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Abstract. We describe a new way to reconstruct the surface of an object
from multiple views. We use the level sets method to get a surface such
that its apparent contours are compatible with the images. We enforce,
as much as possible, the apparent contours to be projected in each image
in areas where the magnitude of the gradient of the grey level is high. Our
approach is new for two reasons: we do not extract any contour in the
images and we deal with the problem of occlusion. As a result, we do not
obtain the classical ”visual hull” [24] but a minimal surface which is closer
to the actual shape of the object. Furthermore, our work can complement
the approach of Faugeras and Keriven [14], thus getting a robust way to
recover shape both from contours and from stereo-correlation.

Keywords: stereoscopic vision, shape from contours, variational meth-
ods.
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1 Introduction

1.1 Previous Work

During the past decades many methods have been proposed to reconstruct the
3D shape of objects from images. Among these, some are based on feature match-
ing [2] where a sparse surface map is produced. Some methods use texture cor-
relation [3, 17, 21] to get a dense reconstruction. Other methods [6, 11, 16, 22, 31,
32, 26] use the apparent contours to compute the visual hull [24]. Space-carving
was also proposed in [23, 29] where photo-consistency is used to carve voxels.

More recently, some methods based on a variational framework were pro-
posed, using texture [14], texture and contours [13] or segmentation [34],

1.2 Motivation

In [13], Cross and Zisserman recently suggested to complement the variational
approach of Faugeras and Keriven [14] with the ideas of shape from contours.
Such a work is motivated by the complementarity of both following criterions:
where the objects are textured, edges are somehow difficult to extract but simi-
larity between images is meaningful; when there is no texture, similarity is useless
but edges are correctly extracted and the apparent contours help to reconstruct
the 3D shape of objects.

Our goal here, is to revisit this idea in order to make it compatible with what
we think is the approach of [14]: using level sets and thinking in terms of “3D
to 2D” rather than “2D to 3D”.

2 Philosophy

Let us consider a bit more closely the work of [14], because we will see further
that our work proceeds from the same philosophy. Their main idea is to take
advantage of the variational framework to consider the standard problem of
dense stereovision in the other way. For instance, in the case of two images,
one generally tries to find, for each pixel (or feature) of the first image, the
corresponding pixel in the second image as the most similar one (usually in term
of normalized cross-correlation) satisfying the geometry of the cameras i.e. the
epipolar constraint. A regularity constraint is also often added to the 3D surface
reconstructed this way. This could be called a “2D to 3D” approach. In [14], the
authors try to get a 3D surface, the projections of which in the images satisfy
the similarity constraint. Therefore, it is the surface itself which is submitted
to some optimization process such that it fits the chosen constraint in the best
possible way. The advantages of this “3D to 2D” approach are:

– dealing naturally with more than two cameras.
– dealing with occlusions. At each step of the optimization process, an esti-

mation of the surface is available. Thus, considering a point of the surface,
one is aware of which cameras cannot see it because of some other object or
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part of the same object. As a result, one can avoid the mistake of measuring
between its projections in images where it his hidden by another point.

The classical shape from contours approaches take the somehow extracted 2D
contours as a starting point and try to combine them to get the 3D shape. Even
in [13] where a surface evolves toward the 3D shape, this surface tries to minimize
its distance to the 3D cones generated by the each of the 2D contours.

In this paper, we try to mimic the approach of [14] consisting of verifying in
the images themselves that the guessed surface fits the data. Doing so, we hope
to get the same kind of advantages.

Our idea is the following: given different images of the same object, find a
surface such that its apparent contours with respect to each of the images project
in areas which can correspond to edges.

3 The geodesic active contours framework

The most appropriate framework for our purpose seems to be the one of geodesic
active contours [9, 7, 8]. Given an image I and a parameterized closed curve C(q),
the classical snake approach [19] consists in detecting a closed contour in I by
minimizing the energy:

E(C) = α

∫ 1

0

|C′|2dq + β

∫ 1

0

|C′′|2dq − λ

∫ 1

0

|∇I(C)|dq

In [7], the authors consider instead the minimization of only two terms, an
internal (regularizing) energy and an external (linked to data) one :

E(C) = α

∫ 1

0

|C′|2dq + λ

∫ 1

0

g(|∇I(C)|)2dq

where g : [0,∞[→ R+ is a strictly decreasing function such that g(r) → 0 as
r →∞. Usually, the term g(|∇I(C)|) is replaced by:

g =
1

1 + |∇Ĩ|p

where Ĩ is a smoothed version of I and p = 1 or 2. Using the Maupertuis’
Principle, this amounts to minimizing the following intrinsic energy:

E(C) =
∫ L(C)

0

g(|∇I(C)|)ds (1)

where L(C) is the length of C and ds is the Euclidean arc-length. In order to
minimize (1), they compute its Euler-Lagrange equation, resulting in a curve
evolution for C (steepest descent):

∂C
∂t

= g(|∇I(C)|)κn− (∇g.n)n (2)
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where κ is the curvature of C and n its unit normal. In order to detect non
convex contours, they finally add a constant term c:

∂C
∂t

= g(c + κ)n− (∇g.n)n (3)

In [8], the authors extend the so-called geodesic active contours to the 3D
case, when I is a 3D image. C becomes a surface S, the energy becomes the
weighted area:

E(S) =
∫ ∫

S
g(|∇I(C)|)da

where da is the surface element of S. The curve evolution (3) becomes a surface
evolution:

∂S
∂t

= g(c + H)n− (∇g.n)n (4)

where H is twice the mean curvature of S.

�

�

�
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Fig. 1. The apparent contour Γ of the surface S should be projected in areas which
can correspond to edges, i.e. where the magnitude of the gradient of the grey level of
the image I is high: g(|∇I|) should be small on Π(Γ )
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4 Shape from contours

4.1 The main model: apparent contours

Let us come back to our problem. Given the surface S of an object, a camera
C and the corresponding image I, let Γ (S,C) be the apparent contour of S
viewed by C, s the arc-length of Γ , M(s) the associated 3D point and Π(M)
its projection into image I, our first idea is to minimize

∫

Γ (S,C)

g(|∇I(Π(M(s)))|)ds

with respect to S (see figure (1)). To simplify notations, let G(M) = g(|∇I(Π(M))|).
Our energy becomes ∫

Γ (S,C)

G(M(s))ds (5)

Because this energy depends only upon the curve Γ , minimizing it with respect
to a surface is an ill-posed problem. In order to deal with a smoothed version of
Γ , let us introduce for any point M of S the indicator h(M) of Γ (h(M) = 1 if
M ∈ Γ , h = 0 otherwise), and h̃ a smoothed version of h (h̃ = 1 on Γ , h̃ = 0
outside a neighborhood of Γ and h̃ is smooth enough). We then replace energy
(5) with

E(S) =
∫ ∫

S
h̃(M)G(M)da (6)

Computing the Euler-Lagrange equation of energy (6) is not as straightfor-
ward as in the case of the geodesic surface. Actually, the point is that, because
of h̃, E now depends not only upon M but also upon n, the normal to S at M .
Note that it was also the case in the work by Faugeras and Keriven. Computing
the derivatives of h̃ with respect to n is possible. Yet, taking the derivatives of h̃
into account, even its derivative with respect to M , could lead to an undesired
behavior of S. If we do so, the points of Γ will tend not only to move toward
regions of low G but also to deform locally the surface in order no to be on an
apparent contour anymore (where h̃ = 0 !).

Considering this, instead of using the exact Euler-Lagrange equation of en-
ergy (6), we prefer to compute it at fixed h̃, thus yielding the following evolution
for S, where we add a constant term c as in equation (4):

∂S
∂t

= h̃[G(c + H)− (∇G.n)]n (7)

Though they give the complete Euler-Lagrange of their energy, Faugeras and
Keriven say they did not use all the terms of it in their actual implementation,
arguing they would otherwise observe the same undesirable behavior: the surface
would locally modify its normal to optimize the stereo-correlation, even when it
is far from the solution.
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4.2 Occlusion

Following [14], let us also take visibility into account. It is important that our
method does not expect edges in the images were the is none because of occlusion.

Given the surface S and a camera C, let v(M) be a visibility indicator such
that v = 0 when M is hidden from the camera by another part of the surface
and v = 1 otherwise. Let ṽ be a smoothed version of v. We will now consider a
corrected evolution for S:

∂S
∂t

= ṽh̃[G(c + H)− (∇G.n)]n (8)

Again, we do not claim the right hand side term of (8) to be the correct Euler-
Lagrange equation of

∫ ∫
S ṽ(M)h̃(M)G(M)da, but we justify our choice not only

because the derivatives of ṽh̃ are intricate (ṽ depends on the whole surface!) but
also because it is not a good idea to let the points of S directly act on the ṽh̃
term of the energy in order to minimize it.

4.3 Multiview

Given n views of the same object, taken by n cameras Ci, it seems straightfor-
ward to consider the energy (with obvious notations):

∫ ∫

S
[
∑

i

ṽi(M)h̃i(M)Gi(M)]da (9)

and the evolution equation:

∂S
∂t

= [
∑

i

ṽih̃i[Gi(c + H)− (∇Gi.n)]]n (10)

4.4 Coupling to stereo-correlation

Motivated by the complementarity of both approaches (see section 1.2), we could
couple ours to the one of [14]. Because of the common points between the two
methods (level sets, extension of velocities, visibility computation), this extension
is quite natural. We do this simply adding the contribution of both methods with
some scaling factor α. Let Φ(M,n) be the stereo-correlation of M corresponding
to the best choice of two cameras where M is visible (see [14]). Following the
actual implementation by Faugeras and Keriven, we keep only some part of the
Euler-Lagrange of the energy Ester(S) = − ∫ ∫

S Φ(M)da, thus yielding:

∂S
∂t

= [
∑

i

ṽih̃i[Gi(c + H)− (∇Gi.n)] + α(1− Φ)H + α∇Φ.n]n (11)

(see also [14] on why the term before H should be (1− Φ) instead of −Φ)
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4.5 Correctness

In the case of the active contours [9, 7, 8], the authors proved the existence of a
unique viscosity solution to their evolution equation. In our case, even though
the equation (8) is far less complex than the one in [14], it seems that existence
and uniqueness of a viscosity solution of (8) is not immediate. While we are aware
that proving such results is essential, this is not the only direction to investigate.
The problem of shape recovery from images using variational methods is still at
its beginning. As far as we know, the ideal energy is still to be found. This
energy should certainly take into account contours and stereo-correlation, but
also the ideas of stereo segmentation [34] and the state of the art in shape from
shading [18] and shape from texture [12, 5, 4, 20]. Solving the contour extraction
problem with variational methods reached a first stage when the snakes model
was proposed. Then, came geodesic active contours. Here, we are still trying to
reach this first stage.

5 Implementation

Let us now go into some important implementation details.

5.1 The level sets method

Like the authors of [14] and of [9, 7, 8], we will use the now standard level sets
method [27, 30]. This method is stable and deals with topological changes. The
surface S is considered as the zero level set of a surface of R4 which is the graph
of a function u : R3 → R, ie S = {M ∈ R3|u(M) = 0}. The evolution of S is
obtained indirectly from the evolution of the embedding function u. If we want
to implement the evolution equation St = βn, we simply let u depend upon time
t and evolve according to ut = β|∇u|. It can be shown [27] that the zero level
set of u(t, .) evolves according to the desired equation.

In our case, since H = div( ∇u
|∇u| ) and n = ∇u

|∇u| , the evolution equation (8)
gives for u:

∂u

∂t
= ṽh̃[G(c + div(

∇u

|∇u| ))|∇u|+∇G.∇u] (12)

Like in [10] and [14], our evolution velocity in equation (8) has only a meaning
on S itself. Although G is defined in the whole domain of u, and although h̃ and
ṽ could be given a meaning for each level set of u, we do not want all the level
sets of u to evolve according to equation (8). Indeed, only its zero level set must
project its apparent contours into the images in places where g is small. The
other level sets should not fit the edges of the images! Therefore, like in [28], we
use a PDE based procedure to extend the velocity from the surface to all the
domain of u so that it remains constant along the normals to the surface. Note
that, because we use the narrow-band approach [1] to make our scheme faster,
this domain is just a small band around the zero level set. Thus, the extension
step does not cost much time.
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We proceed in the following way: given ṽh̃G on the surface, we extend it to
the domain of u as a function ṽh̃G such that ∇u.∇ṽh̃G = 0. In the same way,
we extend ṽh̃∇G as ṽh̃∇G. Finally, the evolution equation for the embedding
function u is:

∂u

∂t
= [ṽh̃G(c + div(

∇u

|∇u| ))|∇u|+ ṽh̃∇G.∇u] (13)

rather than equation (12).

5.2 Computation of ṽ

Like the authors of [14], we need to know, at each time step, which points of
the surface are visible by each of the cameras. For such a purpose, we extract a
triangulated approximation of the zero level set of u using the marching cubes
algorithm [25], and fill a z-buffer for each camera in order to get v. It is quite
straightforward to modify the z-buffer procedure to get a smoothed version ṽ
of v. It is nowadays possible, though we did not try it, to use the hardware of
the graphic card to do the job. Instead, we are currently investigating a way of
getting ṽ directly from u without extracting the zero level set.

5.3 Computation of h̃

Given the optical center Ω of the camera and the normal n to the surface in M ,
it is easy to see that, if M is visible from the camera, then it is on the apparent
contour Γ if and only if −−→ΩM.n = 0 ( −−→ΩM.n could also vanish outside Γ in
points of non convex parts of S, but such points are non visible). We thus have
h(M)v(M) = 1 if v(M) = 1 and −−→ΩM.n = 0, and h(M)v(M) = 0 otherwise. For
the smoothed version, this gives:

h̃ṽ = f(|
−−→
ΩM

|−−→ΩM | .n|)ṽ (14)

were f is a strictly decreasing function from 1 to 0 between 0 and ∞.

5.4 Computation of ∇G

Let us detail a straightforward computation just to show that ∇G is easily
computed. Let M = (x, y, z)T and m = (X, Y )T = Π(M) be its projection
into the image. We will follow the notation of [15]. Let M̃ = (x, y, z, 1)T be the
projective version of M , and P̃ be the 3× 4 matrix associated with the camera.
Let m̃ = (u, v, w)T be the projective version of m. We have m̃ = P̃ M̃ and then
m = (u/w, v/w)T .

Let us denote:

P̃ =




r1 tx
r2 ty
r3 tz
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where ri are the three lines of the rotation associated with the camera and
(tx, ty, tz)T its translation. One can easily show that ∇G is linked to ∇g =
( ∂g

∂X , ∂g
∂Y )T by:

∇G =
∂g

∂X

wr1 − ur3
w2

+
∂g

∂Y

wr2 − vr3
w2

(15)

Fig. 2. Our method versus the convex hull: Top row: the right view, front view, left
view and top view of two spheres. Middle row: the two spheres reconstructed with
methods based on the visual hull. See how the small sphere is partially reconstructed
(left image) and how it fits the front view (center image) but does not fit the right
view (right image). Bottom row: the two spheres reconstructed with our method. See
how the small sphere is reconstructed (left image) and how it fits the front view (center
image) and the right view (right image)
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6 Results and comparisons

We will now compare the results of our method to that of the other shape from
contour methods. As expected, the advantages of our “3D to 2D” approach
comes from avoiding the a-priori extraction of contours in the images.

6.1 Occlusions and inclusions

Because of occlusion, the apparent contours are not necessarily closed curves.
Moreover, they can be included one into the other. This makes the extraction of
a-priori contours the weak point of the other shape from contour methods.

For instance, let us consider the case of two objects (two spheres here), a
big and a small one. Let us take four images of these objects: a front view,
a right view, a left view and a top view (see figure (2) for a test with noisy
synthetic images). In the right view, the apparent contour of the small object
is inside the big object’s apparent contour. In this view, an automatic contour
extraction (eg using the geodesic active contours) only obtains the outer curve.
Even if we extracted the inner contour too, how could we know a-priori whether
it corresponds to a hole, to a texture on the big object, or to another object. As a
result, classical “2D to 3D” approaches can only reconstruct an object based on
the “visual hull” [24] obtained from the outer contours, thus yielding the objects
shown in the middle row of figure (2) where the small object is not reconstructed
with all the available information. With our approach, the projection of such an
incomplete result into the right view does not fit its edges. Our method does
not stop here and keeps evolving toward the result shown on the bottom row of
figure (2): the small object is reconstructed in the best possible way. Thanks to
occlusion detection, the small object does not generate any contour in the left
view otherwise it would have tried to fit the edges of the big object or would
have shrinked and would have disappeared.

6.2 Multiview coherence

An advantage of our approach is the ability to work even when the extraction
of the contours in the 2D images are difficult, for instance when the images
are noisy, or taken with bad lighting conditions or with a very contrasted or
textured background. In these cases, it is difficult to get in the 2D images all
the contours of the objects we want to reconstruct and only these contours. The
3D coherence inherent to our method can help to get rid of spurious contours
or to keep those with low contrast. The idea here is that an image can come to
help another one when things get bad. Figure (3) shows the reconstruction of a
vase from eight noisy synthetic images taken all around it. The background is a
layer of different rectangles so that it generates spurious contours in the images.
Despite this, the shape is completely recovered. A close look a the second step of
the evolution (the top right image) reveals edges (marked with arrows) caused
by those spurious contours. Because they does not fit any contour in the other
images, these edges quickly disappear.
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Fig. 3. Multiview coherence: Top left: two of the eight images of a vase observed spu-
rious backgrounds. Other images: the evolution process. Despite the backgrounds, and
their effects (see arrows in the top right image), the shape is completely recovered.

Fig. 4. Contours and stereo-correlation (1): Seven of the twenty images used to recover
a human head despite bad lightning condition and few texture information (by courtesy
of the RealViZ company). Bottom right: one of the four rough manual detouring used
to generate the initial surface.
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Fig. 5. Contours and stereo-correlation (2): Top left: the initial surface generated from
rough manual detouring of four of the twenty images. Top right: an intermediate stage
of the evolution. Bottom line: two views of the recovered shape.



13

6.3 Contours and stereo-correlation

Figures (4) and (5) show the ability of our method to deal with bad conditions
when coupled to the stereo-correlation method [14]. Twenty images are used to
recover a human head. Alone, our method does not work: some contours are
not even visible in the images because of shades. Alone, the stereo-correlation
method does not find enough texture (despite some black points painted on
the face in order to accurately calibrate the cameras). When coupled, the two
methods are able to use the contour and texture information where available
and to recover the correct shape. Nevertheless, with a far initial condition, the
evolution process was trapped into a local minimum. To prevent this, we had
to use as a closer initial condition the convex hull generated from a very rough
manual detouring of the head in four of the twenty images. Note that, even from
this initial condition, none of the two methods works alone. Note also that 2D
detouring with active contours is very hard in these images.

While the previous examples took less than five minutes on a standard 1GHz
PentiumIII, this example took not less than one hour because of stereo but also
because of the number of images.

7 Conclusion

We have presented a novel approach to shape from contours based on a “3D to
2D” paradigm. It is based on a variational framework and can be implemented
with the level set method. Its advantages are: (i) to recover more completely
the objects than with the visual hull, (ii) to deal with occlusions, (iii) to work
even when 2D contours extraction is difficult and (iv) the ability to be coupled
to the stereo-correlation criterion [14]. Our future work includes: investigating
the possibility to prove existence and uniqueness of a solution to our variational
problem or to a modified one; understanding better how to use 3D coherence to
improve our method in bad conditions; coupling it to texture-based and shading
based methods; improving speed; and finally extending it to deal with sequences
of images in order to recover shape and motion simultaneously as in [33].
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