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Abstract

We are interested in proving the convergence of Monte-Carlo approximations for
vortex equations in bounded domains of R? with Neumann’s condition on the bound-
ary. This work is the first step to justify theorically some numerical algorithms for
Navier-Stokes equations in bounded domains with no-slip conditions.

We prove that the vortex equation has a unique solution in an appropriate space
and can be interpreted in a probabilistic point of view through a nonlinear reflected
process with space-time random births on the boundary of the domain.

Next, we approximate the solution w of this vortex equation by the weighted
empirical measure of interacting diffusive particles with normal reflecting boundary
conditions and space-time random births on the boundary. The weights are related
to the initial data and to the Neumann condition. We can deduce from this result a
simple stochastic particle algorithm to approximate w.

Key words: Vortex equation on a bounded domain; Monte-Carlo approximation; Interacting par-
ticle systems with reflection; space-time random births
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1 Introduction

We are interested in proving the convergence of Monte-Carlo approximations for vortex
equations in bounded domains of R? with Neumann’s condition on the boundary. This
work is the first step to justify theorically some numerical algorithms for Navier-Stokes
equations in bounded domains with no-slip conditions, as proposed by Chorin or Cottet.
To our knowledge, there was no proof of convergence of such particle methods, even for

the deterministic ones, and even in the simplified case we consider in this paper.
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We consider the Navier-Stokes equation which describes the evolution of the velocity
field of an incompressible viscous fluid in a bounded domain © of IR? satisfying the no-slip

boundary condition:

Owu(t,z) + (u.V)u(t,z) = vAu(t,z) — Vp in ©;
V.au(t,z) =0 in O ; u(z,t) = (0,0) for z € 00,

where p is the pressure and v > 0 the viscosity coefficient. The aim we pursue is to
obtain a probabilistic interpretation of this equation which enables us to construct an
efficient Monte-Carlo particle method for the simulation of the solutions. Another proba-
bilistic approach based on branching processes has already been developped by Benachour,
Roynette, Vallois [1], generalized in dimension 3 by Giet [7]. But even if the authors pro-
pose some particle approximations, the convergence of the method is not shown and the
particle systems they describe are not for use in practice. Our purpose is to construct
some easily simulable particle systems, behaving as diffusion processes reflected on the
boundary, with space-time random births located at the boundary and to prove rigorously
the propagation of chaos of the laws of these processes to a probability measure associated

with the solution of the Navier-Stokes equation.

One associates classically with the two dimensional Navier-Stokes equation in the whole
plane the simpler vortex equation satisfied by the curl of the velocity. This equation
behaves as a McKean-Vlasov equation and the famous vortex simulation algorithm due to
Chorin [4] comes from its interaction structure, since the velocity can be written as the
convolution of the vorticity by the Biot and Savart kernel. The probabilistic approach,
firstly introduced by Marchioro-Pulvirenti [14], has been developed in Méléard [16], [17].

The particle systems are naturally defined and the propagation of chaos proved.

In a bounded domain, a similar approach would consist in replacing the Biot and Savart
kernel by the orthogonal gradient K of the Green function of the Dirichlet problem in the
domain. But one then only obtains the nullity of the normal component of the velocity
on the boundary. To obtain in addition the nullity of the tangential component, we are
inspired by Cottet [5], who proves that by adding a nonlinear Neumann condition to the
vortex equation, one obtains an admissible vorticity field in the sense that the associated

velocity satisfies a posteriori the no-slip condition.

This nonlinear Neumann condition is really hard to take into account, and in this

paper, we deal with a fixed Neumann condition and consider the equation

Ow(t,z) + V.(wKw)(t,z) = vAw(t,z) in ©;
Opw = Vw.n = g on 00



where the function g is fixed. Our aim is in particular to show that this Neumann condition
is represented at the level of stochastic processes by space-time random births located at

the boundary of the domain.

More generally, in this paper, we prove the existence and uniqueness of a solution of
such a vortex equation with Neumann’s boundary condition in an appropriate space for
which we have obtained energy a priori estimates. Then we associate with the solution
of the equation a nonlinear diffusive and reflected process, with space-time random births
at the boundary (with law managed by the function g). We construct interacting nor-
mally reflected particle systems with space-time random birth at the boundary and prove
the propagation of chaos to the law of the nonlinear process associated with the vortex
equation. We are inspired by the paper of Snitman [21], which concerns the behaviour
of interacting and reflected McKean-Vlasov particle systems living in a bounded domain.
Some additional difficulties appear here, due to the singular interacting kernel K and to
the space-time random births. Moreover, the interaction is mean-field but appears through

the weighted empirical measure, the weights being related to the initial condition and to g.

Acknowledgements : We thank Tony Lelievre for numerous discussions concerning

the variational approach for evolution equations.

2 The model

Let T' > 0. We are interested in the following equation :
Ow(t,z) + V.(wKw)(t,z) = vAw(t,z) in ]0,T] x ©;
w(0,z) = wp(z) in B;
Opw = Vw.n =g on |0,T] x 00 (2.1)

where n(z) denotes the outward normal to 90 at the point  and Kw(t, z) = [ K (z, y)w(t, y)dy.
The kernel K (z,y) is equal to ViG(z,y) = (—0:,G(z,y), 0, G(z,y)) where G(z,y) is

the fundamental solution of the Poisson equation

AyG(z,y) = by(x), v € O; (2.2)
G(z,y) =0, z € 00 (2.3)

Let us remark the important properties of the kernel K:

V(z,y) € (0)? with  # y, V. K(z,y) =0 ; Yz € 00,Vy € O, K(z,y).n(z) =0 (2.4)



In all the following, we will moreover assume
Hypotheses (H):

The domain © of IR? is bounded, simply connected and of class C*.
wo € L*(©) ;5 g(t,x) € L{(0,T], L7 (98, do)). (2.5)

where do(z) denotes the surface measure on the boundary.

Thanks to the assumptions made on O, the following properties hold for the Green
function G and the kernel K = (K, K») :

Lemma 2.1 3Cy > 0, Vo #£y € O,

Co
|z =yl
for i =1,2.

|G (z,y)| < Co(L + [Infz —yl]), |K(z,y)| <

Co
|z —y|?

Ve Ki(z,y)| + [Vy Ki(z,y)| <

Proof. For y = (y1,92) € IR?, let y* = (—ya,y1) and y* = y/|y|* if y # (0,0).
In case © is the unit disk B(0,1) of IR?, one has the following explicit expression for the
Green function (see [8] p.19)

1 |z — y| )
G =—In{—————. 2.

We remark that

Vz,y € B(0,1), |z —y*| > |yllz —y*| = \/Ifc =yl + (2P = 1)(lyl* = 1)) 2 [z —yl. (2.7)
As a consequence,

27Go(z,y)| < —In|z — Y|y <1y + In(yllz — ¥ ) Ljylje—y=|>1}-

As |yllz — y*| = |z|ly| — y/|y|| < 2, we conclude that 270Gy (z,y)| < |1n |z — y|| + In(2).

We also deduce from (2.7) the bound on the corresponding kernel

T — 1 T — #) L
K(x,y):%(( v )=%(((m—y)*)L—((x—y*mL).

[z —yl* |z —y?
To estimate V K;, we combine (2.7) and the fact that each term of the jacobian matrix of
z — z* is bounded by 1/|z|?.
When © is a general bounded and simply connected domain of class C3, according to
[19], there is a conformal mapping from B(0,1) onto © which extends to a one-to-one C?
mapping from 5(0, 1) to © denoted by f and such that Df, (Df)~! and D?f are bounded
on B(0,1). Since the Green function for © is given by

G(z,y) = Go(f ™ (x), ' (v)),



the estimations on GG, K and VK; follow from those obtained for the unit disk and the

just mentionned properties of f. a

We are interested in weak solutions of (2.1) defined in the following sense
Definition 2.2 We say that w: [0,T] x © = IR is a weak solution of (2.1) if :

(i) w € L¥P(LA)NLE(H}) where LY°(L2) and L?(H.) stand respectively for L>([0,T], L?(©))
and L2([0,T], HY(©)) (and H'(©) is the Sobolev space consisting of functions which
belong together with their first order distribution derivatives to L*(©)).

(ii) for any v € HY(©), 4 [owiw + v [o Vwr.Vv = [o wiKw.Vv + v [4e grvdo holds in
D'(Jo, 7))

(iii) w(0,.) = wo.

Remark 2.3 The variational formulation (i) is well defined. Indeed, by the trace theory
(see [8] pp. 196-197), Vv € H*(O), lvpell 2oy < Cllvllgr. Hence

‘ / grvdo
00

and by (H), the second term of r.h.s. belongs to L?. In addition, according to the Lemma
2.4 below, Vv € HY(0), | Jo wiKw.Vv| < Cllw|p2]|will g1 |[v]| g1 and by (i), the first term
of the r.h.s. also belongs to L?. So does the second term of the Lh.s..

The above inequalities together with | [o Vw:.Vv| < ||we| yi||v]| g1 ensure that if w satisfies
(i) and (ii), then the distribution derivative dyw belongs to L} (HY') where HL denotes the
dual space of H'(©). Applying Lemma 1.2 p.261 [23] with H = L*(©) and V = H(0),
we deduce that w has a representative in C([0,T], L?(©)) that we still denote by w.
Moreover, since according to [3] p.195,

< Cllgell 2oy 0l (2.8)

Vu € HY(O), [lullps < Cllull s |[ull}/? (2.9)

any weak solution of (2.1) belongs to Lj(L%).

Before stating the existence of a unique weak solution to (2.1), we are going to check the

following Lemma which prepares the study of the nonlinear term in (2.1).

Lemma 2.4

V2 < p < 400, 3C >0, Yw € LP(O), Kw € C(O) and |[Kw| =~ < Cllw||L{2.10)
3C > 0, Yw € L*(0), ||[Kw||2 < C|lw|| 2 (2.11)



3C > 0, Yu € L*(©),Yv,w € HY(O),

/ uKw. Vv
()

< Cllullg2lwll g lloll g (2.12)

Vu,v,w € H(0), /

vKw.Vv =0 and / uKw.Vv = —/ vKw.Vu (2.13)
(C] (C] (C]

Proof. For a > 0, let Ky (7,y) = 1{j4—y>a} K (7,y). By Lebesgue’s theorem and using the
continuity of K away from the diagonal, we obtain the continuity of z € © — K,(z,.) €
Li, for each ¢ > 1. When in addition ¢ < 2, according to Lemma 2.1, K,(z,.) converges
to K(z,.) in L uniformly on ©, when « tends to 0. We deduce that K(z,.) is continuous
in L] and obtain (2.10) by Hélder inequality.

Let w € L?(©). Using Lemma 2.1 and Cauchy-Schwarz inequality, we get

2
C Cow? C
|mw5s/(/—gﬂ@(/i%@%omsGw/—{L@>Wﬁm
o \Jo |z -yl o |z—yl re0J0 |2 =y

Combining for 2 < p < 400, (2.10) and the Sobolev inequality ||w|rr < Cllw| g ([3]
p.165), we get

| Kl < Cllwll (2.14)

and conclude that (2.12) holds by Cauchy-Schwarz inequality.

We deduce that v,w € HY(©) — [ vKw.Vwv is continuous. Since according to [3] p.162,
the restrictions to © of C* functions with compact support on IR? are dense in H'(0), it
is enough to check the first equality in (2.13) for smooth v,w. For a > 0, let Gow(z) =
Jo Ljz—y>a1 G (2, y)w(y)dy. By Lemma 2.1, Kqw(z) = V1iGaw(z) and Gow and Kyaw
converge uniformly on © respectively to Gw and Kw. Since Kw is continuous, we deduce
that Kw = V+Gw and V.Kw = 0. The boundary condition : Vz € 00, Gw(z) = 0
implies that the tangential derivative of Gw vanishes on 00 i.e. Vz € 00, Kw(z).n(z) = 0.

Using Green’s formula we deduce,
1 1 1
/ vKw.Vv = —/ Kw.Vv? = —/ v’ Kw.ndo — —/ v’V.Kw = 0.
) 2Je 2 Jse 2 Jo

The second equality in (2.13) is deduced by polarization. O

We are now ready to prove

Theorem 2.5 Under hypotheses (H), equation (2.1) has a unique solution w in the sense
of Definition 2.2. In addition, w € C([0,T], L2) N L}(L%).

The last assertion is a consequence of Remark 2.3. We are going to prove existence by the
Galerkin method. Let us first check

Uniqueness : The proof is similar to the one made for the 2d Navier-Stokes equation



(see for instance [23] p. 294).

Let v and w denote two solutions and w = v — w. As @ € L?(H]) and by Remark
2.3, Oy € L}(HY), according to [23] p.261 L|lw(t)[|2, = 2 < Oy, ¢ > holds in the
distribution sense on [0,7]. The right-hand-side is integrable. Using Definition 2.2 (ii)
and (iii), we deduce that for ¢ € [0,T7] :

1 t t .
Sl + V/O IV, ||2.ds = /0 /@(vsKvs — wyKw,). Vibyds. (2.15)
Using (2.13) and then (2.12) and Young’s inequality, we have

‘/@(USKUS — wsKwy). Vg

= / s Kvg. Vs + ws. K1 Vil
(€]

= ‘0—/ Ws Kws. Vws
e

. . . . C? .
< Ol llwsll g 105 l1z2 < v(IVB ()72 + () 72) + - llws s b5 72

Inserting this bound in (2.15), we obtain

vt € (0,77, [w(®)z: < 2/ ( ||ws||H1> 0572 s

Since s — |lws||%1 is integrable, by Gronwall’s lemma, Vt € [0,T], |lv; — w2 = 0.
Existence : We first derive an a priori estimate which will also hold at the discrete
level. Let w be a weak solution of (2.1). As above,

1d

Sl + vVl = [ wikw Vv [ gudo.
According to (2.13), the first term of the r.h.s. is nil. Using moreover (2.8) and Young’s

inequality, we deduce

1d

thllwtlle + || Vuwl|7: < (Hthlliz + [lwellF2) + Cllgell 2 00) (2.16)

Removing the terms involving ||Vw||%,, we upper-bound ||w||%oo( 12) by Gronwall’s lemma.
t T

Inserting this bound in (2.16), we conclude that
00 gy + IV 2, < Ol + 9l 1300 (2.17)

We now employ the so-called Galerkin method. Let (vg) pelv: denote a Hilbertian basis
of H'(©) and n € IN*. We want to find t € [0,7] — A(t) = (A1(¢),..., \n(¢)) such that
wy = > p_ M (t)vg satisfies the following approximate problem : w{ is the orthogonal

projection in the sense of the L? scalar product of wy onto span(vy, ..., v,) and
d
V1<k<n, —/ wy vy + 1// Vwy.Vuy :/ wy Kwy' Vv + 1// giugdo.  (2.18)
dt Je o e 90

Denoting Ajk = f@ VU, Bj,k = f@ ij.Vvk, Ci,j,k = f@ UiKUj.VUk, F(t) = (’)’1 (t), ey Y (t))



with v (t) = [5g gtvrdo, we obtain that this approximate problem writes :

%A(t) = A7Y(—vB.A(t) + A(t)*CA(t) + vT(t)).

By a standard fixed-point approach, we obtain existence of a local in time solution A(t)
to this O.D.E.. Thanks to the a priori estimate (2.17) which holds for the corresponding
wy’, and prevents explosion for A(t), we can iterate this fixed-point approach to extend
A(t) on [0,T].

We next want to take the limit n — +00. According to the a priori estimate (2.17), the
sequence (w") - is bounded in L®(L2) and L?(H}). Reasoning like in Remark 2.3,
we check that (G,w™), . is bounded in L}(H)). Using the compacity result stated in
Theorem 2.3 p.276 [23], we deduce that we may extract a subsequence that converges to a
limit w weakly™ in L{°(H}), weakly in L?(H}) and strongly in L?(L2). This subsequence is
still denoted by (w™) for notational simplicity. The weak convergences are enough to take
the limit in the linear terms of (2.18) (see [23] pp.257-260). We are only going to check the
convergence of the nonlinear term. Let v € H*(©). Since by (2.11), || K (w, —w);. V|1 <
Cllw} — wy||z2||v]| g1, Kw™. Vv converges to Kw.Vv in LZ(LL). Combining the a priori
estimate for w" and (2.14), we obtain that the sequence Kw".Vo is bounded in LZ(L2).
Therefore Kw™. Vv converges to Kw.Vov weakly in L?(L2). With the strong convergence

of w™ to w in L?(L2) we easily deduce that

T T
Vb € D(]0, T)), / () / WP Kw! Vo di — / W (1) / wiKw,. Vo dt.
0 (C] 0 (C]
Hence w satisfies (ii) in Definition 2.2. Since by standard arguments ([23] pp.257-260) (iii)
also holds, we conclude that w is a weak solution of (2.1).

In order to give a probabilistic interpretation to the obtained weak solution of (2.1),
we introduce the semi-group P/ (z,y) associated with v/2v times the Brownian motion

normally reflected on the boundary and prove the following mild representation

Proposition 2.6 Let w denote the weak solution of (2.1) given by Theorem 2.5. Then
vVt € [0,T], dz a.e. in ©,

wile) = Prunty) + [ VPL (o Kw)@ds v [ [ P00l 0)doty)ds
(2.19)

where VP (wsKw,)(z) = [o VPl (y,z).ws(y)Kw,(y)dy.

Proof. Let t €]0,7] and ¢ be a smooth function on © with a vanishing normal derivative
at the boundary : Op¢(x) = 0 for x € 00. According to [12] Theorem 5.3 p.320, the



boundary value problem

Ostp +vAp =0 on [0,t] x ©

Ontp) =0 on [0,t] x 0O

P(t,.) = ¢(.) on ©
admits a classical solution (s, 2) which is C1'2 on [0,¢] x ©. By the Feynman-Kac ap-
proach, this solution has the following representation : (s,z) = P/  p(z). Clearly

¥ € L2((0,1], H'(0)) and dyp € L2([0,4], (H')}(©)). By [23], Lemma 1.2 p. 261, we
deduce that in D'(]0, t]),

d
= st = [wdiis )y [ VuTus, )+ [ wKw i) [ o
©
By the equation satisfied by 1, the sum of the two first terms of the r.h.s. is nil. Hence

/@wt(x)cp /wg ¥(0,x) dx—i—/ /wsKws( )-Vp(s, z)dzds
+ I/// P(s,x)g(s,z)do(z)ds.

By the symmetry of P and hypotheses (H), [ [0 Jo PXs(@,9) |0 (y)|dy|g(s, z)|do(z)ds <
sup [[llg/l L1 (21 90y < +o0. Hence, by Fubini’s theorem the last term of the r.h.s. is equal
tov [ p(x) fot Joo PL_s(y,2)g(s,y)do(y)dsdz. We conclude the proof by applying similarly
Fubini’s theorem to the other terms of the r.h.s. and remarking that the derived equality
holds for any smooth function ¢ with vanishing normal derivative.

To justify the use of Fubini’s theorem in the second term, we need the following estimations
given by [20] (a.13) and (a.14) p.600 :

Vo €0, Vy € O, [VoFY (z,y)] < C1/t*? and ||V P! (z,y)ll130) < C1/VE  (2.20)

Indeed the first one ensures that Vi (s,z) = [o VoP/ (z,y)e(y)dy. By the second
one and (2.11),

t t
| [ wskw@) [ 192P7 (e)lle)ldydeds < Osu ol ulfe s, [ (=92

|



3 The probabilistic interpretation of the vortex equation on
a bounded domain with a Neumann boundary condition

We are in a McKean-Vlasov context, and the interpretation of the vortex equation as a
Fokker-Planck equation allows us to define naturally a nonlinear martingale problem (See
for example Méléard [15]).

Here the difficulty is the treatment of the term due to the Neumann condition involv-
ing the function g. We essentially follow Fernandez-Méléard [6] and prove that this term
is related to space-time random births located at the boundary in the probabilistic inter-
pretation. Our situation is harder than the one of [6] since we are in a bounded domain
instead of the whole space and the diffusion processes are reflected on the boundary. There
are also births inside the domain at time 0 and the functions wy and g are not probability

densities.
We follow Jourdain [11] to treat the last difficulty.

Let [woll1 = fo [wol and |lglly = [ rxae l9ldodt. To govern the times and positions
of births we introduce on [0,7] x © the probability measure

lwo (z)|

Py(dt,dz) = 1zc01000) (dt)m

vig(t,x

— = = dtdo(x 3.1
ol + gl Bde@ - (3-1)

which does not weight ]0,7"] x ©. To take into account the effect of the sign and mass of

wp and g, we also consider for ¢ € [0,7] and € © the measurable function

wo(x t, T
of )|<r|wou1+u||gr|1>+1{xea@} |g( ) (hwoll + gl (3.2)

h(t,) = 1y—0 pcor T I\
(1) = Lt=ozeo} 1 o(t,2)]

x)
with values in {—(|lwol|1 + ¥|lg|l1),0, [|woll1 + v|lg|l1}- Let us remark that if ¢ a bounded

measurable function on [0, 7] x ©, then

/[0 T}Xécp(t,x)h(t,x)Po (dt,dx) = /@W(O,x)wo(a))dm + V/[O 11x06 o(t,z)g(t, x)dtdo(z)(3.3)

Let (7, (X¢)i<r (kt)i<r) denote the canonical process on [0, T]xC([0,T], ©)xC([0, T], IR?).
For a probability measure () on this space, we define the family (Qt)te[O,T] of signed mea-

sures on © by
VB € B(é)a Qt(B) = EQ(h(Ta XO)]‘{TSt}]‘B(Xt))? (34)

(One associates with each sample path a signed weight depending on the initial datas).

It is easy to check that for each t € [0, 7], the signed measure Q; is bounded with a

total mass less than w1 + v||g]|1-

10



We are now going to give a probabilistic interpretation to the vortex equation, seen
as a Fokker-Planck equation, in terms of a martingale problem. This interpretation is
inspired from Sznitman [21] and Bossy-Jourdain [2] for the reflected contribution and
from Fernandez-Méléard [6] for the space-time random birth contribution.

Let us first define the probability space in which the solutions of the martingale problem

we are interested in will live :

Definition 3.1 Let T" > 0. We denote by Pr the space of probability measures Q@ on
[0,7] x C([0,T],0) x C([0,T], R?) such that for each t € [0,T), the signed measure Q;
has a density ¢, with respect to the Lebesgue measure on © and that t € [0,T] — ¢ €
Lg°(LF) N L{(Hy).

By adapting Meyer [18] p.194, one can prove that there exists a measurable version
(s,2) = G(s,z) of the densities of the flow of signed measures (Qs).
Definition 3.2 The probability measure P € Pr is solution of the nonlinear martingale
problem (M) if

1) Po(1,Xo,ko)™" = Py ® 0g0)

2) for each ¢ € C2(IR?),

t
Mtd) = ¢(Xt + kt) - ¢(X0) - /0 1{T§s} <Kﬁs(Xs)v¢(Xs + ks) + VA¢(XS + ks)>ds

is a P-martingale, for the filtration F; = o (7, (Xs, ks),s < t) (p(s,z) denotes a measurable

version of the densities of the flow (Ps)).
3) P as., Vt € [0,T], [ydlkls < +oo, [kl = [y lix,coo1lir<sydlkls, and k =
Jo n(X,)d|k|s.

The following Lemma states the link between problem (My) and the vortex equation
(2.1).

Lemma 3.3 If P € Pr solves My then p is a weak solution of (2.1).

Proof. By Definition 3.2 1), (3.4) and (3.3), po = wy.

According to Definition 3.2 2), ; = X,g—Xo—fét 1< Kps(Xs)ds+kg is a P continuous
martingale with bracket < 8 >;= 2v(t — 7)1, where I denotes the 2 x 2 identity matrix
which implies that 8, = 0 for ¢ € [0, 7]. Using moreover Definition 3.2 3), we deduce that
X = Xp for t € [0, 7].

Hence for ¢ € C12([0,T] x ©)

T T
/0 0s1p(s, Xs)ds + (0, Xo) = (7, Xo) + /0 l{TSS}asl/)(SaXs)dSa

11



If moreover Y(s,z) € [0,T] x 90, 0,1(s,z) = 0, by It6’s formula, we deduce that
T
WTX) = 9 Xo)+ [ Vs, X,).d6,

T
+ /0 1<) (Dub(5, X,) + Kpa(Xa).Vih(s, X,) + vA®(s, X,))ds

Multiplying by the Fy-measurable variable h(7, X)), taking expectations and using the
definition of p and (3.3), we deduce that

T
[T = [ p0apm@ds+y [ [ blsa)gls 0)dol)ds
(C] (C] 0 JooO

T
+ [ [ @(s.0) + Ku(a). V(5. ) + (s, )5, ) dads,
0 Jo

For the choice (s, z) = ¢(s)v(r) where v is a C? function on © such that d,v = 0 on 9O
and ¢ € D(]0,T[), we obtain

T
/ (tp'(s) /_ Psv + o(8) </ psKps. Vv + 1// DPsAv + 1// gsvd0>> ds = 0.
0 ) o o 80

As P € Pp, p € L7(H}). By Green’s formula for functions in H'(©) ([3] p.197) and since
Onv vanishes on the boundary, ds a.e. in [0,T], [o PsAv = — [o Vps.Vo.

Since © is C*, adapting [3] pp.192-193 to diagonalize the Neumann Laplacian, one obtains
a Hibertian basis of H'(©) consisting in C?(©)-functions with a vanishing normal deriva-
tive. Therefore such functions are dense in H' and we conclude that p satisfies Definition
2.2 (ii). O

Theorem 3.4 Under hypotheses (H), there exists a unique solution P to the martingale
problem (Mr). In addition, the corresponding p is a weak solution of (2.1) and satisfies
the mild equation (2.19).

Proof. 1) Uniqueness

Let P! and P? be two solutions of (M7). Then according to Lemma 3.3, p* and p?
are weak solutions of (2.1). According to Theorem 2.5, p; = p2 = w. Hence P! and P?
both solve the martingale problem defined like (M7) but with known drift coefficient K w
replacing Kp in Definition 3.2 2). Since w € L{(L%), by (2.10), ||[Kws]|r € L.

Let I' denote the first marginal of the probability measure Py on [0,7] x © and for i =
1,2 and u € [0,T], p*(u,.) be a regular conditional probability on [0, 7] x C([0,T],©) x
C([0,T], IR?) endowed with P? given 7 = w.

Then dI'(u) a.e., p(u,.) a.s., 7 = u, Definition 3.2 3) is satisfied and p*(u, .) o (Xo, ko) "
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is equal to

|9(u, z)|do ()

[wo(2)|dz ® 010.0) + Liyso
(0.0 Hu>0b L g, y)|do(y)

l|wo |1

lru—o} ® d(0,0) (3.5)

and V¢ € CZ(IR?),

t
(X, + k) — d(Xo) — /0 Liu<s) (Kws(Xs).qu(Xs + k) + vAG(X, + ks)>ds

is a p’(u,.)-martingale.

Reasoning like in the proof of Lemma 3.3, we obtain that dI'(u) a.e., p'(u,.) a.s., X; =
Xo and k; = (0,0) for t € [0,u]. With (3.5), we deduce that dI'(u) a.e., p'(u,.) o
(Xu, ko)™t = p%(u,.) o (Xy,ky)~ " and that for i = 1,2, p’(u,.) is equal to the image
of p'(u,.) o (Xetus Kttu)iefo,r—u)) " by the mapping

(Xta kt)tZO € C([OvT - u]7 O x IR2) - (X(tfu)"‘a k(tfu)‘*')tE[O,T] € C([OuT]a O x R2)

Moreover dI'(u) a.e. ,
1 t+u

Wy = — | Xpoo — Xy — Kwy(Xg)ds + k u)
t m(w y w( )S t+

is a p’(u,.) Brownian motion. Since s — ||Kws||L~ is square integrable, combining tra-
jectorial uniqueness for the Brownian motion normally reflected at the boundary of ©
(see [13]), Girsanov’s theorem and the equality p'(u,.) o (Xy, ky) ' = p*(u,.) o (Xy, ky) *
which holds dI'(u) a.e., we deduce that

dl(u) ae., p'(u,.) o (Xppu, krru)teor—u) ~" = P2 (1) © (Xegus kigu)iefo,r—u])

Hence dI'(u) p.p. p'(u,.) = p*(u,.) and P! = P2,

2) Existence. Let w be the solution of the vortex equation given by Theorem 2.5. We
recall that |[Kws|~ € L}. We construct a solution to the linear martingale problem
defined like (M) but with known drift coefficient Kw;(.) replacing Kp, in Definition 3.2
2) and we check that this probability measure solves (Mr).

Let (7, Xp) be a random variable with law I% independent from (W)¢(o 7] a two-dimensional
Brownian motion. Existence and trajectorial uniqueness hold for the stochastic differential

equation with normal reflection
t
Xt = Xo + Vv 211/ 1{7—<s}dWs - kt
0 <

t t
Kl = [ Loxcaorlirsodibl s k= [ n(Xdlkl.
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Moreover V¢ € [0,T], X; admits

1
%
lwoll1 + vllgll L1 (0,9 x00)

X

(ot @)+ v [ [ 1ol P (0 2)o(a)as)

as a density w.r.t. the Lebesgue measure on ©. Since ||Kw;l||z~ is square integrable, by
Girsanov’s theorem we deduce that the martingale problem defined like (Myr) but with
known drift coefficient Kwy replacing Kp, admits a solution P such that Vt € [0,T], the
measure P, has a density. Let p denote a measurable version of the densities.

We set ¢t € [0,7]. Reasoning like in the proof of Lemma 3.3, we obtain that for ¢ €
CH2([0,¢] x ©) such that ¥Y(s,z) € [0,t] x 90, O,4(s, z) = 0,

/@ Y(t,x)p(t, z)de = /ézp(O,x)wg(x)dx + l//ot a@zp(sz,x)g(:;,a:)da(a:)d.s:

+/0 /@(831#(3,35) + Kws(z).Vi(s,z) + vAp(s, z))p(s, z)dzds.

Choosing 9(s,x) = P/ ,o(x) like in the proof of Proposition 2.6 and remarking that

because of (2.20) and the uniform in time bound ||p||;1 < [|woll1 + v[|g]l1,

| Kwsl|p~ds
Vi—s

t
L VP lle @) s (@) | K w2 dadyds < © < +oo,

we deduce by Fubini’s theorem that
t
o ace., () = Pun(e) + [ VPLGoKw)@ds v [P 9)g(s,)do ()
Lt %

Now, using the mild equation (2.19) satisfied by w and (2.20), we obtain

| K w|e
Vit—s

By iterating this bound, then using Holder’s inequality, we obtain

t
30 > 0, vt € 0,71, 1 — willp < 0/ 15y — w5l ds. (3.6)
0

t Kyl du
Py — < 0/ Ps — W, Kw,l| [ < d
= wllis <O [ = sl Kl [ R
t ~ t o3 3/4
< O [ I - willl KKl gy [ (€= 0w =) 25au)  ds
S

Hence (3.6) holds with (¢ —s)~'/2 replaced by (t —s)~'/% in the r.h.s. After the next itera-
tion we obtain that (3.6) holds with (¢ — s)~1/2 replaced by 1 and conclude by Gronwall’s
lemma that V¢ € [0, T], pr = wy. O
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4 Stochastic Approximations of the solution of the vortex
equation

4.1 The case of a cutoff kernel

As in Méléard [17], we introduce a cutoff kernel K. preserving the properties (2.4). More
precisely we consider an increasing C2-function 7 from IR, to IR, such that n(z) = x for
xﬁ%andn(m)zlfoerl. For ¢ <1, we set

lz —y|

and

VaGe(z,y)
T — 3 xr — 3 xr — J‘x—
- n(£> K(x,y)+77’<| €3y| >3( D=y, (@2

K.(z,y)

g3 e3

The following Lemma, states usefull properties of this cutoff kernel :

Lemma 4.1 1)

VeKe(x,y) =0 5  Kc(z,y) n(z) =0 for z € 00,
Ke(z,y) = K(zy) ifls—yl>e
C+[Injz —yll)

Vo,y €0, |K.(z,y)| <

T— (4.3)

where C' does not depend on €.

2) sup,cq || K (z,.) — K:(z, ')HLZ tends to 0 as € tends to 0 as soon as p < 2.
3) For € sufficiently small, the kernel K. is bounded by M, < @ and Lipschitz

continuous in both variables with constant L. < % where C' does not depend on ¢.

Proof. The two first properties in 1) are obvious and 2) is an easy consequence of (4.3).

By the estimate of K given in Lemma 2.1 and the above definition of 7, the norm of
first term of the r.h.s. of (4.2) is smaller than Co(‘x—iy‘ ASUD,.c[g co-1/3] :—i) < Cg(ﬁ AL).
By the estimate of G in Lemma 2.1 and since n/(z) = 0 for > 1, the second term of the

r.h.s. of (4.2) is smaller than 3Cy||n'||s times

1+ |In|z — y|| A sup r2(1+|31n(r)|) < <1+ln|x—y| A 1+|ln(6)|>
|z —y| ref0.] £ |z — | £

as € < 1. We deduce both (4.3) and the upper-bound in C|ln(e)|/e. To prove that K is

Lipschitz continuous, we use in a similar way Lemma 2.1 combined with the definition of

15



1 to check that the gradient of each coordinate of K, w.r.t. either x or y is bounded by
C|In(g)|/€? (the contribution of the first term of the r.h.s. of (4.2) is C/e? whereas the

one of the second term is C|In(e)|/e?). O

With a slight adaptation of Sznitman [21] to take into account the random births on
the boundary, we obtain the existence and pathwise uniqueness of the following interacting

particle systems.

Definition 4.2 Consider a sequence (Bi)ielN of independent Brownian motions on IR?
and a sequence of independent variables (7, Z(g)ielN with values in [0,T] x © distributed
according to Py, and independent of the Brownian motions. For a fized €, for each n € IN*,

and 1 <1 <mn, let us consider the interacting processes defined by
Z" € 0,Vt € [0,T]
: ) t . t ) :
20 = 2+ V2 [ B+ [ Ko (2 )ds = K™
0 - 0 -

|kin,€

t . . t . .
0= [ Lgmecoo lpegdZ L K = [Cn(ZiaRne), (44)

where [17° = % Z;-Lzl h(79, Zg)l{Tjgs}(SZg‘n,a is the weighted empirical measure of the system
at time s and K. i (z) = %Z;’:l h(Tj,Zé)l{Tsz}Kg(z, ZImE),

Let us remark that the particles either have birth at time 0 inside the domain and evolve as
diffusive particles with normal reflecting boundary conditions, or have birth at a random
time on the boundary of the domain, and evolve after birth as the other ones. Moreover,
all particles, as soon as they are born, interact together following a mean field depending

on the parameter ¢.

Again according to [21], we also get the existence and pathwise uniqueness of the limit
processes (when n tends to infinity and ¢ is fixed), coupled with the interacting processes,

as follows.

Definition 4.3 We define Z'° by
7 € OVt €[0,T)
i . t . t . .
Zy =75+ v 2”/ 1 ics1dBy +/ i) K Q5 (Z9%)ds — ky°
0 = 0 =

|];;z',€

t . . t . .
0= [ L giecooy LimandBL s B = [ n(Zi)diRe), (4.5)

where QF is the common law of (1%, Z¢, k%), and Q§ is defined from Q° by (3.4).
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Sznitman also proves a propagation of chaos result, but without precise estimates on the
rate of convergence. In order to get such estimates, we denote by H a CZ(C:))—extension of
the distance-function d(.,00) (defined on a restriction to © of a neighbourhood of 00).
The function H satisfies (see [8])

VH = —n on 00. (4.6)

We also recall that the domain © (since C*) satisfies the uniform “exterior sphere” condi-

tion:
3C,, >0,Y2 €00 , Vo' € O, Cyplz — 2'> + n(z).(x — 2') > 0. (4.7)
Proposition 4.4 Fort <T, for each i € {1,...,n},
in,e 70, |2 Ae
E(Sgltﬂzs © =271 < 2d(0)y) = exp(Eu (1 + (Jwollt +vllglh)(Me/2 + Le)t))
s_
in,e 1.0, in,e 71,6 in,e 71,6 ME
E(sup |k — kg®|) < E(sup|Z{™" — Zg%|) + 2([|wollr + vllgll)t LsE(Sglglzs =2+ —=
s_

s<t s<t \/’ﬁ

where Ky is a constant which depends only on upper-bounds of the function H and its

- _ 4(llwoll1 +vllgll)* M2
derivatives and A, = ST Twol g1 (Mo T2 -

Remark 4.5 The convergence rate in the number n of particles given above is not optimal:

indeed one can check that E(supy<, |Zine — Z15|4) is smaller than

16([lwolly + [lvgll)* Mt
n?(1+ 2+ (lwollr + vllgll1)*(M2 + 4L2))t)

But in the next section, we are going to let € = e, depend on n and converge to 0 in such

exp(Kp (t+(2+(Jwo [l +vlgll1)* (MZ+4L2))%)).

a way that E(sup,<, |Zinen — Z1en|2) — 0. The estimation given in the proposition allows

a quicker (but still very slow) convergence of €, to 0 than the previous one.

Proof. We compare the two processes Z° and Z¢. We denote for simplicity Z, k, Z
and k instead of Z"¢ k' 7 and k"¢, hy = H(Z;), hy = H(Z;), b, = VH(Z;), b} =
VH(Zy), hf = AH(Z,), hf = AH(Zy), by = K.fi*(Z;) and b, = K.Qf(Z;). Computing
dexp(—2Csp(ht + ht))|Ze — Zi|? by 1t6’s formula, we get

1, <0y exp(—2C4 (s + h)) X [Q(Zt — 7)) (dRy — dky) — 2Cs)|Zs — ZoP(d]K], + dIF],)
205y Zy — 7| <\/2u(h; + h})dB! + {h;bt + hiby + v(—2Csp R} + By |* + Ry + E;’)}w)

+ Q(Zt - Zt)(bt - (_)t)dt:| (48)
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Because of the “exterior sphere” condition, the local time terms of the first line have a
non-positive contribution after integration over time. We deduce that for Ky a constant
which can be computed and depends only on upper-bounds of the function H and its

derivatives,

HYds

. _. t . .
B2 - 27P) < Ku((1+ Mol + lgl) [ B(Z - 23

t ) _ ) .
+ [ Bz - 2K (20 - KQH(ZE) ds) (49)

Using the Lipschitz continuity of K., the boundedness of h and the exchangeability of the

processes (Z¢, Z%¢), 1 < i < n, we obtain

E (|28 = ZF|| Kot (2°) - K-QU(Z:)))

) _ ) _ 1 . _
< (lwolls +wllglh) Le E(1Z™ — 27|12 — 257 + > 12 = Z))
j=1
102 . . .
=3l Z) s <y Ko (235, 28°) = KQ3(2Y))
Jj=1

+E(|Zim - Z1F

IN

(1 + 2(llwolly + vllglh) Le) E(| 2™ — Zg° )
1 & ; P ~ =
FB(|=— D W1, Z)1 s <y K (235, 237) = KQ5(Z5°)]7)
=1
After expansion of E(|1 i1 (T, Zg)l{Tj gs}Ke(Zé’E, Z1°) — K.Q%(Z%%)|?), many terms

disappear by independence of the variables which are centered conditionnally to Z*¢ and

it only remains n bounded terms. We deduce that

. . t R .
B(2"" - Z;°P) < Kn < 2+ ([[wolly +vligll) (M + 2Le))/0 B(|Z{" = Zy*P)ds

(lwollr + V||9||1)2M3t>
n

4 (4.10)

Using Gronwall’s Lemma, we obtain that both sides of (4.9) and (4.10) are smaller than

n(2 + ([lwollr + vllgll1) (M. + 2L))

Integrating (4.8) w.r.t. time, dealing with the stochastic integral thanks to Doob’s in-

exp(Kp (2 + ([lwolly + vllgll)(Me + 2L:))1).

equality and using that the r.h.s. of (4.9) is smaller than f(t), we get

, _ t : _ 1/2
Bloup |2~ 227 < (Ku [ BQZ - Zi%0ds) 4 10
s<t 0
t . _ 1/2
< d(©)(Ku [ B(ZPe = ZP)as)  + 1
0
< d(©)y/f(t) + f(t) since the r.h.s. of (4.10) is smaller than f(¢)
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The Lh.s. being smaller than d(©)?2, it is smaller than 2d(0)\/f(t) when f(t) > d(©)?
and the r.h.s. is smaller than 2d(0),/f(t) otherwise. We deduce the desired estimate for
E(supse; |2 — Z3°[7).
Now remarking that

sup 57 — Fi#| < [ e (200) — K.Q3(Z09)lds + sup | 237 — 71

s<t 0 s<t

and using arguments developped above we obtain the other estimate. O

Remark 4.6 Let us remark that if © is a convex region then the rate of convergence is

easier to obtain. Indeed the constant Cyp defined in (4.7) can be chosen equal to O :
Vz € 00 , Vo' € O, n(x).(x —a') > 0. (4.11)

In the expression of |Ztm"E — Zti’5|2 given by Ito’s formula, the local times terms are non-
positive and therefore
. . t . .
Esup| 25" ~ ZF1?) < (14 2(|lwoll + V||9||1)Ls))/0 E(sup|2,"" - Z,7|?)ds
ERS u<s

(lwoll + vllgll)* M2t
n

4
+
and we conclude by Gronwall’s Lemma.

4.2 Convergence of the limit laws

We want to prove that the law Q° of (7!, Z1¢, k1¢) converges to the unique solution P of
problem Mt as € tends to 0. We are first going to check that the drift coefficient KEQ§
converges to Kps.

By Girsanov’s theorem, it turns out that Vs > 0, the measure Qi admits a density function
g;. Moreover, reasoning like in the proof of Theorem 3.4 and using the boundedness of the
kernel K., we show that ¢° is the unique solution in L% = {ps, |||p|llr = sup,<rp [|pellpr <

+o0} of the evolution equation
t t
(@) = Prun@)+ [ VP! (giKeg)@ids+v [ [ PYg(sydoty)ds. (412

On the other hand, thanks to Lemma 4.3 1), we can apply to the equation

Ow(t,z) + V.(wK w)(t,z) = vAw(t,z) in O;
w(z,0) = wyp in O

Opw = Vw.n =g on 00 (4.13)
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all what we have done for the equation (2.1). We can then prove the existence of a unique
weak solution w® belonging to L¥°(L2) N LZ(H}). Now, like in Proposition 2.6, we obtain
that w® is also solution of (4.12). Since it belongs to L} (O is bounded), w® = ¢°. Thanks
to (4.3), one can check that the a priori estimate (2.17) holds for w® = ¢° with a constant

Cr independent of ¢. Following Remark 2.3, we deduce that

Sl(lop1] (HngLgO(Lg) g Nz ) +10eq" N g2y + HQEHLg(Lg)) < +o0. (4.14)
ee(0,

Remark 4.7 Similarly the non-negative measures B € B(©) — E? (1{,<15(Xy)) have
densities p; w.r.t. the Lebesgue measure which are the unique solution in L. of the
mild equation obtained by replacing respectively wy and g by |wo|/(|lwollr + v||g|l1) and

9|/ (lwolly + vllgll) in (4.12).
Identifying p° with the unique weak solution of the problem obtained from (4.13) by re-

placing wy and g in the same way, we check that (4.14) holds for p°.

We can now prove the convergence of ¢° to w.

Proposition 4.8
. € 0. N e _ T
gln(l) lg" —wllp2(z2) =0 gIII(l) 1K:q" — Kw||2(z2) = 0.

Proof. Thanks to (4.14), one can extract from each sequence ¢°» with ¢, tending to 0, a
sub-sequence (still denoted ¢° for simplicity), which converges strongly in L?(L2) and in
LZ(H}) and weakly* in L{°(L2) to w. By adapting the proof of Theorem 2.5, we get that

w is a weak solution of (2.1) and conclude that @ = w by uniqueness for this equation.

The only difference comes from the term (K., — K)¢*. Let 1 < p < 2. Combining
the Sobolev inequality ||q§”]|LL1 < Cllgi* || g1, Lemma 4.1 2) and (4.14), we deduce that
=

this term converges to 0 in L?(L2°).

Now, by writing
1Keq” = Kwllpzrz) < 1K(¢" = w)llzzz) + 1 (Ke = K)@" [z (22),
and using (2.11), one easily deduces the second assertion. O
Theorem 4.9 The probability measures Q° on [0,T]xC([0,T], ©) x C([0, T}, IR?) converge

weakly to the unique solution P of the nonlinear martingale problem (M), as € tends to
0.

Proof. As the weak convergence topology is metrizable, we are going to check that

Q" = QE”)WE v converges weakly to P when g, is a sequence which tends to 0 as n tends
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to +00. Let us prove the uniform tightness of the sequence (Q"),, before identifying the

limit of any weakly convergent subsequence.

1) By (4.3) and (4.14), we easily obtain that
sup ||K5nq§"||L§(Lgo) < 400. (4.15)
n

Then the Kolmogorov tightness criterion is satisfied for the laws of
_ t t _
}/tl,en = Z& + 21// 1{7_1<s},ClBs1 +/ 1{T1<S}K5nq?(zsl’€")d8.
0 - 0 -

Now the uniform tightness of the laws Q" of the processes (71, Z1¢n k7)) is a simple
consequence of the fact that the application sending y € C([0,77], IR?) on the solution
(z,k) € C([0,T],0) x C([0,T], IR?) of the Skorohod problem is continuous (See [13]).

2) Let us now denote by Q> a limit value of a convergent subsequence still denoted by

(Q™) for simplicity and prove by arguments inspired from Sznitman ([21]) that Q*° = P.

If as usual (7, X, k) denotes the canonical process on [0, 7] x C([0,T7],0) x C([0, T, IR?),
let us define, for p € IN*, 0 < 51 < ... <5, < s <t < T, ¢ € C}(IR?), g € Cp([0,T], (O x
IR?)P) the function

Gul(r X, k) = g1, Xy koys oo Xo, b, (¢(Xt k) — G + k)

_Iltlwgu}(”A¢CXu4-&J-%B%mﬁ”ﬁxuyv¢‘xﬁ*'“”>d“>

Then E9" (G, (1, X,k)) = 0. Now if we define the function G by replacing K. ¢5" by Kws
in (4.16), we want to prove that E9™ (G(r, X, k)) = 0.

EC7(G(r,X,k)) = E97(G(r, X, k) — E?"(G(1, X, k)) + E?"(G(r, X, k) — G™(1, X, k)).

Since w € L}(LL), by (2.10), ds ae. in [0,7] = € © — Kws(x) is continuous and
Kws € L}(LS). We deduce that G(7, X, k) is a continuous function on the path space,
and the first term of the r.h.s. tends to 0 as n tends to infinity. On the other hand, using

Remark 4.7 and Proposition 4.8, we obtain

t _ _
EQ |G (r, X, k) — G(r, X, k)| < CE( /0 1{71§5}|Kgnq§"(Zsl’5")—Kws(Zsl’E")|ds>

IN

Clp* 22y 1 Ke, @™ — Kwllp2(z2) — 0 as n — +oo0.

Hence E9™ (G(1,X,k)) = 0. Since Vn, Q"o(r, Xo, ko)~ ' = Py®0(0,0y, @0 (T, Xo, ko)t =

Py ® 6(p,0)- We are now going to prove that Q°°-almost surely,

t t
k|7 < o and V¢ € [0, ], |k|t:/0 1(x.coo) 1 (r<sdlkls kt:/o n(X,)d|k]s.
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As according to the proof of Theorem 3.4, P is the unique solution of the linear martingale
problem defined like My but with known drift coefficient Kwg, we will conclude that
Q> = P. According to the following Lemma the proof of which is postponed,

Lemma 4.10 For any A > 0, the following subset of [0,T] x C([0,T],0) x C([0,T], IR?)

T t
Fa= {(u,x,k) skl :/0 l{ugs}l{xs€8®}d|k|s < Aand vVt €[0,T], kt :/0 n(xs)d|k|5}

1s closed.

Q?’L
. . sup  wEY |k|r
oo F >1-— 1 1 FOMFS)>1— 1 e |
¢ (ALJO A> N Aﬂlrfoo 719—1{20 Q ( A) = Aﬂlrfoo y
Therefore it is enough to check that sup, v EJ'n |y < +00 to conclude the proof.

Since VH = —n on 00, applying [td’s formula to compute H(Z%,En)’ we get that [k1"|p

is equal to
_ T _ _
H(Z™) = H(Z3) = [ 1oy (WAH + Ko, q3* VH)(Z1*")ds + VIV H(Z15).dBY)
0 <

Taking expectations and using (4.15), we obtain the desired result. 0

Proof.of Lemma 4.10 Let (u",z",k™) € Fy4 converge to (u,z,k) as n — +oo. Since
sup,, |k"|r < A, by extraction of a subsequence, we can suppose that the measure d|k"|
(resp. dk™) converges weakly to a positive measure da with mass smaller than A (resp.
to dbs). Of course dbs = \(s)das for some measurable function A : [0,7] — IR? and since
k™ converges uniformly on [0,7] to k, dbs = dks. Since d(z?,00), where d(.,00) denotes
the (continuous) distance from the boundary function, converges uniformly on [0,7] to
d(zs,00),

T T
| dtes,00)da, =1tim [ dar, 00)dJrlz =0.
0 0

We deduce that dag a.e. and therefore d|k|s a.e., x5 € 0O. Since the functions £ which
are equal to (0,0) on [0,u"] converge uniformly to k, this function is equal to (0,0) on

[0,u] and |k|, = 0. To check the only lacking property : dks; = n(xs)d|k|s, we remark that
_ T
VJ € C(0.T) iy, g € CO.T10), [ £(5) ((n = g(s))dh, + Cuplas = g(s)das) = 0

by taking the limit n — 400 in the similar inequalities satisfied with (z,dk, da) replaced
by (z",dk",d|k™|) according to the uniform “exterior sphere” condition (4.7). We deduce
that dks = |A(s)|n(zs)das which implies the desired property. 0
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4.3 The convergence theorem

We now consider a sequence (g,,) tending to 0 as n tends to infinity, in such a way that

A M,
: 2 En En __
Jim 22,4 xR (1 + (ool + ol O, /2 L)) + 22 0. (6

This is possible, even if the convergence of €, to 0 is then very slow. Let us now consider
for each n the system of processes (7%, Z k') where Z" = Z"™¢n and k™ = kinen
are defined as in (4.4) but with K., replacing K.. We are now able to obtain our main

theorem.

Theorem 4.11 1) The laws of the n-particle system (7°, Z™ k") <i<,, are P-chaotic
(where P is the solution of the problem (M) ):

kl
Vpe N, L((+1, 2™ k™), ., (2, Z2P" kP)) Y peP g5 oo, (4.17)
2) The approximate velocity field converges to Kw:

lim E(||K., i (x) — Kwt(x)Hi?(L%)) = 0. (4.18)

n—+00

Proof.

1) Since the processes (7%, Z», k»); are independent, Theorem 4.9 implies that for
every fixed p € IN*, the law of ((71, Zb5n kben) ... (TP, ZP#n kP<n)) converges weakly to
P®P. Let Cp = [0,T] x C([0,T],0) x C([0,T], IR?*). We endow CL. with the metric

d(((ul,xl,kl),...,(up,:cp,kp)) , ((ul,xl,kl),...,(up,xp,kp))>

= Z <|ul — ﬂz| + sup |x,§ — iﬂ + sup |k§ — k§|> .
i=1 (0,77 [0,1]

’ ’

and P(C}) with the metric
p(p,v) = inf{/ d(z,y) A 1R(dx,dy); R has marginals p and 1/}
chxch
which is compatible with the topology of the weak convergence. Hence
p(L((rY, ZYen kbeny, (p, ZPF  KPE)), PPP) — 0 as n — +00.
By Proposition 4.4, and (4.16)

lim B (d(((r}, 2" k™), o (77, 2P ), (71, 2050 B, o (7, 2050 BP9) ) ) = 0

n—-+00
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which ensures that

lim p (E ((Tl, Zm gy, (P, 7P, kp")) L ((Tl, ZVen FLen) (P, ZPEn, EW"))) = 0.

n—-+0o

We conclude that p(L((7t, Z'™, k"), ..., (P, ZP", kP™)), P®P) converges to 0.
2) On the other hand,

- - 1 & o .
B, (2) = Kun(@)) <38 (| Koy 2) = 13- Lpicph(r', Z)Ke, (2, 277)
1=1

1 & o . - 2
2 S 1 bl 2K, 0,207) — Ko, G5 (0
=1

+1K., G () = Kun(o)?)

- = 4M?
< 3wl + vlgl)*(22, Blsup | 21" = 25 ) + =2) + Ko, i* (o) = Kunlo) ).
S_

We conclude using (4.16), Proposition 4.4 and Proposition 4.8. O

Remark 4.12 Since the laws L((t', Z'™, k'), ..., (7", Z™ k™)) are exchangeable, the

propagation of chaos result is equivalent to the convergence in probability of the empir-

ical measures to P, as probability measures on the path space (cf. [22]). As a consequence,

if the space of finite measures on © is endowed with the weak convergence topology, then
nen 1

for t € [0,T], the random finite measures i, " = + Y .i"y 1{Ti5t}h(7i,Z8)5Z§n converge in

T n

probability to wi(x)dx, w being the unique solution of the vortex equation.

We finally deduce from this study an algorithm for the simulation of the solution of the
vortex equation. To approximate numerically this solution, it is necessary to discretize in
time the particle system. This can be achieved thanks to the Euler scheme for reflected
diffusions proposed by Gobet [9]. In our situation, with identity diffusion matrix and
normal reflection, the weak rate of convergence of this scheme is O(At), where At denotes
the time-step. Like in Bossy-Jourdain [2], one could try to prove that if iy, denotes the
weighted empirical measure of the discretized system, K. ;'\, converges to Kwja; with
rate O(At + ﬁ)
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