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Abstract. We consider a Brownian snake (Ws, s ≥ 0) with underlying process a reflected
Brownian motion in a bounded domain D. We construct a continuous additive functional
(Ls, s ≥ 0) of the Brownian snake which counts the time spent by the end points Ŵs of the
Brownian snake paths on ∂D. The random measure Z =

∫

δŴs

dLs is supported by ∂D.

Then we represent the solution v of ∆u = 4u2 in D with weak Neumann boundary condition
ϕ ≥ 0 by using exponential moment of (Z, ϕ) under the excursion measure of the Brownian
snake. We then derive an integral equation for v. For small ϕ it is then possible to describe
negative solution of ∆u = 4u2 in D with weak Neumann boundary condition ϕ. We also
consider the properties of Z. In particular we show it is absolutely continuous with respect
to the surface measure on ∂D for dimension 2 and 3. Let us note that Z is more regular
than the exit measure of the Brownian snake out of D.

1. Introduction

In this paper we give a probabilistic representation formula for the nonnegative solution
of the non linear Neumann problem in a bounded smooth domain D:

∆u = 4u2 in D,

∂u

∂n
+ κu = ϕ on ∂D,

(1)

where κ is a nonnegative continuous function on ∂D, ∂u/∂n(x) is the outward normal deriv-
ative of u at x ∈ ∂D, and ϕ is a nonnegative measurable function defined on ∂D.

The Dirichlet problem associated to the equation ∆u = 4u2 has led to a considerable
amount of work by many authors and the Brownian snake introduced by Le Gall in [13] has
proved to be a powerful tool for this study. The Brownian snake is a path-valued Markov
process which, loosely speaking, represents a cloud of branching Brownian particles. The
solution of the Dirichlet problem associated to ∆u = 4u2 may be represented in terms of the
exit measure of the Brownian snake: a measure supported by the particles when they leave
D for the first time.

As for the Dirichlet problem associated to ∆u = 4u2 (see [13]), we will prove that solutions
of (1) can be represented using a random measure built from the Brownian snake with
underlying motion a reflected Brownian motion in D. In [1], the author considered for
underlying motion of the Brownian snake a reflected Brownian motion in D killed when it
reaches a fixed subset F of ∂D. Then, using a random measure built from this Brownian
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snake, the author represented nonnegative solution of ∆u = 4u2 with mixed Neumann-
Dirichlet boundary conditions:







∂u

∂n
= f on ∂D\F

u = g on F.

However, for technical reasons, it was not possible to consider the case F = ∅ of Neumann’s
boundary conditions.

Let us now present our results. We consider a Brownian snake (Ws, s ≥ 0) with underlying
process a reflected Brownian motion in D (see [10] for a definition and properties of the
Brownian snake). Let us recall that Ws is a path stopped at its lifetime ζs, and that for a
fixed s, it is distributed according to a reflected Brownian motion in D. We define in section
3 the following continuous additive functional (CAF) of the Brownian snake:

Lε
s =

∫ s

0

1

ε
1{Ŵu∈Dε} du,

where Ŵs = Ws(ζs) is the end of the path Ws and Dε is the ε-neighborhood of ∂D in D̄.
Intuitively, as ε ↓ 0, dLε

s converges to, say dLs, the infinitesimal increment of the local time
of the path Ws on ∂D at time ζs. In particular, the CAF L increases at times s such that
Ŵs ∈ ∂D. See lemma 3.1 for the precise statement.

Then we define the random measure Z by the formula

Z(dy) =
1

2

∫ ∞

0
δŴs

(dy) dLs,

where δa is the Dirac mass at point a. In particular the support of Z is a subset of ∂D.
Under the excursion measure, Nx, of the Brownian snake started at point x ∈ D̄, Z is finite,
but its total mass is not integrable under Nx. We prove in proposition 6.3 that the function

v(x) = Nx

[

1 − e−(Z,ϕ)
]

,

where (Z, ϕ) =
∫

ϕ(y) Z(dy) and ϕ ≥ 0, is a nonnegative solution of (1) with κ = 0.
To prove this result and study v, it is necessary to introduce a family of measures Zθ

which increases to Z as θ decreases to 0, and which have an integrable total mass under Nx.
The idea is to kill the underlying reflected Brownian motion (Bt, t ≥ 0) at time τ(θ), where
(τ(θ), θ > 0) is a family of random variables increasing to +∞ as θ decreases to 0. The
random variables τ(θ) are independent of B and exponential with parameter θ. Let R be the
right continuous inverse of τ(·). R is build in such a way that it is a Markov process. Then
we may consider the Brownian snake (Ws, Rs) associated to the spatial motion (B, R). Then
we consider formally the measure

Zθ(dy) =
1

2

∫ ∞

0
δŴs

(dy)1{θ≤Rs(ζs)} dLs.

The precise definition is given by formula (5). Then it is easier to study the function

vθ(x) = Nx

[

1 − e−(Zθ,ϕ)
]

,

and deduce the properties of v since vθ increases to v as θ decreases to 0.
In particular, using the special Markov property introduced by Le Gall in [12], we prove

in section 4, proposition 4.1, that v ∈ C2(D) and solves

∆v = 4v2 in D.
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Section 5 is devoted to the proof of proposition 5.7, which states that vθ is a weak solution
of

∆u − 2θu = 4u2 in D,
∂u

∂n
= ϕ on ∂D.

By letting θ decreases to 0, we get in section 6, proposition 6.3, that v is a weak solution of
(1) with κ = 0.

Let l be the local time of B on ∂D. By considering a reflected Brownian motion killed

when the continuous additive functional
1

2

∫ t

0
κ(Bu) dlu reaches the value of an independent

exponential random variable of parameter 1, instead of the initial reflected Brownian motion,
the previous results can be extended to the general case κ continuous and nonnegative.

The next sections deal with the particular case κ = 0. More precisely, we prove in section
7, lemma 7.4, that a bounded function u is a weak nonnegative solution of (1) (with κ = 0),
if and only if it solves the two integral equations

4

∫

D
u(y)2 dy =

∫

∂D
ϕ(y) σ(dy),

where σ is the surface measure on ∂D, and

u(x) + 2

∫

D
g(x, y)u(y)2 dy − aD

∫

D
u(y) dy =

1

2

∫

∂D
g(x, y)ϕ(y) σ(dy),

where a−1
D =

∫

D dy, and g(x, y) is the green function of the reflected Brownian motion:

g(x, y) =

∫ +∞

0
[pt(x, y) − aD] dt,

with pt(x, y) the density transition kernel of the reflected Brownian motion. Furthermore,
there is a unique nonnegative weak solution of (1) (with κ = 0), thanks to corollary 7.5.
Notice however, there might exist other weak solutions to (1), for example negative solutions
as stated in proposition 7.2.2.

In section 8, we consider the properties of the measure Z. In particular, we prove in
proposition 8.4 that this measure is absolutely continuous with respect to the surface measure
on ∂D if the dimension of the space is 2 or 3. In particular Z is more regular than the so-called
exit measure which is singular for d ≥ 3 (see [2]).

Eventually, in section 9 we recall some useful facts on reflected Brownian motion and on
probabilistic representation of linear partial differential equations. This section also includes
the proof of the convergence of the approximating scheme of the CAF L.

2. Notations

Let D be a bounded domain (connected open subset of R
d) with C3 boundary. Let D̄ be

the closure of D.
First we consider a reflected Brownian motion B in D̄. For every x0 ∈ D̄, we denote by

Px0 its law when starting at point x0 at time 0. Some facts on this process are recalled in
the appendix.

Let us now construct a process that allow us to stop the paths according to exponential
independent times of parameter θ, which must increase to +∞ as θ decreases to 0. We first
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consider a Poisson measure N on R+×R+ with intensity dx dt, independent of B. We denote
by (xi, ti)i∈I the atoms of this measure and we set

R(t) = inf{xi; ti ≤ t},
with the usual convention inf ∅ = +∞.

We set R̄+ = [0, +∞) ∪ {+∞}. The path (R(t), t ≥ 0) is a càdlàg decreasing R̄+-valued
process starting from +∞. We have, for every t ≥ 0 and every θ ≥ 0,

P(R(t) > θ) = P(N ([0, θ] × [0, t]) = 0) = e−θt .

So, for every t, R(t) is distributed as an exponential random variable of parameter t. Notice
that τ(θ) = inf{t ≥ 0; R(t) > θ} is distributed as an exponential random variable with
parameter θ. And the family of random variables (τ(θ), θ > 0) increases as θ decreases to 0.

Moreover, we have, for every 0 ≤ s < t,

R(t) = min
{

R(s), inf{xi; s < ti ≤ t}
} (d)

= R(s) ∧ R̃(t − s),(2)

where R̃ is an independent copy of R. Consequently, R is an homogeneous Markov process.
Finally, let τ be an exponential random variable of parameter 1 independent of B and R.

We denote by l the local time of B on ∂D and we set

(κ · l)s =

∫ s

0
κ(Bs)dls.

Then, the process (Θt, t ≥ 0) defined by

Θt =
(

Bt, R(t),1{ 1
2
(κ·l)t≤τ}, (κ · l)t

)

is an homogeneous E = R
d × R̄+ × {0, 1} × R+-valued Markov process. Let Px̃0 denote its

law, when started at x̃0 ∈ E at time 0.
Let ‖ ‖ be the Euclidean norm on R

d. For every r, r′ ∈ R̄+ we set

d̄(r, r′) =
∣

∣arctan r − arctan r′
∣

∣

with the convention arctan(+∞) = π
2 . We denote by δ(j, j′) the discrete distance on {0, 1}.

Eventually, for x̃ = (x, r, j, k) and ỹ = (y, r′, j′, k′) in E, we set

dE(x̃, ỹ) = ‖x − y‖ + d̄(r, r′) + δ(j, j′) + |k − k′|.
dE is a distance on E and (E, dE) is a Polish space.

We now describe the Brownian snake with underlying motion Θ (see [4]). The spatial
motion will correspond to the underlying reflected Brownian motion. The other three com-
ponents are only used to kill the reflected paths at nice random times.

A killed path in E is a càdlàg E-valued function w̃ = (w̃(u), u ∈ [0, ζ)) where ζ is called
the lifetime of w̃. We will denote w̃(u) = (W (u), R(u), J(u), K(u)) for u ∈ [0, ζ), and we
assume that W and K are continuous. Let W be the set of killed paths in E. For x̃0 =
(x0, r0, j0, k0) ∈ E, let Wx̃0 be the set of killed paths starting at point x̃0. For w̃ ∈ Wx̃0 , we

set the end point of the path w̃: (Ŵ , R̂, Ĵ , K̂) = w̃(ζ−) if the limit exists, ∂ otherwise where
∂ is an isolated cemetery point added to E.

For w̃ ∈ W, we define the exit time of an open set O ⊂ R
d by

τO(w̃) = inf{u ≥ 0, W (u) 6∈ O},
with the usual convention inf ∅ = +∞. Notice we just consider the spatial motion W to
define the exit time.
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For t ≥ 0 let d̄t (resp. δt) be the Skorokhod distance on the space D([0, t], R̄+) (resp.
D([0, t], {0, 1})) of R̄+-valued (resp. {0, 1}-valued) càdlàg functions defined on [0, t]. Then,
for w̃ and w̃′ in W, we set

d(w̃, w̃′) = dE(w(0), w′(0)) + |ζ − ζ ′| + sup
0≤t<(ζ∧ζ′)

(

∥

∥W (t) − W ′(t)
∥

∥ +
∣

∣K(t) − K ′(t)
∣

∣

)

+

∫ ζ∧ζ′

0

(

d̄t(R≤t, R
′
≤t) ∧ 1 + δt(J≤t, J

′
≤t) ∧ 1

)

dt,

where R≤t (resp. J≤t) for instance stands for the restriction of R (resp. J) to [0, t]. It is easy
to check that d is a distance on W and that (W, d) is a Polish space. We agree that very
point x̃ ∈ E can be considered as a trivial killed path with lifetime ζ = 0.

Let
(

W̃s, s ≥ 0
)

=
(

(Ws, Rs, Js, Ks), s ≥ 0
)

be the canonical process on C(R+,Wx̃0),
the set of continuous functions on [0, +∞) into Wx̃0 . We will denote by ζs the lifetime of

W̃s. For w̃ ∈ Wx̃0 , let P∗
w̃ be the probability on C(R+,Wx̃0) under which the canonical

process is a Brownian snake with underlying Markov process Θ starting at w̃ and constant
after σ = inf{s ≥ 0; ζs = 0} (see [4] section 4.1). We denote by Nx̃0 the excursion measure
of the Brownian snake away from the trivial path x̃0 in Wx̃0 and σ = inf{s > 0; ζs = 0}
its duration. Recall that (Ŵs, R̂s, Ĵs, K̂s) denote the end path of W̃s when it exists and ∂
otherwise. Eventually, we write Nx0 = N(x0,+∞,1,0) as well as Wx = W(x,+∞,1,0).

We recall the formula for the first moment of the Brownian snake ([4]).
Let F be a nonnegative measurable function defined on Wx̃0 . We have

Nx̃0

[
∫ σ

0
F (W̃s) ds

]

=

∫ ∞

0
ds Ex̃0 [F (Θ(s))],(3)

where Θ(s) is distributed under Px̃0 as Θ but killed at time s.

3. The additive functional L

Let us consider the continuous additive functional (CAF) of the Brownian snake defined
for α ≥ 0, ε > 0 by: for s ≥ 0,

Lα,ε
s =

∫ s

0

1

ε
1{Ŵu∈Dε} e−αζu du,

where Dε = {x ∈ D; dist (x, ∂D) < ε}, and dist (x, ∂D) denote the Euclidean distance from
x to the boundary of D.

Intuitively, as ε ↓ 0, 1
ε 1{Ŵu∈Dε}du converge to the infinitesimal increment of the local time

on ∂D of Wu at its lifetime. The term e−αζu , with α > 0, is introduced in order to get a CAF
with finite L2 moments.

The next lemma gives the convergence of the CAF Lα,ε. Let x̃0 = (x0, r0, j0, k0) ∈ E such
that x0 ∈ D. Recall that l is the local time of the reflected Brownian motion B on ∂D.

Lemma 3.1. There exists a sequence (εk, k ≥ 0) decreasing to 0 such that Nx̃0-a.e. for all

s ≥ 0, L0,εk
s converge to a limit say Ls as k → ∞. The process (Ls, s ≥ 0) is a continuous

additive functional of the Brownian snake. The Revuz measure of the continuous additive
functional L, µ, defined on Wx̃0 is given by: for any nonnegative measurable function defined
on Wx̃0,

(µ, F ) = Ex̃0

[
∫ ∞

0
F (Θ(u)) dlu

]

,
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where Θ(u) = (Θ(u′), u′ ∈ [0, u)). We also have the formula

Nx̃0

[
∫ σ

0
F (W̃u) dLu

]

= (µ, F ).(4)

The proof of this lemma is postponed to the appendix 9.4.

Remark. For α > 0, the continuous additive functional Lα
s =

∫ s
0 e−αζu dLu, is the limit of

Lα,εk
s for all s ≥ 0 Nx̃0-a.e. (see the proof of the above lemma). Its Revuz measure defined

on Wx̃0 is given by µα(dw̃) = e−αζ µ(dw̃), where ζ is the lifetime of w̃. Notice that µ is not
finite since (µ,1) = +∞, whereas µα is finite (thanks to (23), (24) and (26)), and we have

(µα,1) = Ex0

[
∫ ∞

0
e−αu dlu

]

=

∫ ∞

0
e−αu du

∫

∂D
pu(x0, y) σ(dy),

the α-potential of the local time l, with σ(dx) as the surface measure on ∂D. Following the
terminology of [11], µα is of finite energy and is the measure associated to Lα. From (34), by
letting ε decreases to 0, we get its energy E(µα):

E(µα) =
1

2
Nx̃0

[

(Lα
σ)2

]

= 2Ex0

[
∫ ∞

0
dt e−αt uα(Bt)

2

]

,

where uα(y) = Ey

[
∫ ∞

0
e−αu dlu

]

, for y ∈ D̄, is the α-potential of the local time l.

4. The measures Zκ

It is clear that the measure dL increases only when Ŵu ∈ ∂D. For θ ≥ 0, we define under
Nx̃0 the random measure Zκ

θ on ∂D. Let ϕ be a measurable non negative function defined
on ∂D. We extend ϕ by setting ϕ(∂) = 0. We set

(Zκ
θ , ϕ) =

1

2

∫ σ

0
ϕ(Ŵu)1{R̂u≥θ}1{Ĵu=1}dLu.(5)

Notice that since Ju and Ru are decreasing Nx̃0-a.e., we have, for θ > 0, Zθ = 0 if x̃0 =
(x0, r0, 0, k0) or x̃0 = (x0, 0, j0, k0). Therefore, we will be interested only in the nontrivial
case where x̃0 = (x0, r0, j0, k0) with j0 = 1 and r0 > 0 .

We shall omit the indices κ (resp. θ) in Zκ
θ when κ = 0 (resp. θ = 0). For example, we

write Z for Z0
0 . Notice that (Zθ, ϕ) can be represented as

1

2

∫ σ

0
ϕ(Ŵu)1{R̂u≥θ}dLu, since for

κ = 0, Nx̃0-a.e.
∫ σ
0 1{Ĵu=0}dLu = 0. This is clear (recall x̃0 = (x0, r0, 1, k0), with r0 > 0),

since

Nx̃0

[
∫ σ

0
1{Ĵu=0}dLu

]

= E(x0,r0,1,k0)

[
∫ ∞

0
1{(κ·l)u>2τ}dlu

]

= 0,

for κ = 0 and (κ · l)0 = k0 ≤ 2τ .
For any κ ≥ 0, (Zκ

θ , ϕ) increases to (Zκ, ϕ) as θ decreases to 0 since
∫ σ
0 1{R̂u=0}dLu = 0

Nx̃0-a.e. (recall x̃0 = (x0, r0, 1, k0) with r0 > 0). Therefore for ϕ ≥ 0, we have

(Z, ϕ) ≥ (Zκ, ϕ) ≥ (Zκ
θ , ϕ) ≥ 0.

We consider the function vκ
θ defined on D̄ by:

vκ
θ (x) = Nx[1 − e−(Zκ

θ
,ϕ)].
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We shall omit the indices κ or θ when they are zero. For example, we write

v(x) = Nx[1 − e−(Z,ϕ)].

Since the support of Zκ
θ is a subset of ∂D, we deduce that 1 − e−(Zθ,ϕ) is bounded from

above by 1{RD∩∂D 6=∅}, where RO, with O an open subset of D, is the range of (the spatial

component of ) the Brownian snake in O, that is

RO = {Ws(t ∧ τO(W̃s)), s ≥ 0, t ≥ 0}.
In particular for x ∈ D, vκ

θ (x) is bounded from above by uD(x) = Nx[1{RD∩∂D 6=∅}]. Notice

that uD is the maximal nonnegative solution in D of ∆u = 4u2. This is a consequence of
proposition 4.4 in [11] and the fact that the law of B stopped when it first reaches ∂D is the
law of a Brownian motion stopped when it first reaches ∂D. From the monotone convergence
theorem, we deduce that vκ

θ (x) ↑ vκ(x) as θ ↓ 0 for any x ∈ D.

Proposition 4.1. Let ϕ be a measurable nonnegative function defined on ∂D. The function
vκ(x) = Nx[1 − e−(Zκ,ϕ)] defined on D is a nonnegative solution of ∆u = 4u2 in D.

We first recall some results on exit measures.
Let O be an open subset of D. Let ΩO = O × R̄+ × {0, 1} × R

+ and x̃0 ∈ ΩO. As in [13],

let XΩO(dx̃) be the exit measure of the Brownian snake W̃ out of ΩO under the excursion
measure (notice condition (H) is satisfied here). We also define the σ-field EΩO which is

intuitively generated by the paths W̃s up to their exit time of O. More precisely, let

ηs = inf

{

s′;
∫ s′

0
1{ζu≤τO(W̃u)} du > s

}

.

and define the process W̃ ′
s = W̃ηs under Nx̃0 . The σ-field EΩO is generated by W̃ ′ and the

collection of all Nx̃0-negligible set of C(R+,Wx̃0).

Now we describe the excursion of W̃ outside ΩO. The random open set {s ∈ [0, σ], τO(W̃s) <
ζs} can be written as a countable union of disjoint open intervals (ai, bi), i ∈ I, where I is a
set of indices possibly empty. Because of the property of the Brownian snake, notice that for

s ∈ [ai, bi], τO(W̃s) and W̃s(τO(W̃s)) are constant equal to ti = ζai
and x̃i = ˆ̃W ai

. We then

define the excursion W̃ i outside ΩO as an element of C(R+,Wx̃i
) by

W̃ i
s(t) = W̃(ai+s)∧bi

(t + ti), t ∈ [0, ζi
s = ζ(ai+s)∧bi

− ti).

We recall theorem 2.4 of [13] (see also proposition 7 of [4]):

Theorem 4.2 (Le Gall). Conditionally on EΩO , the point measure
∑

i∈I

δW̃ i is under Nx̃0 a

Poisson measure with intensity
∫

XΩO(dx̃) Nx̃(·).

Proof of proposition 4.1. Let O and Q be open subsets of R
d such that Ō ⊂ Q and Q̄ ⊂ D.

The necessity of Q will appear later. There exists ε0 > 0, such that Q̄ ∩ Dε0 = ∅. Let
x̃0 ∈ ΩO. Let ϕ be a nonnegative continuous function defined on D̄. We set

(Zκ,ε
θ , ϕ) =

1

2

∫ σ

0
ϕ(Ŵu)1{R̂u≥θ}1{Ĵu=1}dL0,ε

u ,

where we recall that dL0,ε
u = 1

ε 1{Ŵu∈Dε} du.
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With obvious notations, we have under Nx̃0 : for any ε ∈ (0, ε0) and θ > 0,

(Zκ,ε
θ , ϕ) =

∑

i∈I

1

2

∫ ∞

0
ϕ(Ŵ i

s)1{R̂i
u≥θ}1{Ĵi

u=1}
1

ε
1{Ŵ i

s∈Dε} ds.

We deduce from theorem 4.2 that for any x̃0 ∈ ΩO,

Nx̃0

(

e−(Zκ,ε
θ , ϕ) |EΩO

)

= exp

[

−
∫

XΩO(dx̃)Nx̃

(

1 − e−(Zκ,ε
θ , ϕ)

)

]

.

We will now prove that the law of Zκ,ε
θ under Nx̃ is the law of 1{r>θ,j=1}Z

κ,ε
θ under Nx,

where x̃ = (x, r, j, k). Notice from the Markov property of Θ that W̃s = (Ws, Rs, Js, Ks)

under N(x,r,j,k) is distributed as W̃ ′
s = (Ws, min{Rs, r}, jJs, k + Ks) under N(x,+∞,1,0) = Nx.

In particular,

Zκ,ε
θ (dy) =

1

2

∫ ∞

0
δŴu

(dy)1{R̂u≥θ}1{Ĵu=1}
1

ε
1{Ŵu∈Dε} du,

under Nx̃ is distributed as Z ′κ,ε
θ under Nx, where,

Z ′κ,ε
θ (dy) =

1

2

∫ ∞

0
δŴ ′

u
(dy)1{R̂′

u≥θ}1{Ĵ ′
u=1}

1

ε
1{Ŵ ′

u∈Dε} du,

with (Ŵ ′
u, R̂′

u, Ĵ ′
u, K̂ ′

u) the end point of the path W̃ ′
u. We have under Nx,

Z ′κ,ε
θ =

1

2

∫ ∞

0
δŴu

1{min(R̂u,r)≥θ}1{jĴu=1}
1

ε
1{Ŵu∈Dε} du = 1{r≥θ,j=1}Z

κ,ε
θ .(6)

We deduce that for x̃ = (x, r, j, k), and either r > 0 or θ > 0, we have

Nx̃

[

1 − e−(Zκ,ε
θ , ϕ)

]

= 1{r≥θ,j=1}Nx

[

1 − e−(Zκ,ε
θ , ϕ)

]

.

Remark 4.3. Notice that 1− exp[−(Zκ,ε
θ , ϕ)] ≤ 1{RQ∩∂Q6=∅}, and Nx̃[1{RQ∩∂Q6=∅}] = uQ(x) is

uniformly bounded on O. In particular we get from dominated convergence as ε ↓ 0 (along
the sequence (εk, k ≥ 1) of lemma 3.1), that

Nx̃

[

1 − e−(Zκ
θ , ϕ)

]

= 1{r≥θ,j=1}Nx

[

1 − e−(Zκ
θ , ϕ)

]

.(7)

Therefore, we get

Nx̃0

(

e−(Zκ,ε
θ , ϕ) |EΩO

)

= exp

[

−
∫

XΩO(dx, dr, dj, dk)1{r≥θ,j=1}Nx

(

1 − e−(Zκ,ε
θ , ϕ)

)

]

.

Arguing as in the above remark, and letting θ decreases to 0, we also have, from dominated
convergence, that

Nx̃0

(

e−(Zκ, ϕ) |EΩO

)

= exp

[

−
∫

XΩO(dx, dr, dj, dk)1{r>0,j=1}Nx

(

1 − e−(Zκ, ϕ)
)

]

.

Using formula (36) from [4], we deduce that

Nx̃0

[
∫

XΩO(dx, dr, dj, dk)(1 − 1{r>0,j=1})

]

= Ex̃0

[

1 − 1{R(T )>0,(κ·l)T≥2τ}
]

,

where T is the exit time for B of O. Recall that x̃0 = (x0, r0, j0, k0) is such that r0 > 0 and
j0 = 1. Since x0 ∈ Ō ⊂ D, we deduce that the local time l and also (κ · l) didn’t increase
before T . Therefore a.s. (κ · l)T = (κ · l)0 = k0 < 2τ , where we use that j0 = 1 for the last
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inequality. Since T is finite a.s., we deduce that R(T ) > 0 a.s. Hence we get that Nx̃0-a.e.
∫

XΩO(dx, dr, dj, dk)(1 − 1{r>0,j=1}) = 0. This implies that for any x0 ∈ O,

Nx̃0

(

e−(Zκ, ϕ) |EΩO

)

= exp

[

−
∫

XO(dx)Nx

(

1 − e−(Zκ, ϕ)
)

]

,

where XO(dx) = XΩO(dx, R̄+, {0, 1}, R+).
From class monotone theorem, we deduce this equality is true for any measurable nonneg-

ative function ϕ defined on ∂D. Set r0 = +∞, j0 = 1 and k0 = 0 and take the expectation

with respect to Nx0 , to deduce that vκ(x0) = Nx0 [1−e−(Zκ, ϕ)] is bounded in O and satisfies:
for any x0 ∈ O,

vκ(x0) = Nx0 [1 − e−(XO, vκ)].

But, under Nx0 , XO is distributed as the exit measure of O of the Brownian snake with
underlying motion a Brownian notion started at x0. Since O is arbitrary (but for Ō ⊂ D),
we deduce from corollary 4.3 of [12] that vκ is a nonnegative solution of ∆u = 4u2 in D.

5. Properties of vκ
θ for θ > 0

Let ϕ be a bounded nonnegative measurable function defined on ∂D. The same ideas as
in [1] lead to the equation satisfied by vκ

θ . We assume in this section that θ > 0.

Proposition 5.1. The function vκ
θ is bounded on D̄.

Proof. By definition, we know that vκ
θ is non negative. To get the upper bound, for every

x ∈ D̄, we have from (5) and (4)

vκ
θ (x) ≤ Nx

[

(Zκ
θ , ϕ)

]

=
1

2
Nx

[
∫ +∞

0
ϕ(Ŵu)1{R̂u≥θ}1{Ĵi=1}dLu

]

=
1

2
Ex

[
∫ +∞

0
ϕ(Bu)1{R(u)≥θ}1{ 1

2
(κ·l)u≤τ}dlu

]

=
1

2
Ex

[
∫ +∞

0
ϕ(Bu) e−θu e−

1
2
(κ·l)u dlu

]

.

This last quantity is bounded since ϕ is bounded on ∂D, θ > 0, and since

sup
x∈D̄

Ex

[
∫ +∞

0
e−θs dls

]

< +∞,

thanks to (25).

Proposition 5.2. The function vκ
θ is solution of the integral equation: for all x ∈ D̄,

vκ
θ (x) + 2Ex

[
∫ +∞

0
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]

=
1

2
Ex

[
∫ +∞

0
ϕ(Bs) e−θs e−

1
2
(κ·l)s dls

]

.(8)
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Proof. We follow the proof of theorem 4.2 of [1]. By definition of vκ
θ and Zκ

θ , we have, for
every x ∈ ∂D,

vκ
θ (x) = Nx

[

1 − e−(Zκ
θ

,ϕ)
]

= Nx

[

1 − exp

(

−1

2

∫ +∞

0
ϕ(Ŵs)1{R̂s≥θ}1{Ĵs=1}dLs

)]

=
1

2
Nx

[
∫ +∞

0
dLs ϕ(Ŵs)1{R̂s≥θ}1{Ĵs=1} exp

(

−1

2

∫ +∞

s
dLu ϕ(Ŵu)1{R̂u≥θ}1{Ĵu=1}

)]

.

Now, we replace exp

(

−1

2

∫ +∞

s
dLu ϕ(Ŵu)1{R̂u≥θ}1{Ĵu=1}

)

by its predictable projection to

get

vκ
θ =

1

2
Nx

[
∫ +∞

0
dLs ϕ(Ŵs)1{R̂s≥θ}1{Ĵs=1}E

∗
W̃s

[

e

(

− 1
2

∫ +∞
0 dLu ϕ(Ŵu)1{R̂u≥θ}1{Ĵu=1}

)]]

.

Let us now compute, for w̃ = (W, R, J, K) ∈ Wx,

E∗
W̃s

[

e
− 1

2

∫ +∞
0 dLu ϕ(Ŵu)1{R̂u≥θ}1{Ĵu=1}

]

= E∗
W̃s

[

e−(Zκ
θ

,ϕ)
]

.

We consider the Brownian snake under P∗
w̃ and we set (αi, βi)i∈I the excursion intervals of

ζs − inf [0,s] ζr above 0. For every i ∈ I, we define W̃ i ∈ C(R+,Wζαi
,w̃(ζαi

)) by setting, for
every s ≥ 0,

W̃ i
s(t) = W̃(αi+s)∧βi

(ζαi
+ t) t ∈ [0, ζi

s = ζ(αi+s)∧βi
− ζαi

).

Let us recall the following result (proposition 2.5 of [12])

Lemma 5.3. Let w̃ ∈ Wx. The point measure
∑

i∈I

δ(ζαi
,W̃ i)

is under P∗
w̃ a Poisson point measure with intensity

21[0,ζ)(t)dt Nw̃(t)(dW ).

We have

(Zκ
θ , ϕ) =

∑

i∈I

1

2

∫ ∞

0
ϕ(Ŵ i

u)1{R̂i
u≥θ}1{Ĵi

u=1} dLi
u,

where Li is the CAF of lemma 3.1 for the snake W̃ i. From lemma 5.3, we have for w̃ ∈ Wx,

E∗
w̃

[

e−(Zκ
θ

,ϕ)
]

= exp

(

−2

∫ ζ

0
dt Nw̃(t)

[

1 − e−(Zκ
θ

,ϕ)
]

)

= exp

(

−2

∫ ζ

0
dt1{R(t)≥θ,J(t)=1}NW (t)

[

1 − e−(Zκ
θ

,ϕ)
]

)

= exp

(

−2

∫ ζ

0
dt1{R(t)≥θ,J(t)=1}v

κ
θ (W (t))

)

,

with w̃(t) = (W (t), R(t), J(t), K(t)) where we used equation (7) for the second equality. Since
the processes Rs and Js are decreasing, we have

vκ
θ (x) =

1

2
Nx

[
∫ +∞

0
dLs ϕ(Ŵs)1{R̂s≥θ}1{Ĵs=1} exp

(

−2

∫ ζs

0
dt vκ

θ

(

Ws(t)
)

)]

.
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Eventually we get, using equation (4), the equation

vκ
θ (x) =

1

2
Ex

[
∫ +∞

0
dls ϕ(Bs)1{R(s)≥θ}1{(κ·l)s≤2τ} exp

(

−2

∫ s

0
dt vκ

θ

(

Bt

)

)]

=
1

2
Ex

[
∫ +∞

0
dls ϕ(Bs) e−θs e−

1
2
(κ·l)s exp

(

−2

∫ s

0
dt vκ

θ (Bt)

)]

(9)

that we will re-use at the end of the proof.
Let us now compute

Ex

[
∫ +∞

0
dls ϕ(Bs) e−θs e−

1
2
(κ·l)s

(

1 − exp

(

−2

∫ s

0
dt vκ

θ (Bt)

))]

= 2Ex

[
∫ +∞

0
dls ϕ(Bs) e−θs e−

1
2
(κ·l)s

∫ s

0
dt vκ

θ (Bt) exp

(

−2

∫ s

t
du vκ

θ (Bu)

)]

= 2

∫ +∞

0
dt Ex

[

vκ
θ (Bt)

∫ +∞

t
dls ϕ(Bs) e−θs e−

1
2
(κ·l)s exp

(

−2

∫ s

t
du vκ

θ (Bu)

)]

= 2

∫ +∞

0
dt Ex

[

vκ
θ (Bt) e−θt e−

1
2
(κ·l)t EBt

[
∫ +∞

0
dls ϕ(Bs) e−θs e−

1
2
(κ·l)s e(−2

∫ s

0 du vκ
θ
(Bu))

]]

= 4

∫ +∞

0
dt Ex

[

vκ
θ (Bt)

2 e−θt e−
1
2
(κ·l)t

]

by equation (9). Now, if we rewrite equation (9) as

vκ
θ (x) =

1

2
Ex

[
∫ +∞

0
dls ϕ(Bs) e−θs e−

1
2
(κ·l)s

]

− 1

2
Ex

[
∫ +∞

0
dls ϕ(Bs) e−θs e−

1
2
(κ·l)s

(

1 − exp

(

−2

∫ s

0
dt vκ

θ (Bt)

))]

,

the last computation gives the sought-after equation.

Proposition 5.4. Let T be a stopping time (with respect to the natural filtration of B), finite
a.s. Then vκ

θ satisfies the equation: for all x ∈ D̄,

vκ
θ (x) + 2Ex

[
∫ T

0
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]

=

Ex

[

vκ
θ (BT ) e−θT e−

1
2
(κ·l)T

]

+
1

2
Ex

[
∫ T

0
ϕ(Bs) e−θs e−

1
2
(κ·l)s dls

]

.

Proof. Let us first compute

Ex

[
∫ +∞

0
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]

= Ex

[
∫ T

0
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]

+ Ex

[
∫ +∞

T
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]

= Ex

[
∫ T

0
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]

+ Ex

[

e−θT e−
1
2
(κ·l)T EBT

[
∫ +∞

0
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]]

,
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by the strong Markov property of B. Now, by proposition 5.2, we have,

EBT

[
∫ +∞

0
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]

=
1

4
EBT

[
∫ +∞

0
ϕ(Bs) e−θs e−

1
2
(κ·l)s dls

]

− 1

2
vκ
θ (BT ).

So, plugging this equality into the previous formula gives

Ex

[
∫ +∞

0
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]

= Ex

[
∫ T

0
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]

+
1

4
Ex

[

e−θT e−
1
2
(κ·l)T EBT

[
∫ +∞

0
ϕ(Bs) e−θs e−

1
2
(κ·l)s dls

]]

− 1

2
Ex

[

e−θT e−
1
2
(κ·l)T vκ

θ (BT )
]

= Ex

[
∫ T

0
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]

+
1

4
Ex

[
∫ +∞

T
ϕ(Bs) e−θs e−

1
2
(κ·l)s dls

]

− 1

2
Ex

[

e−θT e−
1
2
(κ·l)T vκ

θ (BT )
]

,

using the strong Markov property again. Subtracting to (8) two times the last equation gives
the result.

Corollary 5.5. The function vκ
θ belongs to C2(D) and is solution of ∆u = 4u2 + 2θu on D.

Proof. Let x ∈ D. As D is an open subset, there exists ε > 0 such that the ball B(x, ε)
centered at x and of radius ε is included in D. Let T be the exit time of B out of this ball.
Then, under Px, (Bu)0≤u≤T is a standard Brownian motion stopped when it leaves B(x, ε)
and lT = 0 Px-a.s. Proposition 5.4 gives now

vκ
θ (x) + 2Ex

[
∫ T

0
vκ
θ (Bs)

2 e−θs ds

]

= Ex

[

vθ(BT ) e−θT
]

where B is a standard Brownian motion and classical results on the Brownian motion give
the proposition.

Proposition 5.6. The function vκ
θ is continuous on D̄.

Proof. We fix a time t > 0 and we apply proposition 5.4 to T = t. We have

vκ
θ (x) = Ex [vκ

θ (Bt)] e
−θt −Ex

[

vκ
θ (Bt)

(

1 − e−
1
2
(κ·l)t

)]

e−θt

+
1

2
Ex

[
∫ t

0
ϕ(Bs) e−θs e−

1
2
(κ·l)s dls

]

− 2Ex

[
∫ t

0
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]

.

As ϕ and vκ
θ are bounded, the three last terms converge to 0 uniformly in x and, as t decreases

to 0 thanks to (27) with n = 1. Furthermore for fixed t > 0, the application x 7→ Ex [vκ
θ (Bt)]

is continuous on D̄. This implies that vκ
θ is continuous on D̄.

Let C2
b (D) be the set of bounded functions defined on D which are of class C2 with bounded

derivatives of order 1 and 2.
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Proposition 5.7. If ϕ is continuous on ∂D, then, for every test function φ ∈ C2
b (D)∩C1(D̄),

we have

∫

D
∆φ(x)vκ

θ (x)dx − 4

∫

D
φ(x)vκ

θ (x)2dx − 2θ

∫

D
φ(x)vκ

θ (x)dx

=

∫

∂D

∂φ

∂n
(y)vκ

θ (y)σ(dy) −
∫

∂D
φ(y)ϕ(y)σ(dy) −

∫

∂D
φ(y)vκ

θ (y)κ(y)σ(dy).

In particular, for φ = 1, we have

4

∫

D
vκ
θ (x)2dx + 2θ

∫

D
vκ
θ (x)dx =

∫

∂D
ϕ(y)σ(dy) +

∫

∂D
κ(y)vκ

θ (y)σ(dy).

Proof. The proof is similar to the proof of theorem 4.10 of [1]. First, we use the definition of
the reflected Brownian motion via a martingale problem (see [9]). This gives that, for every
x ∈ D̄ t > 0, and φ ∈ C2

b (D) ∩ C1(D̄),

Ex

[

φ(Bt) − φ(x)
]

=
1

2
Ex

[
∫ t

0
∆φ(Bs)ds

]

− 1

2
Ex

[
∫ t

0

∂φ

∂n
(Bs)dls

]

.

So, multiplying by vκ
θ (x) and integrating on D leads to, for every t > 0,

∫

D
vκ
θ (x)Ex

[

φ(Bt) − φ(x)
]

dx

=
1

2

∫ t

0
ds

∫

D
vκ
θ (x)Ex

[

∆φ(Bs)
]

dx − 1

2

∫

D
vκ
θ (x)Ex

[
∫ t

0

∂φ

∂n
(Bs)dls

]

dx

=
1

2

∫ t

0
ds

∫

D
∆φ(x)Ex

[

vκ
θ (Bs)

]

dx − 1

2

∫

D
vκ
θ (x)Ex

[
∫ t

0

∂φ

∂n
(Bs)dls

]

dx

because of the symmetry of the density of Bs. Using the symmetry again and then proposition
5.4 with T = t, we have

∫

D
vκ
θ (x)Ex

[

φ(Bt) − φ(x)
]

dx

=

∫

D
φ(x)Ex

[

vκ
θ (Bt) − vκ

θ (x)
]

dx

=

∫

D
φ(x)Ex

[

vκ
θ (Bt) e−

1
2
(κ·l)t −vκ

θ (x)
]

dx −
∫

D
φ(x)Ex

[

vκ
θ (Bt)

(

1 − e−
1
2
(κ·l)t

)]

dx

=

∫

D
φ(x)

(

vκ
θ (x) eθt −vκ

θ (x)
)

dx + 2

∫

D
φ(x) eθt

Ex

[
∫ t

0
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]

dx

− 1

2

∫

D
φ(x) eθt Ex

[
∫ t

0
ϕ(Bs) e−θs e−

1
2
(κ·l)s dls

]

dx

−
∫

D
φ(x)Ex

[

vκ
θ (Bt)

(

1 − e−
1
2
(κ·l)t

)]

dx.
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So, we have, for every t > 0,

1

2

∫

D
dx ∆φ(x)

1

t

∫ t

0
ds Ex

[

vκ
θ (Bs)

]

− 1

2

∫

D
dx vκ

θ (x)
1

t
Ex

[
∫ t

0

∂φ

∂n
(Bs)dls

]

=

∫

D
φ(x)vκ

θ (x)
1

t
(eθt −1)dx + 2

∫

D
φ(x)

1

t
eθt

Ex

[
∫ t

0
vκ
θ (Bs)

2 e−θs e−
1
2
(κ·l)s ds

]

dx

− 1

2

∫

D
φ(x)

1

t
eθt

Ex

[
∫ t

0
ϕ(Bs) e−θs e−

1
2
(κ·l)s dls

]

dx

−
∫

D
φ(x)

1

t
Ex

[

vκ
θ (Bt)

(

1 − e−
1
2
(κ·l)t

)]

dx.

Now we let t goes to 0 and use the continuity B as well as the continuity of vκ
θ on D̄, the

lemmas 9.2, 9.3, 9.4 and 9.5 to get the equation of the proposition.

For k ∈ N, α ∈ (0, 1], let Ck,α(Ω) be the set of functions defined on Ω which are k times
differentiable such that their kth derivative is Hölder with parameter α.

Proposition 5.8. (Recall that θ > 0.) Let ϕ ∈ C1,α(∂D) be nonnegative. The function vθ

belongs to C2(D)∩C1(D̄) and it is the unique nonnegative solution of the Neumann problem

∆u = 4u2 + 2θu in D

∂u

∂n
= ϕ on ∂D.

(10)

Furthermore, vθ belongs to C2,α(D̄).

Proof. Since ϕ ∈ C1,α(∂D), we deduce from propositions 9.6 and 9.9, that the function
1
2 Ex

[

∫ +∞
0 ϕ(Bs) e−θs dls

]

belongs to C2,α(D̄). Since vθ is bounded, we deduce from propo-

sition 9.8, that the function Ex

[

∫ +∞
0 vθ(Bs)

2 e−θs ds
]

belongs to C0,1(D̄). Thanks to (8),

this implies that vθ ∈ C0,1(D̄). Using propositions 9.7 and 9.9, we deduce again from (8),
that vθ ∈ C2,α(D̄). From proposition 9.7, we get that vθ is a solution of (10).

Let us check the uniqueness of solutions to (10). Let u ∈ C2(D) ∩ C1(D̄) be another
nonnegative solution of (10). Set w = u − vθ. The function w solves

∆w − kw = 0 in D
∂w

∂n
= 0 on ∂D,

where k = 4(u+vθ)+2θ > 0 belongs to C1(D̄). From the maximum principle (see theorem 8
in [14]), we get that either that w ≤ 0 or w > 0 is constant in D. Using −w instead of w, we
deduce that w is constant in D. Therefore we have u = vθ + c. Subtracting (10) applied to u
and vθ, we get that c(4vθ +2c+ θ) = 0. Either c = 0 or vθ is constant. If vθ is constant, from
(10) we get that ϕ = 0 and by construction vθ = 0. This in turn implies that c(2c + θ) = 0.
Since u = c is nonnegative, we get that u = 0. In any case c = 0 and thus we have u = vθ.

6. Properties of vκ

Let ϕ be a bounded nonnegative measurable function defined on ∂D. Recall that for κ ≥ 0
and x ∈ D̄, vκ(x) = Nx

[

1 − e−(Zκ,ϕ)
]

and vκ ≤ v0 = v.

Proposition 6.1. The function vκ is bounded on D̄ for κ ≥ 0.

The proof of this theorem is at the end of this section.
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Proposition 6.2. The function vκ is continuous on D̄.

Proof. By construction, we have that vκ
θ increases to vκ as θ decreases to 0. From proposition

5.4, we get by dominated convergence: for x ∈ D̄,

vκ(x) + Ex

[
∫ t

0
vκ(Bs)

2 e−
1
2
(κ·l)s ds

]

= Ex

[

vκ(Bt) e−
1
2
(κ·l)t

]

+
1

2
Ex

[
∫ t

0
ϕ(Bs) e−

1
2
(κ·l)s dls

]

.

Now, as ϕ and vκ are bounded, we conclude as in the proof of proposition 5.6.

By dominated convergence, we deduce from proposition 5.7 the next result as θ decreases
to 0.

Proposition 6.3. Assume ϕ is a continuous nonnegative function on ∂D. For any test
function φ ∈ C2

b (D) ∩ C1(D̄), we have:

(11)

∫

D
∆φ(x)vκ(x) dx − 4

∫

D
φ(x)vκ(x)2 dx =

∫

∂D

∂φ

∂n
(y)vκ(y) σ(dy) −

∫

∂D
φ(y)ϕ(y) σ(dy) −

∫

∂D
φ(y)κ(y)vκ(y)σ(dy).

In particular, for φ = 1, we have

4

∫

D
vκ(x)2dx =

∫

∂D
ϕ(y)σ(dy) +

∫

∂D
κ(y)vκ(y)σ(dy).

Notice that any function v ∈ C2(D)∩C1(D̄) solution of the Neumann problem (1) satisfies
the integral equation (11), for any test function.

Definition 6.4. We say that a bounded measurable function v which satisfies (11) for any
test function is a weak solution of the Neumann problem (1).

We will mainly consider weak solutions that are continuous on D̄.

Proof of proposition 6.1. Because vκ ≤ v = v0, it is enough to prove the proposition for v.
Let g be a continuous nonnegative function defined on ∂D. Consider the Dirichlet problem

in D:

∆u − 2θu = 4u2 in D,

u = g on ∂D.
(12)

From [7], we know there exists only one nonnegative solution to this equation uθ, and uθ

belongs to C2(D) ∩ C0(D̄). Since L = ∆
2 − θ is the infinitesimal generator of the Brownian

motion killed at an independent exponential time with parameter θ > 0, we also have the
following integral equation:

uθ(x) + 2Ex

[
∫ τD

0
uθ(Bs)

2 e−θs ds

]

= Ex

[

g(BτD
) e−θτD

]

,(13)

where τD = inf{t ≥ 0; Bt 6∈ D}. This integral representation is also valid for θ = 0. The next
lemma give a regularity result on uθ when g is smooth. Recall that D has a C3 boundary.

Lemma 6.5. If g ∈ C2,α(∂D), then the nonnegative solution uθ of (13) lies in C2,α′
(D̄),

where α′ = min(α, 1/2).
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This result doesn’t seem optimal since α′ might be less than α. The proof of this lemma
is at the end of this section.

From now on, we assume that θ > 0. Notice that under the hypothesis of the above
lemma, the normal derivative of uθ is continuous and well defined. However this normal
derivative can be negative at some point of ∂D. We can’t represent uθ as Nx

[

1 − e−(Zθ,ϕ)
]

,
with ϕ the normal derivative of uθ in general. For our purpose it will be sufficient to consider
uN,θ solution of (13) with g constant equal to N > 0. From (13), we have uN,θ < N in D.
Therefore the normal derivative of uN,θ, say ϕN,θ is nonnegative.

Let us find a lower bound for ϕN,θ independent of θ > 0. Since D is bounded with C3

boundary, there exists r0 > 0, such that for any x0 ∈ ∂D, the open ball B(x0 − r0nx0 , r0)
with radius r0 centered at x0 − r0nx0 , where nx0 is the outward normal of D at point x0,
lies in D. Let wN be the unique nonnegative solution of ∆u = 4u2 in B(x0 − r0nx0 , r0) with
boundary condition wN = N on ∂B(x0 − r0nx0 , r0). In particular wN ∈ C2(D̄), thanks to
lemma 6.5. Since uN,θ < N in D, we deduce that uN,θ ≤ wN on ∂B(x0 − r0nx0 , r0). Let
z = uN,θ − wN . The function z satisfies ∆z − kz ≥ 0 in D with k = 4(uN,θ + wN ) ≥ 0 and
z ≤ 0 on ∂B(x0 − r0nx0 , r0). From the maximum principle (theorem 6 in [14]), we get that
z ≤ 0 in B(x0 − r0nx0 , r0), hence

uN,θ ≤ wN in B(x0 − r0nx0 , r0).

Since wN (x0) = uN,θ(x0) = N , we have for ε > 0 small enough

wN (x0) − wN (x0 − εnx0) ≤ uN,θ(x0) − uN,θ(x0 − εnx0).

This implies that φN (x0) ≤ ϕN,θ(x0), where φN is the normal derivative of wN .

Lemma 6.6. There exists a constant c0 depending only on r0 and the dimension d, such that
φN (x0) ≥ (N − c0)/r0 for all N > 0.

Proof. By symmetry we get that wN is radial. For y ∈ B(0, r0), we have wN (x0−r0nx0 +y) =
h(|y|), and h is defined on [0, r0] and of class C2. The function h is the unique nonnegative
solution of

h′′(r) +
d − 1

r
h′(r) = 4h(r)2 for r ∈ (0, r0),(14)

h′(0) = 0 and h(r0) = N.

From the maximum principle, we get that for r ∈ (0, r0], y ∈ B(x0 − r0nx0 , r),

wN (y) < max
z∈∂B(x0−r0nx0 ,r)

wN (z) = h(r).

This implies the function h is increasing over [0, r0]. Since, from the maximum principle,
wN (x0 − r0nx0) > 0 we have h > 0.

Let t = inf{r ∈ (0, r0];h
′′(r) ≤ 0}, with the convention inf ∅ = +∞. We first assume

that t > 0. If t ≤ r0, from the continuity of h′′ we deduce that h′′(t) = 0 and from
(14) that h′(t) > 0. By deriving (14), we get that h′′′(t) > 0. This contradict the fact
h′′(t − ε) > h′′(t) = 0 for any ε > 0 small enough. Hence we have either t = 0 or t = +∞.

If t = 0, there is a sequence (tk > 0, k ≥ 1) decreasing to 0 such that h′′(tk) ≤ 0. Since
h ∈ C2([0, r0]), we get h′′(0) ≤ 0 by continuity. Since h′ ≥ 0 and h′(0) = 0, this implies that
h′′(0) = 0 and limr↓0 h′(r)/r = 0. Let r ↓ 0 in (14) to get h(0) = 0, which is absurd since
wN > 0 in B(x0 − r0nx0 , r0). Therefore, we have t = +∞.

In conclusion, we get that h′′(r) > 0 on (0, r0]. This implies that

rh′′(r) + h′(r) ≥ h′(r) on [0, r0].
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By integration we deduce that

h′(r0) ≥
N − h(0)

r0
.

Notice that wN is bounded from above by the maximal solution wmax of ∆u = 4u2 in
B(x0 − r0nx0 , r0). This implies

h(0) = wN (x0 − r0nx0) ≤ wmax(x0 − r0nx0) = c0,

where the constant c0 depends only on r0 and d. This end the proof of the lemma since
h′(r0) = φN (x0).

Let ϕ ≥ 0 measurable defined on ∂D. Let N ≥ r0 supx∈∂D |ϕ(x)|+c0. Notice N is
independent of θ > 0. Since uN,θ is in C2,α(D̄) for some α > 0, we get that uN,θ is a strong

solution of (10) with boundary condition ϕN,θ =
∂uN,θ

∂n
on ∂D. We deduce from proposition

5.8, that uN,θ(x) = Nx

[

1 − e−(Zθ,ϕN,θ)
]

. From lemma 6.6, we deduce that ϕ ≤ ϕN,θ and
thus vθ ≤ uN,θ ≤ N . Since this upper bound is uniform in θ > 0, we deduce that v itself is
bounded from above by N .

Proof of lemma 6.5. Since g ∈ C2,α(∂D), we deduce from propositions 9.10 and 9.12 that

Ex

[

g(BτD
) e−θτD

]

belongs to C2,α(D̄) and solve (32) with f = 0. Since uθ is bounded, we

get from proposition 9.11, that Ex

[
∫ τD

0
uθ(Bs)

2 e−θs ds

]

belongs to C0,1(D)∩C0(D̄). From

(13), we deduce that uθ itself belongs to C0,1(D). Using proposition 9.11 and (13) again,
we get that uθ belongs to C2,α(D). We see from (13), we need to check the regularity of

h(x) = Ex

[
∫ τD

0
uθ(Bs)

2 e−θs ds

]

on ∂D to end the proof of this lemma.

Notice that

h(x) = H(x) − Ex

[

H(BτD
) e−θτD

]

,

where H(x) = Ex

[
∫ ∞

0
uθ(Bs)

2 e−θs ds

]

. Since uθ is bounded we have, thanks to proposition

9.8 that H belongs to C1(D̄).

The proof will be complete, once we prove that Ex

[

H(BτD
) e−θτD

]

belongs to C0,1/2(D̄).

Indeed, from (13), we then will get that uθ ∈ C0,1/2(D̄). This in turn, will imply thanks to

proposition 9.12, that h ∈ C2,α′
(D̄), with α′ = min(α, 1

2). From (13), we will deduce that

uθ ∈ C2,α′
(D̄).

To prove that Ex

[

H(BτD
) e−θτD

]

∈ C0,1/2(D̄), we will check that if g ∈ C1(∂D), then the

function w(x) = Ex

[

g(BτD
) e−θτD

]

belongs to C0,1/2(D̄). Notice B can be replaced by a

Brownian motion in R
d, say B′, in the definition of w.
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Let D(x) = {y ∈ R
d; y + x ∈ D}, and τD(x) = inf{t > 0, B′

t 6∈ D(x)} the exit time of D(x)

for B′. Since g ∈ C1(∂D), we have for x, y ∈ D̄,

|w(x) − w(y)| =
∣

∣

∣
E0

[

g(B′
τD(x)

) e−θτD(x)

]

− E0

[

g(B′
τD(y)

) e−θτD(y)

]∣

∣

∣

≤ cE0

[
∣

∣

∣
B′

τD(x)
− B′

τD(y)

∣

∣

∣

]

+ cE0

[∣

∣τD(x) − τD(y)

∣

∣

]

≤ cE0

[

(B′
τD(x)

− B′
τD(y)

)2
]1/2

+ cE0

[∣

∣τD(x) − τD(y)

∣

∣

]

≤ cE0

[
∣

∣τD(x) − τD(y)

∣

∣

]1/2
+ cE0

[
∣

∣τD(x) − τD(y)

∣

∣

]

≤ cE0

[∣

∣τD(x) − τD(y)

∣

∣

]1/2
,

since supz∈D E0[τD(z)] = supz∈D Ez[τD] < ∞. This last inequality is a consequence of propo-
sitions 9.11 and 9.12 with θ = 0, ϕ = 0 and f = 1, so that the function F (z) = Ez[τD] belongs
to C2,1(D̄). Using the strong Markov property of B at time τ = τD(x) ∧ τD(y), we get

E0

[∣

∣τD(x) − τD(y)

∣

∣

]

= E0

[

EBτ

[

τD(x) + τD(y)

]]

≤ sup
z∈D;d(z,∂D)≤|x−y|

Ez[τD]

≤ c |x − y|,
because the function F (z) = Ez[τD] belongs to C1(D̄). In conclusion there exists a constant
c > 0 such that for x, y ∈ D̄,

|w(x) − w(y)| ≤ c
√

|x − y|.
That is w ∈ C0,1/2(D̄).

7. An integral equation for v

From (24), we see the green kernel

G(x, y) =

∫ ∞

0
[pt(x, y) − aD]dt, where aD = 1/

∫

D
dy,

is well defined a.e. in D̄ × D̄. If h is a measurable bounded function defined on D, we set
Gh(x) =

∫

D G(x, y)h(y) dy. If ϕ is a measurable bounded function defined on ∂D, we set
Gϕσ(x) =

∫

∂D G(x, y)ϕ(y) σ(dy).
From now on, let ϕ be a bounded measurable nonnegative function on ∂D.

Proposition 7.1. Let v(x) = Nx

[

1 − e−(Z, ϕ)
]

. Then v satisfies the integral equation: for

x ∈ D̄,

v(x) + 2Gv2(x) − aD

∫

D
v(y) dy =

1

2
Gϕσ(x).(15)

Notice that (15) may have many different nonnegative solutions (see remark 7.3). However,
there is a unique nonnegative solution to (15) satisfying the integral condition 4

∫

D v(y)2 dy =
∫

∂D ϕ(y) σ(dy) (the proof of this fact is similar to what follows lemma 7.4).

Proof. From proposition 5.2 (with κ = 0), we have

vθ(x) + 2Ex

[
∫ +∞

0
vθ(Bs)

2 e−θs ds

]

=
1

2
Ex

[
∫ +∞

0
ϕ(Bs) e−θs dls

]

.(16)
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From (26), we deduce that

Ex

[
∫ +∞

0
ϕ(Bs) e−θs dls

]

=

∫ ∞

0
ds e−θs

∫

D
ϕ(y)[ps(x, y) − aD]σ(dy) + aD

∫ ∞

0
ds e−θs

∫

D
ϕ(y)σ(dy)

= Gϕσ(x) +
aD

θ

∫

∂D
ϕ(y) σ(dy) +

∫ ∞

0
ds (e−θs −1)

∫

D
ϕ(y)[ps(x, y) − aD]σ(dy).

The third term of the last equality goes to 0 as θ ↓ 0, thanks to (23) and (24). Therefore, we
have

Ex

[
∫ +∞

0
ϕ(Bs) e−θs dls

]

= Gϕσ(x) +
aD

θ

∫

∂D
ϕ(y) σ(dy) + o(1).

By a similar argument, we have

Ex

[
∫ +∞

0
vθ(Bs)

2 e−θs ds

]

= Gv2
θ(x) +

aD

θ

∫

D
vθ(y)2 dy + o(1).

From the second equations of propositions 5.7 and 6.3 we get that

4

∫

D
vθ(y)2 dy + 2θ

∫

D
vθ(y) dy = 4

∫

D
v(y)2 dy.

Since vθ increases uniformly to v as θ decreases to θ, we have vθ = v + o(1) in D̄. We deduce
that

4

∫

D
vθ(y)2 dy = 4

∫

D
v(y)2 dy − 2θ

∫

D
v(y) dy + o(1) and Gv2

θ = Gv2 + o(1) in D̄.

Plugging those results in (16), we get that for x ∈ D̄,

v(x) + 2Gv2(x) + 2
aD

θ

∫

D
v(y)2 dy − aD

∫

D
v(y) dy

=
1

2
Gϕσ(x) +

1

2

aD

θ

∫

∂D
ϕ(y) σ(dy) + o(1).

Using the second equation of proposition 6.3 we get (15), as θ goes to 0.

We assume ϕ ≥ 0 is non zero, that is
∫

∂D ϕ(y) σ(dy) > 0. We consider the functions

defined on D̄ by,

w1(x) = w1 =
1

2

[

aD

∫

∂D
ϕ(y) σ(dy)

]1/2

> 0,

w2(x) =
1

2
Gϕσ(x),

wn(x) = −2
n−1
∑

k=1

G(wkwn−k)(x) + cn, for n ≥ 3,

where we set

cn = − aD

2w1

∫

D

n−1
∑

k=2

wk(y)wn+1−k(y) dy.
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The functions are well defined, because the function ϕ is bounded. By symmetry of G, we
have for n ≥ 3,

∫

D
wn(y) dy = −2

∫

D

n−1
∑

k=1

wk(y)wn−k(y)G1(y) dy +

∫

D
cn dy =

cn

aD
,

because G1 = 0. In particular we deduce from the definition of cn−1, that for n ≥ 4,
∫

D

n−1
∑

k=1

wk(y)wn−k(y) dy = 2w1

∫

D
wn−1(y) dy +

∫

D

n−2
∑

k=2

wk(y)wn−k(y) dy = 0.(17)

For f a measurable function defined on D̄ (resp. ∂D), we define ‖f ‖∞ = sup{|f(x)|; x ∈
D̄} (resp. ‖f ‖∞ = sup{|f(x)|; x ∈ ∂̄D}).
Proposition 7.2.

1. There exists η0 > 0 (depending on ϕ), such that the series

v+
η =

∑

n≥1

ηn/2wn and v−η =
∑

n≥1

(−1)nηn/2wn

are absolutely convergent (for the norm ‖·‖∞) for η ∈ [0, η0). The functions v+
η and v−η

are continuous in D̄.
2. For η > 0, small enough, we have that v+

η (resp. v−η ) is the only nonnegative (resp. non
positive) continuous weak solution to the Neumann problem

∆u = 4u2 in D, and
∂u

∂n
= ηϕ on ∂D.(18)

In particular v+
η (x) = Nx

[

1 − e−η(Z,ϕ)
]

, for η > 0, small enough.

Proof. 1) From (22), (23) and (24), it is clear that there exists a constant cD, such that for
any measurable function f (resp. h) defined on D̄ (resp. ∂D),

‖Gf ‖∞ ≤ cD ‖f ‖∞ and ‖Ghσ‖∞ ≤ cD ‖h‖∞ .

We have by recurrence that ‖wn ‖∞ ≤ βn ‖ϕ‖n/2
∞ , where

β1 =
1

2

√

aD

∫

∂D
σ(dy), β2 =

1

2
cD,

and for n ≥ 3,

βn = 2cD

n−1
∑

k=1

βkβn−k +
√

aDρ
n−1
∑

k=2

βkβn+1−k,

with ρ =
[

‖ϕ‖∞ /
∫

∂D ϕ(y) σ(dy)
]1/2

. It is easy to check there exists η̃0 > 0 (depending only

on β1, cD and ρ) such that the series g(r) =
∑

k≥3 βkr
k is convergent for r ∈ [0, η̃0), and that

g(r) is the smallest solution of

g(r) = 2cD

[

(g(r) + β1r + β2r
2)2 − β2

1r2
]

+
1

r

√
aDρ

[

g(r) + β2r
2
]2

.

It is then clear that the series vδ
η = v+

η or v−η , as δ = +1 or δ = −1, are absolutely convergent

for η ∈ [0, η0 = η̃0/ ‖ϕ‖1/2
∞ ).

From the continuity of p, (23), (24), we have that Gϕσ is continuous on D̄. By recurrence,
we get that wn is continuous for n ≥ 3. This implies that vδ

η is continuous on D̄.
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2) Furthermore, let us note that, by the product of two series, for η ∈ [0, η0),

(vδ
η)

2 =
∑

n≥2

δnηn/2
n−1
∑

k=1

(wkwn−k)

and, as G(w2
1) = 0,

G
(

(vδ
η)

2
)

=
∑

n≥3

δnηn/2
n−1
∑

k=1

G(wkwn−k).

Then, we have that, for η ∈ [0, η0),

vδ
η(x) =

∑

n≥1

δnηn/2wn(x)

= δ
√

ηw1 + ηw2(x) − 2
∑

n≥3

δnηn/2
n−1
∑

k=1

G(wkwn−k)(x) +
∑

n≥3

δnηn/2cn

= δ
√

ηw1 +
η

2
Gϕσ(x) − 2G((vδ

η)
2)(x) +

∑

n≥3

δnηn/2cn.

From the symmetry of G and the fact that G1 = 0, we get
∫

D
vδ
η(y) dy =

δ
√

η

aD
w1 +

η

2

∫

D
Gϕσ(y) dy − 2

∫

D
G((vδ

η)
2)(y) dy +

∑

n≥3

δnηn/2

aD
cn

=
δ
√

η

aD
w1 +

η

2

∫

∂D
ϕ(x)G1(x)σ(dx) − 2

∫

D
(vδ

η(x))2G1(x)dx +
∑

n≥3

δnηn/2

aD
cn

=
δ
√

η

aD
w1 +

∑

n≥3

δnηn/2

aD
cn.

Plugging this in the previous equation, we get that

vδ
η(x) =

η

2
Gϕσ(x) − 2G((vδ

η)
2)(x) + aD

∫

D
vδ
η(y) dy.

Hence vδ
η solves (15) with ϕ replaced by ηϕ.

Remark 7.3. By considering w′
n defined as wn but for c′n = 0, it is easy to get that v′η =

∑

n≥1 ηn/2w′
n is well defined, continuous, nonnegative and solution of (15) for η > 0 small

enough. Since c3 6= 0, we have w′
η 6= v+

η . Hence (15) doesn’t have a unique nonnegative
continuous solution.

We have
∫

D
vδ
η(y)2 dy =

∫

D

∑

n≥2

δnηn/2
n−1
∑

k=1

wk(y)wn−k(y) dy

=
δ2η

aD
w2

1 + δ3η3/2w1

∫

D
Gϕσ(y) dy +

∑

n≥4

ηn/2δn

∫

D

n−1
∑

k=1

wk(y)wn−k(y) dy

=
η

4

∫

∂D
ϕ(y) σ(dy),
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where we used (17) for the last equality as well as the symmetry of G and the fact that
G1 = 0. Thus we have that vδ

η solves also

4

∫

D
u(y)2 dy =

∫

∂D
ϕ(y) σ(dy),(19)

with ϕ replaced by ηϕ. The next lemma states that the two integral equations (15) and
(19) characterize the weak solutions of the Neumann problem (1) (with κ = 0). Its proof is
postponed at the end of this section.

Lemma 7.4. Any bounded measurable function u satisfying (15) and (19) is a weak solution
of the Neumann problem (1) (with κ = 0). That is, for any test function φ ∈ C2

b (D)∩C1(D̄),
we have:

∫

D
∆φ(y)u(y) dy − 4

∫

D
φ(y)u(y)2 dy =

∫

∂D

∂φ

∂n
(y)u(y) σ(dy) −

∫

∂D
φ(y)ϕ(y) σ(dy).(20)

From this lemma, we get that v+
η and v−η are continuous weak solution of the Neumann

problem (1) (with κ = 0 and ϕ replaced by ηϕ). From propositions 6.2 and 6.3, we have that

vη(x) = Nx

[

1 − e−η(Z,ϕ)
]

is also a continuous weak solution.
To complete the proof of the proposition, we just have to check that v+

η = vη. This will be
done once we prove the uniqueness of the continuous weak solutions.

Let η > 0 and ε > 0 small enough, so that
∣

∣vδ
η

∣

∣(x) ≥ ε > 0 in D̄ for δ ∈ {+1,−1} (this
can be done since w1 > 0). Consider u a continuous nonnegative solution of (20), with ϕ
replaced by ηϕ. Since v+

η is a positive solution of (20), by subtraction, we get
∫

D
w(y)[∆φ(y) + 4q(y)φ(y)] =

∫

∂D

∂φ

∂n
(y)w(y) σ(dy),

with w = u − v+
η and q = −4(u + v+

η ). From theorem 5.5 of [9], we deduce that w = 0

(the finiteness of the gauge in [9] is implied by the fact that q(y) ≤ −ε < 0 for y ∈ D̄). In
particular, v+

η is the unique continuous nonnegative solution of (20), for η > 0 small enough.

This implies that for η > 0, small enough, v+
η (x) = Nx

[

1 − e−η(Z,ϕ)
]

.

Similarly, we get that v−η is the unique continuous non positive solution of (20), for η > 0
small enough.

Corollary 7.5. Let ϕ ≥ 0, such that
∫

∂D ϕ(y) σ(dy) > 0. Then v(x) = Nx

[

1 − e−(Z,ϕ)
]

is

the only nonnegative weak solution of (1) (with κ = 0).

Proof. From the last part of the proof of proposition 7.2, concerning uniqueness of weak
solution, we see with v+

η replaced by v that it is enough to check that v(x) ≥ ε > 0 in D. For
η ∈ (0, 1] small enough, we have

v(x) ≥ v+
η (x) = Nx

[

1 − e−η(Z,ϕ)
]

.

For ε > 0 and η > 0 small enough, we get that v+
η ≥ ε on D, since w1 > 0.

Proof of lemma 7.4. From the definition of the kernel G and the symmetry of p we get that
for any bounded measurable function f :

∫

D
Gf(y) dy = 0 and

∫

∂D
Gfσ(y) dy = 0.

From [5], we get that:
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• If f is a bounded measurable function defined on D, then Gf is a weak solution of
∆

2
w = −f + aD

∫

D
f(y) dy with Neumann boundary condition

∂w

∂n
= 0. And for any

test function φ ∈ C2
b (D) ∩ C1(D̄),

∫

D
∆φ(y)w(y) dy + 2

∫

D
φ(y)f(y) dy − 2aD

∫

D
φ(y) dy

∫

D
f(y) dy =

∫

∂D

∂φ

∂n
(y)w(y) σ(dy).

• If h is a bounded measurable function defined on ∂D, then 1
2 Ghσ is a weak solution

of
∆

2
w =

aD

2

∫

∂D
h(y) σ(dy) with Neumann boundary condition

∂w

∂n
= h. And for any

test function φ ∈ C2
b (D) ∩ C1(D̄),

∫

D
∆φ(y)w(y) dy − aD

∫

D
φ(y) dy

∫

∂D
h(y) σ(dy)

=

∫

∂D

∂φ

∂n
(y)w(y)σ(dy) −

∫

∂D
φ(y)h(y) σ(dy).

Let u be a bounded measurable function defined on D̄, satisfying (15) and (19). Let φ ∈
C2

b (D) ∩ C1(D̄), be a test function. Using the symmetry of G, the above remarks, we then
deduce from (15) by multiplying by ∆φ and integrating on D, that

∫

D
∆φ(y)u(y) dy − 4

∫

D
φ(y)u(y)2 dy + 4aD

∫

D
φ(y) dy

∫

D
u(y)2 dy

+ 2

∫

∂D

∂φ

∂n
(y)Gu2(y)σ(dy) − aD

∫

D
∆φ(y) dy

∫

D
u(y) dy

= aD

∫

D
φ(y) dy

∫

∂D
ϕ(y) σ(dy) +

∫

∂D

∂φ

∂n
(y)

1

2
Gϕ(y)σ(dy) −

∫

∂D
φ(y)ϕ(y) σ(dy).

Use (19) for the third term, (15) for the fourth and the Green formula
∫

D ∆φ(y) dy =
∫

∂D
∂φ
∂n(y) σ(dy) for the fifth of the left member to get (20).

8. Properties of Z

We can give estimate of the probability of hitting small balls for the measure Z.
Let x0 ∈ ∂D, and B∂D(x0, ε) be the ball on the boundary of D centered at x, with radius

ε > 0: B∂D(x0, ε) = {y ∈ ∂D; |x − y| < ε}. We write Z(B∂D(x0, ε)) = (Z,1B∂D(x0,ε)).

Proposition 8.1. For every compact set K ⊂ D, there exists 1/2 > ε0 > 0 and a constant
cd > 0 (which depends on the dimension d) such that for any x ∈ K, x0 ∈ ∂D, ε ∈ (0, ε0),

Nx[Z(B∂D(x0, ε)) > 0] ≥











cd if d = 2 or 3,

cd(log(1/ε))−1 if d = 4,

cdε
d−4 if d ≥ 5.

Proof. We fix θ > 0 and notice that Nx[Z(B∂D(x0, ε)) > 0] ≥ Nx[Zθ(B∂D(x0, ε)) > 0].
Consequently, it is enough to get a lower bound for Zθ.

Let us set

gθ(x, y) =

∫ +∞

0
ps(x, y)e−θsds
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and recall the following estimates: there exists a constant α (which depends on d and θ) such
that for all (x, y) ∈ D̄ × D̄,

gθ(x, y) ≤ αh(x, y)

with

h(x, y) =

{

(

1 + ln+
1

‖x−y‖

)

if d = 2

‖x − y‖2−d if d ≥ 3,

where ln+(r) = max(0, ln(r)) (see for instance [3], Corollary 3.3 or [6], Theorem 3.4 (iv)).
Now, by Cauchy-Schwartz inequality, we have

Nx[Zθ(B∂D(x0, ε)) > 0] ≥ Nx[Zθ(B∂D(x0, ε))]
2

Nx[Zθ(B∂D(x0, ε))2]
·

The first moment is easy to estimate: we have, by definition of Zθ

Nx[Zθ(B∂D(x0, ε))] = Nx

[
∫ σ

0
1{Ŵs∈B∂D(x0,ε)}1{R̂s≥θ}dLs

]

= Ex

[
∫ +∞

0
1{Bs∈B∂D(x0,ε)}e

−θsdls

]

=

∫

B∂D(x0,ε)
gθ(x, y)σ(dy)

and, as gθ is bounded below by a constant on K × ∂D, there exists ε0 > 0 such that for any
x ∈ K, x0 ∈ ∂D, ε ∈ (0, ε0],

Nx[Zθ(B∂D(x0, ε))] ≥ cdε
d−1.

For the second moment, let us first prove the following lemma

Lemma 8.2. For every nonnegative measurable function ϕ on ∂D,

Nx((Zθ, ϕ)2) = 4

∫

D
dy gθ(x, y)

(
∫

∂D
σ(dz)gθ(y, z)ϕ(z)

)2

.

Proof. Using the definition of the measure Zθ then the Markov property, we have

Nx[(Zθ, ϕ)2] = Nx

[

(
∫ σ

0
dLu1{R̂u≥θ}ϕ(Ŵu)

)2
]

= 2Nx

[
∫ σ

0
dLu

∫ σ

u
dLu′1{R̂u≥θ}1{R̂u′≥θ}ϕ(Ŵu)ϕ(Ŵu′)

]

= 2Nx

[
∫ σ

0
dLu1{R̂u≥θ}ϕ(Ŵu)E∗

W̃u

[
∫ σ

0
dLu′1{R̂u′≥θ}ϕ(Ŵu′)

]]

= 4Nx

[
∫ σ

0
dLu1{R̂u≥θ}ϕ(Ŵu)

∫ ζu

0
dt NW̃u(t)

[

(Zθ, ϕ)
]

]

by lemma 5.3. Then, thank to formula (6), we get

Nx[(Zθ, ϕ)2] = 4Nx

[
∫ σ

0
dLu1{R̂u≥θ}ϕ(Ŵu)

∫ ζu

0
dt N(Wu(t),+∞,1,0)[(Zθ, ϕ)]

]

.
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Now, using formula (4) twice, we have

Nx[(Zθ, ϕ)2] = 4Ex

[
∫ +∞

0
dlu e−θu ϕ(Bu)

∫ u

0
dt EBt

[
∫ +∞

0
ϕ(Bs) e−θs dls

]]

= 4Ex

[
∫ +∞

0
dt

∫ +∞

t
dlu e−θu ϕ(Bu)EBt

[
∫ +∞

0
ϕ(Bs) e−θs dls

]]

= 4Ex

[

∫ +∞

0
dt e−θt

EBt

[
∫ +∞

0
ϕ(Bs) e−θs dls

]2
]

= 4

∫

D
dy gθ(x, y)

(
∫

∂D
σ(dz)gθ(y, z)ϕ(z)

)2

.

Applying this result with ϕ = 1B∂D(x0,ε), we have

Nx

(

Zθ(B∂D(x0, ε))
2
)

= 4

∫

D
dy gθ(x, y)

∫ ∫

B∂D(x0,ε)2
σ(dz)σ(dz′)gθ(y, z)gθ(y, z′)

= 4

∫ ∫

B∂D(x0,ε)2
σ(dz)σ(dz′)

∫

D
dy gθ(x, y)gθ(y, z)gθ(y, z′).

We set

ψx,θ(z, z′) =

∫

D
dy gθ(x, y)gθ(y, z)gθ(y, z′).

The upper bounds for the kernel gθ lead to: for x ∈ K, z, z′ ∈ ∂D,

ψx,θ(z, z′) ≤











C if d ≤ 3

C
(

1 + ln+
1

|z−z′|

)

if d = 4

C|z − z′|4−d if d ≥ 5.

We then deduce easily, using the regularity of ∂D, that there exists ε0 ∈ (0, 1/2], and cd > 0,
such that for any x ∈ K, ε ∈ (0, ε0], x0 ∈ ∂D,

Nx

(

Zθ(B∂D(x0, ε))
2
)

≤











cdε
2(d−1) if d = 2 or 3

cdε
6
(

ln 1
ε

)

if d = 4

cdε
d+2 if d ≥ 5.

To finish, it suffices to combine the Cauchy-Schwartz inequality with the estimates for the
first and second moment.

From the upper bound of gθ, we get the next lemma.

Lemma 8.3. For d = 2, 3, for every x ∈ D and every θ > 0, the function

ψx,θ(y, y′) =

∫

D
dz gθ(x, z)gθ(z, y)gθ(z, y′)

is continuous on ∂D × ∂D.

Proposition 8.4. If d = 2 or 3, the measure Z is absolutely continuous with respect to the
surface measure σ, Nx-a.e., for x ∈ D.
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Proof. Mimicking the proof of theorem 5.1 in [2], we get that for d = 2 or 3, x ∈ D, Nx-a.e.,
Zθ is absolutely continuous with respect to σ for any θ > 0. Let A ⊂ ∂D be measurable,
such that

∫

A σ(dy) = 0. We deduce that (Zθ,1A) = 0, Nx-a.e. Since Zθ increases to Z as
θ decreases to 0, we deduce that Nx-a.e., (Z,1A) = 0 for any Borel set A ⊂ ∂D such that
∫

A σ(dy) = 0. Since supp Z ⊂ ∂D, this implies that Z is absolutely continuous with respect
to σ.

If A is a subset of R
d, let dim(A) denote its Hausdorff dimension. For a measure µ on R

d,
let supp µ denote its closed support.

Proposition 8.5. We have, for every x in D,

dim(supp Z) ≥ 3 ∧ (d − 1) Nx-a.e. on {Z 6= 0}.
Proof. Let d ≥ 4. We will first prove that

dim(supp Zθ) ≥ 3 ∧ (d − 1) Nx-a.e. on {Zθ 6= 0}.(21)

Notice that since Zθ increases to Z as θ decreases to 0, we have Nx-a.e.,

supp Z =
⋃

k∈N

supp Zθk

for any sequence (θk, k ∈ N) that decreases to 0. This implies the proposition.
The proof of (21) is an adaptation of the proof of Theorem 6.1 of [2]. We set, for α > 0,

hα(r) = r3| ln r|α. Using lemma 8.2 and a polarization argument, we have for every ε > 0,

Nx

[
∫

D
Zθ(dy)Zθ

(

B∂D(y, ε)
)

]

= 4

∫

|y−y′|<ε
σ(dy)σ(dy′)ψx,θ(y, y′).

The upper bounds for ψx,θ obtained in the proof of proposition 8.1 yield for ε small enough
and x ∈ D, that

Nx

[
∫

D
Zθ(dy)Zθ

(

B∂D(y, ε)
)

]

≤
{

C ′(x)ε3| ln ε| if d = 4

C ′(x)ε3 if d ≥ 5.

In the case d ≥ 5, we have for n ∈ N large enough,

Nx

[
∫

∂D
Zθ(dy)1{

Zθ

(

B∂D(y,2−n)
)

≥nα2−3n
}

]

≤ n−α23n
Nx

[
∫

∂D
Zθ(dy)Zθ

(

B∂D(y, 2−n)
)

]

≤ C ′(x)n−α23n2−3n

= C ′(x)n−α.

If α > 2, we deduce that

+∞
∑

n=1

1{

Zθ

(

B∂D(y,2−n)
)

≥nα2−3n
} < ∞ Zθ(dy) − .a.e. Nx − a.e.

This implies that

lim sup
ε→0

Zθ

(

B∂D(y, ε)
)

hα(ε)
< ∞, Zθ(dy).a.e. Nx − a.e.

and a well-known result gives that the hα-Hausdorff measure of supp Zθ is strictly positive
Nx-a.e. on {Zθ 6= 0}.

The case d = 4 is similar (with α > 3). In particular we deduce (21).
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9. Appendix

9.1. Reflected Brownian motion. The properties of the reflected Brownian motion B in
D̄ are from [5] and [15].

For t > 0, x, y ∈ D̄2, let pt(x, y) be the density of the reflected Brownian motion Bt when
B0 = x ∈ D̄. The density is a continuous function on (0,∞) × D̄ × D̄. It is also symmetric
on D̄ × D̄.

For any ε0 > 0, there exists a constant c such that for any x ∈ D̄, t ∈ (0, 1], ε ∈ (0, ε0],

1

ε

∫

Dε

pt(x, y) dy ≤ c/
√

t,(22)

and
∫

∂D
pt(x, y) σ(dy) ≤ c/

√
t,(23)

where σ(dy) is the surface measure on ∂D.
There exist two positive constant c and β such that for t ≥ 1, we have

|pt(x, y) − aD| ≤ c e−βt,(24)

where a−1
D =

∫

D dy.

We deduce from (23) and (24) that for any θ > 0, x ∈ D̄, there exists a constant c such
that

∫ ∞

0
e−θs ds

∫

∂D
ps(x, y)σ(dy) ≤ c.(25)

The local time of B on ∂D, l = (lt, t ≥ 0), is a continuous additive functional of B with
Revuz measure σ(dy). In particular we have for any nonnegative function f defined on
R

+ × ∂D

Ex

[
∫ ∞

0
f(s, Bs) dls

]

=

∫ ∞

0
ds

∫

f(s, y)ps(x, y) σ(dy).(26)

From this last equation and (23), it is easy to prove by recurrence that for T > 0 and n ≥ 1,
there exists a constant Kn such that for all t ∈ [0, T ],

sup
x∈D̄

Ex[lnt ] ≤ Kntn/2.(27)

The density ps(x, y) as a function of x belongs to C1(D̄) ∩ C2(D) for (s, y) ∈ (0,∞) × D̄.
Furthermore (see [15] p.600) there exists a constant c > 0 such that for (s, y) ∈ (0,∞) × D̄,
and x = (x1, . . . , xd) ∈ D̄,

∣

∣

∣

∣

∂ps

∂xi
(x, y)

∣

∣

∣

∣

≤ c s−(d+1)/2,(28)

and also
∫

D

∣

∣

∣

∣

∂ps

∂xi
(x, y)

∣

∣

∣

∣

dy ≤ c s−1/2.(29)
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9.2. Convergence lemmas. In this section, we present some convergence results which are
used for proving proposition 5.7. They all concern reflected Brownian motion.

Lemma 9.1.

lim
t→0

∫

D

1

t
Ex[l2t ]dx = 0.

Proof. Let us recall that we denote by τD the exit time of B out of D. For every x ∈ D
t0 > 0, we have for t ∈ (0, t0],

1

t
Ex[l2t ] =

1

t
Ex[l2t 1t>τD

]

≤ 1

t
Ex[l4t ]

1/2
Px(t > τD)1/2

≤ CPx(t > τD)1/2,

thanks to (27). So, for every x ∈ D, we deduce that

lim
t→0

1

t
Ex[l2t ] = 0.

Moreover, thanks to (27), 1
t Ex[l2t ] is bounded and the dominated convergence theorem gives

the result.

The next lemma is lemma 4.13 in [1].

Lemma 9.2. For every continuous function φ on D̄ and every continuous function ψ on
∂D,

lim
t→0

∫

D
dx φ(x)

1

t
Ex

[
∫ t

0
ψ(Bs)dls

]

=

∫

∂D
σ(dy)φ(y)ψ(y).

Lemma 9.3. For every bounded measurable function φ on D and every continuous function
ψ on D,

lim
t→0

∫

D
dx φ(x)

1

t
eθt

Ex

[
∫ t

0
ψ(Bs) e−θs e−

1
2
(κ·l)s ds

]

=

∫

D
φ(x)ψ(x)dx.

Proof. We first write

∫

D
dx φ(x)

1

t
eθt

Ex

[
∫ t

0
ψ(Bs) e−θs e−

1
2
(κ·l)s ds

]

=

∫

D
dx φ(x)

1

t
eθt

Ex

[
∫ t

0
ψ(Bs)ds

]

−
∫

D
dx φ(x)

1

t
eθt

Ex

[
∫ t

0
ψ(Bs)

(

1 − e−θs e−
1
2
(κ·l)s

)

ds

]

.
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The first term converges to the expected limit by the continuity of B. The second one goes
to 0 as t decreases to 0, since for t ≤ 1,

∣

∣

∣

∣

∫

D
dx φ(x)

1

t
eθt

Ex

[
∫ t

0
ψ(Bs)

(

1 − e−θs e−
1
2
(κ·l)s

)

ds

]∣

∣

∣

∣

≤ C

∫

D

1

t
Ex

[
∫ t

0

(

1 − e−θs e−
1
2
(κ·l)s

)

ds

]

dx

≤ C

∫

D

1

t
Ex

[
∫ t

0

(

θs +
1

2
(κ · l)s

)

ds

]

dx

≤ C

∫

D

(

t + Ex[lt]
)

dx,

and thanks to (27).

Lemma 9.4. For every continuous function φ on D̄ and every continuous function ψ on
∂D,

lim
t→0

∫

D
φ(x)

1

t
eθt

Ex

[
∫ t

0
ψ(Bs) e−θs e−

1
2
(κ·l)s dls

]

dx =

∫

∂D
φ(y)ψ(y)σ(dy).

Proof. As for lemma 9.3, we write

∫

D
φ(x)

1

t
eθt

Ex

[
∫ t

0
ψ(Bs) e−θs e−

1
2
(κ·l)s dls

]

dx =

∫

D
φ(x)

1

t
eθt

Ex

[
∫ t

0
ψ(Bs)dls

]

dx

−
∫

D
φ(x)

1

t
eθt

Ex

[
∫ t

0
ψ(Bs)

(

1 − e−θs e−
1
2
(κ·l)s

)

dls

]

dx.

The first term converges to the expected expression by lemma 9.2. The second one goes to 0
as t decreases to 0, since for t ≤ 1,

∣

∣

∣

∣

∫

D
φ(x)

1

t
eθt

Ex

[
∫ t

0
ψ(Bs)

(

1 − e−θs e−
1
2
(κ·l)s

)

dls

]

dx

∣

∣

∣

∣

≤ C

∫

D

1

t
Ex

[
∫ t

0

(

θs +
1

2
(κ · l)s

)

dls

]

dx

≤ C

∫

D
Ex[lt]dx + C

∫

D

1

t
Ex[l2t ]dx

thanks to (27) for the first term and lemma 9.1 for the second.

Lemma 9.5. For every bounded measurable function φ on D̄ and every continuous function
ψ on D̄,

lim
t→+∞

∫

D
φ(x)

1

t
Ex

[

ψ(Bt)
(

1 − e−
1
2
(κ·l)t

)]

dx =
1

2

∫

∂D
φ(y)ψ(y)κ(y)σ(dy).
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Proof. We write

∫

D
φ(x)

1

t
Ex

[

ψ(Bt)
(

1 − e−
1
2
(κ·l)t

)]

dx

=

∫

D
φ(x)

1

t
Ex

[

ψ(Bt)
1

2
(κ · l)t

]

dx +

∫

D
φ(x)

1

t
Ex

[

ψ(Bt)

(

1 − e−
1
2
(κ·l)t −1

2
(κ · l)t

)]

dx

=

∫

D
φ(x)ψ(x)

1

t
Ex

[

1

2
(κ · l)t

]

dx +

∫

D
φ(x)

1

t
Ex

[

(

ψ(Bt) − ψ(x)
)1

2
(κ · l)t

]

dx

+

∫

D
φ(x)

1

t
Ex

[

ψ(Bt)

(

1 − e−
1
2
(κ·l)t −1

2
(κ · l)t

)]

dx.

The first term converges to the sought-after term by lemma 9.2. The third term is bounded
from above by

∣

∣

∣

∣

∫

D
φ(x)

1

t
Ex

[

ψ(Bt)

(

1 − e−
1
2
(κ·l)t −1

2
(κ · l)t

)]

dx

∣

∣

∣

∣

≤ C

∫

D

1

t
Ex[l2t ]dx

and so converges to 0 by lemma 9.1.
For the second term, we fix ε > 0. As ψ is continuous on D̄, it is uniformly continuous

and there exists a η > 0 such that

∀x, y ∈ D̄, |x − y| < η =⇒
∣

∣ψ(x) − ψ(y)
∣

∣ < ε.

Now, we write
∣

∣

∣

∣

∫

D

1

t
Ex

[

(

ψ(Bt) − ψ(x)
)1

2
(κ · l)t

]

dx

∣

∣

∣

∣

≤ C

∫

D

1

t
Ex

[

∣

∣ψ(Bt) − ψ(x)
∣

∣1|Bt−x|<ηlt

]

dx + C

∫

D

1

t
Ex

[

∣

∣ψ(Bt) − ψ(x)
∣

∣1|Bt−x|≥ηlt

]

dx

≤ ε

∫

D

1

t
Ex[lt]dx + C

∫

D

1

t
Ex[1|Bt−x|≥ηlt]dx

≤ ε

∫

D

1

t
Ex[lt]dx + C

∫

D

1

t
Ex[l2t ]

1/2
P(|Bt − x| ≥ η)1/2dx

≤ ε

∫

D

1

t
Ex[lt]dx + C

∫

D

1√
t
Px(|Bt − x| ≥ η)1/2dx,

where we used (27) for the last inequality. Now, by lemma 9.2, the first term is less than
some constant times ε for t say less than 1. The second one goes to 0 as t goes to 0 and this
complete the proof.

9.3. Linear boundary problem. Recall D is a bounded domain with C3 boundary.

We first recall some results on the Neumann problem. If u ∈ C1(D̄), let
∂u

∂n
(x) denote

the outward normal derivative of u at x ∈ ∂D. Let θ ≥ 0 and ϕ a bounded measurable
function defined on ∂D. A function u is a strong solution to the Neumann problem N(ϕ, θ)
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if u ∈ C2(D) ∩ C1(D̄) and

∆

2
u − θu = 0 in D,

∂u

∂n
= ϕ on ∂D.

(30)

A function u is a weak solution to the Neumann problem N(ϕ, θ) if u ∈ C(D̄) and for any
function φ such that φ ∈ C2

b (D) ∩ C1(D̄) and ∂φ/∂n = 0 on ∂D, we have
∫

D
u(x)

∆

2
φ(x) dx − θ

∫

D
u(x)φ(x) dx = − 1

2

∫

∂D
ϕ(x)φ(x) σ(dx).

From the Green formula, it is clear that any strong solution is a weak solution.
Using the local time l, we can represent solution to the Neumann problem in D. We refer

to [9] for the next proposition.

Proposition 9.6. Let θ > 0 and ϕ be a bounded measurable function defined on ∂D. The
function

wθ(x) =
1

2
Ex

[
∫ ∞

0
e−θs ϕ(Bs) dls

]

is continuous in D̄. Furthermore it is also the only weak solution of the Neumann problem
N(ϕ, θ).

If ϕ is more regular, then we get strong solution to N(ϕ, θ). For k ∈ N, α ∈ (0, 1], recall
that Ck,α(Ω) is the set of functions defined on Ω which are k times differentiable such that
their kth derivative is Hölder with parameter α.

From theorem 2.3 in [15], we have

Proposition 9.7. Let θ > 0, f ∈ C0,α(D̄) and ϕ ∈ C0,α(∂D). Then, the function defined
for x ∈ D̄ by

wθ(x) = −Ex

[
∫ ∞

0
e−θs f(Bs) ds

]

+
1

2
Ex

[
∫ ∞

0
e−θs ϕ(Bs) dls

]

belongs to C2(D) ∩ C1(D̄) and solves

∆

2
u − θu = f in D,

∂u

∂n
= ϕ on ∂D.

(31)

The next proposition is a consequence of (28) and (29).

Proposition 9.8. Let θ > 0, and f bounded measurable defined on D. The function defined
on D̄ by

Ex

[
∫ +∞

0
f(Bs) e−θs ds

]

=

∫ ∞

0
ds

∫

D
dy ps(x, y)f(y) e−θs

belongs to C1(D̄).

From remark 6.3.2.4 in [8], we get the next result.

Proposition 9.9. Let θ > 0, f ∈ C0,α(D̄) and ϕ ∈ C1,α(∂D). There exists a unique strong
solution to (31). Furthermore it belongs to C2,α(D̄).
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We end this section with well known results for the Dirichlet problem. Let θ ≥ 0 and f a
measurable function defined on D and g a measurable function defined on ∂D. A function u
is a strong solution to the Dirichlet problem if u ∈ C2(D) ∩ C0(D̄) and

∆

2
u − θu = f in D,

u = g on ∂D.
(32)

The next two results can be found in [7].

Proposition 9.10. Let θ ≥ 0. Let g be a bounded measurable function defined on ∂D. The
function defined on D̄ by

uθ(x) = Ex

[

g(BτD
) e−θτD

]

belongs to C∞(D) and ∆
2 uθ − θuθ = 0 in D. Furthermore, if g ∈ C0(∂D), then uθ ∈ C0(D̄)

and uθ = g on ∂D.

Proposition 9.11. Let θ ≥ 0. Let f be a bounded measurable function defined on D. The
function defined on D̄ by

uθ(x) = −Ex

[
∫ τD

0
f(Bs) e−θs ds

]

belongs to C0,1(D) ∩ C0(D̄) and uθ = 0 on ∂D. Furthermore, if f ∈ C0,α(D), then uθ ∈
C2,α(D) and ∆

2 uθ − θuθ = f in D.

From remark 6.3.2.4 in [8], we get the next result.

Proposition 9.12. Let θ ≥ 0, f ∈ C0,α(D̄) and g ∈ C2,α(∂D). There exists a unique strong
solution to (32). Furthermore it belongs to C2,α(D̄).

9.4. Proof of lemma 3.1. Assume α > 0 and let ε0 > 0 be fixed. For x ∈ D̄, consider

uα,ε(x) = Ex

[
∫ ∞

0
e−αs 1

ε
1Dε(Bs) ds

]

=

∫ ∞

0
ds e−αs

∫

dy ps(x, y)
1

ε
1Dε(y),

the α-potential of the continuous additive functional
∫ t
0

1
ε 1Dε(Bs) ds for the reflected Brow-

nian motion in D̄. We deduce from (22) and (24) that for ε ∈ (0, ε0], x ∈ D̄,

|uα,ε(x)| ≤
∫ 1

0
c

ds√
s

+

∫ ∞

1
e−αs[c + aD].

Therefore, uα,ε is uniformly bounded in D̄ for ε ∈ (0, ε0]. From the continuity of the density
p of B, (22) and (24), it is easy to deduce that uα,ε converges as ε decreases to 0 to the
α-potential of l, the local time on ∂D:

uα(x) = Ex

[
∫ ∞

0
e−αs dls

]

=

∫ ∞

0
ds e−αs

∫

σ(dy) ps(x, y).

Furthermore this convergence is uniform in D̄. Notice also that the continuity of the density
p implies the uniform continuity of uα and uα,ε for ε ∈ (0, ε0] on D̄ .

Because Lα,ε depends only on the spatial motion W , the three other components of the
Brownian snake, that is R, J and K doesn’t play any role in what follows. However we shall
keep the notation defined in section 2. Let x̃ ∈ E with first component x ∈ D̄.
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Now we compute I = Nx̃[Lα,ε
σ Lα,ε′

σ ] and show it converges to a limit as ε and ε′ decrease
to 0. We have

I = Nx̃

[
∫ σ

0
dLα,ε

s

∫ σ

s
dLα,ε′

u

]

+ Nx̃

[
∫ σ

0
dLα,ε

s

∫ s

0
dLα,ε′

u

]

.

The time reversal property of the Itô measure and the properties of Nx̃ readily imply that
the latter itself enjoys the same invariance property. In particular the two terms of the right
member are equal. From the Markov property of the Brownian snake (see [12]), we deduce
that

I = 2Nx̃

[
∫ σ

0
dLα,ε

s E∗
W̃s

[Lα,ε′

σ ]

]

.

We deduce from proposition 2.1 of [13] that for w̃ ∈ Wx̃,

E∗
w̃[Lα,ε′

σ ] = 2

∫ ζ

0
dt Nw̃(t)[e

−αt Lα,ε′

σ ],

where ζ is the lifetime of w̃. Therefore using formula (3) we get that

Nx̃[Lα,ε′

σ ] = Ex̃

[
∫ ∞

0
e−αs 1

ε′
1Dε′

(Bs) ds

]

= uα,ε′(x).

Thus, for w̃ ∈ Wx̃,

E∗
w̃[Lα,ε′

σ ] = 2

∫ ζ

0
dt e−αt uα,ε′(W (t)).(33)

Using (3) again, we get

I = 4

∫ ∞

0
du Ex

[

e−αu 1

ε
1Dε(Bu)

∫ u

0
dt e−αt uα,ε′(Bt)

]

= 4Ex

[
∫ ∞

0
dt e−αt uα,ε(Bt)u

α,ε′(Bt)

]

.(34)

Since the function uα,ε are uniformly bounded and converge as ε ↓ 0, we deduce form domi-
nated convergence that I converge as ε and ε′ decrease to 0. This implies that Lα,ε

σ converge
in L2(Nx̃).

Now we use standard techniques to prove the a.e. convergence of Lα,ε
s for s ≥ 0 (see [13]

p. 402). For s > 0, we set

M ε
s = Lα,ε

s + E∗
W̃s

[Lα,ε
σ ].

The process M ε = (M ε
s , s > 0) is continuous Nx̃-a.e. thanks to the continuity of uα,ε and (33).

Since Lα,ε
σ ∈ L1(Nx̃) (recall that Nx̃[Lα,ε

σ ] = uα,ε(x)), we deduce from the Markov property of
the Brownian snake that M ε is a continuous martingale under Nx̃. Notice that M ε

∞ = Lα,ε
σ

converges in L2(Nx̃) as ε ↓ 0. From the maximal Doob inequality, we get for δ > 0,

Nx̃

[

sup
s>0

∣

∣

∣
M ε

s − M ε′

s

∣

∣

∣
> δ

]

≤ 1

δ2
Nx̃[(Lα,ε

σ − Lα,ε′

σ )2].

In particular M ε converges to a continuous martingale M = (Ms, s > 0) and there exists
a sequence (εk, k ≥ 1) decreasing to 0, such that Nx̃-a.e. limk→∞ sups>0 |M εk

s − Ms| = 0.
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Because of the uniform convergence of uα,ε, we deduce that Nx̃-a.e. for all s > 0, Lα,εk
s

converge to a limit

Lα
s = Ms − 2

∫ ζs

0
dt e−αt uα(Ws(t)).(35)

Therefore, the process (Lα
s , s > 0) is a continuous additive functional of the Brownian snake.

The measures dLα,εk
s on R

+ converge weakly to dLα
s . The function fα′(s) = e(α−α′)ζs

defined on R
+ is continuous and bounded for any α′ ≥ 0, Nx̃-a.e. We deduce that the

measure dLα′,ε
s = fα′(s)dLα,ε

s converges weakly to dLα′

s = fα′(s)dLα
s . We write L for L0. The

first part of the lemma is proved.
Let F be a nonnegative continuous function defined on Wx̃. Assume F is bounded from

above by a. From (3), we have

Nx̃

[
∫ σ

0
F (Ws)dLα,εk

s

]

= Ex̃

[
∫ ∞

0
F (Θ(u)) e−αu 1

εk
1Dεk

(Bu) du

]

.(36)

From theorem 7.2 of [15], we get that the right member converges, as ε decreases to 0, to

Ex̃

[
∫ ∞

0
F (Θ(u)) e−αu dlu

]

.

To prove the convergence of Nx̃

[

∫ σ
0 F (W̃s)dLα,εk

s

]

to Nx̃

[

∫ σ
0 F (W̃s)dLα

s

]

, using Fatou’s

lemma with F and a − F , we see it is enough to check that Nx̃ [Lα,εk
σ ] converges to Nx̃ [Lα

σ ].
We have from the convergence of uα,ε that

lim
k→∞

Nx̃ [Lα,εk
σ ] = lim

k→∞
uα,εk(x) = uα(x).

Thanks to the upper bound of uα,ε, we deduce from (33) by dominated convergence that

Nx̃[E∗
W̃s

[Lα,εk
σ ]] converge to Nx̃[2

∫ ζs

0 dt e−αt uα(Ws(t))].

Notice that for s > 0, we have from (35)

Nx̃ [Lα
σ ] = Nx̃[M∞] = Nx̃[Lα

s ] + Nx̃

[

2

∫ ζs

0
dt e−αt uα(Ws(t))

]

.(37)

Using the law of ζs under the Itô measure, we have

Nx̃

[

2

∫ ζs

0
dt e−αt uα(Ws(t))

]

= 2

∫ ∞

0
e−αt

Ex[uα(Bt)]
1√
2πs

e−t2/2s dt

= 2

∫ ∞

0
e−α

√
sr

Ex[uα(B√
sr)]

1√
2π

e−r2/2 dr,

where we set r = t/
√

s. From dominated convergence, using the continuity of uα and the

continuity of the path B, we see that lims→0 Nx̃[2
∫ ζs

0 dt e−αt uα(Ws(t))] = uα(x). Using
Fatou’s lemma we get

Nx̃[Lα
s ] ≤ lim inf

k→∞
Nx̃[Lα,εk

s ]

= lim
k→∞

Nx̃[Lα,εk
σ ] − lim

k→∞
Nx̃[E∗

Ws
[Lα,εk

σ ]]

= uα(x) − 2

∫ ∞

0
e−α

√
sr

Ex[uα(B√
sr)]

1√
2π

e−r2/2 dr.
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We see that lims→0 Nx̃[Lα
s ] = 0. Therefore we deduce from equation (37) that

Nx̃ [Lα
σ ] = lim

s→0
Nx̃

[

2

∫ ζs

0
dt e−αt uα(Ws(t))

]

= uα(x).

As we said, this implies the convergence of Nx̃

[

∫ σ
0 F (W̃s)dLα,εk

s

]

to Nx̃

[

∫ σ
0 F (W̃s)dLα

s

]

.

From (36), we deduce that

Nx̃

[
∫ σ

0
F (W̃s) e−αζs dLs

]

= Ex̃

[
∫ ∞

0
F (Θ(u)) e−αu dlu

]

.

This hold for any bounded continuous function F . By monotone class theorem, this holds
also for all nonnegative measurable function F . By monotone convergence, let α ↓ 0 to prove
the end of the lemma.
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