
Robbins-Monro algorithms and varianeredutionBouhari AROUNACERMICS, Eole Nationale des Ponts et Chaussées, 6 et 8 av Blaise Pasal,77455 Marne La Vallée, Frane, email : arouna�ermis.enp.frSeptember, 10 2002Abstrat :In this paper, we present a new variane redution tehnique for MonteCarlo methods. By an elementary version of Girsanov theorem, we in-trodue a drift term in a prie omputation. Afterwards, the basi ideais to use a trunated version of the Robbins-Monro (RM) algorithms to�nd the optimal drift that redues the variane. We proved that for alarge lass of payo� funtions, this version of RM algorithms onvergesa.s. to the optimal drift. It is also shown that an adaptative use of thisRM algorithm inside the Monte Carlo omputation leads to an e�etivevariane redution. In this sope, we �nd some limit theorems whihenable us to illustrate the method by appliations to options priing.1 IntrodutionMonte arlo methods are used for priing and hedging omplex �nanialproduts espeially when the number of the assets involved is large. In suha ase, variane redution methods are often needed in order to improvee�ieny. In this paper we present importane sampling methods based onGirsanov transformation following [6℄. The basi idea is to use a Robbins-Monro (RM) algorithm to optimize the hoie of the drift in the Girsanovtransformation. The RM algorithm is a stohasti approximation methodwhih allows to estimate asymptotially the zeros of a funtion given as anexpetation. Although its rate of onvergene is C=pn in general, the RMalgorithm is very easy to implement in general. Newton [13℄ proved that fora large lass of problems of options priing in ontinuous time, importanesampling an lead to a zero-variane estimator through a stohasti hange ofdrift. However, determining the optimal drift requires knowing the option'sprie in advane. This approah is therefore based on using approximationsof the option's prie to �nd approximations of the optimal drift. We use a1



di�erent approah: we restrit ourselves to deterministi hange of drift.In the next setion we present the mathematial ontext of our methodand introdue brie�y the importane sampling tehnique based on Girsanovtransformation (following [6℄). In setion 3, we �rst introdue the RMalgorithms in a general framework and then present the Chen's method whihenable us to prove our main result. Setion 4 deals with some relevant limittheorems for the algorithm. The last part of the work is devoted to numerialtests and pratial onsiderations . A brief presentation of the RM algorithmusing Chen's trunation method is given in the appendix (see [7℄).2 Mathematial Context2.1 Finanial bakgroundLet us assume that the prie of the underlying asset under the risk neutralprobability is desribed by the stohasti di�erential equationdSt = St(rdt+ �(t; St)dWt); S0 = x; (1)with r the risk-free, ontinuously ompounded interest rate, �(t; y) the asset'svolatility, Wt a brownian motion, and x �xed. By arbitrage, the prie of anoption with payo�  (St; t � T ) is given byV0 = E [e�rT  (St; t � T )℄: (2)For pratial purposes, we will restrit attention to simulations of the assetdriven by a sequene of independent normal variables, sine we an reoverthis ase when the normal variables are orrelated through a linear trans-formation. However, we have in mind simulations through disritizations ofdi�usion proesses using for example, an Euler Sheme, when an exat so-lution of the stohasti di�erential equation (1) is not available. We assumethat an aeptable disretization of this equation has already been deter-mined on a direte grid of points 0 = T0 < T1 < � � � < Tm = T , and thus wefous attention on obtaining preise estimates of the prie V0. Therefore, ina pratial situation, to ompute V0, we have to evaluateV̂0 = E [e�rT  (ST1 ; : : : ; STm)℄;whih we rewrite as V̂0 = E [G(Z)℄; (3)where Z = (Z1; : : : ; Zm) � N (0; Im) and G is a funtion we an omputeusing the diretization of S .In what follows, the objetive is to evaluate (3) using an importane samplingproedure. 2



2.2 Importane samplingWe hange the law of Z = (Z1; : : : ; Zm) adding a drift vetor � = (�1; : : : ; �m). An elementary version of Girsanov theorem -see for example [2℄ or [4℄ fordetails- applied to (3) leads to the following representation of V̂0 :V̂0 = E (�(�)) ; (4)with �(�) = G(Z + �)e(���Z� 12 k�k2) ; (5)where kxk denotes the Eulidean norm of a vetor x 2 Rm . The authorsin [6℄ give an importane sampling proedure to minimize the variane of�(�) or equivalently to minimize E (�2 (�)) with respet to �. This methodredues the ontribution of the linear part of the �log-payo�� to the varianeby sampling along a diretion �̂ whih is solution to the �xed-point problem :r logG(�) = �.In this paper, we use a RM algorithm to assess the �optimal sampling dire-tion� �� that minimizes the variane of �(�), � 2 Rm or equivalently :H(�) = E (�2(�)): (6)For more onvenient we write g(�; z) for the value of G(z + �)e���z� 12k�k2and sp(�) for the value of E (gp(�;Z)). The following result is important.Proposition 2.1. If E (G2a(Z)) <1, with a > 1, then H is twie di�eren-tiable in Rm and there exists a unique �� 2 Rm suh that :H(��) = min�2RmH(�): (7)Proof Using Girsanov theorem, we obtainH(�) = E�G2(Z)e���Z+ 12 k�k2�: (8)Suppose that k�k � K where K is a non negative onstant. With thenotation h(�; z) = (�� z)G2(z)e���z+ 12k�k2 , we haveZ jh(�; z)je� 12kzk2dz � eK22 Z (K + kzk)eKkzke�(1� 1a ) 12kzk2G2(z)e� 12akzk2dz:By Hölder's inequality, we an writeZ jh(�; z)je� 12kzk2dz � eK22 �Z (K + kzk)e aKa�1kzke� 12kzk2dz�1� 1a ���Z G2a(z)e� 12kzk2dz� 1a :3



Sine E (G2a(Z)) < 1, it is not di�ult to see that H is di�erentiable andthat rH(�) = E�(�� Z)G2(Z)e���Z+ 12k�k2�: (�)In addition, one an prove that H is twie di�erentiable and thatHessH(�) = E��Im + (�� Z)(�� Z)T�G2(Z)e���Z+ 12 k�k2�; (��)where HessH(�) denotes the hessian matrix of H and Im the identity matrixof size m. From (��), we onlude that H is stritly onvex on Rm sine8 u 2 Rm � f0g;uTHessH(�)u = E��kuk2 + (u � (�� Z))2�G2(Z)e���Z+ 12 k�k2� > 0:To end this proof, it's su�ient to show that limk�k!+1H(�) = +1. UsingJensen inequality, it follows thatlogH(�) � E�2 logG(Z)1fG>0g � �Z + 12k�k2�= 2E (log G(Z)1fG>0g) + 12k�k2:Therefore, if P(G(Z) > 0) 6= 0, then limk�k!+1H(�) = +1. �As a onsequene of the proposition above, �� minimizing H is the uniquesolution of rH(�) = 0 ; (9)and the idea is to make use of a RM algorithm to solve equation (9).3 Robbins-Monro algorithmsWe begin this setion by a short presentation of the Robbins-Monro algo-rithms. Afterwards we introdue the Chen's trunation method.3.1 General frameworkThe RM algorithms have the formXn+1 = Xn � n+1F (Xn; Zn+1) (10)where Zn is drawn from a given distribution m(dx).The initial ondition is any admissible value for X0. This algorithm solvesthe equation E [F (�;Z)℄ = 04



where E denotes the expetation under m(dx). If we onsider the mean �eldh(�) = E [F (�;Z)℄; � 2 Rm ;we an rewrite (10) asXn+1 = Xn � n+1h(Xn) + n+1�n+1 (11)with �n+1 = h(Xn)� F (Xn; Zn+1):The �n an be seen as random errors made when evaluating h(Xn). Let uswrite Yn+1 for the value of F (Xn; Zn+1). Xn and Yn are random vetors inRm . Let Fn = �fXk; Yk; k � ng be the �-algebra generated by Xk; Ykfork � n. Clearly we an writeE [Yn+1=Fn℄ = h(Xn):The following theorem is proved in [10℄ or [9℄.Theorem 1. Under the following hypothesis(H1) 9�� 2 Rm ; h(��) = 0; 8� 2 Rm � 6= �� (�� ��) � h(�) > 0; (12)(H2) Xn n = +1 and Xn 2n < +1; (13)(H3) E [kYn+1k2=Fn℄ < K(1 + kXnk2) a:s:; (14)the sequene of random vetors (Xn)n�0 onverges almost surely to ��.One an �nd some other onvergene hypothesis of the RM algorithms in[14℄, [1℄, [10℄ or in [11℄ for a simple presentation of stohasti algorithms.Some papers are devoted to the onvergene properties of these algorithmssee e.g. [5℄ and [8℄. Unfortunately, lassial theorems suh as the one abovean not be used in the ase we are onerned with.3.2 Appliation to variane redutionIn our ase (see (�)), the mean �eld h is given byh(x) = E�(x� Z)G2(Z)e�x�Z+ 12kxk2�; (15)
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where Z is dawn from the gaussian law N (0; Im). By Proposition 2.1, itexists a unique �� 2 Rm whih makes zero the funtion h. Now, onsiderthe following expression of Yn+1 :Yn+1 = (Xn � Zn+1)G2(Zn+1)e�Xn�Zn+1+ 12 kXnk2 ; (16)where (Zn)n�0 is a sequene of i.i.d. gaussian vetors following the law ofZ. Sine Xn is Fn-mesurable and Zn+1 is independent of Fn, it is easy tosee that E [Yn+1=Fn℄ = h(Xn):Hypothesis (H1) of the theorem above is satis�ed by h and hypothesis (H2)is a question of trivial hoie. On the ontrary, hypothesis (H3) an not besatis�ed. Obviously this fat is due to the exponential form of Yn+1. Henethe most di�ult point to hek is that Xn does not tend to in�nity. To dealwith this partiular point, we use a tehnique introdued by H.F. Chen in[8℄ (see also [7℄) using projetions to get onvergene.3.3 Trunation methodTo desribe the method, �rst �x x1 6= x2 in Rm and hoose a onstantM > 0 as indiated in the appendix. Let (Zn)n�0 be a sequene of indepen-dent random vetors drawn from the distribution of Z. Let (Un)n�0 be anarbitrary deterministi inreasing sequene of positive numbers tending toin�nity with U0 > M .De�ne for n � 0;Xn+1 = (Xn � n+1Yn+1 if kXn � n+1Yn+1k � U�(n);x�n otherwise (17)�(n) = n�1Xk=0 1kXk�k+1Yk+1k>U�(k); �(0) = 0; (18)�(n) is the number of projetions done after n iterations.x�n = (x1 if �(n) is even;x2 if �(n) is odd; (19)with (n)n�0 a sequene of positive numbers satisfyingXn�0 n = +1 and Xn�0 2n < +1: (20)6



Remark 3.1. In our numerial tests we use n = ��+n , �; � > 0. Theproblem of the �best hoie� of the oe�ients � and � is rather deliate.From a numerial point of view, this hoie seems to be linked to the values ofthe model parameters. However, we propose in the last setion an empirialand intuitive way of hoosing e�iently these oe�ients.Remark 3.2. The onstant M above seems to have no signi�ant e�et onthe numerial onvergene of the algorithm when took a reasonable value. Inour numerial tests M values are in the range [10; 100℄ with no e�et on theonvergene properties of the algorithm. At time n, x�n may be a funtionof the past values of the algorithm. For example a randomly hosen formerpoints.The following lemma allows us to apply the result of Chen to our settings.Lemma 1. 1) It exists a twie ontinuously di�erentiable funtionv : Rm ! R; suh that :v(x�) = 0; limkxk!1 v(x) = +1and 8 x 6= x� v(x) > 0; h(x) � rv(x) > 0.2) Let G satis�es E(jG(Z)j4p) < +1 with p > 1, then one an hoose thesequene Un suh thatlimn!+1Xk�n 2k+1E [kYk+1k2=Fk℄ < +1 a:s:Proof Let v(x) = kx� x�k2. By Propositon 2.1, the funtion H de�nedby H(x) = E [G2(Z)e�x�Z+ 12 kxk2 ℄is stritly onvex and its gradient is given byh = E [(x � Z)G2(Z)e�x�Z+ 12 kxk2 ℄:Thus 8 u 6= y 2 Rm H(y)�H(u) > (y � u) � h(u);and for y = �� we have8 u 6= �� H(u)�H(��) < rv(u) � h(u) :As 8 u 2 Rm ; H(��) < H(u), the �rst part of the lemma is proved.To prove the last part, �rst observe that Xn is Fn-mesurable and Zn+1 isindependent of Fn. Then we haveE [kYn+1k2=Fn℄ = s2(Xn)7



with s2(x) = E [kx � Zk2G4(Z)e�2x�Z+kxk2 ℄:Now write h(x; z) for the value of kx� Zk2e�2x�Z+kxk2 . 8� > 1 we haveE (h� (x;Z)) = E(kx � Zk2�e�2�x�Z+�kxk2)= E(kZk2� e(2�+1)x�Z�(�+ 12 )kxk2)� e�(�+ 12 )kxk2E (kZk2� e(2�+1)kxkkZk)= e�(�+ 12 )kxk2ZR+�(0;2�)�(0;�)m�2r2�e(2�+1)kxkre� r22 J�(r; �m�1; : : : ; �1)drd�m�1 : : : d�1where J�(r; �m�1; : : : ; �1) = rm�1f(�m�1; : : : ; �1) denotes the Jaobian ofthe transformation from Cartesian to polar variables. ThereforeE (h� (x;Z)) � C1(�;m)e�(�+ 12 )kxk2 Z +10 r2�+m�1e(2�+1)kxkre� r22 dr� C1(�;m)e�(�+ 12 )kxk2 Z +10 r2�+m�1e(2�+1)2kxk2+ r24 e� r22 dr= C1(�;m)e�(�+ 12 )kxk2+(2�+1)2kxk2 Z +10 r2�+m�1e� r24 dr= C2(�;m)e�(�+ 12 )kxk2+(2�+1)2kxk2 :Now by the Hölder inequality, it followss2(x) � �E(jG(Z)j4p)� 14p�E(h 4p4p�1 (x;Z))�1� 14p� C(p;m)eQ(p)kxk2 :where C1(�;m); C2(�;m) and C(p;m) are three positive onstants, andQ(p) is de�ned by Q(p) := 7:5p2�p+1=32p2�p=4 . Using equations (17-20), we getkXnk � max(U�(n); kx�nk) � Un; and s2(Xn) � CeQ(p)U2n ;for n su�iently large. Finally we onlude the proof by hoosing the se-quene Un suh that Xn 2neQ(p)U2n < + 1 :�Remark 3.3. The sequene Un must inrease su�iently slow to anel theexplosion behaviour of the algorithm without modi�ations on it and thehoie of Un is not di�ult. In fat 8 p > 1 the sequene Un = q 110 lnn +U0; n � 1 is suitable sine Q(℄1;+1[) �℄7:5; 8:71[.8



The following theorem is a onsequene of the lemma above.Theorem 2. In the framework of Lemma 1, the algorithm Xn de�ned by(17-20) onverges a.s. to the unique solution of the equation h(x) = 0;x 2 Rm and the number of trunations �(n) is bounded.Proof First, set �n+1 = h(Xn)�Yn+1; n � 0 and de�ne the sequeneMn = Pn�1i=0 i+1�i+1 for n � 1 and M0 = 0. The sequene (Mn)n�1 is aFn-martingale and its brakets proess is given byhMin = n�1Xi=0 2i+1E�k�i+1k2=Fi�= n�1Xi=0 2i+1E [kYi+1k2=Fi℄� n�1Xi=0 2i+1kh(Xi)k2� n�1Xi=0 2i+1E [kYi+1k2=Fi℄:Using Lemma 1, we have hoosen the sequene (Un) suh thatlimn!+1hMin � +1Xn=0 2n+1E [kYn+1k2=Fn℄ a:s:� CXn 2neQ(p)U2n a:s:< + 1 a:s:;where C > 0. Therefore the martingale Mn onverges a:s: and in L2 (see[12℄ or [3℄). The Kroneker's lemma (see for example [15℄ p.117) impliesthat limn+1kPn�1i=0 �i+1k = 0 a:s:. Chen, Guo and Gao proved in [7℄that assuming the �rst part of Lemma 1 holds, one just need the additionalassumption limn+1kPn�1i=0 �i+1k = 0 a:s: in order to obtain the onver-gene of the algorithm. Theorem 2 is then a onsequene of their result whihis stated in Theorem 6 (see appendix or [7℄).�In pratial situations, one don't need to know the exat value of the optimaldrift vetor ��. As good the onvergene of the RM algorithm is towards��, as good is the variane redution obtained. The algorithm above may besummarize as the following,(a) First use the Robbins Monro algorithm Xn de�ned by (17-20)to assess ��,(b) Then, injet the value of �� in the Monte Carlo method by omp-uting V̂0 ' 1N PNn=1 g(��; Zn):We all this method : �algorithm1�. 9



We show in the sequel that it is possible to merge parts (a) and (b) of above,by omputing diretly V̂0 ' 1N NXn=1 g(Xn�1; Zn):This last omputation simplify �algorithm1�; we denoted it by �algorithm2�.4 Law of Large Numbers and Central Limit Theo-remWe need the following lassial results for the remainder.Lemma 2. If f is a ontinuous funtion from Rd to R and (xn)n�0 is asequene of real numbers whih onverges to x, then1n nXk=1 f(xk) �! f(x); as n! +1:Theorem 3. Let (Mn)n�0 be a real, square-integrable martingale whih isadapted to a �ltration (Fn)n�0 and has an braket proess denoted by hM in.Suppose that for a real deterministi sequene (an)n�0 inreasing to +1 thefollowing two assumptions apply:(A) h M inan P�! �2 (� > 0);(B) Lindberg's ondition holds; in order words, for all � > 0,1an Pnk=1 E�kMk �Mk�1k21fkMk�Mk�1k��pang=Fk�1� P�! 0:Then: Mnan a:s:��! 0 and Mnpan L�! N (0; �2).Remark 4.1. The proof of the lemma is rather trivial.The theorem is provedin various books whih give it its due importane (see [12℄ for example). Theproof of the result Mnan a:s:��! 0 whih represents the �Law of Large Numbers�part of this theorem lies only on assumption (A). The Lindberg's onditionis essential to prove the last part of this theorem.We will also use the following lemma.Lemma 3. If E(jGap(Z)j) <1, with a > 1 and p � 1, then sp is a ontin-uous funtion from Rd to R. 10



Proof By Girsanov theorem it is rather trivial to see thatsp(�) = E(Gp(Z)e�(p�1)��Z+ p�12 k�k2):Suppose that k�k � K where K is a non negative onstant. With thenotation hp(�; z) = Gp(z)e�(p�1)��z+ p�12 k�k2 , we havejhp(�; z)j � eK22 (p�1)jGp(z)jeK(p�1)kzk:Using Hölder's inequality, it followsZ jGp(z)jeK(p�1)kzke� 12 kzk2dz � �Z e aKa�1 (p�1)kzke� 12kzk2dz�1� 1a�Z jGap(z)j� e� 12 kzk2dz� 1a :Sine E(jGpa (Z)j) < 1, the Lebesgue theorem applies and the funtion spis ontinuous. �Theorems 4 and 5 below may be seen as our main results. They lead to ane�etive variane redution algorithm.Theorem 4. Assume that the Robbins-Monro algorithm (Xn)n�0 de�ned by(17-20) onverges a.s. to �� and that for p � 4, E(jGap(Z)j) < 1, witha > 1. If XN = 1N PNn=1 g(Xn�1; Zn) then :(1) XN a:s:��! V̂0;(2) pN(XN � V̂0) L�! N (0; �2); with �2 = V ar(g(��; Z)).Remark 4.2. We amphasize that �2 = V ar(g(��; Z)) is the smallest vari-ane one ould expet with this ��nite-dimensional� importane samplingmethod. As usual, for pratial situations we need an asymptotial estima-tion of �. This is the fat of the theorem below.Theorem 5. In the framework of the theorem above, if we write �2N for thevalue of 1N PNn=1 g2(Xn�1; Zn)�X2N , then :(1) �2N a:s:��! �2;(2) pN(XN � V̂0)�N L�! N (0; 1)Remark 4.3. The payo� of most of produts traded on �nanial marketssatis�es the integrability ondition of the theorems.11



Proof of Theorem 4. Let us writeMN for the value ofPNn=1(g(Xn�1; Zn)�V̂0). Sine Xn�1 is Fn�1 mesurable and Zn is independent of Fn�1, by thevirtue of (4-5), we have E (g(Xn�1 ; Zn)=Fn�1) = V̂0and (MN )N�0 is a martingale. Throughout the proof of Lemma 3 and thede�nition of Xn, it appears that (MN )N�0 is powered-p integrable, withp � 4. It's braket proess is given byhMiN = NXn=1 E�jg(Xn�1; Zn)� V̂0j2=Fn�1�= NXn=1 E�g2(Xn�1; Zn)=Fn�1��NV̂ 20= NXn=1 s2(Xn�1)�NV̂ 20 with s2(x) = E (g2(x;Z)):By Lemma 3 s2(x) is ontinuous and by Lemma 21N NXn=1 s2(Xn�1) a:s:��! s2(��):ThereforehMiNN a:s:��!N �2; where �2 = s2(��)� V̂ 20 = V ar(g(��; Z)):Aording to the part (A) of Theorem 3, we have MNN a:s:��!N 0 whih isequivalent to the part (1) of the theorem.It remains to prove the Lindberg's ondition in order to get the seond partof the theorem. First we observe thatE�jg(Xn�1; Zn)� V̂0j4=Fn�1� = E [g4(Xn�1; Zn)=Fn�1℄� 3V̂ 40� 4V̂0E [g3(Xn�1; Zn)=Fn�1℄+ 6V̂ 20 E [g2 (Xn�1; Zn)=Fn�1℄= s4(Xn�1)� 3V̂ 40 � 4V̂0s3(Xn�1)+ 6V̂ 20 s2(Xn�1):Using again Lemma 3 and Lemma 2 we have1N NXn=1 E�jg(Xn�1; Zn)� V̂0j4=Fn�1� a:s:��! L12



where L < +1 a:s: is a positive random variable. Now for A > 0 de�neFN (A) = 1N NXn=1 E�jg(Xn�1; Zn)� V̂0j21fjg(Xn�1;Zn)�V̂0j>Ag=Fn�1�:It is easily seen thatFN (A) � A�2N NXn=1 E�jg(Xn�1; Zn)� V̂0j4=Fn�1�;so that lim supN!+1 FN (A) � A�2L a:s:Hene taking AN = �pN with � > 0, we havelim supN!+1 FN (�pN) = 0 a:s:and the Lindberg's ondition holds. Finaly, Theorem 3. shows thatMNpN L�! N (0; �2) with �2 = V ar(g(��; Z))whih is the desired onlusion.�Proof of Theorem 5. To prove the �rst part of the theorem, we only needto show that1N NXn=1 s2(Xn�1) � 1N NXn=1 g2(Xn�1; Zn); N � +1:In this sope, let us denote MN =PNn=1�g2(Xn�1; Zn)� s2(Xn�1�. Obvi-ously E(g2 (Xn�1; Zn)=Fn�1) = s2(Xn�1) a:s: so that MN is a martingale.MN is squared-integrable and has the following braket proesshMiN = NXn=1 E�(g2(Xn�1; Zn)� s2(Xn�1))2=Fn�1�= NXn=1�s4(Xn�1)� s22(Xn�1)�:Again by ombining Lemma 3 and Lemma 2 it appears thathM iNN a:s:��!N s4(��)� s22(��) = V ar(g2(��; Z)) > 0:13



Then Theorem 3 shows one again that1N NXn=1�g2(Xn�1; Zn)� s2(Xn�1)� a:s:��!N 0:The seond part of the theorem is a lassial result of Probability theory.�Remark 4.4. Exatly as in the i:i:d: ase, Theorem 4. and Theorem 5.show that XN = 1N PNn=1 g(Xn�1; Zn) onverges almost surely to the desiredexpetation V̂0 = E [G(Z)℄ and that the rate of onvergene is 1pN .5 Examples and numerial testsAs notied in Remark 3.1 the �best� hoie of the steps sequene (n)n�0 inthe algorithm (17-20) is rather deliate. From a theoretial point of viewit is known (see [9℄ or [14℄) that the best sequene must derease towards0 as 1n . In our numerial tests we use n = ��+n , �; � > 0. We observethat the hoie of � has no signi�ant e�et on the numerial onvergeneof the algorithm. The most di�ult point to hek for numerial purposes istherefore to �nd the values of the parameter � whih lead to good onver-gene properties. We have represented the ratio of the lassial Monte Carloestimator's standard deviation to the one of the Monte Carlo method withthe optimal drift omputed by the method we proposed. We denoted thisratio by �StdRatio�. Figure 1 shows the StdRatio obtained for a european
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Figure 1: Variane redution for a euro-pean all with �algorithm1� Alpha
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Figure 2: Variane redution for a euro-pean put with �algorithm1�all when � varies. This option is out-of-the money and its parameters areS0 = 50, K = 80; r = 0:05; T = 1:0; and � = 0:3. Figure 2 represents theStdRatio for a european put that is out of-the-money. In this ase we useS0 = 50, K = 40; r = 0:05; T = 1:0; � = 0:1. In Figure 3 and Figure 4, weplot the StdRatio in a multidimensional ase, namely the arithmeti asianput's ase. We use n = 40 disretization steps for the left panel and n = 20for the right one. The left panel represents this StdRatio when the put is out14
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Figure 4: Variane redution for an at themoney asian put -n=20- with �algorithm1�of the money with S0 = 50, K = 45; r = 0:05; T = 1:0; and � = 0:1. Theright one shows the StdRatio for the same put, but at the money. Figure 5
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Figure 5: Variane redution for a euro-pean basket put with �algorithm1� Alpha
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algo2_MC_1000000       
algo1_MC_90000_RM_10000
algo1_MC_95000_RM_5000 
algo1_MC_97500_RM_2500 Figure 6: Variane redution for a at-the-money european basket alldisplays the StdRatio variations with respet to �, for a out of the moneyeuropean put on a basket of n = 10 assets. We have used in this ase theparameters K = 30; r = 0:05; S0 = 50; � = 0:1; and T = 1.We begin the presentation of the results obtained by a one dimensional op-tion priing problem. Tables 4.1 and 4.2 present these results for europeanstandard all and put. Of ourse the priing of these produts is availablein losed form, but it seems natural for us to start the numerial tests withsimple examples in order to measure both gain on variane and auray onpries omputation.Figure 6 deals with some omparisons between �algorithm1� and �algorithm2�.All the results are based on a total of 1,000,000 runs. algo2_MC_1000000illustrate an adaptative use of the RM algorithm in a Monte Carlo ompu-tation and presents the �StdRatio� reahed -�algorithm2�.algo1_MC_90000_RM_10000 , algo1_MC_95000_RM_5000, andalgo1_MC_97500_RM_2500 provides some aspets of the use of �algo-rithm1�. In suh ases, we use respetively 90; 000; 95; 000; and 97; 500simulated paths in the Monte Carlo omputations, when 10; 000; 5; 000;15



and 2; 500 are respetively the number of RM algorithm's iterations. Fromthis example, it seems that 2; 500 runs are not su�ient to guarantee a goodonvergene of the RM algorithm. In this partiular ase, the sensitivity ofthe algorithm with respet to � -Alpha in the �gure- is higher than in theothers. Table 4.1Estimated Variane Redution Ratio for the European Put using �algorithm1�Parameters Importane sampling� � � strike5. 1. 0.3 300.1 400.01 500.001 60100. 0.1 401. 500.1 60
RMPrie BSPrie CPrie StdRatio0.13 0.13 0.13 6.21.28 1.28 1.27 3.34.68 4.68 4.70 2.510.54 10.53 10.58 2.20.0042 0.0042 0.0040 18.70.97 0.96 0.96 3.17.31 7.31 7.33 2.5All the results are based on a total of 50,000 runs. 40,000 runs for the Monte Carlo method and10,000 runs for the RM algorithm. The model parameters are: S0 = 50; r = 0:05; and T = 1:0.Tableau 4.2Estimated Variane Redution Ratio for the European Call using �algorithm1�Parameters Importane sampling� � � strike0.01 1. 0.3 300.1 500.5 600.1 800.0006 0.1 300.01 500.07 605. 70
RMPrie BSPrie CPrie StdRatio21.63 21.60 21.52 4.17.12 7.12 7.01 3.33.45 3.45 3.43 3.90.67 0.67 0.68 6.821.47 21.46 21.52 10.63.41 3.40 3.38 2.80.23 0.23 0.23 5.60.004 0.004 0.004 25.All the results are based on a total of 50,000 runs. 40,000 runs for the Monte Carlo method and10,000 runs for the RM algorithm. The model parameters are S0 = 50; r = 0:05; and T = 1:0.�RMPrie�, �CPrie� and �BSPrie� denote respetively the Monte Carlo es-timated prie inluding our method (Monte Carlo + Importane sampling +RM algorithm), the lassial Monte Carlo prie and the Blak and Sholesexat prie of the option. We reall that �StdRatio� is the ratio of the lassi-al Monte Carlo estimator standard deviation to the one of the Monte Carlousing the optimal drift omputed by our method.16



On these simple examples the standard deviation error redution is very sig-ni�ant. For a put and a all that are out of the money, the gain fator(StdRatio) ould be high. Furthermore the pries omputed by the MonteCarlo method inluding the variane redution method we propose are veryaurate. Table 4.3 and 4.4 show the variane redution obtained with ourmethod in the ase of european basket all and put. The results are inter-esting, sine the redution of on�dene interval length is about a fator ofat least 2. This gain fator may be �large� for options that are out of themoney. Tableau 4.3Estimated Variane Redution Ratio for the Europeanbasket all using �algorithm2�Parameters Importane Samplingn � � � strike10 0.01 1. 0.1 4050600.001 0.2 40506020 0.001 0.1 400.01 50600.001 0.2 405060

RMPrie StdRatio13.41 3.37.42 3.43.76 3.817.86 4.213.36 4.310.03 4.515.14 3.69.89 3.76.33 4.121.80 5.418.06 5.415.12 5.6We use 1,000,000 simulated paths for n=10 and 2,000,000 paths for n=20.The option parameters are S0 = 50; r = 0:05; and T = 1:0;.The numerial ost of this method is equivalent to the additional time spentin generating the gaussian paths that are used to ompute the optimal drift.In all our tests this extra time does not exeed 20% of the CPU time spent inthe lassial Monte Carlo omputation. In fat we use at most 20% gaussianpaths in addition to those simulated for the standard Monte Carlo ompu-tation. The variane is redued by a fator of at least 4. This redutionhas reahed a fator of 625 in our examples. Obviously, this gain justify theextra e�ort of omputation. In table 4.4 we use respetively 900,000 and100,000 simulation paths for Monte Carlo omputation and Robbins Monroalgorithm. In this partiular ase only 10% additional simulation e�ort leadsto a variane redution with a fator of at least 4.17



Tableau 4.4Estimated Variane Redution Ratio for the EuropeanBasket Put using �algorithm1�Parameters Importane samplingn � � � strike10 100 1. 0.1 204. 300.1 400.01 500.01 6020 5. 1. 200.5 300.05 400.01 500.01 6010 1. 1. 0.2 200.05 300.01 400.01 500.002 60

RMPrie StdRatio0.003 14.90.18 5.81.47 3.25.00 2.510.86 2.20.074 7.10.84 3.73.19 2.77.48 2.313.43 2.10.52 4.02.39 2.85.93 2.310.95 2.117.14 2.0The number of assets involved is n. All the results use a total of 1,000,000gaussian paths inluding 100,000 paths for the drift omputation. The modelparameters are S0 = 50; r = 0:05; and T = 1:0. Volatility is �at at 10% or20%.Table 4.5 displays values of an arithmeti asian put. As one an notie, thevariane gain is greater than a fator of 4. It is well known that put optionsvariane is omparatively lower than all one sine put payo� is bounded.Then a variane redution with a fator of 4 is not negligible in the ase foa put.The next example we onsidered deals with the Heston (1993) stohastivolatility model given by,dSt = rStdt+pvtStdW 1t ;dvt = k(� � vt)dt+ �pvtdW 2t ;whereW 1 andW 2 are two orrelated brownian motions with hW 1;W 2it = �t,and k; � and � are onstants. Disretizing with an Euler sheme leads toSTi+1 = STi(1 + r�t+p�i�tZi);vTi+1 = vTi + k(� � vTi)�t+ �p�tvTi(�Zi +p1� �2Zm+i);Where (Zi)i�1 is a sequene of independent gaussian variables with mean 0and variane 1. 18



Tableau 4.5Estimated Variane Redution Ratio for the Asian Putusing �algorithm1�Parameters Importane Samplingn � � � strike20 5 1. 0.1 451 500.05 5520 6 1. 0.3 400.5 500.05 6040 5 1. 0.1 451 500.05 5540 4.5 1. 0.3 401. 500.05 60

RMPrie StdRatio0.013 5.80.63 3.13.68 2.50.27 4.82.87 2.69.30 2.20.011 4.30.62 3.03.70 2.40.25 4.42.83 2.69.29 2.2We use 1,000,000 paths for the Monte Carlo omputation and 200,000for the optimal drift omputation. The option parameters value areS0 = 50; r = 0:05; and T = 1:0;.Tableau 4.6Estimated Variane Redution Ratio for the European allin the Heston stohasti volatility model with �algorithm2�.Parameters Importane samplingv0 � � strike0.01 0.001 1. 450.01 500.1 551.0 600.04 0.001 450.005 500.2 550.04 60
ClosPR RMPrie StdRatio7.27 7.25 1.63.33 3.33 2.41.13 1.15 2.90.32 0.33 3.47.67 7.60 1.94.27 4.25 2.52.11 2.10 3.10.95 0.95 3.4The number of disretization steps is n=100. All the results use a total of 2,000,000gaussian paths. The model parameters are S0 = 50; r = 0:05; k = 2:0; � = 0:01; � =0:5; T = 1:0 and the volatility of the volatility is � = 0:1.Using this model, Heston has given a losed form solution to the priing of aeuropean all option by the arateristi funtions tehnique. We implement19



this losed form solution and in table 4.6, �ClosPR� denotes the prie of theall omputed with this solution. Table 4.6 dispalys also the priing resultsobtained with our method (�algorithm2�). It appears that our method appliesagain in this ase. One notie that notie that variane redution an reaha fator of 12. Our last examples deal with a stohasti volatility model,namely the Hull-White stohasti volatility model (1987),dSt = rStdt+p�tStdW 1t ;d�t = ��tdt+ ��tdW 2t ;whereW 1 andW 2 are two orrelated brownian motions with hW 1;W 2it = �t.In this model, St has a �nite mean but an in�nite variane. Using a lineardisretization of St by an Euler sheme, the variane is �nite but inreasesvery quikly with the number of steps. To redue this e�et, we need totrunate this variane. As in [6℄ we onsider the following disretisation ofthe model STi+1 = STi(1 + r�t+p�i�tZi);�i+1 = minf; �ie(�� 12 �2)�t+�p�t(�Zi+p1��2Zm+i)g;where  is a non-negative onstant. The trunation has little impat on themean but makes estimated varianes muh more stable.Through our simulation results we take  = 2, � = 0, r = 0:05, S0 = 50,T = 1, � = 0:5 and p�0 = 0:1. The onstant volatility ase orrespondsto � = 0 . The implementation of the method is not more di�ult than itwas in the Blak and Sholes model. Again we plot the ratio of the lassialMonte Carlo method's standard deviation error to that of Monte Carlo usingour variane redution method with respet to various � using �algorithm1�.The payo� we onsider is again that of a put option on the arithmeti mean
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Figure 7: Out of the money asian put.Hull-White stohasti volatility model. � =0:5; K = 45 Alpha
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Results are based on a total of 1,000,000 paths for the Monte Carlo ompu-tation and a total of 200,000 for the optimal drift omputation when using�algortihm1�. Again, we an see through these examples that the on�deneinterval length redution is greater than a fator of 2.
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Figure 9: Out of the money asian put.Hull-White stohasti volatility model. � =1; K = 45 Alpha
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Figure 10: At the money asian put.Hull-White stohasti volatility model. � =1; K = 506 Conluding remarksThe method we propose in this paper is very general. It an be used as soonas a Monte Carlo method is feasible and it is very easy to implement.It does not require regularity onditions on the payo� funtion. It ouldwork both for path-dependent and path-independent produts. In high di-mensional problems, instead of hoosing the steps sequene parameters ar-bitrarily, one an use the same simulation paths to ompute both pries andvarianes with respet to these parameters. The prie whih orrespondsto the smallest variane should give the best Monte Carlo estimation of thereal prie needed. To the best of our knowledge, the use of Robbins Monroalgorithms in a Monte Carlo proedure in order to redue variane is new.The method proposed here ould naturally be improved. For example, in or-der to get more stability an e�ieny of the algorithm, one may use randomvetor �elds whih has lower variane. If F1 and F2 are two random vetor�elds -and h the mean �eld- in the algorithm (17-20) suh that:E (F1(Xn; Zn+1)=Fn) = E (F2 (Xn; Zn+1)=Fn) = h(Xn);then the one whih has the lowest onditional variane seems to be the best.To end these remarks, we make some simple and useful observations : in aprie omputation using Monte Carlo method, one might guess whether theMonte Carlo variane would be large or not. When the variane is likely totake large values, the parameter � should be small (ex. � � 0:001 or 0:01 ).At the opposite, if the variane is likely to be small, � should be relatively21
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7 AppendixWe brie�y present here the Chen's projetion method. For more details, onean see [7℄.7.1 The hypothesisLet h : Rm ! R be an unknown funtion. We suppose that h is ontinuousand that h(x�) = 0. Let (Xn)n be a sequene for approximating x� andwhih is based on some measurements (Yn)n of a random observation. Attime (n+1), the regression funtion h is observed at Xn with a random error�n+1 given by Yn+1 = h(Xn) + �n+1; n � 0: (21)The authors in [7℄ make the following hypothesis(A) lim 1nkPn�1i=0 �i+1k = 0 p:s:,(B) 9 v : Rm ! R; twie ontinuously di�erentiable suh thatv(x�) = 0; limkxk!1 v(x) = +1and v(x) > 0; h(x) � rv(x) > 0; 8 x 6= x�.Remark 7.1. v is an arbitrary Lyapounov funtion satisfying hypothesis(B). In our ase, this funtion was given by v(x) = kx� x�k2:Remark 7.2. Condition (A) is satis�ed by a large lass of random vetorsuh as ARMA proesses. In addition, by Kroneker's lemma if Pni=1 1i �ionverges a:s: then ondition (A) holds.7.2 �Chen's Projetion� (see [7℄)To make use of their method, the authors in [7℄ hoose x1 6= x2 in Rm and�x M > 0 suh that :max(v(x1); v(x2)) < min(M; inf(v(x); kxk > M)): (22)Afterwards, they onsider an inreasing sequene (Un)n of positive numberstending to in�nity with U0 > M + 8. Then they de�ne for n = 1; 2; : : :Xn+1 = (Xn � 1nYn+1 if kXn � 1nYn+1k � U�(n);x�n otherwise; (23)23



where �(n) =Pn�1k=0 1kXk� 1kYk+1k>U�(k); �(1) = 0;x�n = (x1 if �(n) is even;x2 otherwise :Remark 7.3. Indeed, it is possible to �nd the onstant M suh that (22)holds, sine v(x)! +1 when kxk ! +1.This tehnique of projetion makes the mean �eld h muh more stable with-out modifying it.The following theorem is their main result and is very powerfull.Theorem 6. Under hypothesis (A) and (B), the RM algorithm de�ned by (23)onverges a.s. to x� and the number of trunations �(n) is bounded.Remark 7.4. This result is proved in [7℄. It is important to emphasizethat there is no a priori boundedness assumption imposed on Xn sine thesequene (Un)n�0 is time varying and allowed to inrease to in�nity.
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