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We report on some mathematical and numerical work related to the control of the evolu-
tion of molecular systems using laser fields. More precisely, the control of the orientation
of molecules is our goal. We treat this as an optimal control problem and optimize the
laser field to be used experimentally by using both deterministic and stochastic algo-
rithms. Comparisons between the different strategies are drawn. In particular, when
gradients of the cost functional are used, the different ways for their computation are
compared and analyzed.

1. Introduction

We wish to report on theoretical and numerical work devoted to the modeling of the

control of chemical reactions by laser fields. The laser control of chemical reactions is

indeed a very active field of laser physics, at the crossroads between quantum chem-

istry, quantum mechanics, and theoretical and experimental femtophysics. Manip-

ulation of molecular systems using laser fields is today an experimental reality [1],

provided one restricts his aims to reasonable goals, as will be seen below. This leads

to a mostly unexplored field for mathematical analysis and numerical simulation.

Numerical simulations can indeed efficiently complement the experimental strategy,

both by explaining the deep nature of the phenomena involved and by optimizing

the parameters to be used experimentally.

We present here the contributions of our team, which is composed both of math-

ematicians and physicists. The emphasis is here on the mathematical aspects and
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the numerical techniques. A companion article [2] focusing on the physical aspects

appears elsewhere. The most striking result of our work is given in [17].

Before we discuss the technicalities, let us briefly state in a rather formal way

the problem we shall deal with. All details will be given in Section 2, and for

pedagogical purposes we prefer to only give a vague setting in this explanatory

survey.

The evolution of a molecular system subjected to a laser field ~E is modeled by

the time-dependent Schrödinger equation

ih̄
∂ψ

∂t
= H0 ψ + ~E(t) · ~D(~E(t))ψ, (1.1)

complemented with the initial condition ψ(t = 0) = ψ0. In this equation, the wave

function ψ is assumed to depend only on the coordinates of the various nuclei the

molecular system is composed of. The presence of the electrons is accounted for

through an effective potential acting on the nuclei, and contained in the Hamiltonian

H0 of the free system (when the laser is turned off). We denote by ~D(~E(t)) the

dipole moment of the molecule in presence of an external electric field ~E(t); at the

first order perturbation theory, one can use the form ~D(~E(t)) = ~µ0 + α~E . More

sophisticated models would feature higher order expansion of ~D(~E(t)) interactions,

still in the perturbation setting, or even a true dependence of the wave function ψ

and the Hamiltonian H with respect to the coordinates of all nuclei and electrons

of the molecular system. To the present day, the latter model is out of reach of

numerical treatment.

In order to state an optimal control problem, we need, in addition to the direct

equation (1.1) modeling the evolution of the system, to define a cost function.

Minimizing this cost function will give a formal sense to the physical target we

want to reach. In our work, we consider a linear molecular system and intend to

orient it in the direction of the linearly polarized laser field. The cost function we

adopt will therefore reflect this wish. Just to fix the ideas, let us mention an example

of cost function in the simplest case when the state of the system ψ (solution to

equation 1.1) is a function of time t and of the angle θ between the axis of the

system and the direction of the laser field:

J(E) =
1

T

∫ t=T

t=0

∫ θ=π

θ=0

|ψ(t, θ)|2 cos θ sin θ dθ dt. (1.2)

The reason why we choose an orientation problem as our control problem, and

consequently such an objective function will be made clear below. Other forms of

the cost function will also be given later in this article.

The simple setting we have just indicated above suffices to now underline the

peculiarities of the optimal control problem we have to tackle, with respect to

other optimal control problems that the reader may have in mind and that come

from more usual domains of the engineering world (aeronautics, ...). Let us now

emphasize these peculiarities.
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From the standpoint of the mathematical theory, this problem is bilinear (the

control ~E multiplies the state ψ) which at once puts the problem on a very high

level of mathematical difficulty. Indeed, the mathematical theoretical results on

bilinear control are very rare. In infinite dimension, i.e., for the PDE (1.1), since

the celebrated work by Ball and Slemrod [4], no real progress has been made, to

the best of our knowledge. For the finite dimensional approximation of (1.1), there

exist some results that can also be extended to the infinite dimensional case but

that are not very easy to exploit (so far). We refer to the work of G. Turinici et

al. [32, 33, 34] for some recent progress on the theory of exact controllability for

systems such as those we deal with here. For the optimal control problem, some

minor things can be done. We refer in particular to [10] where some of us have

proven the existence of an optimal field in a very academic and simplified setting.

We shall not elaborate any longer on these theorical aspects and now concentrate

on more practical ones.

A noticeable peculiarity is the fact that, in most cases, the control ~E is distributed

in time, and not in space. It is not a crucial fact for the sequel (cases when ~E

depends both on time and space could be treated in the same fashion, however with

slightly more tedious computations) but it is rather convenient and constitutes a

very reasonable approximation in the case of small molecular systems such as atoms

and small molecules. At the scale of such a system, the laser light is indeed seen

as homogeneous in space. Such a distributed in time control is not that usual for a

partial differential equation such as (1.1).

In addition, special attention must be paid to the fact that although our goal

is to drive the system from one initial state to some other specific state through a

controlled time-dependent evolution, the cost function we choose to formulate our

mathematical problem is not a distance to a target state, but the mean value of an

observable (a measure of the orientation of the molecular system with the field).

We wish to comment a little bit further on this point. The ultimate goal of the

manipulations we want to model is the control of chemical reactions. This means for

instance making a system ABC split into AB+C rather than into A+BC (see [9] for

an introduction to this problem). Succeeding in making a chemical reaction possible

does not necessarily mean driving the initial state to the final one, but sometimes

(and in fact most of the times) only succeeding in preparing the initial system in a

good way so that afterwards the desired reaction spontaneously happens. In that

respect, orienting a molecule in space is both a modest and sufficient goal. Once it

is conveniently “geometrically” prepared, the goal is almost reached. Nature will

do the rest of the job. In addition, there are today experimental evidences showing

that aligning a molecule (orientation is one step forward alignment) with a laser

is feasible, and constitutes a significant step that can be used to efficiently control

reactions (see the groundbreaking work by H. Stapelfeldt [29, 26]). The problem of

orientation is therefore a good problem to look at.

It is also enlightening to consider this problem from the practical standpoint.

Let us first indicate some orders of magnitude. Typically, the space scale is that of
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a molecule, namely a few angströms (10−10 m), and the time scale is that of the

vibration of a molecular bond, namely ten femtoseconds (10−14 s). The total time

of simulation for equation (1.1) is thus typically the picosecond (10−12 s). There are

two main consequences of this time scale. First, the control needs to be an open-loop

control, since it is clear that one cannot update the field in real time with electronic

devices. In other words, the only system that can react as fast as the molecular

system is precisely the system itself. The second consequence is that we must think

of this problem in a completely different way from the way we think of usual control

problems: we are here in a framework where we can do thousands of experiments

within a minute (while we cannot launch a rocket thousands times). This ability

to make many experiments has in turn two consequences. First, one can imagine,

and it is indeed done, to couple the numerical search for the optimal field not with

the numerical simulation of equation (1.1), but with the experiment itself [1, 24].

The experimental solution of (1.1) is indeed much faster than its resolution on a

computer. There is here some matter of reflection for experts in scientific computing.

Second, one of the major problems of this field is the tremendous amount of data

that are at our disposal. A challenge is to find a way to exploit them in the

optimization cycle. We shall not give in this article any definite answer to the

questions and concerns raised above, but it is sound to keep in mind these points.

One must also know about the practical parameters for a laser field. One of us

has presented in [6, 7] a rapid account of this point, and we refer to it, or to the

comprehensive report [13] for more detailsb. Let us only say that a trade-off has to

be made between the power of the laser, its time resolution, its repetition frequency,

and also its price and its size. The laser fields we shall make use of have intensities

in the range [1012, 1013] W/cm2, are able to have a risetime of the order of 10−14s,

and the light they create has frequency around 1014Hz. A very peculiar feature

appears here again. One can ask the question whether it is better to optimize upon

only the fields that are today experimentally feasible or to consider all fields without

taking into account any contemporary technological constraint. Both approaches

may be useful. In particular, the second one may help in designing the lasers

physicists do need for the next generation. In the present article, we mostly choose

the first approach, taking explicitly into account the technical requirements. We

shall however also explore the second one (see more on this point below when we

optimize with ten laser fields).

The stage is now set. Let us say a few words on the methodology we choose for

the search of the optimal laser field.

First and foremost, we must emphasize that the present study is far from be-

ing the first attempt to find numerically the optimal laser field. There exist many

theoretical studies based upon the construction of small systems of ODEs approxi-

mating (1.1) so that the optimal (or exact) control problem can be treated explicitly

bThis report (in French !) presents a broad overview of the domain, indicating current approaches,
both theoretical and experimental, and gives trends for the future. Another useful reference in the
same spirit is [31].
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“by hand”. The leading experts of this approach, fundamentally based upon a deep

knowledge of (or intuition of) the main mechanisms are P. Brumer, P. Schapiro

and coworkers [9, 8]. Other outstanding contributions, in particular on intense laser

fields are due to A. Bandrauk [11]. On the other hand, the optimal control method-

ology in the sense applied mathematicians speak about it has already been thor-

oughly explored by physicists, in the first row of which stands H. Rabitz [37]. See

also works by Fujimura [23], Sakai [25]. However, in all these contributions, the

algorithms used for the numerical search for the optimized field are seen as black

boxes, and not as topics for research. Our own approach aims at complementing the

work of these leading researchers in physics by exploring the capabilities of the most

recent optimization tools, by comparing them to one another on the present prob-

lem, by drawing conclusions on the best tools to be used, and also, when possible,

by improving the physical conclusions.

On the present problem, we shall investigate mainly the following issues, which

are of general interest, but whose response may differ from one problem to another:

• use on this specific case of deterministic algorithms (gradient-like algorithms),

of stochastic algorithms (genetic algorithms and evolutionary strategies) and

of algorithms mixing the two approaches, such as genetic algorithms acceler-

ated by mutation by gradient

• comparison of the different ways to compute the gradient when needed: dis-

cretization of the adjoint equation, computation of the adjoint of the discrete

equation, automatic differentiation

• impact of the choice of the cost function on the result, multicriteria ap-

proaches,...

The sequel of this article is organized as follows. In the next section, we give a

detailed presentation of the problem under study, making more precise the quanti-

ties (Hamiltonian H , state ψ, electric field ~E , dipole moment ~D, cost function J)

we have described above in a somewhat vague way. Section 3 describes the differ-

ent optimization methods we shall make use of. For some of them, we shall need

to compute the gradient of the cost function. In Section 3.1, we therefore make

a numerical analysis to determine which strategy is the best one to compute this

gradient. In Section 3.2 we give a short description of stochastic algorithms we em-

ployed. Section 4 then gives the results obtained for our problem with deterministic

algorithms and with stochastic ones. Finally, in Section 5, we shall summarize our

main results and indicate the directions of our current and future research.

2. Statement of the control problem

2.1. The system under study and the control problem

The molecular system we study is the linear HCN molecule (hydrogen cyanide).

This molecule has been chosen because it is linear in its ground state and should
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stay so if the laser frequency is out of resonance with respect to the bending modes.

Therefore it constitutes a perfect toy object for testing our methodology. We use

the so-called Jacobi coordinates (R = (R, r), θ, ϕ) to parameterize the state of

the molecule (see Figure 1). The free Hamiltonian H0 can be written as H0 =

Hvib(R) + Hrot(R, θ, ϕ) + V (R) and the dipole moment is written as D(E(t)) =

−µ0(R, r) cos θ−
E(t)

2

[
α‖(R, r) cos2 θ + α⊥(R, r) sin2 θ

]
. Then the general form for

the Hamiltonian, given in [16], is

H(R, θ, ϕ, t) = Hvib(R) +Hrot(R, θ, ϕ) + V (R) +Hlaser(R, θ, ϕ, t), (2.3)

where Trot +Hrot denotes the kinetic energy operator with

Hvib(R) = −
h̄2

2µHCN

1

R2

∂

∂R

(
R2 ∂

∂R

)
−

h̄2

2µCN

1

r2
∂

∂r

(
r2
∂

∂r

)
,

Hrot(R, θ, ϕ) = −
h̄2

2(µHCNR2 + µCNr2)

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
,

where V (R) denotes the effective potential resulting from the electrostatic interac-

tion between nuclei and electrons (in their ground state), while

Hlaser(R, θ, ϕ, t) = E(t) ·D(E(t))

= −µ0(R, r)E(t) cos θ −
E2(t)

2

[
α‖(R, r) cos2 θ + α⊥(R, r) sin2 θ

]

denotes the interaction between the molecule and the laser field. In the former

H

C

N
r

R

θ

ε

ϕ

Fig. 1. Model for the HCN molecule.

formulas, µCN and µHCN represent the reduced masses:

µCN =
mCmN

mC +mN

, µHCN =
mH(mC +mN)

mH +mC +mN

and µ0 is the permanent dipole moment. The coefficients α‖ and α⊥ are respectively

the parallel and the perpendicular components of the diagonal polarizability tensor

α given by α‖ = αzz and α⊥ = αxx = αyy when (Oz) is the molecular axis.

As a first step toward the treatment of the sophisticated model (2.3), we consider

in all the remainder of this article the case of a rigid rotor: the problem depends
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only on the angular variables θ, φ. Furthermore, symmetry conservation around the

laser polarization axis allows us to separate the motion in φ from the motion in θ,

and consider only the latter in our calculations. The Hamiltonian (2.3) therefore

reduces to

H = H(θ, t) = Hrot(θ) +Hlaser(θ, t), (2.4)

with

Hrot(θ) = −
h̄2

2(µHCNR2 + µCNr2)

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)

and

Hlaser(θ, t) = −µ0(R, r)E(t) cos θ −
E2(t)

2

[
α‖(R, r) cos2 θ + α⊥(R, r) sin2 θ

]
,

where R and r are fixed at their equilibrium value. The objective function J(E)

we are optimizing will be detailed in Section 2.3 but let us now introduce the

instantaneous criterion j(t) used to compute J(E) and which is the measure of the

orientation at time t (see [21] for more details),

j(t) = 〈cos θ〉 =

∫ π

0

cos θ P(θ, t) sin θ dθ, (2.5)

where P(θ, t) is the angular distribution of the molecule. In the case of rigid rotor

angular distribution is reduced to P(θ, t) = ‖ψ‖2
C where ‖ψ‖2

C denotes the squared

norm of the complex ψ. The instantaneous criterion therefore becomes

j(t) =

∫ π

0

cos θ ‖ψ‖2
C sin θ dθ. (2.6)

The instantaneous criterion j(t) takes its values in the range [−1, 1], the values −1

and 1 corresponding respectively to a molecule pointing in the direction of the laser

field polarization axis and in the opposite direction.

The Schrödinger equation

{
ih̄
∂ψ

∂t
= H ψ,

ψ(t = 0) = ψ0.
(2.7)

depending only on the variable θ is numerically solved with an operator splitting

method [20] coupled with a FFT for the kinetic part as shown in [12, 28]. Ta-

ble 1 summarizes the parameters of the HCN molecule for R and r fixed at their

equilibrium value.

2.2. Choice of the set of electric fields

We now describe the set of laser fields we minimize upon. As said in the introduc-

tion, both strategies of restricting oneself to the experimental state of the art or of

considering the most general laser fields are of some interest. We begin with the sec-

ond one, by considering that the electric field E(t) we have at our disposal is the sum
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Table 1. Parameters of the HCN molecule.

B =
h̄2

2(µHCN R2 + µCN r2)
(a.u.) µ0 (a.u.) α‖ (a.u.) α⊥ (a.u.)

6.638 × 10−6 1.141 20.05 8.638

of N (≤ 10) individual linearly-polarized pulses: E(t) =

N∑

n=1

En(t) sin (ωnt+ φn) .

The envelope functions En(t) are of given sine-square form,

En(t) =





0 if t ≤ t0n

E0n sin2
[

π
2

(
t−t0n

t1n−t0n

)]
if t0n ≤ t ≤ t1n

E0n if t1n ≤ t ≤ t2n

E0n sin2
[

π
2

(
t3n−t

t3n−t2n

)]
if t2n ≤ t ≤ t3n

0 if t ≥ t3n

(2.8)

each pulse being characterized by a set of 7 adjustable parameters, namely its

frequency ωn, relative phase φn, maximum field amplitude E0n, together with 4

times determining its shape (origin t0n, rise time t1n − t0n, plateau t2n − t1n, and

extinction time t3n− t2n). All beams are polarized along the same axis. This makes

0 0.5 1 1.5

time (ps)

−0.02

−0.01

0

0.01

0.02

 ε

0t

t1 2t

t3

Fig. 2. A typical laser field Ei(t).

a total of 7 × 10 = 70 parameters. It should be once more emphasized that by

considering such a superposition we do not have in mind to model a situation that

is experimentally feasible, but only to generate a “generic” form of signal E(t).

As it will be seen below, using such a generic field has one main disadvantage (in

addition to that obvious huge difficulty to minimize over R70!): the optimized laser

field that is obtained through minimization is likely to be too difficult to analyze!

Indeed, as we have very pragmatic purposes, we aim at providing the experimenter

with a well identified field to generate. Obviously, a typical field obtained by such

a minimization and shown on Figure 10 cannot be easily analyzed. Therefore,

the main part of our work will be along the first strategy: restrict ourselves to a

superposition of two, or at most three, different lasers of the shape of Figure 2c.

ceven if the price to pay for this is to lose a little on the optimality
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Apart from sticking to experimental reality (for instance a system of two lasers

with the same pulsation but with two different phases is nothing else than the same

laser with different optical paths), it greatly simplifies the post-treatment of results.

In this view, one of our first results has been that when we use 3 lasers, i.e., when

we allow for 3 different lasers in the minimization procedure, the algorithm ends

up with an optimized field where the third laser has a very small amplitude (see

Table 5 in Section 4). In other words, considering two lasers is enough. We shall

therefore concentrate on this latter case.

2.3. Choice of the cost function

The cost function is the mathematical formulation of our physical goal. Its choice

is so difficult in our context that it has not been done a priori, but has been the

result of an “iterative process”. We have tested different ones and compared (on

mathematical and physical bases) the results they produce. In this process, we have

kept in mind the crucial following points: if a function produces (after minimization)

a field which is too difficult to understand, it can be replaced however by another

(possibly less) efficient that produces more understandable results. Most of the time

we shall therefore handle many different cost functions, and not only one.

Basically, our physical goal is twofold:

• we want to have the molecule oriented with the field in a very good way at

(at least) one time during the interval of time considered. The criterion for

this purpose is:

J = min
t∈[0,T ]

j(t), (2.9)

• and/or we want this orientation to be kept as long as possible, even if it is

not so perfect. Then the criterion to be used is:

J =
1

T

∫ T

0

j(t) dt. (2.10)

The latter criterion J is what we have written J(E) in the equation (1.2). Unless

otherwise mentionned, we shall deal henceforth with a criterion J that denotes ei-

ther of the two criteria (2.9) or (2.10). In both formulas, let us recall that j(t) is

the quantity introduced in formula (2.6) of Section 2.1 and which the orientation

at time t.

In the second setting, it should be made precise that “as long as possible” typically

means relatively long compared to the rotation period of the molecule, namely 11

ps for HCN, which indeed is quite a long time in our context.

In the following, we shall call “narrow”(see Figure 3 (a)) a function j(t) produced

mainly by the optimization in the first setting and “wide” (see Figure 3 (b)) a

function j(t) produced mainly in the second one. Let us also mention that a mul-

ticriteria approach is possible and that it may possibly result in obtaining many

different minima and/or the best one in some sense to be defined (see Section 4).
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time

j(t)

time

j(t)

(a) (b)
Fig. 3. Typical shape of an optimized j(t) obtained with criterion J1 (a) and criterion J2 (b).
They are respectively called a “narrow” and a “wide” in the text.

2.4. Identification and classification of the fields obtained

Of primary interest is the need to understand the fields produced by the optimiza-

tion algorithm. It will allow one to identify the underlying main mechanisms, to

imagine scenarii, and to further simplify the electric field to suggest the most simple

field to be experimentally generated.

The huge number of optimization processes we have run, with different sets of pa-

rameters, with different ranges of values of these parameters, and with different

criteria, has resulted in an enormous data set of optimized fields E(t). We believe

that a good way to classify them is:

• fields of the form of a kick (see Figure 4), which is an initial sudden (of

approximately 0.25 ps, i.e., much shorter than the rotational period of 11 ps)

and asymmetric (with respect to its sign) pulse.

0 0.5 1

time (ps)

−0.4

−0.2

0

0.2

0.4

 ε

Fig. 4. Example of a “kick” field.

• fields of the form (ω, 2ω) (see Figure 5), which are a superposition of two laser

fields with the pulsation of one being twice the pulsation of the other one.

• succession in time of two fields with a short overlay time (see Figure 6)

• other types of fields, apparently too complicated to be easily described.

3. Methodology
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0 0.5 1

time (ps)

−20

−10

0

10

20

 ε

Fig. 5. Example of an (ω, 2ω) field.

0 0.5 1

time (ps)

−5

0

5
 ε

Fig. 6. Example of a succession of two laser fields.

The way we have tackled the optimization of the orientation problem is based on

two different classes of algorithms: first the gradient like algorithms, and second the

evolutionary algorithms (EAs). The former ones are purely deterministic and are

known to be from far the more rapidly convergent ones but present the drawback

from running the risk of remaining trapped in a local minima. The latter ones

are stochastic algorithms based on Artificial Darwinism. They are less sensitive to

the number of local minima but as they are zero-order methods, the convergence is

slower. A way to exploit the forces of both deterministic and stochastic algorithms is

to use hybrid methods. We have explored one of these methods with an evolutionary

algorithm using a gradient mutation operator.

This section presents in a first part different ways of computing the gradient of

the criterion to optimize and compares the different methods. In a second part,

this section briefly explains the basic steps of EAs, and next mention which purely

stochastic and hybrid EAs have been used for the results presented in Section 4.

3.1. Gradient like algorithms

In this part, we present different ways to compute the gradient of the differentiable

cost function J(E), defined by (2.10) (the criterion (2.9) is not differentiable) needed

for the gradient-like algorithms. We use two gradient like algorithms: the Polak-

Ribière non linear conjugated gradient algorithm with Wolfe or Goldstein-Price line-
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search (hereafter abbreviate as PRLS) and the BFGS algorithm. For a complete

presentation of these algorithms see [5 ]. The most natural and the most easiest

way to compute the gradient is the finite differences method, which is unfortunately

very time consuming. So the need is to find another, less time consuming, way to

compute the gradient. The well known adjoint method may be implemented in (at

least) two ways: one can either discretize the continuous adjoint equation or one

can do the adjoint calculus on the discretized form of the direct equation. It is not

clear at all (at least to us) whether there is a general recipe claiming which of the

two approaches is the best one. Therefore we shall test both approaches on our

specific situation. In fact, the second approach (adjoint calculus on the discretized

form) can be itself subdivided into two approaches: the semi-discrete approach, and

the fully discrete one (see below). In addition, we shall also compare these methods

with that of automatic differentiation (which in principle amounts to doing calculus

on the fully discretized form of the equation, but which, in fact differs from this

strategy because of implementation details). The tool we use in this latter approach

is O∂yssée [19].

We begin in Section 3.1.1 by presenting the continuous approach which consists

in discretizing the continuous adjoint equation. Next Section 3.1.2 details an in-

termediate approach where one does the adjoint calculus on the semi-discretized

equations (which means equations only discretized in time) and next discretizes

in space (θ) the so-obtained adjoint problem. In Section 3.1.3 we then compare

this approach to the continuous one on a simplified example. In Section 3.1.4,

we present the approach (called the discrete approach) consisting in doing adjoint

calculus on the fully discretized equations (both in time and space). Finally, in

Section 3.1.5, we present the automatic differentiation approach. The numerical

results are presented in Section 3.1.6.

3.1.1. Discretization of the adjoint of the continuous problem

To find the equations satisfied by the adjoint state p, let us see the control problem

as a minimization problem under the constraint ih̄
∂ψ

∂t
= H ψ and ψ(t = 0) =

ψ0. We emphasize that this is only a formal method to determine the adjoint

problem and to compute the gradient. We shall skip the rigorous verification that

the adjoint problem we find is indeed the correct one and that it yields the correct

gradient. Using definitions given by Equation (2.4), we will write in this section the

Hamiltonian H in the form: H = Hrot +Hlaser. We recall that only Hlaser depends

on E .

Let us first introduce some definitions and notations that we will use throughout

this section. For E1, E2 ∈ Vt = L2([0, T ],R) we define the scalar product

〈E1|E2〉t,C =

∫ T

0

E1(t)E2(t)dt,
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and for φ1, φ2 ∈ Vθ = L2([0, 2π], C) the scalar product

〈φ1|φ2〉θ,C =

∫ π

0

ℜ
(
φ1(θ)φ2(θ)

)
sin θdθ.

We also define for ψ1, ψ2 ∈ V = L2([0, T ] × [0, 2π], C) the scalar product

〈ψ1|ψ2〉t,θ,C =

∫ T

0

∫ π

0

ℜ
(
ψ1(θ, t)ψ2(θ, t)

)
sin θdθdt.

The subscript C aims at recalling the “continuous” nature of the scalar product,

in comparison with the semi-discrete or the discrete ones which will be used later

on. We emphasize that when differentiating functions with complex variables we

consider these functions as two-variable functions and more precisely the complex

variable is taken as an element of R2. For a given laser field E , we denote by ψE
the solution of Equation (1.1). Therefore, we define J̃ using the criterion J as:

J(E) = J̃(ψE). Thus for E ∈ Vt and (ψ, p) ∈ V 2 we write the Lagrangian LC of the

continuous problem as follows:

LC(E , ψ, p) = J̃(ψ) +

〈(
ih̄
∂

∂t
−Hrot −Hlaser

)
ψ

∣∣∣∣ p
〉

t,θ,C

+
〈
ψ(·, t = 0) − ψ0|p(·, t = 0)

〉
θ,C

. (3.11)

With standard, but tedious, calculations mainly based upon the linearity of the

scalar product and that of the operators Hrot and Hlaser , with an integration by

part and with

J̃ ′(ψ) · δψ =
1

T

∫ T

0

∫ π

0

ℜ
[
2ψ cos θδψ

]
sin θdθdt, (3.12)

we obtain
∂LC

∂ψ
(E , ψE , p) · δψ, which when set to zero gives the adjoint problem

{
ih̄
∂p

∂t
= Hrotp+Hlaserp−

2

T
ψE cos θ,

p(T ) = 0.
(3.13)

We next formally compute the gradient ∇CJ using the Lagrangian LC . When using

ψ = ψE the expression of the Lagrangian is LC(E , ψE , p) = J̃(ψE) = J(E), thus we

get

J ′(E) · δE =
∂LC

∂ψ
(E , ψE , p) ·

∂ψE
∂E

· δE +
∂LC

∂E
(E , ψE , p) · δE ,

which is simplified into J ′(E) · δE =
∂LC

∂E
(E , ψE , p) · δE when p is the adjoint state

pE . Therfore, the gradient ∇CJ =
dJ

dE
is obtained by

〈
∇CJ |δE

〉
t,C

=
∂LC

∂E
(E , ψE , pE) · δE
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=

〈
−

(
∂Hlaser

∂E
(E) · δE

)
ψE

∣∣∣∣ pE
〉

t,θ,C

=

∫ T

0

∫ π

0

ℜ
[(
µ0 cos θ + E

[
α‖ cos2 θ + α⊥ sin2 θ

])
ψEpEδE

]
sin θdθdt.

The discretization of Equation (2.7) is done with an operator splitting method,

{
ψ0,

ψn+1 = e−
i
h̄

∆t
2

Hn
lasere−

i
h̄

∆tHrote−
i
h̄

∆t
2

Hn
laserψn,

(3.14)

where Hn
laser is the time-dependent operator taken at time step tn. Using this

scheme to discretize the linear part of Equation (3.13) we obtain

{
pN = 0,

pn−1 = e
i
h̄

∆t
2

Hn
lasere

i
h̄

∆tHrote
i
h̄

∆t
2

Hn
laserpn +

2

T
ψn
E cos θ

∆t

ih̄
.

(3.15)

In addition, we use the same schemes for the time and space discretizations as the

ones used for computing J(E). More precisely, we use for time discretization a

simple Riemann rule integration scheme. For the integration in θ, the method used

is the Simpson rule

∫ π

0

g(θ)dθ =
π

2N

2N∑

k=1

αkg(θk)

=
∆θ

3

[
g(θ0) + 4

N−1∑

k=1

g(θ2k+1) + 2

N−2∑

k=1

g(θ2k+2) + g(θN)

]
,(3.16)

where ∆θ =
π

2N
and where (θk)k=0,2N are the equally-spaced integration points.

Therefore the discretization of the gradient (3.14) reads, with an approximation in

(∆t)2 and in (∆θ)4,〈
∇CJ |δE

〉
t,C

=

N−1∑

n=0

2M∑

k=0

ℜ
[
µ0 cos θk + En

[
α‖ cos2 θk + α⊥ sin2 θk

]
ψn

k p
n
k

]
δEn∆tαk sin θk∆θ.

(3.17)

3.1.2. Adjoint calculus on the semi-discretized equations

The discretization of the time-dependent Schrödinger Equation (2.7) is given by (3.14)

while the discretization of the criterion (again by the Riemann rule integration

scheme) yields the semi-discrete Lagrangian

LSD(E ,Ψ, P ) =
1

T

N−1∑

n=0

∫ π

0

‖ψn‖2
C cos θ sin θdθ∆t+

〈
ψ0 − ψ0|p

0
〉

θ,C

+
〈

ΨS − e−
i
h̄

∆t
2

Hlasere−
i
h̄

∆tHrote−
i
h̄

∆t
2

HlaserΨ
∣∣∣P
〉

t,θ,SD
,(3.18)
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where ΨS = (ψ1, . . . , ψN ), Ψ = (ψ0, . . . , ψN−1) and P = (p0, . . . , pN−1) are ele-

ments of (Vθ)
N and where E = (E0, . . . , EN−1) is an element of RN . The scalar

product 〈·|·〉θ,C is the one given in the previous section and the scalar product

〈·|·〉t,θ,SD is given by 〈Ψ1|Ψ2〉t,θ,SD =
N∑

n=1

〈ψn
1 |ψ

n
2 〉θ,C ∆t with Ψ1,Ψ2 ∈ (Vθ)

N . We

also define for E1, E2 ∈ Rn the scalar product 〈E1|E2〉t,SD =

N∑

n=1

En
1 E

n
2 . For a given

laser field E we denote ΨE the solution of Equation (3.14). As in the previous sec-

tion, by computing
∂LSD

∂Ψ
(E ,ΨE , P ) · δΨ and then by setting it to zero we get the

following discrete adjoint problem:
{
pN−1 = 0,

pn−1 = e
i
h̄

∆t
2

Hn
lasere

i
h̄

∆tHrote
i
h̄

∆t
2

Hn
laserpn −

2

T
ψn
E cos θ.

(3.19)

And the gradient is obtained by:
∂LSD

∂E
(E ,ΨE , PE) · δE

=

N−1∑

n=0

〈
−
i∆t

h̄

∂Hn
laser

∂En

δEne−
i
h̄

∆t
2

Hn
lasere−

i
h̄

∆tHrote−
i
h̄

∆t
2

Hn
laserψn

∣∣∣∣ p
n

〉

θ,C

=

N−1∑

n=0

〈
−
i∆t

h̄

∂Hn
laser

∂En

δEne−
i
h̄

∆t
2

Hn
laserψn+1

∣∣∣∣ p
n

〉

θ,C

. (3.20)

Thus, with an approximation at the order (∆θ)4, we obtain〈
∇SDJ |δE

〉
t,SD

=

−

N−1∑

n=0

2M∑

k=0

ℜ

[
i

h̄
ψn+1

k pn
k

(
µ0 cos θk + En

[
α‖ cos2 θk + α⊥ sin2 θk

])
δEn

]
(∆t)2 sin θkαk∆θ.

(3.21)

3.1.3. Comparison of the continuous and the semi-discretized approaches

In order to understand which of the formulae (3.17) or (3.21) is more accurate, we

give below some illustrative example. Although very basic, this example allows one

to understand the fundamental difference between formulae (3.17) and (3.21). Let

us argue on the following Schrödinger equation:
{

ih̄
∂ψ

∂t
= ψ E(t) cos θ,

ψ(0) = ψ0,
(3.22)

(obtained by simply setting H0 to zero in (2.7)) with the criterion written in the

form

J(E) = J̃(ψ) =
1

T

∫ T

0

∫ π

0

f(ψ) sin θdθdt.
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The first way to proceed is the one we have followed in Section 3.1.1, namely by

discretizing the adjoint equation. For Equation (3.22), basic calculus shows that

the adjoint equation is given by

{
ih̄
∂p

∂t
= E(t)p cos θ − f ′(ψE),

p(T ) = 0,
(3.23)

which once discretized with the same scheme as the one used for the direct equation,

yields {
pN = 0,

pn−1 = e
i
h̄

∆t
2

Hn
lasere

i
h̄

∆tHrote
i
h̄

∆t
2

Hn
laserpn − f ′(ψn

E )
∆t

ih̄
.

(3.24)

We compute the gradient of the criterion,

∇J(E) =
1

T

∫ T

0

∫ π

0

f ′(ψE)
∂ψ

∂E
sin θdθdt,

where
∂ψ

∂E
solves





ih̄
∂

∂t

(
∂ψ

∂E

)
= ψ cos θ + E(t) cos θ

∂ψ

∂E
,

∂ψ

∂E

∣∣∣∣
t=0

= 0.
(3.25)

Thus, by using Equation (3.23) and integration by part we obtain

〈∇J |δE〉t,C = −

∫ T

0

(∫ π

0

ψp cos θ sin θdθ

)
δEdt. (3.26)

We now discretize this integral by the Riemann scheme which yields

∫ T

0

(∫ π

0

ψp cos θ sin θdθ

)
δEdt =

N−1∑

n=0

(∫ π

0

ψnpn cos θ sin θdθ

)
δEn∆t,

and thus the following approximation of the gradient:

〈∇J(ψ)|δE〉t,C = −

N−1∑

n=0

(∫ π

0

ψnpn cos θ sin θdθ

)
δEn∆t, (3.27)

is the exact analogous of formula (3.17). Using this Riemann discretization scheme,

the numerical error is controlled by the following estimate:

∣∣∣∣∣

∫ T

0

g(t)dt−

N−1∑

n=0

gn∆t

∣∣∣∣∣ ≤ T∆t‖g′‖L∞ . (3.28)
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Applying this result to g =

(∫ π

0

ψp cos θ sin θdθ

)
δE , we obtain the control of the

numerical error of the approximation (3.27) of the gradient

|εC
∆t| ≤ T∆t

∥∥∥∥
∂

∂t

[(∫ π

0

ψp cos θ sin θdθ

)
δE

]∥∥∥∥
L∞

≤ T∆t

∥∥∥∥
[
∂

∂t

(∫ π

0

ψp cos θ sin θdθ

)]
δE +

(∫ π

0

ψp cos θ sin θdθ

)
∂

∂t
(δE)

∥∥∥∥
L∞

≤ CT∆t

(
‖δE‖L∞ +

∥∥∥∥
∂

∂t
(δE)

∥∥∥∥
L∞

)
, (3.29)

where the constant C depends on norms of ψ|t=0 and E but not on δE .

On the other hand, if we now discretize the equation and the criterion, we obtain

as in (3.20)

〈∇J |δE〉t,SD =

N−1∑

n=0

(∫ π

0

ψn+1pn cos θ sin θdθ

)
δEn∆t. (3.30)

Applying the same numerical analysis, we see that the error in the approximation

of the gradient is now obtained by setting g =

∫ π

0

f ′(ψ)δψ sin θdθ in (3.28), which

yields
∣∣εSD

∆t

∣∣ ≤ T∆t

∥∥∥∥
∫ π

0

(
∂

∂t
[f ′(ψ)δψ]

)
sin θdθ

∥∥∥∥
L∞

. (3.31)

Now
∂

∂t
(f ′(ψ)δψ) = f ′′(ψ)

∂ψ

∂t
δψ + f ′(ψ)

∂ (δψ)

∂t
,

where
∂ψ

∂t
=

1

ih̄
(Eψ cos θ) and

∂ (δψ)

∂t
=

1

ih̄
((δE)ψ cos θ + Ex (δψ)). It follows that

∥∥∥∥
∫ π

0

(
∂

∂t
[f ′(ψ)δψ]

)
sin θdθ

∥∥∥∥
L∞

≤ C‖δE‖L∞ ,

where C only depends on norms on ψ|t=0 and E . Therefore

∣∣εSD
∆t

∣∣ ≤ CT∆t‖δE‖L∞. (3.32)

Comparing this estimate to (3.29), we see that the control in (3.32) is better, in

particular for variations δE of E that have large variations in time, which will pre-

cisely be the case for us (oscillatory laser fields). It is therefore expected that in

our case the adjoint calculus on the discrete equation will yield a better accuracy

for the computation of the gradient than the approach consisting in discrtizing the

continuous adjoint equation. Let us emphasize that the main difference between

the two approaches is the following formal (non rigorous) integration by parts:

∫ T

0

f ′(ψ)δψ ≈

∫ T

0

(
∂p

∂t

)
δψ ≈

∫ T

0

p

(
∂δψ

∂t

)
≈

∫ T

0

pψδE ,
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which is done before or after discretization and thus allows one to have the control

of the error basically either by

∂

∂t
(f ′(ψ)δψ) ≈ f ′(ψ)δE (3.33)

or by

∂

∂t
(pψδE) ≈ pψ

∂

∂t
(δE) . (3.34)

In the case (3.33) the numerical error of integration is reported on ψ and δψ while in

the case (3.34) the numerical error of integration is directly reported on δE . Figure 7

summarizes the main ideas presented here.

3.1.4. Adjoint calculus on the fully discretized equations

In this section we begin by discretizing Equation (2.7) both in time and in θ-space

and then do the adjoint calculus. The numerical propagation of the θ operator Hθ

and the laser operator Hlaser can be written in the matrix form

Ψn+1 = An
θBA

n
θ Ψn,

where Ψn is the vector (ψn
k ), where An

θ is the diagonal matrix of the laser operator

propagation, and where B is the matrix corresponding to the θ operator propaga-

tion. Only the matrix An
θ depends on the laser field E .

We write the discrete Lagrangian as follows:

LD(E ,Ψ, P ) =
N−1∑

n=0

2M∑

k=0

1

T
‖ψn

k ‖
2
C cos θ sin θαk∆θ∆t

+
〈
ΨS − ΨM |P

〉
t,D

+
〈
Ψ0 − Ψ0|P

0
〉

θ,D
, (3.35)

where

ΨS = (Ψ1, . . . ,ΨN ),

ΨM = (A0
θBA

0
θΨ

0, . . . , AN−1
θ BAN−1

θ ΨN−1),

and

P = (P 0, . . . , PN−1)

are elements of
(
R2M

)N
and where E = (E0, . . . , EN−1) is an element of RN .

The scalar product 〈·|·〉t,D is given for Ψ1,Ψ2 ∈
(
R2M

)N
by

〈
Ψ1

∣∣∣Ψ2

〉
t,D

=

N∑

n=1

〈Ψn
1 |Ψ

n
2 〉θ,D ∆t



Optimal laser control of molecular systems: methodology and results 19

Error in 

controlled by 

Error in 

controlled by 

Integration by part 
(adjoint calculus)

Discretization Integration by part 
(adjoint calculus)

Discretization

||∂t (E)) ||L∞O(∆t) ||E||L∞O(∆t)

〈∇EJ |δE〉 =

∫ T

0

∫ π

0

f
′(ψ)δψ sin θdθdt

=
∑

n

(∫ π

0

xp
n
ψ

n sin θdθ

)
δEn∆t =

∑

n

(∫ π

0

xp
n
ψ

n+1 sin θdθ

)
δEn∆t

=
∑

n

(∫ π

0

f
′(ψn)δψn sin θdθ

)
∆t=

∫ T

O

(∫ π

0

xpψ sin θdθ

)
δEdt

∂t

(∫ π

0

f
′(ψ)δψ sin θdθ

)
O(∆t) ∂t

((∫ π

0

xpψ sin θdθ

)
δE

)
O(∆t)

Fig. 7. Comparaison of the two approaches of Section 3.1.1 and 3.1.2 to compute the gradient.
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with 〈Ψ1|Ψ2〉θ,D =

2M∑

n=0

ℜ
(
ψ1kψ2k

)
αk sin θ∆θ when Ψ1,Ψ2 ∈ R2M .

Therefore, equation
∂LD

∂Ψ
(E ,ΨE , P ) · δΨ = 0, we get

{
PN−1 = 0

pn−1
k =

[(
An

θ BA
n
θ

)T
k
Pn
]

k
− αk

2
T
ψn

k cos θ.
(3.36)

The gradient is obtained by
∂LD

∂E
(E ,ΨE , PE) · δE

= −

〈(
∂ΨM

∂E

)
· δE|P

〉

t,D

= −

N−1∑

n=0

2M∑

k=0

ℜ

([(
∂An

θ

∂En
BAn

θ +An
θB

∂An
θ

∂En

)
Ψn

]

k

pn
kδE

n

)
αk sin θ∆θ∆t,

where
∂An

θ

∂En
is the matrix obtained by differentiating the matrix An

θ . We obtain for

the gradient formula〈
∇DJ |δE

〉
t,D

=

N−1∑

n=0

2M∑

k=0

ℜ
[(
µ0 cos θk + En

[
α‖ cos2 θk + α⊥ sin2 θk

])
ψ̃n

k p
n
kδE

n
]
αk sin θ∆θ∆t,

(3.37)

where Ψ̃n =

(
∂An

θ

∂En
BAn

θ +An
θF

−1ABF
∂An

θ

∂En

)
Ψn. This formula is to be compared

with (3.17) and (3.21).

3.1.5. Computing the gradient using Automatic Differentiation tools

In this section we briefly present another method to compute the gradient, which

uses the Automatic Differentiation tool O∂yssée [36, 19]. Automatic Differentiation

tools can be seen as black boxes taking as input a program computing a cost func-

tion f : Rn −→ Rm and giving as output another program computing the gradient
∂f(x)

∂x
.

O∂yssée is able to use two modes: the tangent mode and the adjoint mode, which

is similar to the adjoint method. We emphasize that the cost of the gradient com-

putation is proportional to n with the tangent mode (as with finite differences) and

it is proportional to m with the adjoint mode. Thus, the tangent mode has to be

used when n ≪ m and the adjoint mode has to be used when n ≫ m. For our

problem we have m = 1 and 1 ≪ n ≤ 70, so we use only the adjoint mode. As in
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the direct program we have 50 000 iterations, the adjoint program needs a lot of

memory to run. In order to reduce the size of memory needed, we have modified

the adjoint program by deleting the temporary variables in the linear parts of the

program. Table 2 gives an idea of the size of the direct code and that of the adjoint

code. The calculation times refer to a Pentium II, 466 Mhz Celeron with 128 Mb

RAM running with Linux.

Table 2. Technical requirements with O∂yssée.

standard post-processed
direct code adjoint code adjoint code

Size (lines) 433 2075 1190
Memory needed 12 Ko 520 Mo 103 Mo
Time (CPU) 60 s — 141 s

3.1.6. Numerical results

The purpose of this section is to compare numerically the different methods pre-

sented above for computing the gradient. For the numerical tests we use one laser

field of the form E(t) = E sin(ωt+φ). The gradient with respect to the parameters

E, ω and φ is denoted as

∇J =




∇EJ

∇ωJ

∇φJ


 .

We have computed the gradient using the methods presented in the previous sec-

tions, more precisely the continuous approach (C), the semi-discrete approach (SD),

the discrete approach (D), and O∂yssée (AD). We have also computed the gradient

using the finite differences approach (FD), where for each variable x (x = E,ω, φ)

∇FD
x J = lim

δx→0

J(x+ δx) − J(x)

δx
.

The gradient given by FD has been computed with different values of δx to make

sure that we have reached the δx→ 0 limit. Next we compare the gradient obtained

using the different approaches with the gradient obtained using the finite differences

approach, which is therefore taken as a reference value. For each method we will

compute the relative error

eE,ω,φ =

∣∣∣∣∣
∇E,ω,φJ −∇FD

E,ω,φJ

∇FD
E,ω,φJ

∣∣∣∣∣ .

The comparison is done for both low and high frequencies, using two different repre-

sentative points (E,ω, φ) = (1011 W/cm2
, 500 cm−1, 0) and (E,ω, φ) = (1011 W/cm2

, 4000 cm−1, 0),

respectively.

Table 3 shows that all the methods we have presented in this section give good
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results compared to the finite differences method. We can also see on this table

that the best results are obtained using O∂yssée, where we have a better precision

than with the other methods. In general the precision is increased by at least one

order.

We can also see on this table that the results agree with the comparison we made

in Section 3.1.3 between the continuous approach and the semi-discrete approach,

except for the ∇E component.

Let us now take the results given by automatic differentiation as a reference and

make the same comparison with the other methods as we have done with the finite

differences approach. On Table 4 we see that, compared to the AD approach, the

best results are those given by the discrete approach (again except for the component

∇E). We recall that with the discrete approach we make the adjoint calculus on

the fully discretized equation and that the automatic differentiation tools make

also adjoint calculus on the fully discretized equation with some implementation

differences. We also emphasize that for the component ∇E we obtain results which

are different from the results we obtain with the components ∇ω and ∇φ. We still

unable to explain such a difference.

In practice, the size of the parameter vector for our problem can go up to 70,

so we can only use an adjoint based method and not the finite differences one.

Indeed the CPU time needed to compute the gradient depends on the parameter

vector size for the finite differences method and is independent of this size for the

other methods presented below. More precisely, the CPU time needed for these

other methods is about 3 times the one needed to compute the criterion. For

implementation, the continuous approach and the semi-discrete approach are easiest

to implement than the discrete approach. Finally, for O∂yssée, let us recall that

even if it gives automatically the gradient, some post-processing of the adjoint code

is needed before running it.

Table 3. Relative error, with respect to the FD, of the gradient.

(a) : gradient computed at (E, ω, φ) = (1011, 500, 0)
FD AD C SD D

eE 0. 25. × 10−8 89. × 10−6 20. × 10−3 41. × 10−3

eω 0. 92. × 10−6 13. × 10−4 47. × 10−5 32. × 10−5

eφ 0. 18. × 10−6 81. × 10−5 25. × 10−5 25. × 10−5

(b) : gradient computed at (E, ω, φ) = (1011, 4000, 0)
FD AD C SD D

eE 0. 75. × 10−5 68. × 10−5 20. × 10−3 40. × 10−3

eω 0. 11. × 10−5 76. × 10−4 51. × 10−4 25. × 10−4

eφ 0. 22. × 10−3 41. × 10−3 33. × 10−3 26. × 10−3

3.2. Evolutionary Algorithms

This section presents the stochastic algorithms that we have used for the orienta-

tion problem which belong to the family of Evolutionary Algorithms (EAs). Their
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Table 4. Relative error, with respect to the AD, of the gradient.

(a) : gradient computed at (E, ω, φ) = (1011, 500, 0)

FD AD C SD D
eE 25. × 10−8 0. 89. × 10−6 20. × 10−3 41. × 10−3

eω 92. × 10−6 0. 14. × 10−4 57. × 10−5 22. × 10−5

eφ 18. × 10−6 0. 79. × 10−5 23. × 10−5 27. × 10−5

(b) : gradient computed at (E, ω, φ) = (1011, 4000, 0)
FD AD C SD D

eE 75. × 10−5 0. 73. × 10−6 20. × 10−3 41. × 10−3

eω 11. × 10−5 0. 75. × 10−4 50. × 10−4 24. × 10−4

eφ 22. × 10−3 0. 18. × 10−3 10. × 10−3 36. × 10−4

common feature is to imitate the principle of natural evolution. This section is or-

ganized as follows: Section 3.2.1 briefly introduces EAs and their basic terminology

and gives also a short state of the art in EAs while Section 3.2.2 presents more

precisely the EAs that we have implemented for the orientation problem.

3.2.1. Introduction to Evolutionary Algorithms

This section briefly explains the basic steps of an EA. The problem is to optimize

a given objective function f over a given search space. A population of individuals

(i.e., a P-uple of points in the search space) undergoes some artificial Darwinian

evolution based on the fitness F of each individual. The fitness of an individual is

directly related to the value of the objective function of this individual (a typical

example of a fitness function is the objective function itself, denoted by J in our

work). The evolution operators applied to the individuals are defined upon the

so-called genotype space noted E. It may be different from the definition space

of the fitness called the phenotype space. The choice of this genotype space is the

representation.

Figure 8 illustrates the framework of an EA: after an initialization of the popu-

lation (generally a uniform random initialization) the fitness of each individual is

computed. This is the evaluation step. Then, the loop of the algorithm called a

generation is made up of the following steps:

• Stopping criterion: a basic stopping criterion is when the maximum number

of generations fixed by the user is reached.

• Selection: the selection operator selects among the parents those who will

generate offsprings, the genitors. There exists several selection operators,

either of deterministic or of stochastic type. All of them are based on the

fitness of the individuals and implement the first phase of Artificial Darwinism:

the fittest allowed to reproduce.

• Creation of new individuals : there are basically two ways to create new in-

dividuals in the population from the genitors, namely the crossover and the

mutation. These variation operators are stochastic operators: the crossover is

a stochastic operator from Ek into E (typically k = 2), it is a recombination
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of k parents, and the mutation operator is a stochastic operator from E into

E.

• Evaluation: for each offspring the fitness is computed.

• Replacement : this operator discriminate among the individuals of the current

population those who will be the parents for the next generation. This oper-

ator, like the selection operator, is based on the fitness of the individuals and

implements the second step of Darwin’s theory: survival of the fittest.
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Fig. 8. General EA scheme.

Despite the common features of all EAs, several trends can be discriminated, mainly

due to historical differences. We will only detail here the instances of EAs we have

been using, refering to [3] and references therein for a complete description. The

four main branches are (in alphabetical order):

• The evolutionary programming (EP), originally developed in California to

evolve finite state machines.

• The evolution strategies (ESs) developed in Germany to solve numerical opti-

mization problems for real search spaces. The genotype space is the phenotype

space, namely a subset of RN . A precise description is given below.

• The genetic algorithms (GAs) developed in Michigan to study some adapta-

tion mechanisms of populations for biology. These algorithms have later been

used for optimization problems. More precision are given below.

• The genetic programming (GP), which has appeared more recently, consists

in evolving tree structures.

The Canonical GA:
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The genotype space is {0, 1}n, the selection operator is the so-called roulette wheel,

where the probability PXp
to select the individual Xp is proportional to the fitness

F (Xp):

PXp =
F (Xp)∑

i∈Population F (Xi)
.

The crossover operator replaces some bits in the first parent string by the corre-

sponding bits from the second parent, and the mutation operator randomly flips a

bit of the parent. The replacement is generational : the offsprings at the generation

n become the parents of the generation n + 1. Modern GAs are commonly used

with any kind of representation as long as crossover and mutation can be defined.

The ES:

The ES [30] have been designed to optimize real functions, thus the natural search

space is RN . The individuals undergo Gaussian mutations, namely addition of

zero-mean Gaussian variables of standard deviation σ. The particularity of ES is

that the parameter σ is a part of the genetic information. For a so-called isotropic

ES, an individual is of the form I = (x1, . . . , xN , σ) and, for a non isotropic ES,

I = (x1, . . . , xN , σ1, . . . , σN ) (there also exists a third type of ES not discussed

here, the correlated ES). Consequently the mutation parameters are subjected to

recombination and mutation as well. More precisely, the adaptive mutation takes

place in two steps, first a mutation of the mutation parameters, second a mutation

of object variables xi. For an isotropic ES the two steps are

σ(t+1) = σ(t) exp(τ0N(0, 1)),

x
(t+1)
i = x

(t)
i +Ni(0, σ

(t+1)),

and, for a non isotropic ES,

σ
(t+1)
i = σ

(t)
i exp(τ0N(0, 1) + τNi(0, 1)),

x
(t+1)
i = x

(t)
i +Ni(0, σ

(t+1)
i ),

where N(0, 1) stands for a Gaussian random variable. The crossover operator se-

lects randomly two parents, (x1
1, . . . , x

1
N , σ

1
1 , . . . , σ

1
N ) and (x2

1, . . . , x
2
N , σ

2
1 , . . . , σ

2
N ),

to produce an offspring (xq1

1 , . . . , x
qN

N , σ
q1

1 , . . . , σ
qN

N ) where qi = 1 or qi = 2 with

equal probability. This crossover operator can also involve all individuals in the

population, this is a global crossover. The replacement operator is strictly deter-

ministic, based on the rank. For example, if µ (respectively λ) is the number of

parents (respectively offsprings), (µ, λ)−ES selects the parents for next generation

by taking the µ best offsprings and (µ + λ) − ES selects the parents for next gen-

eration by taking the µ best among the λ offsprings and µ parents.

It is now commonly accepted that the incorporation of specific knowledge, of the

problem to optimize, by means of representation and specific operators, is the best

way and the only way to enhance the performances of an EA. But, when using
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an EA without introducing some specificities of the problem, ES is generally the

most efficient EA for parametric optimization. ES, like GA, are implemented on

the EOlib class library available from [18].

3.2.2. The algorithms used

The orientation problem is a minimization problem on a real space of size 7N , where

N is the number of laser fields to superpose. We use two kinds of EAs: the first one

is based on a classical GA with a real representation (roulette wheel selection and

barycentric or multi-point crossover [27] ) and the second one is the ES described

above and taken from EOlib [18].

The first algorithm is an improved GA, adding some specific operators and some

specific features, which are known to improve the performances of GAs. We will

name this algorithm in the sequel EGA (for Enhanced GA). Niching and Rescaling

are two specific features of this algorithm. Rescaling is a way to avoid some bias in

the roulette wheel selection; niching is to avoid that all the population concentrates

on a region of the search space (see [27] for more precisions). Then, the mutation

strength on EGA decreases with the number of generations. A specific gradient

mutation operator is also used (EGA-CG), replacing the parent by the result of a few

iterations of a conjugated gradient algorithm using the parent as initial value. The

purpose of such an operator is to accelerate the convergence by taking advantages

of a gradient algorithm.

We have tested EGA, EGA-CG and ES on several test functions taken from the

literature (Sphere, Rosenbrock and Shekel functions). We refer to [35] for the details.

We present here shortly some conclusions of these tests. First, for all the functions

tested, a comparison with a classical GA has shown that EGA, EGA-CG, and

ES converge more often, and faster than GA. Moreover, they are able to improve

continuously their precision whereas GA stops at some non-zero distance of the

solution. Second, the tests have confirmed that the gradient mutation operator

accelerates the convergence, except for too “chaotic” functions. Third, the test cases

have helped us for a crucial point of EAs, namely the setting of the parameters,

which is specific to each function. Several trends can be discriminated for the

setting, mainly taken from the literature and confirmed with test cases. As we have

built our own EGA, it is difficult to give succinctly the parameters to set. With

respect to ES, three important steps are given: First, the probability to mutate

an individual is greater than the probability to cross two individuals (typically

pmut = 0.8 and pcross = 0.2). Second, the size of the population is typically

(7, 49)− ES and the number of parents should be increased if the number of local

minima increases. Third, the initial mutation strength σ should also be increased

when the number of local minima increases.

4. Results for the orientation problem

A preliminary study of the orientation problem with the purely deterministic PRLS
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and BFGS algorithms (see Section 3.1), for the differentiable criterion (2.10), showed

the need to use stochastic methods. Indeed, these algorithms converge after a few

iterations towards a local minimum close to the initial guess: the cost function

presents numerous local minima. We know from the literature and from test cases

that for such functions, ES, EGA, and EGA-CG perform better. As far as EGA-CG

is concerned, using it to minimize the criterion (2.10) does not improve the results

in a significant way. More precisely, our best results have been obtained without

the gradient mutation operator. However, using the gradient algorithm after EGA

can improve the result of the optimization, as we will see in Section 4.1.

We present in this section the main results obtained with our algorithms on the ori-

entation problem. The sequel of this section is organized as follows: in Section 4.1,

we give the fields we have obtained by minimizing criteria (2.9) and (2.10). For

both criteria we give the best results. Next, we explain how the addition of the

CG at the end of the EGA improves the optimization of the criterion (2.10). In

Section 4.2, we introduce a new hybrid criterion in order to approach both goals of

Section 2.3 : obtaining at some given time a good orientation and keeping it as long

as possible. Then, in Section 4.3, we present results obtained by a different form of

laser fields. This form of laser field, named a train of kicks is a succession of fields

of kick form presented in Section 4.1. As we will see, these fields really improve the

results of Section 4.1 on both criteria (2.9) and (2.10).

4.1. Optimized fields for (2.9) and (2.10)

All the results presented in the sequel have been obtained by optimizing upon

a superposition of two or three lasers in order to better understand the physical

meaning of the results. Indeed, our trials for optimizing (2.10) on a superposition

of ten laser fields have given results shown on Figure 10, which are not sufficiently

easy to understand and interpret. We have therefore left this strategy aside.

Figures 11 and 12 show the optimized fields and their instantaneous criterion j(t)

obtained respectively with criteria (2.9) and (2.10). They have been obtained with

a non-isotropic ES and with EGA, respectively. However, let us emphasize that the

two algorithms give similar results. Indeed, EGA has given fields and instantaneous

criterion of the same form as the ones shown on Figure 11 and ES has also given

results of the form shown on Figure 12.

As it may be noticed on Figure 11, the minimum value of j(t), namely −0.46,

is less than that on Figure 12 but the orientation does not last as long, which is ex-

pected in view of the criterion chosen. The first instantaneous criterion (Figure 11)

is what we call a narrow j(t) (see Section 2.3) and the second one (Figure 12) is

what we call a wide j(t). As for the fields, the first field is what we call in Sec-

tion 2.4 a (ω, 2ω) field and the second one is what we call a kick field. Table 5

shows the parameters of this latter field. The fact that a field of the form of a kick

is a very efficient field for optimizing the criterion 2.10 is one of our most striking

result from a physical viewpoint. It is reported and commented on in [17]. In the
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Jmin

Jmin√
2

Ttmin

Figure 9: Construction of the hybrid criterion.

latter reference, the (ω, 2ω) field is also analyzed. As explained above, using the

Table 5. Parameters of the optimized pulse with 3 laser fields.

n E (W/cm2) ω (cm−1) φ (π rad) t0 (ps) t1 (ps) t2 (ps) t3 (ps)
1 1.01364 × 1008 1389.541 1.98066 0. 0.312024 0.613023 1.193727
2 2.99976 × 1012 500.051 1.82249 0.075077 0.270294 0.838110 1.562814
3 2.99989 × 1012 500.000 0.82337 0.109518 0.235767 0.808280 1.080066

EGA-CG does not improve the results. However, CG is useful for a local search

and we have tested how it could improve the result when used only at the end of

a stochastic search. For this purpose we have first made an optimization on cri-

terion (2.10) using EGA (the result is presented on Figure 13 with dotted lines)

and then, we have applied the BFGS algorithm (the gradient has been computed

with O∂yssée) using the laser field so obtained as an initial guess for the conjugate

gradient algorithm. After 100 CG iterations, the criterion is improved as may be

seen on Figure 13 with solid lines. Such a result reconfirms that CG is useful for

the local improvement search.

4.2. Results for the hybrid criterion

In view of the results of the previous section, it is a natural idea to introduce a new

criterion aimed at approaching two goals together: obtaining at some given time a

good orientation and keeping it as long as possible. Thus, we basically define a new

criterion

J = Jmin − Jkept + |Jmin + Jkept|, (4.38)

where Jmin = mint∈[0,T ] j(t) and Jkept =
Ttmin

T
where Ttmin

is the length the connex

component of {t ∈ [0, T ] | Jmin ≤ j(t) ≤ Jmin√
2
} including tmin = sup{t | J(t) =

Jmin} (see Figure 9). This criterion is a sum of three terms. The first one, Jmin,

measures the way the molecule is oriented. The second one, Jkept, measures how

long the orientation is kept. The third part, |Jmin + Jkept|, is a penalty term to

ensure that Jmin and −Jkept are simultaneously minimized.

On Figure 14, we show a field obtained with this criterion and which is a succession

in time of two fields with a short overlay time (see Section 2.4). For the physical
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meaning of such a result, we refer to [2].

4.3. Results for the train of kicks

An other idea consists of starting with a field previously classified as a kick shape

and using a succession of such fields in order to orient the molecule. The purpose

of the optimization is thus to find the good delay between two successive kicks.

Indeed we hope that by kicking several times the molecule we can lower the instan-

taneous criterion. The results are quite interesting: Figure 15 (a), is the result of

an optimization of the criterion (2.10) with ES and it clearly illustrates the idea

of kicking several times the molecule. This result is also interesting because the

instantaneous criterion remains for a long time under the value −0.2. Figure 15 (b)

is the result of the optimization with the criterion (2.9). The criterion value (−0.82)

is the best value we have ever had. However, the production of such fields remains

an experimental challenge.
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Fig. 10. Results obtained by optimizing upon 10 laser fields. In this figure and the following ones
(11 to 14), the electric field is shown on top while < cos θ > which measures the instantaneous
orientation of the molecule is shown on bottom. Time evolves from left to right at the same scale.

5. Conclusion and future directions

We have implemented and tested various strategies for the optimization of the laser

field to be used for the orientation of the HCN molecule.

The best results have been obtained using evolutionary algorithms rather than

purely deterministic algorithms such as gradient-like algorithms. However, in the

case where the criterion is differentiable, we have shown that gradient like algorithms

can efficiently complement the EA, not necessary when being used throughout the

generations as mutations operators (the genetic algorithms with mutation by gra-

dient have not yielded a real benefit in our specific case), but when being used as a

final step in the optimization, once the population has been optimized by EA.
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Fig. 11. Best result for J = mint∈[0,T ] j(t).
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Fig. 13. Optimization by CG after optimization by GA.
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Fig. 14. Best result for the hybrid criterion given by equation 4.38.
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Fig. 15. (a) : Best result for J = 1
T

∫
j(t) dt with the train of kicks. (b) : Best result for

J = 1
T

∫
j(t) dt with the train of kicks.

In order to understand how to compute the gradient of the criterion when needed,

we have performed many tests, together with a numerical analysis on a toy equa-

tion related to our case of interest. They both show that the most efficient strategy

(amenable in any case) is to compute the gradient by adjoint calculus on the dis-

cretized form of the equation or, if one does not fear a tedious post-processing work,

to compute the gradient with an automatic differentiation tool.

As far as the choice of the criterion is concerned, we have tested many crite-

ria, depending upon our physical aims. A multicriteria approach has also been

implemented.

From the physical standpoint, our results have allowed us to identify two specific

forms of laser fields that are most promising for the future: the (ω, 2ω) field [14, 25]

and the kick field [15, 22]. Definite conclusions about the efficiently of these fields

are yet to be obtained and will be the purpose of some of our work in the future. It

is anyway to be emphasized that such physically relevant fields have been obtained

through our optimization methodology used as a blind tool, i.e., without any speci-

fication of this form of fields. This is sufficient to give us some hope and confidence

both in the physical and in the mathematical validity of our methodology.
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