
Numerial analysis of miro-maro simulationsof polymeri uid ows : a simple ase.Benjamin Jourdain, Tony Leli�evre, Claude Le BrisCERMICS, Eole Nationale des Ponts et Chauss�ees,6 & 8 Av. Pasal, 77455 Champs-sur-Marne, Frane.fjourdain, lelievre, lebrisg�ermis.enp.frWe present in this artile the numerial analysis of a simple miro-maro simulation of apolymeri uid ow, namely the shear ow for the Hookean dumbbells model. Althoughrestrited to this aademi ase (whih is however used in pratie as a test problem fornew numerial strategies to be applied to more sophistiated ases), our study an beonsidered as a �rst step towards that of more ompliated models. Our main resultstates the onvergene of the fully disretized sheme (�nite element in spae, �nitedi�erene in time, plus Monte Carlo realizations) towards the oupled solution of apartial di�erential equation / stohasti di�erential equation system.1. Introdution.We are onerned here with the numerial analysis of a simple miro-maro simu-lation of a polymeri uid ow. More preisely, we deal with the situation wherethe polymeri liquid, whih is here supposed to be an in�nitely diluted solution ofpolymers, experienes a pure shear ow and is modeled at the mirosopi saleby the dynamis of stohasti Hookean dumbbells. To the best of our knowledge,suh a study is new. We shall explain below why, despite the simpliity of theunderlying model, our work an be seen as a �rst step towards the treatment of themore sophistiated models that are ommonly used in the ontext of the so-alledmiro-maro approah in omputational rheology.Numerial simulations of the ow of omplex uids suh as polymeri liquids isa long lasting hallenge. The entral diÆulty is the rheology of these uids, highlynon Newtonian in nature : there is no simple linear relation linking the stress tensor� and the deformation tensor 12 (ru+t ru) as in the ase of Newtonian uids. Thisalgebrai relation, the so-alled onstitutive equation of the uid, is replaed in suhuid by a partial di�erential equation (abbreviated in PDE in the sequel) of the1



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 2form D�Dt = f (� ;ru); (1.1)to be integrated along the Lagrangian trajetories of the partiles, or by an integro-di�erential equation (the integral is taken along the trajetories)� = Z t�1m(t� s)St(s) ds; (1.2)where m is a memory funtion (typially a dereasing exponential) and St(s) is adeformation-dependent tensor (typially a funtion of the Finger strain tensor).The standard (\marosopi") approah to simulate an inompressible ow ofsuh polymeri liquids therefore onsists in approximating the solution to a oupledsystem of the form �DuDt = �rp+ ��u+ div � ; (1.3)div u = 0; (1.4)8<: D�Dt = f (� ;ru);or� = R t�1m(t� s)St(s) ds; (1.5)together with onvenient initial and boundary onditions. The derivative DDt denotesthe onvetive derivative ��t+u:r, the vetor u denotes the uid veloity, p denotesthe pressure. The two onstants � and � denote respetively the density and theNewtonian visosity of the solvent. We refer the reader to Refs. 13;14;15 for a generalintrodution to this type of simulations, and to Refs. 10;11;24;26;27 for examples ofthe numerous mathematial studies that have been devoted to suh models. In this�eld, the most reent ontribution is due to P.L. Lions and N. Masmoudi in Ref. 20.Although very eÆient, this purely marosopi approah is now being ques-tioned. The main onerns are indeed to �nd good onstitutive equations (1.1)or (1.2) that ould apply to the ever inreasing number of non Newtonian uidsof interest in today's tehnology, and also to evaluate the impat of some losurehypothesis made to build these onstitutive equations on the quality / validity ofthe �nal result. An alternative approah, whih irumvents the bottlenek of ma-king those losure hypothesis, has therefore been developed on the basis of kinetitheory. In a nutshell, this approah onsists in �nding an expression of the maro-sopi stress tensor in terms of the mirosopi dynamis of the polymer hains andin treating expliitly both sales in the simulation. On the ontrary, onstitutivelaws are derived in a more or less rigorous way from the kineti theory with the helpof losure approximations, the kineti foundation being next forgotten. Instead of(1.5), the system that has therefore to be treated is (1.3)-(1.4) together with theFokker Plank equation desribing the mirosopi dynamis� �t + u:rx = �div Q�(rxuQ� 2�F (Q)) �+ �2�2�Q ; (1.6)



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 3and the expression of the stress tensor as the average� = n Z (Q
 F (Q)) (t;x;Q) dQ� nkBT Id: (1.7)The funtion  (t;x;Q) is the probability density funtion of the end-to-end vetorQ of the polymer at time t and at position x. The funtion F (Q) denotes the forewithin the spring whih models the polymer, � denotes the frition, n is the numberdensity of polymers and � is de�ned by �2 = 2kBT�, where T is the temperature.We refer to Refs. 2;3;7;21 for more details about the derivation of suh equations.From the theoretial standpoint, this approah is learly more satisfatory thanthe previous one. It is however not perfet : urrent researh in the modeling ofomplex ows aims at going further the simple setting of \thermodynamis at equi-librium" upon whih this approah is based (see Refs. 1;8;9). From the mathematialstandpoint, systems of the type (1.3), (1.4), (1.6) and (1.7) have been studied forinstane in Refs. 6;25, and are therefore rather well known. However, this approah,as suh, su�ers from a severe drawbak as far as numerial simulations are on-erned : the Fokker Plank equation, typially set on a spae of large dimension(say IRN with N = 100), is not tratable numerially. The idea has emerged in theearly 90's to simulate the underlying stohasti di�erential equation (abbreviatedin SDE in the sequel) rather than the Fokker Plank equation itself. This approahhas been alled CONFESSIT17 whih means Calulation of Non-Newtonian Fluids :Finite Elements and Stohasti Simulation Tehniques.The \modern" way of simulating an inompressible ow of an in�nitely dilutedsolution of polymer is therefore to approximate8>>><>>>: �(�u�t + u:ru) = �rp+ ��u+ div (� );div (u) = 0;� = nIE(Q
 F (Q))� nkBT Id;dQ+ u:rQdt = �ruQ� 2�F (Q)� dt+ p2�� dW t; (1.8)where IE denotes the expetation and W t is a standard (multidimensional)Brownian motion. This very lively �eld of numerial simulation an be approahedby the reading of works suh as Refs. 4;5;17;21;30 (see other referenes therein). Itshould be already lear in the reader's mind that suh an approah raises hundredsof interesting questions, both theoretial and numerial, and all lying at the in-tersetion of the world of PDEs and SDEs (or even SPDEs i.e. stohasti partialdi�erential equations). So far as we know, no existing study deals with the exis-tene of solution (u; � ;Qt) to the above system (1.8) or any system of the samefamily. Moreover, despite the numerous simulations done, no proof of onvergeneof a numerial sheme towards the \ontinuous" solution has ever been established.Our present work aims at giving a omplete mathematial and numerial analysisof a system suh as (1.8). For reasons that will be lear below, we are bound torestrit ourselves to a very simple ase, that we hope however to be instrutiveenough to motivate further studies.



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 42. The model and our main result.The system we study here is the following�u�t (t; x) � �2x;xu(t; x) = �x�(t; x) + fext(t; x); (2.9)�(t; x) = IE(P (t)Q(t; x)); (2.10)dP (t) = �P (t)2 dt+ dVt; (2.11)dQ(t; x) = ��xu(t; x)P (t)� Q(t; x)2 � dt+ dWt; (2.12)omplemented with ad ho boundary and initial onditions, whih will be both madepreise below. It is obtained from (1.8) by making the following assumptions :� (H1) We onsider a shear ow in 2D : u = uy(x)ey (see Figure 1). Thefuntion uy is heneforth denoted by u. Consequently, the divergene freeondition (1.4) is automatially ful�lled. Another striking onsequene of thisgeometrial assumption is that the Navier term u:ru in (1.3) and the trans-port term u:r in the stohasti equations both vanish. In equation (2.10),� denotes the (x; y) omponents of the stress tensor � . In equations (2.11)and (2.12), (P (t); Q(t; x)) (resp. (Vt;Wt)) are the two omponents of the end-to-end vetor Q(t) (resp. the Brownian motion W t). In equation (2.9), fextdenotes an external fore.� (H2) The fore F (Q) in (1.8) is hosen to be a simple linear fore F (Q) = HQwith H the oeÆient of the Hookean spring whih models the polymer (let usinidentally mention that suh a fore has nothing to do with the modeling ofintra-moleular fores inside the polymer hain : it is only entropi in nature,and models the simple property stating that when the polymer hain strethes,the volume of the region of the on�gurations spae visited by the polymergets smaller). A onsequene of this \Hookean dumbbell" assumption is thatthe model (1.8) is indeed equivalent (at least formally, but more an be saidthan that) to a purely marosopi model of the type (1.1), namely the famousOldroyd B model written here in its di�erential form :� + �Æ�Æt = nkBT�(ru+t ru); (2.13)with the upper onveted derivative ÆÆt de�ned byÆ�Æt = ���t + u:r� � � tru�ru� ;where � = �4H is a harateristi time. In our simple ase, (2.13) redues to :���t + � = �xu: (2.14)
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Fig. 1. Veloity pro�le in a shear ow of a dilute solution of polymers.Let also notie that we have hosen units of time and length suh that � = 1 andd = qkBTH = 1. Moreover, we have taken the physial parameters in order tosimplify the equations. All the results we give are of ourse also valid with di�erentonventions.The main two results of our work, whih are respetively stated in Theorem 1and Theorem 3 in a very preise way show :(a) that there exists a solution (u;Qt) to the system in the natural energy spaesassoiated to the problem,(b) that the fully disretized solution (unh; 1M PMj=1 P jnQjh;n) (the veloity beingdisretized over P1 �nite elements in spae, and by �nite di�erenes in timewhile the SDE being disretized by an Euler sheme in time and the stresstensor approximated by Monte Carlo realizations) onverges up to a slighttehnial modi�ation, whih is linked to the stability of the SDE and thatwill be made preise in subsetion 4.3, to the ontinuous solution at the orderO �h+ Æt+ 1pM �, where h is the spae step, Æt is the time step and M is thenumber of realizations of the SDEs (i.e. the number of dumbbells per ell).The sequel of this paper is devoted to the proof of these two assertions. However,before we get to the heart of the matter, let us emphasize our goal, and also givesome omments that we believe suh results deserve.The proof of the existene (and in fat uniqueness and regularity) of the ontinu-ous problem is reprodued here mainly for the sake of onsisteny. Although it doesnot appear as suh in the literature, it ould be derived in a rather straightforwardway from the observation that our model is, as mentioned above, in fat equivalentto an Oldroyd B type model. The only (slight) novelty is that, with a view totakle next the Galerkin approximation, we deliberately work in the natural energy(Sobolev) spaes. On the ontrary, studies suh as Ref. 25 take a muh more regularsetting and the study Ref. 20 onsiders another type of onvetive derivative (for de-tails about onvetive derivatives and frame indi�erene, see for example Ref. 28).



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 6On the other hand, the \numerial analysis" part of our work seems ompletelynew. We are aware that the ase we deal with, preisely beause of its simpliityand its formal equivalene with a purely marosopi model (hypotheses (H1) and(H2)) annot be onsidered as a prototype (in terms of the mathematial diÆulty)of all models of type (1.8). However,(a) the simple model (2.9)-(2.12) embodies many, if not all, diÆulties of modelof type (1.8) : the oupling between the stohasti part and the marosopiow part, the fat that at any �xed number of dumbbells the (apparentlydetermininisti) ow veloity is atually a stohasti variable. It is thereforeexpeted that the mathematial toolbox used for its study will be useful andinstrutive for the analysis of the other ases. At least it is a preliminarymatter for them.(b) the simple model (2.9)-(2.12) is indeed used in the numerial pratie (andoded as suh) in order to serve as a test ase for advaned numerial teh-niques that will be then extended to more sophistiated ases. This justi�es(to our opinion at least) the need for the numerial analysis of this modelper se.Remark 1 When the mirosopi model is not that of Hookean dumbbells, the foreF (Q) is no longer linear but an beF (Q) = HQ1� jQj2=b;or F (Q) = HQ1� IE(jQj2)=b;whih are respetively the ase for the so-alled FENE and FENE-P dumbbells ase.The FENE-P model is derived from the FENE model via a losure approximation(the so-alled Peterlin approximation), whih enables to obtain a purely marosopiequivalent of the mirosopi model. In these models, b is a positive parameterwhih is the square of the maximum elongation of the dumbbells. The mathematialdiÆulty is then to ensure that Q does not leave the region jQj � pb and does noteven reah its boundary. Current researh12 is direted towards trying to extend thepresent analysis to this ase.Remark 2 When the marosopi ow is no longer a pure shear ow, (at least)four new diÆulties arise :(i) the divergene free onstraint (1.4) has to be aounted for,(ii) the Navier term has to be treated,(iii) the term u:rQt in the left hand side of the SDE of (1.8) has to be dealtwith,



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 7(iv) produt of two non autonomous stohasti proesses arises in the de�nitionof � . (Note that in (2.10), Pt is autonomous, i.e. does not depend on theow.)Of these four diÆulties, diÆulties (iii) and (iv) are so far as we understand themost embarrassing ones. DiÆulty (i) is standard, and (ii) is a lassial well-knowndiÆulty of the mathematial analysis of inompressible (Newtonian) Navier-Stokesequation (and we annot hope to go further in the analysis of the present models thanin that of the Navier Stokes equation). DiÆulty (iii), namely the appearane of atransport term in the SDE (whih ipso fato beomes a SPDE), reates at one aninteresting question : in what sense an we onsider the SDE of the system (1.8) ?A way to irumvent the diÆulty is to set the SDE in the Lagrangian setting, i.e.follow the harateristis of the ow and write the SDE along them. But as we havein mind to deal with a weak solution u of the marosopi ow equations (think ofthe 3d ase), it is not an easy task to de�ne these harateristis, and also to give arigorous foundation to the Lagrangian form (beause of the term ruQ in the right-hand-side whih laks of regularity with respet to Q if u is only H1). We referthe interested reader to Ref. 18 where it is shown that one an adapt and ompletethe Di Perna-Lions theory of almost everywhere ows to aommodate for this newsituation.Remark 3 When the solution is no longer in�nitely diluted, other models arise.For high densities, models like those issued from the theory of reptation (Doi-Edwards models) appear. Then again, marosopi models and miro-maro modelsare two alternatives. Questions like those of simulation of reeted Brownian pro-esses then ome into the piture (see Ref. 21), giving also rise to questions ofinterest for the numerial analysist. Let us also mention that what is expeted to bethe most hallenging ase with respet to the diÆulty of its modeling is neither thein�nitely dilute ase, nor the polymer melt ase, but the ase in between !Let us end this setion saying that we hope to omplement the results of thepresent work at least in two diretions :(a) evaluate on the same toy-model both by numerial analysis and omputationalexperiments the validity of well known and ommonly used tehniques of this�eld of omputational rheology suh as variane redution methods,(b) do the same analysis as that of the present paper for some of the more diÆultases mentioned in the above remarks.We refer the reader to Refs. 12;19 for both aspets.3. Brief mathematial analysis of the ontinuous problem.3.1. Preise setting of the equations and de�nition of solutions.



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 8As announed above, we omplement system (2.9)-(2.12) with the followingboundary onditions : � u(t; 0) = f0(t);u(t; 1) = f1(t); (3.15)together with the initial data :8<: u(0; x) = u0(x);Q(0; x) = Q0;P (0) = P0: (3.16)Let us also make preise the notations : P0 and Q0 denote two independent nor-mal random variables (beause we suppose that the polymers are initially at equi-librium), also independent of Vt and Wt whih denote two standard independentBrownian motions. Notie that, as funtion of the spae variable x, (Vt;Wt) isonstant. In the following, we have (t; x) 2 (0; T )�O with O = (0; 1).The following regularity for the external fores and the initial veloity are sup-posed : 8<: fext 2 L1t (H1x) \W 1;1t (L2x);fext(0; x) 2 L2x;u0 2 H2: (3.17)It is to be remarked that although the regularities (3.17) have been hosen forsimpliity and beause they are neessary for our result of onvergene (Theorem 3),some parts of the arguments below may be done under less regular requirements.Let us also notie that all the results we give are also valid with other assumptionsof regularity on fext.We restrit ourselves to the ase of homogeneous boundary onditions (f0 = f1 =0), the modi�ations to deal with the other ases being only a tehnial matter. Inthe following, t; x and ! denote respetively the variable in time, spae and probabil-ity. For example, Qt 2 L1t (L2x(L2!)) means that supesst2(0;T )fRO IE(Q2t ) dxg <1.We are now in position to de�ne the notion of solution we shall deal with.We say that (u;Q) is a weak solution of the homogeneous problem if u 2L1t (L2x) \ L2t (H10;x) and Qt 2 L1t (L2x(L2!)) satisfy that for all v 2 H10 (O),ddt ZO uv + ZO �xu�xv = � ZO IE(PtQt(x))�xv +ZO fext(t; x)v; (3.18)for a.e. (x; !), 8t 2 (0; T ), Qt(x) = e� t2Q0 + Z t0 e s�t2 dWs +Z t0 e s�t2 �xuPs ds;(3.19)with Pt = e� t2P0 + Z t0 e s�t2 dVs: (3.20)Equation (3.18) holds in the sense of distributions in time. As usual, one mayequivalently use time dependent test funtions v 2 L1t (L2x) \ L2t (H10;x).



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 93.2. Formal a priori estimates.We now establish formal a priori estimates on the solution (u;Q). These esti-mates will be made rigorous at the disrete level in the next subsetion.Multiplying (2.9) by u, next integrating over the domain and in time, we obtain12 ZO u(t; x)2 � 12 ZO u0(x)2 + Z t0 ZO (�xu)2 = � Z t0 ZO IE(PsQs(x))�xu(s; x)+ Z t0 ZO fext(s; x)u(s; x):Next we ompute Q2t by Itô's formula using (2.12), take expetations and integrateagain on O and in time to obtain12 ZO IE(Q2t )� 12 = Z t0 ZO IE(PsQs(x))�xu(s; x)� 12 Z t0 ZO IE(Q2s) + 12 t:Summing up these two equalities, we obtain12 jjujj2L2x(t) + Z t0 jj�xujj2L2x + 12 ZO IE(Q2t ) + 12 Z t0 ZO IE(Q2s) ds = 12 jju0jj2L2x+12(1 + t) + Z t0 ZO fextu; (3.21)whih yields the �rst energy inequality :jjujj2L1t (L2x) + jjujj2L2t (H10;x) + jjQtjj2L1t (L2x(L2!)) + jjQtjj2L2t (L2x(L2!))� C �1 + jju0jj2L2x + T + jjfextjj2L1t (L2x)� ; (3.22)with C a onstant independent of the data of the problem.At this stage, it is to be remarked that using the same arguments as in thederivation of (3.21) or (3.22) with u = u1 � u2 and Q = Q1 � Q2, one an showthe uniqueness of solution. This point should be not surprising for the reader asthe system (2.9)-(2.12) (one written in terms of u only, using equation (2.10) on �and equation (2.12)) on Qt is indeed a linear system with respet to the variable u.This is obviously a onsequene of our simplifying assumptions (H1) and (H2).We must also notie that this energy estimate shows that the regularity of thesolution is at least : u 2 L2t (H1x) and �u�t 2 L2t (H�1x ). This shows in fat that u 2C([0; T ℄; L2(O)) whih allows us to de�ne u(0) (see Ref. 29 Chapter III, Lemma 1.2).Let us now turn to the seond energy inequality. This time, we multiply (2.9)by ��2x;xu and integrate over the domain to obtainddt ZO(�xu)2 + ZO(�2x;xu)2 = � ZO �xIE(PtQt)�2x;xu� ZO fext�2x;xu:We need to ontrol the �rst term in the right-hand side. Computing d(PtQt) from(2.11) and (2.12) and taking expetations, we get the following equation (equivalent



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 10to (2.14)) : ��t IE(PtQt) = �IE(PtQt) + �xu IE(P 2t ): (3.23)By a standard appliation of Gronwall's lemma, this yields the following boundjj�xIE(PtQt)jj2L2x � Z t0 jj�2x;xujj2L2x ;whih we use to �nally obtain (using again Gronwall's lemma) the seond energyinequality : jjujjL1t (H1x)\L2t (H2x) � C �jju0jjH1x + jjfextjjL1t (H1x)� ; (3.24)where C only depends on T .Likewise, we multiply (2.9) by �u�t after derivating it in time (all this is doneformally we reall), and we integrate over O to obtain���������u�t ��������2L1t (L2x)+����������xu�t ��������2L2t (L2x)� C  �������� ��t IE(PtQt)��������2L2t (L2x)+ ���������fext�t ��������2L1t (L2x)+ �������� �u�t ����t=0��������2L2x! :Using again equation (3.23), we obtain (by Gronwall inequality)�������� ��t IE(PtQt)��������2L2t (L2x) � C �1 + jju0jj2L2x + jjfextjj2L1t (L2x)�and we then derive another regularity in time :���������u�t ��������L1t (L2x)\L2t (H1x) � C �1 + jju0jjH2 + jjfextjjW 1;1t (L2x) + jjfext(0; x)jjL2x� ;(3.25)where C only depends on T .3.3. Existene.We an now show the existene of a solution of problem (3.18)-(3.19).3.3.1. Semi-disretized weak formulation.Let us de�ne a Riesz basis fvigi=1::1 of H10 (O). We set Vm = Vetfv1; :::; vmg.The semi-disretized problem is the following :Find Um 2 (L1t (IR))m and Qmt 2 L1t (L2x(L2!)) suh that, for all 1 � i � m, theouple (um(t; x); Qmt (x)), where um(t; x) =Pi Umi (t)vi(x), satis�es :ddt ZO umvi = � ZO �xum�xvi � ZO IE(PtQmt (x))�xvi + ZO fextvi; (3.26)Qmt = e� t2Q0 + Z t0 e s�t2 dWs + Z t0 e s�t2 �xumPs ds; (3.27)



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 11with Qm0 = Q0 and u(t = 0) = �m(u0) where �m is the H1-projetion on Vm.Again, (3.27) has to make sense for a.e. (x; !), for all t 2 (0; T ).3.3.2. Exitene of a semi-disretized solution.It is standard to �nd a solution to the disretized problem (3.26)-(3.27) usinge.g. a �xed-point argument on the funtionF : 8><>: X �! X� U(t)Qt(x) � 7�!  U0 �A�1 �R t0 �BU(s)� RO IE(PsQs)�xV + Fext��e� t2Q0 + R t0 e s�t2 dWs + R t0 e s�t2 Pi Ui�xviPs ! ;where X = f(U;Qt) 2 (L1t (IR))m � L1t (L2x(L2!))g is a Banah spae for the normjj(U;Qt)jjX = jjU jjL1t + jjQtjjL1t (L2x(L2!)), Ai;j = ZO vivj , Bi;j = ZO �xvi�xvj , V isa �eld of omponents vj and Fext is a vetor of omponents RO fextvj .The point is the following result stating the regularity of the disretized solution.Lemma 1 (Regularity of the spae-disretized solution) Assuming u0 2 L2xand fext 2 L1t (L2x), we have :jjumjj2L1t (L2x) + jjumjj2L2t (H10;x) + jjQmt jj2L1t (L2x(L2!)) + jjQmt jj2L2t (L2x(L2!))� C �1 + jju0jj2L2x + T + jjfextjj2L1t (L2x)� ; (3.28)with C independent of the data of the problem.Assuming u0 2 H2x and fext 2W 1;1t (L2x), we have :���������um�t ��������L1t (L2x)\L2t (H1x) � C �jju0jjH2 + jjfextjjW 1;1t (L2x) + jjfext(0; x)jjL2x� ; (3.29)���������2um�t2 ��������L2t (H�1�;x) � C �jju0jjH2 + jjfextjjW 1;1t (L2x) + jjfext(0; x)jjL2x� ; (3.30)where C only depends on T . By de�nition, jjgjjH�1�;x = supw2Vm ��RO gw��jj�xwjjL2x .Proof. To obtain the �rst two estimates (3.28) and (3.29) is a lassial exerise :one just needs to reprodue in a more rigorous way the a priori estimates (3.22)and (3.25) of the former subsetion. The last result (3.30) is obtained by writingthe derivative in time of (3.26) and observing that ��t IE(PtQmt ) = �IE(PtQmt ) +�xumIE(P 2t ) whih ensures ��t IE(PtQmt ) 2 L2t (L2x).3.3.3. Convergene towards a ontinuous solution.



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 12We assume u0 2 L2x and fext 2 L1t (L2x). Aording to the former lemma, wehave jjumjjL1t (L2x)\L2t (H1x) + jjQmjjL1t (L2x(L2!)) � C with C independent of m. Theonvergene of the sequene (um; Qm)m2IN then lassially derives from this estimate(notie that there are only linear terms in un and Qn in the equations (3.26) and(3.27), sine Pt is autonomous), following the next three steps :Step 1 Using the estimate on (um)m2IN, one an de�ne a funtion u 2 L1t (L2x)\L2t (H10;x) suh that um onverges towards u weakly in L2t (H1x) and for the weak-*topology of L1t (L2x) (and therefore in D0((0; T )�O)). This funtion u satis�es the�rst energy inequality (3.22) (taking the inferior limit).Step 2 One an then de�ne ~Q by ~Q = e� t2Q0+R t0 e s�t2 dWs+R t0 e s�t2 �xu(s; x)Ps dsand hek that ~Q 2 L1t (L2x(L2!)).Step 3 It remains to hek the onvergene of the terms of the equation (3.26)satis�ed by um. The only non-trivial term is RO IE(PtQmt (x))�xvi. We use that forw 2 L2x(O),ZOIE(PtQmt (x))w = ZOIE�PtZ t0e s�t2 �xumPs ds�w = ZOZ t0�xume s�t2 IE(PsPt)w ds dx;and this last term goes to RO R t0 �xu e s�t2 IE(PsPt)w ds dx = RO IE(Pt ~Qt(x))w (be-ause �xum onverges weakly towards �xu in L2t (L2x)).We have therefore obtained a solution of the problem (3.18)-(3.19). Let us shownow the onvergene of Qmt towards ~Qt as well as the strong onvergene of umtowards u.Lemma 2 Assume u0 2 H2x and fext 2 W 1;1t (L2x). Set (u;Qt) the solution of theproblem (3.18)-(3.19). Set Vm a subspae of H10 and (um; Qmt ) the solution of thesemi-disretized problem (3.26)-(3.27) with an initial veloity um0 . Then, we havefor all t 2 [0; T ℄,jju(t)� um(t)jj2L2x + Z t0jj�x(u� um)jj2L2x + jjQt �Qmt jj2L2x(L2!) +12 Z t0jjQs �Qms jj2L2x(L2!)� jju0 � um0 jj2L2x + infw2Vm �3jj�x(u� w)jj2L2t (L2x) + Cjju� wjjL2t (L2x)� ;with a onstant C whih depends on the data of the problem : u0, fext and T .Proof. Let w be a funtion in Vm. One an easily obtain, using the linearity ofthe variational formulations, and integrating in time :12 ZO(u� um)2(t) + Z t0 ZO j�x(u� um)j2 = 12 ZO(u0 � um0 )2� Z t0 ZO IE(Ps(Qs �Qms ))�x(u� um) + Z t0 ZO IE(Ps(Qs �Qms ))�x(u� w)+ Z t0 ZO ��t (u� um)(u� w) + Z t0 ZO �x(u� um)�x(u� w): (3.31)



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 13Using the equations on Qt and Qmt , one an show that :12 ZO IE(Qt �Qmt )2 = Z t0 ZO IE(Ps(Qs �Qms ))�x(u� um)� 12 Z t0 ZO IE(Qs �Qms )2:(3.32)Summing up (3.31) and (3.32), we have :12ZO(u� um)2(t)+Z t0 ZOj�x(u� um)j2+ 12ZOIE(Qt �Qmt )2+ 12Z t0 ZOIE(Qs �Qms )2= 12 ZO(u0 � um0 )2 + Z t0 ZO IE(Ps(Qs �Qms ))�x(u� w)+ Z t0 ZO ��t (u� um)(u� w) + Z t0 ZO �x(u� um)�x(u� w):(3.33)Using Cauhy-Shwarz inequalities, we haveZ t0 ZO �x(u� um)�x(u� w) � 12 Z t0 ZO j�x(u� um)j2 + 12 Z t0 ZO j�x(u� w)j2;and (using IE(P 2s ) = 1)Z t0 ZO IE(Ps(Qs �Qms ))�x(u� w) � 14 Z t0 ZO IE(Qs �Qms )2 + Z t0 ZO j�x(u� w)j2:The estimation of �����um�t ����L2t (L2x) given by Lemma 1 also holds for the on-tinuous solution u (taking the inferior limit). This yields the �nal estimate :R t0 RO ��t (u� um)(u� w) � Cjju� wjjL2t (L2x).In the former proof, we notie that we an assume that w also depends on thetime variable. Choosing w = �m(u) (we reall that �m is the operator of the H1-projetion on Vm), one an therefore show the strong onvergene of um towards uin L1t (L2x)\L2t (H1x) and the strong onvergene of Qmt towards Qt in L1t (L2x(L2!)).We have therefore proved the following result :Theorem 1 (Existene of a ontinuous solution) Let us assume u0 2 L2x andfext 2 L1t (L2x). The problem (3.18)-(3.19) admits a unique solutionu 2 C([0; T ℄; L2x(O)) \ L2t (H10;x) and Qt 2 L1t (L2x(L2!)).The solution (um; Qmt ) of the semi-disretized problem (3.26)-(3.27) is unique. As-suming u0 2 H2x and fext 2 W 1;1t (L2x), (um; Qmt ) onverges towards (u;Qt) in thefollowing sense : um �! u strongly in L1t (L2x) \ L2t (H1x) and Qmt �! Qt stronglyin L1t (L2x(L2!)).Remark 4 It is lear that, under the hypothesis u0 2 H2x and fext 2 W 1;1t (L2x),the ontinuous solution u is a funtion of L1t (L2x) \ L2t (H1x) whih satis�es theinequality (3.25). Moreover, under the assumptions u0 2 H1x and fext 2 L1t (H1x),we an also prove that the solution satis�es the seond energy estimate (3.24), what



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 14will be used in the subetion 4.1. To prove this result, one uses the uniqueness ofthe solution and the fat that one an onstrut a sequene of approximations of thesolution whih satis�es (3.24) by a Galerkin method on a speial base (stable forthe laplaian). One an then also obtain (3.24) for the solution, taking the inferiorlimit.4. Analysis of the numerial sheme.In this setion, we want to show the onvergene of a standard disretizationof the problem (2.9)-(2.12). As above, we will suppose u0 2 H2x, fext 2 L1t (H1x)and �fext�t 2 L1t (L2x), whih yields, using the a priori estimates (3.24) and (3.25) :u 2 L1t (H1x) \ L2t (H2x) and �u�t 2 L1t (L2x) \ L2t (H1x).For the sake of simpliity, we also assume here homogeneous Dirihlet boundaryonditions. Standard modi�ations of our arguments yield the same onlusionswith non homogeneous Dirihlet boundary onditions (see e.g. Remark 6.2.2 inRef. 23.)The original problem is disretized in three steps : in spae (by a Galerkinmethod), in time (by an Euler semi-impliit sheme) and �nally using the MonteCarlo method. We hoose a P1 disretization in spae of the veloity : the veloityspae funtions Vh is the spae of the pieewise polynomials of degree 1 on a mesh Thwhere h is the spae disretization step. The time interval (0; T ) is disretized witha onstant step Æt. We onsider M realizations of the dumbbell proesses (Pt; Qt).The sheme we use will be made preise in the subsetion 4.3 (see equations (4.48)-(4.50)).The aim of this setion is to show Theorem 3 whih states that the order ofonvergene of this sheme is O �h+ Æt+ 1pM �.4.1. Convergene of the spae-disretized problem.We onsider here the spae-disretized problem whih is (3.26)-(3.27) with V m =Vh � H1x (we use a Galerkin method). Notie that sine the veloity uh is a piee-wise linear funtion (P1), the proess Qh (and therefore the stress �h = IE(PQh))is a disontinuous pieewise onstant funtion (disontinuous P0). We have al-ready shown in subsetion 3.3 that this problem admits a unique solution. More-over, Lemma 2, together with the standard �nite elements approximation inequalityjju��h(u)jj2L2x + h2jj�x(u��h(u))jj2L2x � Ch4jjujj2H2x yields :Lemma 3 (Convergene of the spae-disretized problem) Let us assumeu0 2 H2x, fext 2 L1t (H1x) and �fext�t 2 L1t (L2x). Set (u;Qt) the solution of the problem(3.18)-(3.19). Let us assume a P1 spae disretization for the veloity. Set Vh theveloity spae funtions and (uh; Qh) the solution of the semi-disretized problem(3.26)-(3.27) with an initial veloity uh;0 = �h(u0) 2 Vh. Then we have :jju(t)� uh(t)jj2L1t (L2x) + jj�x(u� uh)jj2L2t (L2x) + jjQt �Qh;tjj2L1t (L2x(L2!)) � Ch2;



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 15with C a onstant whih depends on the data of the problem : u0, fext and T .4.2. Convergene of the time-disretized problem.We turn now to the semi-disretized problem in time and in spae. We havealready ompared the ontinuous solution (u;Q) with the spae-disretized solution(uh; Qh) and we want to estimate the error introdued by disretizing (uh; Qh) byan Euler sheme in time.More preisely, we onsider the following problem :Being given (unh; Qh;n; Pn), we ompute (un+1h ; Qh;n+1; Pn+1) by the following algo-rithm : un+1h is suh that 8v 2 Vh,1Æt ZO(un+1h �unh)v+ZO �xun+1h �xv = � ZO IE(PnQh;n(x))�xv+ZO fext(tn)v: (4.34)Qh;n+1 and Pn+1 are then omputed by :Qh;n+1 �Qh;n = ��xun+1h Pn � 12Qh;n� Æt+Wtn+1 �Wtn ; (4.35)Pn+1 � Pn = �12PnÆt+ Vtn+1 � Vtn : (4.36)This problem is omplemented with the initial data uh;0, P0 and Q0.We will �rst show the stability of the sheme and then the onvergene.Lemma 4 (Stability of the spae-time-disretized problem) We assume thatfext 2 L1t (L2x) and u0 2 L2x. Under the assumption Æt < 12 , we have : for all n � TÆt ,jjunhjj2L2x+jjQh;njj2L2x(L2!)+Æt2 nXk=1 ZO j�xukhj2 � 1+jjuh;0jj2L2x+T �1 + Cjjfextjj2L1t (L2x)� ;where C is a onstant independent of the data of the problem.Proof. In order to lighten the notations, we set unh = un and Qh;n = Qn. Wealso set jjf jjH�1� = supv2Vh RO fvjj�xvjjL2x . If f 2 L2, one learly has jjf jjH�1� � Cjjf jjL2 .We hoose v = un+1 in (4.34), what yields1Æt ZO u2n+1 + ZO(�xun+1)2 = 1Æt ZO unun+1 + ZO fext(tn)un+1 � ZO IE(PnQn)�xun+1� 12Æt �ZO u2n + ZO u2n+1�+ 110 ZO(�xun+1)2 + Cjjfext(tn)jj2H�1� � ZO IE(PnQn)�xun+1:One multiplies next (4.35) with Qn and takes the expetation value :IE(Qn+1Qn)� IE(Q2n) = �IE(�xun+1PnQn)� 12IE(Q2n)� Æt;



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 1612 �IE(Q2n+1)� IE(Q2n)�+ 12IE(Q2n)Æt = �xun+1IE(PnQn)Æt+ 12IE((Qn+1 �Qn)2):Summing this estimate multiplied by 1Æt and integrated in spae, and the one onun, we get :12Æt �ZOu2n+1 � ZOu2n�+ 12Æt �ZOIE(Q2n+1)� ZOIE(Q2n)�+ 910 ZO(�xun+1)2+12 ZOIE(Q2n) � Cjjfext(tn)jj2H�1� + 12Æt ZO IE((Qn+1 �Qn)2): (4.37)It remains to estimate the last term in the right-hand side. This is done by takingthe square of (4.35) and then the expetation value :IE((Qn+1 �Qn)2) = IE ��xun+1Pn � 12Qn�2! Æt2 + Æt� 2(�xun+1)2IE(P 2n)Æt2 + 12IE(Q2n)Æt2 + Æt:It is easy to show that IE(P 2n) is bounded by 44�Æt (by indution, usingIE(P 2n+1) = �1� Æt2 �2 IE(P 2n) + Æt). We obtain then :IE((Qn+1 �Qn)2) � (�xun+1)2 8Æt24� Æt + 12IE(Q2n)Æt2 + Æt: (4.38)Using (4.37) and (4.38), one threfore obtains :12Æt �ZOu2n+1 � ZOu2n�+ 12Æt �ZOIE(Q2n+1)� ZOIE(Q2n)�+ 910 ZO(�xun+1)2+12 ZOIE(Q2n) � Cjjfext(tn)jj2H�1� + 4Æt4� Æt ZO(�xun+1)2 + Æt4 ZOIE(Q2n) + 12 : (4.39)Under the assumption Æt < 12 , one has RO u2n+1�RO u2n+RO IE(Q2n+1)�RO IE(Q2n)+AÆt RO(�xun+1)2 � Æt�2Cjjfext(tn)jj2H�1� + 1� (with A = 4670 � 12 ). We onlude bysummation over n.We are now going to show the onvergene of this sheme. We will �rst showthe onvergene of Pn towards Ptn and then, reproduing the proof of the energyestimate (3.22) at the disrete level, we will show the onvergene of (unh; Qh;n)towards (uh(tn); Qh(tn)).Let us begin with the onvergene of Pn towards Ptn (we reall that Pn and Ptnare de�ned independently of any spae disretization). Sine the di�usion oeÆientin the SDE satis�ed by Pt is onstant, the Euler sheme is in fat a Milshtein shemeon Pt. The onvergene is therefore in Æt (see Theorem 10.3.5 in Ref. 16) :Lemma 5 (Convergene of the Euler-Maruyama sheme) There exists a on-stant C whih depends only on T suh thatIE �(Pn � Ptn)2� � C(Æt)2:



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 17Remark 5 We ould have used a sheme exat in law for Pt. We have hosen alassial Euler sheme beause this is the sheme used in more ompliated ases(see Remarks 1 and 2), when Pt also depends on x.We an now show the following onvergene theorem :Theorem 2 (Convergene of the time-disretized problem) Let us assumeu0 2 H2x and fext 2W 1;1t (L2x). Under the assumption Æt < 12 , one has :jjunh � uh(tn)jj2L2x + jjQh;n �Qh(tn)jj2L2x(L2!) � C(Æt)2;with C independent of h and n � TÆt , but depends on the data of the problem : u0,fext and T .Proof. As in the former proof, we omit here the subsript h : unh = un, Qh;n = Qn,u = uh and Q = Qh. We introdue the proesses ~P de�ned by d ~Pt = � 12 ~P�t dt+dVt(with �t = � tÆt� Æt, where bx is the integer part of x, and ~P0 = P0) and ~Q de�nedby d ~Qt = ��xun(t)+1 ~P�t � 12 ~Q�t� dt + dWt (with n(t) = � tÆt� and ~Q0 = Q0). Onean hek easily that Pn = ~Ptn and Qn = ~Qtn . Moreover, we set en = un � u(tn).The stability lemma 4 shows that RO IE(Q2n) is uniformly bounded (in h and n),hene RO IE( ~Q2s) is also uniformly bounded in s. We have also a uniform bound inn on IE(P 2n) and a uniform bound in s on IE( ~P 2s ).Equation on u :One obtains by subtration of the ontinuous formulation in time at time tn(3.26) (we reall that u 2 C([0; T ℄; L2x(O))) and the disretized formulation (4.34) :for all v 2 Vh,ZO�un+1 � unÆt � �u�t (tn)� v+ZO(�xun+1��xu(tn))�xv = �ZOIE(PnQn�PtnQtn)�xv:With similar omputations as those used in the proof of Lemma 4, hoosing v =en+1, we obtain :12Æt �jjen+1jj2L2x � jjenjj2L2x�+ ZO j�xen+1j2 � � ZO IE(PnQn � PtnQtn)�xen+1� Z tn+1tn ZO ��xu�t �xen+1 � 1Æt Z tn+1tn (tn+1 � s) ZO �2u�t2 (s)en+1 dx ds: (4.40)For the last two terms, using Cauhy-Shwarz and the inequality ab � Æta2+ 14Æt b2,we haveZ tn+1tn ZO ��xu�t �xen+1 � Æt Z tn+1tn ����������xu�t ��������2L2x + 14 jj�xen+1jj2L2x :In the same way :Z tn+1tn (tn+1�s) ZO �2u�t2 (s)en+1 dx ds � C(Æt)2 Z tn+1tn ���������2u�t2 (s)��������2H�1�;x+ Æt4 jj�xen+1jj2L2x :



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 18Therefore, we obtain �nally :12 �jjen+1jj2L2x � jjenjj2L2x�+ Æt2 ZO j�xen+1j2 � �Æt ZO IE(PnQn � PtnQtn)�xen+1+(Æt)2 Z tn+1tn ����������xu�t (s)��������2L2x ds+ C(Æt)2 Z tn+1tn ���������2u�t2 (s)��������2H�1�;x ds: (4.41)Equation on Q :In order to estimate the �rst term on the right-hand side of (4.41), we reproduethe proof of the energy inequality (3.22) at the disrete level. We write the SDEsatis�ed by (Qt � ~Qt)2 :12d((Qt� ~Qt)2) = �(Qt � ~Qt)(�xuPt � �xun(t)+1 ~P�t)� 12(Qt � ~Qt)(Qt � ~Q�t)� dt:We set in the following fn = Qtn�Qn. Integrating the last equation over (tn; tn+1),we have :12(f2n+1 � f2n) = �12 Z tn+1tn(Qs � ~Qs)(Qs �Qn) + Z tn+1tn(Ps�xu(s)� Pn�xun+1)(Qs � ~Qs)= �12 Z tn+1tn (Qs � ~Qs)2 + 12 Z tn+1tn (Qs � ~Qs)(Qn � ~Qs)+ Z tn+1tn (Ps�xu(s)� Pn�xun+1)(Qs � ~Qs):We introdue in the expetation of the last expression the term of (4.41) we wantto eliminate, namely Æt RO IE(PnQn � PtnQtn)�xen+1. We obtain :12IE(f2n+1�f2n)+ 12 Z tn+1tn IE(Qs� ~Qs)2 = ÆtIE(PnQn�PtnQtn)�xen+1+A; (4.42)withA = 12 Z tn+1tn IE�(Qs � ~Qs)(Qn � ~Qs)�+ Z tn+1tn IE�(Ps�xu(s)� Pn�xun+1)(Qs � ~Qs)��ÆtIE(PnQn � PtnQtn)�xen+1:We will show the following estimate on A :Proposition 1jAj � CÆt3 1 + j�xun+1j2 + 1Æt Z tn+1tn ������xu�t ����2 + 1Æt Z tn+1tn j�xuj2 + 1Æt Z tn+1tn IE(Q2s)+IE(Q2n) + 1Æt Z tn+1tn IE( ~Q2s)�+ � Z tn+1tn IE�(Qs � ~Qs)2�+ �Ætj�xen+1j2;with � arbitrarily small and C a onstant whih is independent of n and Æt, butdepends on � and on the data of the problem : u0, fext and T .



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 19Let us postpone the proof of Proposition 1 after the end of the proof of Theo-rem 2. Summing up (4.41) and (4.42) (integrated in spae), using the estimation ofPropsition 1, we have :jjen+1jj2L2x�jjenjj2L2x +ZOIE(f2n+1�f2n) + (1�2�)Z tn+1tn IE(Qs � ~Qs)2 + (1�2�) ÆtZOj�xen+1j2� CÆt3 �1 + jj�xun+1jj2L2x + 1Æt Z tn+1tn jj�xujj2L2x + 1Æt Z tn+1tn ZO IE(Q2s) + ZO IE(Q2n)+ 1Æt Z tn+1tn ZO IE( ~Q2s) + 1Æt Z tn+1tn ����������xu�t (s)��������2L2x ds+ 1Æt Z tn+1tn ���������2u�t2 (s)��������2H�1�;x ds! ;where � and � are arbitrarily small positive onstants. Summing up over n andusing the regularities proved in Lemmas 1 and 4, this onludes the proof.We now have to prove Proposition 1. We will need the next two lemmas.Lemma 6 Set R(t; x) a proess (possibly deterministi). We have the followinginequalities :����IE�Z tn+1tn R(s; x)(�xen+1) ds����� � 14� Z tn+1tn (IE(R(s; x)))2 ds+ �Ætj�xen+1j2;����IE�Z tn+1tn R(s; x)(Qs � ~Qs) ds����� � 14� Z tn+1tn IE �R(s; x)2� ds+� Z tn+1tn IE�(Qs � ~Qs)2� ds:Let S(t; x) be an Itô proess suh that dSt = a(x; t) dt+ b(x; t) dVt+ (x; t) dWt withb and  square integrable in t. We also have the following inequality :����IE�Z tn+1tn (S(s; x)� S(tn; x))(�xen+1) ds����� � 14�Æt2 Z tn+1tn (IE(a(x; s)))2 ds+�Ætj�xen+1j2;with � arbitrarily small.Proof. These results are easy to obtain by Cauhy-Shwarz inequality, notiingthat �xen+1 is deterministi and using the inequality jabj � 14�a2 + �b2.Lemma 7 We have the following two inequalities :����IE�Z tn+1tn(Qs � ~Qs)( ~Qs � ~Qtn) ds������CÆt2 �Æt+ ÆtIE(Q2n) + Ætj�xun+1j2+Z tn+1tn IE(Q2s)�+� Z tn+1tn IE�(Qs � ~Qs)2� ds;with � arbitrarily small.����IE�Z tn+1tn �(Qs � ~Qs)( ~Ps � ~Ptn) ds����� � CÆt2 �Æt+ Æt�2 + Z tn+1tn j�xuj2�+� Z tn+1tn IE�(Qs � ~Qs)2� ds;



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 20with � a onstant, � arbitrarily small and C a onstant independent of �. Theonstant C is independent of n and Æt, but depends on � and on the data of theproblem : u0, fext and T .Proof. The proof of the �rst inequality mimis that of the seond one. Therefore,we only prove the seond inequality. For all t 2 (tn; tn+1), one an write d ~Pt =� 12Pndt+ dVt. We have therefore :IE�Z tn+1tn �( ~P (s; x)� ~P (tn; x))(Qs � ~Qs) ds�= Z tn+1tn IE��(s� tn)�2 Pn(Qs � ~Qs)� ds+ IE�Z tn+1tn�(Vs � Vtn)(Qs � ~Qs) ds� :(4.43)For the �rst term of the right-hand side of (4.43), we apply the seond inequa-lity of Lemma 6 (with R(s; x) = �(s � tn)�2Pn) in order to obtain a bound inCÆt3�2 + � R tn+1tn IE�(Qs � ~Qs)2� ds. The aim of the remainder of the proof is toshow the following estimation on the seond term of the right-hand side of (4.43) :����IE�Z tn+1tn �(Vs � Vtn)(Qs � ~Qs) ds����� � CÆt2�Æt+ Æt�2 + Z tn+1tn j�xuj2� :(4.44)In order to show (4.44), we use the SDE satis�ed by Qs � ~Qs :Qs � ~Qs = Qtn �Qn � 12 Z stn (Qv �Qn) dv + Z stn (�xuPv � �xun+1Pn) dv= ��1� s� tn2 � (Qtn �Qn)� (s� tn)�xun+1Pn + Z stn �xuPtn dv��12 Z stn (Qv �Qtn) dv + Z stn �xu(Pv � Ptn) dv: (4.45)Let us denote B the term in brakets. The random variable B is independent of(Vs � Vtn), whih implies :IE�Z tn+1tn �(Vs � Vtn)B ds� = 0:We still have to estimate the ontributions of the last two terms of (4.45). Theseontributions will be denoted respetively by T1 and T2.Let us �rst turn to the term T1 whih is :T1 = IE�Z tn+1tn �2 (Vs � Vtn) Z stn (Qv �Qtn) dv ds�= �2 Z tn+1tn Z stn IE ((Vs � Vtn)(Qv �Qtn)) dv ds:



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 21It is lear that :jT1j � Æt3�2 + 1Æt3 �Z tn+1tn Z stn IE ((Vs � Vtn)(Qv �Qtn)) dv ds�2 :Using the expression of Qv �Qtn = � 12 R vtn Qw dw+ R vtn �xuPw dw+Wv �Wtn , oneobtains : IE ((Vs � Vtn)(Qv �Qtn)) = 12IE�(Vs � Vtn) Z vtn (�Qw) dw�+IE�(Vs � Vtn) Z vtn �xuPw dw�+IE ((Vs � Vtn)(Wv �Wtn)) : (4.46)The third term of (4.46) is zero. For the seond term of (4.46), we write (usingCauhy-Shwarz) :1Æt3 �Z tn+1tn Z stn Z vtn �xuIE ((Vs � Vtn)Pw) dw dv ds�2� Z tn+1tn Z stn Z vtn j�xuj2 (IE((Vs � Vtn)Pw))2 dw dv ds � CÆt3 Z tn+1tn j�xuj2:For the �rst term of (4.46), we write in the same manner :1Æt3 �Z tn+1tn Z stn Z vtn IE ((Vs � Vtn)Qw) dw dv ds�2� Z tn+1tn Z stn Z vtn (IE ((Vs � Vtn)Qw))2 dw dv ds� Z tn+1tn Z stn Z vtn (s� tn)IE(Q2w) dw dv ds � Æt3 Z tn+1tn IE(Q2s):Let us now turn to the estimation of the term T2 :T2 = IE�Z tn+1tn �(Vs � Vtn) Z stn �xu(Pv � Ptn) dv ds�= � Z tn+1tn Z stn �xuIE ((Vs � Vtn)(Pv � Ptn)) dv ds:It is lear that :jT2j � Æt3�2 + 1Æt3 �Z tn+1tn Z stn �xuIE ((Vs � Vtn)(Pv � Ptn)) dv ds�2 :Using the expression of Pv � Ptn = � 12 R vtn Pw dw + Vv � Vtn , we obtain :IE ((Vs � Vtn)(Pv � Ptn)) = 12 Z vtn IE (�(Vs � Vtn)Pw) dw+IE ((Vs � Vtn)(Vv � Vtn)) :(4.47)



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 22For the seond term of (4.47), we have therefore :1Æt3 �Z tn+1tn Z stn �xu(v � tn) dv ds�2 � 1Æt Z tn+1tn Z stn j�xuj2(v � tn)2 dv ds� Æt2 Z tn+1tn j�xuj2:For the �rst term of (4.47), we obtain in the same way :1Æt3 �Z tn+1tn Z stn �xu Z vtn IE ((Vs � Vtn)Pw) dw dv ds�2� 1Æt Z tn+1tn Z stn j�xuj2 Z stn Z vtn (IE ((Vs � Vtn)Pw))2 ds � Æt3 Z tn+1tn j�xuj2:This ends the proof.One an now prove Proposition 1.Proof. The �rst inequality of Lemma 7 shows that :jAj � CÆt2�Æt+ Ætj�xun+1j2+Z tn+1tn IE(Q2s) + ÆtIE(Q2n)�+�Z tn+1tn IE�(Qs � ~Qs)2�+jA0j;with A0 = Z tn+1tn IE�(Ps�xu(s)� Pn�xun+1)(Qs � ~Qs)� ds�ÆtIE(PnQn � PtnQtn)�x(un+1 � u(tn+1))= Z tn+1tn IE�(Ps�xu(s)� Pn�xun+1)(Qs � ~Qs)�(PnQn � PtnQtn)(�xun+1 � �xu(tn+1))� ds:Using Lemmas 6 and 7, we will prove the following estimate on A0 :jA0j � CÆt3 1 + j�xun+1j2 + 1Æt Z tn+1tn ������xu�t ����2 + 1Æt Z tn+1tn j�xuj2 + 1Æt Z tn+1tn IE(Q2s)+IE(Q2n) + 1Æt Z tn+1tn IE( ~Q2s)�+ � Z tn+1tn IE�(Qs � ~Qs)2�+ �Ætj�xen+1j2;with � arbitrarily small.The third inequality of Lemma 6 applied suessively to PsQs and ~Ps ~Qs and theseond inequality of Lemma 7 (applied with � = �xun+1) show that jA0j is boundedby :����Z tn+1tn IE�(Ps�xu(s)� ~Ps�xun+1)(Qs � ~Qs)� ( ~Ps ~Qs � PsQs)(�xun+1 � �xu(tn+1))�����+CÆt3�1 + j�xun+1j2 + 1Æt Z tn+1tn j�xuj2 + 1Æt Z tn+1tn IE(Q2s) + IE(Q2n) + 1Æt Z tn+1tn IE( ~Q2s)�+� Z tn+1tn IE�(Qs � ~Qs)2�+ �Ætj�xen+1j2:



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 23Then, using the seond inequality of Lemma 6 (with R(s; x) = Ps(�xu(s)��xu(tn+1))),we obtain the following bound on jA0j :����Z tn+1tn IE�(Ps�xu(tn+1)� ~Ps�xun+1)(Qs � ~Qs)� ( ~Ps ~Qs � PsQs)(�xun+1 � �xu(tn+1))�����+CÆt3 1 + j�xun+1j2 + 1Æt Z tn+1tn j�xuj2 + 1Æt Z tn+1tn ������xu�t ����2 + 1Æt Z tn+1tn IE(Q2s) + IE(Q2n)+ 1Æt Z tn+1tn IE( ~Q2s)�+ � Z tn+1tn IE�(Qs � ~Qs)2�+ �Ætj�xen+1j2:Then, developing the expression under the integral, we obtain the following term :� Z tn+1tn IE��xu(tn+1) ~Qs(Ps � ~Ps)�+ Z tn+1tn IE��xun+1Qs(Ps � ~Ps)�= Z tn+1tn IE��xun+1(Ps � ~Ps)(Qs � ~Qs)�+ Z tn+1tn IE� ~Qs(Ps � ~Ps) (�xun+1 � �xu(tn+1))� :One an now onlude using the inequality IE�(Ps � ~Ps)2� < CÆt2 and applyingthe �rst two inequalities of Lemma 6 to both terms of the above expression.4.3. Convergene of the Monte Carlo disretized problem.We now turn to the last level of disretization : the Monte Carlo method. In thepreeding subsetions, we have shown that the spae and time disretized problem(unh; Qh;n) onverges towards the ontinuous solution at time tn = nÆt : (u(tn); Qtn).We now want to estimate the error indued by the approximation of IE(PnQh;n) byan empirial mean. All the results of this subsetion hold under the assumptionu0 2 L2x and fext 2 L1t (L2x).We de�ne the fully disretized problem :Being given at time tn = nÆt, the veloity unh and the random variables P jn, P jn andQjh;n, one �nds un+1h 2 Vh suh that 8v 2 Vh,1Æt ZO(un+1h � unh)v + ZO �xun+1h �xv = � ZO Sh;n�xv + ZO fext(tn)v:(4.48)with Sh;n = 1M PMj=1 P jnQjh;n. Then, one omputes P jn+1, P jn+1 and Qjh;n+1 using :Qjh;n+1 �Qjh;n = ��xun+1h P jh;n � 12Qjh;n� Æt+ �W jtn+1 �W jtn� ; (4.49)( P jn+1 � P jn = � 12 P jn Æt+ (V jtn+1 � V jtn);P jn+1 = sup(�A; inf(A;P jn+1)): (4.50)The proesses (V 1t ; : : : ; V Nt ) and (W 1t ; : : : ;WNt ) are standard independent M-dimensional Brownian motions. Initial onditions are uh;0 = �h(u0) (with �h the



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 24�nite elements interpolation operator), P j0 and Qj0, whih are independent normalvariables, independent of the Brownian motion V jt and W jt .One an see that we have modi�ed the standard Euler sheme on Pt by intro-duing a ut-o� onstant A > 0. In fat, we will show two types of results : resultswith ut-o� (A <1) and results without ut-o� (A =1). In the �rst ase, we willrequire 0 < A < q 35Æt (and then use a onstant  > 0 suh that A > � ln(Æt)).The hoie of the upper bound will be justi�ed in the proof of Lemma 10. In theseond ase (A = 1), we have P jn = P jn and we will state the results on a sub-set of the probability spae. This subset will tend to the entire probability spaewhen Æt ! 0 or M ! 1. These diÆulties are linked with usual stability prob-lems enountered in the disretization of SDEs (see Ref. 22). More preisely, let usintrodue the subset An de�ned for all n � TÆt by :An = 8<:8k � n; 1M MXj=1(P jk)2 < 1320 1Æt9=; :The value of the upper bound 1320 1Æt will be justi�ed in the proof of the stabilitylemma 9. For the sake of onision, the results at time nÆt will be stated on theevent An in the absene (A = 1) as well as in the presene (A < q 35Æt ) of theut-o�, but it is important to notie that in the latter ase, the probability of Anis equal to 1.Lemma 8 (Properties of An) Let us assume A = 1 (in whih ase P jn = P jn).The sequene of sets (An)n2IN is dereasing. Moreover, we an estimate the proba-bility of the event An : assuming Æt < 1340 ,IP(An) � 1� 1Æt exp��M2 � 1340Æt � 1� ln� 1340Æt��� ;with C1 and C2 two onstants independent of n. In partiular, for any t 2 [0; T ℄,IP�Ab tÆt� �! 1 when Æt �! 0, or when M �!1 with Æt < 1340 .Proof. The �rst property is lear. For the seond one, notie �rst that a simplealulation yields IE(P 2n) < 2. Hene, if (Gj)j�1 denotes a sequene of i.i.d. normalrandom variables, IP� 1M PMj=1(P jn)2 > C� � IP� 1M PMj=1(Gj)2 > C2 � : By Cherno�inequality, IP0� 1M MXj=1(Gj)2 > C1A � exp(�M(�C � �(�)));for any � > 0 where � denotes the Legendre transform : �(�) = ln(IE(exp(�G21))).We onlude by minimizing the right-hand side over � using :sup�>0(�x � �(�)) = � 0 if x � 1;12 (x� 1� lnx) if x > 1:



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 25In the following, we omit the subsript h in order to lighten the notations. It isimportant to already notie that for all n, the ouples (P jn; Qjn) are exhangeable,i.e. the law of the M-uplet ((P 1n; Q1n); :::; (PMn ; QMn )) remains the same for any per-mutation on the indies (1; :::;M). This allows one to write e.g. IE� 1M PMj=1Qjn� =IE�Q1n� or IE� 1M PMj=1(P jn)2�xu2n+1� = IE�(P 1n)2�xu2n+1�. Let us introdue an-other notation, only used in the proofs. We de�ne the funtion IEn by : for anyrandom variable X , IEn(X) = IE(X1An). Notie that in the ase A < q 35Æt (withut-o�), one has IEn = IE.We start with the stability of the sheme.Lemma 9 (Stability of the fully disretized problem) We assume Æt < 2.Moreover, we assume either ÆtA2 � 1320 , or A = 1. We have then the followinginequality : 8n � TÆt ,ZO IE(u2n1An) + Æt2 n�1Xk=0 ZO IE �(�xuk+1)21Ak�+ ZO IE0� 1M MXj=1(Qjn)21An1A� 1 + jju0jj2L2x + T �1 + CjjfextjjL1t (L2x)� ;with C a onstant independent of the data of the problem.Proof. Choosing v = un+1 as a test funtion in (4.48), we obtain (in the sameway as in the preeding stability proofs) :12Æt �ZO u2n+1 � ZO u2n�+ 910 ZO �xu2n+1 � � ZO Sn�xun+1 + Cjjfext(tn)jj2L2x :Multiplying the equation (4.49) with Qjn and 1An , we obtain :12Æt �IEn((Qjn+1)2)� IEn((Qjn)2)�+ 12IEn((Qjn)2)= IEn(�xun+1P jnQjn) + 12Æt IEn((Qjn+1 �Qjn)2):Summing up these two relations and using exhangeability, one obtains :12Æt �ZOIEn(u2n+1)� ZOIEn(u2n)�+ 12Æt �ZOIEn �(Q1n+1)2�� ZOIEn �(Q1n)2��+ 910 ZOIEn(�xu2n+1) + 12 ZOIEn �(Q1n)2� � 12Æt IEn �(Q1n+1 �Q1n)2�+ Cjjfext(tn)jj2L2x :We have now to estimate the term on the right-hand side. We use again :IEn((Q1n+1 �Q1n)2) = Æt2IEn((�xun+1P 1n � 12Q1n)2) + Æt� 2Æt2IEn((�xun+1P 1n)2) + 12Æt2IEn((Q1n)2) + Æt:



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 26This yields :12Æt �ZO IEn(u2n+1)� ZO IEn(u2n)�+ ZO IEn0�0� 910 � Æt 1M MXj=1(P jn)21A �xu2n+11A+ 12Æt �ZO IEn((Q1n+1)2)� ZO IEn((Q1n)2)�+ 12 ZO �1� Æt2 � IEn((Q1n)2)� 12 + Cjjfext(tn)jj2L2x :Using the following three properties : �� 910 � Æt 1M PMj=1(P jn)2��xu2n+1� 1An �14�xu2n+11An (this is the inequality whih de�nes the upper bound in the de�nitionof An), 1An � 1An+1 and Æt < 2, we get :12Æt �ZO IEn+1(u2n+1)� ZO IEn(u2n)�+ 14 ZO IEn ��xu2n+1�+ 12Æt �ZO IEn+1((Q1n+1)2)� ZO IEn((Q1n)2)� � 12 + Cjjfext(tn)jj2L2x :This yields the stability, by summing up over n.Let us now turn to the onvergene of the solution of the fully disretized problemtowards the solution of the problem disretized in spae and time.We need to introdue the random variables Qjh;n (denoted Qjn in the following) :Qjh;n+1 �Qjh;n = ��xun+1h P jn � 12Qjh;n� Æt+W jtn+1 �W jtn : (4.51)The ouples (P jn; Qjn) are independent realizations of the ouples (Pn; Qn). Theyalso are exhangeable random variables.The aim of this setion is to prove the following lemma.Lemma 10 (Convergene of the Monte Carlo method) We assume Æt < 12 .Moreover, we assume either 0 < A < q 35Æt (onvergene with ut-o�), or A = 1(onvergene without ut-o�). We have then the following inequality : 8n � TÆt ,ZO IE((un � un)21An) + ZO IE0� 1M MXj=1(Qjn �Qjn)21An1A � C � 1M + Æt2� :The onstant C is independent of n, h and Æt, but depends on the data of theproblem : u0, fext and T . In the ase 0 < A < q 35Æt , C also depends on  > 0suh that A > � ln(Æt). In the ase A =1 the estimation is in fat of order CM .In the following, we will need an estimate of the variane of PnQh;n.



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 27Lemma 11 (A variane estimate) We assume Æt < 1. Then, 9C, 8n � TÆt ,ZO IE �(PnQh;n � IE(PnQh;n))2� < C:The onstant C is independent of h and Æt, but depends on the data of the problem :u0, fext and T .Proof. The proof is based on an expliit alulation of the variane. Reall thatwe omit the subsript h.In the following, we set Wtn+1 �Wtn = pÆtGn and Vtn+1 � Vtn = pÆtG0n. Therandom variables Gn; G0n are independent normal random variables, independentof P0 and Q0.We reall that Pn and Qn are de�ned by :Pk+1 = �1� Æt2 �Pk +pÆtG0k and Qk+1 = �1� Æt2 �Qk + Æt�xuk+1Pk +pÆtGk:By indution, it is easy to show thatQn = �1� Æt2 �nQ0 + nXk=1�1� Æt2 �n�kpÆtGk�1 + nXk=1�1� Æt2 �n�k �xukPk�1Æt:(4.52)We set Xn = ÆtPnk=1 �1� Æt2 ��k �xukPk�1Pn. We have the following equalities :PnQn = �1� Æt2 �n PnQ0 + nXk=1�1� Æt2 ��kpÆtPnGk�1 +Xn! ;PnQn�IE(PnQn)=�1� Æt2 �n PnQ0 + nXk=1�1� Æt2 ��kpÆtPnGk�1 +Xn � IE(Xn)! :Using independene properties, we �nd :IE �(PnQn � IE(PnQn))2�= �1� Æt2 �2n IE(P 2n) + nXk=1�1� Æt2 ��2k ÆtIE(P 2n) + IE �(Xn � IE(Xn))2�! :A simple alulation yields IE(P 2n) < 2 and therefore IE(PnPm) < 2. It remains nowto estimate �1� Æt2 �2n IE �(Xn � IE(Xn))2�. One an show that�1� Æt2 �2n (Xn�IE(Xn))2 � Æt2n nXk=1�1� Æt2 �2(n�k) j�xukj2(Pk�1Pn�IE(Pk�1Pn))2:One an hek that IE �(Pk�1Pn � IE(Pk�1Pn))2� < C with C independent of Æt(this is dedued from IE(P 4k ) < C). We obtain then :�1� Æt2 �2n IE �(Xn � IE(Xn))2� � CTÆt nXk=1 j�xukj2:



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 28The stability lemma 4 has shown that Pnk=1 Ætjj�xukjj2L2x < C, whih leads to theresult.In order to prove Lemma 10 in the ase A <1 (onvergene with ut-o�), we willalso use the following estimates :Lemma 12 We assume Æt < 12 . Moreover, we assume that the ut-o� onstant issuh that � ln(Æt) < A <1, for some positive onstant . We have then :IE�(P 1n � P 1n)2� < CÆt4;ZO IE��Q1n(P 1n � P 1n)�2� < CÆt4;with C a onstant depending on  and on the data of the problem : u0, fext and T .Proof. In the following, as in the former proof, we set W jtn+1 �W jtn = pÆtGjnand V jtn+1 � V jtn = pÆt(Gjn)0. The �rst estimate is dedued from an estimation onnormal random variables. We know that for all n, the random variables P 1n arenormal variables of variane less than 2. One an therefore write : for all n,IE�(P 1n � P 1n)2� < 1p� Z 1A (x�A)2e�x24 dx:A simple alulation yields1p� Z 1A (x�A)2e� x24 dx < C exp��C 0A28 � < C� exp(� ln(Æt));for any exponent � > 0. Taking � = 4, we obtain the �rst estimate. One an showin the same way the following estimate whih will be used at the end of this proof :IE�(P 1n � P 1n)4� < CÆt8: (4.53)For the seond estimate, we use the former omputation (4.52) of Q1n. We an thenwrite :ZOIE��Q1n(P 1n � P 1n)�2�� 3 ZOIE ��1� Æt2 �nQ10(P 1n � P 1n)�2!+3 ZOIE0� nXk=1�1� Æt2 �n�kpÆtG1k�1(P 1n � P 1n)!21A+3 ZOIE0� nXk=1�1� Æt2 �n�k �xukP 1k�1(P 1n � P 1n)Æt!21A :



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 29For the �rst and seond terms, we notie that the random variables Q10, (P 1n � P 1n)and G1n are independent, whih yields :ZOIE ��1� Æt2 �nQ10(P 1n � P 1n)�2!+ZOIE0� nXk=1�1� Æt2 �n�kpÆtG1k�1(P 1n � P 1n)!21A� IE �(Q10)2� IE�(P 1n � P 1n)2�+ nXk=1 Æt IE �(G1k�1)2� IE�(P 1n � P 1n)2�� (1 + T )IE�(P 1n � P 1n)2� � CÆt4:For the third term, we write :ZO IE0� nXk=1�1� Æt2 �n�k �xukP 1k�1(P 1n � P 1n)Æt!21A� ZO IE0B�0�vuut nXk=1 �xu2kvuut nXk=1(P 1k�1)2(P 1n � P 1n)Æt1A21CA� Æt2 ZO nXk=1 �xu2kIE nXk=1(P 1k�1)2(P 1n � P 1n)2! :We have shown in the stability lemma 4 that ÆtPnk=1 RO �xu2k < C. One last termremains :IE nXk=1(P 1k�1)2(P 1n � P 1n)2! � nXk=1qIE �(P 1k�1)4�rIE�(P 1n � P 1n)4� � CÆtÆt4:using the fat that IE��P 1k �4� � C and (4.53).We an now prove Lemma 10.Proof. We set Sn = 1M PMj=1 P jnQjn, gn = un � un and Rjn = Qjn �Qjn. Usingthe same arguments as in the former proofs, we obtain12Æt �ZO g2n+1 � ZO g2n�+ ZO �xg2n+1�� ZO(IE(PnQn)� Sn)�xgn+1;12Æt �IEn((Rjn+1)2)� IEn((Rjn)2)�+ 12IEn((Rjn)2)=IEn �(�xun+1P jn � �xun+1P jn)Rjn�+ 12Æt IEn((Rjn+1 �Rjn)2):



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 30Summing up these two expressions, one �nds :12Æt �ZO IEn(g2n+1)� ZO IEn(g2n)�+ ZO IEn(�xg2n+1)+ 12Æt �ZO IEn �(R1n+1)2�� ZO IEn �(R1n)2��+ 12 ZO IEn �(R1n)2�� 12Æt ZOIEn �(R1n+1 �R1n)2�+ZOIEn ((Sn � IE(PnQn))�xgn+1) +ZOIEn �I1n� :(4.54)with I1n = (�xun+1P 1n � �xun+1P 1n)R1n � (P 1nQ1n � P 1nQ1n)�xgn+1= �xun+1Q1n(P 1n � P 1n) + �xun+1Q1n(P 1n � P 1n):For the seond term on the right-hand side of (4.54), we use Lemma 11 :ZOIEn ((Sn � IE(PnQn))�xgn+1) � 110 ZOIEn �(�xgn+1)2�+10 ZOIE �(Sn � IE(PnQn))2� :The �rst term is ontrolled on the left-hand side of (4.54), while the seond term isestimated using the variane of PnQn (see Lemma 11) :ZO IE �(Sn � IE(PnQn)2� = ZO IE0B�0� 1M MXj=1(P jnQjn � IE(P jnQjn))1A21CA � CM :For the �rst term on the right-hand side of (4.54), we write :(R1n+1 �R1n)2 = �(�xun+1P 1n � �xun+1P 1n)� 12R1n�2 Æt2= ��xun+1(P 1n � P 1n) + (�xgn+1P 1n)� 12R1n�2 Æt2:In the ase A =1, using P jn = P jn, one noties that forall j; Ijn = 0 and that(Rjn+1 �Rjn)2 � 2��xgn+1P jn�2 Æt2 + 12 �Rjn�2 Æt2:Using the assumption 12Æt < 1, the seond term is ontrolled on the left-hand sideof (4.54). It follows that :12Æt �ZO IEn(g2n+1)� ZO IEn(g2n)�+ ZO IEn0�0� 910 � Æt 1M MXj=1(P jn)21A�xg2n+11A+ 12Æt �ZO IEn �(R1n+1)2�� ZO IEn �(R1n)2�� � CM :



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 31Using the properties of An, we easily derive12Æt �ZOIEn+1(g2n+1)�ZOIEn(g2n)�+ 12Æt �ZOIEn+1 �(R1n+1)2��ZOIEn �(R1n)2���CM :Summing up (4.55) on n, we obtain an estimation in CM , using the stability lemmas 4and 9.In the ase A <1, we have (notie that P 1n 6= P 1n) :(R1n+1 �R1n)2 � 3��xun+1(P 1n � P 1n)�2 Æt2 + 3��xgn+1P 1n�2 Æt2 + 34 �R1n�2 Æt2:Using the assumption 32A2Æt < 910 (this is the inequality whih de�nes the upperbound of A in the ase A < 1) and 34Æt < 1, the last two terms are ontrolled onthe left-hand side of (4.54). We obtain a bound of order CÆt2 on the �rst term usingÆtPn RO �xu2n+1 < C (see Lemma 4) and IE�(P 1n � P 1n)2� < CÆt (see Lemma 12).For the third term on the right-hand side of (4.54) (whih is IE(I1n)), we use twieLemma 12. Indeed, for the �rst term of I1n, we write :ZO IE��xun+1Q1n(P 1n � P 1n)��sZO(�xun+1)2IE sZO(Q1n)2(P 1n � P 1n)!�sZO(�xun+1)2sIE�ZO(Q1n)2�rIE�(P 1n � P 1n)2�;whih yields after summation over n an estimate of order CÆt2. For the seondterm of I1n, we write :ZO IE��xun+1Q1n(P 1n � P 1n)� �sZO IE�(�xun+1)2�sZO IE��Q1n(P 1n � P 1n)�2�;whih also yields after summation over n a bound in CÆt2. We an again onludesumming up over n and using the stability lemmas 4 and 9.Remark 6 One an estimate, in the ase A <1, the probability that the ut-o� isative during a simulation. Indeed, the probability that one of the jP jnj (with n � TÆt )goes beyond A is roughly bounded by MÆt �1� 2�p2� R A0 e� x22�2 � = MÆt �1� erf� A�p2��with �2 an upper bound on the variane of the P jn (one an take �2 = 44�Æt) anderf(x) = 2p� R x0 e�t2 dt. Choosing M = 1Æt2 (whih is onsistent with the orderof onvergene O �h+ Æt+ 1pM �) and A = q 35Æt , this probability is bounded by1Æt3 �1� erf�q 3(4�Æt)40Æt ��. This upper bound is very lose to 0 when Æt is small (itis equal to 10�8 for Æt = 0:01).



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 324.4. Conlusion : onvergene of the fully disretized problem.We now state our main result.Theorem 3 (Convergene of the fully disretized problem) We assume aP1 disretization of the veloity in spae. We also make the following regulari-ty hypothesis : u0 2 H2x, fext 2 L1t (H1x) and �fext�t 2 L1t (L2x). We assume eitherA = 1 (without ut-o�), or 0 < A < q 35Æt (with ut-o�, in whih ase 1An = 1).Assuming Æt < 12 , we have :��������u(tn)�unh1An��������L2x(L2!)+��������IE(PtnQtn)� 1M MXj=1 P jnQjh;n1An��������L1x(L1!)� C �h+ Æt+ 1pM � ;where C is independent of h and Æt, but depends on the data of the problem : u0,fext and T . In the ase 0 < A < q 35Æt , C also depends on  > 0 suh thatA > � ln(Æt).Proof. For the estimation on u, we write : u(tn) � unh1An = (u(tn)� uh(tn)) +(uh(tn)� unh) + unh (1� 1An) + (unh � unh) 1An . We use Lemma 3 for the �rst term,Theorem 2 for the seond term and Lemma 10 for the last term. In ase A <q 35Æt ,the third term is nul. In ase A =1, we upper bound this term thanks to Lemmas 8and 4.For the estimation on IE(PtQt), we write : IE(PtnQtn)� 1M PMj=1 P jnQjh;n1An =(IE(PtnQtn)� IE(PtnQh;tn))+(IE(PtnQh;tn)� IE(PnQh;n))+IE(PnQh;n) (1� 1An)+�IE(PnQh;n)� 1M PMj=1 P jnQjh;n� 1An + � 1M PMj=1 P jn(Qjh;n �Qjh;n)� 1An+� 1M PMj=1Qjh;n(P jn � P jn)� 1An . We use then Lemma 3 for the �rst term, Theo-rem 2 for the seond term, Lemma 11 for the fourth term and Lemma 10 for the�fth term. The third term is nul when A < q 35Æt and is estimated by Lemmas 8and 4 in the ase A =1. The last term is zero in the ase A =1 and is estimatedby Lemma 12 in the ase A <1.Remark 7 We have atually shown the following onvergene result on Qt : 8j �M , ������Qjtn �Qjh;n������L2x(L2!) � C �h+ Æt+ 1pM � ;where (P jt ; Qjt) are the proesses de�ned by (3.20) and (3.19) with (Vt;Wt) replaedby (V jt ;W jt ).Remark 8 In the spae-disretized problem of our model, the jth dumbbell in eahell is driven by the same Brownian motion (V j ;W j). However, the �rst CON-FESSIT simulations were made with driving Brownian motions independent from



Numerial analysis of miro-maro simulations of polymeri uid ows : a simple ase. 33one ell to another. More generally, one ould hoose any orrelation in spae forthese Brownian motions. In fat, the onvergene result stated in Theorem 3 holdswhatever the hoie of the orrelation in spae (the onstant C in front of the rateof onvergene C �h+ Æt+ 1pM �, does not depend on the orrelation). In return,the onvergene on Qjh;n stated in the previous remark no longer makes sense.5. Numerial results.In this setion, we show some numerial results about the latter step of disretiza-tion : the onvergene of the Monte Carlo method. It is indeed the less lassial one,and the model we use is simple enough to ompute exatly (un+1h ; IE(Pn+1Qh;n+1))being given (unh; IE(PnQh;n)). We use (4.34) to ompute un+1h and the following ex-pliite alulation of IE(Pn+1Qh;n+1) derived from (4.35) and (4.36) (whih is justa disretization of the equivalent marosopi model for the stress tensor) :( IE(Pn+1Qh;n+1) = �1� Æt2 �2 IE(PnQh;n) + �1� Æt2 � �xun+1h IE(P 2n)Æt;IE(P 2n+1) = �1� Æt2 �2 IE(P 2n) + Æt:This enables us to ompare numerially the deterministi variables (unh; IE(PnQh;n))(whih, we reall, are an approximation in spae and time of (u(tn); IE(PtnQtn)))with the Monte Carlo approximation �unh; 1M PMj=1 P jnQjh;n�. All the tests havebeen done with the following values for the physial parameters : � = 1, nkBT = 20and T = 1. In the following, I denotes the number of spae steps, N denotes thenumber of time steps and M denotes the number of Monte Carlo realizations (i.e.the number of dumbbells in eah ell).Tests on the stability.First, by a deterministi alulus yielding (unh; IE(PnQh;n)), we have hekedthat when Æt is too large, the solution osillates (see Figure 2). This result is tobe related to the stability lemma 4, whih states that stability holds for Æt smallenough.Tests on the ut-o�.In order to illustrate the e�et of the ut-o� on the fully disretized problem, oneneeds to take a Æt near the upper bound of stability given in Lemma 4. In pratie,we have hosen Æt suh that the deterministi omputation begins to osillate. Wehave hosen the following parameters : I = 10, N = 8 and M = 100. We haveperformed for eah simulation (with ut-o� and without ut-o�) one million runs.We have then analyzed the errors (on veloity and stress) :sup0�n� TÆt jjunh � unh jjL2x and sup0�n� TÆt ������������IE(PnQh;n)� 1M MXj=1 P jnQjh;n������������L1x : (5.55)
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Fig. 2. Deterministi omputation of veloity pro�le as time evolves.

0 1 2 3 4 5
0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

I=10 N=8 M=100 NbTest=1000000

||error(u)||_L^infty_t(L^2_x)

di
st

ri
bu

ti
on

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

0 1 2 3 4 5
0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

I=10 N=8 M=100 NbTest=1000000

||error(u)||_L^infty_t(L^2_x)

di
st

ri
bu

ti
on

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001
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Fig. 4. Errors L1t (L2x(L2!)) on u and L1t (L1x(L1!)) on � depending on the number of Monte Carlorealizations (M) and on the number of time steps (N).These errors are in fat relative errors sine unh and IE(PnQh;n) are of order 1. Forthe simulation with ut-o�, the value of A has been hosen \optimally" in order toobtain the best numerial distribution of errors. It is greater than the theoretialupper bound q 35Æt that we need in our onvergene result (Theorem 3).We have notied that the errors are learly redued in the simulations with ut-o� : for the set of parameters given above, the mean error on the veloity goes from1:68� 10�1 without ut-o� to 7:56� 10�2 with ut-o� and the mean error on thestress goes from 0.19 to 0.13. Moreover, the empirial probability for the error onthe veloity to be smaller than 0.01 goes from 72% without ut-o� to more than88% with ut-o�.In Figure 3, we give a zoom of an histogram representing the empirial distri-bution of the error on the veloity : sup0�n� TÆt jjunh � unhjjL2x . On the left �gure,the bar on the far right ontains all the simulations for whih the error is greaterthan 4.95. One an learly see on Figure 3 that the use of the ut-o� redues theempirial probability for the error to be large. This an be related to the fat thatwithout ut-o�, IP(An) < 1 in the onlusion of the stability Lemma 9.Tests on the spae step, the number of realizations and the time step.We have also heked that the means (omputed without ut-o� using 100 000tests for eah simulation) of the errors (5.55) on the veloity and the stress do notdepend on the spae step (at least when the solution does not osillate, i.e. whenÆt is small enough for Lemma 4 to hold), whih is in agreement with the result ofLemma 10. As usual in Monte Carlo methods, the error sales like 1pM , where Mis the number of realizations, whih on�rms Lemma 10 (see Figure 4). Finally, weshow the dependene of the error with repet to Æt (see Figure 4). One an observethat there exists a bound on Æt below whih the error remains onstant, whih an
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