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t :In this paper, we present a new varian
e redu
tion te
hnique for MonteCarlo methods. By an elementary version of Girsanov theorem, we in-trodu
e a drift term in a pri
e 
omputation. Afterwards, the basi
 ideais to use a trun
ated version of the Robbins-Monro (RM) algorithms to�nd the optimal drift that redu
es the varian
e. We proved that for alarge 
lass of payo� fun
tions, this version of RM algorithms 
onvergesa.s. to the optimal drift. It is also shown that an adaptative use of thisRM algorithm inside the Monte Carlo 
omputation leads to an e�e
tivevarian
e redu
tion. In this s
ope, we �nd some limit theorems whi
henable us to illustrate the method by appli
ations to options pri
ing.1 Introdu
tionMonte 
arlo methods are used for pri
ing and hedging 
omplex �nan
ialprodu
ts espe
ially when the number of the assets involved is large. In su
ha 
ase, varian
e redu
tion methods are often needed in order to improvee�
ien
y. In this paper we present importan
e sampling methods based onGirsanov transformation following [6℄. The basi
 idea is to use a Robbins-Monro (RM) algorithm to optimize the 
hoi
e of the drift in the Girsanovtransformation. The RM algorithm is a sto
hasti
 approximation methodwhi
h allows to estimate asymptoti
ally the zeros of a fun
tion given as anexpe
tation. Although its rate of 
onvergen
e is C=pn in general, the RMalgorithm is very easy to implement in general. Newton [13℄ proved that fora large 
lass of problems of options pri
ing in 
ontinuous time, importan
esampling 
an lead to a zero-varian
e estimator through a sto
hasti
 
hange ofdrift. However, determining the optimal drift requires knowing the option'spri
e in advan
e. This approa
h is therefore based on using approximationsof the option's pri
e to �nd approximations of the optimal drift. We use a1



di�erent approa
h: we restri
t ourselves to deterministi
 
hange of drift.In the next se
tion we present the mathemati
al 
ontext of our methodand introdu
e brie�y the importan
e sampling te
hnique based on Girsanovtransformation (following [6℄). In se
tion 3, we �rst introdu
e the RMalgorithms in a general framework and then present the Chen's method whi
henable us to prove our main result. Se
tion 4 deals with some relevant limittheorems for the algorithm. The last part of the work is devoted to numeri
altests and pra
ti
al 
onsiderations . A brief presentation of the RM algorithmusing Chen's trun
ation method is given in the appendix (see [7℄).2 Mathemati
al Context2.1 Finan
ial ba
kgroundLet us assume that the pri
e of the underlying asset under the risk neutralprobability is des
ribed by the sto
hasti
 di�erential equationdSt = St(rdt+ �(t; St)dWt); S0 = x; (1)with r the risk-free, 
ontinuously 
ompounded interest rate, �(t; y) the asset'svolatility, Wt a brownian motion, and x �xed. By arbitrage, the pri
e of anoption with payo�  (St; t � T ) is given byV0 = E [e�rT  (St; t � T )℄: (2)For pra
ti
al purposes, we will restri
t attention to simulations of the assetdriven by a sequen
e of independent normal variables, sin
e we 
an re
overthis 
ase when the normal variables are 
orrelated through a linear trans-formation. However, we have in mind simulations through dis
ritizations ofdi�usion pro
esses using for example, an Euler S
heme, when an exa
t so-lution of the sto
hasti
 di�erential equation (1) is not available. We assumethat an a

eptable dis
retization of this equation has already been deter-mined on a di
rete grid of points 0 = T0 < T1 < � � � < Tm = T , and thus wefo
us attention on obtaining pre
ise estimates of the pri
e V0. Therefore, ina pra
ti
al situation, to 
ompute V0, we have to evaluateV̂0 = E [e�rT  (ST1 ; : : : ; STm)℄;whi
h we rewrite as V̂0 = E [G(Z)℄; (3)where Z = (Z1; : : : ; Zm) � N (0; Im) and G is a fun
tion we 
an 
omputeusing the di
retization of S .In what follows, the obje
tive is to evaluate (3) using an importan
e samplingpro
edure. 2



2.2 Importan
e samplingWe 
hange the law of Z = (Z1; : : : ; Zm) adding a drift ve
tor � = (�1; : : : ; �m). An elementary version of Girsanov theorem -see for example [2℄ or [4℄ fordetails- applied to (3) leads to the following representation of V̂0 :V̂0 = E (�(�)) ; (4)with �(�) = G(Z + �)e(���Z� 12 k�k2) ; (5)where kxk denotes the Eu
lidean norm of a ve
tor x 2 Rm . The authorsin [6℄ give an importan
e sampling pro
edure to minimize the varian
e of�(�) or equivalently to minimize E (�2 (�)) with respe
t to �. This methodredu
es the 
ontribution of the linear part of the �log-payo�� to the varian
eby sampling along a dire
tion �̂ whi
h is solution to the �xed-point problem :r logG(�) = �.In this paper, we use a RM algorithm to assess the �optimal sampling dire
-tion� �� that minimizes the varian
e of �(�), � 2 Rm or equivalently :H(�) = E (�2(�)): (6)For more 
onvenient we write g(�; z) for the value of G(z + �)e���z� 12k�k2and sp(�) for the value of E (gp(�;Z)). The following result is important.Proposition 2.1. If E (G2a(Z)) <1, with a > 1, then H is twi
e di�eren-tiable in Rm and there exists a unique �� 2 Rm su
h that :H(��) = min�2RmH(�): (7)Proof Using Girsanov theorem, we obtainH(�) = E�G2(Z)e���Z+ 12 k�k2�: (8)Suppose that k�k � K where K is a non negative 
onstant. With thenotation h(�; z) = (�� z)G2(z)e���z+ 12k�k2 , we haveZ jh(�; z)je� 12kzk2dz � eK22 Z (K + kzk)eKkzke�(1� 1a ) 12kzk2G2(z)e� 12akzk2dz:By Hölder's inequality, we 
an writeZ jh(�; z)je� 12kzk2dz � eK22 �Z (K + kzk)e aKa�1kzke� 12kzk2dz�1� 1a ���Z G2a(z)e� 12kzk2dz� 1a :3



Sin
e E (G2a(Z)) < 1, it is not di�
ult to see that H is di�erentiable andthat rH(�) = E�(�� Z)G2(Z)e���Z+ 12k�k2�: (�)In addition, one 
an prove that H is twi
e di�erentiable and thatHessH(�) = E��Im + (�� Z)(�� Z)T�G2(Z)e���Z+ 12 k�k2�; (��)where HessH(�) denotes the hessian matrix of H and Im the identity matrixof size m. From (��), we 
on
lude that H is stri
tly 
onvex on Rm sin
e8 u 2 Rm � f0g;uTHessH(�)u = E��kuk2 + (u � (�� Z))2�G2(Z)e���Z+ 12 k�k2� > 0:To end this proof, it's su�
ient to show that limk�k!+1H(�) = +1. UsingJensen inequality, it follows thatlogH(�) � E�2 logG(Z)1fG>0g � �Z + 12k�k2�= 2E (log G(Z)1fG>0g) + 12k�k2:Therefore, if P(G(Z) > 0) 6= 0, then limk�k!+1H(�) = +1. �As a 
onsequen
e of the proposition above, �� minimizing H is the uniquesolution of rH(�) = 0 ; (9)and the idea is to make use of a RM algorithm to solve equation (9).3 Robbins-Monro algorithmsWe begin this se
tion by a short presentation of the Robbins-Monro algo-rithms. Afterwards we introdu
e the Chen's trun
ation method.3.1 General frameworkThe RM algorithms have the formXn+1 = Xn � 
n+1F (Xn; Zn+1) (10)where Zn is drawn from a given distribution m(dx).The initial 
ondition is any admissible value for X0. This algorithm solvesthe equation E [F (�;Z)℄ = 04



where E denotes the expe
tation under m(dx). If we 
onsider the mean �eldh(�) = E [F (�;Z)℄; � 2 Rm ;we 
an rewrite (10) asXn+1 = Xn � 
n+1h(Xn) + 
n+1�n+1 (11)with �n+1 = h(Xn)� F (Xn; Zn+1):The �n 
an be seen as random errors made when evaluating h(Xn). Let uswrite Yn+1 for the value of F (Xn; Zn+1). Xn and Yn are random ve
tors inRm . Let Fn = �fXk; Yk; k � ng be the �-algebra generated by Xk; Ykfork � n. Clearly we 
an writeE [Yn+1=Fn℄ = h(Xn):The following theorem is proved in [10℄ or [9℄.Theorem 1. Under the following hypothesis(H1) 9�� 2 Rm ; h(��) = 0; 8� 2 Rm � 6= �� (�� ��) � h(�) > 0; (12)(H2) Xn 
n = +1 and Xn 
2n < +1; (13)(H3) E [kYn+1k2=Fn℄ < K(1 + kXnk2) a:s:; (14)the sequen
e of random ve
tors (Xn)n�0 
onverges almost surely to ��.One 
an �nd some other 
onvergen
e hypothesis of the RM algorithms in[14℄, [1℄, [10℄ or in [11℄ for a simple presentation of sto
hasti
 algorithms.Some papers are devoted to the 
onvergen
e properties of these algorithmssee e.g. [5℄ and [8℄. Unfortunately, 
lassi
al theorems su
h as the one above
an not be used in the 
ase we are 
on
erned with.3.2 Appli
ation to varian
e redu
tionIn our 
ase (see (�)), the mean �eld h is given byh(x) = E�(x� Z)G2(Z)e�x�Z+ 12kxk2�; (15)
5



where Z is dawn from the gaussian law N (0; Im). By Proposition 2.1, itexists a unique �� 2 Rm whi
h makes zero the fun
tion h. Now, 
onsiderthe following expression of Yn+1 :Yn+1 = (Xn � Zn+1)G2(Zn+1)e�Xn�Zn+1+ 12 kXnk2 ; (16)where (Zn)n�0 is a sequen
e of i.i.d. gaussian ve
tors following the law ofZ. Sin
e Xn is Fn-mesurable and Zn+1 is independent of Fn, it is easy tosee that E [Yn+1=Fn℄ = h(Xn):Hypothesis (H1) of the theorem above is satis�ed by h and hypothesis (H2)is a question of trivial 
hoi
e. On the 
ontrary, hypothesis (H3) 
an not besatis�ed. Obviously this fa
t is due to the exponential form of Yn+1. Hen
ethe most di�
ult point to 
he
k is that Xn does not tend to in�nity. To dealwith this parti
ular point, we use a te
hnique introdu
ed by H.F. Chen in[8℄ (see also [7℄) using proje
tions to get 
onvergen
e.3.3 Trun
ation methodTo des
ribe the method, �rst �x x1 6= x2 in Rm and 
hoose a 
onstantM > 0 as indi
ated in the appendix. Let (Zn)n�0 be a sequen
e of indepen-dent random ve
tors drawn from the distribution of Z. Let (Un)n�0 be anarbitrary deterministi
 in
reasing sequen
e of positive numbers tending toin�nity with U0 > M .De�ne for n � 0;Xn+1 = (Xn � 
n+1Yn+1 if kXn � 
n+1Yn+1k � U�(n);x�n otherwise (17)�(n) = n�1Xk=0 1kXk�
k+1Yk+1k>U�(k); �(0) = 0; (18)�(n) is the number of proje
tions done after n iterations.x�n = (x1 if �(n) is even;x2 if �(n) is odd; (19)with (
n)n�0 a sequen
e of positive numbers satisfyingXn�0 
n = +1 and Xn�0 
2n < +1: (20)6



Remark 3.1. In our numeri
al tests we use 
n = ��+n , �; � > 0. Theproblem of the �best 
hoi
e� of the 
oe�
ients � and � is rather deli
ate.From a numeri
al point of view, this 
hoi
e seems to be linked to the values ofthe model parameters. However, we propose in the last se
tion an empiri
aland intuitive way of 
hoosing e�
iently these 
oe�
ients.Remark 3.2. The 
onstant M above seems to have no signi�
ant e�e
t onthe numeri
al 
onvergen
e of the algorithm when took a reasonable value. Inour numeri
al tests M values are in the range [10; 100℄ with no e�e
t on the
onvergen
e properties of the algorithm. At time n, x�n may be a fun
tionof the past values of the algorithm. For example a randomly 
hosen formerpoints.The following lemma allows us to apply the result of Chen to our settings.Lemma 1. 1) It exists a twi
e 
ontinuously di�erentiable fun
tionv : Rm ! R; su
h that :v(x�) = 0; limkxk!1 v(x) = +1and 8 x 6= x� v(x) > 0; h(x) � rv(x) > 0.2) Let G satis�es E(jG(Z)j4p) < +1 with p > 1, then one 
an 
hoose thesequen
e Un su
h thatlimn!+1Xk�n 
2k+1E [kYk+1k2=Fk℄ < +1 a:s:Proof Let v(x) = kx� x�k2. By Propositon 2.1, the fun
tion H de�nedby H(x) = E [G2(Z)e�x�Z+ 12 kxk2 ℄is stri
tly 
onvex and its gradient is given byh = E [(x � Z)G2(Z)e�x�Z+ 12 kxk2 ℄:Thus 8 u 6= y 2 Rm H(y)�H(u) > (y � u) � h(u);and for y = �� we have8 u 6= �� H(u)�H(��) < rv(u) � h(u) :As 8 u 2 Rm ; H(��) < H(u), the �rst part of the lemma is proved.To prove the last part, �rst observe that Xn is Fn-mesurable and Zn+1 isindependent of Fn. Then we haveE [kYn+1k2=Fn℄ = s2(Xn)7



with s2(x) = E [kx � Zk2G4(Z)e�2x�Z+kxk2 ℄:Now write h(x; z) for the value of kx� Zk2e�2x�Z+kxk2 . 8� > 1 we haveE (h� (x;Z)) = E(kx � Zk2�e�2�x�Z+�kxk2)= E(kZk2� e(2�+1)x�Z�(�+ 12 )kxk2)� e�(�+ 12 )kxk2E (kZk2� e(2�+1)kxkkZk)= e�(�+ 12 )kxk2ZR+�(0;2�)�(0;�)m�2r2�e(2�+1)kxkre� r22 J�(r; �m�1; : : : ; �1)drd�m�1 : : : d�1where J�(r; �m�1; : : : ; �1) = rm�1f(�m�1; : : : ; �1) denotes the Ja
obian ofthe transformation from Cartesian to polar variables. ThereforeE (h� (x;Z)) � C1(�;m)e�(�+ 12 )kxk2 Z +10 r2�+m�1e(2�+1)kxkre� r22 dr� C1(�;m)e�(�+ 12 )kxk2 Z +10 r2�+m�1e(2�+1)2kxk2+ r24 e� r22 dr= C1(�;m)e�(�+ 12 )kxk2+(2�+1)2kxk2 Z +10 r2�+m�1e� r24 dr= C2(�;m)e�(�+ 12 )kxk2+(2�+1)2kxk2 :Now by the Hölder inequality, it followss2(x) � �E(jG(Z)j4p)� 14p�E(h 4p4p�1 (x;Z))�1� 14p� C(p;m)eQ(p)kxk2 :where C1(�;m); C2(�;m) and C(p;m) are three positive 
onstants, andQ(p) is de�ned by Q(p) := 7:5p2�p+1=32p2�p=4 . Using equations (17-20), we getkXnk � max(U�(n); kx�nk) � Un; and s2(Xn) � CeQ(p)U2n ;for n su�
iently large. Finally we 
on
lude the proof by 
hoosing the se-quen
e Un su
h that Xn 
2neQ(p)U2n < + 1 :�Remark 3.3. The sequen
e Un must in
rease su�
iently slow to 
an
el theexplosion behaviour of the algorithm without modi�
ations on it and the
hoi
e of Un is not di�
ult. In fa
t 8 p > 1 the sequen
e Un = q 110 lnn +U0; n � 1 is suitable sin
e Q(℄1;+1[) �℄7:5; 8:71[.8



The following theorem is a 
onsequen
e of the lemma above.Theorem 2. In the framework of Lemma 1, the algorithm Xn de�ned by(17-20) 
onverges a.s. to the unique solution of the equation h(x) = 0;x 2 Rm and the number of trun
ations �(n) is bounded.Proof First, set �n+1 = h(Xn)�Yn+1; n � 0 and de�ne the sequen
eMn = Pn�1i=0 
i+1�i+1 for n � 1 and M0 = 0. The sequen
e (Mn)n�1 is aFn-martingale and its bra
kets pro
ess is given byhMin = n�1Xi=0 
2i+1E�k�i+1k2=Fi�= n�1Xi=0 
2i+1E [kYi+1k2=Fi℄� n�1Xi=0 
2i+1kh(Xi)k2� n�1Xi=0 
2i+1E [kYi+1k2=Fi℄:Using Lemma 1, we have 
hoosen the sequen
e (Un) su
h thatlimn!+1hMin � +1Xn=0 
2n+1E [kYn+1k2=Fn℄ a:s:� CXn 
2neQ(p)U2n a:s:< + 1 a:s:;where C > 0. Therefore the martingale Mn 
onverges a:s: and in L2 (see[12℄ or [3℄). The Krone
ker's lemma (see for example [15℄ p.117) impliesthat lim
n+1kPn�1i=0 �i+1k = 0 a:s:. Chen, Guo and Gao proved in [7℄that assuming the �rst part of Lemma 1 holds, one just need the additionalassumption lim
n+1kPn�1i=0 �i+1k = 0 a:s: in order to obtain the 
onver-gen
e of the algorithm. Theorem 2 is then a 
onsequen
e of their result whi
his stated in Theorem 6 (see appendix or [7℄).�In pra
ti
al situations, one don't need to know the exa
t value of the optimaldrift ve
tor ��. As good the 
onvergen
e of the RM algorithm is towards��, as good is the varian
e redu
tion obtained. The algorithm above may besummarize as the following,(a) First use the Robbins Monro algorithm Xn de�ned by (17-20)to assess ��,(b) Then, inje
t the value of �� in the Monte Carlo method by 
omp-uting V̂0 ' 1N PNn=1 g(��; Zn):We 
all this method : �algorithm1�. 9



We show in the sequel that it is possible to merge parts (a) and (b) of above,by 
omputing dire
tly V̂0 ' 1N NXn=1 g(Xn�1; Zn):This last 
omputation simplify �algorithm1�; we denoted it by �algorithm2�.4 Law of Large Numbers and Central Limit Theo-remWe need the following 
lassi
al results for the remainder.Lemma 2. If f is a 
ontinuous fun
tion from Rd to R and (xn)n�0 is asequen
e of real numbers whi
h 
onverges to x, then1n nXk=1 f(xk) �! f(x); as n! +1:Theorem 3. Let (Mn)n�0 be a real, square-integrable martingale whi
h isadapted to a �ltration (Fn)n�0 and has an bra
ket pro
ess denoted by hM in.Suppose that for a real deterministi
 sequen
e (an)n�0 in
reasing to +1 thefollowing two assumptions apply:(A) h M inan P�! �2 (� > 0);(B) Lindberg's 
ondition holds; in order words, for all � > 0,1an Pnk=1 E�kMk �Mk�1k21fkMk�Mk�1k��pang=Fk�1� P�! 0:Then: Mnan a:s:��! 0 and Mnpan L�! N (0; �2).Remark 4.1. The proof of the lemma is rather trivial.The theorem is provedin various books whi
h give it its due importan
e (see [12℄ for example). Theproof of the result Mnan a:s:��! 0 whi
h represents the �Law of Large Numbers�part of this theorem lies only on assumption (A). The Lindberg's 
onditionis essential to prove the last part of this theorem.We will also use the following lemma.Lemma 3. If E(jGap(Z)j) <1, with a > 1 and p � 1, then sp is a 
ontin-uous fun
tion from Rd to R. 10



Proof By Girsanov theorem it is rather trivial to see thatsp(�) = E(Gp(Z)e�(p�1)��Z+ p�12 k�k2):Suppose that k�k � K where K is a non negative 
onstant. With thenotation hp(�; z) = Gp(z)e�(p�1)��z+ p�12 k�k2 , we havejhp(�; z)j � eK22 (p�1)jGp(z)jeK(p�1)kzk:Using Hölder's inequality, it followsZ jGp(z)jeK(p�1)kzke� 12 kzk2dz � �Z e aKa�1 (p�1)kzke� 12kzk2dz�1� 1a�Z jGap(z)j� e� 12 kzk2dz� 1a :Sin
e E(jGpa (Z)j) < 1, the Lebesgue theorem applies and the fun
tion spis 
ontinuous. �Theorems 4 and 5 below may be seen as our main results. They lead to ane�e
tive varian
e redu
tion algorithm.Theorem 4. Assume that the Robbins-Monro algorithm (Xn)n�0 de�ned by(17-20) 
onverges a.s. to �� and that for p � 4, E(jGap(Z)j) < 1, witha > 1. If XN = 1N PNn=1 g(Xn�1; Zn) then :(1) XN a:s:��! V̂0;(2) pN(XN � V̂0) L�! N (0; �2); with �2 = V ar(g(��; Z)).Remark 4.2. We amphasize that �2 = V ar(g(��; Z)) is the smallest vari-an
e one 
ould expe
t with this ��nite-dimensional� importan
e samplingmethod. As usual, for pra
ti
al situations we need an asymptoti
al estima-tion of �. This is the fa
t of the theorem below.Theorem 5. In the framework of the theorem above, if we write �2N for thevalue of 1N PNn=1 g2(Xn�1; Zn)�X2N , then :(1) �2N a:s:��! �2;(2) pN(XN � V̂0)�N L�! N (0; 1)Remark 4.3. The payo� of most of produ
ts traded on �nan
ial marketssatis�es the integrability 
ondition of the theorems.11



Proof of Theorem 4. Let us writeMN for the value ofPNn=1(g(Xn�1; Zn)�V̂0). Sin
e Xn�1 is Fn�1 mesurable and Zn is independent of Fn�1, by thevirtue of (4-5), we have E (g(Xn�1 ; Zn)=Fn�1) = V̂0and (MN )N�0 is a martingale. Throughout the proof of Lemma 3 and thede�nition of Xn, it appears that (MN )N�0 is powered-p integrable, withp � 4. It's bra
ket pro
ess is given byhMiN = NXn=1 E�jg(Xn�1; Zn)� V̂0j2=Fn�1�= NXn=1 E�g2(Xn�1; Zn)=Fn�1��NV̂ 20= NXn=1 s2(Xn�1)�NV̂ 20 with s2(x) = E (g2(x;Z)):By Lemma 3 s2(x) is 
ontinuous and by Lemma 21N NXn=1 s2(Xn�1) a:s:��! s2(��):ThereforehMiNN a:s:��!N �2; where �2 = s2(��)� V̂ 20 = V ar(g(��; Z)):A

ording to the part (A) of Theorem 3, we have MNN a:s:��!N 0 whi
h isequivalent to the part (1) of the theorem.It remains to prove the Lindberg's 
ondition in order to get the se
ond partof the theorem. First we observe thatE�jg(Xn�1; Zn)� V̂0j4=Fn�1� = E [g4(Xn�1; Zn)=Fn�1℄� 3V̂ 40� 4V̂0E [g3(Xn�1; Zn)=Fn�1℄+ 6V̂ 20 E [g2 (Xn�1; Zn)=Fn�1℄= s4(Xn�1)� 3V̂ 40 � 4V̂0s3(Xn�1)+ 6V̂ 20 s2(Xn�1):Using again Lemma 3 and Lemma 2 we have1N NXn=1 E�jg(Xn�1; Zn)� V̂0j4=Fn�1� a:s:��! L12



where L < +1 a:s: is a positive random variable. Now for A > 0 de�neFN (A) = 1N NXn=1 E�jg(Xn�1; Zn)� V̂0j21fjg(Xn�1;Zn)�V̂0j>Ag=Fn�1�:It is easily seen thatFN (A) � A�2N NXn=1 E�jg(Xn�1; Zn)� V̂0j4=Fn�1�;so that lim supN!+1 FN (A) � A�2L a:s:Hen
e taking AN = �pN with � > 0, we havelim supN!+1 FN (�pN) = 0 a:s:and the Lindberg's 
ondition holds. Finaly, Theorem 3. shows thatMNpN L�! N (0; �2) with �2 = V ar(g(��; Z))whi
h is the desired 
on
lusion.�Proof of Theorem 5. To prove the �rst part of the theorem, we only needto show that1N NXn=1 s2(Xn�1) � 1N NXn=1 g2(Xn�1; Zn); N � +1:In this s
ope, let us denote MN =PNn=1�g2(Xn�1; Zn)� s2(Xn�1�. Obvi-ously E(g2 (Xn�1; Zn)=Fn�1) = s2(Xn�1) a:s: so that MN is a martingale.MN is squared-integrable and has the following bra
ket pro
esshMiN = NXn=1 E�(g2(Xn�1; Zn)� s2(Xn�1))2=Fn�1�= NXn=1�s4(Xn�1)� s22(Xn�1)�:Again by 
ombining Lemma 3 and Lemma 2 it appears thathM iNN a:s:��!N s4(��)� s22(��) = V ar(g2(��; Z)) > 0:13



Then Theorem 3 shows on
e again that1N NXn=1�g2(Xn�1; Zn)� s2(Xn�1)� a:s:��!N 0:The se
ond part of the theorem is a 
lassi
al result of Probability theory.�Remark 4.4. Exa
tly as in the i:i:d: 
ase, Theorem 4. and Theorem 5.show that XN = 1N PNn=1 g(Xn�1; Zn) 
onverges almost surely to the desiredexpe
tation V̂0 = E [G(Z)℄ and that the rate of 
onvergen
e is 1pN .5 Examples and numeri
al testsAs noti
ed in Remark 3.1 the �best� 
hoi
e of the steps sequen
e (
n)n�0 inthe algorithm (17-20) is rather deli
ate. From a theoreti
al point of viewit is known (see [9℄ or [14℄) that the best sequen
e must de
rease towards0 as 1n . In our numeri
al tests we use 
n = ��+n , �; � > 0. We observethat the 
hoi
e of � has no signi�
ant e�e
t on the numeri
al 
onvergen
eof the algorithm. The most di�
ult point to 
he
k for numeri
al purposes istherefore to �nd the values of the parameter � whi
h lead to good 
onver-gen
e properties. We have represented the ratio of the 
lassi
al Monte Carloestimator's standard deviation to the one of the Monte Carlo method withthe optimal drift 
omputed by the method we proposed. We denoted thisratio by �StdRatio�. Figure 1 shows the StdRatio obtained for a european
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Figure 1: Varian
e redu
tion for a euro-pean 
all with �algorithm1� Alpha
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Figure 2: Varian
e redu
tion for a euro-pean put with �algorithm1�
all when � varies. This option is out-of-the money and its parameters areS0 = 50, K = 80; r = 0:05; T = 1:0; and � = 0:3. Figure 2 represents theStdRatio for a european put that is out of-the-money. In this 
ase we useS0 = 50, K = 40; r = 0:05; T = 1:0; � = 0:1. In Figure 3 and Figure 4, weplot the StdRatio in a multidimensional 
ase, namely the arithmeti
 asianput's 
ase. We use n = 40 dis
retization steps for the left panel and n = 20for the right one. The left panel represents this StdRatio when the put is out14



Alpha

St
dR

at
io

0 105
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3
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e redu
tion for an out ofthe money asian put -n=40- with �algorithm1� Alpha
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Figure 4: Varian
e redu
tion for an at themoney asian put -n=20- with �algorithm1�of the money with S0 = 50, K = 45; r = 0:05; T = 1:0; and � = 0:1. Theright one shows the StdRatio for the same put, but at the money. Figure 5
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algo2_MC_1000000       
algo1_MC_90000_RM_10000
algo1_MC_95000_RM_5000 
algo1_MC_97500_RM_2500 Figure 6: Varian
e redu
tion for a at-the-money european basket 
alldisplays the StdRatio variations with respe
t to �, for a out of the moneyeuropean put on a basket of n = 10 assets. We have used in this 
ase theparameters K = 30; r = 0:05; S0 = 50; � = 0:1; and T = 1.We begin the presentation of the results obtained by a one dimensional op-tion pri
ing problem. Tables 4.1 and 4.2 present these results for europeanstandard 
all and put. Of 
ourse the pri
ing of these produ
ts is availablein 
losed form, but it seems natural for us to start the numeri
al tests withsimple examples in order to measure both gain on varian
e and a

ura
y onpri
es 
omputation.Figure 6 deals with some 
omparisons between �algorithm1� and �algorithm2�.All the results are based on a total of 1,000,000 runs. algo2_MC_1000000illustrate an adaptative use of the RM algorithm in a Monte Carlo 
ompu-tation and presents the �StdRatio� rea
hed -�algorithm2�.algo1_MC_90000_RM_10000 , algo1_MC_95000_RM_5000, andalgo1_MC_97500_RM_2500 provides some aspe
ts of the use of �algo-rithm1�. In su
h 
ases, we use respe
tively 90; 000; 95; 000; and 97; 500simulated paths in the Monte Carlo 
omputations, when 10; 000; 5; 000;15



and 2; 500 are respe
tively the number of RM algorithm's iterations. Fromthis example, it seems that 2; 500 runs are not su�
ient to guarantee a good
onvergen
e of the RM algorithm. In this parti
ular 
ase, the sensitivity ofthe algorithm with respe
t to � -Alpha in the �gure- is higher than in theothers. Table 4.1Estimated Varian
e Redu
tion Ratio for the European Put using �algorithm1�Parameters Importan
e sampling� � � strike5. 1. 0.3 300.1 400.01 500.001 60100. 0.1 401. 500.1 60
RMPri
e BSPri
e CPri
e StdRatio0.13 0.13 0.13 6.21.28 1.28 1.27 3.34.68 4.68 4.70 2.510.54 10.53 10.58 2.20.0042 0.0042 0.0040 18.70.97 0.96 0.96 3.17.31 7.31 7.33 2.5All the results are based on a total of 50,000 runs. 40,000 runs for the Monte Carlo method and10,000 runs for the RM algorithm. The model parameters are: S0 = 50; r = 0:05; and T = 1:0.Tableau 4.2Estimated Varian
e Redu
tion Ratio for the European Call using �algorithm1�Parameters Importan
e sampling� � � strike0.01 1. 0.3 300.1 500.5 600.1 800.0006 0.1 300.01 500.07 605. 70
RMPri
e BSPri
e CPri
e StdRatio21.63 21.60 21.52 4.17.12 7.12 7.01 3.33.45 3.45 3.43 3.90.67 0.67 0.68 6.821.47 21.46 21.52 10.63.41 3.40 3.38 2.80.23 0.23 0.23 5.60.004 0.004 0.004 25.All the results are based on a total of 50,000 runs. 40,000 runs for the Monte Carlo method and10,000 runs for the RM algorithm. The model parameters are S0 = 50; r = 0:05; and T = 1:0.�RMPri
e�, �CPri
e� and �BSPri
e� denote respe
tively the Monte Carlo es-timated pri
e in
luding our method (Monte Carlo + Importan
e sampling +RM algorithm), the 
lassi
al Monte Carlo pri
e and the Bla
k and S
holesexa
t pri
e of the option. We re
all that �StdRatio� is the ratio of the 
lassi-
al Monte Carlo estimator standard deviation to the one of the Monte Carlousing the optimal drift 
omputed by our method.16



On these simple examples the standard deviation error redu
tion is very sig-ni�
ant. For a put and a 
all that are out of the money, the gain fa
tor(StdRatio) 
ould be high. Furthermore the pri
es 
omputed by the MonteCarlo method in
luding the varian
e redu
tion method we propose are verya

urate. Table 4.3 and 4.4 show the varian
e redu
tion obtained with ourmethod in the 
ase of european basket 
all and put. The results are inter-esting, sin
e the redu
tion of 
on�den
e interval length is about a fa
tor ofat least 2. This gain fa
tor may be �large� for options that are out of themoney. Tableau 4.3Estimated Varian
e Redu
tion Ratio for the Europeanbasket 
all using �algorithm2�Parameters Importan
e Samplingn � � � strike10 0.01 1. 0.1 4050600.001 0.2 40506020 0.001 0.1 400.01 50600.001 0.2 405060

RMPri
e StdRatio13.41 3.37.42 3.43.76 3.817.86 4.213.36 4.310.03 4.515.14 3.69.89 3.76.33 4.121.80 5.418.06 5.415.12 5.6We use 1,000,000 simulated paths for n=10 and 2,000,000 paths for n=20.The option parameters are S0 = 50; r = 0:05; and T = 1:0;.The numeri
al 
ost of this method is equivalent to the additional time spentin generating the gaussian paths that are used to 
ompute the optimal drift.In all our tests this extra time does not ex
eed 20% of the CPU time spent inthe 
lassi
al Monte Carlo 
omputation. In fa
t we use at most 20% gaussianpaths in addition to those simulated for the standard Monte Carlo 
ompu-tation. The varian
e is redu
ed by a fa
tor of at least 4. This redu
tionhas rea
hed a fa
tor of 625 in our examples. Obviously, this gain justify theextra e�ort of 
omputation. In table 4.4 we use respe
tively 900,000 and100,000 simulation paths for Monte Carlo 
omputation and Robbins Monroalgorithm. In this parti
ular 
ase only 10% additional simulation e�ort leadsto a varian
e redu
tion with a fa
tor of at least 4.17



Tableau 4.4Estimated Varian
e Redu
tion Ratio for the EuropeanBasket Put using �algorithm1�Parameters Importan
e samplingn � � � strike10 100 1. 0.1 204. 300.1 400.01 500.01 6020 5. 1. 200.5 300.05 400.01 500.01 6010 1. 1. 0.2 200.05 300.01 400.01 500.002 60

RMPri
e StdRatio0.003 14.90.18 5.81.47 3.25.00 2.510.86 2.20.074 7.10.84 3.73.19 2.77.48 2.313.43 2.10.52 4.02.39 2.85.93 2.310.95 2.117.14 2.0The number of assets involved is n. All the results use a total of 1,000,000gaussian paths in
luding 100,000 paths for the drift 
omputation. The modelparameters are S0 = 50; r = 0:05; and T = 1:0. Volatility is �at at 10% or20%.Table 4.5 displays values of an arithmeti
 asian put. As one 
an noti
e, thevarian
e gain is greater than a fa
tor of 4. It is well known that put optionsvarian
e is 
omparatively lower than 
all one sin
e put payo� is bounded.Then a varian
e redu
tion with a fa
tor of 4 is not negligible in the 
ase foa put.The next example we 
onsidered deals with the Heston (1993) sto
hasti
volatility model given by,dSt = rStdt+pvtStdW 1t ;dvt = k(� � vt)dt+ �pvtdW 2t ;whereW 1 andW 2 are two 
orrelated brownian motions with hW 1;W 2it = �t,and k; � and � are 
onstants. Dis
retizing with an Euler s
heme leads toSTi+1 = STi(1 + r�t+p�i�tZi);vTi+1 = vTi + k(� � vTi)�t+ �p�tvTi(�Zi +p1� �2Zm+i);Where (Zi)i�1 is a sequen
e of independent gaussian variables with mean 0and varian
e 1. 18



Tableau 4.5Estimated Varian
e Redu
tion Ratio for the Asian Putusing �algorithm1�Parameters Importan
e Samplingn � � � strike20 5 1. 0.1 451 500.05 5520 6 1. 0.3 400.5 500.05 6040 5 1. 0.1 451 500.05 5540 4.5 1. 0.3 401. 500.05 60

RMPri
e StdRatio0.013 5.80.63 3.13.68 2.50.27 4.82.87 2.69.30 2.20.011 4.30.62 3.03.70 2.40.25 4.42.83 2.69.29 2.2We use 1,000,000 paths for the Monte Carlo 
omputation and 200,000for the optimal drift 
omputation. The option parameters value areS0 = 50; r = 0:05; and T = 1:0;.Tableau 4.6Estimated Varian
e Redu
tion Ratio for the European 
allin the Heston sto
hasti
 volatility model with �algorithm2�.Parameters Importan
e samplingv0 � � strike0.01 0.001 1. 450.01 500.1 551.0 600.04 0.001 450.005 500.2 550.04 60
ClosPR RMPri
e StdRatio7.27 7.25 1.63.33 3.33 2.41.13 1.15 2.90.32 0.33 3.47.67 7.60 1.94.27 4.25 2.52.11 2.10 3.10.95 0.95 3.4The number of dis
retization steps is n=100. All the results use a total of 2,000,000gaussian paths. The model parameters are S0 = 50; r = 0:05; k = 2:0; � = 0:01; � =0:5; T = 1:0 and the volatility of the volatility is � = 0:1.Using this model, Heston has given a 
losed form solution to the pri
ing of aeuropean 
all option by the 
ara
teristi
 fun
tions te
hnique. We implement19



this 
losed form solution and in table 4.6, �ClosPR� denotes the pri
e of the
all 
omputed with this solution. Table 4.6 dispalys also the pri
ing resultsobtained with our method (�algorithm2�). It appears that our method appliesagain in this 
ase. One noti
e that noti
e that varian
e redu
tion 
an rea
ha fa
tor of 12. Our last examples deal with a sto
hasti
 volatility model,namely the Hull-White sto
hasti
 volatility model (1987),dSt = rStdt+p�tStdW 1t ;d�t = ��tdt+ ��tdW 2t ;whereW 1 andW 2 are two 
orrelated brownian motions with hW 1;W 2it = �t.In this model, St has a �nite mean but an in�nite varian
e. Using a lineardis
retization of St by an Euler s
heme, the varian
e is �nite but in
reasesvery qui
kly with the number of steps. To redu
e this e�e
t, we need totrun
ate this varian
e. As in [6℄ we 
onsider the following dis
retisation ofthe model STi+1 = STi(1 + r�t+p�i�tZi);�i+1 = minf
; �ie(�� 12 �2)�t+�p�t(�Zi+p1��2Zm+i)g;where 
 is a non-negative 
onstant. The trun
ation has little impa
t on themean but makes estimated varian
es mu
h more stable.Through our simulation results we take 
 = 2, � = 0, r = 0:05, S0 = 50,T = 1, � = 0:5 and p�0 = 0:1. The 
onstant volatility 
ase 
orrespondsto � = 0 . The implementation of the method is not more di�
ult than itwas in the Bla
k and S
holes model. Again we plot the ratio of the 
lassi
alMonte Carlo method's standard deviation error to that of Monte Carlo usingour varian
e redu
tion method with respe
t to various � using �algorithm1�.The payo� we 
onsider is again that of a put option on the arithmeti
 mean
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Results are based on a total of 1,000,000 paths for the Monte Carlo 
ompu-tation and a total of 200,000 for the optimal drift 
omputation when using�algortihm1�. Again, we 
an see through these examples that the 
on�den
einterval length redu
tion is greater than a fa
tor of 2.
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Figure 9: Out of the money asian put.Hull-White sto
hasti
 volatility model. � =1; K = 45 Alpha
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Figure 10: At the money asian put.Hull-White sto
hasti
 volatility model. � =1; K = 506 Con
luding remarksThe method we propose in this paper is very general. It 
an be used as soonas a Monte Carlo method is feasible and it is very easy to implement.It does not require regularity 
onditions on the payo� fun
tion. It 
ouldwork both for path-dependent and path-independent produ
ts. In high di-mensional problems, instead of 
hoosing the steps sequen
e parameters ar-bitrarily, one 
an use the same simulation paths to 
ompute both pri
es andvarian
es with respe
t to these parameters. The pri
e whi
h 
orrespondsto the smallest varian
e should give the best Monte Carlo estimation of thereal pri
e needed. To the best of our knowledge, the use of Robbins Monroalgorithms in a Monte Carlo pro
edure in order to redu
e varian
e is new.The method proposed here 
ould naturally be improved. For example, in or-der to get more stability an e�
ien
y of the algorithm, one may use randomve
tor �elds whi
h has lower varian
e. If F1 and F2 are two random ve
tor�elds -and h the mean �eld- in the algorithm (17-20) su
h that:E (F1(Xn; Zn+1)=Fn) = E (F2 (Xn; Zn+1)=Fn) = h(Xn);then the one whi
h has the lowest 
onditional varian
e seems to be the best.To end these remarks, we make some simple and useful observations : in apri
e 
omputation using Monte Carlo method, one might guess whether theMonte Carlo varian
e would be large or not. When the varian
e is likely totake large values, the parameter � should be small (ex. � � 0:001 or 0:01 ).At the opposite, if the varian
e is likely to be small, � should be relatively21
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7 AppendixWe brie�y present here the Chen's proje
tion method. For more details, one
an see [7℄.7.1 The hypothesisLet h : Rm ! R be an unknown fun
tion. We suppose that h is 
ontinuousand that h(x�) = 0. Let (Xn)n be a sequen
e for approximating x� andwhi
h is based on some measurements (Yn)n of a random observation. Attime (n+1), the regression fun
tion h is observed at Xn with a random error�n+1 given by Yn+1 = h(Xn) + �n+1; n � 0: (21)The authors in [7℄ make the following hypothesis(A) lim 1nkPn�1i=0 �i+1k = 0 p:s:,(B) 9 v : Rm ! R; twi
e 
ontinuously di�erentiable su
h thatv(x�) = 0; limkxk!1 v(x) = +1and v(x) > 0; h(x) � rv(x) > 0; 8 x 6= x�.Remark 7.1. v is an arbitrary Lyapounov fun
tion satisfying hypothesis(B). In our 
ase, this fun
tion was given by v(x) = kx� x�k2:Remark 7.2. Condition (A) is satis�ed by a large 
lass of random ve
torsu
h as ARMA pro
esses. In addition, by Krone
ker's lemma if Pni=1 1i �i
onverges a:s: then 
ondition (A) holds.7.2 �Chen's Proje
tion� (see [7℄)To make use of their method, the authors in [7℄ 
hoose x1 6= x2 in Rm and�x M > 0 su
h that :max(v(x1); v(x2)) < min(M; inf(v(x); kxk > M)): (22)Afterwards, they 
onsider an in
reasing sequen
e (Un)n of positive numberstending to in�nity with U0 > M + 8. Then they de�ne for n = 1; 2; : : :Xn+1 = (Xn � 1nYn+1 if kXn � 1nYn+1k � U�(n);x�n otherwise; (23)23



where �(n) =Pn�1k=0 1kXk� 1kYk+1k>U�(k); �(1) = 0;x�n = (x1 if �(n) is even;x2 otherwise :Remark 7.3. Indeed, it is possible to �nd the 
onstant M su
h that (22)holds, sin
e v(x)! +1 when kxk ! +1.This te
hnique of proje
tion makes the mean �eld h mu
h more stable with-out modifying it.The following theorem is their main result and is very powerfull.Theorem 6. Under hypothesis (A) and (B), the RM algorithm de�ned by (23)
onverges a.s. to x� and the number of trun
ations �(n) is bounded.Remark 7.4. This result is proved in [7℄. It is important to emphasizethat there is no a priori boundedness assumption imposed on Xn sin
e thesequen
e (Un)n�0 is time varying and allowed to in
rease to in�nity.
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