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We 
onsider the Navier-Stokes equation whi
h des
ribes the evolution of the velo
ity�eld of an in
ompressible vis
ous 
uid in a bounded domain � of IR2 satisfying the no-slipboundary 
ondition: �tu(t; x) + (u:r)u(t; x) = ��u(t; x)�rp in �;r:u(t; x) = 0 in � ; u(x; t) = (0; 0) for x 2 ��;where p is the pressure and � > 0 the vis
osity 
oeÆ
ient. The aim we pursue is toobtain a probabilisti
 interpretation of this equation whi
h enables us to 
onstru
t aneÆ
ient Monte-Carlo parti
le method for the simulation of the solutions. Another proba-bilisti
 approa
h based on bran
hing pro
esses has already been developped by Bena
hour,Roynette, Vallois [1℄, generalized in dimension 3 by Giet [7℄. But even if the authors pro-pose some parti
le approximations, the 
onvergen
e of the method is not shown and theparti
le systems they des
ribe are not for use in pra
ti
e. Our purpose is to 
onstru
tsome easily simulable parti
le systems, behaving as di�usion pro
esses re
e
ted on theboundary, with spa
e-time random births lo
ated at the boundary and to prove rigorouslythe propagation of 
haos of the laws of these pro
esses to a probability measure asso
iatedwith the solution of the Navier-Stokes equation.One asso
iates 
lassi
ally with the two dimensional Navier-Stokes equation in the wholeplane the simpler vortex equation satis�ed by the 
url of the velo
ity. This equationbehaves as a M
Kean-Vlasov equation and the famous vortex simulation algorithm due toChorin [4℄ 
omes from its intera
tion stru
ture, sin
e the velo
ity 
an be written as the
onvolution of the vorti
ity by the Biot and Savart kernel. The probabilisti
 approa
h,�rstly introdu
ed by Mar
hioro-Pulvirenti [14℄, has been developed in M�el�eard [16℄, [17℄.The parti
le systems are naturally de�ned and the propagation of 
haos proved.In a bounded domain, a similar approa
h would 
onsist in repla
ing the Biot and Savartkernel by the orthogonal gradient K of the Green fun
tion of the Diri
hlet problem in thedomain. But one then only obtains the nullity of the normal 
omponent of the velo
ityon the boundary. To obtain in addition the nullity of the tangential 
omponent, we areinspired by Cottet [5℄, who proves that by adding a nonlinear Neumann 
ondition to thevortex equation, one obtains an admissible vorti
ity �eld in the sense that the asso
iatedvelo
ity satis�es a posteriori the no-slip 
ondition.This nonlinear Neumann 
ondition is really hard to take into a

ount, and in thispaper, we deal with a �xed Neumann 
ondition and 
onsider the equation�tw(t; x) +r:(wKw)(t; x) = ��w(t; x) in �;�nw = rw:n = g on ��2



where the fun
tion g is �xed. Our aim is in parti
ular to show that this Neumann 
onditionis represented at the level of sto
hasti
 pro
esses by spa
e-time random births lo
ated atthe boundary of the domain.More generally, in this paper, we prove the existen
e and uniqueness of a solution ofsu
h a vortex equation with Neumann's boundary 
ondition in an appropriate spa
e forwhi
h we have obtained energy a priori estimates. Then we asso
iate with the solutionof the equation a nonlinear di�usive and re
e
ted pro
ess, with spa
e-time random birthsat the boundary (with law managed by the fun
tion g). We 
onstru
t intera
ting nor-mally re
e
ted parti
le systems with spa
e-time random birth at the boundary and provethe propagation of 
haos to the law of the nonlinear pro
ess asso
iated with the vortexequation. We are inspired by the paper of Snitman [21℄, whi
h 
on
erns the behaviourof intera
ting and re
e
ted M
Kean-Vlasov parti
le systems living in a bounded domain.Some additional diÆ
ulties appear here, due to the singular intera
ting kernel K and tothe spa
e-time random births. Moreover, the intera
tion is mean-�eld but appears throughthe weighted empiri
al measure, the weights being related to the initial 
ondition and to g.A
knowledgements : We thank Tony Leli�evre for numerous dis
ussions 
on
erningthe variational approa
h for evolution equations.2 The modelLet T > 0. We are interested in the following equation :�tw(t; x) +r:(wKw)(t; x) = ��w(t; x) in ℄0; T ℄��;w(0; x) = w0(x) in �;�nw = rw:n = g on ℄0; T ℄� �� (2.1)where n(x) denotes the outward normal to �� at the point x andKw(t; x) = R�K(x; y)w(t; y)dy.The kernel K(x; y) is equal to r?xG(x; y) = (��x2G(x; y); �x1G(x; y)) where G(x; y) isthe fundamental solution of the Poisson equation�xG(x; y) = Æy(x); x 2 �; (2.2)G(x; y) = 0; x 2 �� (2.3)Let us remark the important properties of the kernel K:8(x; y) 2 ( ��)2 with x 6= y;rx:K(x; y) = 0 ; 8x 2 ��;8y 2 ��; K(x; y):n(x) = 0 (2.4)3



In all the following, we will moreover assumeHypotheses (H):The domain � of IR2 is bounded, simply 
onne
ted and of 
lass C4.w0 2 L2(�) ; g(t; x) 2 L2t ([0; T ℄; L2x(��; d�)): (2.5)where d�(x) denotes the surfa
e measure on the boundary.Thanks to the assumptions made on �, the following properties hold for the Greenfun
tion G and the kernel K = (K1;K2) :Lemma 2.1 9C0 > 0; 8x 6= y 2 ��,jG(x; y)j � C0(1 + j ln jx� yjj); jK(x; y)j � C0jx� yjjrxKi(x; y)j+ jryKi(x; y)j � C0jx� yj2 for i = 1; 2:Proof. For y = (y1; y2) 2 IR2, let y? = (�y2; y1) and y� = y=jyj2 if y 6= (0; 0).In 
ase � is the unit disk B(0; 1) of IR2, one has the following expli
it expression for theGreen fun
tion (see [8℄ p.19)G0(x; y) = 12� ln� jx� yjjyjjx� y�j� : (2.6)We remark that8x; y 2 �B(0; 1); jx� y�j � jyjjx� y�j = qjx� yj2 + (jxj2 � 1)(jyj2 � 1)) � jx� yj: (2.7)As a 
onsequen
e,j2�G0(x; y)j � � ln jx� yj1fjx�yj�1g + ln(jyjjx� y�j)1fjyjjx�y�j�1g:As jyjjx� y�j = jxjyj � y=jyjj � 2, we 
on
lude that j2�G0(x; y)j � j ln jx� yjj+ ln(2).We also dedu
e from (2.7) the bound on the 
orresponding kernelK(x; y) = 12�  (x� y)?jx� yj2 � (x� y�)?jx� y�j2 ! = 12� �((x� y)�)? � ((x� y�)�)?� :To estimate rKi, we 
ombine (2.7) and the fa
t that ea
h term of the ja
obian matrix ofz ! z� is bounded by 1=jzj2.When � is a general bounded and simply 
onne
ted domain of 
lass C3, a

ording to[19℄, there is a 
onformal mapping from B(0; 1) onto � whi
h extends to a one-to-one C2mapping from �B(0; 1) to �� denoted by f and su
h that Df , (Df)�1 and D2f are boundedon �B(0; 1). Sin
e the Green fun
tion for � is given byG(x; y) = G0(f�1(x); f�1(y));4



the estimations on G, K and rKi follow from those obtained for the unit disk and thejust mentionned properties of f . 2We are interested in weak solutions of (2.1) de�ned in the following senseDe�nition 2.2 We say that w : [0; T ℄��! IR is a weak solution of (2.1) if :(i) w 2 L1t (L2x)\L2t (H1x) where L1t (L2x) and L2t (H1x) stand respe
tively for L1([0; T ℄; L2(�))and L2([0; T ℄;H1(�)) (and H1(�) is the Sobolev spa
e 
onsisting of fun
tions whi
hbelong together with their �rst order distribution derivatives to L2(�)).(ii) for any v 2 H1(�), ddt R�wtv + � R�rwt:rv = R� wtKwt:rv + � R�� gtvd� holds inD0(℄0; T [)(iii) w(0; :) = w0.Remark 2.3 The variational formulation (ii) is well de�ned. Indeed, by the tra
e theory(see [3℄ pp. 196-197), 8v 2 H1(�), kvj��kH1=2(��) � CkvkH1 . Hen
e���� Z�� gtvd����� � CkgtkL2(��)kvkH1 ; (2.8)and by (H), the se
ond term of r.h.s. belongs to L2t . In addition, a

ording to the Lemma2.4 below, 8v 2 H1(�), j R�wtKwt:rvj � CkwtkL2kwtkH1kvkH1 and by (i), the �rst termof the r.h.s. also belongs to L2t . So does the se
ond term of the l.h.s..The above inequalities together with j R�rwt:rvj � kwtkH1kvkH1 ensure that if w satis�es(i) and (ii), then the distribution derivative �tw belongs to L2t (H10x ) where H10x denotes thedual spa
e of H1(�). Applying Lemma 1.2 p.261 [23℄ with H = L2(�) and V = H1(�),we dedu
e that w has a representative in C([0; T ℄; L2(�)) that we still denote by w.Moreover, sin
e a

ording to [3℄ p.195,8u 2 H1(�); kukL4 � Ckuk1=2L2 kuk1=2H1 (2.9)any weak solution of (2.1) belongs to L4t (L4x).Before stating the existen
e of a unique weak solution to (2.1), we are going to 
he
k thefollowing Lemma whi
h prepares the study of the nonlinear term in (2.1).Lemma 2.482 < p � +1; 9C > 0; 8w 2 Lp(�); Kw 2 C( ��) and kKwkL1 � CkwkLp(2.10)9C > 0; 8w 2 L2(�); kKwkL2 � CkwkL2 (2.11)5



9C > 0; 8u 2 L2(�);8v; w 2 H1(�); ����Z� uKw:rv���� � CkukL2kwkH1kvkH1(2.12)8u; v; w 2 H1(�); Z� vKw:rv = 0 and Z� uKw:rv = � Z� vKw:ru (2.13)Proof. For � > 0, letK�(x; y) = 1fjx�yj>�gK(x; y). By Lebesgue's theorem and using the
ontinuity of K away from the diagonal, we obtain the 
ontinuity of x 2 �� 7! K�(x; :) 2Lqy, for ea
h q � 1. When in addition q < 2, a

ording to Lemma 2.1, K�(x; :) 
onvergesto K(x; :) in Lqy uniformly on ��, when � tends to 0. We dedu
e that K(x; :) is 
ontinuousin Lqy and obtain (2.10) by H�older inequality.Let w 2 L2(�). Using Lemma 2.1 and Cau
hy-S
hwarz inequality, we getkKwk2L2 � Z� �Z� C0jx� yjdy� Z� C0w2(y)jx� yj dy! dx �  supx2�� Z� C0jx� yjdy!2 kwk2L2 :Combining for 2 < p < +1, (2.10) and the Sobolev inequality kwkLp � CkwkH1 ([3℄p.165), we get kKwkL1 � CkwkH1 (2.14)and 
on
lude that (2.12) holds by Cau
hy-S
hwarz inequality.We dedu
e that v; w 2 H1(�)! R� vKw:rv is 
ontinuous. Sin
e a

ording to [3℄ p.162,the restri
tions to � of C1 fun
tions with 
ompa
t support on IR2 are dense in H1(�), itis enough to 
he
k the �rst equality in (2.13) for smooth v; w. For � > 0, let G�w(x) =R� 1fjx�yj>�gG(x; y)w(y)dy. By Lemma 2.1, K�w(x) = r?G�w(x) and G�w and K�w
onverge uniformly on �� respe
tively to Gw and Kw. Sin
e Kw is 
ontinuous, we dedu
ethat Kw = r?Gw and r:Kw = 0. The boundary 
ondition : 8x 2 ��; Gw(x) = 0implies that the tangential derivative of Gw vanishes on �� i.e. 8x 2 ��, Kw(x):n(x) = 0.Using Green's formula we dedu
e,Z� vKw:rv = 12 Z�Kw:rv2 = 12 Z�� v2Kw:nd� � 12 Z� v2r:Kw = 0:The se
ond equality in (2.13) is dedu
ed by polarization. 2We are now ready to proveTheorem 2.5 Under hypotheses (H), equation (2.1) has a unique solution w in the senseof De�nition 2.2. In addition, w 2 C([0; T ℄; L2x) \ L4t (L4x).The last assertion is a 
onsequen
e of Remark 2.3. We are going to prove existen
e by theGalerkin method. Let us �rst 
he
kUniqueness : The proof is similar to the one made for the 2d Navier-Stokes equation6



(see for instan
e [23℄ p. 294).Let v and w denote two solutions and ~w = v � w. As ~w 2 L2t (H1x) and by Remark2.3, �t ~w 2 L2t (H10x ), a

ording to [23℄ p.261 ddtk ~w(t)k2L2 = 2 < �t ~wt; ~wt > holds in thedistribution sense on [0; T ℄. The right-hand-side is integrable. Using De�nition 2.2 (ii)and (iii), we dedu
e that for t 2 [0; T ℄ :12k ~w(t)k2L2 + � Z t0 kr ~wsk2L2ds = Z t0 Z�(vsKvs � wsKws):r ~wsds: (2.15)Using (2.13) and then (2.12) and Young's inequality, we have���� Z�(vsKvs � wsKws):r ~ws���� = ����Z� ~wsKvs:r ~ws + ws:K ~ws:r ~ws���� = ����0� Z� ~wsK ~ws:rws����� Ck ~wskH1kwskH1k ~wskL2 � �(kr ~w(s)k2L2 + k ~w(s)k2L2) + C24� kwsk2H1k ~wsk2L2 :Inserting this bound in (2.15), we obtain8t 2 [0; T ℄; k ~w(t)k2L2 � 2 Z t0  � + C24� kwsk2H1! k ~wsk2L2ds:Sin
e s! kwsk2H1 is integrable, by Gronwall's lemma, 8t 2 [0; T ℄; kvt � wtkL2 = 0.Existen
e : We �rst derive an a priori estimate whi
h will also hold at the dis
retelevel. Let w be a weak solution of (2.1). As above,12 ddtkwtk2L2 + �krwtk2L2 = Z� wtKwt:rwt + � Z�� gtwtd�:A

ording to (2.13), the �rst term of the r.h.s. is nil. Using moreover (2.8) and Young'sinequality, we dedu
e12 ddtkwtk2L2 + �krwtk2L2 � �2 (krwtk2L2 + kwtk2L2) + Ckgtk2L2(��) (2.16)Removing the terms involving krwtk2L2 , we upper-bound kwk2L1t (L2x) by Gronwall's lemma.Inserting this bound in (2.16), we 
on
lude thatkwk2L1t (L2x) + krwk2L2t (L2x) � CT (kw0k2L2 + kgk2L2t (L2x(��))): (2.17)We now employ the so-
alled Galerkin method. Let (vk)k2IN� denote a Hilbertian basisof H1(�) and n 2 IN�. We want to �nd t 2 [0; T ℄ ! �(t) = (�1(t); :::; �n(t)) su
h thatwnt = Pnk=1 �k(t)vk satis�es the following approximate problem : wn0 is the orthogonalproje
tion in the sense of the L2 s
alar produ
t of w0 onto span(v1; :::; vn) and81 � k � n; ddt Z�wnt vk + � Z�rwnt :rvk = Z�wnt Kwnt :rvk + � Z�� gtvkd�: (2.18)Denoting Ajk = R� vjvk, Bj;k = R�rvj:rvk, Ci;j;k = R� viKvj :rvk, �(t) = (
1(t); :::; 
n(t))7



with 
k(t) = R�� gtvkd�, we obtain that this approximate problem writes :ddt�(t) = A�1(��B:�(t) + �(t)�C�(t) + ��(t)):By a standard �xed-point approa
h, we obtain existen
e of a lo
al in time solution �(t)to this O.D.E.. Thanks to the a priori estimate (2.17) whi
h holds for the 
orrespondingwnt , and prevents explosion for �(t), we 
an iterate this �xed-point approa
h to extend�(t) on [0; T ℄.We next want to take the limit n ! +1. A

ording to the a priori estimate (2.17), thesequen
e (wn)n2IN� is bounded in L1t (L2x) and L2t (H1x). Reasoning like in Remark 2.3,we 
he
k that (�twn)n2IN� is bounded in L2t (H10x ). Using the 
ompa
ity result stated inTheorem 2.3 p.276 [23℄, we dedu
e that we may extra
t a subsequen
e that 
onverges to alimit w weakly* in L1t (H1x), weakly in L2t (H1x) and strongly in L2t (L2x). This subsequen
e isstill denoted by (wn) for notational simpli
ity. The weak 
onvergen
es are enough to takethe limit in the linear terms of (2.18) (see [23℄ pp.257-260). We are only going to 
he
k the
onvergen
e of the nonlinear term. Let v 2 H1(�). Sin
e by (2.11), kK(wn�w)t:rvkL1 �Ckwnt � wtkL2kvkH1 , Kwn:rv 
onverges to Kw:rv in L2t (L1x). Combining the a prioriestimate for wn and (2.14), we obtain that the sequen
e Kwn:rv is bounded in L2t (L2x).Therefore Kwn:rv 
onverges to Kw:rv weakly in L2t (L2x). With the strong 
onvergen
eof wn to w in L2t (L2x) we easily dedu
e that8 2 D(℄0; T [); Z T0  0(t) Z�wnt Kwnt :rv dt! Z T0  0(t) Z�wtKwt:rv dt:Hen
e w satis�es (ii) in De�nition 2.2. Sin
e by standard arguments ([23℄ pp.257-260) (iii)also holds, we 
on
lude that w is a weak solution of (2.1).In order to give a probabilisti
 interpretation to the obtained weak solution of (2.1),we introdu
e the semi-group P �t (x; y) asso
iated with p2� times the Brownian motionnormally re
e
ted on the boundary and prove the following mild representationProposition 2.6 Let w denote the weak solution of (2.1) given by Theorem 2.5. Then8t 2 [0; T ℄, dx a.e. in �,wt(x) = P �t w0(y) + Z t0 rP �t�s:(wsKws)(x)ds+ � Z t0 Z�� P �t�s(y; x)g(s; y)d�(y)ds (2.19)where rP �t�s:(wsKws)(x) = R�ryP �t�s(y; x):ws(y)Kws(y)dy:Proof. Let t 2℄0; T ℄ and ' be a smooth fun
tion on �� with a vanishing normal derivativeat the boundary : �n'(x) = 0 for x 2 ��. A

ording to [12℄ Theorem 5.3 p.320, the8



boundary value problem �s + �� = 0 on [0; t℄���n = 0 on [0; t℄� �� (t; :) = '(:) on �admits a 
lassi
al solution  (s; x) whi
h is C1;2 on [0; t℄ � ��. By the Feynman-Ka
 ap-proa
h, this solution has the following representation :  (s; x) = P �t�s'(x). Clearly 2 L1([0; t℄;H1(�)) and �s 2 L2([0; t℄; (H1)0x(�)). By [23℄, Lemma 1.2 p. 261, wededu
e that in D0(℄0; t[),dds Z�ws (s; :) = Z�ws�s (s; :)�� Z�rws:r (s; :)+Z� wsKws:r (s; :)+� Z�� gs (s; :)d�:By the equation satis�ed by  , the sum of the two �rst terms of the r.h.s. is nil. Hen
eZ�wt(x)'(x)dx = Z�w0(x) (0; x)dx + Z t0 Z�wsKws(x):r (s; x)dxds+ � Z t0 Z��  (s; x)g(s; x)d�(x)ds:By the symmetry of P � and hypotheses (H), R t0 R�� R� P �t�s(x; y)j'(y)jdyjg(s; x)jd�(x)ds �sup j'jkgkL1t (L1x(��)) < +1: Hen
e, by Fubini's theorem the last term of the r.h.s. is equalto � R� '(x) R t0 R�� P �t�s(y; x)g(s; y)d�(y)dsdx:We 
on
lude the proof by applying similarlyFubini's theorem to the other terms of the r.h.s. and remarking that the derived equalityholds for any smooth fun
tion ' with vanishing normal derivative.To justify the use of Fubini's theorem in the se
ond term, we need the following estimationsgiven by [20℄ (a.13) and (a.14) p.600 :8x 2 ��; 8y 2 ��; jrxP �t (x; y)j � C1=t3=2 and krxP �t (x; y)kL1y(�) � C1=pt: (2.20)Indeed the �rst one ensures that r (s; x) = R�rxP �t�s(x; y)'(y)dy. By the se
ondone and (2.11),Z t0 Z� jwsKwsj(x) Z� jrxP �t�s(x; y)jj'(y)jdydxds � C sup j'jkwk2L1t (L2x) Z t0 (t� s)�1=2ds:2
9



3 The probabilisti
 interpretation of the vortex equation ona bounded domain with a Neumann boundary 
onditionWe are in a M
Kean-Vlasov 
ontext, and the interpretation of the vortex equation as aFokker-Plan
k equation allows us to de�ne naturally a nonlinear martingale problem (Seefor example M�el�eard [15℄).Here the diÆ
ulty is the treatment of the term due to the Neumann 
ondition involv-ing the fun
tion g. We essentially follow Fernandez-M�el�eard [6℄ and prove that this termis related to spa
e-time random births lo
ated at the boundary in the probabilisti
 inter-pretation. Our situation is harder than the one of [6℄ sin
e we are in a bounded domaininstead of the whole spa
e and the di�usion pro
esses are re
e
ted on the boundary. Thereare also births inside the domain at time 0 and the fun
tions w0 and g are not probabilitydensities.We follow Jourdain [11℄ to treat the last diÆ
ulty.Let kw0k1 = R� jw0j and kgk1 = R[0;T ℄��� jgjd�dt. To govern the times and positionsof births we introdu
e on [0; T ℄ � �� the probability measureP0(dt; dx) = 1fx2�gÆf0g(dt) jw0(x)jkw0k1 + �kgk1 dx+ 1fx2��g �jg(t; x)jkw0k1 + �kgk1 dtd�(x) (3.1)whi
h does not weight ℄0; T ℄ ��. To take into a

ount the e�e
t of the sign and mass ofw0 and g, we also 
onsider for t 2 [0; T ℄ and x 2 �� the measurable fun
tionh(t; x) = 1ft=0;x2�g w0(x)jw0(x)j (kw0k1 + �kgk1) + 1fx2��g g(t; x)jg(t; x)j (kw0k1 + �kgk1) (3.2)with values in f�(kw0k1 + �kgk1); 0; kw0k1 + �kgk1g. Let us remark that if ' a boundedmeasurable fun
tion on [0; T ℄� ��, thenZ[0;T ℄��� '(t; x)h(t; x)P0(dt; dx) = Z� '(0; x)w0(x)dx+ � Z[0;T ℄��� '(t; x)g(t; x)dtd�(x)(3.3)Let (�; (Xt)t�T ; (kt)t�T ) denote the 
anoni
al pro
ess on [0; T ℄�C([0; T ℄; ��)�C([0; T ℄; IR2).For a probability measure Q on this spa
e, we de�ne the family ( ~Qt)t2[0;T ℄ of signed mea-sures on �� by 8B 2 B( ��); ~Qt(B) = EQ(h(�;X0)1f��tg1B(Xt)); (3.4)(One asso
iates with ea
h sample path a signed weight depending on the initial datas).It is easy to 
he
k that for ea
h t 2 [0; T ℄, the signed measure ~Qt is bounded with atotal mass less than kw0k1 + �kgk1. 10



We are now going to give a probabilisti
 interpretation to the vortex equation, seenas a Fokker-Plan
k equation, in terms of a martingale problem. This interpretation isinspired from Sznitman [21℄ and Bossy-Jourdain [2℄ for the re
e
ted 
ontribution andfrom Fernandez-M�el�eard [6℄ for the spa
e-time random birth 
ontribution.Let us �rst de�ne the probability spa
e in whi
h the solutions of the martingale problemwe are interested in will live :De�nition 3.1 Let T > 0. We denote by PT the spa
e of probability measures Q on[0; T ℄ � C([0; T ℄; ��) � C([0; T ℄; IR2) su
h that for ea
h t 2 [0; T ℄, the signed measure ~Qthas a density ~qt with respe
t to the Lebesgue measure on � and that t 2 [0; T ℄ ! ~qt 2L1t (L2x) \ L2t (H1x).By adapting Meyer [18℄ p.194, one 
an prove that there exists a measurable version(s; x)! ~q(s; x) of the densities of the 
ow of signed measures ( ~Qs).De�nition 3.2 The probability measure P 2 PT is solution of the nonlinear martingaleproblem (MT ) if1) P Æ (�;X0; k0)�1 = P0 
 Æ(0;0)2) for ea
h � 2 C2b (IR2),M�t = �(Xt + kt)� �(X0)� Z t0 1f��sg�K ~ps(Xs):r�(Xs + ks) + ���(Xs + ks)�dsis a P -martingale, for the �ltration Ft = �(�; (Xs; ks); s � t) (~p(s; x) denotes a measurableversion of the densities of the 
ow ( ~Ps)).3) P a.s., 8t 2 [0; T ℄, R t0 djkjs < +1, jkjt = R t0 1fXs2��g1f��sgdjkjs, and kt =R t0 n(Xs)djkjs.The following Lemma states the link between problem (MT ) and the vortex equation(2.1).Lemma 3.3 If P 2 PT solves MT then ~p is a weak solution of (2.1).Proof. By De�nition 3.2 1), (3.4) and (3.3), ~p0 = w0.A

ording to De�nition 3.2 2), �t = Xt�X0�R t0 1f��sgK ~ps(Xs)ds+kt is a P 
ontinuousmartingale with bra
ket < � >t= 2�(t� �)+I2 where I2 denotes the 2� 2 identity matrixwhi
h implies that �t = 0 for t 2 [0; � ℄. Using moreover De�nition 3.2 3), we dedu
e thatXt = X0 for t 2 [0; � ℄.Hen
e for  2 C1;2([0; T ℄� ��)Z T0 �s (s;Xs)ds+  (0;X0) =  (�;X0) + Z T0 1f��sg�s (s;Xs)ds;11



If moreover 8(s; x) 2 [0; T ℄ � ��, �n (s; x) = 0, by Itô's formula, we dedu
e that (T;Xt) =  (�;X0) + Z T0 r (s;Xs):d�s+ Z T0 1f��sg(�s (s;Xs) +K ~ps(Xs):r (s;Xs) + �� (s;Xs))dsMultiplying by the F0-measurable variable h(�;X0), taking expe
tations and using thede�nition of ~p and (3.3), we dedu
e thatZ��  (T; x)~p(T; x)dx = Z��  (0; x)w0(x)dx+ � Z T0 Z��  (s; x)g(s; x)d�(x)ds+ Z T0 Z��(�s (s; x) +K ~ps(x):r (s; x) + �� (s; x))~p(s; x)dxds;For the 
hoi
e  (s; x) = '(s)v(x) where v is a C2 fun
tion on �� su
h that �nv = 0 on ��and ' 2 D(℄0; T [), we obtainZ T0 �'0(s) Z�� ~psv + '(s)�Z� ~psK ~ps:rv + � Z� ~ps�v + � Z�� gsvd��� ds = 0:As P 2 PT , ~p 2 L2t (H1x). By Green's formula for fun
tions in H1(�) ([3℄ p.197) and sin
e�nv vanishes on the boundary, ds a.e. in [0; T ℄, R� ~ps�v = � R�r~ps:rv.Sin
e � is C4, adapting [3℄ pp.192-193 to diagonalize the Neumann Lapla
ian, one obtainsa Hibertian basis of H1(�) 
onsisting in C2( ��)-fun
tions with a vanishing normal deriva-tive. Therefore su
h fun
tions are dense in H1 and we 
on
lude that ~p satis�es De�nition2.2 (ii). 2Theorem 3.4 Under hypotheses (H), there exists a unique solution P to the martingaleproblem (MT ). In addition, the 
orresponding ~p is a weak solution of (2.1) and satis�esthe mild equation (2.19).Proof. 1) UniquenessLet P 1 and P 2 be two solutions of (MT ). Then a

ording to Lemma 3.3, ~p1 and ~p2are weak solutions of (2.1). A

ording to Theorem 2.5, ~p1 = ~p2 = w. Hen
e P 1 and P 2both solve the martingale problem de�ned like (MT ) but with known drift 
oeÆ
ient Kwsrepla
ing K ~ps in De�nition 3.2 2). Sin
e w 2 L4t (L4x), by (2.10), kKwskL1x 2 L4t .Let � denote the �rst marginal of the probability measure P0 on [0; T ℄ � �� and for i =1; 2 and u 2 [0; T ℄, pi(u; :) be a regular 
onditional probability on [0; T ℄ � C([0; T ℄; ��) �C([0; T ℄; IR2) endowed with P i given � = u.Then d�(u) a.e., pi(u; :) a.s., � = u, De�nition 3.2 3) is satis�ed and pi(u; :)Æ(X0; k0)�112



is equal to 1fu=0g jw0(x)jdxkw0k1 
 Æ(0;0) + 1fu>0g jg(u; x)jd�(x)R�� jg(u; y)jd�(y) 
 Æ(0;0) (3.5)and 8� 2 C2b (IR2),�(Xt + kt)� �(X0)� Z t0 1fu�sg�Kws(Xs):r�(Xs + ks) + ���(Xs + ks)�dsis a pi(u; :)-martingale.Reasoning like in the proof of Lemma 3.3, we obtain that d�(u) a.e., pi(u; :) a.s., Xt =X0 and kt = (0; 0) for t 2 [0; u℄. With (3.5), we dedu
e that d�(u) a.e., p1(u; :) Æ(Xu; ku)�1 = p2(u; :) Æ (Xu; ku)�1 and that for i = 1; 2, pi(u; :) is equal to the imageof pi(u; :) Æ ((Xt+u; kt+u)t2[0;T�u℄)�1 by the mapping(Xt; kt)t�0 2 C([0; T � u℄; ��� IR2)! (X(t�u)+ ; k(t�u)+)t2[0;T ℄ 2 C([0; T ℄; �� � IR2):Moreover d�(u) a.e. ,Wt = 1p2� �Xt+u �Xu � Z t+uu Kws(Xs)ds+ kt+u�is a pi(u; :) Brownian motion. Sin
e s ! kKwskL1 is square integrable, 
ombining tra-je
torial uniqueness for the Brownian motion normally re
e
ted at the boundary of �(see [13℄), Girsanov's theorem and the equality p1(u; :) Æ (Xu; ku)�1 = p2(u; :) Æ (Xu; ku)�1whi
h holds d�(u) a.e., we dedu
e thatd�(u) a.e.; p1(u; :) Æ ((Xt+u; kt+u)t2[0;T�u℄)�1 = p2(u; :) Æ ((Xt+u; kt+u)t2[0;T�u℄)�1:Hen
e d�(u) p.p. p1(u; :) = p2(u; :) and P 1 = P 2.2) Existen
e. Let w be the solution of the vortex equation given by Theorem 2.5. Were
all that kKwskL1 2 L4t . We 
onstru
t a solution to the linear martingale problemde�ned like (MT ) but with known drift 
oeÆ
ient Kws(:) repla
ing K ~ps in De�nition 3.22) and we 
he
k that this probability measure solves (MT ).Let (�;X0) be a random variable with law P0 independent from (Wt)t2[0;T ℄ a two-dimensionalBrownian motion. Existen
e and traje
torial uniqueness hold for the sto
hasti
 di�erentialequation with normal re
e
tionXt = X0 +p2� Z t0 1f��sgdWs � ktjkjt = Z t0 1fXs2��g1f��sgdjkjs ; kt = Z t0 n(Xs)djkjs:
13



Moreover 8t 2 [0; T ℄, Xt admitsx! 1kw0k1 + �kgkL1([0;t℄���) �jw0jP �t (x) + � Z t0 Z�� jgj(s; y)P �t�s(y; x)�(dy)ds�as a density w.r.t. the Lebesgue measure on ��. Sin
e kKwskL1 is square integrable, byGirsanov's theorem we dedu
e that the martingale problem de�ned like (MT ) but withknown drift 
oeÆ
ient Kws repla
ing K ~ps admits a solution P su
h that 8t 2 [0; T ℄, themeasure ~Pt has a density. Let ~p denote a measurable version of the densities.We set t 2 [0; T ℄. Reasoning like in the proof of Lemma 3.3, we obtain that for  2C1;2([0; t℄� ��) su
h that 8(s; x) 2 [0; t℄� ��, �n (s; x) = 0,Z��  (t; x)~p(t; x)dx = Z��  (0; x)w0(x)dx+ � Z t0 Z��  (s; x)g(s; x)d�(x)ds+ Z t0 Z��(�s (s; x) +Kws(x):r (s; x) + �� (s; x))~p(s; x)dxds:Choosing  (s; x) = P �t�s'(x) like in the proof of Proposition 2.6 and remarking thatbe
ause of (2.20) and the uniform in time bound k~ptkL1 � kw0k1 + �kgk1,Z t0 Z�2 jrxP �t�s(x; y)jj'(y)jj~ps(x)jjKws(x)jdxdyds � C Z t0 kKwskL1dspt� s < +1;we dedu
e by Fubini's theorem thatdx a:e:; ~pt(x) = P �t w0(x) + Z t0 rP �t�s:(~psKws)(x)ds+ � Z(0;t℄��� P �t�s(x; y)g(s; y)d�(y)ds:Now, using the mild equation (2.19) satis�ed by w and (2.20), we obtain9C > 0; 8t 2 [0; T ℄; k~pt � wtkL1 � C Z t0 k~ps � wskL1 kKwskL1pt� s ds: (3.6)By iterating this bound, then using H�older's inequality, we obtaink~pt � wtkL1 � C Z t0 k~ps � wskL1kKwskL1 Z ts kKwukL1 dupt� upu� sds� C Z t0 k~ps � wskL1kKwskL1kKwkL4t (L1x ) �Z ts ((t� u)(u� s))�2=3du�3=4 ds:Hen
e (3.6) holds with (t�s)�1=2 repla
ed by (t�s)�1=4 in the r.h.s. After the next itera-tion we obtain that (3.6) holds with (t� s)�1=2 repla
ed by 1 and 
on
lude by Gronwall'slemma that 8t 2 [0; T ℄; ~pt = wt. 2
14



4 Sto
hasti
 Approximations of the solution of the vortexequation4.1 The 
ase of a 
uto� kernelAs in M�el�eard [17℄, we introdu
e a 
uto� kernel K" preserving the properties (2.4). Morepre
isely we 
onsider an in
reasing C2-fun
tion � from IR+ to IR+, su
h that �(x) = x forx � 12 and �(x) = 1 for x � 1. For " � 1, we setG"(x; y) = � jx� yj3"3 !G(x; y) (4.1)and K"(x; y) = r?xG"(x; y)= � jx� yj3"3 !K(x; y) + �0  jx� yj3"3 ! 3(x� y)?jx� yj"3 G(x; y): (4.2)The following Lemma states usefull properties of this 
uto� kernel :Lemma 4.1 1) rx:K"(x; y) = 0 ; K"(x; y) � n(x) = 0 for x 2 ��;K"(x; y) = K(x; y) if jx� yj � "8x; y 2 �� ; jK"(x; y)j � C(1 + j ln jx� yjj)jx� yj (4.3)where C does not depend on ".2) supx2�� kK(x; :) �K"(x; :)kLpy tends to 0 as " tends to 0 as soon as p < 2.3) For " suÆ
iently small, the kernel K" is bounded by M" � Cj ln "j" and Lips
hitz
ontinuous in both variables with 
onstant L" � Cj ln "j"2 where C does not depend on ".Proof. The two �rst properties in 1) are obvious and 2) is an easy 
onsequen
e of (4.3).By the estimate of K given in Lemma 2.1 and the above de�nition of �, the norm of�rst term of the r.h.s. of (4.2) is smaller than C0( 1jx�yj ^ supr2[0;"2�1=3℄ r2�3 ) � C0( 1jx�yj ^ 1� ).By the estimate of G in Lemma 2.1 and sin
e �0(x) = 0 for x > 1, the se
ond term of ther.h.s. of (4.2) is smaller than 3C0k�0k1 times 1 + j ln jx� yjjjx� yj ^ supr2[0;"℄ r2(1 + j ln(r)j)"3 ! � �1 + ln jx� yjjx� yj ^ 1 + j ln(")j" �as " � 1. We dedu
e both (4.3) and the upper-bound in Cj ln(")j=". To prove that K" isLips
hitz 
ontinuous, we use in a similar way Lemma 2.1 
ombined with the de�nition of15



� to 
he
k that the gradient of ea
h 
oordinate of K" w.r.t. either x or y is bounded byCj ln(")j="2 (the 
ontribution of the �rst term of the r.h.s. of (4.2) is C="2 whereas theone of the se
ond term is Cj ln(")j="2). 2With a slight adaptation of Sznitman [21℄ to take into a

ount the random births onthe boundary, we obtain the existen
e and pathwise uniqueness of the following intera
tingparti
le systems.De�nition 4.2 Consider a sequen
e (Bi)i2IN of independent Brownian motions on IR2and a sequen
e of independent variables (� i; Zi0)i2IN with values in [0; T ℄ � �� distributeda

ording to P0, and independent of the Brownian motions. For a �xed ", for ea
h n 2 IN�,and 1 � i � n, let us 
onsider the intera
ting pro
esses de�ned byZin;"t 2 ��;8t 2 [0; T ℄Zin;"t = Zi0 +p2� Z t0 1f� i�sgdBis + Z t0 1f� i�sgK"~�n;"s (Zin;"s )ds� kin;"t ;jkin;"jt = Z t0 1fZin;"s 2��g1f� i�sgdjZin;"js ; kin;"t = Z t0 n(Zin;"s )djkin;"js (4.4)where ~�n;"s = 1nPnj=1 h(� j ; Zj0)1f� j�sgÆZjn;"s is the weighted empiri
al measure of the systemat time s and K"~�n;"s (z) = 1nPnj=1 h(� j ; Zj0)1f� j�sgK"(z; Zjn;"s ).Let us remark that the parti
les either have birth at time 0 inside the domain and evolve asdi�usive parti
les with normal re
e
ting boundary 
onditions, or have birth at a randomtime on the boundary of the domain, and evolve after birth as the other ones. Moreover,all parti
les, as soon as they are born, intera
t together following a mean �eld dependingon the parameter ".Again a

ording to [21℄, we also get the existen
e and pathwise uniqueness of the limitpro
esses (when n tends to in�nity and " is �xed), 
oupled with the intera
ting pro
esses,as follows.De�nition 4.3 We de�ne �Zi;" by�Zi;"t 2 ��;8t 2 [0; T ℄�Zi;"t = Zi0 +p2� Z t0 1f� i�sgdBis + Z t0 1f� i�sgK" ~Q"s( �Zi;"s )ds� �ki;"t ;j�ki;"jt = Z t0 1f �Zi;"s 2��g1f� i�sgdj�ki;"js ; �ki;"t = Z t0 n( �Zi;"s )dj�ki;"js (4.5)where Q" is the 
ommon law of (� i; �Zi;"; �ki;"), and ~Q"s is de�ned from Q" by (3.4).16



Sznitman also proves a propagation of 
haos result, but without pre
ise estimates on therate of 
onvergen
e. In order to get su
h estimates, we denote by H a C2b ( ��)-extension ofthe distan
e-fun
tion d(:; ��) (de�ned on a restri
tion to � of a neighbourhood of ��).The fun
tion H satis�es (see [8℄) rH = �n on ��: (4.6)We also re
all that the domain � (sin
e C4) satis�es the uniform \exterior sphere" 
ondi-tion: 9Csp � 0 ;8x 2 �� ; 8x0 2 �� ; Cspjx� x0j2 + n(x):(x� x0) � 0: (4.7)Proposition 4.4 For t � T , for ea
h i 2 f1; :::; ng,E(sups�t jZin;"s � �Zi;"s j2) � 2d(�)sA"n exp(KH(1 + (kw0k1 + �kgk1)(M"=2 + L")t))E(sups�t jkin;"s � �ki;"s j) � E(sups�t jZin;"s � �Zi;"s j) + 2(kw0k1 + �kgk1)t L"E(sups�t jZin;"s � �Zi;"s j) + M"pn!where KH is a 
onstant whi
h depends only on upper-bounds of the fun
tion H and itsderivatives and A" = 4(kw0k1+�kgk1)2M2"2+(kw0k1+�kgk1)(M"+2L")) .Remark 4.5 The 
onvergen
e rate in the number n of parti
les given above is not optimal:indeed one 
an 
he
k that E(sups�t jZin;"s � �Zi;"s j4) is smaller than16(kw0k1 + k�gk1)4M4" tn2(1 + (2 + (kw0k1 + �kgk1)2(M2" + 4L2"))t) exp(KH(t+(2+(kw0k1+�kgk1)2(M2"+4L2"))t2)):But in the next se
tion, we are going to let " = "n depend on n and 
onverge to 0 in su
ha way that E(sups�t jZin;"ns � �Zi;"ns j2)! 0. The estimation given in the proposition allowsa qui
ker (but still very slow) 
onvergen
e of "n to 0 than the previous one.Proof. We 
ompare the two pro
esses Zin;" and �Zi;". We denote for simpli
ity Z, k, �Zand �k instead of Zin;", kin;", �Zi;" and �ki;", ht = H(Zt), �ht = H( �Zt), h0t = rH(Zt), �h0t =rH( �Zt), h00t = �H(Zt), �h00t = �H( �Zt), bt = K"~�n;"s (Zt) and �bt = K" ~Q"t ( �Zt). Computingd exp(�2Csp(ht + �ht))jZt � �Ztj2 by Itô's formula, we get1f�i�tg exp(�2Csp(ht + �ht))� �2(Zt � �Zt):(d�kt � dkt)� 2CspjZt � �Ztj2(djkjt + dj�kjt)� 2CspjZt � �Ztj2�p2�(h0t + �h0t)dBit + �h0tbt + �h0t�bt + �(�2Cspjh0t + �h0tj2 + h00t + �h00t )�dt�+ 2(Zt � �Zt):(bt � �bt)dt� (4.8)17



Be
ause of the \exterior sphere" 
ondition, the lo
al time terms of the �rst line have anon-positive 
ontribution after integration over time. We dedu
e that for KH a 
onstantwhi
h 
an be 
omputed and depends only on upper-bounds of the fun
tion H and itsderivatives,E(jZin;"t � �Zi;"t j2) � KH�(1 +M"(kw0k1 + �kgk1)) Z t0 E(jZin;"s � �Zi;"s j2)ds+ Z t0 E(jZin;"s � �Zi;"s jjK"~�n;"s (Zin;"s )�K" ~Q"s( �Zi;"s )j)ds� (4.9)Using the Lips
hitz 
ontinuity of K", the boundedness of h and the ex
hangeability of thepro
esses (Zin;"; �Zi;"); 1 � i � n, we obtainE ( jZin;"s � �Zi;"s jjK"~�n;"s (Zin;"s )�K" ~Q"s( �Zi;"s )j)� (kw0k1 + �kgk1)L"E(jZin;"s � �Zi;"s j(jZin;"s � �Zi;"s j+ 1n nXj=1 jZjn;"s � �Zj;"s j))+E(jZin;"s � �Zi;"s jj 1n nXj=1h(�j ; Zj0)1f� j�sgK"( �Zi;"s ; �Zj;"s )�K" ~Q"s( �Zi;"s )j)� (1 + 2(kw0k1 + �kgk1)L")E(jZin;"s � �Zi;"s j2)+E(j 1n nXj=1h(�j ; Zj0)1f� j�sgK"( �Zi;"s ; �Zj;"s )�K" ~Q"s( �Zi;"s )j2)After expansion of E(j 1nPnj=1 h(�j ; Zj0)1f� j�sgK"( �Zi;"s ; �Zj;"s )�K" ~Q"s( �Zi;"s )j2), many termsdisappear by independen
e of the variables whi
h are 
entered 
onditionnally to �Zi;" andit only remains n bounded terms. We dedu
e thatE(jZin;"t � �Zi;"t j2) � KH � (2 + (kw0k1 + �kgk1)(M" + 2L")) Z t0 E(jZin;"s � �Zi;"s j2)ds+4(kw0k1 + �kgk1)2M2" tn � (4.10)Using Gronwall's Lemma, we obtain that both sides of (4.9) and (4.10) are smaller thanf(t) = 4(kw0k1 + k�gk1)2M2"n(2 + (kw0k1 + �kgk1)(M" + 2L")) exp(KH(2 + (kw0k1 + �kgk1)(M" + 2L"))t):Integrating (4.8) w.r.t. time, dealing with the sto
hasti
 integral thanks to Doob's in-equality and using that the r.h.s. of (4.9) is smaller than f(t), we getE(sups�t jZin;"s � �Zi;"s j2) � �KH Z t0 E(jZin;"s � �Zi;"s j4)ds�1=2 + f(t)� d(�)�KH Z t0 E(jZin;"s � �Zi;"s j2)ds�1=2 + f(t)� d(�)qf(t) + f(t) sin
e the r.h.s. of (4.10) is smaller than f(t)18



The l.h.s. being smaller than d(�)2, it is smaller than 2d(�)pf(t) when f(t) � d(�)2and the r.h.s. is smaller than 2d(�)pf(t) otherwise. We dedu
e the desired estimate forE(sups�t jZin;"s � �Zi;"s j2).Now remarking thatsups�t jkin;"s � �ki;"s j � Z t0 jK"~�n;"s (Zin;"s )�K" ~Q"s( �Zi;"s )jds+ sups�t jZin;"s � �Zi;"s jand using arguments developped above we obtain the other estimate. 2Remark 4.6 Let us remark that if �� is a 
onvex region then the rate of 
onvergen
e iseasier to obtain. Indeed the 
onstant Csp de�ned in (4.7) 
an be 
hosen equal to 0 :8x 2 �� ; 8x0 2 �� ; n(x):(x� x0) � 0: (4.11)In the expression of jZin;"t � �Zi;"t j2 given by Itô's formula, the lo
al times terms are non-positive and thereforeE(sups�t jZin;"s � �Zi;"s j2) � (1 + 2(kw0k1 + �kgk1)L")) Z t0 E(supu�s jZin;"u � �Zi;"u j2)ds+4(kw0k1 + �kgk1)2M2" tnand we 
on
lude by Gronwall's Lemma.4.2 Convergen
e of the limit lawsWe want to prove that the law Q" of (�1; �Z1;"; �k1;") 
onverges to the unique solution P ofproblem MT as " tends to 0. We are �rst going to 
he
k that the drift 
oeÆ
ient K" ~Q"s
onverges to K ~ps.By Girsanov's theorem, it turns out that 8s > 0, the measure ~Q"s admits a density fun
tionq"s. Moreover, reasoning like in the proof of Theorem 3.4 and using the boundedness of thekernel K", we show that q" is the unique solution in L1T = fpt; kjpkjT = supt�T kptkL1 <+1g of the evolution equationq"t (x) = P �t w0(x) + Z t0 rxP �t�s:(q"sK"q"s)(x)ds+ � Z t0 Z�� P �t�sg(s; y)d�(y)ds: (4.12)On the other hand, thanks to Lemma 4.3 1), we 
an apply to the equation�tw(t; x) +r:(wK"w)(t; x) = ��w(t; x) in �;w(x; 0) = w0 in �;�nw = rw:n = g on �� (4.13)19



all what we have done for the equation (2.1). We 
an then prove the existen
e of a uniqueweak solution w" belonging to L1t (L2x) \ L2t (H1x). Now, like in Proposition 2.6, we obtainthat w" is also solution of (4.12). Sin
e it belongs to L1T (� is bounded), w" = q". Thanksto (4.3), one 
an 
he
k that the a priori estimate (2.17) holds for w" = q" with a 
onstantCT independent of ". Following Remark 2.3, we dedu
e thatsup"2(0;1℄�kq"kL1t (L2x) + kq"kL2t (H1x) + k�tq"kL2t (H10x ) + kq"kL4t (L4x)� < +1: (4.14)Remark 4.7 Similarly the non-negative measures B 2 B( ��)! EQ"(1f��tg1B(Xt)) havedensities p"t w.r.t. the Lebesgue measure whi
h are the unique solution in L1T of themild equation obtained by repla
ing respe
tively w0 and g by jw0j=(kw0k1 + �kgk1) andjgj=(kw0k1 + �kgk1) in (4.12).Identifying p" with the unique weak solution of the problem obtained from (4.13) by re-pla
ing w0 and g in the same way, we 
he
k that (4.14) holds for p".We 
an now prove the 
onvergen
e of q" to w.Proposition 4.8lim"!0 kq" � wkL2t (L2x) = 0 ; lim"!0 kK"q" �KwkL2t (L2x) = 0:Proof. Thanks to (4.14), one 
an extra
t from ea
h sequen
e q"n with "n tending to 0, asub-sequen
e (still denoted q"n for simpli
ity), whi
h 
onverges strongly in L2t (L2x) and inL2t (H1x) and weakly� in L1t (L2x) to ~w. By adapting the proof of Theorem 2.5, we get that~w is a weak solution of (2.1) and 
on
lude that ~w = w by uniqueness for this equation.The only di�eren
e 
omes from the term (K"n �K)q"ns . Let 1 < p < 2. Combiningthe Sobolev inequality kq"ns kL pp�1 � Ckq"ns kH1 , Lemma 4.1 2) and (4.14), we dedu
e thatthis term 
onverges to 0 in L2t (L1x ).Now, by writingkK"q" �KwkL2t (L2x) � kK(q" � w)kL2t (L2x) + k(K" �K)q"kL2t (L2x);and using (2.11), one easily dedu
es the se
ond assertion. 2Theorem 4.9 The probability measures Q" on [0; T ℄�C([0; T ℄; ��)�C([0; T ℄; IR2) 
onvergeweakly to the unique solution P of the nonlinear martingale problem (MT ), as " tends to0.Proof. As the weak 
onvergen
e topology is metrizable, we are going to 
he
k that(Qn = Q"n)n2IN 
onverges weakly to P when "n is a sequen
e whi
h tends to 0 as n tends20



to +1. Let us prove the uniform tightness of the sequen
e (Qn)n before identifying thelimit of any weakly 
onvergent subsequen
e.1) By (4.3) and (4.14), we easily obtain thatsupn kK"nq"ns kL4t (L1x ) < +1: (4.15)Then the Kolmogorov tightness 
riterion is satis�ed for the laws of�Y 1;"nt = Z10 +p2� Z t0 1f�1�sgdB1s + Z t0 1f�1�sgK"nqns ( �Z1;"ns )ds:Now the uniform tightness of the laws Qn of the pro
esses (�1; �Z1;"n ; �k1;"n) is a simple
onsequen
e of the fa
t that the appli
ation sending y 2 C([0; T ℄; IR2) on the solution(x; k) 2 C([0; T ℄; ��)� C([0; T ℄; IR2) of the Skorohod problem is 
ontinuous (See [13℄).2) Let us now denote by Q1 a limit value of a 
onvergent subsequen
e still denoted by(Qn) for simpli
ity and prove by arguments inspired from Sznitman ([21℄) that Q1 = P .If as usual (�;X; k) denotes the 
anoni
al pro
ess on [0; T ℄�C([0; T ℄; ��)�C([0; T ℄; IR2),let us de�ne, for p 2 IN�, 0 � s1 � ::: � sp � s < t � T , � 2 C2b (IR2), g 2 Cb([0; T ℄; ( �� �IR2)p) the fun
tionGn(�;X; k) = g(�;Xs1 ; ks1 ; :::;Xsp ; ksp)��(Xt + kt)� �(Xs + ks)� Z ts 1f��ug����(Xu + ku) +K"nq"nu (Xu):r�(Xu + ku)�du�Then EQn(Gn(�;X; k)) = 0. Now if we de�ne the fun
tion G by repla
ing K"nq"ns by Kwsin (4.16), we want to prove that EQ1(G(�;X; k)) = 0.EQ1(G(�;X; k)) = EQ1(G(�;X; k)) �EQn(G(�;X; k)) +EQn(G(�;X; k) �Gn(�;X; k)):Sin
e w 2 L4t (L4x), by (2.10), ds a.e. in [0; T ℄ x 2 �� ! Kws(x) is 
ontinuous andKws 2 L4t (L1x ). We dedu
e that G(�;X; k) is a 
ontinuous fun
tion on the path spa
e,and the �rst term of the r.h.s. tends to 0 as n tends to in�nity. On the other hand, usingRemark 4.7 and Proposition 4.8, we obtainEQn jGn(�;X; k) �G(�;X; k)j � CE�Z t0 1f�1�sgjK"nq"ns ( �Z1;"ns )�Kws( �Z1;"ns )jds�� Ckp"nkL2t (L2x)kK"nq"n �KwkL2t (L2x) ! 0 as n! +1:Hen
e EQ1(G(�;X; k)) = 0. Sin
e 8n; QnÆ(�;X0; k0)�1 = P0
Æ(0;0), Q1Æ(�;X0; k0)�1 =P0 
 Æ(0;0). We are now going to prove that Q1-almost surely,jkjT <1 and 8t 2 [0; T ℄; jkjt = Z t0 1fXs2��g1f��sgdjkjs ; kt = Z t0 n(Xs)djkjs:21



As a

ording to the proof of Theorem 3.4, P is the unique solution of the linear martingaleproblem de�ned like MT but with known drift 
oeÆ
ient Kws, we will 
on
lude thatQ1 = P . A

ording to the following Lemma the proof of whi
h is postponed,Lemma 4.10 For any A � 0, the following subset of [0; T ℄ � C([0; T ℄; ��)� C([0; T ℄; IR2)FA = ((u; x; k) : jkjT = Z T0 1fu�sg1fxs2��gdjkjs � A and 8t 2 [0; T ℄; kt = Z t0 n(xs)djkjs)is 
losed.Q1 [A>0FA! � 1� limA!+1 lim infn!+1Qn(F 
A) � 1� limA!+1 supn2INEQn jkjTA :Therefore it is enough to 
he
k that supn2INEj�k1;"n jT < +1 to 
on
lude the proof.Sin
e rH = �n on ��, applying Itô's formula to 
ompute H( �Z1;"nT ), we get that j�k1;"n jTis equal toH( �Z1;"nT )�H(Z10 )� Z T0 1f�1�sg �(��H +K"nq"ns :rH)( �Z1;"ns )ds+p2�rH( �Z1;"ns ):dB1s� :Taking expe
tations and using (4.15), we obtain the desired result. 2Proof.of Lemma 4.10 Let (un; xn; kn) 2 FA 
onverge to (u; x; k) as n ! +1. Sin
esupn jknjT � A, by extra
tion of a subsequen
e, we 
an suppose that the measure djknj(resp. dkn) 
onverges weakly to a positive measure da with mass smaller than A (resp.to dbs). Of 
ourse dbs = �(s)das for some measurable fun
tion � : [0; T ℄ ! IR2 and sin
ekn 
onverges uniformly on [0; T ℄ to k, dbs = dks. Sin
e d(xns ; ��), where d(:; ��) denotesthe (
ontinuous) distan
e from the boundary fun
tion, 
onverges uniformly on [0; T ℄ tod(xs; ��), Z T0 d(xs; ��)das = limn Z T0 d(xns ; ��)djkjns = 0:We dedu
e that das a.e. and therefore djkjs a.e., xs 2 ��. Sin
e the fun
tions kn whi
hare equal to (0; 0) on [0; un℄ 
onverge uniformly to k, this fun
tion is equal to (0; 0) on[0; u℄ and jkju = 0. To 
he
k the only la
king property : dks = n(xs)djkjs, we remark that8f 2 C([0; T ℄; IR+); 8g 2 C([0; T ℄; ��); Z T0 f(s)�(xs � g(s)):dks + Cspjxs � g(s)j2das� � 0by taking the limit n! +1 in the similar inequalities satis�ed with (x; dk; da) repla
edby (xn; dkn; djknj) a

ording to the uniform \exterior sphere" 
ondition (4.7). We dedu
ethat dks = j�(s)jn(xs)das whi
h implies the desired property. 222



4.3 The 
onvergen
e theoremWe now 
onsider a sequen
e ("n) tending to 0 as n tends to in�nity, in su
h a way thatlimn!+1L2"nsA"nn exp(KH(1 + (kw0k1 + �kgk1)(M"n=2 + L"n)T )) + M"npn = 0: (4.16)This is possible, even if the 
onvergen
e of "n to 0 is then very slow. Let us now 
onsiderfor ea
h n the system of pro
esses (� i; Zin; kin) where Zin = Zin;"n and kin = kin;"nare de�ned as in (4.4) but with K"n repla
ing K". We are now able to obtain our maintheorem.Theorem 4.11 1) The laws of the n-parti
le system (� i; Zin; kin)1�i�n, are P -
haoti
(where P is the solution of the problem (MT )):8p 2 IN� ; L((�1; Z1n; k1n); :::; (�p; Zpn; kpn)) weakly=) P
p as n! +1: (4.17)2) The approximate velo
ity �eld 
onverges to Kw:limn!+1E(kK"n ~�n;"nt (x)�Kwt(x)k2L2t (L2x)) = 0: (4.18)Proof.1) Sin
e the pro
esses (� i; �Zi;"n ; �ki;"n)i are independent, Theorem 4.9 implies that forevery �xed p 2 IN�, the law of ((�1; �Z1;"n ; �k1;"n); :::; (�p; �Zp;"n; �kp;"n)) 
onverges weakly toP
p. Let CT = [0; T ℄ � C([0; T ℄; ��)� C([0; T ℄; IR2). We endow CpT with the metri
d��(u1; x1; k1); :::; (up; xp; kp)� ; �(�u1; �x1; �k1); :::; (�up; �xp; �kp)��= pXi=1 jui � �uij+ sup[0;T ℄ jxit � �xitj+ sup[0;T ℄ jkit � �kitj! :and P(CpT ) with the metri
�(�; �) = inf �ZCpT�CpT d(x; y) ^ 1R(dx; dy);R has marginals � and ��whi
h is 
ompatible with the topology of the weak 
onvergen
e. Hen
e�(L((�1; �Z1;"n ; �k1;"n); :::; (�p; �Zp;"n; �kp;"n)); P
p)! 0 as n! +1:By Proposition 4.4, and (4.16)limn!+1E �d�((�1; Z1n; k1n); :::; (�p; Zpn; kpn)); ((�1; �Z1;"n ; �k1;"n); :::; (�p; �Zp;"n; �kp;"n))�� = 0
23



whi
h ensures thatlimn!+1� �L�(�1; Z1n; k1n); :::; (�p; Zpn; kpn)� ;L �(�1; �Z1;"n ; �k1;"n); :::; (�p; �Zp;"n ; �kp;"n)�� = 0:We 
on
lude that �(L((�1; Z1n; k1n); :::; (�p; Zpn; kpn)); P
p) 
onverges to 0.2) On the other hand,E(jK"n ~�n;"nt (x)�Kwt(x)j2) � 3E�����K"n ~�n;"nt (x)� 1n nXi=1 1f� i�tgh(� i; Zi0)K"n(x; �Zi;"nt )����2+���� 1n nXi=1 1f� i�tgh(� i; Zi0)K"n(x; �Zi;"nt )�K"n ~Q"nt (x)����2 + jK"n ~Q"nt (x)�Kwt(x)j2�� 3�(kw0k1 + �kgk1)2(L2"nE(sups�t jZins � �Zi;"ns j2) + 4M2"nn ) + jK"nq"nt (x)�Kwt(x)j2�:We 
on
lude using (4.16), Proposition 4.4 and Proposition 4.8. 2Remark 4.12 Sin
e the laws L((�1; Z1n; k1n); :::; (�n; Znn; knn)) are ex
hangeable, thepropagation of 
haos result is equivalent to the 
onvergen
e in probability of the empir-i
al measures to P , as probability measures on the path spa
e (
f. [22℄). As a 
onsequen
e,if the spa
e of �nite measures on �� is endowed with the weak 
onvergen
e topology, thenfor t 2 [0; T ℄, the random �nite measures ~�n;"nt = 1nPni=1 1f� i�tgh(� i; Zi0)ÆZint 
onverge inprobability to wt(x)dx, w being the unique solution of the vortex equation.We �nally dedu
e from this study an algorithm for the simulation of the solution of thevortex equation. To approximate numeri
ally this solution, it is ne
essary to dis
retize intime the parti
le system. This 
an be a
hieved thanks to the Euler s
heme for re
e
teddi�usions proposed by Gobet [9℄. In our situation, with identity di�usion matrix andnormal re
e
tion, the weak rate of 
onvergen
e of this s
heme is O(�t), where �t denotesthe time-step. Like in Bossy-Jourdain [2℄, one 
ould try to prove that if ��nl�t denotes theweighted empiri
al measure of the dis
retized system, K"n ��nl�t 
onverges to Kwl�t withrate O(�t+ 1pn).Referen
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