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Abstract :

In this paper, we present a new variance reduction technique for Monte
Carlo methods. By an elementary version of Girsanov theorem, we in-
troduce a drift term in a price computation. Afterwards, the basic idea
is to use a truncated version of the Robbins-Monro (RM) algorithms to
find the optimal drift that reduces the variance. We proved that for a
large class of payoff functions, this version of RM algorithms converges
a.s. to the optimal drift. It is also shown that an adaptative use of this
RM algorithm inside the Monte Carlo computation leads to an effective
variance reduction. In this scope, we find some limit theorems which

enable us to illustrate the method by applications to options pricing.

1 Introduction

Monte carlo methods are used for pricing and hedging complex financial
products especially when the number of the assets involved is large. In such
a case, variance reduction methods are often needed in order to improve
efficiency. In this paper we present importance sampling methods based on
Girsanov transformation following [6]. The basic idea is to use a Robbins-
Monro (RM) algorithm to optimize the choice of the drift in the Girsanov
transformation. The RM algorithm is a stochastic approximation method
which allows to estimate asymptotically the zeros of a function given as an
expectation. Although its rate of convergence is C'/y/n in general, the RM
algorithm is very easy to implement in general. Newton [13] proved that for
a large class of problems of options pricing in continuous time, importance
sampling can lead to a zero-variance estimator through a stochastic change of
drift. However, determining the optimal drift requires knowing the option’s
price in advance. This approach is therefore based on using approximations
of the option’s price to find approximations of the optimal drift. We use a



different approach: we restrict ourselves to deterministic change of drift.

In the next section we present the mathematical context of our method
and introduce briefly the importance sampling technique based on Girsanov
transformation (following [6]). In section 3, we first introduce the RM
algorithms in a general framework and then present the Chen’s method which
enable us to prove our main result. Section 4 deals with some relevant limit
theorems for the algorithm. The last part of the work is devoted to numerical
tests and practical considerations . A brief presentation of the RM algorithm
using Chen’s truncation method is given in the appendix (see [7]).

2 Mathematical Context

2.1 Financial background

Let us assume that the price of the underlying asset under the risk neutral
probability is described by the stochastic differential equation

dSt = St(’)"dt + O'(t, St)th), SO =T, (1)

with r the risk-free, continuously compounded interest rate, o(t, y) the asset’s
volatility, W; a brownian motion, and « fixed. By arbitrage, the price of an
option with payoff (S, t < T) is given by

Vo = Ele ™ 4(S;,t < T))]. (2)

For practical purposes, we will restrict attention to simulations of the asset
driven by a sequence of independent normal variables, since we can recover
this case when the normal variables are correlated through a linear trans-
formation. However, we have in mind simulations through discritizations of
diffusion processes using for example, an Fuler Scheme, when an exact so-
lution of the stochastic differential equation (1) is not available. We assume
that an acceptable discretization of this equation has already been deter-
mined on a dicrete grid of points 0 =Ty < 11 < --- < T, =T, and thus we
focus attention on obtaining precise estimates of the price Vy. Therefore, in
a practical situation, to compute Vj, we have to evaluate

Vo =Ele "Ty(Syy,...,S1,)],
which we rewrite as
Vo = E[G(2)], (3)

where Z = (Z1,... ,Zy) ~ N(0,I,) and G is a function we can compute
using the dicretization of S .

In what follows, the objective is to evaluate (3) using an importance sampling
procedure.



2.2 Importance sampling

We change the law of Z = (Z1,... , Z,,) adding a drift vector p = (p1, ... , fim)
. An elementary version of Girsanov theorem -see for example [2] or [4] for
details- applied to (3) leads to the following representation of Vj :

Vo = E(a(p)) (4)
with
alp) = G(Z + p)elwZ=3lul®) (5)

where ||z|| denotes the Euclidean norm of a vector z € R™. The authors
in [6] give an importance sampling procedure to minimize the variance of
a(p) or equivalently to minimize E(a? (1)) with respect to p. This method
reduces the contribution of the linear part of the “log-payoff” to the variance
by sampling along a direction f which is solution to the fixed-point problem :
Vlog G(un) = p.

In this paper, we use a RM algorithm to assess the “optimal sampling direc-
tion” p* that minimizes the variance of a(u), p € R™ or equivalently :

H(p) = E(a” (1)) (6)

For more convenient we write g(u,z) for the value of G(z + u)e*‘”*%”“H2
and sp(p) for the value of E(g” (14, Z)). The following result is important.

Proposition 2.1. If E(G?*(Z)) < oo, with a > 1, then H is twice differen-
tiable in R™ and there exists a unique p* € R™ such that :

H(p") = min H(p). (7)

Proof Using Girsanov theorem, we obtain
H(p) = E[GQ(Z>6‘“'Z+%”“'2 : (8)

Suppose that ||u]| < K where K is a non negative constant. With the
notation h(u,z) = (u — z)GQ(z)ef‘””%H“”Z, we have

. 2 . .
/|h(u,z)|6;|z||2dz <5 /(K+ )X Il D3I G2 ) el g

By Hoélder’s inequality, we can write

2 @ @
/|h(u,z)|e5'z'l2dz < (/(K+ ||Z||)e£||z|e;|z||2dz> .

([ o veras)”



Since E(G**(Z)) < o0, it is not difficult to see that H is differentiable and
that

VH() = E|(u- 2)GH @) | )
In addition, one can prove that H is twice differentiable and that
HessH () = ]E[ (Im +(p—2)(p— Z)T> GQ(Z)e_“'Z‘F%HNlZ] 7 ()

where HessH () denotes the hessian matrix of H and I,,, the identity matrix
of size m. From (xx), we conclude that H is strictly convex on R™ since
VueR™—{0},

u"HessH (p)u = ]E[ (||u||2 + (u- (- Z))2> GQ(Z)e—u'“%IMHZ] > 0.

To end this proof, it’s sufficient to show that lim,_ 4o H (1) = +00. Using
Jensen inequality, it follows that

1
log H(p) > 1E<210g G(Z)gs0y — HZ + §||u||2>

1
= 2E(log G(Z)1{a>0y) + §||M||2-

Therefore, if P(G(Z) > 0) # 0, then limy,| 4.0 H () = +00. O
As a consequence of the proposition above, u* minimizing H is the unique
solution of

VH(p) =0, 9)

and the idea is to make use of a RM algorithm to solve equation (9).

3 Robbins-Monro algorithms

We begin this section by a short presentation of the Robbins-Monro algo-
rithms. Afterwards we introduce the Chen’s truncation method.
3.1 General framework
The RM algorithms have the form
Xn+1 =X, — '7n+1F(Xna Zn+1) (10)

where Z,, is drawn from a given distribution m(dz).
The initial condition is any admissible value for Xy. This algorithm solves
the equation

E[F (4, Z)] = 0



where E denotes the expectation under m(dx). If we consider the mean field
h(p) = B[F (s, Z)], n€R™,
we can rewrite (10) as
Xn+1 = Xn — Yot 1h(Xn) + Ynt1€n41 (11)
with
ent1 = h(Xy) — F(Xn, Zpt1)-

The €, can be seen as random errors made when evaluating h(X,). Let us
write Yy, 41 for the value of F(X,, Z,+1). X, and Y,, are random vectors in
R™. Let F,, = 0{ Xk, Yi, k < n} be the o-algebra generated by Xy, Yj
fork < n. Clearly we can write

B[V, 11/ Fn] = h(X,).
The following theorem is proved in [10] or [9].

Theorem 1. Under the following hypothesis

(H1) " €eR™, h(p*)=0, VYpeR™ p#p* (n—p*)-h(p) >0, (12)

(Ho9) Zvn =400 and 272 < +00, (13)

(H3) B[l Yot 1P/ Fa] < K(L+ |1 Xal) as., (14)
the sequence of random vectors (Xy)n>0 converges almost surely to p*.

One can find some other convergence hypothesis of the RM algorithms in
[14], [1], [10] or in [11] for a simple presentation of stochastic algorithms.
Some papers are devoted to the convergence properties of these algorithms
see e.g. [5] and [8]. Unfortunately, classical theorems such as the one above
can not be used in the case we are concerned with.

3.2 Application to variance reduction

In our case (see (x)), the mean field A is given by

Wz) =E|(z — 2)G2(Z)e = Z+allel’ || (15)



where Z is dawn from the gaussian law N(0, I;,). By Proposition 2.1, it
exists a unique p* € R™ which makes zero the function h. Now, consider
the following expression of Y, y; :

Y1 = (X, — n+1)G2(ZnJrl)67Xn~Zn+1+%\|XnH27 (16)

where (Z,)n>0 is a sequence of i.i.d. gaussian vectors following the law of
Z. Since X, is Fp-mesurable and Z, is independent of F,, it is easy to
see that

E[Y, 41/ Fn] = B(X2).

Hypothesis (H;) of the theorem above is satisfied by h and hypothesis (Hz)
is a question of trivial choice. On the contrary, hypothesis (Hs) can not be
satisfied. Obviously this fact is due to the exponential form of Y, ;. Hence
the most difficult point to check is that X;, does not tend to infinity. To deal
with this particular point, we use a technique introduced by H.F. Chen in
[8] (see also [7]) using projections to get convergence.

3.3 Truncation method

To describe the method, first fix ' # 22 in R™ and choose a constant
M > 0 as indicated in the appendix. Let (Z,)n>0 be a sequence of indepen-
dent random vectors drawn from the distribution of Z. Let (Uy,),>0 be an
arbitrary deterministic increasing sequence of positive numbers tending to
infinity with Uy > M.

Define for n > 0,

Xp — Y, if || X, — Y, < Ugn)s
Xpp1 = { *n Ynt1Yng1 if | n Y1 Y1l < o(n) (17)
xy, otherwise
n—1
o(n) = Z 1||Xk—7k+1Yk+1||>Ua(k)’ a(0) =0, (18)
k=0
o(n) is the number of projections done after n iterations.
1 . .
. z+ if o(n) is even,
z if o(n) is odd,
with (yn)n>0 a sequence of positive numbers satisfying
Z% =+oo and Z’erb < +o0. (20)

n>0 n>0



Remark 3.1. In our numerical tests we use 7, = ﬁ, a,f > 0. The
problem of the “best choice” of the coefficients a and g is rather delicate.
From a numerical point of view, this choice seems to be linked to the values of
the model parameters. However, we propose in the last section an empirical
and intuitive way of choosing efficiently these coefficients.

Remark 3.2. The constant M above seems to have no significant effect on
the numerical convergence of the algorithm when took a reasonable value. In
our numerical tests M values are in the range [10,100] with no effect on the
convergence properties of the algorithm. At time n, x; may be a function
of the past values of the algorithm. For example a randomly chosen former
points.

The following lemma allows us to apply the result of Chen to our settings.

Lemma 1. 1) It exists a twice continuously differentiable function
v : R™ — R, such that :
v(z*) =0, lim),|e v(T) = +00

and¥ z #z* wv(z) >0, h(z)  Vo(z)>0.

2) Let G satisfies B(|G(Z)|*) < +oo with p > 1, then one can choose the
sequence Uy, such that

lim >y B[ Vi |/ Fk] < +00  a.s.

n—-+0o
k<n

Proof Let v(x) = ||z — z*||?>. By Propositon 2.1, the function H defined
by

H(z) = B[G*(Z)e~ 7 T3l
is strictly convex and its gradient is given by
h=E[(z — Z2)G2(Z)e 2Tzl
Thus
V u#zyeR" H(y)— H(u) > (y —u) - h(u),
and for y = p* we have
V u#up" H(u)— H(p") < Vo(u) - h(u) .

As V w € R™, H(p*) < H(u), the first part of the lemma is proved.
To prove the last part, first observe that X,, is F,-mesurable and Z,; is
independent of F,,. Then we have

E|[Yns11?/Fa] = 5*(Xn)



with
$*(2) = Bl|lz ~ Z|PG*(Z)e >0 7],
Now write h(z, z) for the value of ||z — Z||2e20Z+#l” v8 > 1 we have
B(h (v, 7)) = Bl — Z|[* e 250240110
— (|| Z||28 @B+ Z=(B+3)all?)
< e*(ﬂ+%)\|$|l2E(HZH2ﬂ e(2ﬂ+1)|lw\|llzll)

= B DI 2880l =5 7 0,y 0))drdByy s ... dBY
R+ x(0,2m)x (0,m)™—2

where Jy(r,Op—1,...,601) = r™ " f(0p_1,...,01) denotes the Jacobian of
the transformation from Cartesian to polar variables. Therefore

, [T :
E(h? (z, Z)) < C1(8, m)e~ B+ Dlzl? / 2B +m—1 (264 1)|[ellr =25 .
0

+o0 ‘ ‘
< Cl(ﬁ,m)e(m;)"wp/ P 2B+m—1 2B+l P+ 1 o
0

+o0 :
— ) (B, m)e~ B+ Dlial+ 28+ 12 el / p26+m=1,-%
0

= Cy(B, m)e B+ DI’ +(28+1)% 2l

Now by the Hoélder inequality, it follows

L 1—L

< C(p, m)eQ@lall”,
where C1(8,m), Cy(8,m) and C(p,m) are three positive constants, and
2
Q(p) is defined by Q(p) := 7'57;2:71:;1/32. Using equations (17-20), we get

1| < max(Up(ny, lz5])) < Un, and  s*(X,) < Ce@WVi,

for n sufficiently large. Finally we conclude the proof by choosing the se-
quence U, such that

Z'y,?beQ(p)Uz < 4 o0 .0
n

Remark 3.3. The sequence U, must increase sufficiently slow to cancel the
explosion behaviour of the algorithm without modifications on it and the

choice of U, is not difficult. In fact Vp > 1 the sequence U,, = \/% Inn +
Up, n > 1 is suitable since Q(]1, +oo[) C]7.5,8.71].



The following theorem is a consequence of the lemma above.

Theorem 2. In the framework of Lemma 1, the algorithm X, defined by
(17-20) converges a.s. to the unique solution of the equation h(xz) = 0,
z € R™ and the number of truncations o(n) is bounded.

Proof  First, set €,41 = h(Xy) —Y,41, n >0 and define the sequence
M, = E?:_ol Yit1€i+1 for n > 1 and My = 0. The sequence (M,)p>1 is a
Fn-martingale and its brackets process is given by

n—1
(M), = ZﬁHE[uemu?/ﬂ]

1=0

n—1 n—1
=Y VB IP/F] = D viallh(X)?
=0 =0

n—1
<Y VP nElYia /)

=0

Using Lemma 1, we have choosen the sequence (U,,) such that

+oo
Jim M < 3Bl F] s
n=

S CZ’)’?LBQ@)UE a.S.
n
< + o0 a.s.,

where C' > 0. Therefore the martingale M,, converges a.s. and in £? (see
[12] or [3]). The Kronecker’s lemma (see for example [15] p.117) implies
that  limry, 1| E?;OI €ir1ll =0 a.s.. Chen, Guo and Gao proved in [7]
that assuming the first part of Lemma I holds, one just need the additional
assumption lim -y, || E?:_Ol €i+1]] = 0 a.s. in order to obtain the conver-
gence of the algorithm. Theorem 2 is then a consequence of their result which
is stated in Theorem 6 (see appendix or [7]).0
In practical situations, one don’t need to know the exact value of the optimal
drift vector p*. As good the convergence of the RM algorithm is towards
©*, as good is the variance reduction obtained. The algorithm above may be
summarize as the following,

(a) First use the Robbins Monro algorithm X, defined by (17-20)

to assess p*,

(b) Then, inject the value of x* in the Monte Carlo method by comp-
uting Vo =~ & 300, g(1*, Zn)-

We call this method : “algorithm1”.



We show in the sequel that it is possible to merge parts (a) and (b) of above,
by computing directly

This last computation simplify “algorithm1”; we denoted it by “algorithm?2”.

4 Law of Large Numbers and Central Limit Theo-
rem

We need the following classical results for the remainder.

Lemma 2. If f is a continuous function from R to R and (Tn)n>0 is a
sequence of real numbers which converges to x, then

%Zf(xk) — f(z), as n — +o0.
k=1

Theorem 3. Let (Mn)nzo be o real, square-integrable martingale which s
adapted to a filtration (F,)n>0 and has an bracket process denoted by ( M ).
Suppose that for a real deterministic sequence (an),>0 increasing to +oo the
following two assumptions apply:

M )y
(M 7, o

(A) - (0> 0);

(B) Lindberg’s condition holds; in order words, for all € > 0,
P
= by Bl 1My — My 1P gas—n ) >evany/Fe-1| = 0.

M, M,
Then: —2 2% 0 and —~ % N(0,0?).
Qn Qn

Remark 4.1. The proof of the lemma is rather trivial. The theorem is proved
in various books which give it its due importance (see [12] for example). The

M,
proof of the result — %5 0 which represents the “Law of Large Numbers”

Gp,
part of this theorem lies only on assumption (A). The Lindberg’s condition
is essential to prove the last part of this theorem.

We will also use the following lemma.

Lemma 3. If E(|G(Z)]) < oo, with a > 1 and p > 1, then s, is a contin-
uous function from R to R.

10



Proof By Girsanov theorem it is rather trivial to see that
s, (1) = E(GP (Z)e~ @~ Dr-Z+250 lull?y
Suppose that ||u]| < K where K is a non negative constant. With the
notation hy(u,z) = Gp(z)e_(p_l)“'z"'z%l”“”Z, we have
K2
|y, 2)| < ez PGP ()X P DI

Using Holder’s inequality, it follows

1-1
/|Gp(z)|eK<p—1>|z||e—é|z||2dz < (/B:—’i(p—1>||z|e—§||z|2dz> </|Gap(z)|
1

a
" e—%lzll%zz)

Since E(|GP*(Z)|) < oo, the Lebesgue theorem applies and the function s,
is continuous. UJ

Theorems 4 and 5 below may be seen as our main results. They lead to an
effective variance reduction algorithm.

Theorem 4. Assume that the Robbins-Monro algorithm (X,),>0 defined by
(17-20) converges a.s. to p* and that for p > 4, E(|G?(Z)|) < oo, with
a>1.If Xy=2%3N 9(X, 1,2,) then :

(1) Xy == Wy

(2) VNXny-V) LN N(0,02%), with 0? = Var(g(u*, Z)).

Remark 4.2. We amphasize that 02 = Var(g(u*, Z)) is the smallest vari-
ance one could expect with this “finite-dimensional” importance sampling
method. As usual, for practical situations we need an asymptotical estima-
tion of . This is the fact of the theorem below.

Theorem 5. In the framework of the theorem above, if we write 5% for the
value of & Egil P (Xn_1,Z,) — 7?\,, then :
(1) oy = 0%

VN(Xn - V)
ON

(2) £ N(0,1)

Remark 4.3. The payoff of most of products traded on financial markets
satisfies the integrability condition of the theorems.

11



Proof of Theorem 4. Let us write M for the value of Eﬁ:l (9(Xn-1,Zn)—
Vg). Since X,,_1 is F,_1 mesurable and Z,, is independent of F,,_1, by the
virtue of (4-5), we have

]E(g(Xn—laZn)/fn—l) = VO

and (My)n>o is a martingale. Throughout the proof of Lemma 3 and the
definition of X, it appears that (My)y>o is powered-p integrable, with
p > 4. It’s bracket process is given by

N

<M>N = ZE<|9(X7117 Zn) - I70|2/‘7:'n1>

n=1

[
M=

E(gQ(Xn_l, Zn)/fn_1> — NVZ

n=1

so(Xp_1) — NVZ  with  sy(z) = E(¢%(z, Z)).

[
WE

n=1

By Lemma 3 so(x) is continuous and by Lemma 2

N
1 .S. ES
N E SQ(Xn_l) i) SQ(,U )
n=1

Therefore

<M>N % 2

N where 02 = sy(u*) — V& = Var(g(p*, Z)).

M
According to the part (A) of Theorem 3, we have TN a]'\‘:' 0 which is

equivalent to the part (1) of the theorem.
It remains to prove the Lindberg’s condition in order to get the second part
of the theorem. First we observe that

E|l9(Xn-1,Zn) = Vo|*/Fr-1| = Elg" (Xn-1, Zn) [ Fn1] - 3V3

— AVoElg* (Xn—1, Zy) [ Fn1]
+ 6VEE[g* (Xn1, Zn) [ Fn-1]

= s54(Xp_1) — 3Vt — 4Vps3(X,_1)
+ 6VZs2(Xpo1).

Using again Lemma & and Lemma 2 we have

a.s

N
1 ~ )
NE :E|:|9(Xn—lazn)_v()|4/fn—1 — L
n=1

12



where L < +00 a.s. is a positive random variable. Now for A > 0 define

It is easily seen that

S%é[ X1, Zn) = Vol Fu 1]

so that

limsup Fy(A) < A72L  a.s.
N—+o00

Hence taking Ay = ev/N with € > 0, we have

limsup Fiy (eVN) =0 a.s.
N —+o0

and the Lindberg’s condition holds. Finaly, Theorem 3. shows that

% 5N (0.0%) with o® = Var(g(u, 2))

which is the desired conclusion.[]

Proof of Theorem 5. To prove the first part of the theorem, we only need
to show that

N N
1 1
v 2 s2(Xno1) ~ = D 0 (Xno1,Zn), N ~ +oo.

n=1 n=1

In this scope, let us denote My = 22;1 (gQ(an, Zyn) — SQ(XTLl). Obvi-

ously E(9? (Xpn—1,Zn)/Fn-1) = s2(Xn_1) a.s. so that My is a martingale.
M p is squared-integrable and has the following bracket process

L N
(3 = ZE((f(an,z ) = so(X 1))/ F 1>
n=1
N
= s4(Xn_1) — s5(Xn_1) ).
;;(14 1 2 1>

Again by combining Lemma 3 and Lemma 2 it appears that

WA 25 (0 = s30) = Var(g (', 2) > 0.

13



Then Theorem & shows once again that

N
1 .S,
N Zl <92(Xn17 Zn) - SZ(Xn1)> % 0.

The second part of the theorem is a classical result of Probability theory.[]

Remark 4.4. Exactly as in the ¢.¢.d. case, Theorem 4. and Theorem 5.
show that X y = % 22;1 9(Xn—1, Zy,) converges almost surely to the desired

N 1
expectation Vp = E[G(Z)] and that the rate of convergence is —.

VN

5 Examples and numerical tests

As noticed in Remark 3.1 the “best” choice of the steps sequence (v,),>0 in
the algorithm (17-20) is rather delicate. From a theoretical point of view
it is known (see [9] or [14]) that the best sequence must decrease towards
0 as % In our numerical tests we use v, = ﬁ, a,B8 > 0. We observe
that the choice of 8 has no significant effect on the numerical convergence
of the algorithm. The most difficult point to check for numerical purposes is
therefore to find the values of the parameter @ which lead to good conver-
gence properties. We have represented the ratio of the classical Monte Carlo
estimator’s standard deviation to the one of the Monte Carlo method with
the optimal drift computed by the method we proposed. We denoted this
ratio by “StdRatio”. Figure 1 shows the StdRatio obtained for a european

7 |

65 B

StdRatio
IS
o
I

Alpha

Figure 1: Variance reduction for a euro-

pean call with “algorithm1”

StdRatio

0 L I I L L L L L L L
0 10 20 30 0 50 60 70 80 9 100

Alpha

Figure 2: Variance reduction for a euro-

pean put with “algorithm1”

call when « varies. This option is out-of-the money and its parameters are
So =50, K =80, 7 =0.05, T = 1.0, and o = 0.3. Figure 2 represents the
StdRatio for a european put that is out of-the-money. In this case we use
So =50, K =40, r =0.05, T = 1.0, 0 = 0.1. In Figure 3 and Figure 4, we
plot the StdRatio in a multidimensional case, namely the arithmetic asian
put’s case. We use n = 40 discretization steps for the left panel and n = 20
for the right one. The left panel represents this StdRatio when the put is out

14



StdRatio
Std Ratio

22 L L L L L L I
0 5 10 0 1 2 3 4 5

Alpha Alpha
Figure 3: Variance reduction for an out of Figure 4: Variance reduction for an at the

the money asian put -n=40- with “algorithm1” money asian put -n=20- with “algorithm1”

of the money with Sy = 50, K = 45, r = 0.05, 7' = 1.0, and ¢ = 0.1. The
right one shows the StdRatio for the same put, but at the money. Figure 5

StdRatio
StdRatio

algo2_MC_1000000
algo1_MC 90000 RM_10000

algol_MC_95000_RM_5000 L
~~== algol_MC_97500_RM_2500 i 3

0 10 20 30 40 50 60 70 80 90 100
Alpha
Figure 5: Variance reduction for a euro- Figure 6: Variance reduction for a at-the-
pean basket put with “algorithm1” money european basket call

displays the StdRatio variations with respect to «, for a out of the money
european put on a basket of n = 10 assets. We have used in this case the
parameters K = 30, r =0.05, So =50, 0 =0.1, and 7' = 1.

We begin the presentation of the results obtained by a one dimensional op-
tion pricing problem. Tables 4.1 and 4.2 present these results for european
standard call and put. Of course the pricing of these products is available
in closed form, but it seems natural for us to start the numerical tests with
simple examples in order to measure both gain on variance and accuracy on
prices computation.

Figure 6 deals with some comparisons between “algorithm1” and “algorithm?2”.
All the results are based on a total of 1,000,000 runs. algo2 MC 1000000
illustrate an adaptative use of the RM algorithm in a Monte Carlo compu-
tation and presents the “StdRatio” reached -“algorithm?2”.

algol MC 90000 _RM 10000 , algol MC 95000 _RM 5000, and
algol MC 97500 RM 2500 provides some aspects of the use of “algo-
rithm1”. In such cases, we use respectively 90,000, 95,000, and 97,500
simulated paths in the Monte Carlo computations, when 10,000, 5,000,
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and 2,500 are respectively the number of RM algorithm’s iterations. From
this example, it seems that 2,500 runs are not sufficient to guarantee a good
convergence of the RM algorithm. In this particular case, the sensitivity of
the algorithm with respect to « -Alpha in the figure- is higher than in the
others.

Table 4.1
Estimated Variance Reduction Ratio for the European Put using “algorithm1”
Parameters Importance sampling
Q@ B o strike RMPrice BSPrice CPrice StdRatio
5. 1. 03 30 0.13 0.13 0.13 6.2
0.1 40 1.28 1.28 1.27 3.3
0.01 50 4.68 4.68 4.70 2.5
0.001 60 10.54 10.53 10.58 2.2
100. 0.1 40 0.0042 0.0042 0.0040 18.7
1. 50 0.97 0.96 0.96 3.1
0.1 60 7.31 7.31 7.33 2.5

All the results are based on a total of 50,000 runs. 40,000 runs for the Monte Carlo method and
10,000 runs for the RM algorithm. The model parameters are: So = 50, r = 0.05, and 7" = 1.0.

Tableau 4.2
Estimated Variance Reduction Ratio for the European Call using “algorithm1”
Parameters Importance sampling
« 8 o strike RMPrice BSPrice CPrice StdRatio
0.01 1. 03 30 21.63 21.60 21.52 4.1
0.1 50 7.12 7.12 7.01 3.3
0.5 60 3.45 3.45 3.43 3.9
0.1 80 0.67 0.67 0.68 6.8
0.0006 0.1 30 21.47 21.46 21.52 10.6
0.01 50 3.41 3.40 3.38 2.8
0.07 60 0.23 0.23 0.23 5.6
5. 70 0.004 0.004 0.004 25.

All the results are based on a total of 50,000 runs. 40,000 runs for the Monte Carlo method and
10,000 runs for the RM algorithm. The model parameters are So = 50, » = 0.05, and 7" = 1.0.

“RMPrice”, “CPrice” and “BSPrice” denote respectively the Monte Carlo es-
timated price including our method (Monte Carlo + Importance sampling +
RM algorithm), the classical Monte Carlo price and the Black and Scholes
exact price of the option. We recall that “StdRatio” is the ratio of the classi-
cal Monte Carlo estimator standard deviation to the one of the Monte Carlo
using the optimal drift computed by our method.
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On these simple examples the standard deviation error reduction is very sig-
nificant. For a put and a call that are out of the money, the gain factor
(StdRatio) could be high. Furthermore the prices computed by the Monte
Carlo method including the variance reduction method we propose are very
accurate. Table 4.3 and 4.4 show the variance reduction obtained with our
method in the case of european basket call and put. The results are inter-
esting, since the reduction of confidence interval length is about a factor of
at least 2. This gain factor may be “large” for options that are out of the
money.

Tableau 4.3

Estimated Variance Reduction Ratio for the European

basket call using “algorithm?2”

Parameters Importance Sampling

n « B o strike RMPrice StdRatio
10 0.01 1. 041 40 13.41 3.3
50 7.42 3.4

60 3.76 3.8

0.001 0.2 40 17.86 4.2
50 13.36 4.3

60 10.03 4.5

20 0.001 0.1 40 15.14 3.6
0.01 50 9.89 3.7
60 6.33 4.1

0.001 0.2 40 21.80 5.4
50 18.06 5.4

60 15.12 5.6

We use 1,000,000 simulated paths for n=10 and 2,000,000 paths for n=20.
The option parameters are So = 50, » = 0.05, and 7" = 1.0,.

The numerical cost of this method is equivalent to the additional time spent
in generating the gaussian paths that are used to compute the optimal drift.
In all our tests this extra time does not exceed 20% of the CPU time spent in
the classical Monte Carlo computation. In fact we use at most 20% gaussian
paths in addition to those simulated for the standard Monte Carlo compu-
tation. The variance is reduced by a factor of at least 4. This reduction
has reached a factor of 625 in our examples. Obviously, this gain justify the
extra effort of computation. In table 4.4 we use respectively 900,000 and
100,000 simulation paths for Monte Carlo computation and Robbins Monro
algorithm. In this particular case only 10% additional simulation effort leads
to a variance reduction with a factor of at least 4.
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Tableau 4.4

Estimated Variance Reduction Ratio for the European

Basket Put using “algorithm1”

Parameters Importance sampling

n « B8 o strike RMPrice StdRatio
10 100 1. 0.1 20 0.003 14.9
4. 30 0.18 5.8
0.1 40 1.47 3.2
0.01 50 5.00 2.5
0.01 60 10.86 2.2
20 5. 1. 20 0.074 7.1
0.5 30 0.84 3.7
0.05 40 3.19 2.7
0.01 50 7.48 2.3
0.01 60 13.43 2.1

10 1. 1. 02 20 0.52 4.0
0.05 30 2.39 2.8
0.01 40 5.93 2.3
0.01 50 10.95 2.1
0.002 60 17.14 2.0

The number of assets involved is n. All the results use a total of 1,000,000
gaussian paths including 100,000 paths for the drift computation. The model
parameters are So = 50, r = 0.05, and 7" = 1.0. Volatility is flat at 10% or
20%.

Table 4.5 displays values of an arithmetic asian put. As one can notice, the
variance gain is greater than a factor of 4. It is well known that put options
variance is comparatively lower than call one since put payoff is bounded.
Then a variance reduction with a factor of 4 is not negligible in the case fo
a put.

The next example we considered deals with the Heston (1993) stochastic
volatility model given by,

dS; = rSidt + /v, S dW},
dv, = k(0 — v)dt + o\/OdW2,

where W' and W? are two correlated brownian motions with (W, W?2), = pt,
and k, 0 and o are constants. Discretizing with an Fuler scheme leads to

STH—I = STi(l + rAt++\/o;AtZ;),
vryy, = vy + k(0 — vn) At + o/ Ator, (pZ; + /1 — p? Zingi),

Where (Z;);>1 is a sequence of independent gaussian variables with mean 0
and variance 1.
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Tableau 4.5

Estimated Variance Reduction Ratio for the Asian Put

using “algorithm1”

Parameters Importance Sampling

n « 8 o strike RMPrice StdRatio
20 5 1. 0.1 45 0.013 5.8
1 50 0.63 3.1
0.05 55 3.68 2.5

20 6 1. 03 40 0.27 4.8
0.5 50 2.87 2.6
0.05 60 9.30 2.2
40 5 1. 0.1 45 0.011 4.3
1 50 0.62 3.0
0.05 55 3.70 24
40 45 1. 03 40 0.25 44
1. o0 2.83 2.6
0.05 60 9.29 2.2

We use 1,000,000 paths for the Monte Carlo computation and 200,000
for the optimal drift computation. The option parameters value are
So =50, r=0.05, and T = 1.0,.

Tableau 4.6

Estimated Variance Reduction Ratio for the European call

in the Heston stochastic volatility model with “algorithm2”.

Parameters Importance sampling

v Q@ B strike ClosPR  RMPrice StdRatio

0.01 0.001 1. 45 7.27 7.25 1.6
0.01 50 3.33 3.33 24
0.1 55 1.13 1.15 2.9
1.0 60 0.32 0.33 3.4

0.04 0.001 45 7.67 7.60 1.9
0.005 50 4.27 4.25 2.5
0.2 55 2.11 2.10 3.1
0.04 60 0.95 0.95 3.4

The number of discretization steps is n=100. All the results use a total of 2,000,000
gaussian paths. The model parameters are So = 50, r = 0.05, k£ = 2.0, § = 0.01, p =
0.5, T'=1.0 and the volatility of the volatility is o = 0.1.

Using this model, Heston has given a closed form solution to the pricing of a
european call option by the caracteristic functions technique. We implement
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this closed form solution and in table 4.6, “ClosPR” denotes the price of the
call computed with this solution. Table 4.6 dispalys also the pricing results
obtained with our method (“algorithm2”). It appears that our method applies
again in this case. One notice that notice that variance reduction can reach
a factor of 12. Our last examples deal with a stochastic volatility model,
namely the Hull-White stochastic volatility model (1987),

dSy = rSydt + /o[ S dW,
do; = voudt + Qatthz,

where W' and W? are two correlated brownian motions with (W', W?2), = pt.
In this model, Sy has a finite mean but an infinite variance. Using a linear

discretization of S; by an FEuler scheme, the variance is finite but increases

very quickly with the number of steps. To reduce this effect, we need to

truncate this variance. As in [6] we consider the following discretisation of

the model

STiJrl = STi(l + rAt +\/0;AtZ;),
0i41 = min{c, Uz.e(V—%Cz)AHC\/A_t(PZH- 1—P2Zm+z‘)}7

where c¢ is a non-negative constant. The truncation has little impact on the
mean but makes estimated variances much more stable.

Through our simulation results we take ¢ =2, v =0, r = 0.05, Sy = 50,
T=1,p=05and /oy = 0.1. The constant volatility case corresponds
to ¢ = 0 . The implementation of the method is not more difficult than it
was in the Black and Scholes model. Again we plot the ratio of the classical
Monte Carlo method’s standard deviation error to that of Monte Carlo using
our variance reduction method with respect to various a using “algorithm1”.
The payoff we consider is again that of a put option on the arithmetic mean

StdRatio
StdRatio

19 I L
0 5 10

Alpha Alpha

Figure 7: Out of the money asian put. Figure 8: At the money asian put. Hull-
Hull-White stochastic volatility model. { = White stochastic volatility model. (¢ =
0.5, K =45 0.5, K =50
m
N 1
§==3 s
m“
=1
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Results are based on a total of 1,000,000 paths for the Monte Carlo compu-
tation and a total of 200,000 for the optimal drift computation when using
“algortihm1”. Again, we can see through these examples that the confidence
interval length reduction is greater than a factor of 2.

2F E 205 E
19 H 3 2 |
18 3 195 |
o 17 | o 19 |
141 2 185 -
15 3
14 E 18 E
13 - 175 4
12 B 170 3
o 0‘1 0‘2 0‘3 0‘4 0‘5 o é 1‘0
Alpha Alpha
Figure 9: Out of the money asian put. Figure 10: At the money asian put.
Hull-White stochastic volatility model. { = Hull-White stochastic volatility model. { =
1, K =45 1, K =50

6 Concluding remarks

The method we propose in this paper is very general. It can be used as soon
as a Monte Carlo method is feasible and it is very easy to implement.

It does not require regularity conditions on the payoff function. It could
work both for path-dependent and path-independent products. In high di-
mensional problems, instead of choosing the steps sequence parameters ar-
bitrarily, one can use the same simulation paths to compute both prices and
variances with respect to these parameters. The price which corresponds
to the smallest variance should give the best Monte Carlo estimation of the
real price needed. To the best of our knowledge, the use of Robbins Monro
algorithms in a Monte Carlo procedure in order to reduce variance is new.
The method proposed here could naturally be improved. For example, in or-
der to get more stability an efficiency of the algorithm, one may use random
vector fields which has lower variance. If F; and F5 are two random vector
fields -and h the mean field- in the algorithm (17-20) such that:

E(Fl (Xna Zn-l-l)/fn) = E(F2 (Xna Zn-l-l)/j:n) = h(Xn)a

then the one which has the lowest conditional variance seems to be the best.
To end these remarks, we make some simple and useful observations : in a
price computation using Monte Carlo method, one might guess whether the
Monte Carlo variance would be large or not. When the variance is likely to
take large values, the parameter a should be small (ex. a ~ 0.001 or 0.01 ).
At the opposite, if the variance is likely to be small, « should be relatively
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large (about 10 or 100).
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7 Appendix

We briefly present here the Chen’s projection method. For more details, one
can see [7].
7.1 The hypothesis

Let A : R™ — R be an unknown function. We suppose that h is continuous
and that h(z*) = 0. Let (X,), be a sequence for approximating z* and
which is based on some measurements (Y,,), of a random observation. At
time (n+1), the regression function h is observed at X,, with a random error
€n+1 given by

Y1 =h(Xy) +enq1, n>0. (21)
The authors in |7] make the following hypothesis
(A) lm || 3275 el =0 pus.,
(B) 3 v:R™ - R twice continuously differentiable such that
o(x*) =0, limyz|oe0 v(z) = +00

and wv(z) >0, h(z)-Vo(z) >0, V z#z*

Remark 7.1. v is an arbitrary Lyapounov function satisfying hypothesis
(B). In our case, this function was given by v(z) = ||z — z*||%.

Remark 7.2. Condition (A) is satisfied by a large class of random vector
such as ARMA processes. In addition, by Kronecker’s lemma if Y ; %Gi
converges a.s. then condition (A) holds.

7.2 “Chen’s Projection” (see [7])

To make use of their method, the authors in [7] choose ! # 2? in R™ and
fix M > 0 such that :

max(v(z'),v(z?)) < min(M,inf(v(z); ||z| > M)). (22)

Afterwards, they consider an increasing sequence (U, ), of positive numbers
tending to infinity with Uy > M + 8. Then they define for n =1,2,...

. (23)

X, = Xn — %Yn+1 if ||Xn - %Yn+1” < Ua(n)u
i otherwise,
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where

—1
o(n) = ZZO 1||Xk—%Yk+1H>Ua(k)’ o(1) =0,

*
n .
2?2 otherwise

B {xl if o(n) is even,
Remark 7.3. Indeed, it is possible to find the constant M such that (22)

holds, since v(z) = 400  when ||z|| = +o0.
This technique of projection makes the mean field A much more stable with-

out modifying it.
The following theorem is their main result and is very powerfull.

Theorem 6. Under hypothesis (A) and (B), the RM algorithm defined by (23)

converges a.s. to * and the number of truncations o(n) is bounded.

Remark 7.4. This result is proved in [7]. It is important to emphasize
that there is no a priori boundedness assumption imposed on X,, since the
sequence (Up)n>o is time varying and allowed to increase to infinity.
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