorem 1.2 for the European 
laim Yt yields�Ĉt � �Xxt;�t;Ctt�1 + Yt�1 +�Ctt = �ess supQ2P IEQ[Yt j Ft�1℄ + Yt�1 +�Cttwhi
h is non negative by de�nition of Yt�1. This proves that (Y0; �̂; Ĉ) 2 A. We now show byindu
tion that XY0;�̂;Ĉt = Yt: this will also 
omplete the proof of (Y0; �̂; Ĉ) 2 AaH . For t = 0,this is obvious. If the property holds true at time t, we dedu
e thatXY0;�̂;Ĉt+1 = XY0;�̂;Ĉt + �̂�t�St+1 ��Ĉt+1 = Yt + �̂t+1t ��St+1 ��Ĉt+1 = Yt+1;by de�nition of the 
onsumption �Ĉt+1.The 
ombination of the three steps leads to the equality of Lemma 4.1; taking into a
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