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We onsider the Navier-Stokes equation whih desribes the evolution of the veloity�eld of an inompressible visous uid in a bounded domain � of IR2 satisfying the no-slipboundary ondition: �tu(t; x) + (u:r)u(t; x) = ��u(t; x)�rp in �;r:u(t; x) = 0 in � ; u(x; t) = (0; 0) for x 2 ��;where p is the pressure and � > 0 the visosity oeÆient. The aim we pursue is toobtain a probabilisti interpretation of this equation whih enables us to onstrut aneÆient Monte-Carlo partile method for the simulation of the solutions. Another proba-bilisti approah based on branhing proesses has already been developped by Benahour,Roynette, Vallois [1℄, generalized in dimension 3 by Giet [7℄. But even if the authors pro-pose some partile approximations, the onvergene of the method is not shown and thepartile systems they desribe are not for use in pratie. Our purpose is to onstrutsome easily simulable partile systems, behaving as di�usion proesses reeted on theboundary, with spae-time random births loated at the boundary and to prove rigorouslythe propagation of haos of the laws of these proesses to a probability measure assoiatedwith the solution of the Navier-Stokes equation.One assoiates lassially with the two dimensional Navier-Stokes equation in the wholeplane the simpler vortex equation satis�ed by the url of the veloity. This equationbehaves as a MKean-Vlasov equation and the famous vortex simulation algorithm due toChorin [4℄ omes from its interation struture, sine the veloity an be written as theonvolution of the vortiity by the Biot and Savart kernel. The probabilisti approah,�rstly introdued by Marhioro-Pulvirenti [14℄, has been developed in M�el�eard [16℄, [17℄.The partile systems are naturally de�ned and the propagation of haos proved.In a bounded domain, a similar approah would onsist in replaing the Biot and Savartkernel by the orthogonal gradient K of the Green funtion of the Dirihlet problem in thedomain. But one then only obtains the nullity of the normal omponent of the veloityon the boundary. To obtain in addition the nullity of the tangential omponent, we areinspired by Cottet [5℄, who proves that by adding a nonlinear Neumann ondition to thevortex equation, one obtains an admissible vortiity �eld in the sense that the assoiatedveloity satis�es a posteriori the no-slip ondition.This nonlinear Neumann ondition is really hard to take into aount, and in thispaper, we deal with a �xed Neumann ondition and onsider the equation�tw(t; x) +r:(wKw)(t; x) = ��w(t; x) in �;�nw = rw:n = g on ��2



where the funtion g is �xed. Our aim is in partiular to show that this Neumann onditionis represented at the level of stohasti proesses by spae-time random births loated atthe boundary of the domain.More generally, in this paper, we prove the existene and uniqueness of a solution ofsuh a vortex equation with Neumann's boundary ondition in an appropriate spae forwhih we have obtained energy a priori estimates. Then we assoiate with the solutionof the equation a nonlinear di�usive and reeted proess, with spae-time random birthsat the boundary (with law managed by the funtion g). We onstrut interating nor-mally reeted partile systems with spae-time random birth at the boundary and provethe propagation of haos to the law of the nonlinear proess assoiated with the vortexequation. We are inspired by the paper of Snitman [21℄, whih onerns the behaviourof interating and reeted MKean-Vlasov partile systems living in a bounded domain.Some additional diÆulties appear here, due to the singular interating kernel K and tothe spae-time random births. Moreover, the interation is mean-�eld but appears throughthe weighted empirial measure, the weights being related to the initial ondition and to g.Aknowledgements : We thank Tony Leli�evre for numerous disussions onerningthe variational approah for evolution equations.2 The modelLet T > 0. We are interested in the following equation :�tw(t; x) +r:(wKw)(t; x) = ��w(t; x) in ℄0; T ℄��;w(0; x) = w0(x) in �;�nw = rw:n = g on ℄0; T ℄� �� (2.1)where n(x) denotes the outward normal to �� at the point x andKw(t; x) = R�K(x; y)w(t; y)dy.The kernel K(x; y) is equal to r?xG(x; y) = (��x2G(x; y); �x1G(x; y)) where G(x; y) isthe fundamental solution of the Poisson equation�xG(x; y) = Æy(x); x 2 �; (2.2)G(x; y) = 0; x 2 �� (2.3)Let us remark the important properties of the kernel K:8(x; y) 2 ( ��)2 with x 6= y;rx:K(x; y) = 0 ; 8x 2 ��;8y 2 ��; K(x; y):n(x) = 0 (2.4)3



In all the following, we will moreover assumeHypotheses (H):The domain � of IR2 is bounded, simply onneted and of lass C4.w0 2 L2(�) ; g(t; x) 2 L2t ([0; T ℄; L2x(��; d�)): (2.5)where d�(x) denotes the surfae measure on the boundary.Thanks to the assumptions made on �, the following properties hold for the Greenfuntion G and the kernel K = (K1;K2) :Lemma 2.1 9C0 > 0; 8x 6= y 2 ��,jG(x; y)j � C0(1 + j ln jx� yjj); jK(x; y)j � C0jx� yjjrxKi(x; y)j+ jryKi(x; y)j � C0jx� yj2 for i = 1; 2:Proof. For y = (y1; y2) 2 IR2, let y? = (�y2; y1) and y� = y=jyj2 if y 6= (0; 0).In ase � is the unit disk B(0; 1) of IR2, one has the following expliit expression for theGreen funtion (see [8℄ p.19)G0(x; y) = 12� ln� jx� yjjyjjx� y�j� : (2.6)We remark that8x; y 2 �B(0; 1); jx� y�j � jyjjx� y�j = qjx� yj2 + (jxj2 � 1)(jyj2 � 1)) � jx� yj: (2.7)As a onsequene,j2�G0(x; y)j � � ln jx� yj1fjx�yj�1g + ln(jyjjx� y�j)1fjyjjx�y�j�1g:As jyjjx� y�j = jxjyj � y=jyjj � 2, we onlude that j2�G0(x; y)j � j ln jx� yjj+ ln(2).We also dedue from (2.7) the bound on the orresponding kernelK(x; y) = 12�  (x� y)?jx� yj2 � (x� y�)?jx� y�j2 ! = 12� �((x� y)�)? � ((x� y�)�)?� :To estimate rKi, we ombine (2.7) and the fat that eah term of the jaobian matrix ofz ! z� is bounded by 1=jzj2.When � is a general bounded and simply onneted domain of lass C3, aording to[19℄, there is a onformal mapping from B(0; 1) onto � whih extends to a one-to-one C2mapping from �B(0; 1) to �� denoted by f and suh that Df , (Df)�1 and D2f are boundedon �B(0; 1). Sine the Green funtion for � is given byG(x; y) = G0(f�1(x); f�1(y));4



the estimations on G, K and rKi follow from those obtained for the unit disk and thejust mentionned properties of f . 2We are interested in weak solutions of (2.1) de�ned in the following senseDe�nition 2.2 We say that w : [0; T ℄��! IR is a weak solution of (2.1) if :(i) w 2 L1t (L2x)\L2t (H1x) where L1t (L2x) and L2t (H1x) stand respetively for L1([0; T ℄; L2(�))and L2([0; T ℄;H1(�)) (and H1(�) is the Sobolev spae onsisting of funtions whihbelong together with their �rst order distribution derivatives to L2(�)).(ii) for any v 2 H1(�), ddt R�wtv + � R�rwt:rv = R� wtKwt:rv + � R�� gtvd� holds inD0(℄0; T [)(iii) w(0; :) = w0.Remark 2.3 The variational formulation (ii) is well de�ned. Indeed, by the trae theory(see [3℄ pp. 196-197), 8v 2 H1(�), kvj��kH1=2(��) � CkvkH1 . Hene���� Z�� gtvd����� � CkgtkL2(��)kvkH1 ; (2.8)and by (H), the seond term of r.h.s. belongs to L2t . In addition, aording to the Lemma2.4 below, 8v 2 H1(�), j R�wtKwt:rvj � CkwtkL2kwtkH1kvkH1 and by (i), the �rst termof the r.h.s. also belongs to L2t . So does the seond term of the l.h.s..The above inequalities together with j R�rwt:rvj � kwtkH1kvkH1 ensure that if w satis�es(i) and (ii), then the distribution derivative �tw belongs to L2t (H10x ) where H10x denotes thedual spae of H1(�). Applying Lemma 1.2 p.261 [23℄ with H = L2(�) and V = H1(�),we dedue that w has a representative in C([0; T ℄; L2(�)) that we still denote by w.Moreover, sine aording to [3℄ p.195,8u 2 H1(�); kukL4 � Ckuk1=2L2 kuk1=2H1 (2.9)any weak solution of (2.1) belongs to L4t (L4x).Before stating the existene of a unique weak solution to (2.1), we are going to hek thefollowing Lemma whih prepares the study of the nonlinear term in (2.1).Lemma 2.482 < p � +1; 9C > 0; 8w 2 Lp(�); Kw 2 C( ��) and kKwkL1 � CkwkLp(2.10)9C > 0; 8w 2 L2(�); kKwkL2 � CkwkL2 (2.11)5



9C > 0; 8u 2 L2(�);8v; w 2 H1(�); ����Z� uKw:rv���� � CkukL2kwkH1kvkH1(2.12)8u; v; w 2 H1(�); Z� vKw:rv = 0 and Z� uKw:rv = � Z� vKw:ru (2.13)Proof. For � > 0, letK�(x; y) = 1fjx�yj>�gK(x; y). By Lebesgue's theorem and using theontinuity of K away from the diagonal, we obtain the ontinuity of x 2 �� 7! K�(x; :) 2Lqy, for eah q � 1. When in addition q < 2, aording to Lemma 2.1, K�(x; :) onvergesto K(x; :) in Lqy uniformly on ��, when � tends to 0. We dedue that K(x; :) is ontinuousin Lqy and obtain (2.10) by H�older inequality.Let w 2 L2(�). Using Lemma 2.1 and Cauhy-Shwarz inequality, we getkKwk2L2 � Z� �Z� C0jx� yjdy� Z� C0w2(y)jx� yj dy! dx �  supx2�� Z� C0jx� yjdy!2 kwk2L2 :Combining for 2 < p < +1, (2.10) and the Sobolev inequality kwkLp � CkwkH1 ([3℄p.165), we get kKwkL1 � CkwkH1 (2.14)and onlude that (2.12) holds by Cauhy-Shwarz inequality.We dedue that v; w 2 H1(�)! R� vKw:rv is ontinuous. Sine aording to [3℄ p.162,the restritions to � of C1 funtions with ompat support on IR2 are dense in H1(�), itis enough to hek the �rst equality in (2.13) for smooth v; w. For � > 0, let G�w(x) =R� 1fjx�yj>�gG(x; y)w(y)dy. By Lemma 2.1, K�w(x) = r?G�w(x) and G�w and K�wonverge uniformly on �� respetively to Gw and Kw. Sine Kw is ontinuous, we deduethat Kw = r?Gw and r:Kw = 0. The boundary ondition : 8x 2 ��; Gw(x) = 0implies that the tangential derivative of Gw vanishes on �� i.e. 8x 2 ��, Kw(x):n(x) = 0.Using Green's formula we dedue,Z� vKw:rv = 12 Z�Kw:rv2 = 12 Z�� v2Kw:nd� � 12 Z� v2r:Kw = 0:The seond equality in (2.13) is dedued by polarization. 2We are now ready to proveTheorem 2.5 Under hypotheses (H), equation (2.1) has a unique solution w in the senseof De�nition 2.2. In addition, w 2 C([0; T ℄; L2x) \ L4t (L4x).The last assertion is a onsequene of Remark 2.3. We are going to prove existene by theGalerkin method. Let us �rst hekUniqueness : The proof is similar to the one made for the 2d Navier-Stokes equation6



(see for instane [23℄ p. 294).Let v and w denote two solutions and ~w = v � w. As ~w 2 L2t (H1x) and by Remark2.3, �t ~w 2 L2t (H10x ), aording to [23℄ p.261 ddtk ~w(t)k2L2 = 2 < �t ~wt; ~wt > holds in thedistribution sense on [0; T ℄. The right-hand-side is integrable. Using De�nition 2.2 (ii)and (iii), we dedue that for t 2 [0; T ℄ :12k ~w(t)k2L2 + � Z t0 kr ~wsk2L2ds = Z t0 Z�(vsKvs � wsKws):r ~wsds: (2.15)Using (2.13) and then (2.12) and Young's inequality, we have���� Z�(vsKvs � wsKws):r ~ws���� = ����Z� ~wsKvs:r ~ws + ws:K ~ws:r ~ws���� = ����0� Z� ~wsK ~ws:rws����� Ck ~wskH1kwskH1k ~wskL2 � �(kr ~w(s)k2L2 + k ~w(s)k2L2) + C24� kwsk2H1k ~wsk2L2 :Inserting this bound in (2.15), we obtain8t 2 [0; T ℄; k ~w(t)k2L2 � 2 Z t0  � + C24� kwsk2H1! k ~wsk2L2ds:Sine s! kwsk2H1 is integrable, by Gronwall's lemma, 8t 2 [0; T ℄; kvt � wtkL2 = 0.Existene : We �rst derive an a priori estimate whih will also hold at the disretelevel. Let w be a weak solution of (2.1). As above,12 ddtkwtk2L2 + �krwtk2L2 = Z� wtKwt:rwt + � Z�� gtwtd�:Aording to (2.13), the �rst term of the r.h.s. is nil. Using moreover (2.8) and Young'sinequality, we dedue12 ddtkwtk2L2 + �krwtk2L2 � �2 (krwtk2L2 + kwtk2L2) + Ckgtk2L2(��) (2.16)Removing the terms involving krwtk2L2 , we upper-bound kwk2L1t (L2x) by Gronwall's lemma.Inserting this bound in (2.16), we onlude thatkwk2L1t (L2x) + krwk2L2t (L2x) � CT (kw0k2L2 + kgk2L2t (L2x(��))): (2.17)We now employ the so-alled Galerkin method. Let (vk)k2IN� denote a Hilbertian basisof H1(�) and n 2 IN�. We want to �nd t 2 [0; T ℄ ! �(t) = (�1(t); :::; �n(t)) suh thatwnt = Pnk=1 �k(t)vk satis�es the following approximate problem : wn0 is the orthogonalprojetion in the sense of the L2 salar produt of w0 onto span(v1; :::; vn) and81 � k � n; ddt Z�wnt vk + � Z�rwnt :rvk = Z�wnt Kwnt :rvk + � Z�� gtvkd�: (2.18)Denoting Ajk = R� vjvk, Bj;k = R�rvj:rvk, Ci;j;k = R� viKvj :rvk, �(t) = (1(t); :::; n(t))7



with k(t) = R�� gtvkd�, we obtain that this approximate problem writes :ddt�(t) = A�1(��B:�(t) + �(t)�C�(t) + ��(t)):By a standard �xed-point approah, we obtain existene of a loal in time solution �(t)to this O.D.E.. Thanks to the a priori estimate (2.17) whih holds for the orrespondingwnt , and prevents explosion for �(t), we an iterate this �xed-point approah to extend�(t) on [0; T ℄.We next want to take the limit n ! +1. Aording to the a priori estimate (2.17), thesequene (wn)n2IN� is bounded in L1t (L2x) and L2t (H1x). Reasoning like in Remark 2.3,we hek that (�twn)n2IN� is bounded in L2t (H10x ). Using the ompaity result stated inTheorem 2.3 p.276 [23℄, we dedue that we may extrat a subsequene that onverges to alimit w weakly* in L1t (H1x), weakly in L2t (H1x) and strongly in L2t (L2x). This subsequene isstill denoted by (wn) for notational simpliity. The weak onvergenes are enough to takethe limit in the linear terms of (2.18) (see [23℄ pp.257-260). We are only going to hek theonvergene of the nonlinear term. Let v 2 H1(�). Sine by (2.11), kK(wn�w)t:rvkL1 �Ckwnt � wtkL2kvkH1 , Kwn:rv onverges to Kw:rv in L2t (L1x). Combining the a prioriestimate for wn and (2.14), we obtain that the sequene Kwn:rv is bounded in L2t (L2x).Therefore Kwn:rv onverges to Kw:rv weakly in L2t (L2x). With the strong onvergeneof wn to w in L2t (L2x) we easily dedue that8 2 D(℄0; T [); Z T0  0(t) Z�wnt Kwnt :rv dt! Z T0  0(t) Z�wtKwt:rv dt:Hene w satis�es (ii) in De�nition 2.2. Sine by standard arguments ([23℄ pp.257-260) (iii)also holds, we onlude that w is a weak solution of (2.1).In order to give a probabilisti interpretation to the obtained weak solution of (2.1),we introdue the semi-group P �t (x; y) assoiated with p2� times the Brownian motionnormally reeted on the boundary and prove the following mild representationProposition 2.6 Let w denote the weak solution of (2.1) given by Theorem 2.5. Then8t 2 [0; T ℄, dx a.e. in �,wt(x) = P �t w0(y) + Z t0 rP �t�s:(wsKws)(x)ds+ � Z t0 Z�� P �t�s(y; x)g(s; y)d�(y)ds (2.19)where rP �t�s:(wsKws)(x) = R�ryP �t�s(y; x):ws(y)Kws(y)dy:Proof. Let t 2℄0; T ℄ and ' be a smooth funtion on �� with a vanishing normal derivativeat the boundary : �n'(x) = 0 for x 2 ��. Aording to [12℄ Theorem 5.3 p.320, the8



boundary value problem �s + �� = 0 on [0; t℄���n = 0 on [0; t℄� �� (t; :) = '(:) on �admits a lassial solution  (s; x) whih is C1;2 on [0; t℄ � ��. By the Feynman-Ka ap-proah, this solution has the following representation :  (s; x) = P �t�s'(x). Clearly 2 L1([0; t℄;H1(�)) and �s 2 L2([0; t℄; (H1)0x(�)). By [23℄, Lemma 1.2 p. 261, wededue that in D0(℄0; t[),dds Z�ws (s; :) = Z�ws�s (s; :)�� Z�rws:r (s; :)+Z� wsKws:r (s; :)+� Z�� gs (s; :)d�:By the equation satis�ed by  , the sum of the two �rst terms of the r.h.s. is nil. HeneZ�wt(x)'(x)dx = Z�w0(x) (0; x)dx + Z t0 Z�wsKws(x):r (s; x)dxds+ � Z t0 Z��  (s; x)g(s; x)d�(x)ds:By the symmetry of P � and hypotheses (H), R t0 R�� R� P �t�s(x; y)j'(y)jdyjg(s; x)jd�(x)ds �sup j'jkgkL1t (L1x(��)) < +1: Hene, by Fubini's theorem the last term of the r.h.s. is equalto � R� '(x) R t0 R�� P �t�s(y; x)g(s; y)d�(y)dsdx:We onlude the proof by applying similarlyFubini's theorem to the other terms of the r.h.s. and remarking that the derived equalityholds for any smooth funtion ' with vanishing normal derivative.To justify the use of Fubini's theorem in the seond term, we need the following estimationsgiven by [20℄ (a.13) and (a.14) p.600 :8x 2 ��; 8y 2 ��; jrxP �t (x; y)j � C1=t3=2 and krxP �t (x; y)kL1y(�) � C1=pt: (2.20)Indeed the �rst one ensures that r (s; x) = R�rxP �t�s(x; y)'(y)dy. By the seondone and (2.11),Z t0 Z� jwsKwsj(x) Z� jrxP �t�s(x; y)jj'(y)jdydxds � C sup j'jkwk2L1t (L2x) Z t0 (t� s)�1=2ds:2
9



3 The probabilisti interpretation of the vortex equation ona bounded domain with a Neumann boundary onditionWe are in a MKean-Vlasov ontext, and the interpretation of the vortex equation as aFokker-Plank equation allows us to de�ne naturally a nonlinear martingale problem (Seefor example M�el�eard [15℄).Here the diÆulty is the treatment of the term due to the Neumann ondition involv-ing the funtion g. We essentially follow Fernandez-M�el�eard [6℄ and prove that this termis related to spae-time random births loated at the boundary in the probabilisti inter-pretation. Our situation is harder than the one of [6℄ sine we are in a bounded domaininstead of the whole spae and the di�usion proesses are reeted on the boundary. Thereare also births inside the domain at time 0 and the funtions w0 and g are not probabilitydensities.We follow Jourdain [11℄ to treat the last diÆulty.Let kw0k1 = R� jw0j and kgk1 = R[0;T ℄��� jgjd�dt. To govern the times and positionsof births we introdue on [0; T ℄ � �� the probability measureP0(dt; dx) = 1fx2�gÆf0g(dt) jw0(x)jkw0k1 + �kgk1 dx+ 1fx2��g �jg(t; x)jkw0k1 + �kgk1 dtd�(x) (3.1)whih does not weight ℄0; T ℄ ��. To take into aount the e�et of the sign and mass ofw0 and g, we also onsider for t 2 [0; T ℄ and x 2 �� the measurable funtionh(t; x) = 1ft=0;x2�g w0(x)jw0(x)j (kw0k1 + �kgk1) + 1fx2��g g(t; x)jg(t; x)j (kw0k1 + �kgk1) (3.2)with values in f�(kw0k1 + �kgk1); 0; kw0k1 + �kgk1g. Let us remark that if ' a boundedmeasurable funtion on [0; T ℄� ��, thenZ[0;T ℄��� '(t; x)h(t; x)P0(dt; dx) = Z� '(0; x)w0(x)dx+ � Z[0;T ℄��� '(t; x)g(t; x)dtd�(x)(3.3)Let (�; (Xt)t�T ; (kt)t�T ) denote the anonial proess on [0; T ℄�C([0; T ℄; ��)�C([0; T ℄; IR2).For a probability measure Q on this spae, we de�ne the family ( ~Qt)t2[0;T ℄ of signed mea-sures on �� by 8B 2 B( ��); ~Qt(B) = EQ(h(�;X0)1f��tg1B(Xt)); (3.4)(One assoiates with eah sample path a signed weight depending on the initial datas).It is easy to hek that for eah t 2 [0; T ℄, the signed measure ~Qt is bounded with atotal mass less than kw0k1 + �kgk1. 10



We are now going to give a probabilisti interpretation to the vortex equation, seenas a Fokker-Plank equation, in terms of a martingale problem. This interpretation isinspired from Sznitman [21℄ and Bossy-Jourdain [2℄ for the reeted ontribution andfrom Fernandez-M�el�eard [6℄ for the spae-time random birth ontribution.Let us �rst de�ne the probability spae in whih the solutions of the martingale problemwe are interested in will live :De�nition 3.1 Let T > 0. We denote by PT the spae of probability measures Q on[0; T ℄ � C([0; T ℄; ��) � C([0; T ℄; IR2) suh that for eah t 2 [0; T ℄, the signed measure ~Qthas a density ~qt with respet to the Lebesgue measure on � and that t 2 [0; T ℄ ! ~qt 2L1t (L2x) \ L2t (H1x).By adapting Meyer [18℄ p.194, one an prove that there exists a measurable version(s; x)! ~q(s; x) of the densities of the ow of signed measures ( ~Qs).De�nition 3.2 The probability measure P 2 PT is solution of the nonlinear martingaleproblem (MT ) if1) P Æ (�;X0; k0)�1 = P0 
 Æ(0;0)2) for eah � 2 C2b (IR2),M�t = �(Xt + kt)� �(X0)� Z t0 1f��sg�K ~ps(Xs):r�(Xs + ks) + ���(Xs + ks)�dsis a P -martingale, for the �ltration Ft = �(�; (Xs; ks); s � t) (~p(s; x) denotes a measurableversion of the densities of the ow ( ~Ps)).3) P a.s., 8t 2 [0; T ℄, R t0 djkjs < +1, jkjt = R t0 1fXs2��g1f��sgdjkjs, and kt =R t0 n(Xs)djkjs.The following Lemma states the link between problem (MT ) and the vortex equation(2.1).Lemma 3.3 If P 2 PT solves MT then ~p is a weak solution of (2.1).Proof. By De�nition 3.2 1), (3.4) and (3.3), ~p0 = w0.Aording to De�nition 3.2 2), �t = Xt�X0�R t0 1f��sgK ~ps(Xs)ds+kt is a P ontinuousmartingale with braket < � >t= 2�(t� �)+I2 where I2 denotes the 2� 2 identity matrixwhih implies that �t = 0 for t 2 [0; � ℄. Using moreover De�nition 3.2 3), we dedue thatXt = X0 for t 2 [0; � ℄.Hene for  2 C1;2([0; T ℄� ��)Z T0 �s (s;Xs)ds+  (0;X0) =  (�;X0) + Z T0 1f��sg�s (s;Xs)ds;11



If moreover 8(s; x) 2 [0; T ℄ � ��, �n (s; x) = 0, by Itô's formula, we dedue that (T;Xt) =  (�;X0) + Z T0 r (s;Xs):d�s+ Z T0 1f��sg(�s (s;Xs) +K ~ps(Xs):r (s;Xs) + �� (s;Xs))dsMultiplying by the F0-measurable variable h(�;X0), taking expetations and using thede�nition of ~p and (3.3), we dedue thatZ��  (T; x)~p(T; x)dx = Z��  (0; x)w0(x)dx+ � Z T0 Z��  (s; x)g(s; x)d�(x)ds+ Z T0 Z��(�s (s; x) +K ~ps(x):r (s; x) + �� (s; x))~p(s; x)dxds;For the hoie  (s; x) = '(s)v(x) where v is a C2 funtion on �� suh that �nv = 0 on ��and ' 2 D(℄0; T [), we obtainZ T0 �'0(s) Z�� ~psv + '(s)�Z� ~psK ~ps:rv + � Z� ~ps�v + � Z�� gsvd��� ds = 0:As P 2 PT , ~p 2 L2t (H1x). By Green's formula for funtions in H1(�) ([3℄ p.197) and sine�nv vanishes on the boundary, ds a.e. in [0; T ℄, R� ~ps�v = � R�r~ps:rv.Sine � is C4, adapting [3℄ pp.192-193 to diagonalize the Neumann Laplaian, one obtainsa Hibertian basis of H1(�) onsisting in C2( ��)-funtions with a vanishing normal deriva-tive. Therefore suh funtions are dense in H1 and we onlude that ~p satis�es De�nition2.2 (ii). 2Theorem 3.4 Under hypotheses (H), there exists a unique solution P to the martingaleproblem (MT ). In addition, the orresponding ~p is a weak solution of (2.1) and satis�esthe mild equation (2.19).Proof. 1) UniquenessLet P 1 and P 2 be two solutions of (MT ). Then aording to Lemma 3.3, ~p1 and ~p2are weak solutions of (2.1). Aording to Theorem 2.5, ~p1 = ~p2 = w. Hene P 1 and P 2both solve the martingale problem de�ned like (MT ) but with known drift oeÆient Kwsreplaing K ~ps in De�nition 3.2 2). Sine w 2 L4t (L4x), by (2.10), kKwskL1x 2 L4t .Let � denote the �rst marginal of the probability measure P0 on [0; T ℄ � �� and for i =1; 2 and u 2 [0; T ℄, pi(u; :) be a regular onditional probability on [0; T ℄ � C([0; T ℄; ��) �C([0; T ℄; IR2) endowed with P i given � = u.Then d�(u) a.e., pi(u; :) a.s., � = u, De�nition 3.2 3) is satis�ed and pi(u; :)Æ(X0; k0)�112



is equal to 1fu=0g jw0(x)jdxkw0k1 
 Æ(0;0) + 1fu>0g jg(u; x)jd�(x)R�� jg(u; y)jd�(y) 
 Æ(0;0) (3.5)and 8� 2 C2b (IR2),�(Xt + kt)� �(X0)� Z t0 1fu�sg�Kws(Xs):r�(Xs + ks) + ���(Xs + ks)�dsis a pi(u; :)-martingale.Reasoning like in the proof of Lemma 3.3, we obtain that d�(u) a.e., pi(u; :) a.s., Xt =X0 and kt = (0; 0) for t 2 [0; u℄. With (3.5), we dedue that d�(u) a.e., p1(u; :) Æ(Xu; ku)�1 = p2(u; :) Æ (Xu; ku)�1 and that for i = 1; 2, pi(u; :) is equal to the imageof pi(u; :) Æ ((Xt+u; kt+u)t2[0;T�u℄)�1 by the mapping(Xt; kt)t�0 2 C([0; T � u℄; ��� IR2)! (X(t�u)+ ; k(t�u)+)t2[0;T ℄ 2 C([0; T ℄; �� � IR2):Moreover d�(u) a.e. ,Wt = 1p2� �Xt+u �Xu � Z t+uu Kws(Xs)ds+ kt+u�is a pi(u; :) Brownian motion. Sine s ! kKwskL1 is square integrable, ombining tra-jetorial uniqueness for the Brownian motion normally reeted at the boundary of �(see [13℄), Girsanov's theorem and the equality p1(u; :) Æ (Xu; ku)�1 = p2(u; :) Æ (Xu; ku)�1whih holds d�(u) a.e., we dedue thatd�(u) a.e.; p1(u; :) Æ ((Xt+u; kt+u)t2[0;T�u℄)�1 = p2(u; :) Æ ((Xt+u; kt+u)t2[0;T�u℄)�1:Hene d�(u) p.p. p1(u; :) = p2(u; :) and P 1 = P 2.2) Existene. Let w be the solution of the vortex equation given by Theorem 2.5. Wereall that kKwskL1 2 L4t . We onstrut a solution to the linear martingale problemde�ned like (MT ) but with known drift oeÆient Kws(:) replaing K ~ps in De�nition 3.22) and we hek that this probability measure solves (MT ).Let (�;X0) be a random variable with law P0 independent from (Wt)t2[0;T ℄ a two-dimensionalBrownian motion. Existene and trajetorial uniqueness hold for the stohasti di�erentialequation with normal reetionXt = X0 +p2� Z t0 1f��sgdWs � ktjkjt = Z t0 1fXs2��g1f��sgdjkjs ; kt = Z t0 n(Xs)djkjs:
13



Moreover 8t 2 [0; T ℄, Xt admitsx! 1kw0k1 + �kgkL1([0;t℄���) �jw0jP �t (x) + � Z t0 Z�� jgj(s; y)P �t�s(y; x)�(dy)ds�as a density w.r.t. the Lebesgue measure on ��. Sine kKwskL1 is square integrable, byGirsanov's theorem we dedue that the martingale problem de�ned like (MT ) but withknown drift oeÆient Kws replaing K ~ps admits a solution P suh that 8t 2 [0; T ℄, themeasure ~Pt has a density. Let ~p denote a measurable version of the densities.We set t 2 [0; T ℄. Reasoning like in the proof of Lemma 3.3, we obtain that for  2C1;2([0; t℄� ��) suh that 8(s; x) 2 [0; t℄� ��, �n (s; x) = 0,Z��  (t; x)~p(t; x)dx = Z��  (0; x)w0(x)dx+ � Z t0 Z��  (s; x)g(s; x)d�(x)ds+ Z t0 Z��(�s (s; x) +Kws(x):r (s; x) + �� (s; x))~p(s; x)dxds:Choosing  (s; x) = P �t�s'(x) like in the proof of Proposition 2.6 and remarking thatbeause of (2.20) and the uniform in time bound k~ptkL1 � kw0k1 + �kgk1,Z t0 Z�2 jrxP �t�s(x; y)jj'(y)jj~ps(x)jjKws(x)jdxdyds � C Z t0 kKwskL1dspt� s < +1;we dedue by Fubini's theorem thatdx a:e:; ~pt(x) = P �t w0(x) + Z t0 rP �t�s:(~psKws)(x)ds+ � Z(0;t℄��� P �t�s(x; y)g(s; y)d�(y)ds:Now, using the mild equation (2.19) satis�ed by w and (2.20), we obtain9C > 0; 8t 2 [0; T ℄; k~pt � wtkL1 � C Z t0 k~ps � wskL1 kKwskL1pt� s ds: (3.6)By iterating this bound, then using H�older's inequality, we obtaink~pt � wtkL1 � C Z t0 k~ps � wskL1kKwskL1 Z ts kKwukL1 dupt� upu� sds� C Z t0 k~ps � wskL1kKwskL1kKwkL4t (L1x ) �Z ts ((t� u)(u� s))�2=3du�3=4 ds:Hene (3.6) holds with (t�s)�1=2 replaed by (t�s)�1=4 in the r.h.s. After the next itera-tion we obtain that (3.6) holds with (t� s)�1=2 replaed by 1 and onlude by Gronwall'slemma that 8t 2 [0; T ℄; ~pt = wt. 2
14



4 Stohasti Approximations of the solution of the vortexequation4.1 The ase of a uto� kernelAs in M�el�eard [17℄, we introdue a uto� kernel K" preserving the properties (2.4). Morepreisely we onsider an inreasing C2-funtion � from IR+ to IR+, suh that �(x) = x forx � 12 and �(x) = 1 for x � 1. For " � 1, we setG"(x; y) = � jx� yj3"3 !G(x; y) (4.1)and K"(x; y) = r?xG"(x; y)= � jx� yj3"3 !K(x; y) + �0  jx� yj3"3 ! 3(x� y)?jx� yj"3 G(x; y): (4.2)The following Lemma states usefull properties of this uto� kernel :Lemma 4.1 1) rx:K"(x; y) = 0 ; K"(x; y) � n(x) = 0 for x 2 ��;K"(x; y) = K(x; y) if jx� yj � "8x; y 2 �� ; jK"(x; y)j � C(1 + j ln jx� yjj)jx� yj (4.3)where C does not depend on ".2) supx2�� kK(x; :) �K"(x; :)kLpy tends to 0 as " tends to 0 as soon as p < 2.3) For " suÆiently small, the kernel K" is bounded by M" � Cj ln "j" and Lipshitzontinuous in both variables with onstant L" � Cj ln "j"2 where C does not depend on ".Proof. The two �rst properties in 1) are obvious and 2) is an easy onsequene of (4.3).By the estimate of K given in Lemma 2.1 and the above de�nition of �, the norm of�rst term of the r.h.s. of (4.2) is smaller than C0( 1jx�yj ^ supr2[0;"2�1=3℄ r2�3 ) � C0( 1jx�yj ^ 1� ).By the estimate of G in Lemma 2.1 and sine �0(x) = 0 for x > 1, the seond term of ther.h.s. of (4.2) is smaller than 3C0k�0k1 times 1 + j ln jx� yjjjx� yj ^ supr2[0;"℄ r2(1 + j ln(r)j)"3 ! � �1 + ln jx� yjjx� yj ^ 1 + j ln(")j" �as " � 1. We dedue both (4.3) and the upper-bound in Cj ln(")j=". To prove that K" isLipshitz ontinuous, we use in a similar way Lemma 2.1 ombined with the de�nition of15



� to hek that the gradient of eah oordinate of K" w.r.t. either x or y is bounded byCj ln(")j="2 (the ontribution of the �rst term of the r.h.s. of (4.2) is C="2 whereas theone of the seond term is Cj ln(")j="2). 2With a slight adaptation of Sznitman [21℄ to take into aount the random births onthe boundary, we obtain the existene and pathwise uniqueness of the following interatingpartile systems.De�nition 4.2 Consider a sequene (Bi)i2IN of independent Brownian motions on IR2and a sequene of independent variables (� i; Zi0)i2IN with values in [0; T ℄ � �� distributedaording to P0, and independent of the Brownian motions. For a �xed ", for eah n 2 IN�,and 1 � i � n, let us onsider the interating proesses de�ned byZin;"t 2 ��;8t 2 [0; T ℄Zin;"t = Zi0 +p2� Z t0 1f� i�sgdBis + Z t0 1f� i�sgK"~�n;"s (Zin;"s )ds� kin;"t ;jkin;"jt = Z t0 1fZin;"s 2��g1f� i�sgdjZin;"js ; kin;"t = Z t0 n(Zin;"s )djkin;"js (4.4)where ~�n;"s = 1nPnj=1 h(� j ; Zj0)1f� j�sgÆZjn;"s is the weighted empirial measure of the systemat time s and K"~�n;"s (z) = 1nPnj=1 h(� j ; Zj0)1f� j�sgK"(z; Zjn;"s ).Let us remark that the partiles either have birth at time 0 inside the domain and evolve asdi�usive partiles with normal reeting boundary onditions, or have birth at a randomtime on the boundary of the domain, and evolve after birth as the other ones. Moreover,all partiles, as soon as they are born, interat together following a mean �eld dependingon the parameter ".Again aording to [21℄, we also get the existene and pathwise uniqueness of the limitproesses (when n tends to in�nity and " is �xed), oupled with the interating proesses,as follows.De�nition 4.3 We de�ne �Zi;" by�Zi;"t 2 ��;8t 2 [0; T ℄�Zi;"t = Zi0 +p2� Z t0 1f� i�sgdBis + Z t0 1f� i�sgK" ~Q"s( �Zi;"s )ds� �ki;"t ;j�ki;"jt = Z t0 1f �Zi;"s 2��g1f� i�sgdj�ki;"js ; �ki;"t = Z t0 n( �Zi;"s )dj�ki;"js (4.5)where Q" is the ommon law of (� i; �Zi;"; �ki;"), and ~Q"s is de�ned from Q" by (3.4).16



Sznitman also proves a propagation of haos result, but without preise estimates on therate of onvergene. In order to get suh estimates, we denote by H a C2b ( ��)-extension ofthe distane-funtion d(:; ��) (de�ned on a restrition to � of a neighbourhood of ��).The funtion H satis�es (see [8℄) rH = �n on ��: (4.6)We also reall that the domain � (sine C4) satis�es the uniform \exterior sphere" ondi-tion: 9Csp � 0 ;8x 2 �� ; 8x0 2 �� ; Cspjx� x0j2 + n(x):(x� x0) � 0: (4.7)Proposition 4.4 For t � T , for eah i 2 f1; :::; ng,E(sups�t jZin;"s � �Zi;"s j2) � 2d(�)sA"n exp(KH(1 + (kw0k1 + �kgk1)(M"=2 + L")t))E(sups�t jkin;"s � �ki;"s j) � E(sups�t jZin;"s � �Zi;"s j) + 2(kw0k1 + �kgk1)t L"E(sups�t jZin;"s � �Zi;"s j) + M"pn!where KH is a onstant whih depends only on upper-bounds of the funtion H and itsderivatives and A" = 4(kw0k1+�kgk1)2M2"2+(kw0k1+�kgk1)(M"+2L")) .Remark 4.5 The onvergene rate in the number n of partiles given above is not optimal:indeed one an hek that E(sups�t jZin;"s � �Zi;"s j4) is smaller than16(kw0k1 + k�gk1)4M4" tn2(1 + (2 + (kw0k1 + �kgk1)2(M2" + 4L2"))t) exp(KH(t+(2+(kw0k1+�kgk1)2(M2"+4L2"))t2)):But in the next setion, we are going to let " = "n depend on n and onverge to 0 in suha way that E(sups�t jZin;"ns � �Zi;"ns j2)! 0. The estimation given in the proposition allowsa quiker (but still very slow) onvergene of "n to 0 than the previous one.Proof. We ompare the two proesses Zin;" and �Zi;". We denote for simpliity Z, k, �Zand �k instead of Zin;", kin;", �Zi;" and �ki;", ht = H(Zt), �ht = H( �Zt), h0t = rH(Zt), �h0t =rH( �Zt), h00t = �H(Zt), �h00t = �H( �Zt), bt = K"~�n;"s (Zt) and �bt = K" ~Q"t ( �Zt). Computingd exp(�2Csp(ht + �ht))jZt � �Ztj2 by Itô's formula, we get1f�i�tg exp(�2Csp(ht + �ht))� �2(Zt � �Zt):(d�kt � dkt)� 2CspjZt � �Ztj2(djkjt + dj�kjt)� 2CspjZt � �Ztj2�p2�(h0t + �h0t)dBit + �h0tbt + �h0t�bt + �(�2Cspjh0t + �h0tj2 + h00t + �h00t )�dt�+ 2(Zt � �Zt):(bt � �bt)dt� (4.8)17



Beause of the \exterior sphere" ondition, the loal time terms of the �rst line have anon-positive ontribution after integration over time. We dedue that for KH a onstantwhih an be omputed and depends only on upper-bounds of the funtion H and itsderivatives,E(jZin;"t � �Zi;"t j2) � KH�(1 +M"(kw0k1 + �kgk1)) Z t0 E(jZin;"s � �Zi;"s j2)ds+ Z t0 E(jZin;"s � �Zi;"s jjK"~�n;"s (Zin;"s )�K" ~Q"s( �Zi;"s )j)ds� (4.9)Using the Lipshitz ontinuity of K", the boundedness of h and the exhangeability of theproesses (Zin;"; �Zi;"); 1 � i � n, we obtainE ( jZin;"s � �Zi;"s jjK"~�n;"s (Zin;"s )�K" ~Q"s( �Zi;"s )j)� (kw0k1 + �kgk1)L"E(jZin;"s � �Zi;"s j(jZin;"s � �Zi;"s j+ 1n nXj=1 jZjn;"s � �Zj;"s j))+E(jZin;"s � �Zi;"s jj 1n nXj=1h(�j ; Zj0)1f� j�sgK"( �Zi;"s ; �Zj;"s )�K" ~Q"s( �Zi;"s )j)� (1 + 2(kw0k1 + �kgk1)L")E(jZin;"s � �Zi;"s j2)+E(j 1n nXj=1h(�j ; Zj0)1f� j�sgK"( �Zi;"s ; �Zj;"s )�K" ~Q"s( �Zi;"s )j2)After expansion of E(j 1nPnj=1 h(�j ; Zj0)1f� j�sgK"( �Zi;"s ; �Zj;"s )�K" ~Q"s( �Zi;"s )j2), many termsdisappear by independene of the variables whih are entered onditionnally to �Zi;" andit only remains n bounded terms. We dedue thatE(jZin;"t � �Zi;"t j2) � KH � (2 + (kw0k1 + �kgk1)(M" + 2L")) Z t0 E(jZin;"s � �Zi;"s j2)ds+4(kw0k1 + �kgk1)2M2" tn � (4.10)Using Gronwall's Lemma, we obtain that both sides of (4.9) and (4.10) are smaller thanf(t) = 4(kw0k1 + k�gk1)2M2"n(2 + (kw0k1 + �kgk1)(M" + 2L")) exp(KH(2 + (kw0k1 + �kgk1)(M" + 2L"))t):Integrating (4.8) w.r.t. time, dealing with the stohasti integral thanks to Doob's in-equality and using that the r.h.s. of (4.9) is smaller than f(t), we getE(sups�t jZin;"s � �Zi;"s j2) � �KH Z t0 E(jZin;"s � �Zi;"s j4)ds�1=2 + f(t)� d(�)�KH Z t0 E(jZin;"s � �Zi;"s j2)ds�1=2 + f(t)� d(�)qf(t) + f(t) sine the r.h.s. of (4.10) is smaller than f(t)18



The l.h.s. being smaller than d(�)2, it is smaller than 2d(�)pf(t) when f(t) � d(�)2and the r.h.s. is smaller than 2d(�)pf(t) otherwise. We dedue the desired estimate forE(sups�t jZin;"s � �Zi;"s j2).Now remarking thatsups�t jkin;"s � �ki;"s j � Z t0 jK"~�n;"s (Zin;"s )�K" ~Q"s( �Zi;"s )jds+ sups�t jZin;"s � �Zi;"s jand using arguments developped above we obtain the other estimate. 2Remark 4.6 Let us remark that if �� is a onvex region then the rate of onvergene iseasier to obtain. Indeed the onstant Csp de�ned in (4.7) an be hosen equal to 0 :8x 2 �� ; 8x0 2 �� ; n(x):(x� x0) � 0: (4.11)In the expression of jZin;"t � �Zi;"t j2 given by Itô's formula, the loal times terms are non-positive and thereforeE(sups�t jZin;"s � �Zi;"s j2) � (1 + 2(kw0k1 + �kgk1)L")) Z t0 E(supu�s jZin;"u � �Zi;"u j2)ds+4(kw0k1 + �kgk1)2M2" tnand we onlude by Gronwall's Lemma.4.2 Convergene of the limit lawsWe want to prove that the law Q" of (�1; �Z1;"; �k1;") onverges to the unique solution P ofproblem MT as " tends to 0. We are �rst going to hek that the drift oeÆient K" ~Q"sonverges to K ~ps.By Girsanov's theorem, it turns out that 8s > 0, the measure ~Q"s admits a density funtionq"s. Moreover, reasoning like in the proof of Theorem 3.4 and using the boundedness of thekernel K", we show that q" is the unique solution in L1T = fpt; kjpkjT = supt�T kptkL1 <+1g of the evolution equationq"t (x) = P �t w0(x) + Z t0 rxP �t�s:(q"sK"q"s)(x)ds+ � Z t0 Z�� P �t�sg(s; y)d�(y)ds: (4.12)On the other hand, thanks to Lemma 4.3 1), we an apply to the equation�tw(t; x) +r:(wK"w)(t; x) = ��w(t; x) in �;w(x; 0) = w0 in �;�nw = rw:n = g on �� (4.13)19



all what we have done for the equation (2.1). We an then prove the existene of a uniqueweak solution w" belonging to L1t (L2x) \ L2t (H1x). Now, like in Proposition 2.6, we obtainthat w" is also solution of (4.12). Sine it belongs to L1T (� is bounded), w" = q". Thanksto (4.3), one an hek that the a priori estimate (2.17) holds for w" = q" with a onstantCT independent of ". Following Remark 2.3, we dedue thatsup"2(0;1℄�kq"kL1t (L2x) + kq"kL2t (H1x) + k�tq"kL2t (H10x ) + kq"kL4t (L4x)� < +1: (4.14)Remark 4.7 Similarly the non-negative measures B 2 B( ��)! EQ"(1f��tg1B(Xt)) havedensities p"t w.r.t. the Lebesgue measure whih are the unique solution in L1T of themild equation obtained by replaing respetively w0 and g by jw0j=(kw0k1 + �kgk1) andjgj=(kw0k1 + �kgk1) in (4.12).Identifying p" with the unique weak solution of the problem obtained from (4.13) by re-plaing w0 and g in the same way, we hek that (4.14) holds for p".We an now prove the onvergene of q" to w.Proposition 4.8lim"!0 kq" � wkL2t (L2x) = 0 ; lim"!0 kK"q" �KwkL2t (L2x) = 0:Proof. Thanks to (4.14), one an extrat from eah sequene q"n with "n tending to 0, asub-sequene (still denoted q"n for simpliity), whih onverges strongly in L2t (L2x) and inL2t (H1x) and weakly� in L1t (L2x) to ~w. By adapting the proof of Theorem 2.5, we get that~w is a weak solution of (2.1) and onlude that ~w = w by uniqueness for this equation.The only di�erene omes from the term (K"n �K)q"ns . Let 1 < p < 2. Combiningthe Sobolev inequality kq"ns kL pp�1 � Ckq"ns kH1 , Lemma 4.1 2) and (4.14), we dedue thatthis term onverges to 0 in L2t (L1x ).Now, by writingkK"q" �KwkL2t (L2x) � kK(q" � w)kL2t (L2x) + k(K" �K)q"kL2t (L2x);and using (2.11), one easily dedues the seond assertion. 2Theorem 4.9 The probability measures Q" on [0; T ℄�C([0; T ℄; ��)�C([0; T ℄; IR2) onvergeweakly to the unique solution P of the nonlinear martingale problem (MT ), as " tends to0.Proof. As the weak onvergene topology is metrizable, we are going to hek that(Qn = Q"n)n2IN onverges weakly to P when "n is a sequene whih tends to 0 as n tends20



to +1. Let us prove the uniform tightness of the sequene (Qn)n before identifying thelimit of any weakly onvergent subsequene.1) By (4.3) and (4.14), we easily obtain thatsupn kK"nq"ns kL4t (L1x ) < +1: (4.15)Then the Kolmogorov tightness riterion is satis�ed for the laws of�Y 1;"nt = Z10 +p2� Z t0 1f�1�sgdB1s + Z t0 1f�1�sgK"nqns ( �Z1;"ns )ds:Now the uniform tightness of the laws Qn of the proesses (�1; �Z1;"n ; �k1;"n) is a simpleonsequene of the fat that the appliation sending y 2 C([0; T ℄; IR2) on the solution(x; k) 2 C([0; T ℄; ��)� C([0; T ℄; IR2) of the Skorohod problem is ontinuous (See [13℄).2) Let us now denote by Q1 a limit value of a onvergent subsequene still denoted by(Qn) for simpliity and prove by arguments inspired from Sznitman ([21℄) that Q1 = P .If as usual (�;X; k) denotes the anonial proess on [0; T ℄�C([0; T ℄; ��)�C([0; T ℄; IR2),let us de�ne, for p 2 IN�, 0 � s1 � ::: � sp � s < t � T , � 2 C2b (IR2), g 2 Cb([0; T ℄; ( �� �IR2)p) the funtionGn(�;X; k) = g(�;Xs1 ; ks1 ; :::;Xsp ; ksp)��(Xt + kt)� �(Xs + ks)� Z ts 1f��ug����(Xu + ku) +K"nq"nu (Xu):r�(Xu + ku)�du�Then EQn(Gn(�;X; k)) = 0. Now if we de�ne the funtion G by replaing K"nq"ns by Kwsin (4.16), we want to prove that EQ1(G(�;X; k)) = 0.EQ1(G(�;X; k)) = EQ1(G(�;X; k)) �EQn(G(�;X; k)) +EQn(G(�;X; k) �Gn(�;X; k)):Sine w 2 L4t (L4x), by (2.10), ds a.e. in [0; T ℄ x 2 �� ! Kws(x) is ontinuous andKws 2 L4t (L1x ). We dedue that G(�;X; k) is a ontinuous funtion on the path spae,and the �rst term of the r.h.s. tends to 0 as n tends to in�nity. On the other hand, usingRemark 4.7 and Proposition 4.8, we obtainEQn jGn(�;X; k) �G(�;X; k)j � CE�Z t0 1f�1�sgjK"nq"ns ( �Z1;"ns )�Kws( �Z1;"ns )jds�� Ckp"nkL2t (L2x)kK"nq"n �KwkL2t (L2x) ! 0 as n! +1:Hene EQ1(G(�;X; k)) = 0. Sine 8n; QnÆ(�;X0; k0)�1 = P0
Æ(0;0), Q1Æ(�;X0; k0)�1 =P0 
 Æ(0;0). We are now going to prove that Q1-almost surely,jkjT <1 and 8t 2 [0; T ℄; jkjt = Z t0 1fXs2��g1f��sgdjkjs ; kt = Z t0 n(Xs)djkjs:21



As aording to the proof of Theorem 3.4, P is the unique solution of the linear martingaleproblem de�ned like MT but with known drift oeÆient Kws, we will onlude thatQ1 = P . Aording to the following Lemma the proof of whih is postponed,Lemma 4.10 For any A � 0, the following subset of [0; T ℄ � C([0; T ℄; ��)� C([0; T ℄; IR2)FA = ((u; x; k) : jkjT = Z T0 1fu�sg1fxs2��gdjkjs � A and 8t 2 [0; T ℄; kt = Z t0 n(xs)djkjs)is losed.Q1 [A>0FA! � 1� limA!+1 lim infn!+1Qn(F A) � 1� limA!+1 supn2INEQn jkjTA :Therefore it is enough to hek that supn2INEj�k1;"n jT < +1 to onlude the proof.Sine rH = �n on ��, applying Itô's formula to ompute H( �Z1;"nT ), we get that j�k1;"n jTis equal toH( �Z1;"nT )�H(Z10 )� Z T0 1f�1�sg �(��H +K"nq"ns :rH)( �Z1;"ns )ds+p2�rH( �Z1;"ns ):dB1s� :Taking expetations and using (4.15), we obtain the desired result. 2Proof.of Lemma 4.10 Let (un; xn; kn) 2 FA onverge to (u; x; k) as n ! +1. Sinesupn jknjT � A, by extration of a subsequene, we an suppose that the measure djknj(resp. dkn) onverges weakly to a positive measure da with mass smaller than A (resp.to dbs). Of ourse dbs = �(s)das for some measurable funtion � : [0; T ℄ ! IR2 and sinekn onverges uniformly on [0; T ℄ to k, dbs = dks. Sine d(xns ; ��), where d(:; ��) denotesthe (ontinuous) distane from the boundary funtion, onverges uniformly on [0; T ℄ tod(xs; ��), Z T0 d(xs; ��)das = limn Z T0 d(xns ; ��)djkjns = 0:We dedue that das a.e. and therefore djkjs a.e., xs 2 ��. Sine the funtions kn whihare equal to (0; 0) on [0; un℄ onverge uniformly to k, this funtion is equal to (0; 0) on[0; u℄ and jkju = 0. To hek the only laking property : dks = n(xs)djkjs, we remark that8f 2 C([0; T ℄; IR+); 8g 2 C([0; T ℄; ��); Z T0 f(s)�(xs � g(s)):dks + Cspjxs � g(s)j2das� � 0by taking the limit n! +1 in the similar inequalities satis�ed with (x; dk; da) replaedby (xn; dkn; djknj) aording to the uniform \exterior sphere" ondition (4.7). We deduethat dks = j�(s)jn(xs)das whih implies the desired property. 222



4.3 The onvergene theoremWe now onsider a sequene ("n) tending to 0 as n tends to in�nity, in suh a way thatlimn!+1L2"nsA"nn exp(KH(1 + (kw0k1 + �kgk1)(M"n=2 + L"n)T )) + M"npn = 0: (4.16)This is possible, even if the onvergene of "n to 0 is then very slow. Let us now onsiderfor eah n the system of proesses (� i; Zin; kin) where Zin = Zin;"n and kin = kin;"nare de�ned as in (4.4) but with K"n replaing K". We are now able to obtain our maintheorem.Theorem 4.11 1) The laws of the n-partile system (� i; Zin; kin)1�i�n, are P -haoti(where P is the solution of the problem (MT )):8p 2 IN� ; L((�1; Z1n; k1n); :::; (�p; Zpn; kpn)) weakly=) P
p as n! +1: (4.17)2) The approximate veloity �eld onverges to Kw:limn!+1E(kK"n ~�n;"nt (x)�Kwt(x)k2L2t (L2x)) = 0: (4.18)Proof.1) Sine the proesses (� i; �Zi;"n ; �ki;"n)i are independent, Theorem 4.9 implies that forevery �xed p 2 IN�, the law of ((�1; �Z1;"n ; �k1;"n); :::; (�p; �Zp;"n; �kp;"n)) onverges weakly toP
p. Let CT = [0; T ℄ � C([0; T ℄; ��)� C([0; T ℄; IR2). We endow CpT with the metrid��(u1; x1; k1); :::; (up; xp; kp)� ; �(�u1; �x1; �k1); :::; (�up; �xp; �kp)��= pXi=1 jui � �uij+ sup[0;T ℄ jxit � �xitj+ sup[0;T ℄ jkit � �kitj! :and P(CpT ) with the metri�(�; �) = inf �ZCpT�CpT d(x; y) ^ 1R(dx; dy);R has marginals � and ��whih is ompatible with the topology of the weak onvergene. Hene�(L((�1; �Z1;"n ; �k1;"n); :::; (�p; �Zp;"n; �kp;"n)); P
p)! 0 as n! +1:By Proposition 4.4, and (4.16)limn!+1E �d�((�1; Z1n; k1n); :::; (�p; Zpn; kpn)); ((�1; �Z1;"n ; �k1;"n); :::; (�p; �Zp;"n; �kp;"n))�� = 0
23



whih ensures thatlimn!+1� �L�(�1; Z1n; k1n); :::; (�p; Zpn; kpn)� ;L �(�1; �Z1;"n ; �k1;"n); :::; (�p; �Zp;"n ; �kp;"n)�� = 0:We onlude that �(L((�1; Z1n; k1n); :::; (�p; Zpn; kpn)); P
p) onverges to 0.2) On the other hand,E(jK"n ~�n;"nt (x)�Kwt(x)j2) � 3E�����K"n ~�n;"nt (x)� 1n nXi=1 1f� i�tgh(� i; Zi0)K"n(x; �Zi;"nt )����2+���� 1n nXi=1 1f� i�tgh(� i; Zi0)K"n(x; �Zi;"nt )�K"n ~Q"nt (x)����2 + jK"n ~Q"nt (x)�Kwt(x)j2�� 3�(kw0k1 + �kgk1)2(L2"nE(sups�t jZins � �Zi;"ns j2) + 4M2"nn ) + jK"nq"nt (x)�Kwt(x)j2�:We onlude using (4.16), Proposition 4.4 and Proposition 4.8. 2Remark 4.12 Sine the laws L((�1; Z1n; k1n); :::; (�n; Znn; knn)) are exhangeable, thepropagation of haos result is equivalent to the onvergene in probability of the empir-ial measures to P , as probability measures on the path spae (f. [22℄). As a onsequene,if the spae of �nite measures on �� is endowed with the weak onvergene topology, thenfor t 2 [0; T ℄, the random �nite measures ~�n;"nt = 1nPni=1 1f� i�tgh(� i; Zi0)ÆZint onverge inprobability to wt(x)dx, w being the unique solution of the vortex equation.We �nally dedue from this study an algorithm for the simulation of the solution of thevortex equation. To approximate numerially this solution, it is neessary to disretize intime the partile system. This an be ahieved thanks to the Euler sheme for reeteddi�usions proposed by Gobet [9℄. In our situation, with identity di�usion matrix andnormal reetion, the weak rate of onvergene of this sheme is O(�t), where �t denotesthe time-step. Like in Bossy-Jourdain [2℄, one ould try to prove that if ��nl�t denotes theweighted empirial measure of the disretized system, K"n ��nl�t onverges to Kwl�t withrate O(�t+ 1pn).Referenes[1℄ Benahour, S.; Roynette, B.; Vallois, P.: Branhing proess assoiated with 2d-Navier-Stokes equation, Revista Mathematia Iberoameriana, Vol. 17(2), 331-373,(2001).
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